
Accurate and Efficient Runtime Detection of Atomicity Errors in
Concurrent Programs ∗

Liqiang Wang
Computer Science Dept.

State University of New York at Stony Brook
liqiang@cs.sunysb.edu

Scott D. Stoller
Computer Science Dept.

State University of New York at Stony Brook
stoller@cs.sunysb.edu

Abstract
Atomicity is an important correctness condition for concurrent sys-
tems. Informally, atomicity is the property that every concurrent
execution of a set of transactions is equivalent to some serial exe-
cution of the same transactions. In multi-threaded programs, exe-
cutions of procedures (or methods) can be regarded as transactions.
Correctness in the presence of concurrency often requires atomic-
ity of these transactions. Tools that automatically detect atomicity
violations can uncover subtle errors that are hard to find with tradi-
tional debugging and testing techniques.

This paper presents new algorithms for runtime (dynamic)
detection of violations of conflict-atomicity and view-atomicity,
which are analogous to conflict-serializability and view-serializability
in database systems. In these algorithms, the recorded events are
formed into a graph with edges representing the synchronization
within each transaction and possible interactions between transac-
tions. We give conditions on the graph that imply conflict-atomicity
and view-atomicity. Experiments show that these new algorithms
are more efficient in most experiments and are more accurate than
previous algorithms with comparable asymptotic complexity.

Categories and Subject DescriptorsD.2.5 [Software Engineer-
ing]: Testing and Debugging; D.2.4 [Software Engineering]: Soft-
ware/Program Verification; D.1.3 [Programming Techniques]:
Concurrent Programming

General Terms Reliability, Algorithms

Keywords concurrent programming, Java, atomicity, data race,
serializability

1. Introduction
Multi-threading has become a common programming technique.
Not only operating systems but also many applications are multi-
threaded. However, developing multi-threaded programs is diffi-
cult. Concurrency introduces the possibility of errors that do not ex-
ist in sequential programs. Furthermore, multi-threaded programs

∗ This work was supported in part by NSF under Grant CCR-0205376 and
CNS-0509230 and ONR under Grants N00014-02-1-0363 and N00014-04-
1-0722.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’06 March 29–31, 2006, New York, New York, USA.
Copyright c© 2006 ACM 1-59593-189-9/06/0003. . . $5.00.

may behave differently from one run to another, because threads
are scheduled indeterminately. For most systems, the number of
possible schedules is enormous, and testing the system’s behav-
ior for each possible schedule is infeasible. Specialized techniques
are needed to ensure that multi-threaded programs do not contain
concurrency-related errors.

Threads often communicate by sharing data. Concurrent ac-
cesses to shared data should be properly synchronized. Two com-
mon errors are deadlocks and data races. Numerous static and dy-
namic (runtime) analysis techniques are designed to ensure that
concurrent programs are free of deadlocks and data races. But this
does not ensure the absence of all synchronization errors. Consider
the implementation ofVector in Sun JDK 1.4.2, part of which ap-
pears in Figure 1. Consider the following execution of the program
at the bottom of Figure 1:thread 1 constructs a new vectorv2
from another vectorv1 with k elements by calling the construc-
tor for Vector. But before the constructor completes,thread 1
yields execution tothread 2 immediately after statement 1 in the
Vector constructor.thread 2 removes all elements ofv1, and
then thread 1 resumes execution at statement 2. The incorrect
outcome is thatv2 hask elements, all of which arenull, be-
cause theelementData array ofv2 is allocated according to the
previous size ofv1. A more subtle error occurs ifthread 2 ex-
ecutesv1.add(o) instead ofv1.removeAllElements(). Then,
if k < 10, the length ofelementData allocated inv2 is smaller
than the new size ofv1. Although a larger array is allocated in
toArray to store the elements ofv1, the array is not returned to
the constructor ofv2, thus v2 will incorrectly be full of null
elements. No exception is thrown in these scenarios. Methods
size(), toArray(Object[]), removeAllElements() and
add(Object) are synchronized, hence there is no data race in
these examples.

The incorrect behavior reflects a higher-level synchronization
error, namely, lack of atomicity. Atomicity is well known in the
context of transaction processing, where it is sometimes calledseri-
alizability. The methods of concurrent programs are often intended
to be atomic. A set of methods isatomicif concurrent invocations
of the methods are always equivalent to performing the invoca-
tions serially (i.e., without interleaving) in some order. The first
scenario of the example in Figure 1 contains two invocations, one
of Vector(Collection) and one ofremoveAllElements(),
which obviously do not have an equivalent serial execution. There-
fore, these methods violate atomicity. Similarly, the second sce-
nario also shows a violation of atomicity.

Flanagan and Qadeer developed a type system for atomicity [8].
It can ensure that methods are atomic in all possible executions.
However, type inference for the type system is NP-complete [6], so
the type system may require manual annotation of the program.

public class Vector extends ... implements ... {
public Vector(Collection c) {

// c is v1, elementCount is the field of v2.
1 elementCount = c.size();
2 elementData = new Object[(int)Math.min(

(elementCount*110L)/100,Integer.MAX_VALUE)];
3 c.toArray(elementData);
}
public synchronized int size() { return elementCount; }
public synchronized Object[] toArray(Object a[]) {

if (a.length < elementCount) {
// i.e. v2.length < v1.elementCount
// this branch will be taken if v1.add is executed.
a = (Object[])java.lang.reflect.Array.newInstance(

a.getClass().getComponentType(), elementCount);
}
System.arraycopy(elementData, 0, a, 0, elementCount);
if (a.length > elementCount)
a[elementCount] = null;

return a;
}
public synchronized void removeAllElements() { ... }
public synchronized boolean add(Object o) { ... }

}

thread_1 thread_2
Vector v2 = new Vector(v1); v1.removeAllElements();

// v1.add(o);

Figure 1. An example showing that the constructor of
java.util.Vector in Sun JDK 1.4.2 violates atomicity.

In [21, 22], we proposed the reduction-based and block-based
algorithms for runtime atomicity checking. Runtime analysis is less
powerful than static analysis, because it cannot ensure correctness
of all unexplored behaviors of the system, but may be more precise
(i.e., give fewer false alarms) for the explored behaviors. Further-
more, runtime analysis does not require manual annotations of the
code that are often required by type systems; this is a significant
practical advantage.

This paper presents novel algorithms, called commit-node algo-
rithms, for runtime checking of atomicity. The algorithms are off-
line, i.e., when the program terminates, they are applied to recorded
information about the execution. The execution is partitioned into
units. A unit is a sequence of events executed by a single thread.
A transactionis a unit expected to behave atomically. For exam-
ple, the sequence of events executed during a method invocation
is often considered as a transaction. Our algorithms check whether
every trace (i.e., interleaving) of these units is equivalent to a se-
rial trace, where all events in each transaction of these units are
consecutive. If so, we say that the transactions areatomic; if not, a
potential atomicity violation is reported.

The monitor stores the events of each unit (including transac-
tions) in a tree structure, called anaccess tree. Each node in an
access tree denotes an access to an escaped variable (i.e., a variable
accessible to multiple threads), or a synchronization operation (e.g.,
lock acquire and release). After the program terminates, the rela-
tionships between nodes in different trees are analyzed, andinter-
edgesare added between them to generate aforest. A node con-
nected with inter-edges are calledcommunication node. A commu-
nication node is called acommit nodeif none of its descendants are
communication nodes. In a forest, if the access tree for each trans-
action has only one commit node, then the set of units is atomic.
By considering the synchronization, the commit-node algorithms
do not merely look for violations of atomicity in the observed exe-
cution, but also attempt to determine whether the non-determinism
of thread scheduling could allow violations in other executions.

