
 

 

History of Algorithms and Algorithmic Thinking 
 

 

 

This section talks about the history of algorithms and the history of algorithmic thinking. 

Well, the topic of this course is the history of computer science, but it's not very easy to 

define what is the time period where we should start with the history of computer science 

subject. If we consider that computer science is about computing machines, then we can say 

that the first general purpose computational machines were Charles Babbage’s differential 

engine and the analytical engine. They were both general purpose computational machines 

created by the British scientist Charles Babbage in 1800s. By the way, the first program in 

history was written for the analytical engine. Ada Lovelace was the first programmer in 

history and she wrote a program for computing the Bernoulli numbers for this analytical 

engine. The thing about the first program like the thing about any first program written in a 

new programming language or a new technology is the fact that it didn't run, of course, but 

not for the same reasons. First programs written in a new programming language or a new 

technology usually don't run when you first try to execute them because the program has a 

flaw, a runtime error or a compilation error. The reason that Ada’s program didn't work was 

because the analytical engine machine was never actually built, at least in Ada Lovelace and 

Charles Babbage's lifetime; the same is true for the differential engine. The reason Charles 

Babbage tried to build this machines and at the same time his idea was that before the years 

1800s, public workers in the ministries and also sailors, lawyers and workers in commerce 

and various other domains in United Kingdom, they all used various printed tables in order 

to compute all sorts of math formulae. For example, if a government representative has to 

compute the taxes for a specific person, he/she will probably use some complicated math 

formula in order to compute the amount of money that person owes to the government. In 

the same way, sailors on ships need to compute complicated coordinate values depending on 

the position of the moon and on the stars or the position of the sun to determine where to go 

and so on. Before 1800 everybody would use some complicated math textbooks containing 

all sorts of tables’ values for a specific math formula. These formula textbooks were similar 

to what I had when i was a child in school – there were these math copybooks that had on 

the back the multiplication tables of numbers from 1 to 10. We, as kids, had to learn the 

multiplication tables by heart using those copybooks. If someone doesn’t know these 

multiplication values by heart, he/she can look them up un the back cover of those math 

copybooks. It was the same in that period, so before 1800s, in the whole Europe, including 

Great Britain, people would have complicated textbooks with tables that contain the values 

of the exponential function or the values of some common polynomial functions and the 

person who needs to compute a specific value, would have to just look it up into in that 

textbook (see Fig. 1.1). This is how it was done before 1800.  

 

 

 

 

 



 

 

 
 

Fig 1.1 A photo of a book with functional values tables 

 

 

The problem was that the value for a function you would find in one textbook would differ 

slightly from the value of the same function in another textbook. Charles Babbage had the 

idea that if he could create a mechanical computer (there were no electricity then) that would 

compute these values accurate and faster, such a computational machine would be quite a 

huge advantage for the whole government and it would allow him to compute and print 

textbooks with consistent values. He designed such a machine called the differential engine, 

he then build a small prototype (not a full scale machine), but of course he wanted funding 

from the British government in order to build a full scale differential engine. I am going to 

do a short summary right now because I will talk about these two machines, the differential 

engine and the analytical engine, in depth later on. So, Charles Babbage asked for funding 

from the British government and he said that he would need about 1000 pounds and he 



would create the differential machine in one or two years. The funding continued for about 

17 years and he got 17000 pounds in total and the computer was still far from being ready. 

Actually, the differential engine was never built during Charles Babbage's lifetime, but it 

was built around 1990, in modern times for a museum. The machine was built for the 

museum according to the specifications of Charles Babbage and it actually worked. The 

reason that the differential engine was not built in the 1800s, during Charles Babbage's 

lifetime was on one hand due to Charles Babbage's personality. He was an egocentric 

person, he would argue with everyone, he was quite an unfriendly person, so a person that's 

very hard to work with. And that's one reason he couldn't put together a team of technicians  

to work on the differential engine. The second reason differential engine did not get 

completed was that the industrial equipments and tools available in that period were not very 

precise and they couldn't cut iron wheels with a very precise tooth size as required by 

