
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

148

Manuscript received November 5, 2008

Manuscript revised November 20, 2008

Optimistic Concurrency Control based on Cache Coherency in
Distributed Database Systems

Tae-Young Choe,

Kumoh National Institute of Technology 1, YangHo Dong, Gumi, Korea

Summary
Optimistic concurrency control highly takes advantage of
parallelism because there is no delay by lock. Unfortunately, I/O
operations by transactions and cache operations are delayed in
the optimistic concurrency control. In order to reduce such delay,
we combine cache coherency control and optimistic concurrency
control rather than they operate in separate. In this paper, we
propose optimistic concurrency control, which includes cache
control in parallel database system. Two basic concurrency
control schemes, direct validation scheme and reduced
validation scheme are devised according to the degree of cache
activity. Based on these basic schemes, we designed four
integrated concurrency control algorithms: GSO, GMS, GMM,
and LMM. Experimental results show that GSO, GMS and
GMM that use global cache show higher performance than LMM
that uses local cache. GSO that is a direct validation scheme has
larger communication overhead than reduced validation scheme.
So, GMS shows the best performance among other algorithms as
the portion of communication overhead is large.
Key words:
Optimistic Concurrency Control, Cache Coherency Control,
Distributed Database System, Object Oriented Database.

1. Introduction

Concurrency control is a major part of transaction
processing in conventional database systems. Let us
consider a parallel or distributed database systems. In the
database systems, a transaction should be executed
atomically. In other words, transactions which occur in
multiple processors should be coordinated so that the
result remains the same as if they are executed
sequentially. It is called concurrency control in database
system. Concurrency control schemes are typically
categorized as follows: pessimistic control and optimistic
control [1], where multiple worker processors handle
transactions and require I/O to disk servers. Each worker
processor is composed of CPU, memories, clocks, etc.
Disk servers are dedicated to store database files and data
blocks.

In general pessimistic concurrency controls use lock
mechanism in order to maintain serialization. Under lock-
based pessimistic concurrency control, a transaction locks
the object that will be accessed. After it finishes operations
on the object, it unlocks the object. There are two types of

lock: read-lock and write-lock. Read-locks are compatible
with each other, but other types are not compatible. A
transaction must obtain lock permission before it executes
its read/write operation. At once it gets the permission, the
operation is guaranteed as a valid operation as long as
there is no error. The pessimistic concurrency control is
vulnerable to deadlock. Pessimistic concurrency control
and cache coherency control can be combined to improve
system performance [2], where the cache control locates
under concurrency control in general.

Optimistic concurrency control makes transactions
start without checking any possible conflicts for their
objects. The transactions are validated by checking
whether they are finished without any collision. If there
was any collision, the transactions causing the collision
are aborted. When collisions occur frequently, optimistic
concurrency control incurs quite large overheads. In the
case of optimistic concurrency control, write operations
are not guaranteed to be valid at the time of invocation.
Thus cache subsystem must not use coherency control to
the operations to preserve cache coherency. For example,
let a write operation of a transaction occur and a cache
control modify or invalidate copies in other clients. If the
transaction is aborted or invalidated, effect of cache
control must be rolled back, which is large overhead. After
all, it is efficient that optimistic concurrency control
manages cache or integrates with it.

Among many optimistic concurrency controls, some
methods rearrange transaction orders in order to reduce
the number of conflictions which invoke recover
overheads. Such protocols base on dynamic adjustment of
serialization order (DASO) [3][4][5]. Haritsa et al.
proposed WAIT-50, an optimistic concurrency control that
recognizes conflict stat and grants priority to more urgent
transactions [6]. Some optimistic concurrency controls
divide a transaction duration into two or three sub-cycles
and validate more read-only transactions using enhanced
forward validation schemes [7][8]. Also there are some
optimistic concurrency controls that uses timestamp in
order to reduce coarseness of conflict detections [9].

Unfortunately, these algorithms do not consider cache
operations that enhance operation speed by maintaining
copy of objects in each server. Although Yu and Vahdat
proposed a consistency model, they assumed replicated
servers as the base system [10]. As a method of reducing

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

149

the number of conflictions, cache management can be
utilized. We device protocols which reduce conflicts
between transactions by carefully combining cache
coherency control. We present two types of concurrency
controls that utilize cache to control serializability in
transaction: direct validation and reduced validation.