This commit-node algorithms can check two kinds of atomic-
ity, conflict-atomicity and view-atomicity, which are analogous to
conflict-serializability and view-serializability in database systems.

Experiments show that these new algorithms are more efficient
in most experiments and are more accurate than previous algo-
rithms with comparable asymptotic complexity.

2. Background
This paper focuses on analyzing Java programs, but the techniques
can be applied to other languages.

Event. Informally, aneventis one step in an execution of a pro-
gram. This paper considers the following operations on events: read
and write escaped variables; acquire and release locks; start and
join threads; start and exit invocations of methods; and the barrier
synchronization operation discussed in Section 7.4. For example,
synchronized(l) {body} in Java indicates two events (in addition
to the events performed by the body): acquiring lockl at the en-
try point and releasing it at the exit point. Two distinct accesses
(even using the same operation) to a variable are different events.
Let held(e) denote the locks held by the thread executing evente
whene is executed.

Transaction Boundaries. Executions of the following code frag-
ments are considered as transactions by default in this paper: non-
private methods, synchronized private methods, and synchronized
blocks inside non-synchronized private methods; as exceptions,
the executions of themain() method in which the program starts
and the executions ofrun() methods of classes that implement
Runnable are not considered as transactions, because these execu-
tions represent the entire executions of threads and are often not ex-
pected to be atomic. Moreover, start, join and barrier operations are
treated as unit boundaries,i.e., they separate the preceding events
and following events into different units, and are not contained in
any unit. We adopt this heuristic because execution fragments con-
taining these operations are typically not atomic and hence are not
expected to be transactions. The events not in transactions form
non-transactional units. All events in one non-transactional unit
have the same thread period id (introduced in Section 7.3). Note
that for nested transactions, we check atomicity of only the outer-
most transactions, since they contain the inner transactions.

Trace. A tracetr is a sequence of events. Given〈T, E〉, whereT
is a set of transactions, andE is a set of non-transactional units,a
trace of〈T, E〉 is an interleaving of events from units inT ∪E that
is consistent with the original order of events from each thread and
with the synchronization events (e.g., no lock is held by multiple
threads at the same time). A trace of〈T, E〉must contain all events
from units inT ∪ E unless the trace ends in deadlock. This paper
assumes thatE contains no synchronization; this assumption is
satisfied if synchronized blocks are considered to be transactions.

Initial Read and Final Write. Let er
x andew

x denote a read event
and a write event to variablex, respectively.ew

x is the write-
predecessorof er

x in a tracetr if ew
x is the last write tox that

precedeser
x in tr. er

x is called aunit-initial read if er
x does not

have any write-predecessor in its own unit in all traces.er
x is called

a trace-initial read in tracetr if er
x is not preceded by a write to

x in tr. Its write-predecessor is defined to be an imaginary write
eventeinit

x at the beginning of the trace. A write eventew
x is called

a unit-final write if it is the last write tox in its unit; a write event
ew

x is called atrace-final writein a trace if it is the last write tox in
the trace.

Conflict-Equivalence. Two tracestr1 and tr2 for 〈T, E〉 are
conflict-equivalentiff (i) they contain the same events, and (ii)
for each pair of conflicting events, the two events appear in the

same order in both traces. This corresponds to conflict equivalence
in transaction processing in database systems [3].

View-Equivalence. Two tracestr1 andtr2 for 〈T, E〉 areview-
equivalentiff (i) they contain the same events, (ii) each read event
has the same write-predecessor in both traces, and (iii) each vari-
able has the same trace-final write event in both traces. This corre-
sponds to view equivalence in transaction processing [3]. It is easy
to show that conflict-equivalence implies view-equivalence [3]. But
the converse does not hold.

Conflict-Serializability and View-Serializability. A trace of〈T, E〉
is serial if the events of each transaction ofT form a contigu-
ous subsequence of the trace. Note that the events in each non-
transactional unit ofE are not required to be contiguous. A trace
of 〈T, E〉 is conflict-serializableif it is conflict-equivalent to some
serial trace of〈T, E〉. A trace of 〈T, E〉 is view-serializableif
it is view-equivalent to some serial trace of〈T, E〉. Conflict-
serializability of a tracetr for 〈T, E〉 can be decided in polynomial
time [3]. Letg be theserialization graphfor tr, which is a directed
graph whose nodes are the units ofT ∪ E, and which contains an
edge from nodeti to nodetj if i 6= j and some event ofti pre-
cedes a conflicting event oftj in tr. tr is conflict-serializable iffg
does not contain any cycle containing two or more transactions. In
contrast, checking view serializability is NP-complete [16].

Conflict-Atomicity and View-Atomicity. 〈T, E〉 isconflict-atomic
if every trace of〈T, E〉 is conflict-serializable.〈T, E〉 is view-
atomic if every trace of〈T, E〉 is view-serializable. It is easy to
show that conflict-atomicity implies view-atomicity, but the con-
verse does not hold. As an example, consider〈{t1, t2}, ∅〉, where
t1 is W1(x) W2(x), and t2 is W (x). When t2.W (x) happens
betweent1.W1(x) and t1.W2(x), the trace does not have any
conflict-equivalent serial trace, hence〈{t1, t2}, ∅〉 is not conflict-
atomic; but the trace is view-equivalent to a serial tracet2.W (x)
t1.W1(x) t1.W2(x), and all the other possible traces are serial,
hence〈{t1, t2}, ∅〉 is view-atomic.

Potential for Deadlock. 〈T, E〉 haspotential for deadlockif some
trace of〈T, E〉 ends in deadlock. A trace that ends in deadlock
with some thread in the middle of a transaction is not equivalent
to any serial trace. Therefore, this paper assumes that〈T, E〉 has
no potential for deadlock. This can be checked using the goodlock
algorithm [10] or an extension of it [2].

3. Access Forest and Commit-Node Reduction
3.1 Access Tree

During execution of the instrumented program, the monitor records
all events for each unit into anaccess tree. In such a tree, each
leaf node is called anaccess nodeand denotes an access to an
escaped variable. Each non-leaf node except for the root is called
a synchronization nodeand denotes a synchronization block. The
root node denotes the whole unit. The local orders of events within
a unit are denoted by the order of branches in the tree. An example
appears in Figure 2, whereR(v) andW (v) (v is x or y) denote a
read event and a write event tov, respectively;acq(l) andrel(l)
denote an acquire and a release of lockl, respectively. Since each
node in an access tree denotes a set of events, a node and the set of
events it denotes are used interchangeably in our description.

3.2 Access Forest

An access forestconsists of a set of access trees and edges called
inter-edgesbetween access trees from concurrent units. Section
7.4 describes a happen-before analysis to determine whether two
units are concurrent. The edges inside each tree are calledtree-
edges. Nodes with an incident inter-edge are calledcommunication

u

R(x)

R(y)
Rel(l)

W (y)

R(x)
W (x)
Acq(l)
R(y)

W (x) Acq(l)Rel(l)

R(y) R(y)W (y)

Figure 2. The access tree for a unitu. All events are shown on the
left; time increases from top to bottom.