Charles Babbage's design. Hence the available industrial equipments did not support 

building such a complex and precise machinery. So these were the reasons that the 

differential engine was not built during Charles Babbage lifetime. He tried to build this 

engine between 1822 and 1842 and when he saw that it's not getting to the end of it, he 

abandoned the project and imagined a new machine called the analytical engine which he 

still tried to build, but he never completed it either. These two machines were the first 

general purpose computational machines (especially the analytical engine) meaning that 

besides computing the basic 4 operations, addition, subtraction, multiplication and division,  

these machines could also evaluate more complex functions like exponential, logarithm, 

trigonometric and polynomial, and they even had conditional execution (IF), loops, program 

statements. You can see in Fig. 1.2 and Fig. 1.3 the differential engine and, respectively, the 

analytical engine, recreated in 1990 for museums. They are not simple copy models, they 

actually work. 

 

 
Fig. 1.2 Copy model of Differential Engine,  



Charles Babbage, 1822-1842
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Fig. 1.3 Copy model of Analytical Engine,  

Charles Babbage,  1837
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Before these two machines were imagined in the 1800s, there were other computational 

machines available in the society, but those computational machines were equivalent to the 

so-called pocket calculators meaning they would compute only addition, subtractions, 

multiplications and divisions. There were some of them that still computed some 

polynomials, but that's about it. The differential engine and the analytical engine were the 

first general purpose computational machines because they could compute addition, 

subtraction, multiplications and divisions, but besides these four primary operations, they 

could also compute/approximate functions like polynomial, trigonometrics, logarithms and 

also the analytical engine also had conditional statements like IF and loop cycles (i.e. it 

could execute the same instruction repeatedly), it had a rudimentary programming language. 

You could even write programs for it. Actually, Ada Lovely wrote a program for it on punch 

cards but we will talk about those later. So that is why I was saying that those two machines 

were the first general purpose computational machines in order to separate them from 

previous existing computational machines which were very simple and would normally 

compute additions, abstractions, divisions and multiplication just like a pocket calculator 

would do. 
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Right, so we can say that the history of computer science started with those first general 

purpose computational machines, but before we talk about the history of computer science, 

we should know what computer science is. The term computer science (in Romanian that 

would be “Informatica”) first appeared in an article in the Communications of the ACM in 

1959 which is an old journal still edited today by the Association for Computing Machinery 

(ACM) which is the largest professional association in Computer Science; you can also 

become member of the Association for Computing Machinery if you pay an annual fee. 

Nowadays, computer science is quite a large domain. We can try to separate this large 

computer science domain into subdomains and we would have something like this. We have 

first theoretical computer science which includes data structures, algorithms, computation 

theory, information and coding theory and programming languages. Computer science also 

includes computer system theory which includes topics more related to the hardware 

architecture of the computer system like computer architecture and engineering, operating 

systems, computer networks, databases, concurrent and distributed systems, security. A third 

subdomain of computer science would be computer applications which includes  

applications that rely on the first two categories, like artificial intelligence, graphics and 

audio-video processing, computer vision etc. Lastly, we have the software engineering 

subdomain which is the science of writing programs and reusing code. The above taxonomy 

is just an example of a taxonomy in computer science and there are two taxonomies of 

computer science published by the ACM and if you look at those, you see that those 

taxonomies include a lot of sub-domains of computer science, not only these four sub-

domains.  

If, on the other hand, we look at the problem even from a higher ground, we can say that 

computer science is generally about hardware and about software and if we talk about 

hardware, we might say that the history of computer science began with those two machines, 

the differential engine and analytical engine. But even this is not entirely correct because 

there were computational engines, well not general purpose computational engines, but there 

were mechanical computers (equivalent to packet computers) before these two machines.  

Computational machines like mechanical calculators appeared first in the 1600s, but they 

even existed in rudimentary forms (e.g. abacus) in ancient history, 2700 BC. If we move to 

the software part, then programs and software and programming actually began around 

1950s when the first electrical computers were built and the first programming languages 

were developed and the first pieces of software like the operating system software was built. 