This paper is organized as follows: In Section 2, we
propose two cache schemes which control concurrency in
database system. In Section 3, we present four
concurrency control algorithms from above schemes. In
Section 4, we show the result of simulation of the schemes.
Conclusions appear in Section 5.

2. Classified Schemes

Combination of cache coherency control and concurrency
control makes two types of schemes which are classified
by the degree of cache activity. We call a concurrency
control as reduced validation scheme if the control
suppresses cache activity and reduces the number of disk
access. If the control does not restrict operations of cache
coherency control, and it checks validity of transactions
just according to cache operation, then we call it as direct
validation scheme.

2.1 Reduced Validation Scheme

In general, the number of I/O operations can be reduced
by using cache in each processor. Such reduction can be
applied to I/O operations in transactions. Multiple read
operations for an object can be reduced to one real disk
read by putting the object into cache at the time of the first
read operation. Also multiple writes for an object can be
reduced to one real disk write by writing the object into
cache during transaction and by sending the last write
request to disk server at the end of transaction as shown in
Fig. 1. Also, cache control can enrich serialization. We
know that a disk server serializes I/O-requests, because a
disk server processes one I/O at a time. Thus if each
transaction requests only one I/O operation, they are
serialized by the disk server. From these properties, we
manage transaction control and cache control as follows:
First, we reduce disk I/O operations as much as possible
with the aid of cache control. Second, serialization of
transactions are automatically achieved, if each transaction
contains only one I/O. Thus we can focus on the
transactions that generate two or more I/O operations after
reduction by cache. Fig. 1 shows the reduction of disk I/O
operations.

Fig. 1 Reduction of disk I/O by cache: Left side of each example shows
I/O operations before reduction using cache. Right side of each example

shows I/O operations after reduction using cache.

Let us explain I/O reduction using cache control on a
case-by-case. Sequences of I/O operations for an object
(or page) in transaction can be categorized into three cases.
First, let I/O operations of a transaction start with a read
and there is a following write operation as shown in
Figure 1 (a). When there is a read request to an object
which does not exist or invalid in local cache, the object is
read from disk and is stored in the local cache. Following
read or write operations to the object access the copy of
the object in the local cache, which reduces the number of
message communications to disk server. At the end of the
transaction, a write request of the object is sent to the disk
server. From the viewpoint of the disk server, there are
one read and one write operations. This type of transaction
is invalidated if other transaction modifies the object
between the first read and write to disk server.

Second case is a case that a transaction requires only
read operations. After an object is obtained by the first
read request, a copy of the object is stored in the local
cache. Following read requests access the copy in the local
cache. Since only one disk read operation is required, this
type of transaction need not be invalidated.

Final case is that the first I/O in a transaction is write
operation as shown in Fig. 1 (b). After an object is written
to cache, following read and write requests to the object
access the copy of the object in the local cache. At the end
of the transaction, one write to disk server is required. So
this type of transaction also need not be invalidated.

Two cases of transactions except the first one require
only one disk operation and they are not interfered by
other transactions. So they are serialized naturally by disk
servers without any further operations. After all, only the
first case of transaction Ta needs to be checked for
consistency. If there is any transaction T which writes the
object to the disk server between first read and write at the
end of transaction Ta, transaction Ta must be invalidated.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

150

2.2 Direct Validation Scheme

Given a shared object, a write operation after a read
operation has a possibility of breaking serializability. For
example, in Fig. 2, transaction Tb is invalidated at the end
of transaction because shared object x is already modified
when Tb enters verification phase. However, Tb can be
invalidated before it enters verification phase. If Tb knows
that object x is already modified by other transaction just
after Ta executes write operation for the object x, Tb can be
invalidated instantly and can withdraw further operations.
When a copy of the object is modified, stale copies in
other workers can be invalidated or be modified by cache
coherency control.

Fig. 2 Processing of two transactions in optimistic concurrency control

Instead of cache being managed by concurrency
control, direct validation scheme makes cache coherency
control fully operate by itself, and checks validity of
transactions from result submitted by the cache control.
The scheme invalidates transactions that access a copy of
an object that is invalidated or modified by cache
coherency control. If direct validation scheme is applied to
Fig. 2, as soon as transaction Ta writes xa to its local
memory, copy of x in Tb is invalidated by the cache
control. When transaction Tb requests write operation,
concurrency control notices invalidated copy x and
invalidates Tb as shown in Fig. 3.