FOR each read eventer
x

FOR each write eventew
x in a concurrent unit

addInterEdge(er
x, ew

x);

FOR each write eventew
x

FOR each write eventew′
x in a concurrent unit

addInterEdge(ew
x , ew′

x);

/* add appropriate inter-edges between nodes of the units
containinge ande′. e ande′ access the same variable.*/
PROCEDURE addInterEdge(e, e′){
IF (held(e) ∩ held(e′) = ∅) {
add an inter-edge between the access node fore
and the access node fore′;
} ELSE{
/* there must be a common lock inheld(e) andheld(e′),
so the next statement finds a suitable noden.*/
starting at the root node of the unit that containse, go
down the tree along the path toe, until reaching a node
n corresponding to a synchronization block for a lockl
in held(e′);
IF ((e is a write)∨ (e is read and not preceded by a write

to the same variable in the subtree rooted atn)) {
/* otherwise,e is a read and there is a write to the
same variable in the subtree rooted atn, soe cannot
read the write ofe′ because of lockl.*/

n′ = the outermost ancestor ofe′ corresponding to
a synchronization block for lockl;

add an inter-edge betweenn andn′;
}}}
Figure 3. The algorithm to add inter-edges for an arbitrary escaped
variablex in the conflict-forest.

nodes; they denote a potential interactions between the correspond-
ing units. Checking conflict-atomicity and view-atomicity require
different inter-edges. The access forest used for checking conflict-
atomicity is calledconflict-forest; the access forest used for check-
ing view-atomicity is calledview-forest.

3.2.1 Conflict-Forest

In the conflict-forest, there are two kinds of relationships denoted
by inter-edges between two concurrent units. The first kind of
relationship is between a node associated with a write in one of
the units and a concurrent node associated with a read to the
same variable in the other unit, if the read can read the written
value by the write in some trace. The second kind of relationship
connects two concurrent nodes associated with two writes to the
same variable in the two.

We say “associated with” above because the inter-edge is not
necessarily added directly between the access nodes representing
those two accesses. Instead, for each pair of accesses satisfying

W (x)

Acq(l)Rel(l)

t3

Acq(l)Rel(l)

t1

R(x) W (x)

W (x)

t2

W (x)

Figure 4. A conflict-forest. The inter-edges are shown as dotted
lines.

the above conditions, if there is at least one lock that is held when
both operations are performed, then we find the outermost of those
common locks, and add an inter-edge between the corresponding
synchronization nodes, because this is the granularity at which the
parts of the units containing those accesses can be interleaved; if no
such lock exists, then an inter-edge is added directly between the
access nodes representing those two accesses. By assumption, the
set of units does not have potential for deadlock, so the notion of
outermost common lock for two accesses is well defined; if there
is potential for deadlock, the threads that execute the two accesses
could acquire two locks in different orders without first acquiring a
common lock.

Intuitively, 〈T, E〉 is conflict-atomic, if in all traces of〈T, E〉,
the events of each transaction ofT can be repeatedly swapped with
adjacent events without affecting the rest of the trace, until the trace
is serial,i.e., the events of each transaction are contiguous. If two
nodes are connected by an inter-edge, they cannot be swapped.
Thus, a node with incident inter-edges is like a non-mover in
Lipton’s reduction [15, 5, 21, 22].

Figure 3 shows the algorithm to add inter-edges. Figure 4 shows
the conflict forest for a set of three units. Note that an inter-edge
can denote multiple relationships of the kinds described above. For
example, the inter-edge betweent1 andt3 in Figure 4 denotes two
relationships: one is thatt3.R(x) can read the value written by
t1.W (x), and the other is betweent1.W (x) andt3.W (x).

Besides checking atomicity, the conflict-forest can also be used
for detecting data races, since each access node with incident inter-
edges indicates a data race.

3.2.2 View-Forest

The view-forest has three kinds of relationships between two con-
current unitsu1 andu2 denoted by inter-edges. (1) The first kind
of relationship is between a node ofu1 associated with a write and
a node ofu2 associated with a read, if the read can read the written
value by the write in some trace. (2) The second kind of relation-
ship connects two nodes associated with two writes to the same
variable, respectively, if both writes can be the write-predecessor
of the same read in some traces. (3) The third kind of relationship
connects two nodes associated with unit-final writes to the same
variable.

The algorithm of adding inter-edges for view-forest is shown in
Figure 5. It is similar to the algorithm in Figure 3. When adding an
inter-edge between a read and its potential write-predecessor, we
also add inter-edges between its all potential write-predecessors.
S(e) caches all potential write-predecessors for the reade so far.
Besides connecting this kind of writes, we also add inter-edges be-
tween the unit-final writes to the same variables, instead of adding
inter-edges between every two writes to the same variables in con-
flict forest.

FOR each read eventer
x

S(er
x) = ∅;

FOR each write eventew
x in a concurrent unit

addInterEdge(er
x, ew

x);

FOR each unit-final write eventew
x

FOR each unit-final write eventew′
x in a concurrent unit

addInterEdge(ew
x , ew′

x);

/* Note thate ande′ access the same variable. */
PROCEDURE addInterEdge(e, e′){
IF (held(e) ∩ held(e′) = ∅){
add an inter-edge between the access node fore and
the access node fore′;
} ELSE{
starting at the root node of the unit that containse, go
down the tree along the path toe, until reaching a node
n corresponding to a synchronization block for a lockl
in held(e′);
IF ((e is a write)∨ (e is read and not preceded by a write

to the same variable in the subtree rooted atn)) {
n′ = the outermost ancestor ofe′ corresponding to

a synchronization block for lockl;
add an inter-edge betweenn andn′;
} ELSE return;
}
IF (e is read){
ew = the preceding write to the same variable and

in the same unit ase, if any, otherwise null;
IF (ew 6= null)
S(e) = S(e) ∪ {ew};

FOR eache′′ in S(e)
addInterEdge(e′,e′′);

S(e) = S(e) ∪ {e′};
}}
Figure 5. The algorithm to add inter-edges for an arbitrary escaped
variablex in the view-forest.

W (x)

Acq(l)Rel(l)

t3

Acq(l)Rel(l)

t1

R(x) W (x)

W (x)

t2

W (x)

Figure 6. A view-forest. The inter-edges are shown as dotted lines.

Figure 6 shows the view forest after applying the algorithm to
the same three units in Figure 4.

3.3 Commit-Node Reduction

Let n m n′ denote that a communication noden contains (i.e., is
an ancestor of) another communication noden′. A communication
node is called acommit nodeif it is not contained in any other
communication nodes. For example, in Figure 6, the communica-
tion node “Acq(l)Rel(l)” in t1 contains the communication node
“W (x)” which is a commit node since it does not contain any other
communication nodes.

Intuitively, for a set of nodesn1 m ... m nk m nc, the commit
nodenc denotes a non-mover,ni(1 6 i 6 k) denotes a larger non-
mover which containsnc. All events ofn1 (which also contains
all events ofn2,...,nc) can be moved to the commit node position
through swapping without affecting the other units in all traces.
Thus, a transaction with at most one commit node is atomic, but a
transaction with two or more commit nodes might be non-atomic.
This is described formally in Section 4.

4. The Commit-Node Algorithms for Checking
Atomicity

This section presents algorithms for checking conflict-atomicity
and view-atomicity.

4.1 Conflict-Atomicity

Theorem 4.1. Suppose〈T, E〉 has no potential for deadlock, and
E does not contain any synchronization operations. If each trans-
action ofT has at most one commit node in the conflict-forest, then
〈T, E〉 is conflict-atomic.

Proof. To prove that〈T, E〉 is conflict-atomic, we need to show
that there is a conflict-equivalent serial tracetr′ for an arbitrary
tracetr of 〈T, E〉. The general idea is to find a location of some
event inside the commit node for each transaction, such that when
all events of each transaction are moved to that location, the result-
ing trace is conflict-equivalent to the original trace. That location is
called acommit point.

For a commit noden, if n is an access node, its commit point
is the location of the access event attr; if n is a synchronization
node, its commit point is any arbitrary location inside the commit
node attr. According to the assumption in the theorem, each com-
munication node contains only one commit node.tr′ is constructed
from tr as follows: all events of the communication nodes that con-
tain the commit node are moved to the commit point; all events of
each transaction not in any communication node are also moved to
the commit point of the transaction; all other events are not moved.
tr′ is serial because every transaction has only one commit node.
In the following, we prove thattr′ is a legal trace and is conflict-
equivalent totr.

