
Extending Timestamp-Based Two Phase Commit Protocol
for RESTful Services to Meet Business Rules

Luiz Alexandre Hiane da Silva Maciel
Instituto Tecnológico de Aeronáutica (ITA)

Praça Marechal Eduardo Gomes, 50
Vila das Acácias, CEP 12228-900

São José dos Campos - SP - Brasil
luizhiane@gmail.com

Celso Massaki Hirata
Instituto Tecnológico de Aeronáutica (ITA)

Praça Marechal Eduardo Gomes, 50
Vila das Acácias, CEP 12228-900

São José dos Campos - SP - Brasil
hirata@ita.br

ABSTRACT
Service Oriented Architecture allows development of soft-
ware with requirements of interoperability and weak cou-
pling. Nowadays, REST is an architectural style that has
been gaining attention in the SOA domain. REST allows
the development of web services based on concepts sim-
pler than WS-*, however, REST, as an architectural style,
does not provide “official” standards to address some non-
functional requirements of services, such as, security, relia-
bility, and transaction control. The Timestamp-based Two
Phase Commit Protocol for RESTful Services (TS2PC4RS)
algorithm proposes a REST-based technique to support the
web services transactional control implementation. This pa-
per proposes to extend the TS2PC4RS algorithm to improve
the satisfaction of business rules. The goal is met in the
way the clients can update their prewrites on the ongoing
transactions, so that the clients do not need to start a new
transaction in order to implement the desired updates. The
update of prewrites takes into account the application do-
main business rules which guide the RESTful services be-
havior. Thus the business rules are also considered in the
algorithm extension. An example was used to describe the
TS2PC4RS extension for updates.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Patterns; H.4 [Information Systems Applications]: Mis-
cellaneous

General Terms
DESIGN, EXPERIMENTATION

Keywords
Architectural style, concurrency control algorithm, REST,
transaction, timestamp, web services, business rules

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

1. INTRODUCTION
REST [5] (Representational State Transfer) is an emerg-

ing technology that has been gaining attention in the SOA
(Service Oriented Architecture) domain due to the fact it has
its foundation on the original design principles of the World
Wide Web. The usage of these original principles eases the
consumption of the services by the clients what allows the
services providers attract a larger user community [16, 19].

In the REST architectural style the resource is the key
abstract information. Every resource is associated with a
an URI[20] (Universal Resource Identifiers), which is the
resource name and the address. The resources are manip-
ulated through a uniform interface which maps to HTTP
methods [18]. GET retrieves information about a resource.
PUT creates a new resource when new URI is provided by
the client. PUT also updates an existing resource. POST
creates a new resource without providing new URI. DELETE
erases an existing resource.

In general, RESTful services are well suited for basic, tac-
tical, ad hoc integration over the Web [17]. On the other
hand, WS-* Web services, which are based on SOAP [21]
and WSDL [22], are preferred for professional enterprise ap-
plication integration scenarios with a longer lifespan and ad-
vanced QoS requirements (e.g., transactions, security, relia-
bility) [17].

In spite of such suggestions of use, both approaches have
advantages and disadvantages so that it is up to the devel-
oper to make the decision of which approach is more suited
for each particular case.

WS-* web services are supported by a set of specifications
for the development of services based on SOAP and WSDL,
which can be used when advanced QoS requirements are
necessary. The specifications include WS-Security [11], WS-
Reliability [10], WS-Transaction [12], WS-Coordination [13].

RESTful web services are considered simpler to adopt and
understand than the WS-* web services, however, most of
the non-functional (QoS) requirements in RESTful web ser-
vices are not addressed by an “official” standard. The rea-
son it that REST is an architecture style, and so, it is used
mainly to understand and design web services guided by that
style [4].

Nonetheless, while REST is not a standard, the concrete
implementation of REST does use standards like, HTTP,
URL and for resource representation: XML, HTML, GIF,
JPEG and so on. Some non-functional requirements are also
addressed by standards used in concrete REST architecture
implementations. For instance, security can be reached by

778

using OAuth (secure API authorization) [14], OpenId (single
sign-on protocol) [15] or HTTP basic and digest access au-
thentication [6], reliability can be reached using the HTTP
features, particularly the idempotent verbs.

Despite the standards used in concrete REST architec-
tures, there still is a lack of support for the QoS require-
ments in the REST domain. Thus, in order to provide the
transaction control for the REST domain, Hiane and Hirata
have proposed TS2PC4RS to address concurrency control
with RESTful services [9]. The TS2PC4RS (Timestamp-
based Two Phase Commit Protocol for RESTful Services) al-
gorithm uses timestamp technique [8, 3] with the two phase
commit (2PC) protocol to control concurrent access to REST
resources.

In the TS2PC4RS algorithm the client is allowed to send
read (using GET), prewrite (using PUT), write (using PUT)
operations to the RESTful services involved in the transac-
tion context. To execute a transaction, the client first sends
the prewrite messages (prepare) to all participating RESTful
services and based on the participating responses the client
sends the write message (commit or abort) to complete the
transaction.

