
Zhao L, Yang JW. Resources snapshot model for concurrent transactions in multi-core processors. JOURNAL OF COM-

PUTER SCIENCE AND TECHNOLOGY 28(1): 106–118 Jan. 2013. DOI 10.1007/s11390-013-1315-7

Resources Snapshot Model for Concurrent Transactions in Multi-Core

Processors

Lei Zhao (� �), Member, CCF, ACM, and Ji-Wen Yang (���), Member, CCF, ACM

School of Computer Science and Technology, Soochow University, Suzhou 215006, China

E-mail: {zhaol, jwyang}@suda.edu.cn

Received June 1, 2011; revised August 20, 2012.

Abstract Transaction parallelism in database systems is an attractive way of improving transaction performance. There
exists two levels of transaction parallelism, inter-transaction level and intra-transaction level. With the advent of multi-

core processors, new hopes of improving transaction parallelism appear on the scene. The greatest execution efficiency of
concurrent transactions comes from the lowest dependencies of them. However, the dependencies of concurrent transactions
stand in the way of exploiting parallelism. In this paper, we present Resource Snapshot Model (RSM) for resource modeling
in both levels. We propose a non-restarting scheduling algorithm in the inter-transaction level and a processor assignment
algorithm in the intra-transaction level in terms of multi-core processors. Through these algorithms, execution performance
of transaction streams will be improved in a parallel system with multiple heterogeneous processors that have different
number of cores.

Keywords multi-core, database transaction, parallelism, concurrency, conflict detection

1 Introduction

Transaction is a very important concept of database
systems. Since transaction processing is the guarantee
for the consistency and integrity of databases, transac-
tion models used to be an active topic in database tech-
nology area for a long period of time. Researchers have
proposed many transaction models[1-5] in this period.
Nevertheless, the hotspots of this area changed in re-
cent years while a lot of technologies developed, such
as system architectures, networks, operating systems,
and so on. These developments lead to some applied
research branches in this area.

A lot of researchers worked on the transaction pro-
cessing of databases for mobile devices. This is a
topic about transaction processing under unstable net-
work connections. In [6-7], the authors focused on
the efficiency and quality of service in real-time mo-
bile databases. In [8-10], the authors talked about the
specification, dependency and heterogeneity of mobile
databases.

Some other researchers focused on the transaction
processing for real-time databases. In [11-13], schedu-
ling algorithms are the points. Scheduling is one of the
most important parts in real-time systems. In [14-16],
concurrency control is discussed. The problem of con-
currency control is classic and well researched, but it

exposes new problems with the development of the ar-
chitecture of computer.

In recent years, parallel computers and multi-core
processors are widely used. Transaction processing for
parallel databases[17-19] is becoming a hot spot. Al-
though those transaction models mentioned previously
have been proved to be successful and useful for regu-
lar databases, they are not powerful enough to process
concurrent transactions in advanced parallel database
systems. They have at least two major drawbacks.

1) The existing transaction models are mostly made
up of long running activities. It is well known that, exe-
cution of transactions must take some resources, e.g.,
CPU timeslices, shared memories, shared buffers and
I/O channels. Long running activity means occupy-
ing some resources for a long time. This situation will
lead to concurrent transactions executed sequentially
in parallel database systems. The reason is the cost.
Long running activities fit for loose-coupled systems.
Loose-coupling systems, e.g., grids and clusters, are
more cheaper than tight-coupling machines and easier
to obtain. Parallel computer no longer means costli-
ness because of the popularity of multi-core technology.
Parallel computers become our desktop computers or
laptops nowadays. It is time to cut the transactions to
short running activities for better parallelism, which is
an intra-transaction problem.

Regular Paper
This work is supported by the National Natural Science Foundation of China under Grant No. 61073061.
�2013 Springer Science +Business Media, LLC & Science Press, China

Lei Zhao et al.: Resources Snapshot Model 107

2) Locking and unlocking operations always take too
much time in transaction processing. There will be a
great progress if non-locking transaction processing can
be achieved in parallel systems. Now non-locking exe-
cution for concurrent processes has been presented rely-
ing on transactional memory, a king of special storage.
It means non-locking processing for database transac-
tions is feasible. But non-locking transaction processing
was never discussed in the existing work. It is an inter-
transaction problem.

In this paper, we present Resource Snapshot Model
(RSM) for resource dependency modeling of transac-
tions streams in which there may exists concurrent
transactions. The purpose is to set up a mechanism
of transaction processing in advanced parallel systems
without expensive locking and unlocking operations.

Firstly, RSM can be used on inter-transaction paral-
lelism. Transactional memory allows non-lock process-
ing. As a result, it causes restarting while conflicts oc-
cur. Restarting means decrease of performance. RSM
can help to find a way of non-restart processing for con-
current transactions.

Secondly, RSM can also be used on intra-transaction
parallelism. It is well known that, a database transac-
tion must be atomic, consistent, isolated and durable.
These are required to insure that a database is running
in a safe way. This is from the point of view of DBMS,
but is quite different in execution. It does not mean
that a database transaction cannot be decomposed in
execution. Actually, it must be divided into a series of
database operations if it needs to be executed. Some of
these operations may cause resources racing. If so, they
cannot execute concurrently in a parallel system. But
if we reschedule these conflicting operations and make
them execute concurrently with other independent ope-
rations, the situation may change. That is what we
have met in traditional multi-processor systems.

However, things may change while multi-core pro-
cessors appear. Suppose, a multi-processors system has
several multi-core processors with different number of
cores. What shall we do while facing a transaction
which can work in separate threads? How could we
know which processor should be assigned to this tran-
saction? If the number of cores is greater than that of
threads, it will make some cores idle while make some
threads wait. Both of these two situations will lead to
decrease of performance. So we need a strategy to solve
this problem. RSM can help.

RSM is for resource modeling in both intra-
transaction level and inter-transaction level. We pro-
pose a non-restarting scheduling algorithm in inter-
transaction level and a processor assignment algo-
rithm in intra-transaction level in terms of multi-core

processors. Through these algorithms, we can improve
execution performance of transaction streams in a sim-
ulated parallel system with asymmetric multiple pro-
cessors.

The rest of the paper is organized as follows. Sec-
tion 2 presents some related work in this area. Section
3 gives some examples to show the motivations of our
work. We provide some basic definitions, theorems in
Section 4. Section 5 proposes some relevant algorithms.
Section 6 shows some experimental results of simula-
tions. Finally, we conclude the paper in Section 7.

