
Reasoning about the Behavior of Semantic Web Services
with Concurrent Transaction Logic

Dumitru Roman
DERI Innsbruck, Austria

dumitru.roman@deri.org

Michael Kifer
State University of New York at Stony Brook,

USA
kifer@cs.sunysb.edu

ABSTRACT
The recent upsurge in the interest in Semantic Web services
and the efforts such as the WSMO, OWL-S, and SWSL
projects have drawn attention to the importance of logic-
based modeling of the behavior of Web services. In the
context of Semantic Web services, the logic-based approach
has many applications, including service discovery, service
choreography and enactment, and contracting for services.
In this paper we extend our earlier work on workflow mod-
eling towards reasoning about service behavior, including
the aforementioned choreography, contracting, and enact-
ment. The formalism underlying our framework is Concur-
rent Transaction Logic—a logic for declarative specification,
analysis, and execution of database transactions. The new
results include reasoning about service behavior under more
general sets of constraints and extension of the framework
towards data flow—a crucial aspect that was completely
missing from previous logical formalizations.

1. INTRODUCTION
The idea and the promise of combining the Semantic Web

with Web services has attracted intense interest in the re-
search community and industry. The early projects like
OWL-S1 and SWSL2 were followed by bigger and more sus-
tained efforts like WSMO,3 which is at the center of a series
of large European integrated projects, such as DIP4 and SU-
PER5 The research problems in this area are many and var-
ied in nature: ontology specification languages that must go
well beyond OWL, service discovery, service choreography
(i.e., specification of how autonomous client agents interact
with services), automated contracting for services, service
enactment, and execution monitoring, and others. In this

1http://www.daml.org/services/owl-s/
2http://www.w3.org/Submission/SWSF-SWSL/
3http://www.wsmo.org/
4http://dip.semanticweb.org/
5http://ip-super.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VLDB ’07 Vienna, Austria
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

paper we address some of the aforesaid problems: modeling,
contracting, and enactment.

The techniques we are using here are based on Concurrent
Transaction Logic (CTR) [6] and continue our earlier line of
research [7, 16, 8]. The use of CTR for process modeling
in workflows was first advocated in [7], where a schedul-
ing algorithm for executing workflows under temporal and
causality constraints was introduced. The present work ex-
tends those results fourfold. First, we allow a significantly
more complex set of constraints, which encompasses all the
constraints available in the recently proposed language Dec-
SerFlow [19]. Second, data flow, without which any descrip-
tion of a service of workflow is unrealistic, is now part of
the framework. Third, the algorithms are greatly improved
by expanding the proof theory of CTR, which allowed us to
replace various ad hoc parts of the earlier approaches (such
as so-called knot elimination in [7, 8]). Finally, we show
how our framework applies to the areas of service chore-
ography and contracting—areas whose logical foundations
have not seen much research. In [8] we extended CTR to a
logic, called CTR-S, which was designed for modeling service
choreography and contracting. However, CTR-S turned out
to be a very complex formalism and the results were limited
to rather simple forms of contracting. The present paper
uses a much simpler logic, CTR, but complex patterns of
choreography and contracting can be modelled nonetheless.
Our new techniques significantly extend the kinds of service
contracts that can be handled, but it is not known whether
and how much is given up in terms of choreography. Finally,
[16] introduced techniques from constraint logic program-
ming to the problem of service enactment under aggregate
constraints (such as aggregate cost of service execution). We
incorporate some of those techniques to model the data flow
that arises is service choreography and contracting. Discus-
sion of additional related work appears in Section 6.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the basic techniques from process modeling,
which includes control flow graphs and constraints. It then
outlines our framework in which service choreography and
the process of contracting for services can be handled using
these techniques.

To make the paper self-contained, Section 3 gives a short
introduction to CTR. Section 4 shows how the framework
outlined in Section 2 is formalized in CTR. Section 5 de-
scribes the verification procedure, which is the key com-
ponent of service contracting in our framework. Section 6
presents related work, and Section 7 concludes this paper.

2. SERVICE BEHAVIOR: MODELING,
REASONING, AND ENACTMENT

Figure 1 depicts the main aspects of service behavior ad-
dressed in our work. The behavior of the service is described
through its choreography—a specification of how to invoke
and interact with the service in order to get results. This
is known as he WSMO model of choreography.6 The W3
Choreography group’s model includes both the service in-
teractions and the client interactions.7 This model is sym-
metric and can be represented in our framework by including
the choreography, policy, and contract components on both
the client and the service side in the figure. This can be
further extended to multiagent interactions. However, these
issues are beyond the scope of this paper and they are or-
thogonal to the reasoning problems, which we consider here.
One way to describe the choreography interface of the ser-
vice is through the control and data flow graphs.

Figure 1: Elements of the reasoning architecture for
semantic Web services.

The service policy component shown in Figure 1 is typi-
cally a set of additional constraints imposed on the chore-
ography and on the input. The contract requirements, in-
cluded on the client side of the figure, represents the con-
tractual requirements of the user, which go beyond the ba-
sic functions (such as selling books or helping with travel
arrangements) of the service. Thus, in our framework, the
choreography of a service is described with control and data
flow graphs, while service policy and clients’ contract re-
quirements are described with constraints. We will now dis-
cuss these modeling tools in more detail using a concrete
scenario depicted in Figure 2.

Control flow graphs. Figure 2 depicts a fairly complex
pattern of interaction with a service that sells high ticket
items. It includes provisions for optionally giving rebates to
customers who fulfill certain requirements as well as a pos-
sibility that customers might return the ordered items and
receive partial refund. Payment is allowed by credit cards
or checks and in some cases the service might require those
payments to be secured by a credit card (if the available

6http://www.wsmo.org/TR/d14/
7http://www.w3.org/TR/2006/WD-ws-cdl-10-primer-
20060619/

limit exceeds the price) or by providing a guarantor of pay-
ment. The figure represents the pattern of interaction with
the service using so-called control flow graph.

Figure 2: A control-flow graph.

A control flow graph is typically used to specify local ex-
ecution dependencies among the interactions with the ser-
vice; it is a good way to visualize the overall flow of control.
Such a graph has an initial and the final interaction in the
process, the successor-interaction for each interaction in the
graph, and whether these successors must all be executed
concurrently or in some unspecified order (represented us-
ing AND-nodes), or whether only one of the alternative
branches needs to be executed non-deterministically (rep-
resented using OR-nodes). In Figure 2, all successors of
the initial interaction place order must be executed, but
all these successors are OR-nodes. For example, the low-
ermost successor node of place order is an OR-node and
only one of its successors, pay by cheque or pay by CC,
is supposed to be executed. The node accept delivery is
also an OR-node, but with a twist. The upper branch go-
ing out of this node represent a situation where a customer
returns the purchased item. The lower branch, however, has
no interactions, and it meets the upper branch. This means
that the upper branch is optional : the customer may or may
not return the item. Similarly, the rightmost segment of the
graph indicates that rebate is an optional interaction.

Two more things about the control flow graph in Figure 2
are worth noting: the shaded boxes labeled with give sec-
urity and pay, and the condition credit limit > price at-
tached to the arc leaving the node give CC. The shaded
boxes delineate control flow subgraphs corresponding to com-
plex interactions that are composed of several sub-interactions.
If a control graph represents a workflow then these complex
interactions would be would called complex tasks and would
correspond subworkflows. The condition credit limit > price

attached to the aforesaid arc is called a transition condition.
It says that in order for the next interaction with the service
to take place the condition must be satisfied. The parame-
ters credit limit and price may be obtained by querying the
current state of the service or they may be passed as param-
eters from one interaction to another—the actual method
depends on a concrete representation. In general, transition
conditions are Boolean expressions attached to the arcs in
control flow graphs. Only the arcs whose conditions evaluate
to true can be followed at run time.