Without the ability to update prewrites, if a client de-
sires to change a prewrite already accepted by the RESTful
service, the normal procedure is to execute two operations,
first the client must abort the previous prewrite (the one the
client wants to change) and then it must send a new prewrite
containing the desired changes. However, before the client
sends the new prewrite, some other client may succeed in
sending its prewrites, which can make the new prewrite of
the first client inconsistent due to the restrictions imposed
by the business rules. The RESTful service can also reject
the new prewrite due to the timestamp rules.

Therefore, it is necessary to improve the way the clients
can update their prewrites, so that the prewrite update op-
eration can be performed in the current transaction without
starting a new one. In order to provide the ability to update
the prewrites, it is important to consider how the applica-
tion domain business rules are taken into account to extend
the TS2PC4RS algorithm.

For the purpose of this work, business rules can be under-
stood, from the information system perspective, as state-
ments that define or constrain aspects of business. They
are intended to assert business structure, or to control or
influence the behavior of the business. Thus, a business rule
expresses specific constraints on the creation, updating, and
removal of persistent data in an information system [2].

In this paper we investigate how business rules can be met
when using TS2PC4RS algorithm by addressing the updates
of prewrites already accepted. More specifically, we aim to
extend the TS2PC4RS algorithm [9] in order to provide the
clients with the ability to update its prewrites taking into
account the business rules.

Sections of this paper are organized as follows. Section
2 recalls some of the key aspects of the TS2PC4RS algo-
rithm and describe the extensions necessary to support the
prewrite updates. The TS2PC4RS extensions are described
through the purchase of tickets example. Section 3 presents
an analysis of the proposed TS2PC4RS extensions point-
ing out new possibilities of interactions between clients and
RESTful services. Section 4 presents the conclusions and
proposals for future work.

2. TIMESTAMP CONCURRENCY FOR
REST EXTENDED

Clients are allowed to send prewrite update operations to
the RESTful services, which, based on their business rules,
accomplish the prewrite update immediately or, if it cannot
be performed, the prewrite update can be stored to be ac-
complished in the future. The interactions between clients
and servers are better discussed in Section 2.2.

Section 2.1 recalls some of the key aspects of the origi-
nal algorithm. Section 2.2 exposes the issues that emerge
from the capability to update prewrites already accepted by
the RESTful services, considering the application domain
business rules. Section 2.3 presents the main necessary ex-
tensions to the algorithm to support prewrite updates.

2.1 TS2PC4RS Original Algorithm
In this subsection, we reproduce the original TS2PC4RS

algorithm for concurrency control in RESTful services do-
main presented in [9].

Every write operation W is preceded by prewrite PW.

1 - A unique timestamp is assigned to each transaction in
their origin;

2 - Each read R, write W, and prewrite PW operation
has the transaction’s timestamp TS;

3 - Each data item (x) contains the following information:

(i) WTM (x) - the largest timestamp of a write
operation on x;

(ii) RTM (x) - the largest timestamp of a read
operation on x;

(iii) LPW(x) - a list of buffered prewrites on x in
timestamp order;

4 - For prewrite operations:

If TS < RTM(x) or TS < WTM (x) or PW places the
data item in a inconsistent state then

reject the PW operation and
restart the transaction;

else
put the PW operation and its TS into the LPW;

5 - For read operations R with timestamp TS:

If TS < WTM(x) then
reject R and restart the transaction;

else // TS >= WTM (x)
If (LPW is empty)

execute read and RTM(x)=max(RTM(x), TS);
else

If TS < TS(first(LPW)) then
execute read and
RTM(x)= max(RTM(x), TS);

else
execute read and return the data
item value committed at WTM, WTM,
and LPW sub-list until TS;

In this article, we are dealing mainly with step 4 of this
algorithm, i.e., step 4 is extended to accept updates and to
take into account the application domain business rules.

When the transaction is committed, the operation W is
performed in the data item, its corresponding PW is re-
moved from the LPW , and WTM = TS(PWremoved). If
the transaction is aborted, the PW is removed from the
LPW .

The commit procedure [9] that must be accomplished when
the agents receive the write operation W indicating the
transaction commitment follows.

779

Search for the PW of the committed transaction
in LPW;
If it is the first in LPW then

Execute W, remove PW from LPW and
WTM(x)=TS(removed PW);

If there is a sequence of PWs marked for
update-data in the LPW, immediately after
the removed PW then

Remove that sequence, execute the
respective writes, and
WTM(x)=TS(last PW of the removed sequence);

else // it is second forth
Mark the PW for update-data;

First the prewrite being committed is found in the LPW
and if it is the first one in LPW, then the prewrite is removed
from LPW, the write operation is executed and WTM is
updated with the timestamp of the removed prewrite.

Thereafter, if there is a sequence of prewrites (a LPW sub-
list) that are marked to be removed from LPW – with the
update-data mark – immediately after the removed prewrite,
then the sequence is removed from LPW, the corresponding
write operations are executed and WTM is updated with the
timestamp of the last prewrite of the sequence. However, if
the prewrite being committed is the second forth, the pre-
write is just marked to be removed as soon as possible.