But that is if we consider that software is programming, but software is also algorithmic 

thinking and algorithms because a program is just an algorithm expressed in a programming 

language. So an algorithm is very is strongly linked to the term software and actually the 

term algorithm was first invented by an arab mathematician named Muhammad ibn Musa al-

Khwarizmi, the father of algebra, in a book written in 820 and translated into latin in the 12
th

 

century. Algorithm is derived from al-Khwarizmi’s name and refers to arithmetic techniques 

with hindu numerals. Hindu numerals means indian numbers, i.e. the numbers that we use 

today throughout the world. They are actually arabic numbers, but the arabs adopted the 

numbers from the Indians and that's why they are also called hindu numbers. 

 

The modern definition of algorithm is the following: a sequence of steps necessary in order 

to solve a specific problem and, in addition, a set of data on which the operational steps 

operate. Actually this idea of decomposing a problem into several subproblems and solve 

them sequentially, solving a problem in steps (i.e. algorithmic thinking), it's very old in 



human history. It can eventually be traced back to ancient history (Euclid’s algorithm – 

300BC for computing the greatest common divisor, Eratostene’s sieve – an algorithm for 

computing the prime numbers which are smaller than a specific value) and even further back 

in time – as part of mathematics. So, algorithmic thinking is very old in human civilization 

and we can encounter algorithmic thinking starting from ancient history up to today. We can 

consider algorithmic thinking as rudimentary computer science. The roots of algorithmic 

thinking in ancient history can be traced as part of the mathematical science. In ancient 

history, all the sciences were more or less merged together and a scientist would generally 

be a mathematician, an astronomer, a physicist and sometimes a doctor and a philosopher. In 

the remaining of this section we will talk about algorithmic roots of various civilizations in 

ancient history. 

 

The Babylonian 

 

We will start with the Babylonian civilization. They lived in Mesopotamia which is a land 

on which currently Turkey and Syria lies on. It was a fertile plain between two rivers, Tigris 

and Euphrates. Their civilization lasted between 2000BC and 600BC. They were later 

conquered by Sumerians and then by Akkadians. This old civilization had important 

advances in sciences, especially in mathematics, but they were famous for their writing 

which is called cuneiform writing because their letters and their digits resemble nails, i.e. 

they have this wedge-shaped symbols. The cuneiform writing was also later adopted by 

Sumerians. We know of cuneiform writing because the Babylonians wrote a lot of clay 

tablets like the one depicted in Fig. 1.4. 

 
Fig. 1.4 Babylonian clay tablet
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The Babylonians would take a piece of wet, arrange it into a flat surface, draw numbers and 

digits and symbols and drawing on it using some sharp object like a pencil or a needle and 

then they would leave this clay tablet in the sun to dry out and after it had hardened, they 

would use it for storing information. They would write texts on these clay tablets,  but also 

numbers and mathematical results. I have already told you that there were many books with 

mathematical tables before 1800, i.e. before Charles Babbage designed the differential 

engine and the analytical engine, instead of those books written on paper with formulas and 

values, the Babylonians had mathematical tables written on clay tablets. They had advanced 

mathematical knowledge, they could extract the square root and the cubic root of a number, 

they could work with Pythagorean triplets 1200 years before Pythagoras, had a knowledge of 

pi (the report of which is the division of the circumference of the circle and its diameter) and 

possibly e (the exponential function), could solve some quadratics and even polynomials of 

degree 8, solved linear equations, dealt with circular measurement. In ancient history, many 

civilizations dealt with Pythagorean triplets and Pythagorean triplets are just three numbers 

a, b and c natural numbers that are in a relation of the form a
n
+b

n
=c

n
 where n is a natural 

number larger than 1. If n=2 this gives us the Pythagoras theorem. The babylonian worked 

with Pythagorean triplets, but they were made famous by the greek Pythagora. They would 

create those clay tablets on which they would write the result of various equations or various 

approximation of pi etc. They had a numbering system in base 60, a sexgesimal numbering 

system. All the digits were nails like symbols and the numbering system is visible in Fig. 

1.5. Note that computer science students are often complaining that the binary system is hard 

to work with, now imagine that the Babylonians used 60 digits. 