First, we observe thattr′ is consistent with the synchronization
events. This holds becausetr′ is serial, andE does not contain any
synchronization. Sotr′ is a trace for〈T, E〉.

Next, we show thattr′ is conflict-equivalent totr. Consider
conflicting eventse1 and e2, wheree1 and e2 occur in unitsu1

andu2 in T ∪ E, respectively. Without loss of generality, suppose
e1 precedese2 in tr. Becausee1 ande2 conflict, u1 must contain
a communication noden1 containinge1, andu2 must contain a
communication noden2 containinge2, and n1 precedesn2 in
tr. After moving e1 and e2 to the commit points ofu1 and u2,
respectively,e1 and e2 appear at the same order intr and tr′.
Therefore,tr is conflict-equivalent totr′.

The condition in Theorem 4.1 for conflict-atomicity is sufficient
but not necessary. In Figure 7, the set of transactions is conflict-
atomic, even thought1 contains multiple commit nodes. The fol-
lowing theorem shows that the condition in Theorem 4.1 is an exact
test for conflict-atomicity of two transactions.

Theorem 4.2. Suppose〈T, ∅〉 has no potential for deadlock, and
T contains only two transactions.〈T, ∅〉 is conflict-atomic iff each
transaction inT has at most one commit node in the conflict-forest.

Proof. A proof sketch appears here; more details are in [23].
“⇐”: This direction follows from Theorem 4.1.

t3t2 t1

R(x) W (x) R(y)W (y)

Figure 7. 〈{t1, t2, t3}, ∅〉 is both conflict-atomic and view-atomic,
but t1 contains two commit nodes.

“⇒”: SupposeT = {t, t′}. We show that〈T, ∅〉 is not conflict-
atomic if at least one transaction inT has two or more commit
nodes. Without loss of generality, supposet has at least two commit
nodes. Letn1 and n2 denote two commit nodes oft. t′ has at
least one commit node. There must be a pair of conflicting events,
denotede1 and e′1, with e1 ∈ n1 and e′1 ∈ n′1, wheren′1 is a
communication node int′, and there is an inter-edge betweenn1

andn′1. Similarly, there must be another pair of conflicting events,
denotede2 and e′2, with e2 ∈ n2 and e′2 ∈ n′2, wheren′2 is a
communication node int′, and there is an inter-edge betweenn2

andn′2.
If one of n′1 andn′2 contains the other or ifn′1 = n′2, we can

show that there is a tracetr wheren′1 andn′2 happen betweenn1

andn2. Otherwise, we can show that there is a tracetr wheren′1
andn′2 happen betweenn1 andn2, or n1 andn2 happen between
n′1 andn′2. Hence,tr does not have any conflict-equivalent serial
trace.

For example, in Figure 4,〈{t1, t2}, ∅〉 is not conflict-atomic
according to Theorem 4.2 becauset1 contains two commit nodes
when ignoringt3. Similarly, 〈{t2, t3}, ∅〉 is not conflict-atomic,
either.

The following theorem gives a more sophisticated (compared
to Theorem 4.1) condition to decide conflict-atomicity (for any
number of transactions). This theorem (unlike Theorem 4.1) is
accurate enough to show that the set of transactions in Figure 7 is
conflict-atomic. Note that, when considering cycles in the conflict-
forest, tree edges are treated as undirected edges.

Theorem 4.3. Suppose〈T, E〉 has no potential for deadlock, and
E does not contain any synchronization operations. If all pairs
(if they exist) of communication nodes from the same transaction
that do not contain each other are not involved in any cycle of the
conflict-forest, then〈T, E〉 is conflict-atomic.

Proof. We prove the contrapositive. Suppose〈T, E〉 is not conflict-
atomic. Thus, there is a tracetr for 〈T, ∅〉 that does not have any
conflict-equivalent serial trace, and there is a directed cyclec in the
serialization graph fortr. Suppose thatc consists of〈t1, t2, ..., tn〉
in order, wheret1, t2, ..., tn ∈ T . c implies that there must be an
evente1 of t1 that happens before an evente2 of t2, an evente′2
of t2 that happens before an evente3 of t3, ..., and an evente′n
of tn that happens beforee′1 of t1 in tr, wheree1 ande2 access
the same variable,e′2 ande3 access the same variable,, ande′n
ande′1 access the same variable. This implies that there is a cycle
c′ in the conflict-forest. Ifei ande′i of ti for i = 1..n are in the
same communication node, then bothei ande′i happen beforeei+1

ande′i+1 in tr, for i = 1..n − 1. This contradicts the assumption
that e′n happens beforee′1. Hence, there must be a transaction in
{t1, t2, ..., tn} that has at least two communication nodes onc′ that
do not contain each other.

The commit-node algorithmfor checking conflict-atomicity
works as follows. (1) Instrument the source code of program to be
tested as discussed in Section 7.1. (2) Execute the instrumented
program, and dynamically construct the conflict-trees. (3) Add
inter-edges after the execution terminates. (4) Check the conditions

of Theorem 4.1; if they are satisfied, report that conflict-atomicity
holds; otherwise, check the conditions of Theorem 4.3, then report
conflict-atomicity holds or not according to whether the conditions
are satisfied.

Although this algorithm may report false alarms since the con-
ditions in Theorem 4.1 and Theorem 4.3 are sufficient but not nec-
essary. But we believe that this happens very rarely. In the experi-
ments of Section 8, all the warnings for non-conflict-atomicity re-
ported by the algorithm are confirmed to be true by Theorem 4.2.

Let |T |, nt, andne denote the number of transactions, the max-
imum number of events in a transaction, and the number of events
in the whole execution (including non-transactional units), respec-
tively. Theorem 4.3 requires checking, for each pair of communica-
tion nodes of the same transaction, whether they are involved in a
cycle, i.e., whether each of them is reachable from the other. There
areO(|T | × n2

t) such pairs, and checking whether two nodes are
reachable from each other takes timeO(n2

e), so the worst-case time
complexity of the algorithm isO(|T | × n2

t × n2
e).

4.2 View-Atomicity

Theorem 4.4. Suppose〈T, E〉 has no potential for deadlock, and
E does not contain any synchronization operations. If each trans-
action ofT has at most one commit node in the view-forest, then
〈T, E〉 is view-atomic.

Proof. A proof sketch appears here; more details are in [23]. For
any tracetr of 〈T, E〉, we prove that it has a view-equivalent
serial tracetr′, which is constructed in the same way as in the
proof of Theorem 4.1. The definition for the commit point of
each transaction is the same as there. By the same reasoning as
in that proof,tr′ is serial and consistent with the synchronization
operations, sotr′ is a trace for〈T, E〉. Next we prove in two steps
that tr′ is view-equivalent totr. (1) We first prove that each read
has the same write-predecessor intr andtr′. The main observation
is: if two communication nodes are connected by an inter-edge,
then the sets of nodes contained in them cannot be interleaved
with each other in any trace. Because there are inter-edges between
communication nodes associated with potential write-predecessors
for the same reader, if one communication nodenw contains the
actual write-predecessor of the reader in tr, all the communication
nodes associated with other potential write-predecessors forer

must happen intr before the events represented bynw or after the
commit node associated wither. Hence, after moving all events
in each transaction to its commit node,er has the same write-
predecessor intr′ and tr. (2) A similar proof shows thattr and
tr′ have the same trace-final writes.