If the transaction is aborted, the following procedure [9]
must be performed by the agents that receive the write op-
eration W indicating the transaction abortion.

Remove PW from LPW;
If the removed PW was the first in LPW then

If there is a sequence of PWs marked for
update-data in the LPW, immediately after
the removed PW then

Remove that sequence, execute the
respective writes, and
WTM(x)=TS(last PW of the removed sequence);

Primarily, the prewrite being aborted is removed from
LPW and if it is the first one in LPW, we have to verify
if there is a sequence of prewrites that are marked to be re-
moved from LPW immediately after the removed prewrite.
If the sequence is found, then it is removed from LPW, the
corresponding write operations are executed and WTM is
updated with the timestamp of the last prewrite of the se-
quence.

The client (2PC coordinator) is responsible to coordinate
all the transaction. It starts the transaction by sending
requests through prewrites to all RESTful services (2PC
agents) which are involved in the business process being ex-
ecuted. If all services can perform the operations requested,
they reply with a ready message to the coordinator client.
Otherwise the services reply with a not-ready message.

So, in the all-or-nothing case, the client evaluates all the
reply messages received from the RESTful services and if
they are all ready, the client commits the transaction by
sending the commit message to all services. If the client re-
ceives a not-ready message, it aborts the transaction sending
abort messages to all services.

If the business rules allow, the client may wish to partially
commit the transaction. In this case, even receiving some
not-ready messages, the client may want to commit the re-
quests which are ready by sending the commit message to
the corresponding RESTful services.

The client may also want to change his/her request seek-
ing to increase the chances of success with all services. With
the extended TS2PC4RS proposed in this paper and the up-
dated view of the data item concept proposed by the original

TS2PC4RS algorithm, the client is allowed to make a deci-
sion and update the prewrite on the data item (resource) of
interest using a transaction in progress.

In order to allow prewrite updates by clients, ensuring
compliance with all involved business rules, the RESTful
services should relax the control over the LPW. So, the TS-
2PC4RS algorithm needs some extensions as described in
next Sections.

2.2 Purchase of Tickets Example
We use the purchase of tickets example [9] to facilitate

the understanding of the issues about supporting prewrite
updates taking into account the involved business rules. The
example considers two operations: purchase of tickets for a
basketball game and purchase of train tickets to go to the
city (place) of the game.

The client’s objective is to buy a certain number of tick-
ets for the game together with the train tickets to go to the
place of the game. Initially, clients want to buy the same
amount of tickets for the game and for the train seats. Ta-
ble 1 provides an overview of the main resources, URIs, and
operations for the service responsible for the game tickets.
The train tickets service has similar resources.

It is a good practice to expose the transaction concept as
a resource [1, 7, 18, 23]. In this way, we decide to expose
transaction information in its own resource (/booking/{TS})
for each involved server.

As described in [9], each REST resource that uses the
timestamp concurrency control has the following additional
attributes within its representation: the largest write oper-
ation timestamp (WTM), the largest read operation times-
tamp (RTM), and the list of buffered prewrites (LPW). The
RESTful services implement the two-phase-commit (2PC)
agents that control the access to the data items. The REST
clients implement the 2PC coordinator.

The client sends read operations (R) through GET mes-
sages; prewrite (PW) and write (W) operations through
PUT messages. If the service executes R, a resource repre-
sentation is returned with the HTTP 200 status code (OK).
Otherwise if the service cannot process R, it returns a mes-
sage with the HTTP 409 status code (Conflict) and informa-
tion for the client to try to fix the problem. For example, if
R is rejected because of the WTM, the value of WTM must
appear in the message body in order to permit the client to
increase its timestamp and try again.

If the service successfully executes PW or W, a message
with the HTTP 200 status code is returned. Otherwise if the
service cannot process PW or W, it returns a message with
the HTTP 409 status code and information for the client to
try to fix the problem.

Each client can have its own logical clock to assign the
timestamps for its transactions. The client’s logical clock
time is updated (increased) through the information returned
in the HTTP 409 messages. Another option is to central-
ize the timestamp assignment into an entity which can work
similarly a transaction manager [1, 7, 23].

In the purchase of tickets example, server A hosts the
RESTful service responsible for the game tickets, and the
initial values for its attributes are number of tickets = 1000,
WTM = (10, x), RTM = (20, x), and LPW = []. Server B
hosts the RESTful service responsible for the train tickets,
and the initial values for its attributes are number of tickets
= 500, WTM = (15, x), RTM = (30, x), and LPW = []

780

Table 1: The main resources, URIs, and operations for the Purchasing of Tickets Example.

Resource URI Method Description
Tickets for game /ticketsforgame/{TS} GET Retrieve the representation within the available tickets number.
Tickets Booking /ticketsforgame/booking/{TS} PUT Create or update a booking at TS. Also used to commit or abort

the booking.
/ticketsforgame/booking/{TS} GET Retrieve the status of the booking created at TS (e.g., pending,

aborted, completed).