2 Related Work

Transaction dependency is a complicated problem.
Some related problems, such as transaction models,
concurrency, conflicts testing and detection are all in-
volved in. Lots of researches have been issued in this
field.

Chrysanthis and Ramamrithan presented a forma-
lism for extended transaction model[20] and introduced
ACTA, a formal framework for specifying extended
transaction models[2]. ACTA allows intuitive and pre-
cise specification of extended transaction models by
characterizing the semantics of interactions between
subtransactions in terms of different dependencies be-
tween subtransactions, and in terms of subtransaction’s
effects on data objects. During the past few years,
ACTA has been used for specifying and reasoning about
advanced transaction models. The authors proposed
a synthesis form of extended transaction models using
ACTA[21].

Biliris et al. developed a flexible transaction faci-
lity called ASSET[4]. ASSET allows the specification
of arbitrary transaction models and provides support
for programming transactions that have relaxed cor-
rectness requirements. The goal is to facilitate the con-
struction of transactions that cooperate and interact in
application-specific ways. Through several examples, it
shows how three novel transaction primitives, namely,
delegate, permit and form dependency, allow the con-
struction of arbitrary transaction models and the reali-
zation of relaxed correctness notions.

Schwarz et al. introduced the concept of tran-
saction closure[22-23] as a generalization of the well-
known concept of nested transactions together with a
set of transaction dependencies. They thought tran-
saction closure was a suitable framework for the de-
sign of complex applications. They discussed the exe-
cution dependency of transaction closure[22]. The exe-
cution dependencies between transactions can be ex-
pressed in terms of begin and end events associated
with the corresponding transactions, and they restrict

108 J. Comput. Sci. & Technol., Jan. 2013, Vol.28, No.1

the temporal occurrence of the events. The authors
presented three execution dependencies, parallel strict
overlapping, parallel including and sequential, after
combining the basic events of two interrelated trans-
actions. Moreover, they also introduced transitive pro-
perties of execution dependencies[23]. This issue is im-
portant to get a grasp of the entire semantics of a com-
plex application. By this way, it is possible to conclude
how two arbitrary transactions are interrelated.

In [17], the authors proposed a 3-level transaction
scheduling model and scheduling algorithm, PDCC,
based on priority. Compared with GCC[24], PDCC uses
complex priority algorithms for the transactions instead
of simple timestamps. PDCC not only supports cor-
rectness of the data, but also can improve the effective-
ness of the grid database system.

In [25], the authors designed an optimistic con-
currency control algorithm for P2P databases, named
SODA. SODA is lightweight and addresses P2P charac-
teristics. The processing time of SODA is decreased by
applying the concept of sequential order. At the same
time, the transactions abort rate is reduced through
dynamically adjusting the sequential order.

Deng et al. focused on testing database transa-
ctions[26]. They described a substantial extensions to
AGENDA, allowing it to test transactions with multi-
ple queries and with complex intended behavior. The
paper introduces an improved input generation heuris-
tic and a technique for checking complex properties of
the database state transition performed by the tran-
saction. Results of using AGENDA to test three non-
trivial applications with seeded faults were presented.
Actually, the authors focused on testing database tran-
saction concurrency[27] in two years before Deng et al.
They proposed a framework and implemented a tool
set to partially automate the testing process. They
identified the potential offline concurrency problems in
database applications. Two approaches were suggested
to execute a given schedule. Preliminary empirical eva-
luation based on the TPC-C benchmark was presented
and demonstrated the effectiveness and efficiency.

In [28], the authors addressed the problem of depen-
dency conflicts existing in advanced transaction mod-
els. They discussed how dependencies could affect the
execution of advanced transactions, and presented the
means how to analyze conflicts of dependencies. In that
paper, the authors described the properties of depen-
dencies, and studied different kinds of dependency con-
flicts. They also proposed algorithms to automatically
detect the conflicts. The conflict free dependencies en-
sure that the dependencies are physically realizable in
execution. It ensures that the advanced applications
are free from deadlocks and unavailability issues.

Thread-level speculation (TLS)[29-31] is an impor-
tant way of increasing transaction parallelism in thread
level issued in 1998 firstly. Its key point is speculation
which empowers the programmer to parallelize code
while being concerned only with performance rather
than correctness. Specifying where to break a transac-
tion into epochs is what the programmers need to do.
The TLS mechanism executes them in parallel preserv-
ing the original sequential semantics of the program.
But some epochs may be restarted when their execution
diverges from the original sequential execution.

Christopher and his collaborator presented their
method of incrementally parallelizing transactions[32].
It provides a possible solution to the problem of para-
llelizing the central loop of a transaction that can re-
duce transaction latency and hence decrease contention
for resources used by the transaction. It also provides
a methodology for eliminating the data dependencies
that limit parallel performance, describing three spe-
cific techniques for eliminating these dependencies and
examples of their application.

However, not much work appears in the research-
ing on transaction parallelism in asymmetric multi-
processors systems. And not much work is found on
transaction processing in a database management sys-
tem without locking and unlocking operations. The
prime contribution of this paper is to present a non-
locking transaction processing model in asymmetric
multi-processors systems.

The main differences between our work and the pre-
vious work is as follows.

1) This paper addresses parallelism of concurrent
transactions not only on inter-transaction level but also
on intra-transaction level.

2) The inter-transaction level scheduling presented
in this paper is a non-locking scheduling, differing from
most previous work.

3 Motivations

Suppose that we have a stream of transactions in
a parallel database system which is executed on a
server with asymmetric multiple processors, shown in
Fig.1. Some of them may work in parallel according to
the requirements of resources. Some transactions may
have possibilities of inner parallelism. That is, we need
to tackle a few key problems.

1) How many parallel threads does a transaction
have at most?

2) How can we assign a processor with appropriate
number of cores to a transaction?

3) How to schedule these transactions? That is, how
can we know that a scheduling has no conflicts and all
these transactions are consistent.

Lei Zhao et al.: Resources Snapshot Model 109

There are three examples demonstrating the above
three questions. Fig.1 demonstrates an asymmetric
multi-processor system. It is composed of processors
with different number of cores. In Fig.2 and Fig.3,
each row represents a core. In Fig.2, the notation Rr/w

n

means instance of critical resource Rn is required, and
the superscript r or w means read or write, respec-
tively. And the notation Rr

n → Rw
m will be presented

in Definition 6.

Fig.1. Asymmetric multi-processor system.

Fig.2. Executing in parallel.

3.1 Motivation 1

In Fig.2(a), transactions T1 has five events. Fig.2(b)
shows a possible scheduling. Apparently, two

processors will make T1 execute faster after t1 and no
more processors are necessary. We can make the de-
cision artificially since T1 is a very simple and short
transaction. If a transaction is more complicated and
has much more events, how could we do that?

