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Summary 
Optimistic concurrency control highly takes advantage of 
parallelism because there is no delay by lock. Unfortunately, I/O 
operations by transactions and cache operations are delayed in 
the optimistic concurrency control. In order to reduce such delay, 
we combine cache coherency control and optimistic concurrency 
control rather than they operate in separate. In this paper, we 
propose optimistic concurrency control, which includes cache 
control in parallel database system. Two basic concurrency 
control schemes, direct validation scheme and reduced 
validation scheme are devised according to the degree of cache 
activity. Based on these basic schemes, we designed four 
integrated concurrency control algorithms: GSO, GMS, GMM, 
and LMM. Experimental results show that GSO, GMS and 
GMM that use global cache show higher performance than LMM 
that uses local cache. GSO that is a direct validation scheme has 
larger communication overhead than reduced validation scheme. 
So, GMS shows the best performance among other algorithms as 
the portion of communication overhead is large. 
Key words: 
Optimistic Concurrency Control, Cache Coherency Control, 
Distributed Database System, Object Oriented Database. 

1. Introduction 

Concurrency control is a major part of transaction 
processing in conventional database systems. Let us 
consider a parallel or distributed database systems. In the 
database systems, a transaction should be executed 
atomically. In other words, transactions which occur in 
multiple processors should be coordinated so that the 
result remains the same as if they are executed 
sequentially. It is called concurrency control in database 
system. Concurrency control schemes are typically 
categorized as follows: pessimistic control and optimistic 
control [1], where multiple worker processors handle 
transactions and require I/O to disk servers. Each worker 
processor is composed of CPU, memories, clocks, etc. 
Disk servers are dedicated to store database files and data 
blocks.  

In general pessimistic concurrency controls use lock 
mechanism in order to maintain serialization. Under lock-
based pessimistic concurrency control, a transaction locks 
the object that will be accessed. After it finishes operations 
on the object, it unlocks the object. There are two types of 

lock: read-lock and write-lock. Read-locks are compatible 
with each other, but other types are not compatible. A 
transaction must obtain lock permission before it executes 
its read/write operation. At once it gets the permission, the 
operation is guaranteed as a valid operation as long as 
there is no error. The pessimistic concurrency control is 
vulnerable to deadlock. Pessimistic concurrency control 
and cache coherency control can be combined to improve 
system performance [2], where the cache control locates 
under concurrency control in general. 

Optimistic concurrency control makes transactions 
start without checking any possible conflicts for their 
objects. The transactions are validated by checking 
whether they are finished without any collision. If there 
was any collision, the transactions causing the collision 
are aborted. When collisions occur frequently, optimistic 
concurrency control incurs quite large overheads. In the 
case of optimistic concurrency control, write operations 
are not guaranteed to be valid at the time of invocation. 
Thus cache subsystem must not use coherency control to 
the operations to preserve cache coherency. For example, 
let a write operation of a transaction occur and a cache 
control modify or invalidate copies in other clients. If the 
transaction is aborted or invalidated, effect of cache 
control must be rolled back, which is large overhead. After 
all, it is efficient that optimistic concurrency control 
manages cache or integrates with it.  

Among many optimistic concurrency controls, some 
methods rearrange transaction orders in order to reduce 
the number of conflictions which invoke recover 
overheads. Such protocols base on dynamic adjustment of 
serialization order (DASO) [3][4][5]. Haritsa et al. 
proposed WAIT-50, an optimistic concurrency control that 
recognizes conflict stat and grants priority to more urgent 
transactions [6]. Some optimistic concurrency controls 
divide a transaction duration into two or three sub-cycles 
and validate more read-only transactions using enhanced 
forward validation schemes [7][8]. Also there are some 
optimistic concurrency controls that uses timestamp in 
order to reduce coarseness of conflict detections [9]. 