Consider the scenario where both clients have succeeded in
sending their prewrites. Client 1, whose timestamp is (50,a),
has succeeded in sending its PW message to book 200 tickets
through a PUT to the URIs ticketsforgame/booking/50a

and ticketsfortrain/booking/50a. Client 2, whose times-
tamp is (40,b), has succeeded in sending its PW message
to book 300 tickets through a PUT to the URIs tickets-

forgame/booking/40b and ticketsfortrain/booking/40b.
Thus, the LPW of both servers have two entries, one for
each client.

Starting from the above scenario and assuming that the
main objective is to maximize the sale of tickets and clients
satisfaction, the general business rules [2] of servers can be
stated as follows. (i) The sum of already accepted reser-
vations (prewrites) must not exceed the current amount of
tickets available. (ii) If it is possible at the moment of the
request receiving, the number of tickets already reserved
should be kept as large as possible. (iii) Potential clients
should be kept in waiting lists to be notified when its pur-
chase requests can be met – potential client is someone who
can possibly purchase the tickets. (iv) The reservations are
ordered by timestamp and must be committed in the same
order – so, clients are served in timestamp order.

It is worth noting that if the only rule that must hold is the
general rule (i) and overwrite of prewrites already entered in
LPW is allowed, the original TS2PC4RS algorithm works.

However, if there are more business rules like the general
rules (ii) and (iii), the TS2PC4RS algorithm needs some
extensions, in addition to the permission to accept overwrite
of prewrites already accepted. To describe the extensions,
let us consider some business rules with more detail.

The client of the purchase of tickets example can send
update requests to increase or decrease the amount of re-
served tickets. When the client wants to buy a larger amount
of tickets, it sends an increase update request. Otherwise,
when the client wants to buy a lesser amount of tickets, it
sends a decrease update request.

(a) If the client wants to increase the tickets amount re-
quested, but the general rule (i) rejects the change,
the client can request that its prewrite update request
be stored to run as soon as possible (general rule (iii)),
e.g., after an abortion of some other transaction, which
increases the number of tickets available.

The server may store the increase update request in
a waiting list called update-wait-list (UWL). In this
case, when the amount requested becomes available,
the server updates the request in the LPW, removes it
from the UWL, and notifies the client.

(b) If the client wants to decrease the tickets amount re-
quested, we should follow the general rule (ii).

Server A

tickets for game

Client 1

Client 2

Server B

tickets for train

TS = 40
CID = bTS = 50

CID = a

Tickets = 1000

RTM = (20,x)

WTM = (10,x)

LPW = [((40,b); 300); ((50,a); 300)]
UWL = []

PWL = []

Tickets = 500

RTM = (30,x)

WTM =(15,x)

LPW = [((40,b); 300) ;((50,a); 200)]

UWL = [((50,a); 300)]

PWL = []

Resource URI

ticketsforgame/booking/50a

Resource URI

ticketsfortrain/booking/50a

Resource URI

ticketsforgame/booking/40b

Resource URI
ticketsfortrain/booking/40b

PUT

(P
W = 300, n

otity
)

200 (o
k)

PUT
(PW = 300, notify)

200 (ok)

Figure 1: Client 1 updates its reservation request.

For this purpose the server can maintain a list of po-
tential clients who had their first reservation request
denied and had asked to be notified when tickets be-
came available (general rule (iii)). Let us call this list
the prewrite-wait-list (PWL). When the amount re-
quested becomes available, the server accepts the pre-
write request and notifies the client.

Therefore, when the client requests to decrease the
requested amount of tickets, the server evaluates the
PWL in order to keep the number of tickets reserved as
large as possible (general rule (ii)) by trying to match
the decrease request with the prewrite requests in the
PWL.

The server can also check the UWL to find requests
that can be used to match the decrease request with
the increase prewrite requests in the UWL. However,
nothing can be made if both lists, UWL and PWL,
are empty upon the decrease request receiving, and
so, the decrease prewrite request is just accepted – the
corresponding PW in the LPW is decreased.

At client side it is not interesting to break the prewrite up-
date into an abort and a new prewrite because the client may
lose his/her advantage over the other clients as described in
Section 1. Moreover, if the client has to restart its transac-
tion with a new timestamp, its new prewrite will probably
have a worse position in the LPW than the aborted one by
the general rule (iv).

Continuing the above example scenario, let us assume that
the client 1 decides to increase its reservation of tickets up to

781

300. Client 1 sends a prewrite update request to the server
B through a HTTP PUT as illustrated in Figure 1. The
client 1 also asks the server that if its request cannot be
implemented immediately, the server can insert the request
in the UWL. This is made through the notify parameter.
By general rule (i), the server B cannot update the client
1’s prewrite immediately. Thus, server B puts the prewrite
update request in the UWL, keeping him/her as a potential
client (general rule (iii)).

Client 1 also sends a prewrite update to the server A,
who proceeds the update immediately as the available tickets
amount is sufficient to obey general rule (i) (Figure 1).