3.2 Motivation 2

In Fig.3, there are two transactions, T1 and T2. Both
of them can work in parallel. As we can see, T1 needs
less cores than T2 though it has more events than T2.
Figs. 3(a) and 3(b) are two feasible solutions of assign-
ment. In Fig.3(a), T1 gets a 2-core processor and T2

gets a 4-core one. In Fig.3(b), the situation gets re-
versed. The difference sticks out a mile. Giving a
processor with appropriate cores, instead of maximum
cores, does make sense. What makes us decide to as-
sign some transactions processors with more cores and
others with less? What is the criterion?

Fig.3. Difference of durations.

3.3 Motivation 3

Suppose, transaction T3, shown in Fig.2, arrives at
t2. What is our decision at t2? Shall we activate T3

at t2? Apparently, T3 conflicts with T1 and T2. So we
must wait until T1 and T2 submit or abort, otherwise T3

may have a possibility to be restarted for consistency.
How could we find conflicts rapidly out of hundreds of,
even thousands of transactions?

110 J. Comput. Sci. & Technol., Jan. 2013, Vol.28, No.1

4 Resources Snapshot Model

4.1 Terminologies

Definition 1 (Event). An event is an atomic opera-
tion to database, denoted as E.

A selection operation without nested selection is a
typical event. An insertion, update, or deletion opera-
tion is also an event.

Definition 2 (Transaction). A transaction is usua-
lly treated as a sequence of events, denoted as

Tx = (E1
x, E

2
x, . . . , E

kx
x),

in which the events with less superscripts are supposed
to be executed earlier than those with lager superscripts.
In this paper, we use a form with a little difference. We
represent it as a 3-tuple, denoted as

Tx = 〈s time, r time,ES 〉,

or
Tx = 〈s time, r time, (E1

x, E
2
x, . . . , E

kx
x)〉,

for which s time is the submitting time, r time is the
time at which Tx starts to run and ES is the events se-
quence. If r time = −1, then it means Tx has not been
activated.

Definition 3 (Transaction Stream). A transaction
stream is a sequence of transactions, denoted as

T̃ = (T1, T2, . . . , Tn),

for which ∀Tx, Ty ∈ T̃ , it follows that if x < y, then
Tx.s time < Ty.s time.

Definition 4 (Critical Resource). In concurrent
transaction processing, critical resource means a kind
of resource which has only one instance, denoted as Rn,
for which n is the category ID of the resource. That is,
Rn cannot be concurrently accessed by more than one
transaction unless all the transactions only read from
it.

In the following of this paper, the word resource only
refers to critical resource if no other particular state-
ments are claimed.

Definition 5 (Read/Write Set). A read/write set
Θ is a set of resources read/writen by an event or a
transaction during its execution. The read/write set for
event Ei

j is denoted as Θr/w(Ei
j), and the read/write set

for transaction Tx is denoted as Θr/w(Tx).
Suppose, Tx = 〈t0, t1, {E1

x, E
2
x, . . . , E

kx
x }〉, then the

read/write set for transaction Tx is

Θr/w(Tx) =
kx⋃
i=1

Θr/w(Ei
x).

In Fig.2(a), the read and write sets of the five events
in T1 are

Θr(E1
1) = {R5}, Θw(E1

1) = {R2},
Θr(E2

1) = {R3}, Θw(E2
1) = {R2},

Θr(E3
1) = {R1}, Θw(E3

1) = {R5},
Θr(E4

1) = {R2}, Θw(E4
1) = {R4},

Θr(E5
1) = {R5}, Θw(E5

1) = {R6}.

The read sets of T1 is Θr(T1) = {R5, R3, R1, R2}, and
the write sets of T1 is Θw(T1) = {R2, R5, R4, R6}.

Definition 6 (Resource Pair). A resource pair is
a read set and its corresponding write set, which belong
to a same event or transaction, denoted as Θr(E/T) →
Θw(E/T) or Θ(E/T).

In Fig.2(a), the resource pairs of the five events in
T1 are

Θ(E1
1) = {R5} → {R2},

Θ(E2
1) = {R3} → {R2},

Θ(E3
1) = {R1} → {R5},

Θ(E4
1) = {R2} → {R4},

Θ(E5
1) = {R5} → {R6}.

The resource pair of T1 is

Θ(T1) = {R5, R3, R1, R2} → {R2, R5, R4, R6}.

Definition 7 (Resource Snapshot). The resource
snapshot of T̃ at time ti, denoted as Ξti(T̃), is a set
of resource pairs. It represents the resource occupa-
tions and requests of transactions stream T̃ at ti. Let
T̃ = (T1, T2, . . . , Tn), then we define

Ξti(T̃) = {Θ(T1),Θ(T2), . . . ,Θ(Tn)}.

We can find out if a transaction is running or not at
ti by checking its r time.

In Fig.2(b), the resource snapshot at t0, t1, t2, t5
and t6 are

Ξt0 = {Θ(T1)}, Ξt1 = {Θ(T1),Θ(T2)},
Ξt2 = {Θ(T1),Θ(T2),Θ(T3)},
Ξt5 = {Θ(T1),Θ(T3)}, Ξt6 = {Θ(T3)},

respectively. And in Ξt2 and Ξt5 , T3 is not active. T3

cannot be activated until both T1 and T2 finish.

4.2 Resource Precedence Diagram

Pictorialization can give an intuitionistic view of re-
source snapshot. The Precedence Diagram Method is
a tool for scheduling activities in a project plan. It
is a method of constructing a project schedule network

Lei Zhao et al.: Resources Snapshot Model 111

diagram that uses nodes to represent activities and con-
nects them with arrows that show the dependencies.

In this paper, we use a digraph, named Resource
Precedence Diagram (RPD), to represent a sequence of
resource pairs. In the most common sense of the term,
a digraph is a 2-tuple, G = (V,A), comprising a set V
of vertices together with a set A of arrows, which are
ordered pairs of vertices.

Definition 8 (γ-Function). γ-function Γ is a map-
ping from two resource pairs to one boolean value, i.e.,
Γ : (Θa,Θb) → true/false, or Γ(Θa,Θb) = true/false.

Suppose,

(Θr
a ∩ Θw

b) ∪ (Θw
a ∩ Θr

b) ∪ (Θw
a ∩ Θw

b) = A,

then

Γ(Θa,Θb) =
{

false, if A = φ,

true, if A 	= φ.