 

 
Fig. 1.5 Babylonian Sexagesimal (base 60) number system
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We still have reminiscences, things in our lives in modern society that are derivatives from 

this base 60 numbering system. For example, a minute has 60 seconds, an hour has 60 

minutes, there's 360 degrees in a circle which is a multiple of 60. You may also notice that 

there's no zero digit and you will see that many ancient civilizations, almost all of them, the 

Arabs, the Indians, the Greeks, the Romans, they didn't use the zero digit. Zero doesn't make 

any sense because one means that you have one object, e.g. one apple to trade, two would 

mean two apples to trade etc. (digits were used in commerce where you exchange goods), 

but there were no reason to talk about zero products, e.g. zero apples. Actually, the Indians 

invented the digit zero around the year 800AC and the digit zero was popularized in Europe 

that italian famous for a very famous arithmetic progression, Fibonacci. Fibonacci published 

a book at the beginning of 1000s called “De libero abaci” which was a commercial trading 

book involving math and there he wrote for the first time the digit zero. It took a lot of time 

until the rest of the civilization actually used zero and the number zero was not used in legal 

contracts until around around 1700. In the Babylonian math base 60 is quite useful because 

many numbers are divisors of 60 and so, a lot of fractions don't have an infinite number of 

fractional digits (e.g. 1/2, 1/3, 1/4, 1/5, 1/6, 1/10, 1/12, 1/15 and 1/20). Although some 

fractions still are infinite (e.g. 1/7, 1/13), but of course the Babylonians would just 

approximate those numbers. For computing these rational numbers (i.e. fractional numbers 

with a finite number of fractional digits), the Babylonian had many reciprocal tables printed 

on clay (i.e. the value of 1/a where a is a natural number). They had a division algorithm like 

a/b = a x (1/b) which was based on multiplication, i.e. it was based on multiplying the 

number with the reciprocal of this number. Then, they would use a table for reciprocals and 

another table for multiplications and using the aforementioned algorithm, they could 

compute the division of two numbers. They would also have some formulas that allowed 

them to compute a multiplication based on addition and subtractions: 

ab = [(a+b)
2
 - a

2
 - b

2
]/2  

ab = [(a+b)
2
 - (a-b)

2
]/4  

with the help of clay tablets which would contain squared numbers. They also had formulas 

for approximating the square root of a number: 

     sqrt(a
2
 + b) ≈ a + b/2a 

The Babylonians could solve quadratic equations like ax
3
 + bx

2
 = c using clay tables. As 

already mentioned, they had tables for powers of a number. And also they had clay tables  

with Pythagorean triplets as you can see in Fig. 1.6. 

 



Fig. 1.6. Clay tablet with Pythagorean triplets
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The Egyptian 

 

While the Babylonian had a more arithmetic knowledge of mathematics, meaning they used 

numbers a lot, in contrast with them, the Egyptian had a more geometrical knowledge of 

mathematics and this is because the Egyptian lived on the shore of the Nile river and there  

was a dry season and a wet season, and in the wet season when the Nile would flood all the 

lands and after the flooding would pass, people needed to measure the area of the lands 

again to know which land belongs to each person and for this, they needed geometrical 

knowledge like computing the perimeter of a specific land part and also computing the area 

of that specific land. They also wanted to be able to measure circles, compute ratios for 

pyramids and so on. They also didn't have the zero digit in their numbering system. They 

had a numbering system in base 10 as opposed to the Babylonian. Their numbering system is 

mostly based on digits drawn using simple rods (see Fig. 1.7).  For numbers larger than 

1000, they used other odd looking symbols.  

 

 
Fig. 1.7 Egyptian numbering system
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Fig. 1.8 Examples of Egyptian numbers
7
 

 

The Chinese 

 

The Chinese civilization was an enclosed civilization and it remained this way until I believe 

in 1800. This means that they usually produced a science parallel to the European science. 

Many concepts were encounter in Chinese science and European science under different 

names. The Chinese also knew about the Pythagorean numbers and they also knew 

Pythagoras theorem which they called it Gougu rule. Math in China was for a long time 

hidden from other civilizations. They had a practical approach, not axiomatic, like the 

European approach. They invented the gun powder and other things, but their inventions 

were not known outside of the Chinese civilization until later in history. The most famous 

book in the ancient history of Chinese mathematics was called “Nine chapters of the 

mathematical art” (Jiuzhang suanshu) it dates from around 100AD and contains about 246 

practical problems from various field of mathematics:  