On the other hand, client 2 decides to decrease its reserva-
tion of tickets down to 150. Client 2 sends prewrite update
requests to the server A and B as illustrated in Figure 2.
Both servers proceed the update immediately. However,
server B has one increase update in UWL that can be im-
plemented due to the availability of new tickets caused by
the client 2’s decrease request. Thus, server B moves the
request ((50,a);300) from UWL to LPW and notifies client
1 about the accomplishment of its increase update request
as it can be seen in Figure 3 (general rule (ii)).

At this point, either client can commit its transaction by
setting the booking state to “completed” in the same way
already described in the original example in [9].

In order to demonstrate the use of the PWL, let us con-
sider a new but similar scenario where the client 2, whose
timestamp is (40,b), has succeed in sending its PW message
to book 300 tickets to both servers. Thus, the LPW of both
servers have one entry.

Suppose that the client 3, whose timestamp is (60,c),
needs to buy only train tickets because client 3 already has
tickets for the game. So, client 3 sends its first prewrite re-
quest to buy 300 train tickets, which cannot be implemented
at the moment because of general rule (i). Then, as client
3 has asked to be notified if tickets become available, server
B puts client 3’s prewrite request in the PWL – keeping a
potential client (Figure 4).

Consider that client 2, based on some event, wants to
decrease its reservation of tickets down to 200. Thus, after
processing the client 2 decrease update request, the server
B identifies the client 3’s prewrite in the PWL, moves the
prewrite from PWL to LPW and notifies the client 3 as
shown in Figure 5. After the server B’s notification, client
2 or client 3 can commit its transaction.

It is worth noting that the UWL and PWL concepts can
be combined in favor of maintain a unique waiting list. If
the business requires, the original prewrites should be dis-
tinguishable from the prewrite updates.

2.3 TS2PC4RS Extended Algorithm
Considering the issues discussed in section 2.2, the step 4

of the original TS2PC4RS algorithm is extended as follows
in order to allow the prewrite updates based on the appli-
cation business rules. The business rules cover everything
that the business claims that must be evaluated in the data
item manipulation, including the assurance of the consis-
tency maintenance during the data item states transfer.

The RESTful services are responsible for the business rules
verification since the RESTful services control the access to
the data items.

The TS2PC4RS algorithm extension is described below.

4 - For prewrite operations:

Server A

tickets for game

Client 1

Client 2

Server B

tickets for train

TS = 40
CID = bTS = 50

CID = a

Tickets = 1000

RTM = (20,x)

WTM = (10,x)

LPW = [((40,b); 150); ((50,a); 300)]
UWL = []

PWL = []

Tickets = 500

RTM = (30,x)

WTM =(15,x)

LPW = [((40,b); 150) ;((50,a); 200)]

UWL = [((50,a); 300)]

PWL = []

Resource URI

ticketsforgame/booking/50a

Resource URI

ticketsfortrain/booking/50a

PUT(PW = 150)
200 (ok)

PUT

(P
W

 = 1
50)

200 (o
k)

Resource URI
ticketsfortrain/booking/40b

Resource URI

ticketsforgame/booking/40b

Figure 2: Client 2 updates its reservation request.

If TS < RTM(x) or TS < WTM (x) then
reject the PW operation and restart the transaction;

else
If the PW operation is not already in LPW then

If the PW can be executed obeying
all the business rules set then

put the PW operation and its TS
into the LPW; //first PW at this TS

else
If the client has asked for notification then

put the PW operations and its TS into PWL;
else

reject the PW operation and restart
the transaction;

else // it is an prewrite update.
If the PW can be executed obeying
all the business rules set then

replace the PW operation in the LPW with this
new PW; //the TS must be the same

else
If the client has asked for notification then

put the PW operations and its TS into UWL;
else

reject the PW operation and restart
the transaction;

The step 4 is extended to take into account the appli-
cation domain business rules. The cases dealing with the
timestamp verification remain as the TS2PC4RS original al-
gorithm, i.e., if the transaction timestamp (TS) is less than
WTM or RTM the transaction must be aborted.

With this extension, each REST resource – in addition
to WTM, RTM and LPW – has the following additional at-
tributes within its representation: its update-wait-list (UWL)
and its prewrite-wait-list (PWL).

If the prewrite is not in the LPW – the prewrite is the
first at the corresponding timestamp – and if the prewrite
does not corrupt any business rule, it is inserted into the
LPW. Otherwise if the prewrite is not in the LPW, but the
prewrite corrupts some business rule, the RESTful service
puts the prewrite in the PWL after checking that the client
had asked to be notified if tickets become available.

If the prewrite is already in the LPW and the prewrite
does not corrupt any business rule, the prewrite update is
made replacing the PW already in the LPW. Otherwise if
the prewrite is already in the LPW, but the prewrite cor-

782

Server A

tickets for game

Client 1

Client 2

Server B

tickets for train

TS = 40
CID = bTS = 50

CID = a

Tickets = 1000

RTM = (20,x)

WTM = (10,x)

LPW = [((40,b); 150); ((50,a); 300)]
UWL = []

PWL = []

Tickets = 500

RTM = (30,x)

WTM =(15,x)

LPW = [((40,b); 150) ;((50,a); 300)]

UWL = []

PWL = []

Resource URI

ticketsforgame/booking/50a

Resource URI

ticketsfortrain/booking/50a

Resource URI

ticketsforgame/booking/40b

Resource URI
ticketsfortrain/booking/40b

notify

Figure 3: Server B identifies and implements a in-
crease update request.

rupts some business rule, the RESTful service puts the pre-
write in the UWL after checking that the client asked to be
notified if tickets become available.

