Accurate and Efficient Runtime Detection of Atomicity Errors in
Concurrent Programs*

Ligiang Wang Scott D. Stoller
Computer Science Dept. Computer Science Dept.
State University of New York at Stony Brook State University of New York at Stony Brook
ligiang@cs.sunysb.edu stoller@cs.sunysb.edu
Abstract may behave differently from one run to another, because threads

are scheduled indeterminately. For most systems, the number of
possible schedules is enormous, and testing the system’s behav-
ior for each possible schedule is infeasible. Specialized techniques
are needed to ensure that multi-threaded programs do not contain

Atomicity is an important correctness condition for concurrent sys-
tems. Informally, atomicity is the property that every concurrent
execution of a set of transactions is equivalent to some serial exe-
cution of the same transactions. In multi-threaded programs, exe-
cutions of procedures (or methods) can be regarded as transactionsEoncurrency-related errors. .

Correctness in the presence of concurrency often requires atomic- 1 nreads often communicate by sharing data. Concurrent ac-

ity of these transactions. Tools that automatically detect atomicity S€SS€s to shareéj dztla SkhOUI% t()je tproperly SNy nchronlzectj. tTWO %O(T'
violations can uncover subtle errors that are hard to find with tradi- MO"N ©rfors are deadlocks and aata races. Numerous static and dy-

tional debugging and testing techniques namic (runtime) analysis techniques are designed to ensure that
This paper presents new algorithms for runtime (dynamic) concurrent programs are free of deadlocks and data races. But this

detection of violations of conflict-atomicity and view-atomicity, does not ensure the absence of all synchronization errors. Consider

which are analogous to conflict-serializability and view-serializabilitythe implementation ofector in Sun JDK 1.4.2, part of which ap-

in database systems. In these algorithms, the recorded events ar@2rs in Figure 1. Consider the following execution of the program
formed into a graph with edges representing the synchronization ?t the bo:Lom of Itzlgure %Eh]:eidJ C(znsgructs”_a nfr\l’v vecto;:‘z
within each transaction and possible interactions between transac-tm”f1 another Ve; ?“E)l fW' " e emetn S . y ca |ngf ; € construc-
tions. We give conditions on the graph that imply conflict-atomicity ©F for Vector. But before the constructor completéiread_1

and view-atomicity. Experiments show that these new algorithms yields execution tahread_2 immediately after statement 1 in the
are more efficient in most experiments and are more accurate than! ctoT constructor.thread-2 removes all elements of1, and

- - : - - then thread_1 resumes execution at statement 2. The incorrect
revious algorithms with comparable asymptotic complexity. ; -
P g P ymp P Y outcome is thatwv2 hask elements, all of which araull, be-

Categories and Subject DescriptorsD.2.5 [Software Engineer- cause theslementData array ofv2 is allocated according to the

ing]: Testing and Debugging; D.2.&pftware EngineerirjgSoft- previous size ofr1. A more subtle error occurs fhread_2 ex-
ware/Program Verification; D.1.3Pfogramming Techniqugs ecutesv1.add (o) instead ofvl.removeAllElements (). Then,
Concurrent Programming if k& < 10, the length ofelementData allocated inv2 is smaller

than the new size of1. Although a larger array is allocated in
) o toArray to store the elements oft, the array is not returned to
Keywords concurrent programming, Java, atomicity, data race, the constructor ofr2, thus v2 will incorrectly be full of null

General Terms Reliability, Algorithms

serializability elements. No exception is thrown in these scenarios. Methods
) size(), toArray(Object[]), removeAllElements() and
1. Introduction add (Object) are synchronized, hence there is no data race in

these examples.

The incorrect behavior reflects a higher-level synchronization
error, namely, lack of atomicity. Atomicity is well known in the
context of transaction processing, where it is sometimes csdlgd
alizability. The methods of concurrent programs are often intended
to be atomic. A set of methods &omicif concurrent invocations

* This work was supported in part by NSF under Grant CCR-0205376 and ©f the methods are always equivalent to performing the invoca-
CNS-0509230 and ONR under Grants N00014-02-1-0363 and N00014-04- tions serially (i.e., without interleaving) in some order. The first
1-0722. scenario of the example in Figure 1 contains two invocations, one
of Vector(Collection) and one ofremoveAllElements(),
which obviously do not have an equivalent serial execution. There-
fore, these methods violate atomicity. Similarly, the second sce-
Permission to make digital or hard copies of all or part of this work for personal or N@rio also shows a violation of atomicity.
classroom use is granted without fee provided that copies are not made or distributed ~ Flanagan and Qadeer developed a type system for atomicity [8].
for profit or commercial advantage and that copies bear this notice and the full citation |t can ensure that methods are atomic in all possible executions.
on the first page. To copy otherwise, to republish, to post on servers or to redistribute However, type inference for the type system is NP-complete [6], so

to lists, requires prior specific permission and/or a fee. the t tem mav r ire manual annotation of th roaram
PPOPP'06 March 29-31, 2006, New York, New York, USA. € type System may require manual annotation or the program.

Copyright(® 2006 ACM 1-59593-189-9/06/0003. . . $5.00.

Multi-threading has become a common programming technique.
Not only operating systems but also many applications are multi-
threaded. However, developing multi-threaded programs is diffi-
cult. Concurrency introduces the possibility of errors that do not ex-
ist in sequential programs. Furthermore, multi-threaded programs

public class Vector extends ... implements ... {
public Vector(Collection c¢) {
// c is v1, elementCount is the field of v2.
elementCount c.size();
elementData = new Object[(int)Math.min(
(elementCount*110L) /100, Integer .MAX_VALUE)];
3 c.toArray(elementData) ;
}
public synchronized int size() { return elementCount; }
public synchronized Object[] toArray(Object al 1) {
if (a.length < elementCount) {
// i.e. v2.length < vl.elementCount
// this branch will be taken if vl.add is executed.
a = (Object[])java.lang.reflect.Array.newInstance(
a.getClass() .getComponentType(), elementCount);

1
2

}

System.arraycopy(elementData, O, a, 0, elementCount);

if (a.length > elementCount)

a[elementCount] null;

return a;
}
public synchronized void removeAllElements() { ... }
public synchronized boolean add(Object o) { ... }

thread_2
vl.removeAllElements();
// vi.add(o);

thread_1
Vector v2 = new Vector(vl);

Figure 1. An example showing that the constructor of

java.util.Vector in Sun JDK 1.4.2 violates atomicity.

In [21, 22], we proposed the reduction-based and block-based
algorithms for runtime atomicity checking. Runtime analysis is less

This commit-node algorithms can check two kinds of atomic-
ity, conflict-atomicity and view-atomicity, which are analogous to
conflict-serializability and view-serializability in database systems.

Experiments show that these new algorithms are more efficient
in most experiments and are more accurate than previous algo-
rithms with comparable asymptotic complexity.

2. Background

This paper focuses on analyzing Java programs, but the techniques
can be applied to other languages.

Event. Informally, aneventis one step in an execution of a pro-
gram. This paper considers the following operations on events: read
and write escaped variables; acquire and release locks; start and
join threads; start and exit invocations of methods; and the barrier
synchronization operation discussed in Section 7.4. For example,
synchronized(l) {body} in Java indicates two events (in addition

to the events performed by the body): acquiring lécit the en-

try point and releasing it at the exit point. Two distinct accesses
(even using the same operation) to a variable are different events.
Let held(e) denote the locks held by the thread executing event
whene is executed.