Constraints. In more complex cases, a control flow graph
may contain additional elements, such as loops. However,
such graphs are typically used to represent local dependen-
cies among interactions in a choreography interface. Global
dependencies often arise as part of specification of policies;
they take the form of global temporal and causality con-
straints. Yet another situation when global constraints arise
is when a client has specific requirements to interaction with
the service. These requirements have little to do with what
the functionality of the service (e.g., selling books), but
rather with the particular guarantees that the client wants
to have in order to enter into a contract with the service and
strike a deal. We call such sets of client-side constrains client
contract requirements. Figure 3 gives an example of global
constraints that represent service policy and client contract
requirements for our running example.

Service policy
1. If pay by CC takes place after accept delivery

then give security must precede accept delivery

2. If pay by cheque takes place after accept delivery

then pay by cheque immediately follows accept delivery

3. If rebate is given then pay must precede accept delivery

Client contract requirements
4. The interaction accept delivery must precede pay by check

Figure 3: Global behavioral constraints.

Data flow graphs. Any series of interactions with a ser-
vice typically involves passing data, and the flow of data
among these interactions are normally modeled using graphs.
A data flow graph is like a control flow graph except that the
arcs represent the routes along which data is passed from
one interaction to the other. These arcs are labeled with
data items that are being passed around. Since, in many
cases, control flow is accompanied by passing data, a data
flow graph often has many of the arcs present in the control
flow graph. A data flow graph corresponding to our running
example is depicted in Figure 4.

Figure 4: A data-flow graph.

The parts “inherited” from the control flow graph are
shaded to help focus attention on the new elements. The
data flow graph has two new arcs, which represent non-local
passing of the credit card information. Also, the arcs going

out of the initial interaction place order are labeled with
the Order# item to indicate that this item is being passed
along those arcs. In fact, this item (and some others) are
passed along almost all arcs in the graph and to avoid clut-
tering the picture we did not include them.

One important observation is that the interactions at the
ends of an arc in the data flow graph must be ordered in
time, since generally the interaction that receives an item
must wait for the interaction that produces the item. How-
ever, this interaction is not only temporal but also con-
ditional. For instance, the interaction partial refund re-
ceives the credit card number from pay by CC only if the
client pays by a credit card. Such features must be repre-
sentable in the underlying formalism.

Service enactment. Service enactment deals with the
execution of the process underlying the service. Interactions
in the choreography interface must be first scheduled (i.e.
ordered) according to the model specified by the control and
data flow graphs, the service policy, etc., and then executed.
Process scheduling is a non-trivial problem and solutions
have typically high computational complexity [13]. Existing
approaches to process scheduling can be classified as passive
and proactive.

Passive schedulers receive sequences of events from an ex-
ternal source, such as a process or a transaction manager,
and verify that these sequences satisfy all global constraints
(possibly after reordering some events in the incoming se-
quences). Several such schedulers are described in [17, 2,
12]. In passive scheduling, an unspecified external system
is supposed to ensure that scheduling complies with all the
constraints, that liveness of the scheduling strategy is ob-
served. The known algorithms for these tasks are worst-
case exponential because verification of constraints happens
at run time.

Proactive scheduling does not rely on external systems.
Instead, it constructs a concise (as much as possible) explicit
representation of all allowed executions (i.e., executions that
are known to satisfy all constraints)—either in advance or
dynamically. The representation of all valid schedules is
then used by the scheduler. Depending on the expressive-
ness of the framework, such scheduling can be linear at run
time, since there is no need to verify constraints after the
construction stage. In a sense, all constraints get compiled
into the aforesaid concise representation. One such proac-
tive approach is described in [7]. Although [7] proposes a
linear run-time scheduler this is achieved by placing limits
on process modelling, which does not permit transition con-
ditions in control flow graphs and does not consider data
flow.

3. THE BASICS OF CTR
The formalism used in this paper to model, reason, and

enact service choreographies is Concurrent Transaction Logic
or CTR [6]. This section provides a short summary of the
relevant parts of CTR syntax and informally explains the
semantics. Due to space limitation, we cannot discuss the
model theory of the logic or its proof theory, but they can
be found in [6].

CTR is a conservative extension of the classical predicate
logic in the sense that both its proof theory and the model
theory reduce to classical logic for formulas that do not cause
state transitions (but only query the current state).

Basic syntax. The atomic formulas of CTR are identical
to those of the classical logic, i.e., they are expressions of
the form p(t1, . . . , tn), where p is a predicate symbol and
the ti’s are function terms. More complex formulas are built
with the help of connectives and quantifiers.

Apart from the classical ∨, ∧, ¬, ∀, and ∃, CTR has two
additional connectives, ⊗ (serial conjunction) and | (con-
current conjunction), and two modal operators, 3 (execu-
tional possibility) and ⊙ (isolated execution). For instance,
⊙(p(X) ⊗ q(X)) | (∀Y (r(Y) ∨ s(X,Y))) is a well-formed
formula.

Informal semantics. Underlying the logic and its seman-
tics is a set of database states and a collection of paths. For
the purpose of this paper, the reader can think of the states
as just a set of relational databases, but the logic does not
rely on the exact nature of the states—it can deal with a
wide variety of them.

A path is a finite sequence of states. For instance, if
s1, s2, ..., sn are database states, then 〈s1〉, 〈s1, s2〉, and 〈s1,
s2, ..., sn〉 are paths of length 1, 2, and n, respectively.

Just as in classical logic, CTR formulas assume truth val-
ues. However, unlike classical logic, the truth of CTR for-
mulas is determined over paths, not at states. If a formula,
φ, is true over a path 〈s1, ..., sn〉, it means that φ can execute
starting at state s1. During the execution, the current state
will change to s2, s3, ..., etc., and the execution terminates
at state sn.

With this in mind, the intended meaning of the CTR con-
nectives can be summarized as follows:

• φ ⊗ ψ means: execute φ then execute ψ. Or, model-
theoretically, φ⊗ ψ is true over a path 〈s1, ..., sn〉 if φ
is true over a prefix of that path, say 〈s1, ..., si〉, and
ψ is true over the suffix 〈si, ..., sn〉.

• φ | ψ means: φ and ψ must both execute concurrently,
in an interleaved fashion.

• φ ∧ ψ means: φ and ψ must both execute along the
same path. In practical terms, this is best understood
in terms of constraints on the execution. For instance,
φ can be thought of as a transaction and ψ as a con-
straint on the execution of φ. It is this feature of the
logic that lets us specify temporal constraints as part
of process specifications.

• φ∨ψ means: execute φ or execute ψ non-deterministically.

• ¬φ means: execute in any way, provided that this will
not be a valid execution of φ. Negation is an important
ingredient in temporal constraint specifications.

• ⊙φ means: execute φ in isolation, i.e., without in-
terleaving with other concurrently running activities.
This operator enables us to specify the transactional
parts of process specifications.

Concurrent-Horn subset of CTR. Implication p ← q

is defined as p ∨ ¬q. The form and the purpose of the im-
plication in CTR is similar to that of Datalog: p can be
thought of as the name of a procedure and q as the defini-
tion of that procedure. However, unlike Datalog, both p and
q assume truth values on execution paths, not at states.

More precisely, p← q means: if q can execute along a
path 〈s1, ..., sn〉, then so can p. If p is viewed as a subroutine
name, then the meaning can be re-phrased as: one way to
execute p is to execute its definition, q.