Fig. 3 Early invalidation using cache coherency control.

Fig. 4 Possible invalidation cases by cache in concurrency control.

Strict cache coherency control is not a unique
solution for the concurrency control. Fig. 4 shows all
possible invalidation cases when two transactions access a
shared object. In Fig. 4 a transaction Ta executed I/O
operations for an object and another transaction Tb
accesses the object before Ta enters validation phase. A
transaction shown in Fig. 4 (b) is an obvious invalidation
case. Using cache coherency control, a copy of a shared
object in local cache of transaction Ta is invalidated when
transaction Tb writes to the object. When Ta tries to write
to the copy of object, it notices invalidation of the copy
and invalidates itself. Such invalidation can be applied to
all cases in Fig. 4. However if we loosen invalidation of
stale copies, transaction cases shown in Fig. 4 (a), (c), and
(d) can be validated because they preserve serialization.
An advantage of strict cache coherency control is that fast
invalidation reduces wasted CPU time of transactions that
would be invalidated. On the other hands, a disadvantage
of strict cache coherency control is that some serializable
transactions could be invalidated.

2. Implementation Issues and Some Proposed
Algorithms

We investigated how to combine cache coherency control
and transaction concurrency control. When we implement

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

151

an integrated algorithm in a system environment as shown
in Fig. 5, the following issues must be determined:
• When is a modified copy transfers from a local cache

to disk server?

• When is a stale copy in a local cache invalidated?

• When will invalidated transactions be stopped?

• The number of write-copies: a write-copy is a copy of
an object that is modified by a transaction and is not
written to a disk yet.

• The number of read-copies: a read-copy is a copy of
an object that is generated when a transaction read the
object from a disk.

• Global cache or local cache

Fig. 5 Multi-transactions in a distributed disk server model.

From various combinations of the alternatives, four
algorithms GSO, GMS, GMM, and LMM are devised.
Representative properties that distinguish the algorithms
are shown in Table 1. To simplify implementation of
concurrency control and abort operation, all algorithms
delay invalidations of old copies as late as possible. That
is, a transaction does not know whether a copy of an
object in other transactions is modified. Invalidation of an
object copy is noticed when another transaction sends a
verification message with write requests to a disk server at
the end of the transaction. GSO, GMS, and GMM
algorithms adopt global cache mechanism proposed in
[11].

Global Single copy Only (GSO) algorithm is a strict
design of direct validation scheme. At most one copy for
an object exists in entire caches. Each object copy in
worker has a timestamp which is a read request
completion time of the object [9] and an object
modification time. Also transaction has a timestamp which
is a newest timestamp of an object which is possessed by
the transaction. If a transaction requires a read for an
object to a disk server, the server checks whether it is the
unique owner of the copy of the object. In the case, the
server sends the copy to the transaction with timestamp of
the current time. Otherwise, the server forwards the

request to a worker which has the copy. The worker
checks the request by comparing a timestamp in the
request and a timestamp of the object copy. If the
transaction first requested the copy, it has no timestamp.
Also the request has no timestamp. If the request has no
timestamp or two timestamps are the same, the worker
transfers the copy to the transaction which invokes the
read request and invalidates its local copy. Otherwise, the
transaction is invalidated. When a transaction tries to
modify the copy, a cache manager looks for the copy. If
there is no copy in the cache, the cache manager requires it
to the server with a timestamp of the transaction. The
protocol is the same as the read request for the copy. After
the transaction receives the copy, it modifies the copy and
increases its timestamp. Write operation does no effect on
validation in the algorithm.

Global Multiple read-copies Single write-copy
(GMS) algorithm is less strict than GSO in terms of cache
coherency. Multiple read-copies for each object are
allowed. However, as soon as a copy is written to a disk
server, other copies are invalidated. An object in a disk
server has two states: opened or closed. If an object is
opened, any request is possible. Otherwise, any transaction
that issues a request to the object is invalidated. If a
transaction issues an object read request to a disk server,
the server returns a copy of the object as long as the object
is opened. Before a transaction issues an object write
request to a disk sever, it checks whether the object copy
is valid. In the case, the object is written to the server. The
server invalidates other copies and closes the object.
Otherwise, the transaction is invalidated. If another
transaction just writes the object after the invalidation, the
transaction is invalidated because the object is closed. The
closed object is reopened when the transaction that wrote
the object finishes.