In Fig.2,

Γ(Θ(E1
1),Θ(E2

1)) = true,

Γ(Θ(E2
1),Θ(E3

1)) = false,

and

Γ(Θ(E1
2),Θ(E2

2)) = false,
Γ(Θ(E1

2),Θ(E3
2)) = false,

Γ(Θ(E2
2),Θ(E3

2)) = false,

and

Γ(Θ(E1
3),Θ(E2

3)) = false,

Γ(Θ(E1
3),Θ(E3

3)) = false,
Γ(Θ(E2

3),Θ(E3
3)) = false,

and

Γ(Θ(T1),Θ(T2)) = false,
Γ(Θ(T1),Θ(T3)) = true,

Γ(Θ(T2),Θ(T3)) = true.

Definition 9 (Resource Precedence Diagram). Let
(Θ1,Θ2, . . . ,Θn) be a sequence of resource pairs. The
resource precedence diagram (RPD), G = (V,A), is de-
fined as follows,

1) V = {Θ1,Θ2, . . . ,Θn},
2) A = {(Θx,Θy)|Γ(Θx,Θy) = true, x < y}.
In an RPD, a vertex at the endpoint of an arrow

must execute after the starting point finishes. An
RPD can be used in both inter-transaction and intra-
transaction levels to research the possibility of paral-
lelism among transactions or events.

Fig.4 shows two examples of RPD. We omit the sym-
bols of Θ in the figure in order to make it more clear at

a glance. Fig.4(a) shows an intra-transaction level RPD
of transaction T1. Fig.4(b) shows an inter-transaction
level RPD of Ξt2 of Fig.2(b).

Fig.4. Examples of RPD.

Definition 10 (Width of RPD). Suppose, G =
(V,A) is an RPD and V0 ⊆ V , for which there is no
path between any two vertices in V0. If ∀Vx ⊆ V , for
which there is no path between any two vertices in Vx,
it follows that |Vx| � |V0|, then |V0| is defined as the
width of G, denoted as |G| = |V0|.

We use a macro adjacency matrix to represent an
RPD. A regular adjacency matrix of a digraph is an
n× n square matrix M , where n is the number of ver-
tices in the graph. If there is an arrow from some Vx to
some Vy, then the element M [x, y] is 1, otherwise it is
0. A macro adjacency matrix is derived from a regular
adjacency matrix. A macro adjacency matrix is also an
n × n square matrix M . If there is a path, instead of
an arrow, from some Vx to some Vy, then the element
M [x, y] is 1, otherwise it is 0.

5 Inter-Transaction Scheduling

5.1 δ-Function

Definition 11 (δ-Function). δ-function Δ is a
mapping from a sequence of resource pairs S =
(Θ1,Θ2, . . . ,Θn) to a set of resource pairs, named δ-
set, i.e., Δ : S → δ-set, or Δ : S → {Θδ1 ,Θδ2 , . . .}, or
Δ(S) = δ-set.

Suppose, S = (Θ1,Θ2, . . . ,Θn), then the δ-set of S
must cover the following terms,

1) ∀Θx ∈ δ-set, !∃Θy ∈ S, such that y < x and
Γ(Θx,Θy) = true,

2) ∀Θy ∈ (S − (δ-set)), ∃Θx ∈ S, such that y > x
and Γ(Θx,Θy) = true.

In Fig.2, T1, T2 and T3 all exist at t2. If let

S = (Θ(T1),Θ(T2),Θ(T3)),

then
Δ(Ξt2) = {Θ(T1),Θ(T2)}.

Theorem 1. Suppose, Ξti is the resource snapshot
at ti, G = (V,A) is the PRD of Ξti . If there exist
V0 ⊆ V and V0 	= φ, for which ∀Θx ∈ V0, it follows
that deg−(Θx) = 0, and ∀Θy ∈ (V −V0), it follows that
deg−(Θy) > 0, then V0 = Δ(Ξti).

112 J. Comput. Sci. & Technol., Jan. 2013, Vol.28, No.1

The notation deg−() represents the indegree of a ver-
tex in a graph.

Proof. As we know, ∀Θx ∈ Δ(Ξti), it follows that
!∃Θy ∈ Ξti , such that y < x and Γ(Θx,Θy) = true. This
means that ∀Θx ∈ Δ(Ξti), there does not exist any ar-
row pointing to Θx. It follows that deg−(Θx) = 0.

Suppose, Θy be any element in Ξti − Δ(Ξti), it fol-
lows that ∃Θx ∈ Ξti , such that y > x and Γ(Θx,Θy) =
true. This means that ∀Θy ∈ (Ξti − Δ(Ξti)), there exi-
sts at least one arrow pointing to Θy. It follows that
deg−(Θy) > 0.

Therefore, V0 = Δ(Ξti). �
It is known that, in Fig.2(b), the δ-set of Ξt2 is

Δ(Ξt2) = {Θ(T1),Θ(T2)}.

It was dug out by Δ-function in the previous part of this
section. Now PPD is an alternative solution. Fig.4(b)
is the RPD of Ξt2 . It is abundantly clear which vertices
have the indegrees of 0.

5.2 Algorithms

Inter-transaction scheduling is to find out which
transactions can execute in parallel at time t. It is
known that the δ-set of Ξt will not occur any conflicts.
Theorem 1 provides a very quick method, counting the
vertices with indegree of 0, to get a δ-set.

The inter-transaction scheduling algorithm should
be invoked as soon as some transactions finish or ar-
rive. The two possible situations are as follows.

1) Once a transaction arrives at time t, we add it
and its inbound arrows into the RPD and figure out
the δ-set of Ξt.

2) Once a transaction finishes at time t, we drop it
and its outbound arrows from the RPD and figure out
the δ-set of Ξt.

Algorithm 1 and Algorithm 2 describe the details
of how to deal with these two situations, respectively.
These two algorithms both construct on the macro ad-
jacency matrix of RPD.

Fig.5 explains inter-transaction scheduling by RPD
and δ-set. There are two transaction (T1, T2) at t2 and
the δ-set is {T1, T2}. This means T1 and T2 can execute
in parallel. So T2 is activated immediately when

Algorithm 1. Arrive(Ta)

1: Let R be the running queue

2: Let W be the waiting queue

3: n⇐ |R| + |W |
4: W ⇐W ∪ Ta

5: Add the (n+ 1)-th column into the macro adja-

cency matrix M

6: Add the (n+ 1)-th row into M

7: for i = 1 to n do

8: M [n+ 1, i] ⇐ 0

9: if Γ(Θn,Θa) = ture then

10: M [n, n+ 1] ⇐ 1

11: end if

12: M [n+ 1, n+ 1] ⇐ 0

13: end for

Algorithm 2. Finish(Ta)

1: Let R be the running queue

2: Let W be the waiting queue

3: n⇐ |R| + |W |
4: Drop the a-th row

5: Drop the a-th column

6: for each Ti, 1 � i � n− 1, such that each element

in column i = 0 do

7: R⇐ R ∪ Ti

8: W ⇐W − Ti

9: end for

it arrives.
The δ-set at t3 is still {T1, T2}. So T3 is not activated

when it arrives because it is not in the δ-set. Moreover,
T3 is still not activated at t5 because of the same reason.