The control flow parts of service choreographies are for-
mally represented using concurrent-Horn goals and concur-
rent Horn rules. A concurrent Horn goal is defined as fol-
lows:

• any atomic formula is a concurrent-Horn goal;

• φ⊗ ψ, φ | ψ, and φ ∨ ψ are concurrent-Horn goals, if
so are φ and ψ;

• ⊙φ and 3φ are concurrent-Horn goals, if so is φ.

A concurrent-Horn rule is a CTR formula of the form
head← body, where head is an atomic formula and body
is a concurrent-Horn goal.

Observe that the definition of concurrent-Horn rules and
goals does not include the connective ∧. In general, ∧ repre-
sents constrained execution, which is usually hard to imple-
ment, since constraints must be checked at every step of the
execution. If a constraint violation is detected, a new exe-
cution path must be tried out. In contrast, the concurrent-
Horn fragment of CTR is efficiently implementable, and
there is an SLD-style proof procedure that proves concurrent-
Horn formulas and executes them at the same time [6].

The efficiency gap between concurrent-Horn execution and
constrained execution is the main motivation for our results.
In a previous work by one of the authors [7], it was shown
that for a certain class of constraints, formulas of the form
ConcurrentHornGoal ∧ Constraints, have an equivalent
concurrent-Horn representation (which, therefore, does not
use the connective ∧). This enabled the use of the proof the-
ory for Horn CTR as a means of obtaining a linear run-time
scheduling algorithm (as opposed to, for example, exponen-
tial run-time scheduling in [18]).

In the present work, we consider a larges class of con-
straints than in [7], and this precludes the strategy used in
[7]. We can still borrow some of the ideas from that early
work and transform ConcurrentHornGoal ∧ Constraints
into a conjunction that uses a smaller set of special kind
of constraints. Although this conjunction cannot be further
reduced to a concurrent Horn goal, we extend the proof the-
ory of CTR to obtain a gain similar to [7]. Furthermore,
we eliminate the need for having to compile away certain
precedence constraints, which in [7] were handled in an ex-
pensive way. Instead, these constraints are now handled by
the extended proof theory.

Elementary updates. We complete our informal intro-
duction to CTR by explaining how execution of (some) for-
mulas may actually change the underlying database state.
Most of the machinery has already been introduced (albeit
very informally). What is missing is the notion of elemen-
tary updates.

In CTR, elementary updates are represented by ordinary
atomic, variable-free formulas. Syntactically, CTR does not
distinguish elementary updates in any way, but the user may
want to do so by adopting a syntactic convention (e.g., a
convention could be that insert.p(t) represents the act of
insertion of tuple t into the relation p).

What distinguishes elementary updates is their seman-
tics. Through some black magic, called transition oracle,

CTR arranges that each elementary updates is always true
along certain arcs, i.e., paths of the form 〈s1, s2〉. Infor-
mally, one can think of an elementary update as a binary
relation over states. For instance, if 〈s1, s2〉 belongs to the
relation corresponding to an elementary update u, it means
that u can cause a transition from state s1 to state s2. Note
that an update can be non-deterministic (any one of a num-
ber of alternative state transitions might be possible) and it
is possible for an update to be inapplicable in certain states
(for instance, delete.p(t) may be applicable only if p(t)
is true in the current state).

This mechanism is very general. It accounts for a wide
variety of elementary state changes: from simple tuple in-
sertions and deletions, to relational assignments, to updates
performed by legacy programs, to whatever workflow ac-
tivities might do. The connectives of CTR are then used
to build more complex updates from the elementary ones
and then to combine these complex updates into even more
complex update programs. This process of building CTR
programs from the ground up is very natural and powerful.
The reader is referred to [3, 5, 6] for concrete examples.

4. MODELLING SERVICES WITH CTR
We now show how to use CTR to represent the control

flow, constraints, and the data flow aspects of service chore-
ographies.

4.1 Control Flow
In [7], it was shown that concurrent Horn goals are natu-

ral formalizations of so called structured control flow graphs.
Nodes in such graphs can be represented by propositions
that act as elementary state transitions of CTR (see the
end of the previous section). The connective ⊗ represents
sequential composition of interactions and is reflected by the
arcs connecting adjacent nodes. The connective | is used
to specify interactions that can be done in parallel; it is
represented by the ”AND”-nodes in the graph. Classical
disjunction ∨ represents non-deterministic choice and cor-
responds to the ”OR”-nodes in the graphs. Transition con-
ditions between adjacent nodes are modeled as queries that
are sequentially composed with the formulas that label the
nodes in question. Subworkflows (or complex interactions
in service choreography—see Section 2) are modeled with
rules. The head of such a rule represents the subworkflow’s
name (the name of a shaded box in Figure 2) and the body
represents the subgraph corresponding to the subworkflow.

In this paper we model not only control flow but also
data flow, so the nodes in the control graph are no longer
propositions, but predicates with variables. These variables
is one mechanism for specifying the data flow. Other data
exchanges may happen through the database state. In this
case, the producer inserts a data item into the shared database
state, and the consuming interaction retrieves it. To illus-
trate, we use CTR to represent the flow of control and data
for our running example (cf. Figures 2 and 4).

The CTR representation uses a special proposition, path,
to specify optional actions. It is defined as φ∨¬φ, for some
(does not matter which) formula φ. This means that path

is true on all possible execution paths. It is a counterpart
of the proposition “true” in classical logic. The proposition
pathwill also be used to represent temporal constraints in
our framework.

place order(Order#,Price) ←
((accept delivery(Order#)⊗ (refund(Order#) ∨ path))
| (give security(Order#, Price) ∨ path)
| pay(Order#, Price)

) ⊗ (rebate(Order#) ∨ path)⊗ end
give security(Order#, Price)←

give guarantor(Order#) ∨
(give CC(Order#, CC#)⊗

credit limit(CC#, Limit)⊗ Limit > Price)
pay(Order#, Price)←

pay by cheque(Order#, Price) ∨ pay by CC(Order#,Price)
refund(Order#)← return(Order#)⊗ partial refund(Order#)
partial refund(Order#)← payment(Order#, cc, CC#)⊗

refund amount(Order#, Amount)⊗
issue credit CC(CC#, Amount)

partial refund(Order#)← payment(Order#, cheque, Cheque#)⊗
refund amount(Order#, Amount)⊗
send check(Order#, Amount)

give CC(Order#, CC#)← insert.payment(Order#, cc, CC#)
pay by cheque(Order#, Price) ← get cheque(Price, Cheque#)⊗

insert.payment(Order#, cheque, Cheque#)
pay by CC(Order#, Price)← payment(Order#, cc, CC#)⊗

charge(CC#, Price)

(1)
One can see that, in this representation, rules are used to

represent subworkflows and variables (such as Order#) to
pass data among choreography interactions. Other instances
of data flow, such as passing the credit card number from
give CC to partial refund is done through the underlying
state: the credit card number is inserted into the state by
give CC and queried by partial refund.

4.2 Events and Constraints
In process-oriented information systems, tasks are typi-

cally modeled in terms of their externally observable events,
such as start , commit , precommit , abort, terminated, etc.
Such events can be directly incorporated as nodes in a con-
trol flow graph. (For brevity, our running example collapses
all significant events for the same task into one event.) Tem-
poral and causality constraints among nodes of the graph are
then expressed in terms of these events. In this work, we re-
strict choreographies to be non-iterative, which means that
we do not use recursive CTR rules.

Definition 4.1 (Assumptions). We make the following
assumptions, which simplify the discussion, but do not limit
the generality of the approach.