For example, in Figure 6,〈{t1, t2}, ∅〉 is view-atomic because
each oft1 and t2 contains only one commit node in the view-
forest. Note that〈{t1, t2}, ∅〉 is not conflict-atomic sincet1 has
two commit nodes in the conflict-forest.

The condition in Theorem 4.4 for view-atomicity is sufficient
but not necessary. In the example of Figure 7,〈{t1, t2, t3}, ∅〉 is
view-atomic butt1 contains multiple commit nodes. The following
theorem shows that the condition in Theorem 4.4 is an exact test
for view-atomicity of two transactions.

Theorem 4.5. SupposeT has no potential for deadlock, andT
contains only two transactions.〈T, ∅〉 is view-atomic iff each trans-
action inT has at most one commit node in the view-forest.

Proof. “⇐”: This implication is justified directly based on Theo-
rem 4.4.

“⇒”: We prove the contrapositive,i.e., if at least one of the
transactions has at least two commit nodes, then〈T, ∅〉 is not view-
atomic. According to the definition of view-forest, there are three

kinds of inter-edge. (1) The first kind of inter-edge denotes the
relationship between a reader in a transactiont and its potential
write-predecessorew in the other transaction. If the read has a
preceding writeew

pre in its own transaction, then a violation of
view-atomicity is possible (becauseew can occur betweenew

pre and
er by the definition of potential write-predecessor), so the desired
implication holds. If the read does not have any preceding write
in its own transaction, the read and its potential write-predecessor
in the other transaction act like a pair of conflicting events, in the
sense that their order in a trace determines that the two transactions
must follow the order in all serial traces view-equivalent to the
trace (this is true with two transactions, although it is not true with
more transactions). This is the same property of inter-edges in the
conflict-forest that is used in the proof of Theorem 4.2. (2) The
second kind of inter-edge denotes the relationship between two
writes that are potential write-predecessor for the same read; this
indicates a violation of view-atomicity (because either there is a
write to some variablex in t′ that can occur between a write to
x and a read tox in t, or there is a read tox in t′ that can occur
between two writes tox in t), so the desired implication holds. (3)
The third kind of inter-edge denotes the relationship between unit-
final writes of each transaction. With two transactions, these final
writes also act like conflicting events, in the sense described above,
so these edges have the same property as inter-edges in the conflict-
forest.

Thus, depending on the kind of edges present, either we im-
mediately conclude that the desired implication holds, or all of the
edges have the property of inter-edges in the conflict-forest used in
the proof of (⇒) in Theorem 4.2, and the rest of this proof is similar
to that proof.

For example, in Figure 6,〈{t2, t3}, ∅〉 is not view-atomic be-
causet3 contains two commit nodes in the view-forest fort2 and
t3. The following theorem gives a more sophisticated condition to
check view-atomicity.

Theorem 4.6. Suppose〈T, E〉 has no potential for deadlock, and
E does not contain any synchronization operations. If all pairs
of communication nodes from the same transaction that do not
contain each other are not involved in any cycle of the view-forest,
then〈T, E〉 is view-atomic.

Proof. The proof is similar to the proof of Theorem 4.3.

The commit-node algorithm for checking view-atomicity is
similar to the algorithm for checking conflict-atomicity proposed in
Section 4.1, except that the view-forest is constructed and checked
based on Theorems 4.4 and 4.6. Similarly as before, the worst-case
time complexity of the algorithm isO(|T | × n2

t × n2
e).

5. The Polynomial Equivalence of Conflict- and
View-Atomicity

The following theorem shows that the problems of checking
conflict-atomicity and checking view-atomicity are polynomially
reducible to each other. This result is somewhat surprising, consid-
ering that checking conflict serializability is in P [3] and checking
view serializability is NP-complete [16], so they are not polyno-
mially reducible unless P=NP. To simply the problem, we consider
only transactionsi.e., assumeE = ∅; we expect that the result also
holds without this restriction.

Theorem 5.1. The problems of checking conflict-atomicity and
checking view-atomicity are polynomially reducible to each other
when restricted to problem instances where the setE of non-
transactional units is empty.

Proof. A proof sketch appears here; more details are in [23].
1. We first prove that the problem of checking conflict-atomicity

is polynomially reducible to the problem of checking view-atomicity.
We transformT as follows. Letl be a lock not used inT . For each
variablex, each reader

x is replaced byeacq
l er

x erel
l ; and each write

ew
x is replaced byeacq

l er
x ew

x erel
l , whereeacq

l anderel
l represent an

acquire and a release ofl, respectively. LetT ′ denote the resulting
set of transactions.

We prove thatT is conflict-atomic iffT ′ is view-atomic. “⇒”:
Every tracetr′ of T ′ corresponds to some tracetr of T . Every trace
tr of T has a conflict-equivalent serial tracetrs. We transformtr
andtrs in the same manner that is used to transformT , yielding
tracestr′ and tr′s of T ′, respectively. We show in [23] thattr′

is view-equivalent to the serial tracetr′s. “⇐”: For each trace
tr′ of T ′ and its view-equivalent serial tracetr′s, we remove the
operations inserted when constructingT ′ fromT . This yields traces
tr andtrs of T . We show in [23] thattr is conflict-equivalent to
trs.

2. We can check view-atomicity of pairs of transactions inT in
polynomial time based on Theorem 4.5. In the following we prove
that checking view-atomicity can be reduced to checking conflict-
atomicity when all pairs of transactions inT are view-atomic.
Because all pairs of transactions inT are view-atomic, all non-
unit-final writes and non-unit-initial reads do not interact with other
transactions, so we remove them. LetTf denote the resulting set
of transactions. We prove thatT is view-atomic iffTf is conflict-
atomic. “⇒”: We prove the contrapositive by constructing a non-
view-serializable trace ofT from a non-conflict-serializable trace
of Tf . “⇐”: For each tracetr of T , there is a corresponding trace
trf of Tf which has a conflict-equivalent serial tracetrs

f . A serial
tracetrs of T that is view-equivalent totr can be constructed from
trs

f by restoring the removed write and reads.

6. Comparison with Other Atomicity Checking
Algorithms

6.1 Reduction-Based Algorithms

Reduction-based algorithms for checking conflict-atomicity [8, 5,
22] classify events based on commutativity and apply Lipton’s
reduction theorem [15]. We briefly describe the reduction-based
algorithm in [22], which is more accurate than the others.

An event is aright-mover(R) if, whenever it appears immedi-
ately before an event of a different thread, the two events can be
swapped (i.e., they can be executed in the opposite order without
blocking) without changing the resulting state. Aleft-mover(L) is
defined similarly. Events not known to be left or right movers are
non-movers(N). Race-free events are both right and left movers;
events with race are non-movers. Lock acquire events are right-
movers. Lock release events are left-movers. The reduction-based
algorithm is based on the following variant of Lipton’s reduc-
tion theorem: a setT of transactions is conflict-atomic ifT has
no potential for deadlock and each transaction inT has the form
(R + AcqA∗Rel)∗N?(L + AcqA∗Rel)∗, whereR, L, and N
denote right-mover, left-mover, and non-mover respectively, and
AcqA∗Rel denotes an acquire of some lock, followed by accesses
to read-only or thread-local variables, followed by release of the
same lock.

The following theorem and example together show that The-
orem 4.1 is more accurate than the above reduction theorem for
conflict-atomicity.

Theorem 6.1. If a transactiont has the form
(R + AcqA∗Rel)∗N?(L + AcqA∗Rel)∗, thent has at most one
commit node in the conflict-forest.