5.3 Finiteness

Exploring the δ-set now becomes the extremely im-
portant task, otherwise the inter-transaction scheduling
will be endless.

Theorem 2. An PRD is a directed acyclic graph
(DAG).

Proof. Let, S = (Θ1,Θ2, . . . ,Θn) be a sequence of
resource pairs, and G = (V,A) is the corresponding
PRD.

Fig.5. Illustration of inter-transaction scheduling.

Lei Zhao et al.: Resources Snapshot Model 113

Suppose, there exists a cycle in G, it follows that

∃(Θc1 ,Θc2 , . . . ,Θcm),

for which
c1 < c2 < · · · < cm,

such that

Γ(Θc1 ,Θc2) = true,
...

Γ(Θcm−1 ,Θcm) = true,

Γ(Θcm ,Θc1) = true.

According to Definition 9, if Γ(Θcm ,Θc1) = true, then
cm < c1. It breaks the hypothesis, c1 < cm, apparently.

Therefore, an PRD is a directed acyclic graph. �
Corollary 1. Suppose, S = (Θ1,Θ2, . . . ,Θn) is a

sequence of resource pairs, if n > 0 then, Δ(S) 	= φ.
Proof. Suppose G = (V,A) is the corresponding

PRD of S. Suppose, Δ(S) = φ, it follows that !∃Vx ∈ V,
such that deg−(Vx) = 0. It follow that deg−(V0) 	= 0.
This means that ∃Vx ∈ V, x > 0, such that (Vx, V0) ∈ A.
It breaks the conditions of Definition 9.

Therefore, the hypothesis, Δ(S) = φ, is not true,
i.e., Δ(S) 	= φ. �

Theorem 2 and Corollary 1 prove that a δ-set always
exists with a non-empty sequence of resource pairs. So
the inter-transaction scheduling is a finite algorithm.

5.4 Overhead of Scheduling

Once a transaction starts or finishes, the RPD and
macro adjacency matrix should be updated, and the
algorithms should be triggered.

Suppose R is the running queue, W is the waiting
queue, and each transaction holds, on average, no more
than k resources. It follows that

• Algorithm 1 invokes n (n = |R|+ |W |) times of Γ-
function which needs 3k2 times of comparisons for each
time.

• Algorithm 2 does not invoke Γ-function. It goes
through the waiting queue to launch unrestricted trans-
actions released by the leaving transaction. It needs
n − 2 times of comparisons to see if a transaction is
with the indegree of 0. And the worst situation is that
the entire waiting queue needs to be checked.

• Each invoking of Algorithm 1 will result in a con-
sequent invoking of Algorithm 2.

Therefore, the overhead of inter-transaction schedu-
ling is H = 3nk2 + (n− 2) × |W |. The worst situation
makes the maximum |W | be n−(|R|−1). |R| is limited
by the number of processors, so usually |R| � n.

It is easy to find that the complexity of H falls into
O(n2). It is not acceptable absolutely.

Actually, the macro adjacency matrix is a sparse ma-
trix. Most of the comparisons are useless. So the RPD
uses cross linked list to store the matrix, instead of a
regular n× n array.

To add a transaction into an RPD with n vertices
needs up to n times of Γ-function. Algorithm 1 with
cross linked list still needs 3nk2 times of comparisons.
To remove a transaction needs to release up to 2 × n
nodes in the cross linked list first.

After that, it becomes extremely easy to find unre-
stricted transactions. The scheduler just needs to check
up to |W | column pointers to see if they are NULL or
not, which means indegree of 0. Therefore, the com-
plexity of updating an RPD with cross linked list is

H =3k2n+ 2n+ |W | = 3k2n+ 2n+ (n− |R|)
=3k2n+ 3n− |R| < 3k2n+ 3n.

For k � n, k can be treated as a small constant, let
3k2 = c, it follows that H < (c + 3)n, therefore the
complexity of H is O(n).

6 Intra-Transaction Scheduling

Intra-transaction scheduling is to find out how many
threads a transaction can be divided into at most and
pick an appropriate processor for the transaction.

6.1 ψ-Function

Definition 12 (ψ-Function). Ψ-function Ψ is a
mapping from a resource pair sequence to a posi-
tive integer. The result of a ψ-function is called a
ψ-value, i.e., Ψ : (Θ1,Θ2, . . . ,Θn) → ψ-value, or
Ψ(Θ1,Θ2, . . . ,Θn) = ψ-value.

Suppose, S = (Θ1,Θ2, . . . ,Θn), and S′ is such a
subset of S that if ∀Θx,Θy ∈ S′(x < y), it follows that
!∃(Θx1 ,Θx2, . . . ,Θxm), where m � 0 and x < x1 <
x2 < · · · < xm < y, such that

Γ(Θx,Θx1) = true,

Γ(Θx1,Θx2) = true,
...

Γ(Θxm ,Θy) = true.

Then the cardinality of the largest S′ is the ψ-value of
S, denoted as Ψ(S) = |S′|.

In Fig.2, transaction T1 has five events. If let
S = {Θ(E1

1),Θ(E2
1),Θ(E3

1),Θ(E4
1),Θ(E5

1)}, then it has
four subsets which cover all the terms of Definition 12.
And it is easy to see,

|{Θ(E2
1),Θ(E3

1)}| = 2,
|{Θ(E2

1),Θ(E5
1)}| = 2,

114 J. Comput. Sci. & Technol., Jan. 2013, Vol.28, No.1

|{Θ(E3
1),Θ(E4

1)}| = 2,
|{Θ(E4

1),Θ(E5
1)}| = 2.

Therefore, Ψ(S) = 2.
Theorem 3. If S = (Θ1,Θ2, . . . ,Θn) is a sequence

of resource pairs, and G = (V,A) is the corresponding
RPD, then |G| = Ψ(S).