• No significant event occurs twice during the execution.

• Each significant event is represented as an elementary
update that applies in every state.

The first assumption does not limit generality, since we are
dealing with non-iterative processes and can always rename
different occurrences of the same type of event. The second
assumption means that we require each significant event to
leave a footprint in the underlying database state. This is
commonly done by maintaining a system log where foot-
prints are recorded. 2

The first assumption above translates into the following unique
event property.

Definition 4.2 (Unique Event Property). A concurrent-
Horn goal G has the unique event property if and only if ev-
ery significant event occurs at most once in every execution
of G. In such cases, we shall also say that G is a unique-
event goal. 2

Unique-event goals can be recognized in linear time in the
size of the goal. It is easy to see that the unique event
property implies the following:

• If G = E1 ⊗E2 is a unique-event goal and α occurs in
E1 then it cannot occur in E2.

• If G = E1 | E2 is a unique-event goal and α occurs in
E1 then it cannot occur in E2.

• If G = E1 ∨ E2 then G is a unique-event goal if and
only if so are both E1 and E2.

In the rest of this paper, all concurrent-Horn goals are as-
sumed to have the unique event property.

Transaction Logic can express a wide variety of tempo-
ral constraints [4], but in this paper we are looking for sets
of constraints that are general enough to be used for ser-
vice policies and client contracts and such that the com-
putational complexity of reasoning about such constraints
is better than what follows from known results. Earlier [7]
studied reasoning about set of constraints, which subsume
Singh’s Event Algebra [18]. In this paper, we extend this
set to cover all constraints of the DecSerFlow language [19].
Using these constraints we can specify that one task must
start before some other task, that one task must start right
after another one finished executing, that the execution of
one task causes some other task to be executed or not ex-
ecuted, etc. The DecSerFlow constraints [19] are believed
to be sufficient for the needs of process-aware information
systems.

We specify all significant events in the system as formulas
drawn from a set denoted by EVENT . Note that, unlike [7],
we use predicates with variables— not just propositions—to
represent control and data flow. In [7], the events could be
simple propositions, but in our case they are existentially
quantified atomic formulas of the form

∃DataF lowV ars eventName(DataF lowV ars)

Here eventName is the event (or interaction) that is sup-
posed to happen (or not happen), and DataFlowVars are
the data flow parameters used in modeling this event (see
(3), for example).

Definition 4.3 (Constraints). The basic building blocks
of CONST R are formulas of the form path⊗e⊗path, path⊗
e, and e ⊗ path, where e ∈ EVENT . Then the following
constraints form the constraint algebra CONST R:

1. Primitive constraints: If e ∈ EVENT then path⊗e⊗
path (event e must happen) and ¬(path ⊗ e ⊗ path)
(event e must not happen) are primitive constraints in
CONST R. For convenience we introduce a shorthand
notation ▽e for path⊗ e⊗ path. Then we say that ▽e

is a positive primitive constraint and ¬▽e is a negative
primitive constraint.

2. Immediate serial constraints: If e1, ..., en ∈ EVENT ,
then path ⊗ ⊙(e1 ⊗ · · · ⊗ en) ⊗ path (events e1, ..., en

must happen next to each other with no other events
in-between) is a (positive) immediate serial constraint
in CONST R. We use ▽ ⊙ (e1 ⊗ · · · ⊗ en) to represent
path⊗ e1 ⊗ · · · ⊗ en ⊗ path.

This type of constraints is quite hard to enforce, and
it was not allowed in [7]. We will see a use of such a
constraint in our running example.

3. Serial constraints: If s1, ..., sn ∈ CONST R are posi-
tive primitive constraints or positive immediate serial
constraints, then s1 ⊗ · · · ⊗ sn ∈ CONST R is a serial
constraint. We will also sometimes call constraints of
the form ▽a ⊗ ▽b plain serial constraints (as opposed
to the immediate ones).

4. Complex constraints: If C1, C2 ∈ CONST R then so
are C1 ∧ C2, and C1 ∨ C2.

Nothing else is in CONST R. 2

To get a better picture of what can be expressed using
CONST R, we show some examples.

• ▽e ∧ ▽f — events e and f must both occur (in any order).

• ¬▽e∨¬▽f — it is not possible for e and f to happen together.

• ¬▽e ∨ ▽f — if event e occurs, then f must also occur (be-
fore or after e). This can be more naturally represented using
implication: ▽e→ ▽f .

• ¬▽e∨ (▽e⊗▽f) — if event e occurs, then f must occur later.
Equivalently: ▽e→ (▽e⊗ ▽f).

• ¬▽f ∨(▽e⊗▽f) — if event f has occurred, then event e must
have occurred some time prior to that.

• ¬▽e∨¬▽f ∨ (▽e⊗▽f) — if both e and f occur, then e must
come before f . Equivalently: (▽e ∧ ▽f)→ (▽e⊗ ▽f).

• ¬▽e ∨ ▽ ⊙ (e ⊗ f) — if event e occurs, then f must occur
right after e with no event in-between.

• ¬▽k ∨ ¬▽d ∨ ▽ ⊙ (k ⊗ d) — if k and d both occur then
d must happen right after k with no other event in-between.
Equivalently: (▽k ∧ ▽d)→ ▽⊙ (k ⊗ d)

It was also shown in [7] that the constraints in CONST R

(without the immediate serial constraints) can be converted
to the following normal form:

∨i(∧jserialConstri,j) (2)

where each serialConstri,j is either a primitive constraint, an
immediate serial constraint, or a serial constraint composed
of two positive primitive constraints. This result generalizes
to the constraints of the form ▽⊙ (...) quite easily, because
any immediate serial constraint of the form ▽⊙ (a⊗ b⊗ c) is
equivalent to ▽⊙ (a⊗ b)∧▽⊙ (b⊗ c). Therefore, any imme-
diate serial constraint can be replaced with a conjunction of
binary such constraints.

Although Definition 4.3 does not explicitly state that CONST R

is closed under negation, it was shown in [7] that (without
the immediate serial constraints) it is. This makes it possi-
ble to express some constraints easier than otherwise. For
instance:

• ¬(▽e ⊗ ▽f) — it is not possible for f to occur after e (and
for e before f). Without direct negation of a serial constraint,
this would be much more complex: ¬▽e ∨ ¬▽f ∨ (▽f ⊗ ▽e).

• ¬(▽e⊗ ▽f ⊗ ▽g) — if e happens and then f , then g cannot
come later.

The result of [7] that CONST R is closed under negation can
be extended to include constraints of the form ▽⊙ (...), but
this requires a new construct: existential events, denoted
▽?i, for i = 1, ..., n, A constraint of the form ▽?i ⊗ ▽b

means that some event from EVENT must occur before b. A
constraint (▽?i ⊗ ▽b) ∧ (▽a ⊗ ▽?i) means that some event
must occur before b and the same event must occur after a.
That is, it must occur in-between a and b. By the unique

event property, this event must be different from both a and
b and, therefore, a cannot be immediately followed by b.

We will now extend EVENT with symbols ?1, ?2, ..., where
each ?i represents some concrete, but unknown event from
EVENT . With this in mind, we can see that negation of any
binary immediate serial constraint ▽⊙ (a⊗ b) is equivalent
to a constraint where negation is applied only to primitive
events: ¬▽a ∨ ¬▽b ∨ (▽a ⊗ ▽?i) ∨ (▽?i ⊗ ▽b), for some ?i

that does not occur elsewhere in CONST R. Since general
immediate serial constraints can be split into binary ones, it
shows that CONST R is closed under application of negation
to immediate constraints.