Proof. According to the algorithm in Figure 3, the block denoted
by AcqA∗Rel does not contain any communication node. All syn-
chronization blocks denoted byR∗N?L∗ must be nested. Thus,
for any two communication nodes int that are also synchroniza-
tion nodes, one is a descendant of the other.t contains at most one
non-mover, and it occurs in the inner-most synchronization block.
Thus, there is at most one access node int that is also a commu-
nication node, and that communication node is a descendant of all
other communication nodes int. Thus, for any two communication
nodes of transactiont, one is a descendant of the other. Hence,t
has at most one commit node.

Now we give an example that is conflict-atomic according to
Theorem 4.1 but is wrongly reported to be non-atomic by the
reduction theorem. LetT = {t1, t2}, wheret1 consists ofer1

x

followed byew1
x , andt2 consists of onlyer2

x . t1 has the formNN
which does not match(R + AcqA∗Rel)∗N?(L + AcqA∗Rel)∗,
but t1 andt2 each have only one commit node.

The commit-node algorithm of Section 4.1 contains the benefits
of all the improvements to the reduction-based algorithm described
in [22], which include the improvements proposed in [5]. For ex-
ample, for re-entrant locks, thread-local locks, and protected locks,
there is no inter-edge connected to the corresponding synchroniza-
tion nodes.

Therefore, the reduction-based algorithm is less accurate than
the commit-node algorithm of Section 4.1.

6.2 The Block-Based Algorithm

The block-based algorithm [22] checks view-atomicity by consid-
ering pairs ofblocksfrom different transactions. Intuitively, a block
captures the information about two accesses and the associated syn-
chronization that is relevant to atomicity checking. The block-based
algorithm constructs blocks from an observed trace and then com-
pares each block with all blocks in other concurrent transactions.
If two blocks are found to match certain unserializable patterns,
the transactions containing them are not atomic. The unserializable
patterns are defined based on view serializability; for example, one
unserializable pattern is when a write of one transaction can happen
between two continuous reads of another concurrent transaction.

The commit-node algorithm and the block-based algorithm are
both exact tests for view-atomicity for two transactions, but the for-
mer runs much faster in most programs in the experiments in Sec-
tion 8. For three or more transactions, the commit-node algorithm is
an efficient conservative test that is very accurate in practice based
on the experiments in Section 8; the block-based algorithm can pro-
vide an exact test but is significantly more expensive.

7. Implementation
We implemented the commit-node algorithms for checking conflict-
atomicity and view-atomicity in Java. The implementation consists
of three parts: instrumentation, monitoring and off-line analysis.
Instrumentation is discussed in Section 7.1. The monitor inter-
cepts all events described in Section 2 and constructs access trees.
Each access tree is optimized to discard the redundant accesses,
as discussed in Section 7.2. If there are more than two identical
access trees, we save only two copies, since the rest are redun-
dant for checking atomicity. A dynamic escape analysis introduced
in Section 7.3 is used to determine when a variable escapes. A
happen-before analysis introduced in Section 7.4 is used to deter-
mine whether two units are concurrent. When the program termi-
nates, the algorithm adds inter-edges between access trees, and then
checks conflict-atomicity and view-atomicity using the algorithms
in Sections 4.1 and 4.2, respectively.

7.1 Instrumentation

We modify the pretty-printer in the Kopi [14] compiler to insert
instrumentation as it pretty-prints the source code. The instrumen-
tation intercepts the following events: (1) reads and writes to all
monitored fields (see below); (2) entering and exiting synchronized
blocks, including synchronized methods; (3) entering and exiting
methods that are considered as transactions (discussed in Section
2); (4) calls to threadstart andjoin; (5) barrier synchronization.

All non-final fields (with primitive type or reference type) of the
specified classes (by default, all classes) are monitored. Accesses
to these fields in all methods of all classes are instrumented. Local
variables are not monitored, because they are accessed by at most
one thread. Our system inserts fields into monitored classes to
keep track ofshadow information, e.g., whether the object has
escaped. There is no way to insert fields into array classes in Java,
so we maintain a hash table that maps each array referencea to an
array with shadow information for each element ofa. Monitoring
every array element causes large slowdown in some programs, so
our system supports “sampling” of arrays, in which only index
positions below a user-specified cutoff are monitored.

7.2 Optimization: Trimming the Access Tree

It is not necessary to save all accesses to escaped variables. For
access nodes with the same parent node, we preserve only the first
two read accesses and the first two write accesses (if they exist) to
each escaped variable, because the first two reads and writes tox
can represent all discarded accesses for checking (conflict or view)
atomicity. The resulting trees and forests are said to betrimmed.

Theorem 7.1. For every〈T, E〉, and every hypothesisH about the
conflict-forest and view-forest in the theorems of Section 4,H holds
for the trimmed forest iff it holds for the untrimmed forest.

Proof. 1. Consider reads. LetR be a set of three or more reads to
the same variable that share the same parent node. It is easy to see
that in both conflict forest and view forest, either all of them are
connected to a given write in another unit by inter-edges, or none
of them are connected to it. Suppose we evaluateH considering
only the first two reads inR. It is easy to show that considering
additional reads inR either does not generate any additional inter-
edges, or the generated edges do not affectH.

2. Consider writes in the conflict-forest. LetW be a set of three
or more writes to the same variable that share the same parent node.
In the conflict forest, either all of them are connected to a given
read or write of another unit by inter-edges, or none of them are
connected to it. Similarly as for reads, we can show that considering
the third and subsequent writes inW either does not generate any
additional inter-edges, or the generated edges do not affectH. For
the view forest, ifW does not contain a unit-final write, then the
reasoning is similar to the previous cases; ifW contains a unit-final
write, it gets removed and the second write inW becomes the unit-
final to that variable; it is easy to verify (for each hypothesisH)
that this does not affectH.

7.3 Dynamic Escape Analysis

Before an object escapes from the thread that created it, all oper-
ations on it can be ignored when checking atomicity. An objecto
escapes in the following scenarios: (1)o is stored in a static field or
a field of an escaped object; (2)o is an instance of a thread and the
thread is started; (3)o is referenced by a field of another objecto′,
ando′ escapes (this leads to cascading escape); (4)o is passed as
an argument to a native method that may cause it to escape.

To indicate whether an object has escaped, a boolean instance
field escaped is added to every instrumented class. Its initial value
is false. To detect when objects escape, we instrument all method

calls, and all stores to static fields, instance fields, and arrays. When
an object escapes, it is marked as escaped by setting itsescaped
field to true, and all objects to which it refers are marked as
escaped (and so on, recursively); Java’s reflection mechanism is
used to dynamically find those objects. More details appear in [22].

7.4 Happen-Before Analysis

The execution of a thread is separated intoperiodsby occurrences
of synchronization events. A thread periodhappens beforeanother
thread period if it must end before the other thread period starts.

Our happen-before analysis tracks only happen-before relation-
ships induced bystart andjoin on threads and by barrier syn-
chronization. A barrier is a rendezvous point for a specified number
n of threads. Once alln threads reach the barrier, all of them may
continue executing. Happen-before relationships induced bywait
andnotify could also be analyzed; we do not do this because we
believe thatwait andnotify are rarely used to achieve atomicity.

We use a directed graph to represent the happen-before relations
between thread periods. There is a path from the node representing
p1 to the node representingp2 iff p1 happens beforep2. More
details are in [22].