 Chapter 1: land surveying, area problems, additions/ substractions/ multiplications/  
divisions of fractions, approximations of PI 

 Chapter 2: exchange of goods, proportions 

 Chapter 3: proportions: direct, inverse, compound, arithmetic and geometric 
progressions 

 Chapter 4: areas, unit fractions 

 Chapter 5: problems on construction of canals, ditches, dykes; volumes 

 Chapter 6: ratio and proportions; fair distribution of goods 

 Chapter 7: linear equations solved by making two guesses at the solution, then 
computing the correct answer from the two errors 

 Chapter 8: solving systems of linear equations 

 Chapter 9: right angled triangles, Gougu rule, quadratic equations 
 

The Maya 

 

The Maya civilization lived between 250AD and 900AD in Yucatan Peninsular (Mexico). 

They were conquered by the Spanish conquistadors. Their civilization was centered around 

large cities for example the city of Tikal had 50.000 people at its peak. The Maya 

civilization declined after 900 and were conquered by Spanish navigators in 1500. Their 

legacy is largely destroyed by the Spanish conquistadors. What we still have from them is 

three codexes containing their culture inscripted on tree bark. The most well preserved 

codex of the three is the Dresden codex – you can see a part of it in Fig. 1.9.  
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Fig. 1.9. The Dresden codex of the Maya 

 

The Maya had various gods and when the Spanish catholic navigators arrived in South 

America, they saw these pagan gods, they believed there was only one god so they burned 

everything, leaving few things behind from the Maya culture.  Their numbering system had 

the base 20 (see this in Fig. 1.20). What is noticeable here is that they had a symbol for zero, 

but actually they didn't use zero much. Their digits look to me like Morse code, with dots 

and dashes.  

 
Fig. 1.20. The Maya numbering system
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They had two calendars, a ritual/religious calendar of 260 days and a civil calendar used in 

agriculture in order to know when to seed the grounds and to work the land. This civil 

calendar had 365 days which is exactly the number of days we have in our own modern 

calendar (except leap years). The Maya also performed astronomical measurements. They 

did not use multiplications and divisions, only additions and subtractions.  

 

The Greeks 

 

The ancient Greek civilization is quite a surprise in the history of human civilization because 

of all the accomplishments they obtained in many sciences, in math and philosophy, in 

chemistry, in physics and so on. They had many personalities important for the human 

culture, but only a few of them are mentioned here, those that had important mathematical 

contributions. For example there's no philosopher here, only those that have had a link with 

mathematics, there is no Socrates or Plato or Aristotle because they didn't have important 

contribution in math. From 600BC to 500AD, the Greeks made important contributions to 

mathematics and several other sciences. Algorithmic thinking was reflected in Greek culture 

at least by Euclid’s algorithm for greatest common divisor and Eratostene’s sieve algorithm 

for finding prime numbers. Their civilization was centered around large cities like Athens 

and Sparta.  

 

Thales of Millet 

 

 
 

Starting with Thales of Millet, he lived between 634BC and 546BC in the island of Millet. 

He stated the theorem that bears his name about similar triangles. He predicted a solar 

eclipse in the 28th of May in 585BC. He also stated that the base angles of an isosceles 

triangle are equal. In astronomy, he believed that the earth was a flat disc floating on an 

infinite ocean. There are still contemporary persons who still believe this. 

 

Pithagoras of Samos 

 

 



 
 

Pithagora of Samos lived between 560BC and 480BC in the island of Samos. Everybody 

knows about Pythagoras through Pythagoras’ theorem, but actually Pythagoras was a good 

mathematician, but also a sort of priest. He founded a religion, a mystic cult called the 

Pythagorean cult which had the pentagram as symbol. He was the head of this mystic cult. 

The lives of the members of this cult involved working with numbers which they considered 

that are gods and govern everything. The members of the cult allocated all their time to 

study numbers and most particularly, to study Pythagorean numbers, i.e. those numbers that 

are that are grouped together by the relation: a
2
 + b

2
 = c

2
. They had many unbreakable rules, 

like for example, they were vegetarian, they did not eat beans etc. They developed the theory 

of Pythagorean numbers. They proved that the square root of two is an irrational number. 