Unfortunately, these algorithms do not consider cache 
operations that enhance operation speed by maintaining 
copy of objects in each server. Although Yu and Vahdat 
proposed a consistency model, they assumed replicated 
servers as the base system [10]. As a method of reducing 
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the number of conflictions, cache management can be 
utilized. We device protocols which reduce conflicts 
between transactions by carefully combining cache 
coherency control. We present two types of concurrency 
controls that utilize cache to control serializability in 
transaction: direct validation and reduced validation. 

This paper is organized as follows: In Section 2, we 
propose two cache schemes which control concurrency in 
database system. In Section 3, we present four 
concurrency control algorithms from above schemes. In 
Section 4, we show the result of simulation of the schemes. 
Conclusions appear in Section 5. 

2. Classified Schemes 

Combination of cache coherency control and concurrency 
control makes two types of schemes which are classified 
by the degree of cache activity. We call a concurrency 
control as reduced validation scheme if the control 
suppresses cache activity and reduces the number of disk 
access. If the control does not restrict operations of cache 
coherency control, and it checks validity of transactions 
just according to cache operation, then we call it as direct 
validation scheme. 

2.1 Reduced Validation Scheme 

In general, the number of I/O operations can be reduced 
by using cache in each processor. Such reduction can be 
applied to I/O operations in transactions. Multiple read 
operations for an object can be reduced to one real disk 
read by putting the object into cache at the time of the first 
read operation. Also multiple writes for an object can be 
reduced to one real disk write by writing the object into 
cache during transaction and by sending the last write 
request to disk server at the end of transaction as shown in 
Fig. 1. Also, cache control can enrich serialization. We 
know that a disk server serializes I/O-requests, because a 
disk server processes one I/O at a time. Thus if each 
transaction requests only one I/O operation, they are 
serialized by the disk server. From these properties, we 
manage transaction control and cache control as follows: 
First, we reduce disk I/O operations as much as possible 
with the aid of cache control. Second, serialization of 
transactions are automatically achieved, if each transaction 
contains only one I/O. Thus we can focus on the 
transactions that generate two or more I/O operations after 
reduction by cache. Fig. 1 shows the reduction of disk I/O 
operations. 

  

Fig. 1 Reduction of disk I/O by cache: Left side of each example shows 
I/O operations before reduction using cache. Right side of each example 

shows I/O operations after reduction using cache. 

Let us explain I/O reduction using cache control on a 
case-by-case. Sequences of I/O operations for an object 
(or page) in transaction can be categorized into three cases. 
First, let I/O operations of a transaction start with a read 
and there is a following write operation as shown in 
Figure 1 (a). When there is a read request to an object 
which does not exist or invalid in local cache, the object is 
read from disk and is stored in the local cache. Following 
read or write operations to the object access the copy of 
the object in the local cache, which reduces the number of 
message communications to disk server. At the end of the 
transaction, a write request of the object is sent to the disk 
server. From the viewpoint of the disk server, there are 
one read and one write operations. This type of transaction 
is invalidated if other transaction modifies the object 
between the first read and write to disk server. 

Second case is a case that a transaction requires only 
read operations. After an object is obtained by the first 
read request, a copy of the object is stored in the local 
cache. Following read requests access the copy in the local 
cache. Since only one disk read operation is required, this 
type of transaction need not be invalidated.  

Final case is that the first I/O in a transaction is write 
operation as shown in Fig. 1 (b). After an object is written 
to cache, following read and write requests to the object 
access the copy of the object in the local cache. At the end 
of the transaction, one write to disk server is required. So 
this type of transaction also need not be invalidated.  