Global Multiple read-copies Multiple write-copies
(GMM) algorithm allows multiple read or write copies.
GMM is a implementation which is nearer to reduced
validation scheme than to direct validation scheme. GMM
is a slight modification of a timestamp implementation
proposed at [12]. If a transaction issues the first read
request of an object, a disk server returns a copy of the
object with a new timestamp. When a transaction issues a
write request, if there is a copy, the copy is changed with a
new value and the transaction set a flag that there is a
write operation. If a write request to an object is the first
I/O operation of the transaction, a copy of the object is
written to the local buffer without timestamp. When the
transaction with any write request enters verification phase,
it sends the copy of the object with timestamp. If the
timestamp of the copy is smaller than the timestamp of the
object in the server, the transaction is aborted. Otherwise,
the copy is written to the object in the server and the
timestamp of the object is changed to the current server

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

152

time. If the copy sent by transaction has no timestamp, the
transaction is validated because the transaction just makes
a copy of an object by writing instead of reading from the
server, which preserves serializability. Transactions shown
in Fig. 4 (a), (c), and (d) are validated if each transactions
are located in other processors and GMM is applied.

Local site Multiple read-copies Multiple write-copies
(LMM) algorithm allows at most one read-copy and
multiple write-copies for an object in each local cache of a
transaction. GMM invalidates transaction cases shown in
Fig. 4 (a), (c), and (d) if two transactions Ta and Tb run in
the same processor. If there is a write operation to an
object copy in a processor, following operations are all
invalidated because they share the local cache. In the case
of LMM, each transaction has its local buffer. Thus above
cases are validated in LMM. Table 1 arranges properties
of each algorithm.

Table 1: Classification of integrated concurrency control algorithms.
1/proc means that there is at most one copy in a processor and 1/trans

means that a copy can exist in a transaction

No. copies scheme Time of copy
management write read

times
tamp

GSO direct as soon as it modified 0 1 use
GMS reduced verification phase 1/p 1
GMM reduced verification phase 1/p 1/p use
LMM reduced verification phase 1/t 1/t use

4. Experimental Results

4.1 Experiment Environments

In order to measure the performance of the proposed
algorithms, we simulated a simple object-oriented
database environment as shown in Fig. 5 with 500 object
types. The simulation is programmed in language C++ and
uses C++SIM [13] as a basic simulation package. There
are a schema and multiple instances for each object, which
are evenly distributed in each disk. A class schema is
striped over five disks. Table 2 shows the database
configuration. We used a small-sized database to reduce
simulation time. Instances of object type 499 occupy
almost disk space and 50% of access rate. Thus instances
of object type 499 fill large amount of cache. We use 5
disks. Total database size is 179 Mbytes.

Table 2: Specification of object-oriented database used in experiment.
Object id 0~399 400~498 499
Block no. of class 0~399 400~498 499
Block no. of instance 1000~1399 1400~1498 1499
Schema size 1 KBs 2 KBs 3 KBs
Instance size 2 KBs 3 KBs 4 KBs
The number of instances
in each disk

25 50 250

Access rate of sequential
transactions

10% 40% 50%

Access rate of parallel
transactions

45% 35% 20%

Table 3 shows constant values that are used in the
experiments. Internal network means the communication
between processes in a processor. External network means
the communication between processes in different
processors. User think time is the time interval between
read operation completion time and write operation start
time on an instance in modify transaction. Event inter-
arrival time is the time interval between the end of
transaction and start of new transaction in a worker
processor. Workload of the system is controlled by the
number of clients instead of event interarrival time. We
use LRU (Least Recently Used) cache scheme as base
cache strategy.

Table 3: Constants used in the experiment. Disk specification is based on
Seagate BARRACUDA 2.26 Gbyte Ultra-SCSI disk (8 bit SCA).

internal network setup time 1 μsec
internal network speed 20 Mbytes/sec
external network setup time 100 μsec
external network speed 2 Mbytes/sec
average disk seek time(r/w) 8.8/9.8 msec
average disk rotation latency 4.17 msec
disk transfer time 50 nsec/byte
average user think time 0.5 sec
event interarrival time 0.1 sec
cache strategy LRU

4. Simulation Results

The performance of GMM algorithm is almost the same as
that of GMS algorithm. Difference between GMS and
GMM is a decision policy. Assume the condition that a
transaction Ta reads an object, other transaction Tb write
the object, and Ta reads the object again as shown in Fig. 4
(a). Ta is invalidated in GMS, but it is not invalidated in
GMM. Because our experimental environment does not
generate such repeated read, GMM and GMS have same
performance.