They also believed in reincarnation, even for animals. They invented the fundamentals of 

music theory that are still used today, based on numbers and proportions; they realized that 

dividing the length of a string (of a musical instrument) into ratios of 1/2, 1/3, 1/4, and 1/5 

creates the musical intervals of an octave, a perfect fifth, a second octave, and a major third 

respectively. These ratios between musical intervals, i.e. the octave, the perfect fifth, the 

major and minor third, are used even today for a stringing a guitar and fretting the the 

fretboard of a guitar. If you know guitars, there's the piece of flat wood glued on top of the 

guitar’s neck that's called the fretboard and there are iron rods placed on specific distances 

on that fretboard and when the guitar player presses down a guitar string over one specific 

iron rod which is also called a fret, then the player divides the length of the string into 

specific proportions (the ones discovered by Pythagoras’ cult) and that's how he/she obtains 

various musical notes. These were all known to the ancient Greeks, to members of the 

Pythagoras cult.  

 

Euclid, father of axiomatic Geometry 

 

Euclid lived between 325BC and 270BC in Alexandria, Greece. He is famous for setting a 

rigorous grounds on Mathematics, especially the part of Mathematics we call Geometry. He 

published this book called “Elements” which laid the foundations of axiomatic geometry. 



Elements began with postulates/axioms (common knowledge, general truth that he 

considered true beforehand like the axiom of the parallels which says that through a point 

which is outside a line we can only draw one single line that's parallel with the original line) 

and derived and proved all results from these postulates in a rigorous manner. He also 

developed the algorithm for finding the greatest common divisor that bears his name. 

 

 
 

Eratosthenes 

 

Eratosthenes lived 284BC and 192BC and is famous for the algorithm called Eratosthenes 

sieve that computes all natural prime numbers that are smaller than a given number. He built 

a star map with 675 stars and he measured the diameter of the Earth.  

 

 
 



Heron of Alexandria 

 

 
 

Heron of Alexandria lived between 10AC and 70AC in Alexandria and is famous for the 

formula of computing the area of a triangle using the semi-perimeter. He also built an 

iterative algorithm for computing the square root of a number. He also built a steam engine. 

 

Archimedes of Syracuse  

 

 
 

Archimedes lived in Syracuse between 287BC and 212BC. He is famous for Archimedes law 

which says that if you submerge a solid body into a volume of water then that solid body 

would be pushed from bottom to top by a force that is equal to the weight of the liquid that 

is displaced by that solid body. He had important contributions in mathematics and physics. 

There were various legends about Archimedes, one says that he discovered Archimedes law 

when he was baiting and then he ran naked on the streets of Syracuse and shouted “Eureka!” 

because he was very happy with his discovery. There is another legend about him that says 



he built giant mirrors and set on fire the roman ships that came on sea to conquer the Greeks. 

And this way, the Greeks managed to push back the roman army for a number of days until 

eventually the Romans conquered the Greeks. The legend says that he was killed by a roman 

soldier because he was drawing circles in the sand on the beach and there was this roman 

soldier that was near Archimedes and Archimedes complained that the roman soldier stood 

in the sun and cast a shadow on Archimedes circles and the roman soldier killed him. These 

are all legends about Archimedes’s life, we don't know if they are true or not. 

 

Klaudios Ptolemaios 

 

 
 

Klaudios Ptolemaios lived between 85AD and 165AD in Alexandria. He approximated PI 

and most importantly, formulated the geocentric model of space which states that the Earth 

was the center of the known universe and the planets and the sun all orbit around the Earth. 

This model lasted a long time in human culture, until it was overthrown by Nicolaus 

Copernicus in around 1500s when he proposed the heliocentric model which means that the 

sun is the center of the known universe, i.e. the galaxy. The Copernican model was promoted 

by Giordano Bruno and Galileo Galilei who both suffered the opposition of the Catholic 

Church (Giordano Bruno was even burned alive by the Roman Inquisition).  

 

Diophantos of Alexandria 

 



Diophantos lived in Alexandria approximately between 201/215 AD – 285/299 AD. He is 

also known as the father of algebra because he wrote a collection of 13 books called 

“Arithmetica” and containing 130 algebraic problems. Equations in these books are also 

called Diophantine equations. Most of the things he wrote in those books were not actually 

invented by him, but they were rather a survey or a summary of all known arithmetics. 