Two cases of transactions except the first one require 
only one disk operation and they are not interfered by 
other transactions. So they are serialized naturally by disk 
servers without any further operations. After all, only the 
first case of transaction Ta needs to be checked for 
consistency. If there is any transaction T which writes the 
object to the disk server between first read and write at the 
end of transaction Ta, transaction Ta must be invalidated. 
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2.2 Direct Validation Scheme 

Given a shared object, a write operation after a read 
operation has a possibility of breaking serializability. For 
example, in Fig. 2, transaction Tb is invalidated at the end 
of transaction because shared object x is already modified 
when Tb enters verification phase. However, Tb can be 
invalidated before it enters verification phase. If Tb knows 
that object x is already modified by other transaction just 
after Ta executes write operation for the object x, Tb can be 
invalidated instantly and can withdraw further operations. 
When a copy of the object is modified, stale copies in 
other workers can be invalidated or be modified by cache 
coherency control.  

 

Fig. 2 Processing of two transactions in optimistic concurrency control 

Instead of cache being managed by concurrency 
control, direct validation scheme makes cache coherency 
control fully operate by itself, and checks validity of 
transactions from result submitted by the cache control. 
The scheme invalidates transactions that access a copy of 
an object that is invalidated or modified by cache 
coherency control. If direct validation scheme is applied to 
Fig. 2, as soon as transaction Ta writes xa to its local 
memory, copy of x in Tb is invalidated by the cache 
control. When transaction Tb requests write operation, 
concurrency control notices invalidated copy x and 
invalidates Tb as shown in Fig. 3.  

 

Fig. 3 Early invalidation using cache coherency control. 

 

Fig. 4 Possible invalidation cases by cache in concurrency control. 

Strict cache coherency control is not a unique 
solution for the concurrency control. Fig. 4 shows all 
possible invalidation cases when two transactions access a 
shared object. In Fig. 4 a transaction Ta executed I/O 
operations for an object and another transaction Tb 
accesses the object before Ta enters validation phase. A 
transaction shown in Fig. 4 (b) is an obvious invalidation 
case. Using cache coherency control, a copy of a shared 
object in local cache of transaction Ta is invalidated when 
transaction Tb writes to the object. When Ta tries to write 
to the copy of object, it notices invalidation of the copy 
and invalidates itself. Such invalidation can be applied to 
all cases in Fig. 4. However if we loosen invalidation of 
stale copies, transaction cases shown in Fig. 4 (a), (c), and 
(d) can be validated because they preserve serialization. 
An advantage of strict cache coherency control is that fast 
invalidation reduces wasted CPU time of transactions that 
would be invalidated. On the other hands, a disadvantage 
of strict cache coherency control is that some serializable 
transactions could be invalidated. 

2. Implementation Issues and Some Proposed 
Algorithms 

We investigated how to combine cache coherency control 
and transaction concurrency control. When we implement 
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an integrated algorithm in a system environment as shown 
in Fig. 5, the following issues must be determined: 
• When is a modified copy transfers from a local cache 

to disk server? 

• When is a stale copy in a local cache invalidated? 

• When will invalidated transactions be stopped? 

• The number of write-copies: a write-copy is a copy of 
an object that is modified by a transaction and is not 
written to a disk yet. 

• The number of read-copies: a read-copy is a copy of 
an object that is generated when a transaction read the 
object from a disk. 

• Global cache or local cache 

 

Fig. 5 Multi-transactions in a distributed disk server model. 

From various combinations of the alternatives, four 
algorithms GSO, GMS, GMM, and LMM are devised. 
Representative properties that distinguish the algorithms 
are shown in Table 1. To simplify implementation of 
concurrency control and abort operation, all algorithms 
delay invalidations of old copies as late as possible. That 
is, a transaction does not know whether a copy of an 
object in other transactions is modified. Invalidation of an 
object copy is noticed when another transaction sends a 
verification message with write requests to a disk server at 
the end of the transaction. GSO, GMS, and GMM 
algorithms adopt global cache mechanism proposed in 
[11]. 