Proof. Suppose, S′ = {Θs1 ,Θs2 , . . . ,Θsm} be the
largest subset of S, for which ∀Θx,Θy ∈ S′(x <
y), it follows that !∃(Θx1 ,Θx2 , . . . ,Θxm), where m �
0 and x < x1 < x2 < · · · < xm < y, such that

Γ(Θx,Θx1) = true,
Γ(Θx1 ,Θx2) = true,

...

Γ(Θxm ,Θy) = true.

It follows that Ψ(S) = |S′| = m, and there does not
exist any path in subgraph G′ = (S′, A′). Therefore,
|G| � |G′| = m.

Suppose, |G| > Ψ(S), it follows that ∃S′′ ∈ V, |S′′| >
|S′|, such that there does not exist any path in subgraph
G′′ = (S′′, A′′). It is not hard to see, S′′ covers all the
conditions covered by S′. This means that S′ is not the
largest eligible subset. It breaks the hypothesis.

Therefore, |G| = Ψ(S). �
In Fig.2(a), as we know, the ψ-value of T1 is 2.

Fig.4(a) is the RPD of T1. It shows the result abun-
dantly clear.

Now the ψ-value can be got by figuring out the width
of an RPD, since ψ-value of a resource pair sequence is
equivalent to the width of its corresponding RPD.

Algorithm 3. ψ-Function(Θ1,Θ2, . . . ,Θn)

1: max⇐ 0

2: Let G = (V,A) be the RPD of the input sequence

3: Let M be the macro adjacency matrix of G

4: for i = 1 to n do

5: M ′ ⇐M

6: Drop the first j − 1 rows

7: Drop the first j − 1 columns

8: for j = 1 to n− i+ 1 do

9: Drop the columns whose entities in the j-th

row are 1

10: end for

11: k ⇐ the number of columns of M ′

12: if (k > max) then

13: max ⇐ k

14: end if

15: end for

16: Output(max)

Proof. As we can see, Algorithm 3 is used to find
out the largest submatrix M ′ whose entities are all 0.
Suppose, G′ = (V ′, A′) is the subgraph represented by
M ′, then ∀Θx,Θy ∈ V ′, it follows that (Θx,Θy) 	∈ A′.
This means there is no path between any two vertices
in V ′. Therefore, G′ is the largest subgraph of G in
which there does not exist any path. �

6.2 Non-Preemption RSM Scheduling

Non-preemption RSM picks a processor whose num-
ber of cores is equal to the ψ-value of the transaction. If
there are no such processors available, non-preemption
RSM will pick an available processor with number of
cores as close to the ψ-value as possible.

Suppose, T = (E1, E2, . . . , En) is a transaction. Let
S = (Θ1,Θ2, . . . ,Θn) be the corresponding resource
pair sequence and G = (V,A) be the RPD. We can
get the ψ-value of S by means of Ψ(S) = |G|, accord-
ing to Algorithm 3. So we can assign a processor with
at least |G| cores to transaction T if it is possible.

The Non-Preemption Algorithm is given in Algo-
rithm 4. Suppose we have k processors, denoted as p[x]
(1 � x � k), organized as an ascending sequence by
the number of cores. Notations c[x] and s[x] mean the
number of cores and the current state of p[x], respec-
tively.

Algorithm 4. Non-Preemption-RSM(T)

1: mindiff ⇐ MAXCORE

2: currentp ⇐ NOTAVAILABLE

3: for i = 1 to k do

4: if (|(c[i] − Ψ(T)| < mindiff and s[i] = IDLE)

then

5: mindiff ⇐ |(c[i] − Ψ(T)|
6: currentp ⇐ i

7: end if

8: end for

9: Output(currentp)

Fig.6 shows an example of intra-transaction schedu-
ling. It shows the process of getting the ψ-value of a
transaction. There are five events in Fig.6, and the ψ-
value is 2. It means a processor with no less than two
cores is enough to transaction T .

Fig.7 shows a more complicated example. There are
nine events in transaction T , and the result shows that
a processor with more than four cores allows transac-
tion T to finish running in the shortest duration.

6.3 Preemption RSM Scheduling

Preemption RSM has the same principle for picking
a processor as non-preemption RSM. The difference is
that a transaction can get a reassigned processor before

Lei Zhao et al.: Resources Snapshot Model 115

Fig.6. Illustration of intra-transaction scheduling. (a) RPD fo transaction T . (b) Initial M . (c) i = 1, ψ-value = 1. (d) i = 2, ψ-value

= 2. (e) i = 3, ψ-value = 2. (f) i = 4, ψ-value = 2.

Fig.7. Illustration of complicated intra-transaction scheduling. (a) RPD of transaction T . (b) Initial M . (c) i = 4, ψ-value = 4.

it finishes. Algorithm 4 intends to assign the most ap-
propriate processor to a transaction, but it does not al-
ways work. Preemption RSM keeps watch on the status
of all processors. Once a more appropriate processor is
released, the transaction will get it.

7 Experiments and Performance Study

We construct a simulation model to evaluate perfor-
mance of RSM scheduling and compare the results with
classic shared and exclusive locking scheduling.

7.1 Experimental Settings

We set up a PC cluster for experiments with 15

computers, including 14 computing nodes whose con-
figurations are listed in Table 1, and one scheduling
node. All nodes run under Redhat Enterprise Linux

Table 1. Hardware Configuration

CPU Cores CLK (GHz) PCs

Pentium-IV 1 2.8 4

Pentium G840 2 2.8 4

AMD A6-3670 K 4 2.7 4

AMD FX6100 6 3.3 1

Core i7-3770K 4(8) 3.5 1

Note: Intel Core i7 has 4 physical cores, but the Hyper-
Threading technology makes it powerful enough to work
like an 8-core processor. In our experiments, we treat Core
i7 as an 8-core processor.

116 J. Comput. Sci. & Technol., Jan. 2013, Vol.28, No.1

Server, and GCC+MPI is adopted as coding environ-
ment.

Since the RPD is very similar to task graph in para-
llel systems, it can be deployed by borrowing the para-
llel task scheduling method to solve the scheduling pro-
blem. We choose a well-studied parallel task schedu-
ling of DAG, DLS (Dynamic Level Scheduling)[33], as
a baseline in our experiments. We just make a little
modification on the ranking of levels.

7.2 Benchmark

The purpose of a benchmark is to reduce the diver-
sity of operations found in a production application,
while retaining the application’s essential performance
characteristics so that the workload can be representa-
tive of a production system. We study the performance
of RSM by means of the benchmark of TPC-E (TPC
BenchmarkTM E�.