Those books or those books were famous because they were used as an important source of 

mathematical knowledge throughout the centuries (6 of these books were known in Europe 

in the late 15
th

 century). Originally written in ancient greek, they were translated into latin 

and arabic after the Greek civilization declined. Pierre de Fermat, the French mathematician, 

extended the results from these books by writing various solutions and theorems on the edge 

of pages from these books. After the Greek civilizations declined, they were conquered by 

the Macedonian empire leaded by Alexander the Great who conquered most of the Europe 

and parts of Asia too, arabs, Indians. The Macedonians would take books from various 

people that they conquered and they would translate those books into greek and they would 

deposit those books into libraries. One famous library is the library of Alexandria. The 

arithmetic books of Diophantos were also stored there. Many scientists came to the library of 

Alexandria to gain knowledge, including the indians who studied at the library of Alexandria 

and then they they brought European knowledge to India. Following, the Arabs who were a 

conquering people, conquered most of the Europe and also the Indian civilization and they  

took the knowledge from the Indians and brought it back to Europe. Diophantos Arithmetica 

is also famous due to Pierre de Fermat, the French mathematician who lived in the 1600s.  

He wrote on the edge of a page from Arithmetica that there is no n > 2 for which there are 

Pythagorean triplets meaning if n > 2, there are no three numbers a, b and c such that 

a
n
+b

n
=c

n
. The relation works only for n = 2 which gives the theorem of Pythagoras. And he 

wrote on a side of Diophantos Arithmetica that there is a very nice demonstration of this 

(this is also called Fermat’s last theorem), but there isn’t enough space on the side of the 

page to write it. From 1600s until 1995, many mathematicians wondered what was the proof 

of Pierre de Fermat because they didn't know it and they tried to solve it for more than 300 

years and eventually Andrew Wiles, a British mathematician, solved it in 1995. There are 

organizations that give important prices to people who solve unsolved, old mathematical 

problems and I think Andrew Wiles received a 1 million dollars prize because he proved this 

unsolved problem, Fermat’s last theorem. You will see in a following chapter, another link 

of computer science to unsolved mathematical problems.  

 

The Indian civilization 

 

Indian mathematics was influenced by the greeks, egyptians and Babylonians. The European 

knowledge was brought to India by Alexander the Great when he conquered India. Around 5 

century AD the Indians moved from a Greek numbering system to a Babylonian-like one but 

in base 10. They also invented the number zero. Because they decoupled numbers from their 

geometric significance, they also used negative numbers. You can see in the following 

picture an evolution of Indian numbers. The modern digits that we use are called arabic 

numbers because the Arabs conquered the Indians and all Europe and they adopted this base 

10 numbering system from the Indians and brought it to western Europe.  

 

 

 



 

 
Fig. 1.21 Evolution of Indians and Arabic numbers 

 

Aryabhata who lived between 476AD – 550AD was a famous Indian scientist who 

approximated PI, approximated  Earth and lunar rotations and affirmed the theory of 

heliocentrism. Brahmagupa (598-668 AD) was another indian scientist. He solved 1
st
 degree, 

2
nd

 degree and some quadratic degree equations. He wrote the first book to treat zero as a 

number. He tried to define division by zero (0/0=0). He also stated arithmetic rules for 

positive and negative numbers and zero. 

 

 

 

 



The Arabic 

 

The Islam rised by the year 700, occupying Egipt, Syria, Mesopotamia, Persia.  Islam 

advanced on the west until Spain and France and conquered China and India on the east. 

They would absorb the wisdom of the conquered people. They took the hindu base 10 

numerals from indians and brought it back in Europe. A famous Arabic mathematician who 

has connections to computer science is Abu Abdullah Muhammad bin Musa al-Khwarizmi. 