In the cases that the prewrite is put into PWL or UWL,
the RESTful service must also check the possibility of the
prewrite be accepted due to future events. For the example,
if a client aborts the transaction or decreases the amount
of tickets requested, other clients can have their prewrites
eventually accepted. Thus, the prewrites can be put into
PWL or UWL only if they can eventually be accepted.

The commitment and abort procedures of the original TS-
2PC4RS algorithm have to be extended to evaluate UWL
and PWL. When a commit/abort is requested, all UWL and
PWL references to the prewrite being committed or aborted
must be canceled and then the original commitment or abort
procedure can be made as described in TS2PC4RS [9].

The abort procedure has a new particularity. When a
prewrite is aborted, some tickets are made available again.
Thus, when executing an abort, UWL and PWL must be
checked due the number of tickets that became available.
So, UWL and PWL are used to soften the purchase loss by
the corresponding server.

3. ANALYSIS
In the situation explained in the example described in [9],

when a REST client interacts with two RESTful services
within a transaction, it must send prewrite requests to both
services. If client’s requests are accepted only by one of
the services, the client identifies that it cannot complete the
transaction successfully and then, in the all-or-nothing case,
it aborts the transaction by sending an abort message to the
RESTful service that has accepted the prewrite. The client
can also partially commit the transaction by committing
only the successful prewrite, if its business rules allow it.

However, through the ability to update the prewrites al-
ready accepted by the servers, the client does not need to
abort the whole transaction or to partially commit the trans-
action, leaving the unsuccessful prewrite. The client can up-
date its successful prewrite in order to increase the chances

Server A

tickets for game

Client 2

Server B

tickets for train

TS = 40
CID = b

Tickets = 1000

RTM = (20,x)

WTM = (10,x)

LPW = [((40,b); 300)]

UWL = []

PWL = []

Tickets = 500

RTM = (30,x)

WTM =(15,x)
LPW = [((40,b); 300)]

UWL = []

PWL = [((60,c); 300)]

TS = 60

CID = c

Client 3

PUT
(PW = 300, notify)200 (ok)

Resource URI

ticketsforgame/booking/60c

Resource URI

ticketsfortrain/booking/60c

Figure 4: Client 3 requests a prewrite to buy 300
train tickets.

of success with the unsuccessful prewrite. Thus, the trans-
action execution can be completed in a more productive way
to the client.

For example, if the client – in the purchase of tickets ex-
ample – manages to send prewrite only to server A, because
server B does not have the requested tickets amount. The
client does not need to abort the transaction. The client,
after evaluating the situation, may decide to decrease the
tickets amount requested to both servers, and so, in the
same transaction, the client sends an update prewrite to the
server A and a usual prewrite to server B. So, the client
increases the chances of transaction success.

The ability to improve the business rules support in the
client-server interactions in the REST domain provides ad-
vantages to both clients and servers. As shown in the ex-
ample, the servers enhance their selling capability through
the waiting-lists (PWL, UWL). The sales that would be lost
due to lack of available tickets, can be softened by putting
the prewrites in these waiting-lists in order to store poten-
tial clients. The clients enhance their consumption power
through the same waiting-lists, i.e., they have the option to
stay in a queue in order to be served as soon as possible.

Through the TS2PC4RS extension, we have introduced
both abilities in the original TS2PC4RS algorithm: prewrite
update and business rules improvement support. So, the TS-
2PC4RS can be extended to absorb the nuances of various
application domains. The TS2PC4RS extensibility eases the
adjustment to different environments as has been demon-
strated through the purchase of tickets example, reaching
the TS2PC4RS Extended algorithm in Section 2.3.

Based on the general and detailed business rules stated
in Section 2.2, we deal only with increase prewrite update
requests in the UWL. So, the decrease prewrite update re-
quests are not put in the UWL due to the stated rules which
have as main objective the maximization of tickets sold and
clients satisfaction.

With the stated rules, the clients have no interest in wait-
ing for having their decrease prewrite requests accepted, but
if we consider a new general rule (v): Apply penalties to
clients that update their already accepted prewrites to de-

783

Server A

tickets for game

Client 2

Server B

tickets for train

TS = 40

CID = b

Tickets = 1000

RTM = (20,x)

WTM = (10,x)

LPW = [((40,b); 200)]
UWL = []

PWL = []

Tickets = 500

RTM = (30,x)

WTM =(15,x)

LPW = [((40,b); 200) ; ((60,c); 300)]

UWL = []

PWL = []

notify

TS = 60

CID = c

Client 3

PUT(PW = 200)
200 (ok)

PUT

(PW
 =

 2
00)

200 (o
k)

Resource URI

ticketsforgame/booking/40b

Resource URI

ticketsfortrain/booking/40b

Figure 5: Client 2 updates its reservation request
and Server B identifies and implements the prewrite
request in the PWL.

crease the tickets amount requested; the storage of decrease
update requests in PWL becomes interesting to the clients.