8. Experiments
We perform experiments with 12 programs. They areelevator,
tsp, sor, andhedc from [19];moldyn, montecarlo, andraytracer
from the Java Grande Benchmark Suite [12];StringBuffer,
Vector, Hashtable, andStack from Sun JDK 1.4.2; andjigsaw
from W3C [13].elevator simulates the actions of multiple ele-
vators.tsp solves the travelling salesman problem; we run it on
the accompanying data filemap14. sor is a scientific computing
program which uses barriers rather than locks for synchronization.
hedc is a Web crawler that searches astrophysics data on the Web.
moldyn, montecarlo, andraytracer are computation-intensive
parallel programs that compute molecular dynamics, Monte Carlo
simulation, and ray tracing, respectively.jigsaw is a Web server
implemented in Java; we instrument only its packages that are re-
lated to HTTP service. Table 1 shows the number of lines of code
in instrumented classes,i.e., it excludes code in uninstrumented
libraries. For all programs that accept the number of threads as an
argument, we use three threads. All experiments are done on a Sun
Blade 1500 with a 1GHz UltraSPARC III CPU, 2GB RAM, SunOS
5.8, and JDK 1.4.2.

Table 1 compares the running time, result and storage of the
commit-node algorithm for view-atomicity described at the end of
Section 4.2 with the off-line reduction-based algorithm [22] and
the pairwise block-based algorithm [22]. This version of the block-
based algorithm checks view-atomicity of all pairs of transactions;
the full block-based algorithm, which checks whether the entire set
of transactions is atomic, would be significantly slower. “LOC” is
the lines of code. “Base time” is the running time of the uninstru-
mented program. “Intrcpt time” is the running time when all events
relevant to atomicity checking are intercepted but not processed
(an empty method is called). For each algorithm, “time” includes
the running time of the instrumented program and the subsequent
analysis. “space” is the storage used by each algorithm. The storage
of the commit-node algorithm is the sum of the number of nodes
and the number of inter-edges (which in these experiments is at
most 2/3 of the number of nodes) in the trimmed view-forest. The
storage of the reduction-based algorithm is the total size of lock-
sets (which store identifiers of lock objects) and thread-sets (which
store identifiers of thread periods) for all escaped variables. The
storage of the block-based algorithm is the number of blocks. “re-
port” reflects the warnings issued by each algorithm. We classify
warnings issued by each algorithm into three categories:

Program LOC Base Intrcpt Commit-node Alg Reduction-based Alg Block-based Alg
time time time report space time report space time report space

elevator 528 0.2s 0.34s 0.4s 0-2-0 342 0.5s 0-2-0 184 0.6s 0-2-0 108
tsp 706 0.24s 0.4s 40.0s 0-2-0 3015 32.5s 0-2-0 530 8m59s 0-2-0 13474
sor 251 0.47s 47.1s 52.4s 0-0-0 90 53.3s 0-0-0 64 1m4.1s 0-0-0 3056
hedc 2197 0.6s 0.82s 1.0s 0-0-0 892 1.0s 0-0-1 349 2.1s 0-0-0 1085
moldyn 1265 44.03s 24m34s 34m26s 0-0-0 3819 38m22.1s 0-0-0 810 28m54.6s 0-0-0 132
montecarlo 3619 15.85s 7m37s 7m43s 0-0-0 148 8m10.1 0-0-0 79 8m11.4s 0-0-0 159
raytracer 1832 14.34s 10m8s 10m50s 2-0-0 106 11m58.9s 2-0-0 26 36m17.6s 2-0-0 39
jigsaw 25012 1.60s 2.2s 3.4s 1-3-0 4031 2.74s 1-3-1 2012 8m25.4s 1-3-0 17254
StringBuffer 1255 - - - 0-1-0 - - 0-1-0 - - 0-1-0 -
Vector 1020 - - - 4-4-0 - - 4-4-10 - - 4-4-0 -
Hashtable 1054 - - - 0-4-0 - - 0-4-1 - - 0-4-0 -
Stack 119 - - - 3-4-0 - - 3-4-12 - - 3-4-0 -

Table 1. Performance and Accuracy. The categories of “report” for the three algorithms are bug - benign - false alarm. A dash means that
the item is negligible.

• Bug: the warning reflects a violation of atomicity that might
cause a violation of an application-specific correctness require-
ment.

• Benign: the warning reflects a violation of atomicity that does
not affect the correctness of the application.

• False alarm: the warning does not reflect a violation of atomic-
ity.

Table 1 shows, for each category, the number of methods such
that a warning in that category is issued for a transaction that is an
execution of that method or part of the code of that method. For the
commit-node algorithm, we count based on the transactions that do
not satisfy the condition in the hypothesis of Theorem 4.6.

We conclude the following from Table 1. (1) The commit-
node algorithm has the same accuracy on these benchmarks as
the pairwise block-based algorithm, and they are more accurate
than the reduction-based algorithm; specifically, they produce no
false alarms, while the reduction-based algorithm produces 25 false
alarms in total. Diagnosing a warning as a false alarm can re-
quire significant human time and effort, so reducing the number of
false alarms is crucial in practice. (2) In the experiments, the pair-
wise block-based algorithm does not miss any atomicity violations
involving three or more transactions (i.e., no such violations are
present). (3) The commit-node algorithm is as fast as the reduction-
based algorithm (even 0.4% faster on average), and significantly
faster than the block-based algorithm (56% faster on average).

We also check these programs for conflict-atomicity using the
commit-node algorithm presented in Section 4.1. It issues exactly
the same warnings (including bugs, benign and false alarms) as the
commit-node algorithm for checking view-atomicity. This shows
that the reduction-based algorithm issues false alarms because its
analysis is imprecise, not because it is checking conflict-atomicity
while the other algorithms used for Table 1 check view-atomicity.
The commit-node algorithm for conflict-atomicity is slightly faster
(5.9% faster on average) than the commit-node algorithm for view-
atomicity, because the former needs less time to construct inter-
edges.

We also test the programs by comparing pair of transactions
each time according to Theorems 4.2 and 4.5. Checking pairs of
transaction for conflict-atomicity and view-atomicity produces the
same result as checking the whole set of transactions.

The bugs in raytracer come from atomicity viola-
tions involving the field JGFRayTracerBench.checksum1,
which could get an incorrect value, causing the program
to report failure. The bug injigsaw is due to atom-

icity violations involving the field w3c.tools.resources.
store.ResourceStoreManager.loadedStore due to state-
mentsloadedStore++ andloadedStore--without synchroniza-
tion; as a result,loadedStore may contain an incorrect value. The
error in jigsaw described in [20] does not appear in our experi-
ments, because the relevant code was modified in the newer version
of jigsaw that we tested. The above atomicity violations involve
data races. The errors inVector andStack are from atomicity vi-
olations involving the fieldelementCount (discussed in Section
1).

The reduction-based algorithm produces more false alarms
than the others. For example, someCollection classes use
modCount to count modifications. Thus, when an update method
m1 executesmodCount++ (which is a read followed by a write),
and another methodm2 checks for recent modifications by
reading modCount, there is a serializable sequence of events
m1:read(modCount) m2:read(modCount) m1:write(modCount).
But the benign race onmodCount causes the reduction-based
algorithm to produce a false alarm here, becausem1 contains
two accesses tomodCount that are non-movers. Similar scenar-
ios exist in jigsaw (e.g., on the field alive in the method
w3c.util.CachedThread.waitForRunner()) and other pro-
grams.

9. Related Work
In [21, 22], we proposed the reduction-based and block-based al-
gorithms for runtime atomicity checking. Flanagan and Freund [5]
independently proposed a reduction-based algorithm. Our previous
experiments showed that the reduction-based algorithm is faster,
and the block-based algorithm is more accurate [22]. This paper
presents a new algorithm that is as fast as the reduction-based algo-
rithm, is as accurate as the pairwise block-based algorithm, and can
detect atomicity violations involving any number of transactions.
We explored the use of static analysis to decrease the overhead for
the reduction-based algorithm [17] and the block-based algorithm
[1]. The similar technique can be used to reduce the overhead of
the commit-node algorithm as our future work.