TPC-E is a new on-line transaction processing
(OLTP) workload developed by the TPC. TPC-E is
composed of a set of transactional operations designed
to exercise system functionalities in a manner repre-
sentative of complex OLTP application environments.
These transactional operations have been given a life-
like context, portraying the activity of a brokerage firm,
to help users relate intuitively to the components of the
benchmark. The workload is centered on the activity of
processing brokerage trades and uses a schema, which
is logically divided into four sets of tables.

The testing data packages were generated by
EGen�. EGen is a TPC-provided software package de-
signed to facilitate the implementation of TPC-E. EGen
provides consistent data generation independent of the
underlying environment.

7.3 Simulation Model

Our simulation model consists of a transaction
model which captures the characteristics of transac-
tions, and a scheduling model which captures the be-
haviors of scheduling algorithms. Details are as follows.

1) We assume each transaction has up to eight events
and each event requests up to two resources.

2) We simulate two types of schedule algorithms.
One is RSM, and the other is the classic locking sched-
uler. Shared and Exclusive Locking Schema (S/E Lock-
ing) is the most widely used algorithm.

3) We implement four algorithms totally, two for S/E
Locking and two for RSM. After S/E Locking finishes
inter-transaction schedule, Optimism or Pessimism con-
tinues to finish intra-transaction schedule. Optimism
always picks a processor with maximum number of

cores out of all available processors, while Pessimism al-
ways picks a processor with minimum number of cores
out of all available processors. So these two S/E Lock-
ing schedulings are named S/E LOCK-OPTI and S/E
LOCK-PESS, respectively. RSM has two phases, one
for inter-transaction schedule and the other for intra-
transaction schedule. After the first phase of RSM,
the second phase has two alternatives, Preemption and
Non-preemption. So these two RSM schedulings are
named PREE-RSM and NONP-RSM, respectively.

4) Two main factors which are possible to influence
the performance of scheduling are considered: average
duration of a transaction, average number of resources
requested.

5) Two criteria relevant to scheduling performance
are introduced: average turnaround index (ATI) for
transactions and average busy index (ABI) for proces-
sors.

Suppose, Di is the duration of transaction executing
in serial manner, and di is the actual duration during a
scheduling. Suppose there are totally N transactions.
The average turnaround index is defined as

ATI = −100 × ln
N∑

i=1

di

Di
.

Suppose, there is P processors, each has pi cores, and
C(pi|tj) represents the number of working cores of pi

at timeslice tj . Suppose, it costs totally S timeslices to
execute some transactions. The average busy index is
defined as

ABI =
S∑

j=1

P∑
k=1

C(pk|tj)
/(

S ×
P∑

i=1

pi

)
.

7.4 Results and Discussion

Fig.8 and Fig.9 show that the ATI and ABI are sta-
ble while the average duration of transactions ranges
from 50 to 100. Average duration changes the life span

Fig.8. ATI vs average duration.

�http://www.tpc.org/tpce/default.asp, June 2001.

Lei Zhao et al.: Resources Snapshot Model 117

Fig.9. ABI vs average duration.

of transactions. But it does not change the probability
of resource racing among the transactions. It just am-
plifies the interval between two conflicts. Preemption
RSM is capable of switching transactions to appropri-
ate processors. It makes the ABI also higher than that
of the other three.

Fig.10 and Fig.11 show that the ATI and ABI are
stable while the average number of requested resources
ranges from 2 to 16. Average number of requested re-
sources changes the possibility of conflicts. But its in-
fluence on any schedulers are equivalent. So it cannot
make the performance of any of these four schedulers
drop faster. But when the average number of requested
resources gets greater than 14, the charts appear some-
what abnormal. Actually, too many conflicts occur. It

Fig.10. ATI vs average number of requested resources.

Fig.11. ABI vs average number of requested resources.

is difficult for any scheduling policy to keep away from
them.

8 Conclusions and Future Work

We proposed a model, named RSM, which represents
the resource requirements and occupations of a tran-
saction stream at one moment. RSM learns the depen-
dency on two transaction by presenting the γ-function
and uses RPD to study the dependency in a transaction
stream. RSM supports the research on parallelism of
transactions in both inter-transaction level and intra-
transaction level. It provides a non-restart and non-
locking scheduling method in inter-transaction level by
means of δ-set. It also provides a processor assignment
method under asymmetric multi-processor situations in
intra-transaction level by means of ψ-value.

We conducted simulations for various situations of
transaction streams in order to examine the perfor-
mance of two non-restart schedulings, Non-Preemption
and Preemption RSM scheduling. We found that
the RSM schedulings are more efficient than some
other schedulings in asymmetric multi-processor sys-
tem and Preemption RSM is more efficient than Non-
Preemption RSM.

A lot of work still remains. The condition of non-
restart scheduling is sufficient, but no necessary. It
guarantees that no restarting is needed and loses some
parallelism in the mean time. So the RSM schedul-
ings are feasible schedulings, but perhaps not the
best schedulings which lead to the maximum average
throughput and the minimum average waiting time.
Another issue is the assumption that transactions’ re-
source requirements are known beforehand limits the
applicability of the work. It would be more useful to
extend the algorithms to operate in a context where
transactions’ resource requirements only become known
as the transactions dynamically execute. In the future,
we would like to do more research on RSM and find
out more efficient and practical non-restart scheduling
methods.

References

[1] Ansari M, Rusinkiewicz M, Ness L et al. Executing mul-
tidatabase transactions. In Proc. the 25th Hawaii Interna-
tional Conference on System Sciences, Jan. 1992, pp.335-346.

[2] Chrysanthis P K, Ramamritham K. Acta: A comprehensive
transaction framework for extended transactions. In Proc.
the 2nd Int. Workshop on Transaction and Query Process-
ing, Feb. 1992, p.221.

[3] Sharaf M A, Guirguis S, Labrinidis A et al. Asets: A self-
managing transaction scheduler. In Proc. the 24th Int. Conf.
Data Engineering Workshop (Poster), Apr. 2008, pp.56-62.

[4] Biliris A, Dar S, Gehani N et al. Asset: A system for sup-
porting extended transactions. In Proc. ACM SIGMOD Int.
Conf. Management of Data, May 1994, pp.44-54.

118 J. Comput. Sci. & Technol., Jan. 2013, Vol.28, No.1

[5] Garcia-Molina H, Ullman J D, Widom J. Database Systems:
The Complete Book (2nd edition). Prentice-Hall, 2008.

[6] Li G, Xiang J, Yang B et al. Scheduling algorithm of up-
date transactions and quality of service management based
on derived data in real-time and mobile database systems. In
Proc. Japan-China Joint Workshop on Frontier of Computer
Science and Technology, Nov. 2007, pp.131-138.