In order to fulfill the general rule (v), the server can store
the decrease update requests that cannot be softened in the
UWL. The increase and decrease requests must be distin-
guishable in the UWL. As already described in Section 2.2,
in some cases, the decrease update requests cannot be soft-
ened because UWL and PWL are empty and so the attempt
to keep the quantity of tickets already reserved as large as
possible (general rule (ii)) cannot succeed at the moment of
the decrease request receiving, and so, the decrease request
may be put in the UWL, if the client asked to put its request
in a waiting-list to avoid the penalties of general rule (v).

The behavior would be very similar to that described in
item (a) of the detailed business rules for the prewrite op-
eration (Section 2.2), because it is also an prewrite update
request. The difference is that it is necessary to wait for
some other client that wants to increase its prewrite or that
is sending its first prewrite request, in order to match the
decrease update requests in the UWL with the increase re-
quests or the new prewrite requests. In this way, the clients
avoid the penalties stated by the possible general rule (v)
and the chances to keep the number of tickets already re-
served as large as possible increase (general rule (ii)).

The additional attributes used in the REST resources
(RTM, WTM, LPW, PWL, UWL) in order to enable the
extended TS2PC4RS are used to control the data access in
transactions. They have nothing to do with the resource
original purpose. An intermediary component can be intro-
duced to control the additional attributes. With an inter-
mediary component in the server side, it is possible to free
the original resource to deal with control data. The RTM
update caused by a read operation (R) sent through a GET
request can be viewed as a log record – functionality often
handled by an intermediary component.

The use of the transaction timestamp (/{TS}) in the re-
sources URIs allows the usage of caching intermediary com-
ponents. The cache entry may be invalidated after a pre-

write, write (commit or abort) or a prewrite update.
The RTM update through a GET request does not com-

pletely obey the HTTP semantics, but considering the sepa-
ration of concepts: original REST resource and control data,
this issue may be an acceptable relaxation in order to obtain
the transaction control benefit, as the RTM update can be
implemented in a transparent way to the original resource.
The RTM update does not cause a state change in the re-
source, it changes only the access control data.

As for the original TS2PC4RS algorithm [9], our proposal
may need some mechanism of prewrite cleaning if the trans-
actions take too long. In this situation, the updates of WTM
may progress too slowly and LPWs, UWLs and PWLs may
get too large. Some timeout mechanism may be used to
address this problem. If a transaction does not commit its
prewrites within a period of time then the agents may abort
the corresponding prewrites (and its updates). The agent
has to have the permission from the coordinator beforehand.

The original TS2PC4RS [9] can be compared to the Baker
and Charlton’s work [1] as it traditionally deals with the two-
phase-commit protocol. Baker and Charlton use resources
as units of work, i.e., they define resource for the transaction
manager and for each transaction. They do not deal with
resource specific behavior at the server side.

The TS2PC4RS[9] and its extensions guide the behavior
of REST resources used in a transactional context. One
goal is that TS2PC4RS can be applied to existing resources
without causing major impacts on the resource provider im-
plementation.

Through timestamp ordering, it is possible to verify that
the “version” which the client wants is not influenced by
ongoing transactions. Thus, the client can read the resource
and continue his/her activity with the assurance that the
resource state at the stated timestamp will not be changed.
If the “version” which the client wants is affected by the
ongoing transactions, it is possible to return the updated
view of the data item, leaving to the client the decision of
what he/she wants to do.

In summary, the use of timestamp allows the sequencing
of the clients requests at each resource provider, even if they
arrive out of order. Thus, before the transaction end, the
clients requests can be prioritized using the timestamp order.

Despite, in the extended TS2PC4RS, the client performs
the role of the transaction manager (TM), we could also use
a TM apart as described in the references [1, 23], i. e., the
client would ask TM to create a transaction that would be
identified by the timestamp returned to the client. However,
some considerations should be taken to assure that the TM
meets the business goal of the client appropriately.

For example, the TM can receive all the indications of
the client’s needs to guide the transaction previously. An-
other possibility is to receive the client indications during
the transaction. In this case, the TM exposes the current
situation to the client and asks what him/her wants to do.

4. CONCLUSIONS
The application domain business rules have a essential role

to deal with transactions using the TS2PC4RS algorithm in
the REST domain. Each application domain has its own
rules which guide the software execution, in this case, the
RESTful services.

In this work, we exemplify the manipulation of prewrite
updates through some business rules of the purchase of tick-

784

ets example, and it resulted in an extended version of the
TS2PC4RS algorithm. Despite the usage of the purchase of
tickets example, the proposed extensions to the TS2PC4RS
algorithm are general enough to deal with different applica-
tions domains. The proposed waiting-lists, PWL and UWL,
are loosely-coupled with the example, and so, they can be
used in a variety of domains.