We can now show that CONST R is sufficiently expressive to
formalize the policy and contract constraints for our running
example (see Figure 3). For readability, we use implication
instead of the disjunctive form (2):

1. ∃ Order# ∃ Price
`

(▽accept delivery(Order#)⊗ ▽pay by CC(Order#, Price)) →
(▽give security(Order#, Price) ⊗ ▽accept delivery(Order#))

´

2. ∃ Order# ∃ Price
`

(▽accept delivery(Order#)⊗ ▽pay by cheque(Order#, Price)) →
▽⊙ (accept delivery(Order#)⊗ pay by cheque(Order#, Price))

´

3. ∃ Order# ∃ Price
`

▽rebate(Order#)→
(▽pay(Order#, Price)⊗ ▽accept delivery(Order#))

´

4. ∃ Order# ∃ Price
`

▽accept delivery(Order#)⊗ ▽pay by cheque(Order#, Price)
´

(3)

4.3 Data Flow and Conditional Control Flow
As explained in Section 4.1 and illustrated using the run-

ning example (see the representation (3)), data flow in CTR
can be represented through shared variables or through the
underlying database state. This captures all the usual forms
of data flow in real systems, which occur through passing of
parameters, messages, and through a shared persistent state.

From the service enactment point of view, data flow in-
duces certain order constraints on the interactions speci-
fied in the choreography interface. These constraints can be
culled directly from the data flow graph, and added to the
set of constraints that constitute the policy of the service
and the contract requirements of the user.

These constraints are constructed as follows. Consider
an arc in the data flow graph that leads from node f to
node g and suppose f(U) and g(V) are the predicates (with
the associated variables) that represent these nodes in CTR
(see the representation (3) for a concrete example). The
constraint that is induced by that arc has to state that if
both events ∃U f(U) and ∃V g(V) occur then the first must
precede the second. Denoting the above events with f and g
respectively, we can write the above as ¬▽f ∨ ¬▽g ∨ (▽f ⊗
▽g). Note that this is a conditional constraint. For instance,
in our example the client may never provide a credit card
number and, in this case, the interaction partial refund
does not need to wait for the interaction pay by CC.

In practice, we only need to add the constraints that cor-
respond to the new arcs in the data flow graph. In Figure 4,
these are the depicted as non-shaded arcs. This is because
the constraints that correspond to the arcs that were inher-
ited from the control flow graph (the shaded arcs on Fig-
ure 4) are already accounted for implicitly by the control
flow graph itself.

This, the data flow constraints that for our running ex-

ample are as follows:

1. ∃ Order# ∃ CC# ∃ Price
`

(▽give CC(Order#, CC#) ∧ ▽pay by CC(Order#,Price)) →
(▽give CC(Order#, CC#)⊗ ▽pay by CC(Order#, Price))

´

2. ∃ Order# ∃ Price
`

(▽pay by CC(Order#, Price) ∧ ▽partial refund(Order#))→
(▽pay by CC(Order#, Price)⊗ ▽partial refund(Order#))

´

Conditions in the control graph can take many forms (e.g.,
linear, equality) and are typically over some specific do-
mains (e.g., integer, real, finite). In control flow graphs,
the conditions attached to arcs are usually tests performed
on the values of the variables that are passed between the
nodes. In general, these conditions can be checked only at
run time, during enactment, but in some cases certain infer-
ences can be made statically. For instance, if the conditions
are constraints for which solvers are available (e.g., linear
constraints over the domain of reals) then certain parts of
the control graph can be eliminated if we can show that
the set of conditions attached to the arcs of some branch is
unsatisfiable.

We now describe an algorithm, which traverses the control
flow graph and cuts off the parts that cannot be enacted be-
cause their associated constraints are cumulatively unsatis-
fiable. The algorithm is based on a subroutine called Chec-

kNode, which operates directly on the underlying control
flow graph; this graph is not passed as a parameter. The in-
put parameters are a node, N , in the graph and a constraint,
which represents the cumulative constraint on the arcs that
lead from the starting node in the graph to N . The al-
gorithm starts simply by calling CheckNode(startNode,

true) and when it ends the control flow graph is reduced by
cutting off dead branches.

The algorithm assumes that there is a constraint solver for
the conditions attached to the arcs; it is invoked by calling a
subroutine simplify, which takes a constraint and returns an
equivalent constraint in a simplified form. If it detects that
the input constraint is unsatisfiable, it returns false. Note
that each node in the control graph is visited at most as
many times as there are incoming edges. So, the algorithm
is linear in the size of the graph. The real work is performed
by the constraint solver when simplify is called. The com-
plexity of this operation depends on the complexity of the
constraints.

The other two operations in the algorithm delete parts
of the underlying graph. The operation deleteSubgraphAt
removes the part of the graph that starts at node N . This
is done by first deleting the edges of that subgraph and then
deleting the isolated nodes (i.e., nodes that have no adjacent
edges). The operation deleteBranchAt (N,S) takes an OR-
split node N and a successor node S. The successor node
determines the OR-branch at node N to be deleted. The
branch is deleted from node N to the corresponding OR-
join node. The deletion is done similarly to deletion of a
subgraph: first the edges of the branch are removed and
then the isolated nodes are eliminated.

Algorithm CheckNode(N, Constr)

1. if successors(N) == ∅ then return Constr endif
2.

3. foreach successor S of N do
4. // c is the condition on the arc <N,S>

5. cond[S] = checkNode(S, Constr + c)

6. endfor

7.

8. if N is not an OR-split node then
9. c = simplify (∧S cond[S])

10. if c == false then
11. deleteSubgraphAt (N)

12. return false

13. else return c

14. endif
15. else // N is an OR-node

16. foreach successor S of N do
17. c[S] = simplify (cond[S])

18. if c[S] == false then
19. deleteBranchAt (N,S)

20. endfor
21. return ∨S c[S]

22. endif

Figure 5 shows the result of applying CheckNode to the
control flow graph 5(a). Although the conditions on the
branch b-g-h in the graph are satisfiable, the conditions
on b-c-e-f-h and b-c-d-f-h are (separately) unsatisfiable.
Thus, the b-branch of node a is deleted. The same happens
to the i-branch of a. On the other hand, the m-branch of
node a is satisfiable, so it is left alone. The resulting graph
with the dead parts cut off is shown in Figure 5(b).

Figure 5: (a) A control-flow graph with conditions
attached to arcs. (b) Reduced graph with dead
branches eliminated.

5. REASONING ABOUT CHOREOGRAPHY
AND CONTRACTS

The problem we are now considering is whether there ex-
ists a way to schedule choreography interactions in a way
that satisfied both the service policy and the client contract
requirements. Formally, these problems can be formulated
as follows.

Let C be a set of constraints from CONST R, which repre-
sents the union of the policy, contract, and data flora con-
straints, as discussed in Section 4. Let G be a concurrent-
Horn goal that represents the control flow graph of the ser-
vice choreography, and let R be the set of concurrent-Horn
rules that represent the subworkflows of the control flow
graph. Then

1. Contracting: The problem of determining if con-
tracting for the service is possible is the problem of
finding out if there is an execution of the CTR formula
G∧C given the set of definitions R, i.e., checking that
there is a path s1, ..., sk such that R, s1, ..., sk |= G∧C.
This means that for any model M of R, G ∧C is true
in M on the path s1, ..., sk.8

2. Enactment: The problem of enactment is formally
defined as finding a constructive proof thatR, s1, ..., sk |=
G∧C for some path s1, ..., sk. A constructive proof is
a sequence of inference rules of CTR that starts with
an axiom and end with the formula G ∧ C.