Global Single copy Only (GSO) algorithm is a strict 
design of direct validation scheme. At most one copy for 
an object exists in entire caches. Each object copy in 
worker has a timestamp which is a read request 
completion time of the object [9] and an object 
modification time. Also transaction has a timestamp which 
is a newest timestamp of an object which is possessed by 
the transaction. If a transaction requires a read for an 
object to a disk server, the server checks whether it is the 
unique owner of the copy of the object. In the case, the 
server sends the copy to the transaction with timestamp of 
the current time. Otherwise, the server forwards the 

request to a worker which has the copy. The worker 
checks the request by comparing a timestamp in the 
request and a timestamp of the object copy. If the 
transaction first requested the copy, it has no timestamp. 
Also the request has no timestamp. If the request has no 
timestamp or two timestamps are the same, the worker 
transfers the copy to the transaction which invokes the 
read request and invalidates its local copy. Otherwise, the 
transaction is invalidated. When a transaction tries to 
modify the copy, a cache manager looks for the copy. If 
there is no copy in the cache, the cache manager requires it 
to the server with a timestamp of the transaction. The 
protocol is the same as the read request for the copy. After 
the transaction receives the copy, it modifies the copy and 
increases its timestamp. Write operation does no effect on 
validation in the algorithm.   

Global Multiple read-copies Single write-copy 
(GMS) algorithm is less strict than GSO in terms of cache 
coherency. Multiple read-copies for each object are 
allowed. However, as soon as a copy is written to a disk 
server, other copies are invalidated. An object in a disk 
server has two states: opened or closed. If an object is 
opened, any request is possible. Otherwise, any transaction 
that issues a request to the object is invalidated. If a 
transaction issues an object read request to a disk server, 
the server returns a copy of the object as long as the object 
is opened. Before a transaction issues an object write 
request to a disk sever, it checks whether the object copy 
is valid. In the case, the object is written to the server. The 
server invalidates other copies and closes the object. 
Otherwise, the transaction is invalidated. If another 
transaction just writes the object after the invalidation, the 
transaction is invalidated because the object is closed. The 
closed object is reopened when the transaction that wrote 
the object finishes.   

Global Multiple read-copies Multiple write-copies 
(GMM) algorithm allows multiple read or write copies. 
GMM is a implementation which is nearer to reduced 
validation scheme than to direct validation scheme. GMM 
is a slight modification of a timestamp implementation 
proposed at [12]. If a transaction issues the first read 
request of an object, a disk server returns a copy of the 
object with a new timestamp. When a transaction issues a 
write request, if there is a copy, the copy is changed with a 
new value and the transaction set a flag that there is a 
write operation. If a write request to an object is the first 
I/O operation of the transaction, a copy of the object is 
written to the local buffer without timestamp. When the 
transaction with any write request enters verification phase, 
it sends the copy of the object with timestamp. If the 
timestamp of the copy is smaller than the timestamp of the 
object in the server, the transaction is aborted. Otherwise, 
the copy is written to the object in the server and the 
timestamp of the object is changed to the current server 
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time. If the copy sent by transaction has no timestamp, the 
transaction is validated because the transaction just makes 
a copy of an object by writing instead of reading from the 
server, which preserves serializability. Transactions shown 
in Fig. 4 (a), (c), and (d) are validated if each transactions 
are located in other processors and GMM is applied. 

Local site Multiple read-copies Multiple write-copies 
(LMM) algorithm allows at most one read-copy and 
multiple write-copies for an object in each local cache of a 
transaction. GMM invalidates transaction cases shown in 
Fig. 4 (a), (c), and (d) if two transactions Ta and Tb run in 
the same processor. If there is a write operation to an 
object copy in a processor, following operations are all 
invalidated because they share the local cache. In the case 
of LMM, each transaction has its local buffer. Thus above 
cases are validated in LMM. Table 1 arranges properties 
of each algorithm. 