Transaction Boundaries. Executions of the following code frag-
ments are considered as transactions by default in this paper: non-
private methods, synchronized private methods, and synchronized
blocks inside non-synchronized private methods; as exceptions,
the executions of theain() method in which the program starts
and the executions afun() methods of classes that implement
Runnable are not considered as transactions, because these execu-
tions represent the entire executions of threads and are often not ex-
pected to be atomic. Moreover, start, join and barrier operations are
treated as unit boundaridse., they separate the preceding events

powerful than static analysis, because it cannot ensure correctnesgng following events into different units, and are not contained in
of all unexplored behaviors of the system, but may be more precise any unit. We adopt this heuristic because execution fragments con-
(i.e, give fewer false alarms) for the explored behaviors. Further- tajning these operations are typically not atomic and hence are not
more, runtime analysis does not require manual annotations of theexpected to be transactions. The events not in transactions form
code that are often required by type systems; this is a significant non-transactional units. All events in one non-transactional unit
practical advantage.)) have the same thread period id (introduced in Section 7.3). Note
_This paper presents novel algorithms, called commit-node algo- that for nested transactions, we check atomicity of only the outer-
rithms, for runtime checking of atomicity. The algorithms are off- most transactions, since they contain the inner transactions.
line,i.e., when the program terminates, they are applied to recorded))
information about the execution. The execution is partitioned into Trace. A tracetr is a sequence of events. Givgh, E), whereT’
units. A unit is a sequence of events executed by a single thread. i a set of transactions, aridis a set of non-transactional units,
A transactionis a unit expected to behave atomically. For exam- trace of(T’, E) is an interleaving of events from unitsThU E that
ple, the sequence of events executed during a method invocationiS consistent with the original order of events from each thread and
is often considered as a transaction. Our algorithms check whetherWith the synchronization evente.g, no lock is held by multiple
every tracei(e, interleaving) of these units is equivalent to a se- threads at the same time). A trace(f, £) must contain all events
rial trace, where all events in each transaction of these units arefrom units in7" U E unless the trace ends in deadlock. This paper
consecutive. If so, we say that the transactionsaswenic if not, a assumes thaf/ contains no synchronization; this assumption is
potential atomicity violation is reported. satisfied if synchronized blocks are considered to be transactions.
The monitor stores the events of each unit (including transac-
tions) in a tree structure, called @etcess treeEach node in an
access tree denotes an access to an escaped varrmapéevariable
accessible to multiple threads), or a synchronization operagign (
lock acquire and release). After the program terminates, the rela-
tionships between nodes in different trees are analyzedinged
edgesare added between them to generaferast A node con-
nected with inter-edges are calledmmunication nodéA commu- evente”
nication node is called @ommit nodef none of its descendants are it fina| writeif it is the last write toz in its unit; a write event
communication nodes. In a_forest, if the access tree fc_nr e_ach tra_ns-e? is called arace-final writein a trace if it is the last write te in
action has only one commit node, then the set of units is atomic. the trace
By considering the synchronization, the commit-node algorithms '
do not merely look for violations of atomicity in the observed exe- Conflict-Equivalence. Two tracestr, and tro for (T, E) are
cution, but also attempt to determine whether the non-determinism conflict-equivalentff (i) they contain the same events, anij (
of thread scheduling could allow violations in other executions. for each pair of conflicting events, the two events appear in the

Initial Read and Final Write. Lete], ande;’ denote a read event
and a write event to variable, respectively.cy is the write-
predecessonf e, in a tracetr if ey is the last write tox that
precedes), in tr. e, is called aunit-initial read if e, does not
have any write-predecessor in its own unit in all traeéss called
atrace-initial readin tracetr if e, is not preceded by a write to

x in tr. Its write-predecessor is defined to be an imaginary write

init at the beginning of the trace. A write everit is called

same order in both traces. This corresponds to conflict equivalence R(z) G

in transaction processing in database systems [3]. W(;I;)

View-Equivalence. Two tracestr, andtr, for (T, E) areview- gfqgl) @ @ W
equivalentff (i) they contain the same events) each read event WZU? V)

has the same write-predecessor in both traces, iafi@géch vari- R(y) @ @) @
able has the same trace-final write event in both traces. This corre- Rel(l)

sponds to view equivalence in transaction processing [3]. It is easy
to show that conflict-equivalence implies view-equivalence [3]. But Figure 2. The access tree for a unit All events are shown on the
the converse does not hold. left; time increases from top to bottom.

Conflict-Serializability and View-Serializability. Atrace of(T', E)

is serial if the events of each transaction @f form a contigu-

ous subsequence of the trace. Note that the events in each nonFOR each read evenf,

transactional unit o2 are not required to be contiguous. A trace FOR each write event? in a concurrent unit

of (T, E) is conflict-serializabléf it is conflict-equivalent to some addinterEdge(;, e2);

serial trace of(T, E). A trace of (T, E) is view-serializableif

it is view-equivalent to some serial trace ¢, F). Conflict- FOR each write event,

serializability of a tracer for (T, E') can be decided in polynomial FOR each write evem;.”/ in a concurrent unit
time [3]. Letg be theserialization grapHor ¢r, which is a directed addinterEdge(”, e;u/);

graph whose nodes are the unitsiofy £, and which contains an
edge from node; to nodet; if i # j and some event of; pre-
cedes a conflicting event of in ¢r. tr is conflict-serializable iffy
does not contain any cycle containing two or more transactions. In
contrast, checking view serializability is NP-complete [16].

/* add appropriate inter-edges between nodes of the units
containinge ande’. e ande’ access the same variable.*/
PROCEDURE addinterEdge(e’){

IF (held(e) N held(e") = 0) {

Conflict-Atomicity and View-Atomicity. (T, E) is conflict-atomic add an inter-edge between the access node for

if every trace of(T, E) is conflict-serializable(T, E') is view- and the access node fef;

atomicif every trace of(T, E) is view-serializable. It is easy to } ELSE{

show that conflict-atomicity implies view-atomicity, but the con- [* there must be a common lock keld(e) andheld(e’),
verse does not hold. As an example, consider, t2}, #), where so the next statement finds a suitable nod#

t1 is Wi(xz) Wa(z), andts is W(x). Whent,.W (z) happens starting at the root node of the unit that containgo
betweent,.Wi(x) and ¢1.W2(x), the trace does not have any down the tree along the path ¢ountil reaching a node
conflict-equivalent serial trace, hen¢fi1,t2}, @) is not conflict- n corresponding to a synchronization block for a léck
atomic; but the trace is view-equivalent to a serial tracél (x) in held(e');

t1.Wi(z) t1.Wa(z), and all the other possible traces are serial, IF ((e is a write)V (e is read and not preceded by a write
hence({t1, t2}, 0) is view-atomic. to the same variable in the subtree rooted)at{

/* otherwise,e is a read and there is a write to the
same variable in the subtree rootedratsoe cannot
read the write ok’ because of lock*/
n' = the outermost ancestor &f corresponding to
a synchronization block for lock
add an inter-edge betweerandn’;

Potential for Deadlock. (T, E) haspotential for deadlock some

trace of (T, E) ends in deadlock. A trace that ends in deadlock

with some thread in the middle of a transaction is not equivalent

to any serial trace. Therefore, this paper assumes(fiat’) has

no potential for deadlock. This can be checked using the goodlock
algorithm [10] or an extension of it [2]. M