As the business rules depend on the application domain
where the RESTful services are used, the concrete solutions
for each case can be slight different in order to absorb the
nuances of the application domains. Thus, the TS2PC4RS
extensibility proves to be an essential characteristic.

Moreover, despite the uniform interface – one of the REST
architectural style’s constraints – increases the overall sys-
tem simplicity, the uniform interface constraint has as the
primary trade-off the likelihood to decrease the clients effi-
ciency due to having to deal with more general data formats
[19].

Thus, the use of the extended TS2PC4RS algorithm needs
some form of contract, which might predicts the necessary
information to make the interactions between clients and
RESTful services clear and unambiguous. Some of the infor-
mation that may be included in the contract are the message
payload format – which can use XML, JSON, plain text, or
any other desired format –, the supported TS2PC4RS op-
erations (read, write, prewrite, update prewrite) which, as
presented, map gracefully to the HTTP methods, and any
further relevant information to the client-server interaction.
The RESTful services can provide a timeout system to allow
control of how long a update prewrite remains in the wait-
ing list (UWL, PWL). Clients can send such an information
along with the update prewrite request. Such a use of a
timeout system should also be described in the contract.

However, it is not about to turn the uniform interface sim-
plicity into a specialized contract. The aim is to maintain
the reusability increased by uniform interface constraint,
but with the necessary documentation to clarify the allowed
interactions between clients and servers which use the ex-
tended TS2PC4RS algorithm. So it is not recommended to
put vendor-specific restrictions or features that go beyond
the REST constraints into the contract, because it can lead
to interoperability problems.

As future work we plan to investigate the recovery model
for TS2PC4RS. We hope to allow the TS2PC4RS to deal
with host failures (client and RESTful services) and with
communication failures (e.g. loss of message) during the
transactions.

5. REFERENCES
[1] M. Baker and S. Charlton. The web: Distributed

objects realized! OOPSLA, 2007. http:
//www.slideshare.net/StuC/oopsla-2007-the-

web-distributed-objects-realized.

[2] BRG. Defining business rules - What are they really?
The Business Rules Group, 2000.
http://www.businessrulesgroup.org.

[3] S. Ceri and G. Pelagatti. Distributed Databases,
Principles and Systems. McGraw-Hill, 1985.

[4] R. L. Costello. Building web services the REST way,
s.d. http://www.xfront.com/
REST-Web-Services.html access March 2008.

[5] R. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,

University of California, Irvine, USA, 2000.

[6] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence,
P. Leach, A. Luotonen, and L. Stewart. HTTP
authentication: Basic and Digest access
authentication. RFC 2617, June 1999.
http://www.ietf.org/rfc/rfc2617.txt.

[7] S. Jacobs. A question about REST and transaction
isolation, February 2004. http://www.stylusstudio.
com/xmldev/200402/post30270.html.

[8] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, July 1978.

[9] L. A. H. S. Maciel and C. M. Hirata. A Timestamp-
Based two phase commit protocol for web services
using REST architectural style. Journal of Web
Engineering, 9(3):266–282, September 2010.

[10] OASIS. Oasis web services reliable messaging
(WSRM) TC, November 2004.
http://www.oasis-open.org/committees/tc_home.

php?wg_abbrev=wsrm.

[11] OASIS. Oasis web services security (WSS) TC,
February 2006. http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=wss.

[12] OASIS. Oasis web services transaction (WS-TX) TC,
July 2007. http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=ws-tx.

[13] OASIS. Web services coordination
(WS-Coordination), July 2007. http:
//docs.oasis-open.org/ws-tx/wscoor/2006/06.

[14] OAUTH. An open protocol to allow secure api
authorization in a simple and standard method from
desktop and web applications, April 2010.
http://oauth.net/.

[15] OIDF. Openid is a safe, faster, and easier way to log
in to web sites, 2010. http://openid.net/.

[16] T. O’Reilly. REST vs. SOAP at Amazon, April 2003.
http://www.oreillynet.com/pub/wlg/3005.

[17] C. Pautasso, O. Zimmermann, and F. Leymann.
Restful web services vs. big web services: Making the
right architectural decision. In 17th International
World Wide Web Conference (WWW2008), pages
805–814, Beijing, China, April 2008 2008.

[18] L. Richardson and S. Ruby. RESTful Web Services.
O’Reilly & Associates, Sebastopol, California, May
2007.

[19] S. Vinoski. Serendipitous reuse. IEEE Internet
Computing, 12(1):84–87, 2008.

[20] W3C. Naming and addressing: Uris, urls, ...
http://www.w3.org/Addressing/URL/uri-spec.html

access date March 2008.

[21] W3C. Simple Object Access Protocol (SOAP) 1.1,
May 2000.
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

[22] W3C. Web Services Description Language (WSDL)
1.1. Note, March 2001.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[23] J. Webber, S. Parastatidis, and I. Robinson. REST in
Practice: Hypermedia and Systems Architecture.
O’Reilly Media, Inc., 2010.

785