Table 1: Classification of integrated concurrency control algorithms. 
1/proc means that there is at most one copy in a processor and 1/trans 

means that a copy can exist in a transaction 

No. copies  scheme Time of copy 
management write read 

times
tamp 

GSO direct as soon as it modified 0 1 use 
GMS reduced verification phase 1/p 1  
GMM reduced verification phase 1/p 1/p use 
LMM reduced verification phase 1/t 1/t use 

4. Experimental Results 

4.1 Experiment Environments 

In order to measure the performance of the proposed 
algorithms, we simulated a simple object-oriented 
database environment as shown in Fig. 5 with 500 object 
types. The simulation is programmed in language C++ and 
uses C++SIM [13] as a basic simulation package. There 
are a schema and multiple instances for each object, which 
are evenly distributed in each disk. A class schema is 
striped over five disks. Table 2 shows the database 
configuration. We used a small-sized database to reduce 
simulation time. Instances of object type 499 occupy 
almost disk space and 50% of access rate. Thus instances 
of object type 499 fill large amount of cache. We use 5 
disks. Total database size is 179 Mbytes. 

Table 2: Specification of object-oriented database used in experiment. 
Object id 0~399 400~498 499 
Block no. of class 0~399 400~498 499 
Block no. of instance 1000~1399 1400~1498 1499 
Schema size 1 KBs 2 KBs 3 KBs
Instance size 2 KBs 3 KBs 4 KBs
The number of instances 
in each disk 

25 50 250 

Access rate of sequential 
transactions 

10% 40% 50% 

Access rate of parallel 
transactions 

45% 35% 20% 

Table 3 shows constant values that are used in the 
experiments. Internal network means the communication 
between processes in a processor. External network means 
the communication between processes in different 
processors. User think time is the time interval between 
read operation completion time and write operation start 
time on an instance in modify transaction. Event inter-
arrival time is the time interval between the end of 
transaction and start of new transaction in a worker 
processor. Workload of the system is controlled by the 
number of clients instead of event interarrival time. We 
use LRU (Least Recently Used) cache scheme as base 
cache strategy. 

Table 3: Constants used in the experiment. Disk specification is based on 
Seagate BARRACUDA 2.26 Gbyte Ultra-SCSI disk (8 bit SCA). 

internal network setup time 1 μsec 
internal network speed 20 Mbytes/sec
external network setup time 100 μsec 
external network speed 2 Mbytes/sec 
average disk seek time(r/w) 8.8/9.8 msec 
average disk rotation latency 4.17 msec 
disk transfer time 50 nsec/byte 
average user think time 0.5 sec 
event interarrival time 0.1 sec 
cache strategy LRU 

4. Simulation Results 

The performance of GMM algorithm is almost the same as 
that of GMS algorithm. Difference between GMS and 
GMM is a decision policy. Assume the condition that a 
transaction Ta reads an object, other transaction Tb write 
the object, and Ta reads the object again as shown in Fig. 4 
(a). Ta is invalidated in GMS, but it is not invalidated in 
GMM. Because our experimental environment does not 
generate such repeated read, GMM and GMS have same 
performance.  

Table 4 shows the performance of GSO scheme, 
GMS scheme, and LMM scheme. Table 4 (a) and (b) show 
that workload and write ratio little effect on the hit ratio. 
GMS is superior to LMM in all cases, which mean that 
global cache is better than local cache in parallel database 
system. From Table 4 (a), hit ratio of LMM with 2048 
Kbytes cache is similar to that of GMS with 512 Kbytes 
cache. Our cache control uses simple LRU scheme, thus 
we can see that global cache is scalable without 
cooperative operations between caches. GSO and GMS 
are similar in hit ratio and the percentage of conflicts as 
shown in Table 4 (a), (b), and (d). But GMS is a little 
better than GSO in throughput. The reason is that since 
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GSO uses long data messages more frequently than GMS, 
response time of GMS is shorter than GSO, and the 
simulation model uses closed queuing system. The 
percentage of conflict in Table 4(d) reveals effect of 
``When is the stale copy in local cache invalidated?'' Since 
LMM does not invalidate stale copy in other local copy, 
the percentage of conflict is higher than that of GSO or 
GMS.  