3. Access Forest and Commit-Node Reduction Figure 3. The algorithm to add inter-edges for an arbitrary escaped

31 Access Tree variablez in the conflict-forest.

During execution of the instrumented program, the monitor records

all events for each unit into aaccess treeln such a tree, each nodesthey denote a potential interactions between the correspond-
leaf node is called amccess nodand denotes an access to an ing units. Checking conflict-atomicity and view-atomicity require
escaped variable. Each non-leaf node except for the root is calleddifferent inter-edges. The access forest used for checking conflict-
a synchronization nodand denotes a synchronization block. The atomicity is callecconflict-forest the access forest used for check-
root node denotes the whole unit. The local orders of events within ing view-atomicity is callediiew-forest

a unit are denoted by the order of branches in the tree. An example]

appears in Figure 2, whei(v) andW (v) (v is x or y) denote a ~ 3.2.1 Conflict-Forest

read event and a write event tg respectivelyacq(l) andrel(l) In the conflict-forest, there are two kinds of relationships denoted
denote an acquire and a release of lockespectively. Since each py inter-edges between two concurrent units. The first kind of
node in an access tree denotes a set of events, a node and the set pd|ationship is between a node associated with a write in one of
events it denotes are used interchangeably in our description. the units and a concurrent node associated with a read to the
same variable in the other unit, if the read can read the written
value by the write in some trace. The second kind of relationship
An access forestonsists of a set of access trees and edges called connects two concurrent nodes associated with two writes to the
inter-edgesbetween access trees from concurrent units. Section same variable in the two.

7.4 describes a happen-before analysis to determine whether two We say “associated with” above because the inter-edge is not
units are concurrent. The edges inside each tree are dadled necessarily added directly between the access nodes representing
edgesNodes with an incident inter-edge are cal@immunication those two accesses. Instead, for each pair of accesses satisfying

3.2 Access Forest

o 6 FOR each read evenf,
S(ez) =0

FOR each write evenrt; in a concurrent unit
CAcg()Rel(ID------------ CAcq(D)Rel (D addinterEdge(, e);

@ @ FOR each unit-final write everrt;

AN N @)/ ,/ FOR each unit-final write evemf;/ in a concurrent unit
S . , - addinterEdge(?, e;”/);
w /* Note thate ande’ access the same variable. */
Figure 4. A conflict-forest. The inter-edges are shown as dotted PROCEDURE addinterEdge(e’){
lines. IF (held(e) N held(e") = D){
add an inter-edge between the access node &od
the access node fef;
} ELSE{
starting at the root node of the unit that containgo
down the tree along the path ¢éountil reaching a node
n corresponding to a synchronization block for a léck
in held(e');
IF ((e is awrite)V (e is read and not preceded by a write
to the same variable in the subtree rooted@t{
n' = the outermost ancestor of corresponding to

the above conditions, if there is at least one lock that is held when
both operations are performed, then we find the outermost of those
common locks, and add an inter-edge between the corresponding
synchronization nodes, because this is the granularity at which the
parts of the units containing those accesses can be interleaved; if no
such lock exists, then an inter-edge is added directly between the
access nodes representing those two accesses. By assumption, the o
set of units does not have potential for deadlock, so the notion of a synchronization block for lock
outermost common lock for two accesses is well defined; if there add an mter-gdge betweerandn’;
is potential for deadlock, the threads that execute the two accesses .} ELSE return;
could acquire two locks in different orders without first acquiring a .
common lock. IF (eisread){ . .
Intuitively, (T, E) is conflict-atomic, if in all traces ofT’, E), ew = the preceding write to the same variable and
the events of each transaction®tan be repeatedly swapped with in the same unit as, if any, otherwise null;
adjacent events without affecting the rest of the trace, until the trace IF (e, # null) .
is serial,i.e., the events of each transaction are contiguous. If two Sle) = S(?,) Y {ew):
nodes are connected by an inter-edge, they cannot be swapped. FOR eache™in S(e)
Thus, a node with incident inter-edges is like a non-mover in addinterEdge(,c");
Lipton’s reduction [15, 5, 21, 22]. S(e)=S(e)u{e'};
Figure 3 shows the algorithm to add inter-edges. Figure 4 shows H
the conflict forest for a set of three units. Note that an inter-edge . ; P :
can denote multiple relationships of the kinds described above. For\'j;%gglsg'ﬂ I\hﬁ}:lg;wa?r;c;?dd inter-edges for an arbitrary escaped
example, the inter-edge betwegnandts in Figure 4 denotes two '
relationships: one is that.R(x) can read the value written by
t1.W (z), and the other is between. W (z) andts. W (x).
Besides checking atomicity, the conflict-forest can also be used
for detecting data races, since each access node with incident inter-
edges indicates a data race.

3.2.2 View-Forest

The view-forest has three kinds of relationships between two con-
current unitsu; andus denoted by inter-edges. (1) The first kind
of relationship is between a node®f associated with a write and
a node ofus associated with a read, if the read can read the written
value by the write in some trace. (2) The second kind of relation- Figure 6. A view-forest. The inter-edges are shown as dotted lines.
ship connects two nodes associated with two writes to the same
variable, respectively, if both writes can be the write-predecessor
of the same read in some traces. (3) The third kind of relationship
connects two nodes associated with unit-final writes to the same
variable.

The algorithm of adding inter-edges for view-forest is shown in . .
Figure 5. £I]t is similar to thgalgorithn% in Figure 3. When addingan 3-3 Commit-Node Reduction
inter-edge between a read and its potential write-predecessor, welLet n > n’ denote that a communication nodecontains e, is
also add inter-edges between its all potential write-predecessors.an ancestor of) another communication nadeA communication
S(e) caches all potential write-predecessors for the read far. node is called a&ommit nodef it is not contained in any other
Besides connecting this kind of writes, we also add inter-edges be-communication nodes. For example, in Figure 6, the communica-
tween the unit-final writes to the same variables, instead of adding tion node “Acq(l)Rel(l)” in ¢1 contains the communication node
inter-edges between every two writes to the same variables in con-“W (x)” which is a commit node since it does not contain any other
flict forest. communication nodes.

Figure 6 shows the view forest after applying the algorithm to
the same three units in Figure 4.

Intuitively, for a set of nodes; > ... > ni > n., the commit
noden. denotes a non-movet,(1 < ¢ < k) denotes a larger non-
mover which contains... All events ofn; (which also contains
all events ofns,...,n.) can be moved to the commit node position
through swapping without affecting the other units in all traces.
Thus, a transaction with at most one commit node is atomic, but a
transaction with two or more commit nodes might be non-atomic.
This is described formally in Section 4.

4. The Commit-Node Algorithms for Checking
Atomicity

This section presents algorithms for checking conflict-atomicity
and view-atomicity.

4.1 Conflict-Atomicity

Theorem 4.1. Suppos€T, E) has no potential for deadlock, and
E does not contain any synchronization operations. If each trans-
action ofT" has at most one commit node in the conflict-forest, then
(T, E) is conflict-atomic.

Proof. To prove that(T, E) is conflict-atomic, we need to show
that there is a conflict-equivalent serial trai@é for an arbitrary
tracetr of (T, E). The general idea is to find a location of some
event inside the commit node for each transaction, such that when
all events of each transaction are moved to that location, the result-
ing trace is conflict-equivalent to the original trace. That location is
called acommit point

For a commit node:, if n is an access node, its commit point
is the location of the access eventtat if n is a synchronization
node, its commit point is any arbitrary location inside the commit
node attr. According to the assumption in the theorem, each com-
munication node contains only one commit nogé is constructed
from t¢r as follows: all events of the communication nodes that con-
tain the commit node are moved to the commit point; all events of

Do d

Figure 7. {{t1,t2,t3}, @) is both conflict-atomic and view-atomic,
butt¢; contains two commit nodes.