Table 4 shows the performance of GSO scheme,
GMS scheme, and LMM scheme. Table 4 (a) and (b) show
that workload and write ratio little effect on the hit ratio.
GMS is superior to LMM in all cases, which mean that
global cache is better than local cache in parallel database
system. From Table 4 (a), hit ratio of LMM with 2048
Kbytes cache is similar to that of GMS with 512 Kbytes
cache. Our cache control uses simple LRU scheme, thus
we can see that global cache is scalable without
cooperative operations between caches. GSO and GMS
are similar in hit ratio and the percentage of conflicts as
shown in Table 4 (a), (b), and (d). But GMS is a little
better than GSO in throughput. The reason is that since

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

153

GSO uses long data messages more frequently than GMS,
response time of GMS is shorter than GSO, and the
simulation model uses closed queuing system. The
percentage of conflict in Table 4(d) reveals effect of
``When is the stale copy in local cache invalidated?'' Since
LMM does not invalidate stale copy in other local copy,
the percentage of conflict is higher than that of GSO or
GMS.

5. Conclusions

In optimistic concurrency control, validity of write
operation is known not in time when it invoked but in time
when transaction of it is validated. Thus write operation
must be delayed, and cache operation for the write
operation also be delayed. This property shows that cache
control is heavily related with concurrency control. It is
efficient to integrate cache control to concurrency control
rather than cache exists as isolated layer.

According that how many caches retain its activity,
concurrency controls are classified as direct validation
scheme and reduced validation scheme. Direct validation
scheme preserves activity of cache, and it invalidates
transaction which tries to accesses invalidated object again.
Reduced validation scheme uses 'reduction of I/O
frequency' of cache, and reduces the number of access for
an object to one or two. In the case that the access number
is one, the transaction is valid. In the case that the access
number is two, the object must not be modified between
the accesses. It simplifies validity check of transaction.

Implementation details generate various sort of
concurrency control algorithm: GSO, GMS, GMM, and
LMM. GSO is an algorithm of direct validation scheme.
GMS, GMM, and LMM are algorithms reduced validation
scheme. GSO, GMS, and GMM use global cache scheme.

Acknowledgments

This work was supported by Research Fund, Kumoh
National Institute of Technology.

References
[1] M. A. Bassiouni, “Single-site and distributed optimistic

protocols for concurrency control”, IEEE Transactions on
Software Engineering, vol 14 no. 8, pp. 1071-1080, August
1988.

[2] Michael J. Franklin, Michael J. Carey, and Miron Livny,
“Transactional client-server cache consistency: Alternatives
and performance”, ACM Transactions on Database Systems,
vol. 22, no. 3, pp. 315-363, September 1997.

[3] Jan Lindstrom and Kimmo Raatikainen, “Dynamic
adjustment of serialization order using timestamp intervals
in real-time databases”, in 6th International Conference on

Real-Time Computing Systems and Applications. 1999, pp.
13-20, IEEE Computer Society Press.

[4] Juhnyoung Lee and Sang H. Son. “Performance of
concurrency control algorithms for real-time database
systems”. in Performance of Concurrency Control
Mechanisms in Centralized Database Systems, 1996, pp.
429-460, Prentice Hall.

[5] Yongyan Wan, Qiang Wang, Hongan Wang, and Guozhong
Dai, “Dynamic adjustment of execution order in real-time
databases”, in Proceedings of the 18th International Parallel
and Distributed Processing Symposium (IPDPS’04), 2004, p.
87a.

[6] Jayant R. Haritsa, Michael J. Carey, and Miron Livny,
“Dynamic real-time optimistic concurrency control”. in
IEEE Real-Time Systems Symposium, December 1990, pp.
94-103.

[7] Li Guohui, Yang Bing, and Chen Jixiong, “Efficient
optimistic concurrency control for mobile real-time
transactions in a wireless data broadcast environment”, in
Proceedings of the 11th IEEE International Conference on
Embedded and Real-Time Computing Systems and
Applications (RTCSA05), August 2005, pp. 443-446.