5. Conclusions 

In optimistic concurrency control, validity of write 
operation is known not in time when it invoked but in time 
when transaction of it is validated. Thus write operation 
must be delayed, and cache operation for the write 
operation also be delayed. This property shows that cache 
control is heavily related with concurrency control. It is 
efficient to integrate cache control to concurrency control 
rather than cache exists as isolated layer. 

According that how many caches retain its activity, 
concurrency controls are classified as direct validation 
scheme and reduced validation scheme. Direct validation 
scheme preserves activity of cache, and it invalidates 
transaction which tries to accesses invalidated object again. 
Reduced validation scheme uses 'reduction of I/O 
frequency' of cache, and reduces the number of access for 
an object to one or two. In the case that the access number 
is one, the transaction is valid. In the case that the access 
number is two, the object must not be modified between 
the accesses. It simplifies validity check of transaction. 

Implementation details generate various sort of 
concurrency control algorithm: GSO, GMS, GMM, and 
LMM. GSO is an algorithm of direct validation scheme. 
GMS, GMM, and LMM are algorithms reduced validation 
scheme. GSO, GMS, and GMM use global cache scheme. 
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Table 4: Performance of GSO/GMS/LMM scheme with 5 disks in sequential transactions environment (a) Cache hit ratio (%) according to cache size and 
write ratio, (b) Cache hit ratio (%) according to the number of workers per disk and write ratio when cache size is 2048KB, (c) Throughput (Mbytes/sec) 

according to the number of workers per disk and write ratio, (d) The percentage of conflicts per transaction (%) according to write ratio and the number of 
clients when cache size is 2048KB. 

GSO GMS LMM Cache 
size 0% 33% 66% 100% 0% 33% 66% 100% 0% 33% 66% 100%

512MB 27.8 27.7 27.8 28.3 28.5 27.7 27.7 28.1 19.8 19.3 18.9 18.6 
2048MB 51.9 51.4 52.0 51.8 52.1 51.6 51.9 51.8 25.5 23.8 22.8 22.3 
8196MB 77.9 77.6 77.2 76.2 78.0 77.6 77.2 76.2 44.9 38.6 35.6 34.1 

(a) 

GSO GMS LMM Workers 
per disk 0% 33% 66% 100% 0% 33% 66% 100% 0% 33% 66% 100%

1 51.4 51.7 50.5 51.5 51.6 51.6 51.6 51.4 25.6 23.9 22.9 22.3 
10 51.4 51.5 51.5 51.5 51.7 51.6 51.5 51.5 25.6 23.8 22.8 22.1 
20 51.9 51.4 52.0 51.8 52.1 51.6 51.9 51.8 25.5 23.8 22.8 22.3 

(b) 

GSO GMS LMM Workers 
per disk 0% 33% 66% 100% 0% 33% 66% 100% 0% 33% 66% 100%
1 0.55 0.24 0.11 0.11 0.64 0.25 0.15 0.11 0.60 0.24 0.15 0.11 
10 3.35 2.34 1.30 1.01 4.44 2.19 1.42 1.05 3.48 2.02 1.37 1.01 
20 4.39 2.63 2.03 1.67 5.23 3.46 2.41 1.91 3.82 2.78 2.13 1.77 

(c) 

GSO GMS LMM workers 
per disk 0% 33% 66% 100% 0% 33% 66% 100% 0% 33% 66% 100%
1 0.0 0.01 0.01 0.08 0.0 0.01 0.03 0.06 0.0 0.13 0.39 0.90 
10 0.0 0.22 0.40 0.78 0.0 0.19 0.46 0.89 0.0 0.29 0.85 1.38 
20 0.0 0.26 0.77 1.34 0.0 0.31 0.92 1.49 0.0 0.41 1.21 2.19 

(d) 
 

 