“=": Supposel’ = {t,t'}. We show thatT, ()} is not conflict-
atomic if at least one transaction ifi has two or more commit
nodes. Without loss of generality, suppos$es at least two commit
nodes. Letn; andn, denote two commit nodes df ¢’ has at
least one commit node. There must be a pair of conflicting events,
denotede; ande’, with e; € n; andej € n}, wheren} is a
communication node in', and there is an inter-edge between
andn’. Similarly, there must be another pair of conflicting events,
denotede; andeb, with ex € ns andes € nh, wherens is a
communication node i, and there is an inter-edge between
andns.

If one of n} andn’ contains the other or ik, = n), we can
show that there is a trade wheren’ andn’ happen between;
andnz. Otherwise, we can show that there is a tracevheren
andn’ happen between; andnz, or n; andns happen between
nj andnb. Hence,tr does not have any conflict-equivalent serial
trace. O

For example, in Figure 4({{t1,t2},0) is not conflict-atomic
according to Theorem 4.2 becausecontains two commit nodes
when ignoringts. Similarly, ({t2,t3},0) is not conflict-atomic,
either.

The following theorem gives a more sophisticated (compared
to Theorem 4.1) condition to decide conflict-atomicity (for any
number of transactions). This theorem (unlike Theorem 4.1) is
accurate enough to show that the set of transactions in Figure 7 is

each transaction not in any communication node are also moved toconflict-atomic. Note that, when considering cycles in the conflict-

the commit point of the transaction; all other events are not moved.
tr’ is serial because every transaction has only one commit node.
In the following, we prove thatr’ is a legal trace and is conflict-
equivalent tair.

First, we observe that’ is consistent with the synchronization
events. This holds becaus€ is serial, and® does not contain any
synchronization. Ser’ is a trace foT, E).

Next, we show thatr’ is conflict-equivalent tar. Consider
conflicting eventse; and ez, wheree; andes occur in unitsu;
andus in T'U E, respectively. Without loss of generality, suppose
e1 precedeg; in tr. Because; andes conflict, w; must contain
a communication node; containinge;, andus must contain a
communication nodew, containingez, and ny; precedesnz in
tr. After moving e; andez to the commit points ofy; and s,
respectively,e; andex appear at the same order #n and ¢r’.
Thereforer is conflict-equivalent tar’. O

The condition in Theorem 4.1 for conflict-atomicity is sufficient
but not necessary. In Figure 7, the set of transactions is conflict-
atomic, even thougl; contains multiple commit nodes. The fol-
lowing theorem shows that the condition in Theorem 4.1 is an exact
test for conflict-atomicity of two transactions.

Theorem 4.2. Suppos€T,) has no potential for deadlock, and
T contains only two transactiong$T’,) is conflict-atomic iff each
transaction inT" has at most one commit node in the conflict-forest.

Proof. A proof sketch appears here; more details are in [23].
“<": This direction follows from Theorem 4.1.

forest, tree edges are treated as undirected edges.

Theorem 4.3. Suppos€T, E) has no potential for deadlock, and

E does not contain any synchronization operations. If all pairs
(if they exist) of communication nodes from the same transaction
that do not contain each other are not involved in any cycle of the
conflict-forest, theT’, E) is conflict-atomic.

Proof. We prove the contrapositive. Suppdde F) is not conflict-
atomic. Thus, there is a trace for (T',) that does not have any
conflict-equivalent serial trace, and there is a directed cyitighe
serialization graph fotr. Suppose that consists of(t1, t2, ..., tn)

in order, wheret1, tz, ...,t, € T. c implies that there must be an
evente; of ¢; that happens before an eventof t2, an event

of t5 that happens before an event of ¢, ..., and an event,,

of t,, that happens befor€, of 1 in tr, wheree; andes access
the same variables;, andes access the same variable,, ahd
ande} access the same variable. This implies that there is a cycle
¢ in the conflict-forest. Ife; ande; of t; for i = 1..n are in the
same communication node, then betrande; happen before; 1
ande;,, in tr, fori = 1..n — 1. This contradicts the assumption
thate;, happens before;. Hence, there must be a transaction in
{t1,t2, ..., tn } that has at least two communication nodeg/ahat

do not contain each other. O

The commit-node algorithnfor checking conflict-atomicity
works as follows. (1) Instrument the source code of program to be
tested as discussed in Section 7.1. (2) Execute the instrumented
program, and dynamically construct the conflict-trees. (3) Add
inter-edges after the execution terminates. (4) Check the conditions

of Theorem 4.1; if they are satisfied, report that conflict-atomicity kinds of inter-edge. (1) The first kind of inter-edge denotes the
holds; otherwise, check the conditions of Theorem 4.3, then report relationship between a read in a transactiort and its potential
conflict-atomicity holds or not according to whether the conditions write-predecessoe™ in the other transaction. If the read has a
are satisfied. preceding writee,.. in its own transaction, then a violation of
Although this algorithm may report false alarms since the con- view-atomicity is possible (becaus¥ can occur betweett,,.. and
ditions in Theorem 4.1 and Theorem 4.3 are sufficient but not nec- e" by the definition of potential write-predecessor), so the desired
essary. But we believe that this happens very rarely. In the experi- implication holds. If the read does not have any preceding write
ments of Section 8, all the warnings for non-conflict-atomicity re- in its own transaction, the read and its potential write-predecessor
ported by the algorithm are confirmed to be true by Theorem 4.2. in the other transaction act like a pair of conflicting events, in the
Let|T|, n¢, andn. denote the number of transactions, the max- sense that their order in a trace determines that the two transactions
imum number of events in a transaction, and the number of eventsmust follow the order in all serial traces view-equivalent to the
in the whole execution (including non-transactional units), respec- trace (this is true with two transactions, although it is not true with
tively. Theorem 4.3 requires checking, for each pair of communica- more transactions). This is the same property of inter-edges in the
tion nodes of the same transaction, whether they are involved in aconflict-forest that is used in the proof of Theorem 4.2. (2) The
cycle, i.e., whether each of them is reachable from the other. Theresecond kind of inter-edge denotes the relationship between two
areO(|T| x n3) such pairs, and checking whether two nodes are writes that are potential write-predecessor for the same read; this

reachable from each other takes tiMé»2), so the worst-case time
complexity of the algorithm i©)(|T| x ni x n2).

4.2 View-Atomicity

Theorem 4.4. Suppos€T, E) has no potential for deadlock, and
E does not contain any synchronization operations. If each trans-
action of 7" has at most one commit node in the view-forest, then
(T, E) is view-atomic.

Proof. A proof sketch appears here; more details are in [23]. For
any tracetr of (T, E), we prove that it has a view-equivalent
serial tracetr’, which is constructed in the same way as in the
proof of Theorem 4.1. The definition for the commit point of

each transaction is the same as there. By the same reasoning a9 that proof.

in that proof,tr’ is serial and consistent with the synchronization
operations, sér’ is a trace foT, E). Next we prove in two steps
thattr’ is view-equivalent tar. (1) We first prove that each read
has the same write-predecessotrimndtr’. The main observation

is: if two communication nodes are connected by an inter-edge,
then the sets of nodes contained in them cannot be interleaved
with each other in any trace. Because there are inter-edges betwee
communication nodes associated with potential write-predecessor

for the same read", if one communication node® contains the
actual write-predecessor of the reddn ¢, all the communication
nodes associated with other potential write-predecessorg’for
must happen inr before the events representedidy or after the
commit node associated wif. Hence, after moving all events
in each transaction to its commit nod€, has the same write-
predecessor itr’ andtr. (2) A similar proof shows thatr and
tr’ have the same trace-final writes. O

For example, in Figure 6{¢1,t2},0) is view-atomic because
each oft; andt¢s contains only one commit node in the view-
forest. Note that{{¢1, 2}, 0) is not conflict-atomic since; has
two commit nodes in the conflict-forest.