[7] Gruenwald L, Bernedo P, Padmanabhan P. Petranet: A power
efficient transaction management technique for real-time mo-
bile ad-hoc network databases. In Proc. the 22nd Interna-
tional Conference on Data Engineering, Apr. 2006, p.172.

[8] Alshorman R, Hussak W. Multi-step transactions specifica-
tion and verification in a mobile database community. In
Proc. the 3rd Int. Conf. Information and Communication
Technologies: From Theory to Applications, Apr. 2008, pp.1-
6.

[9] Chung I, Bhargava B, Mahoui M et al. Autonomous tran-
saction processing using data dependency in mobile environ-
ments. In Proc. the 9th IEEE Workshop on Future Trends
of Distributed Computing Systems, May 2003, pp.138-144.

[10] Lim J B, Hurson A R. Transaction processing in mobile, het-
erogeneous database systems. IEEE Transactions on Knowl-
edge and Data Engineering, 2002, 14(6): 1330-1346.

[11] Han J, Li Q. A transaction scheduling algorithm with tem-
poral constraints in real-time database systems. In Proc. the
4th International Conference on Computer and Information
Technology, Sept. 2004, pp.940-945.

[12] Fernandes Y M P, Perkusich A, Neto P F R et al. Imple-
mentation of transactions scheduling for real-time database
management. In Proc. IEEE International Conference on
Systems, Man and Cybernetics, Oct. 2004, pp.5136-5141.

[13] Chen H, Chin Y H, Tseng S. Scheduling value-based transac-
tions in distributed real-time database systems. In Proc. the
15th Int. Conf. Parallel and Distributed, 2001, pp.978-984.

[14] Neto P F R, Perkusich A, Perkusich M L B et al. Anal-
ysis of periodic transactions and semantic concurrency con-
trol for real-time databases using colored petri nets. In Proc.
IEEE Int. Conf. Systems Man and Cybernetics, Oct. 2001,
pp.2723-2728.

[15] Lam K, Kuo T, Lee T S H. Designing inter-class concurrency
control strategies for real-time database systems with mixed
transactions. In Proc. the 12th Euromicro Conference on
Real-Time Systems, Jan. 2000, pp.47-54.

[16] Lee V C S, Lam K, Hung S. Concurrency control for mixed
transactions in real-time databases. IEEE Transactions on
Computers, 2002, 51(7): 821-834.

[17] Han Y, Jiang C, Luo X. Priority based transaction scheduling
model and concurrency control in grid database. In Proc. the
7th International Conference on Grid and Cooperative Com-
puting, Oct. 2008, pp.235-241.

[18] Zhang Q, Sui S, Li J. Research and realization of transaction
concurrency control in grid database. In Proc. the 6th Int.
Conf. Grid and Cooperative Computing, Aug. 2007, pp.168-
172.

[19] Fujiyama K, Nakamura N, Hiraike R. Database transaction
management for high-availability cluster system. In Proc.
the 12th Pacific Rim International Symposium on Depend-
able Computing, Dec. 2006, pp.139-146.

[20] Chrysanthis P K, Ramamritham K. A formalism for extended
transaction model. In Proc. the 17th International Confer-
ence on Very Large Data Bases, Sept. 1991, pp.103-112.

[21] Chrysanthis P K, Ramamritham K. Synthesis of extended
transaction models using ACTA. ACM Transactions on
Database Systems, 1994, 19(3): 450-491.

[22] Schwarz K, Turker C, Saake G. Execution dependencies in
transaction closures. In Proc. the 3rd Int. Conf. Cooperative

Information Systems, Aug. 1998, pp.122-131.
[23] Schwarz K, Turker C, Saake G. Transitive dependencies in

transaction closures. In Proc. the Int. Database Engineering
and Applications Symposium, Jul. 1998, pp.34-43.

[24] Taniar D, Goel S. Concurrency control issues in grid database.
Future Generation Computer Systems, 2007, 23(1): 154-162.

[25] Xing Z, Gruenwald L, Phang K K. SODA: An algorithm to
guarantee correctness of concurrent transaction execution in
mobile p2p databases. In Proc. of the 19th Int. Conf.
Database and Expert Systems Application, Sept. 2008,
pp.337-341.

[26] Deng Y, Frankl P, Chays D. Testing database transactions
with agenda. In Proc. the 27th International Conference on
Software Engineering, May 2005, pp.78-87.

[27] Deng Y, Frankl P, Chen Z. Testing database transaction con-
currency. In Proc. the 18th IEEE International Conference
on Automated Software Engineering, Oct. 2003, pp.184-193.

[28] Xin T, Ray I. Detection for conflicts of dependencies in ad-
vanced transaction models. In Proc. the 9th Int. Database
Engineering and Application Symp., Jul. 2005, pp.17-26.

[29] Vijaykumar T N, Gopal S, Smith J E et al. Speculative ver-
sioning cache. IEEE Transactions on Parallel and Distributed
Systems, 2001, 12(12): 1305-1317.

[30] Gopal S, Vijaykumar T N, Smith J E et al. Speculative ver-
sioning cache. In Proc. the 4th Int. Symp. High-Performance
Computer Architecture, Feb. 1998, pp.195-205.

[31] Hammond L, Hubbert B A, Siu M et al. The Stanford hydra
CMP. IEEE Micro, 2000, 20(2): 71-84.

[32] Christopher B C, Ailamaki A, Steffan J G et al. Incrementally
parallelizing database transactions with thread-level specula-
tion. ACM Trans. Computer Systems, 2008, 26(1), Article
No.2.

[33] Sih G C, Lee E A. A compile-time scheduling heuristic for
interconnection-constrained heterogeneous processor architec-
tures. Trans. Parallel and Distributed Systems, 1993, 4(2):
75-87.

Lei Zhao received the Ph.D. de-

gree in computer science in 2006 from
Soochow University, Suzhou, China.
He has been a faculty member of
the School of Computer Science and
Technology of Soochow University
since 1998. He is now an associate
professor at the Department of Net-

work Engineering, Soochow Univer-
sity. His research interests include

distributed data processing, data mining, parallel and dis-
tributed computing.

Ji-Wen Yang received the B.S.
degree in mathematics in 1984 from
Nanjing Normal University, China.
He has been a faculty member of
the School of Computer Science and

Technology of Soochow University,
China, since 1984. He is now a pro-
fessor at the Department of Informa-
tion Management. His research in-
terests include distributed data pro-

cessing, management information system, parallel and dis-

tributed computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