Each step in such a proof is either a query that is
checked against the current state of the system or a
transition, which changes the current state. In our
case, queries are the conditions attached to the arcs
in the control flow graph and transitions are the in-
teractions in the service choreography interface that
correspond to the nodes of the graph.

Thus, each such proof gives us a way to execute the
choreography in a way that satisfies all the constraints.

A more complete version of the enactment problem is
finding all such proofs—at least, all different sequences
of interactions that are extracted from the proofs.

In this paper, we solve the above problems as follows.
In the first phase, we translate the formula G ∧ C into an
equivalent formula ∨i(Gi ∧j serialConstri,j), where each
serialConstri,j is either an immediate serial constraint or a
(plain) serial constraint, and Gi is a concurrent-Horn goal.
In this step we get rid of complex and primitive constraints.
This transformation is a simplified version of the Apply trans-
formation from [7], and each step in this transformation can
be viewed as an inference rule in a proof theory. We present
these transformation steps in Section 5.1. In the second
phase, we extend the proof theory of Horn CTR to formu-
las of the form G ∧j serialConstrj, which result from the
Phase 1 transformation, and then use that theory on these
formulas. If we find a proof, it means that enactment of the
service is possible. This extended proof system of Phase 2
is presented in Section 5.2).

In Phase 2, finding a proof and thus a possible enactment
takes time linear in the size of the execution path. Unfortu-
nately, as shown in [7], the very problems of contracting and
enactment are NP-complete, and this issue arises in Phase
1: the Apply transformation is worst-time exponential in the
size of the largest number of disjuncts in a constraint in C.
However, this is still better than the standard verification
techniques, which are exponential in the size of G ∪ C [14].

5.1 Phase 1: Transformation
The series of equivalence transformations, below, elim-

inates complex and primitive constraints by “compiling”
them into the concurrent-Horn goal. More precisely, we take
formulas of the form G∧C, where C = ∨i(∧jserialConstri,j)
and the serialConstri,j are either a primitive constraint, an
immediate serial constraint, or a plain serial constraint and
transform them into equivalent formulas of the form ∨i(Gi∧j

serialConstri,j), where each serialConstri,j is an immedi-
ate serial constraint or a plain serial constraint. Although

8Due to space limitation, we define this only informally. The
reader is referred to [6] for the details.

each transformation is an equivalence, we will use the sym-
bol ⊢ to indicate the direction of the transformation and the
fact that we treat these transformations as inference rules.

Definition 5.1 (Applying Complex Constraints).
Let T be formula of the form G∧C where G is concurrent-
Horn goal, and C is in the normal form. Then:

T ∧ (C1 ∨ C2) ⊢ (T ∧ C1) ∨ (T ∧ C2)
T ∧ (C1 ∧ C2) ⊢ (T ∧ C1) ∨ (T ∧ C2)

Definition 5.2 (Applying Primitive Constraints).
Let α, β ∈ EVENT . Then:

(α ∧ ▽α) ⊢ α

(β ∧ ▽α) ⊢ ¬path if α 6= β

(α ∧ ¬▽α) ⊢ ¬path
(β ∧ ¬▽α) ⊢ β if α 6= β

We remind that ¬path means inconsistency so if a conjunct
reduces to ¬path then the whole conjunction is inconsistent
and if a disjunct is found to be inconsistent then it can be
eliminated.

Let T and K be concurrent-Horn goals and let σ stand for
▽α or ¬▽α. Then we have the following transformations:

(T ⊗K) ∧ ▽α ⊢



(T ∧ α)⊗K if α occurs in T

T ⊗ (K ∧ α) if α occurs in K

T ⊗K ∧ ¬▽α ⊢ (T ∧ ¬▽α) ⊗ (K ∧ ¬▽α)

(T | K) ∧ α ⊢



(T ∧ α) | K if α occurs in T

T | (K ∧ α) if α occurs in K

(T | K) ∧ ¬▽α ⊢ (T ∧ ¬▽α) | (K ∧ ¬▽α)

⊙T ∧ σ ⊢ ⊙(T ∧ σ, T)

(T ∨K) ∧ σ ⊢ (T ∧ σ) ∨ (K ∧ σ) 2

The above series of transformations either lead to ¬path
(i.e., inconsistency) or to a formula of the form ∨i(Gi ∧j

serialConstri,j), where each serialConstri,j is either an im-
mediate serial constraint or a (plain) serial constraint. If the
result is ¬path, then enactment is not possible. If the re-
sult is a formula of the form ∨i(Gi∧j serialConstri,j), then
scheduling might be possible. To check this, we need to use
the inference rules introduces in the next section. These
inference rules extend the proof theory for Horn CTR to
formulas of the form G ∧j serialConstrj.

5.2 Phase 2: Extended Proof Theory
This section develops a proof theory for formulas of the

form G∧jserialConstrj . This is done in two steps. First, we
check constraints for internal consistency and also eliminate
some redundancy. If the constraints are consistent, then we
go to step 2, which is based on inference rules. The first step
is described in Section 5.2.1 and the second in Section 5.2.2.

5.2.1 Constraint Graphs
Let C be the set of constraints of the form∇x1⊗∇x2⊗...⊗∇xn

or ∇⊙(x1⊗x2...⊗xn), where xi represents a task.

Definition 5.3 (Consistency of Constraints). The set of
constraints C is said to be consistent if there is a path s1,
..., sn that satisfies all the constraints. 2

To help us harness the complexity of the interaction among
the different types of serial constraints, we introduce the no-
tion of a constraint graph.

Definition 5.4 (Constraint Graph). constraint graph for
a set of serial (immediate and plain) constraints C is a di-
rected graph where the nodes represent the interactions ap-
pearing in the constraints. The graph has two kinds of edges:
dashed and solid; they are defined as follows:

Edgessolid = {(xi, xj) | i 6= j, ∇⊙(xi⊗xj) is in C}
Edgesdashed = {(xi, xj) | i 6= j, ∇xi⊗∇xj is in C}

Graphically, the arc from xi to xj is solid if (xi, xj) ∈
Edgessolid, and dashed if (xi, xj) ∈ Edgesdash. 2

Figure 6 gives an example of a constraint graph for the
constraints set {∇⊙ (c⊗ d⊗ e), ∇⊙ (f ⊗ g), ∇a⊗∇b⊗∇d,
∇h⊗∇i⊗∇k, ∇e⊗∇?1⊗∇k}. Note that the last constraint
here involves an existential event ?1. These events were
introduced in Section 4.2 to express constraints where some
events are precluded from immediately following others.

Figure 6: A constraint graph.

Definition 5.5 (Consistency of Constraint Graphs).
A constraint graph is consistent if and only if it was gener-
ated from a consistent set of constraints. 2

We identify several inconsistency patterns below. It turns
out that a constraint graph is consistent if and only if it has
no inconsistency patterns.

Inconsistency pattern 1. Constraint graph has a cycle.
Figure 7 shows a set of constraints {∇⊙(a⊗c),∇⊙(c⊗e),
∇e⊗∇b⊗∇a, ∇d⊗∇a}, whose graph has a cycle. A cycle in
a constraint graph implies that every execution that satisfies
the constraints must have multiple occurrences of the same
event, which violates the unique event property.

Figure 7: An example of pattern 1.

Inconsistency pattern 2. More than one solid arc goes
into or out of a node.

Figure 8 illustrates this pattern for the constraints set
{∇⊙(a⊗b),∇⊙(a⊗c), ∇d⊗∇a}.

Constraints whose graphs have such a pattern cannot be
satisfied. For instance, in Figure 8 both c and b must occur
right after a. Since b and c are distinct tasks, the this cannot
happen because of the unique event property.