The condition in Theorem 4.4 for view-atomicity is sufficient
but not necessary. In the example of Figure{{#,, t2,t3}, 0) is
view-atomic but; contains multiple commit nodes. The following

indicates a violation of view-atomicity (because either there is a
write to some variable: in ¢’ that can occur between a write to

z and a read te in ¢, or there is a read ta in ¢’ that can occur
between two writes ta in t), so the desired implication holds. (3)
The third kind of inter-edge denotes the relationship between unit-
final writes of each transaction. With two transactions, these final
writes also act like conflicting events, in the sense described above,
so these edges have the same property as inter-edges in the conflict-
forest.

Thus, depending on the kind of edges present, either we im-
mediately conclude that the desired implication holds, or all of the
edges have the property of inter-edges in the conflict-forest used in
the proof of &) in Theorem 4.2, and the rest of this proof is similar
O

For example, in Figure 6/{t2,t3},0) is not view-atomic be-
causets contains two commit nodes in the view-forest fgerand
t3. The following theorem gives a more sophisticated condition to
check view-atomicity.

Theorem 4.6. SupposeT’, E) has no potential for deadlock, and

'E does not contain any synchronization operations. If all pairs
Sof communication nodes from the same transaction that do not

contain each other are not involved in any cycle of the view-forest,
then(T, E) is view-atomic.

Proof. The proof is similar to the proof of Theorem 4.3. O

The commit-node algorithm for checking view-atomicity is
similar to the algorithm for checking conflict-atomicity proposed in
Section 4.1, except that the view-forest is constructed and checked
based on Theorems 4.4 and 4.6. Similarly as before, the worst-case
time complexity of the algorithm i©(|T| x n? x n?).

5. The Polynomial Equivalence of Conflict- and
View-Atomicity
The following theorem shows that the problems of checking

theorem shows that the condition in Theorem 4.4 is an exact test conflict-atomicity and checking view-atomicity are polynomially

for view-atomicity of two transactions.

Theorem 4.5. Supposel’ has no potential for deadlock, arifl
contains only two transactionéT’, 0) is view-atomic iff each trans-
action inT has at most one commit node in the view-forest.

Proof. “<":
rem 4.4,
“=": We prove the contrapositive,e,, if at least one of the
transactions has at least two commit nodes, {{1&t) is not view-
atomic. According to the definition of view-forest, there are three

This implication is justified directly based on Theo-

reducible to each other. This result is somewhat surprising, consid-
ering that checking conflict serializability is in P [3] and checking
view serializability is NP-complete [16], so they are not polyno-
mially reducible unless P=NP. To simply the problem, we consider
only transactionse., assumeZ = {J; we expect that the result also
holds without this restriction.

Theorem 5.1. The problems of checking conflict-atomicity and
checking view-atomicity are polynomially reducible to each other
when restricted to problem instances where the Bebf non-
transactional units is empty.

Proof. A proof sketch appears here; more details are in [23].
1. We first prove that the problem of checking conflict-atomicity
is polynomially reducible to the problem of checking view-atomicity.

Proof. According to the algorithm in Figure 3, the block denoted
by AcqA* Rel does not contain any communication node. All syn-
chronization blocks denoted b&*N7L* must be nested. Thus,

We transformi” as follows. Letl be a lock not used iff". For each
variablez, each read’, is replaced by e%, e/*; and each write
e is replaced by e e¥ e;°!, wheree;“? ande;*' represent an
acquire and a release hfrespectively. Lefl” denote the resulting
set of transactions.

We prove thafl” is conflict-atomic iffT” is view-atomic. ‘="
Every tracetr’ of T’ corresponds to some trateof T'. Every trace
tr of T has a conflict-equivalent serial trate,. We transformr
andtrs in the same manner that is used to transf@ryielding
tracestr’ andtr!, of T', respectively. We show in [23] that’
is view-equivalent to the serial trade’,. “<": For each trace
tr’ of T' and its view-equivalent serial trace.,, we remove the
operations inserted when constructifigifom T". This yields traces
tr andtrs of T. We show in [23] thatr is conflict-equivalent to
trs.

2. We can check view-atomicity of pairs of transactiong’im

polynomial time based on Theorem 4.5. In the following we prove
that checking view-atomicity can be reduced to checking conflict-

atomicity when all pairs of transactions ifi are view-atomic.
Because all pairs of transactions Thare view-atomic, all non-

unit-final writes and non-unit-initial reads do not interact with other

transactions, so we remove them. &t denote the resulting set
of transactions. We prove thdt is view-atomic iff T is conflict-
atomic. “=": We prove the contrapositive by constructing a non-
view-serializable trace df’ from a non-conflict-serializable trace
of T. “<=": For each tracer of T', there is a corresponding trace
try of Ty which has a conflict-equivalent serial traleg. A serial
tracetr® of T' that is view-equivalent tor can be constructed from
tr} by restoring the removed write and reads. O

6. Comparison with Other Atomicity Checking
Algorithms
6.1 Reduction-Based Algorithms

Reduction-based algorithms for checking conflict-atomicity [8, 5,

for any two communication nodes inthat are also synchroniza-
tion nodes, one is a descendant of the otheantains at most one
non-mover, and it occurs in the inner-most synchronization block.
Thus, there is at most one access nodetimat is also a commu-
nication node, and that communication node is a descendant of all
other communication nodesinThus, for any two communication
nodes of transaction, one is a descendant of the other. Hence,
has at most one commit node. O

Now we give an example that is conflict-atomic according to
Theorem 4.1 but is wrongly reported to be non-atomic by the
reduction theorem. Lel’ = {t1,t2}, where¢, consists ofel!
followed byey't, andts consists of only’ 2. ¢1 has the formV N
which does not matchR + AcqgA*Rel)*N*(L + AcqA* Rel)*,
but¢; and¢, each have only one commit node.

The commit-node algorithm of Section 4.1 contains the benefits
of all the improvements to the reduction-based algorithm described
in [22], which include the improvements proposed in [5]. For ex-
ample, for re-entrant locks, thread-local locks, and protected locks,
there is no inter-edge connected to the corresponding synchroniza-
tion nodes.

Therefore, the reduction-based algorithm is less accurate than
the commit-node algorithm of Section 4.1.