Flanaganet. al. extended their atomicity type system to ver-
ify abstract atomicity of programs by analyzing purity [7]. We ex-
tended their work to verify atomicity of programs that use non-
blocking synchronization [24].

Model checking can also be used to check atomicity [9, 4].
Model checking provides stronger guarantees than runtime mon-
itoring, because it considers all possible behaviors of a program.
Also, many of the supporting analyses, such as dynamic escape

analysis, analysis of arrays, deadlock detection, and special treat-
ment of thread-local and read-only variables, etc., can be performed
more easily and precisely in a model checker than by program in-
strumentation [9]. However, model checking is more expensive and
is feasible only for programs with relatively small state spaces.

von Praun and Gross [20] present a static analysis to detect
violations of method consistency, which is similar to atomicity.
Although their static analysis is unsound (in order to reduce the
cost and the number of false alarms), it considers the entire program
and therefore may be more thorough than runtime analysis in some
cases. On the other hand, it produces more false alarms than our
commit-node algorithm, based on a comparison of the false alarms
in our Table 1 with the false and spurious reports in Table 1 of [20].

Linearizability[11] is a correctness condition for objects which
are shared by concurrent processes. Linearizability can be viewed
as a special case of strict serializability where transactions are re-
stricted to consist of a single method applied to a single object [11].
Linearizability is defined semantically,i.e., in terms of the spec-
ification (correctness requirements) of the object. In contrast, we
define atomicity in terms of operations performed by the imple-
mentation. Our definition is more restrictive but has the practical
benefit of being directly applicable to programs for which formal
correctness requirements are unavailable. Vafeiadiset. al. present
an approach to use rely-guarantee reasoning to verify linearizabil-
ity of several algorithms using fine-grain synchronization [18]. The
approach is not automatic but provides static guarantees and can
analyze fine-grain synchronization for which our algorithms pro-
duce false alarms.

10. Conclusions and Future Work
This paper defines two kinds of atomicity, conflict-atomicity and
view-atomicity. In theory, view-atomicity is more appealing be-
cause it is less restrictive, but in our experiments, checking view-
atomicity and checking conflict-atomicity give the same results. It
is well-known that checking conflict-serializability is in P [3] and
checking view-serializability is NP-complete [16]; surprisingly, we
show that the problems of checking conflict-atomicity and check-
ing view-atomicity are polynomially reducible to each other.

In our experiments, the commit-node algorithms proposed in
this paper are as fast as and significantly more accurate than our
previous reduction-based algorithm, and they are as accurate as
and significantly faster than our previous pairwise block-based
algorithm.

Directions for future work include using static analysis to re-
duce the overhead of the commit-node algorithms, evaluating them
on larger applications, and considering fine-grain synchronization.

References
[1] R. Agarwal, A. Sasturkar, L. Wang, and S. D. Stoller. Optimized run-

time race detection and atomicity checking using partial discovered
types. InProc. 20th IEEE/ACM International Conference on
Automated Software Engineering (ASE). ACM Press, Nov. 2005.

[2] R. Agarwal, L. Wang, and S. D. Stoller. Detecting potential deadlocks
with static analysis and runtime monitoring. InProceedings of the
Parallel and Distributed Systems: Testing and Debugging (PADTAD)
Track of the 2005 IBM Verification Conference. Springer-Verlag, Nov.
2005.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman.Concurrency
control and recovery in database systems. Addison Wesley, 1987.

[4] C. Flanagan. Verifying commit-atomicity using model-checking. In
Proc. 11th Int’l. SPIN Workshop on Model Checking of Software,
volume 2989 ofLNCS, pages 252–266. Springer-Verlag, 2004.

[5] C. Flanagan and S. N. Freund. Atomizer: A dynamic atomicity
checker for multithreaded programs. InProc. of ACM Symposium

on Principles of Programming Languages (POPL), pages 256–267.
ACM Press, 2004.

[6] C. Flanagan and S. N. Freund. Type inference against races. InStatic
Analysis Symposium (SAS), volume 3148 ofLNCS. Springer-Verlag,
Aug. 2004.

[7] C. Flanagan, S. N. Freund, and S. Qadeer. Exploiting purity for
atomicity. IEEE Transactions on Software Engineering, 31(4), Apr.
2005.

[8] C. Flanagan and S. Qadeer. A type and effect system for atomicity. In
Proc. ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). ACM Press, 2003.

[9] J. Hatcliff, Robby, and M. B. Dwyer. Verifying atomicity specifica-
tions for concurrent object-oriented software using model-checking.
In Proc. 5th International Conference on Verification, Model Check-
ing and Abstract Interpretation (VMCAI), volume 2937 ofLNCS.
Springer-Verlag, Jan. 2004.

[10] K. Havelund. Using runtime analysis to guide model checking of
Java programs. InProc. 7th Int’l. SPIN Workshop on Model Checking
of Software, volume 1885 ofLNCS, pages 245–264. Springer-Verlag,
Aug. 2000.

[11] M. P. Herlihy and J. M. Wing. Linearizability: a correctness
condition for concurrent objects.ACM Transactions on Programming
Languages and Systems, 12(3):463–492, July 1990.

[12] Java Grande Forum. Java Grande Multi-threaded Benchmark Suite.
version 1.0. Available from http://www.javagrande.org/.

[13] Jigsaw, version 2.2.4. Available from http://www.w3c.org.

[14] Decision Management Systems GmbH, Kopi compiler. Available
from http://www.dms.at/kopi/.

[15] R. J. Lipton. Reduction: A method of proving properties of parallel
programs.Communications of the ACM, 18(12):717–721, 1975.

[16] C. H. Papadimitriou. The serializability of concurrent database
updates.Journal of the ACM, 26(4):631–653, Oct. 1979.

[17] A. Sasturkar, R. Agarwal, L. Wang, and S. D. Stoller. Automated
type-based analysis of data races and atomicity. InProc. ACM
SIGPLAN 2005 Symposium on Principles and Practice of Parallel
Programming (PPoPP). ACM Press, June 2005.

[18] V. Vefeiadis, M. Herlihy, T. Hoare, and M. Shapiro. Proving
correctness of highly-concurrent linearizable objects. InProc. ACM
SIGPLAN 2006 Symposium on Principles and Practice of Parallel
Programming (PPoPP). ACM Press, 2006.

[19] C. von Praun and T. R. Gross. Object race detection. InProc.
16th ACM Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), volume 36(11) ofSIGPLAN
Notices, pages 70–82. ACM Press, Oct. 2001.

[20] C. von Praun and T. R. Gross. Static detection of atomicity violations
in object-oriented programs. InJournal of Object Technology, vol.3,
no. 6, June 2004.

[21] L. Wang and S. D. Stoller. Run-time analysis for atomicity. In
Third Workshop on Runtime Verification (RV03), volume 89(2) of
Electronic Notes in Theoretical Computer Science. Elsevier, 2003.

[22] L. Wang and S. D. Stoller. Runtime analysis of atomicity for multi-
threaded programs. Technical Report DAR-04-14, SUNY at Stony
Brook, Computer Science Dept., July 2004. (revised May 2005). To
appear inIEEE Transactions on Software Engineering.

[23] L. Wang and S. D. Stoller. Accurate and efficient runtime detection
of atomicity errors in concurrent programs. Technical Report DAR-
05-26, SUNY at Stony Brook, Computer Science Dept., Sept. 2005.

[24] L. Wang and S. D. Stoller. Static analysis for programs with non-
blocking synchronization. InProc. ACM SIGPLAN 2005 Symposium
on Principles and Practice of Parallel Programming (PPoPP). ACM
Press, June 2005.