Inconsistency pattern 3. Any pair of nodes connected by

Figure 8: An example of pattern 2.

a solid path (i.e. a path that consists solid arcs only) and
also by another path (solid or not) of length two or more.

Figure 9 illustrates this pattern for the constraints set
{∇⊙(c⊗d⊗b), ∇⊙(a⊗e), ∇c⊗∇a, ∇e⊗∇b}.

Figure 9: An example of pattern 3.

An existence of pattern 3 means that the tasks on the
solid path cannot be executed without being interrupted by
the tasks on the second path. This violates the meaning of
solid constraint.

Lemma 5.6. The constraint graph has no inconsistency
patterns iff the corresponding set of constraints is consistent.

Proof (Sketch): Take a topological sort of the constraint
graph. It exists, since the graph is acyclic (by the absence
of inconsistency patter 1 above). This topological sort may
not be a valid execution of the events because the constraints
of the form ∇⊙(a⊗b) are not necessary satisfied—there is
no guarantee that b occurs right next to a. However, taking
advantage of the fact that patterns 2 and 3 do not occur, we
can transform the topological sort into another topological
sort by moving b backwards until it is right next to a. Doing
so for every violated immediate serial constraint eventually
creates a topological sort that satisfies all constraints. 2

Definition 5.7 (Reduced Consistent Constraint Graph).
A consistent constraint graph is reduced if it does not have
a pair of nodes that are connected by a dashed arc and some
other path. 2

Lemma 5.8. Any consistent constraint graph has an equiv-
alent reduced graph.

Figure 10 shows how a consistent graph can be reduced
by deleting dashed arcs.

Figure 10: (a) A consistent graph; (b) Its reduction.

Definition 5.9 (Exclusive Nodes). An exclusive node is
any node that occurs on a solid path in a consistent con-
straint graph, except the node which is at the beginning of
that path. 2

Definition 5.10 (Well-formed Constraint Graph). A con-
straint graph is well-formed if it is consistent, reduced, and
has no dashed arcs pointing to an exclusive node. 2

Definition 5.11 (Well-formed Set of Constraints). A well-
formed set of constraints is a set of constraints whose con-
straint graph is well formed. 2

Lemma 5.12. Any consistent set of constraints has an
equivalent, effectively constructible set of well-formed con-
straints.

Proof (Sketch): A reduced consistent constraint graph can
be transformed into a well-formed constraint graph as fol-
lows. Any dashed arc that points to an exclusive node in
such a graph can be redirected to point to the head of the
solid path of that exclusive node. Repeating this for every
dashed arc that violates well-formdness eliminates these vi-
olations. This is illustrated in Figure 11 for the constraints:
∇⊙(c⊗d⊗b), ∇⊙(a⊗e), ∇c⊗∇a, and ∇e⊗∇b. 2

Figure 11: (a) Consistent graph; (b) an equivalent
well-formed graph.

5.2.2 Extended Inference System
First, we recall the notion of hot components of a formula

from [6]: hot(ψ) is a set of subformulas of ψ which are “ready
to be executes.” This set is defined inductively as follows:

1. hot(ψ) = ψ, if ψ is an atomic formula

2. hot(ψ ⊗ φ) = hot(ψ)

3. hot(ψ | φ) = hot(ψ) | hot(φ)

4. hot(ψ ∨ φ) = ψ ∨ φ

Let ψ be a concurrent serial goal and C a set of constraints
with a well-formed constraint graph.

Definition 5.13 (Enabled Components). The set of en-
abled components of C is as follows: enabled(C) = {x | x
is a root node of C or x is not in C} 2

Definition 5.14 (Eligible Components). The set of eli-
gible components of ψ, eligible(ψ), is defined as follows:

eligible(ψ) =

8

>

<

>

:

x, if x ∈ hot(ψ) ∩ enabled(C)

and x is an exclusive node in C

hot(ψ) ∩ enabled(C), otherwise

It is easy to see that eligible(φ) ⊆ hot(φ). 2

Let P be a set of concurrent Horn rules. We now define
an extended proof theory for constrained CTR goals. This
system manipulates expressions of the form P,D --- ⊢ (∃)ψ,
called sequents, where P is a set of Horn CTR rules and D
is the underlying database state. The informal meaning of
such a sequent is that the transaction (∃)ψ, which is defined
by the rules in P, can succeed from D, i.e., it can execute on
a path starting at database D. Each inference rule consists
of two sequents, one above the other, and has the following
interpretation: If the upper sequent can be inferred, then the
lower sequent can also be inferred. As in classical resolution,
any instance of an answer-substitution is a valid answer to
a query.

The extended inference system is almost identical to the
inference system for Horn CTR in [6] except for two subtle
differences:

1. In the extended system, the inference rule 3 operates
on eligible occurrences of atomic formulas, while in the
inference system of [6] it was operating on a larger set
of hot occurrences.

2. Rules 1 and 3 also modify the set of constraints.

Note that the new system reduces to the old one when the
set C of constraints is trivial.

Axioms: P, D ---⊢ (), for any database state D.

Inference Rules: In rules 1-4 below, σ denotes a substi-
tution, ψ and ψ′ are concurrent serial goals, C and C′ are
constraint sets with well-formed constraint graphs, D, D1,
D2 denote database states, and a is an atomic formula in
eligible(ψ).

1. Applying transaction definitions: Let b ← β be a rule
in P, and assume that its variables have been renamed
so that none are shared with ψ. If a and b unify with
the most general unifier σ then

P , D ---⊢ (∃) (ψ′ ∧ C′) σ
P , D ---⊢ (∃) ψ ∧ C

where ψ′ is obtained from ψ by replacing a hot occur-
rence of a by β, and C′ is constructed as follows. Let
Y1, ..., Yk be the events mentioned in C, which appear
in β. Then

• for each arc from a to a node X in the graph of C,
delete the arc and replace it with the same kind
of arc form each Yi to X.

• for each arc from a node X in C to a, delete the
arc and replace it with the same kind of arc form
X to each Yi.

2. Querying the database: If Od(D, D) ⊢c (∃)aσ and aσ
and G′σ share no variables then

P , D ---⊢ (∃) (ψ′ ∧ C) σ
P , D ---⊢ (∃) ψ ∧ C

where ψ′ is obtained from ψ by deleting a hot occur-
rence of a.

3. Executing elementary updates: If Ot(D1, D2) ⊢
c (∃)aσ

then

P , D2 ---⊢ (∃) (ψ′ ∧ C′) σ
P , D1 ---⊢ (∃) ψ ∧ C

where ψ′ is obtained from ψ and C′ from C by

(a) deleting an eligible (not just hot) occurrence of a.

(b) deleting all eligible occurrences of the existential
events of the form ?i. (Existential events were
defined in Section 4.2.)

4. Executing atomic transactions: If ⊙α is a hot compo-
nent in ψ then

P , D ---⊢ (∃) (α⊗ ψ′) ∧ C
P , D ---⊢ (∃) ψ ∧ C

where ψ′ is obtained from ψ by deleting an eligible
occurrence of ⊙α.

Theorem 5.15. The above inference rules are sound and
complete for proving constraint CTR goals from a set of
CTR Horn rules.

Proof (Sketch): Let G∧C be a constrained goal where G is
a concurrent Horn goal and C a set of serial constraints with
a well-forned constraint graph. We can transform proofs of
G into proofs of G ∧ C by delaying the inference rules that
apply to hot, but ineligible components of G.