6.2 The Block-Based Algorithm

The block-based algorithm [22] checks view-atomicity by consid-
ering pairs oblocksfrom different transactions. Intuitively, a block
captures the information about two accesses and the associated syn-
chronization that is relevant to atomicity checking. The block-based
algorithm constructs blocks from an observed trace and then com-
pares each block with all blocks in other concurrent transactions.
If two blocks are found to match certain unserializable patterns,
the transactions containing them are not atomic. The unserializable
patterns are defined based on view serializability; for example, one
unserializable pattern is when a write of one transaction can happen

22] classify events based on commutativity and apply Lipton’s between two continuous reads of another concurrent transaction.

reduction theorem [15]. We briefly describe the reduction-based

algorithm in [22], which is more accurate than the others.
An event is aright-mover(R) if, whenever it appears immedi-

The commit-node algorithm and the block-based algorithm are
both exact tests for view-atomicity for two transactions, but the for-
mer runs much faster in most programs in the experiments in Sec-

ately before an event of a different thread, the two events can betion 8. For three or more transactions, the commit-node algorithm is
swappedi(e., they can be executed in the opposite order without an efficient conservative test that is very accurate in practice based

blocking) without changing the resulting stateleft-mover(L) is

on the experiments in Section 8; the block-based algorithm can pro-

defined similarly. Events not known to be left or right movers are vide an exact test but is significantly more expensive.

non-movergN). Race-free events are both right and left movers;
events with race are non-movers. Lock acquire events are right-
movers. Lock release events are left-movers. The reduction-based’ -

algorithm is based on the following variant of Lipton’s reduc-
tion theorem: a sef” of transactions is conflict-atomic if" has
no potential for deadlock and each transactioff'ihas the form
(R + AcqA*Rel)*N*(L 4+ AcqA*Rel)*, where R, L, and N

Implementation

We implemented the commit-node algorithms for checking conflict-
atomicity and view-atomicity in Java. The implementation consists
of three parts: instrumentation, monitoring and off-line analysis.
Instrumentation is discussed in Section 7.1. The monitor inter-

denote right-mover, left-mover, and non-mover respectively, and cepts all events described in Section 2 and constructs access trees.
AcgA™ Rel denotes an acquire of some lock, followed by accesses Each access tree is optimized to discard the redundant accesses,
to read-only or thread-local variables, followed by release of the as discussed in Section 7.2. If there are more than two identical
same lock. access trees, we save only two copies, since the rest are redun-
The following theorem and example together show that The- dant for checking atomicity. A dynamic escape analysis introduced
orem 4.1 is more accurate than the above reduction theorem forin Section 7.3 is used to determine when a variable escapes. A
conflict-atomicity. happen-before analysis introduced in Section 7.4 is used to deter-
mine whether two units are concurrent. When the program termi-
nates, the algorithm adds inter-edges between access trees, and then
checks conflict-atomicity and view-atomicity using the algorithms
in Sections 4.1 and 4.2, respectively.

Theorem 6.1. If a transactiont has the form
(R + AcgA* Rel)*N' (L + AcqA* Rel)*, thent has at most one
commit node in the conflict-forest.

7.1 Instrumentation calls, and all stores to static fields, instance fields, and arrays. When

We modify the pretty-printer in the Kopi [14] compiler to insert 2N Object escapes, it is marked as escaped by settiegdtsped
instrumentation as it pretty-prints the source code. The instrumen-fleld to true, and all obJect$ to YVh'Ch ,'t refers_are marked_ as.
tation intercepts the following events: (1) reads and writes to all ©€SCaPed (and so on, recursively); Java's reflection mechanism is
monitored fields (see below); (2) entering and exiting synchronized used to dynamically find those objects. More details appear in [22].
blocks, including synchronized methods; (3) entering and exiting)
methods that are considered as transactions (discussed in Sectiof-4 Happen-Before Analysis
2); (4) calls to threadtart andjoin; (5) barrier synchronization. The execution of a thread is separated ipésiodsby occurrences

All non-final fields (with primitive type or reference type) ofthe of synchronization events. A thread perioappens beforanother
specified classes (by default, all classes) are monitored. Accesseshread period if it must end before the other thread period starts.
to these fields in all methods of all classes are instrumented. Local Our happen-before analysis tracks only happen-before relation-
variables are not monitored, because they are accessed by at mosthips induced bytart andjoin on threads and by barrier syn-
one thread. Our system inserts fields into monitored classes tochronization. A barrier is a rendezvous point for a specified number
keep track ofshadow informatione.g, whether the object has n of threads. Once alk threads reach the barrier, all of them may
escaped. There is no way to insert fields into array classes in Javacontinue executing. Happen-before relationships induceaahy
so we maintain a hash table that maps each array refetetocen andnotify could also be analyzed; we do not do this because we
array with shadow information for each elementzoMonitoring believe thatrait andnotify are rarely used to achieve atomicity.
every array element causes large slowdown in some programs, so We use a directed graph to represent the happen-before relations
our system supports “sampling” of arrays, in which only index between thread periods. There is a path from the node representing
positions below a user-specified cutoff are monitored. p1 to the node representing: iff p; happens befor@.. More

details are in [22].

7.2 Optimization: Trimming the Access Tree
It is not necessary to save all accesses to escaped variables. F :
access nodes with the same parent node, we preserve only the fir(s)g' Experiments
two read accesses and the first two write accesses (if they exist) toWe perform experiments with 12 programs. They atevator,
each escaped variable, because the first two reads and writes to tsp, sor, andhedc from [19];moldyn, montecarlo, andraytracer
can represent all discarded accesses for checking (conflict or view)from the Java Grande Benchmark Suite [18ringBuffer,
atomicity. The resulting trees and forests are said titrened Vector, Hashtable, andStack from Sun JDK 1.4.2; andigsaw
from W3C [13]. elevator simulates the actions of multiple ele-
vators.tsp solves the travelling salesman problem; we run it on
the accompanying data fileap14. sor is a scientific computing
program which uses barriers rather than locks for synchronization.

. hedc is a Web crawler that searches astrophysics data on the Web.
Proof. 1. Consider reads. L&® be a set of three or more reads to moldyn, montecarlo, andraytracer are computation-intensive

the same variable that share the same parent node. It is easy to se, :
that in both conflict forest and view forest, either all of them are ﬁarallel programs that compute molecular dynamics, Monte Carlo

. o c . . simulation, and ray tracing, respective is a Web server
connected to a given write in another unit by inter-edges, or none Y 9 P hhgsaw

£ th dioit S i deri implemented in Java; we instrument only its packages that are re-
of them are connected to it. Suppose we evaluateonsidering lated to HTTP service. Table 1 shows the number of lines of code
only the first two reads imR. It is easy to show that considering

i e o . in instrumented classesg,, it excludes code in uninstrumented
additional reads iR either does not generate any additional inter- libraries. For all programs that accept the number of threads as an
edges, or the generated edges do not aftect argument, we use three threads. All experiments are done on a Sun

2. Consider writes in the conflict-forest. LBf be a set of three Blade 1500 with a 1GHz UltraSPARC Il CPU. 2GB RAM. SunOS
or more writes to the same variable that share the same parent node5 8 and JDK 1.4.2 ' '

In the conflict forest, either all of them are connected to a given
read or write of another unit by inter-edges, or none of them are
connected to it. Similarly as for reads, we can show that considering
the third and subsequent writesTiii either does not generate any
additional inter-edges, or the generated edges do not dfeEbr

the view forest, ifi¥’ does not contain a unit-final write, then the
reasoning is similar to the previous cases}ifcontains a unit-final
write, it gets removed and the second writdihbecomes the unit-
final to that variable; it is easy to verify (for each hypothe&i$

that this does not affedt . O

Theorem 7.1. For every(T, E), and every hypothesig about the
conflict-forest and view-forest in the theorems of Sectidid Aplds
for the trimmed forest iff it holds for the untrimmed forest.