[8] Levent Grgen, Claudia Roncancio, Cyril Labb, and Vincent
Olive, “Transactional issues in sensor data management”, in
Proceedings of the 3rd workshop on Data management for
sensor networks: in conjunction with VLDB 2006
(DMSN06), September 2006, pp. 27-32.

[9] Quazi Ehsanul Kabir Mamun and Hidenori Nakazato,
“Timestamp based optimistic concurrency control”, in
TENCON2005, November 2005, pp. 1-5.

[10] Haifeng Yu and Amin Vahdat, “Design and evaluation of a
conit-based continuous consistency model for replicated
services”, ACM Transactions on Computer Systems, vol. 20,
no. 3, pp. 239-282, August 2002.

[11] Avraham Leff, Joel L. Wolf, and Philip S. Yu, “Efficient
LRU-based buffering in a LAN remote caching
architecture”, IEEE Transactions on Parallel and
Distributed Systems, vol. 7, no. 2, pp. 191-216, February
1996.

[12] Michael J. Carey, “Improving the performance of an
optimistic concurrency control algorithm through
timestamps and versions”, IEEE Transactions on Software
Engineering, vol. SE-13, no. 6, pp. 746-751, June 1987.

[13] “C++sim home page”, http://cxxsim.ncl.ac.uk/.

Tae-Young Choe received the B.S.
degrees in Mathematical Education from
Korea University in 1991, M.S. and Ph.D
degrees in Computer Science and
Engineering from POSTECH in 1996 and
2002, respectively. He is an Assistant
Prefessor at Kumoh National Institute of
Technology – Korea since 2002. He has
been a visiting researcher at GEORGIA

TECH – USA during 2007. His current research interests include
parallel and distributed algorithms, high performance storage
systems, and computer security.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008

154

Table 4: Performance of GSO/GMS/LMM scheme with 5 disks in sequential transactions environment (a) Cache hit ratio (%) according to cache size and
write ratio, (b) Cache hit ratio (%) according to the number of workers per disk and write ratio when cache size is 2048KB, (c) Throughput (Mbytes/sec)

according to the number of workers per disk and write ratio, (d) The percentage of conflicts per transaction (%) according to write ratio and the number of
clients when cache size is 2048KB.

GSO GMS LMM Cache
size 0% 33% 66% 100% 0% 33% 66% 100% 0% 33% 66% 100%

512MB 27.8 27.7 27.8 28.3 28.5 27.7 27.7 28.1 19.8 19.3 18.9 18.6
2048MB 51.9 51.4 52.0 51.8 52.1 51.6 51.9 51.8 25.5 23.8 22.8 22.3
8196MB 77.9 77.6 77.2 76.2 78.0 77.6 77.2 76.2 44.9 38.6 35.6 34.1

(a)

GSO GMS LMM Workers
per disk 0% 33% 66% 100% 0% 33% 66% 100% 0% 33% 66% 100%

1 51.4 51.7 50.5 51.5 51.6 51.6 51.6 51.4 25.6 23.9 22.9 22.3
10 51.4 51.5 51.5 51.5 51.7 51.6 51.5 51.5 25.6 23.8 22.8 22.1
20 51.9 51.4 52.0 51.8 52.1 51.6 51.9 51.8 25.5 23.8 22.8 22.3

(b)

GSO GMS LMM Workers
per disk 0% 33% 66% 100% 0% 33% 66% 100% 0% 33% 66% 100%
1 0.55 0.24 0.11 0.11 0.64 0.25 0.15 0.11 0.60 0.24 0.15 0.11
10 3.35 2.34 1.30 1.01 4.44 2.19 1.42 1.05 3.48 2.02 1.37 1.01
20 4.39 2.63 2.03 1.67 5.23 3.46 2.41 1.91 3.82 2.78 2.13 1.77

(c)

GSO GMS LMM workers
per disk 0% 33% 66% 100% 0% 33% 66% 100% 0% 33% 66% 100%
1 0.0 0.01 0.01 0.08 0.0 0.01 0.03 0.06 0.0 0.13 0.39 0.90
10 0.0 0.22 0.40 0.78 0.0 0.19 0.46 0.89 0.0 0.29 0.85 1.38
20 0.0 0.26 0.77 1.34 0.0 0.31 0.92 1.49 0.0 0.41 1.21 2.19

(d)