6. RELATED WORK
Relationship to our previous work [7, 8] has already been

discussed in the introduction.
Much of the work in the area of service contracting fo-

cuses on defining frameworks, models, and architectures (see
[15] for a survey) trying to capture different aspects and
phases of e-contracting, such as negotiation, contract es-
tablishment, enforcement, violation detection, monitoring,
legal aspects, etc. In our paper we use a simple yet realistic
and useful framework for e-contracting and solve a concrete
problem that arises in establishing of contracts and enacting
Web services. In this spirit, the work [11] is the closest to
our approach. Here the problem of checking the compliance
of business processes with business contracts is described
and both processes and contracts rules are represented in
a formal contract language (FCL) [10]. To compare, our
language for constraints is more expressive than FCL. For
instance, immediate serial constraints are outside of FCL.
Second, [11] essentially gives a semantic definition for com-
pliance, but no practical algorithm. In contrast, our work
provides a number of algorithms and optimizations whose
complexity is better than the known results.

Workflow/Process modelling has seen growing interest with
the emergence of the area of process-aware information sys-
tems (PAIS) [9]. In [1] a set of workflow patterns is analyzed
and in [20] Aalst proposed a concrete language, YAWL,
based on these patterns. Since YAWL was a procedural lan-
guage, Aalst later proposed a constraint-based, declarative
language DecSerFlow [19]. As mentioned, our framework in-
cludes all the constraints used in DecSerFlow. It integrates
them with conditional control flows, data flows, and provides
reasoning mechanisms.

In process modeling, the main tools are Petri nets, process
algebras, and temporal logic, and model checking has been
often used for process verification. The advantage of CTR
over these approaches is that it is a unifying formalism that
integrates a number of process modeling paradigms ranging

from conditional control flows to data flows to hierarchical
modeling to constraints, and even to game-theoretic aspects
of multiagent processes (see, for example, [8]). Moreover,
CTR models the various aspects of processes in distinct
ways, which enabled us to devise algorithms with better
complexity than the previously known general techniques
from the model checking area. For instance, the complexity
in the decision problems considered in this paper is polyno-
mial in the size of the control flow graph and is exponen-
tial in the size of the set of constraints. In contrast, the
approaches that are based on Petri nets, process algebras,
and temporal logics that are exponential in the size of the
control flow graph (which is encoded as part of the set of
constraints) [19, 17, 18, 2, 12].

7. CONCLUSIONS
We have formulated the problems of choreography, con-

tracting, and enactment for semantic Web services using the
formalism of Concurrent Transaction Logic (CTR). We pre-
sented several reasoning techniques, which make it possible
to decide if automatic contracting for a service is possible,
find a choreography that obeys the policy of the service and
the conditions of the contract, and then enact the service.
Apart from semantic Web, these results also apply to work-
flow scheduling. They extend the work of [7] by incorpo-
rating data flow, conditional control transitions, and extend
the set of allowed constraints. This work also makes contri-
bution to CTR itself by extending its proof theory to handle
constrained concurrent Horn goals.

Acknowledgments
This work was done while Michael Kifer was visiting DERI
Innsbruck. His work was supported by the BIT Institute,
NSF grants CCR-0311512 and IIS-0534419, by US Army Re-
search Office under a subcontract from BNL, and by DARPA
under a subcontract from BBN.

8. REFERENCES
[1] W. M. P. V. D. Aalst, A. H. M. T. Hofstede,

B. Kiepuszewski, and A. P. Barros. Workflow
Patterns. Distrib. Parallel Databases, 14(1):5–51, 2003.

[2] P. C. Attie, M. P. Singh, A. P. Sheth, and
M. Rusinkiewicz. Specifying and enforcing intertask
dependencies. In VLDB, pages 134–145, 1993.

[3] A. Bonner and M. Kifer. An overview of transaction
logic. Theoretical Comput. Sci., 133:205–265, October
1994.

[4] A. Bonner and M. Kifer. Transaction logic
programming (or a logic of declarative and procedural
knowledge). Technical Report CSRI-323, University of
Toronto, November 1995.
<http://www.cs.toronto.edu/̃ bonner/transaction-
logic.html>.

[5] A. Bonner and M. Kifer. A logic for programming
database transactions. In J. Chomicki and G. Saake,
editors, Logics for Databases and Information
Systems, chapter 5, pages 117–166. Kluwer Academic
Publishers, March 1998.

[6] A. J. Bonner and M. Kifer. Concurrency and
communication in transaction logic. In Joint
International Conference and Symposium on Logic
Programming, 1996.

[7] H. Davulcu, M. Kifer, C. R. Ramakrishnan, and I. V.
Ramakrishnan. Logic Based Modeling and Analysis of
Workflows. In ACM Symposium on Principles of
Database Systems, pages 25–33, 1998.

[8] H. Davulcu, M. Kifer, and I. Ramakrishnan. CTR–S:
A logic for specifying contracts in semantic web
services. In WWW2004, pages 144+, 2004.

[9] M. Dumas, W. M. van der Aalst, and A. H. ter
Hofstede (eds.). Process-aware information systems:
bridging people and software through process
technology. John Wiley & Sons, Inc., New York, NY,
USA, 2005.

[10] G. Governatori and Z. Milosevic. A formal analysis of
a business contract language. International Journal of
Cooperative Information Systems, 15(4):659–685, 2006.

[11] G. Governatori, Z. Milosevic, and S. Sadiq.
Compliance checking between business processes and
business contracts. In EDOC ’06: Proceedings of the
10th IEEE International Enterprise Distributed Object
Computing Conference (EDOC’06), pages 221–232,
Washington, DC, USA, 2006. IEEE Computer Society.

[12] R. Günthör. Extended transaction processing based on
dependency rules. In RIDE-IMS, pages 207–214, 1993.

[13] S. Mukherjee, H. Davulcu, M. Kifer, P. Senkul, and
G. Yang. Logic based approaches to workflow
modeling and verification. In J. Chomicki, R. van der
Meyden, and G. Saake, editors, Logics for Emerging
Applications of Databases. Springer Verlag, 2003.

[14] M. Orlowska, J. Rajapakse, and A. ter Hofstede.
Verification problems in conceptual workflow
specifications. In Int’l Conference on Conceptual
Modeling, volume 1157 of Lecture Notes in Computer
Science, Cottbus, Germany, 1996. Springer-Verlag.

[15] P. G. S. Angelov. B2b e-contracting: A survey of
existing projects and standards. Report
I/RS/2003/119, Telematica Instituut, 2003.

[16] P. Senkul, M. Kifer, and I. Toroslu. A logical
framework for scheduling workflows under resource
allocation constraints, 2002.

[17] M. P. Singh. Semantical considerations on workflows:
An algebra for intertask dependencies. In DBLP-5:
Proceedings of the Fifth International Workshop on
Database Programming Languages, page 5, London,
UK, 1996. Springer-Verlag.

[18] M. P. Singh. Synthesizing distributed constrained
events from transactional workflow. In ICDE ’96:
Proceedings of the Twelfth International Conference
on Data Engineering, pages 616–623, Washington,
DC, USA, 1996. IEEE Computer Society.

[19] W. van der Aalst and M. Pesic. Decserflow: Towards a
truly declarative service flow language. In
F. Leymann, W. Reisig, S. R. Thatte, and W. van der
Aalst, editors, The Role of Business Processes in
Service Oriented Architectures, number 06291 in
Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Germany, 2006.
<http://drops.dagstuhl.de/opus/volltexte/2006/829>.

[20] W. M. P. van der Aalst and A. H. M. ter Hofstede.
YAWL: Yet another workflow language. Information
Systems, 30(4):245–275, 2005.