Table 1 compares the running time, result and storage of the
commit-node algorithm for view-atomicity described at the end of
Section 4.2 with the off-line reduction-based algorithm [22] and
the pairwise block-based algorithm [22]. This version of the block-
based algorithm checks view-atomicity of all pairs of transactions;
the full block-based algorithm, which checks whether the entire set
of transactions is atomic, would be significantly slower. “LOC” is
the lines of code. “Base time” is the running time of the uninstru-
mented program. “Intrcpt time” is the running time when all events
relevant to atomicity checking are intercepted but not processed
(an empty method is called). For each algorithm, “time” includes
the running time of the instrumented program and the subsequent
Before an object escapes from the thread that created it, all oper-analysis. “space” is the storage used by each algorithm. The storage
ations on it can be ignored when checking atomicity. An object of the commit-node algorithm is the sum of the number of nodes
escapes in the following scenarios: ¢lis stored in a static field or ~ and the number of inter-edges (which in these experiments is at
a field of an escaped object; (@)s an instance of a thread and the most 2/3 of the number of nodes) in the trimmed view-forest. The

7.3 Dynamic Escape Analysis

thread is started; (3) is referenced by a field of another objett storage of the reduction-based algorithm is the total size of lock-
ando’ escapes (this leads to cascading escape); {@)passed as sets (which store identifiers of lock objects) and thread-sets (which
an argument to a native method that may cause it to escape. store identifiers of thread periods) for all escaped variables. The

To indicate whether an object has escaped, a boolean instancestorage of the block-based algorithm is the number of blocks. “re-
field escaped is added to every instrumented class. Its initial value port” reflects the warnings issued by each algorithm. We classify
is false. To detect when objects escape, we instrument all method warnings issued by each algorithm into three categories:

Program LOC Base | Intrcpt Commit-node Alg Reduction-based Alg Block-based Alg

time time time | report | space time | report| space time | report| space
elevator 528 0.2s 0.34s 0.4s| 0-2-0 342 0.5s| 0-2-0 184 0.6s| 0-2-0 108
tsp 706 | 0.24s 0.4s 40.0s| 0-2-0 | 3015 325s| 0-2-0| 530 8m59s| 0-2-0 | 13474
sor 251 | 0.47s 47.1s 52.4s| 0-0-0 90 53.3s| 0-0-0 64 1m4.1s| 0-0-0| 3056
hedc 2197 0.6s 0.82s 1.0s| 0-0-0 892 1.0s| 0-0-1 349 2.1s| 0-0-0| 1085
moldyn 1265 | 44.03s| 24m34s| 34m26s| 0-0-0 | 3819 | 38m22.1s| 0-0-0| 810 | 28m54.6s| 0-0-0 132
montecarlo 3619 | 15.85s| 7m37s| 7m43s| 0-0-0 148 8m10.1| 0-0-0 79 | 8mlld4s| 0-0-0 159
raytracer 1832 | 14.34s| 10m8s| 10m50s| 2-0-0 106 | 11m58.9s| 2-0-0 26 | 36m17.6s| 2-0-0 39
jigsaw 25012 | 1.60s 2.2s 3.4s| 1-3-0 | 4031 2.74s| 1-3-1| 2012 | 8m25.4s| 1-3-0 | 17254
StringBuffer 1255 - - - | 0-1-0 - - 0-1-0 - - | 0-1-0 -
Vector 1020 - - - | 4-4-0 - - | 4-4-10 - - | 4-4-0 -
Hashtable 1054 - - - | 0-4-0 - -| 041 - - | 0-4-0 -
Stack 119 - - - | 3-4-0 - - | 3-4-12 - - | 3-4-0 -

Table 1. Performance and Accuracy. The categories of “report” for the three algorithms are bug - benign - false alarm. A dash means that
the item is negligible.

e Bug the warning reflects a violation of atomicity that might icity violations involving the field w3c.tools.resources.
cause a violation of an application-specific correctness require- store.ResourceStoreManager.loadedStore due to state-
ment. mentsloadedStore++ andloadedStore-- without synchroniza-

tion; as a resultloadedStore may contain an incorrect value. The

error in jigsaw described in [20] does not appear in our experi-

) -) ments, because the relevant code was modified in the newer version
* False alarm the warning does not reflect a violation of atomic- of jigsaw that we tested. The above atomicity violations involve

ity. data races. The errors ector andStack are from atomicity vi-

olations involving the fieldelementCount (discussed in Section

Table 1 shows, for each category, the number of methods suchl).
that a warning in that category is issued for a transaction thatisan The reduction-based algorithm produces more false alarms
execution of that method or part of the code of that method. For the than the others. For example, somellection classes use
commit-node algorithm, we count based on the transactions that domodCount to count modifications. Thus, when an update method
not satisfy the condition in the hypothesis of Theorem 4.6. m1 executesnodCount++ (which is a read followed by a write),

We conclude the following from Table 1. (1) The commit- and another methodn, checks for recent modifications by
node algorithm has the same accuracy on these benchmarks aseading modCount, there is a serializable sequence of events
the pairwise block-based algorithm, and they are more accuratem;:readfiodCount) mo:readfiodCount) m;:write(modCount).
than the reduction-based algorithm; specifically, they produce no But the benign race omodCount causes the reduction-based
false alarms, while the reduction-based algorithm produces 25 falsealgorithm to produce a false alarm here, becatuse contains
alarms in total. Diagnosing a warning as a false alarm can re- two accesses taodCount that are non-movers. Similar scenar-
quire significant human time and effort, so reducing the number of ios exist in jigsaw (e.g, on the fieldalive in the method
false alarms is crucial in practice. (2) In the experiments, the pair- w3c.util.CachedThread.waitForRunner()) and other pro-
wise block-based algorithm does not miss any atomicity violations grams.
involving three or more transactionse(, no such violations are

resent). (3) The commit-node algorithm is as fast as the reduction-

Eased ezlg(ozithm (even 0.4% fas?er on average), and significantlyg' Related Work

faster than the block-based algorithm (56% faster on average). In [21, 22], we proposed the reduction-based and block-based al-

We also check these programs for conflict-atomicity using the gorithms for runtime atomicity checking. Flanagan and Freund [5]
commit-node algorithm presented in Section 4.1. It issues exactly independently proposed a reduction-based algorithm. Our previous
the same warnings (including bugs, benign and false alarms) as theexperiments showed that the reduction-based algorithm is faster,
commit-node algorithm for checking view-atomicity. This shows and the block-based algorithm is more accurate [22]. This paper
that the reduction-based algorithm issues false alarms because itpresents a new algorithm that is as fast as the reduction-based algo-
analysis is imprecise, not because it is checking conflict-atomicity rithm, is as accurate as the pairwise block-based algorithm, and can
while the other algorithms used for Table 1 check view-atomicity. detect atomicity violations involving any number of transactions.
The commit-node algorithm for conflict-atomicity is slightly faster We explored the use of static analysis to decrease the overhead for
(5.9% faster on average) than the commit-node algorithm for view- the reduction-based algorithm [17] and the block-based algorithm
atomicity, because the former needs less time to construct inter-[1]. The similar technique can be used to reduce the overhead of
edges. the commit-node algorithm as our future work.

We also test the programs by comparing pair of transactions Flanaganet. al. extended their atomicity type system to ver-
each time according to Theorems 4.2 and 4.5. Checking pairs of ify abstract atomicity of programs by analyzing purity [7]. We ex-
transaction for conflict-atomicity and view-atomicity produces the tended their work to verify atomicity of programs that use non-

e Benign the warning reflects a violation of atomicity that does
not affect the correctness of the application.

same result as checking the whole set of transactions. blocking synchronization [24].
The bugs in raytracer come from atomicity viola- Model checking can also be used to check atomicity [9, 4].
tions involving the field JGFRayTracerBench.checksuml, Model checking provides stronger guarantees than runtime mon-

which could get an incorrect value, causing the program itoring, because it considers all possible behaviors of a program.
to report failure. The bug injigsaw is due to atom- Also, many of the supporting analyses, such as dynamic escape

analysis, analysis of arrays, deadlock detection, and special treat- on Principles of Programming Languages (POPpjges 256—267.
ment of thread-local and read-only variables, etc., can be performed ACM Press, 2004.

more easily and precisely in a model checker than by program in- [g] C. Flanagan and S. N. Freund. Type inference against rac&satio

strumentation [9]. However, model checking is more expensive and Analysis Symposium (SASplume 3148 of.NCS Springer-Verlag,
is feasible only for programs with relatively small state spaces. Aug. 2004.

_von Praun and Gross _[20] pres_ent a SFat_'C analysis FO_ detect [7] C. Flanagan, S. N. Freund, and S. Qadeer. Exploiting purity for
violations of method consistencyvhich is similar to atomicity. atomicity. IEEE Transactions on Software Engineeriidd.(4), Apr.
Although their static analysis is unsound (in order to reduce the 2005.

cost and the number of false alarms), it Cons'de.rs the ent'r? program [8] C.Flanagan and S. Qadeer. Atype and effect system for atomicity. In
and therefore may be more thorough than runtime analysis in some Proc. ACM SIGPLAN Conference on Programming Language Design
cases. On the other hand, it produces more false alarms than our and Implementation (PLDIACM Press, 2003.

commit-node algorithm, based on a comparison of the false alarms 9
in our Table 1 with the false and spurious reports in Table 1 of [20]. [

—

J. Hatcliff, Robby, and M. B. Dwyer. Verifying atomicity specifica-
tions for concurrent object-oriented software using model-checking.

Linearizability[11] is a correctness condition for objects which In Proc. 5th International Conference on Verification, Model Check-
are shared by concurrent processes. Linearizability can be viewed ing and Abstract Interpretation (VMCAIyolume 2937 olLNCS
as a special case of strict serializability where transactions are re- Springer-Verlag, Jan. 2004.
S?”Cte‘.j to (.:an.Bt of a single method z_appll_ed to a single object [11]. [10] K. Havelund. Using runtime analysis to guide model checking of
!_]nearlzablllty is defined sgmantlcally.,e., n teljms of the spec- Java programs. IRroc. 7th Int'l. SPIN Workshop on Model Checking
ification (correctness requirements) of the object. In contrast, we of Softwarevolume 1885 oLNCS pages 245-264. Springer-Verlag,
define atomicity in terms of operations performed by the imple- Aug. 2000.
menta_ltion. O_ur dgfinition is more restrictive but has th_e practical [11] M. P. Herlihy and J. M. Wing. Linearizability: a correctness
benefit of being directly applicable to programs for which formal condition for concurrent object&CM Transactions on Programming
correctness requirements are unavailable. Vafeiedial. present Languages and Syste®(3):463-492, July 1990.

an approach to use rely-guarantee reasoning to verify linearizabil-
ity of several algorithms using fine-grain synchronization [18]. The

approach is not automatic but provides static guarantees and can)))
analyze fine-grain synchronization for which our algorithms pro- [13] Jigsaw, version 2.2.4. Available from http://www.w3c.org.

[12] Java Grande Forum. Java Grande Multi-threaded Benchmark Suite.
version 1.0. Available from http://www.javagrande.org/.

duce false alarms. [14] Decision Management Systems GmbH, Kopi compiler. Available
from http://www.dms.at/kopi/.
10. Conclusions and Future Work [15] R. J. Lipton. Reduction: A method of proving properties of parallel

. programs.Communications of the ACM8(12):717-721, 1975.
This paper defines two kinds of atomicity, conflict-atomicity and

view-atomicity. In theory, view-atomicity is more appealing be- [16] C. H. Papadimitriou. The serializability of concurrent database
cause it is Iegs restrictiviz, but in our ex)[geriments, c%%cking view- updatesJournal of the ACM26(4):631-653, Oct. 1979.
atomicity and checking conflict-atomicity give the same results. It [17] A. Sasturkar, R. Agarwal, L. Wang, and S. D. Stoller. Automated
is well-known that checking conflict-serializability is in P [3] and type-based analysis of data races and atomicity.Proc. ACM
checking view-serializability is NP-complete [16]; surprisingly, we SIGPLAN 2005 Symposium on Principles and Practice of Parallel
show that the problems of checking conflict-atomicity and check- Programming (PPOPRJACM Press, June 2005.
ing view-atomicity are polynomially reducible to each other. [18] V. Vefeiadis, M. Herlihy, T. Hoare, and M. Shapiro. Proving

In our experiments, the commit-node algorithms proposed in correctness of highly-concurrent linearizable objectsPioc. ACM
this paper are as fast as and significantly more accurate than our ~ S/GPLAN 2006 Symposium on Principles and Practice of Parallel
previous reduction-based algorithm, and they are as accurate as Programming (PPOPRJACM Press, 2006.

and significantly faster than our previous pairwise block-based [19] C. von Praun and T. R. Gross. Object race detectionPrbr.
algorithm. 16th ACM Conference on Object-Oriented Programming, Systems,

Directions for future work include using static analysis to re- Languages and Applications (OOPSL#glume 36(11) oBIGPLAN

duce the overhead of the commit-node algorithms, evaluating them Notices pages 70-82. ACM Press, Oct. 2001.

on larger applications, and considering fine-grain synchronization. [20] C.von Praun and T. R. Gross. Static detection of atomicity violations
in object-oriented programs. [ournal of Object Technology, vol.3,

no. § June 2004.

References o [21] L. Wang and S. D. Stoller. Run-time analysis for atomicity. In
[1] R. Agarwal, A. Sasturkar, L. Wang, and S. D. Stoller. Optimized run- Third Workshop on Runtime Verification (RV0@dlume 89(2) of
time race detection and atomicity checking using partial discovered Electronic Notes in Theoretical Computer Scieréksevier, 2003.

types. InProc. 20th IEEE/ACM International Conference on

- : [22] L. Wang and S. D. Stoller. Runtime analysis of atomicity for multi-
Automated Software Engineering (ASEEM Press, Nov. 2005. threaded programs. Technical Report DAR-04-14, SUNY at Stony
R. Agarwal, L. Wang, and S. D. Stoller. Detecting potential deadlocks Brook, Computer Science Dept., July 2004. (revised May 2005). To
with static analysis and runtime monitoring. Rroceedings of the appear inEEE Transactions on Software Engineering
Parallel and Distributed Systems: Testing and Debugging (PADTAD)
Track of the 2005 IBM Verification Conferen&pringer-Verlag, Nov.
2005.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodma@oncurrency
control and recovery in database systerAsldison Wesley, 1987.

[2

—

[23] L. Wang and S. D. Stoller. Accurate and efficient runtime detection
of atomicity errors in concurrent programs. Technical Report DAR-
05-26, SUNY at Stony Brook, Computer Science Dept., Sept. 2005.

[24] L. Wang and S. D. Stoller. Static analysis for programs with non-
blocking synchronization. IRroc. ACM SIGPLAN 2005 Symposium
[4] C. Flanagan. Verifying commit-atomicity using model-checking. In on Principles and Practice of Parallel Programming (PPoPRLM
Proc. 11th Int'l. SPIN Workshop on Model Checking of Software Press, June 2005.
volume 2989 oL NCS pages 252-266. Springer-Verlag, 2004.

[5] C. Flanagan and S. N. Freund. Atomizer: A dynamic atomicity
checker for multithreaded programs. Pnoc. of ACM Symposium