 

 
 

Al-Khwarizmi lived between 780AD - 840AD. Al-Khwarizmi is considered the “father of 

algebra” because he wrote a book “Al-jabr w'al-muqabala”. “al-jabr” becomes “algebra” and 

it means “to complete a task”. He then wrote another book about hindu numbers that was 

translated in the 12 century to latin “Algoritmi de numero Indorum”. His name was 

translated into latin by “Algoritmi”. An “algorithm” would be a trick for working with hindu 

numbers. This is how the concept of an algorithm was born. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Theoretical foundations of Computer Science 
 

 

In the previous section, I talked about what is computer science and how can we find the 

beginnings of computer science in human history. I have talked about the beginning of the 

hardware part in computer science, then we referred to the software part and we thought 

about algorithms and algorithmic thinking as the first roots of computer science in human 

history. I have said that there are references to algorithmic thinking throughout human 

history starting from ancient history, from the Babylonian, Egyptians and Greeks. And so, 

we have talked a little bit about the history of algorithmic thinking, about the fact that 

computer science didn't existed as a special science field, but instead roots of computer 

science like algorithmic thinking existed as part of mathematics. I discussed about various 

aspects of algorithmic thinking in the Babylonian, Greeks and Egyptians and then we moved 

from ancient history to the middle ages and we have reached year 1000 when we talked 

about the Arabic and the Indians and how they brought the mathematical knowledge back to 

Europe. We will now fast forward in time until we get to 1800s and we discuss about the 

first mechanical calculators, the two machines that were designed by Charles Babbage, the 

differential engine and the analytical engine. We will then go further to the beginnings of the 

theoretical computer science which coincides with the first electrical computers or 

electromechanical computers. 

 

The first general purpose, mechanical computers were designed by the English scientist 

Charles Babbage, the first one is called the differential engine and the second one is called 

the analytical engine. By general purpose computational machines we mean that besides 

computing the basic 4 operations, addition, subtraction, multiplication and division, these 

machines could also evaluate more complex functions like exponential, logarithm, 

trigonometric and polynomial, and they even had conditional execution (IF), loops, program 

statements. In some way, Charles Babbage's differential engine is not actually a general 

purpose computer, but the next one the analytical engine is. But anyway, the differential 

engine is a more complicated mechanical computing machine because it is able to compute 

addition, subtractions, divisions and multiplications, but also polynomial functions up to the 

seventh degree and you will see that the next machine, the analytical engine, does so much 

more and it gets quite close to the concept of computers as we have them today, of course 

keeping the historical differences in mind. So Charles Babbage tried to build the differential 

engine between years 1822 and 1842, he didn't succeed in this time interval, he eventually 

moved along and tried to build an even more complex computational machine, the analytical 

engine, but failed to do that also. Prior to 1822, the British government with his various 

agencies, compartments and departments used many tables with mathematical values of 

several polynomial functions, logarithmic functions, trigonometric and exponentials in 

commerce, computing taxes, measuring land areas, sailing on see etc. There were entire 

books containing tables of mathematical, numeric data and due to the fact that all these 

values were approximations of functions’ values, two different books would report different 

values for the same function in the same sample point. Charles Babbage thought that a 

machine that was able to instantly compute these values and compute them with high 



accuracy would be very useful for the British government and many other parts of the 

industry. And he built a small prototype of this machine in 1822 and with this small 

prototype he went to the British government, got a grant of 1700 pounds from the British 

government in 1823 and he promised them that he would build the differential engine in one 

year. After about 20 years and after the British government founded his project with more 

than 17.000 pounds Charles Babbage finally abandoned the project due to technological 

problems. The idea that the basic idea was that the industrial equipment existing at the time 

did not permit manufacturing very accurate and very precise wheels, rotors and rods with 

specific distance between the teeth of the wheel and so the precision required in order to 

build Charles Babbage's differential engine was not something achievable at that time. That  

was one reason for which the differential engine was never built completely in Charles 

Babbage’s lifetime. The second reason was related to Charles Babbage's personality - he was 

a hard headed person, had strong convictions and he didn't get along with many people. The 

design idea was pretty great; it represented numbers in base 10, it was able to compute 

polynomial functions up to the seventh degree, it represented negative numbers as 10’s 

complement. The main mathematical idea which lied behind the concept of the differential 

engine was the method of finite differences and the idea is that if we have a polynomial with 

a degree k, then the k difference is a constant always. I'll show you an example here. So let's 

assume we have this third degree polynomial : 

f(x) = 2𝑥3 − 3𝑥2 + 𝑥 + 1   
and we already know the values f(0)=1, f(1) = 1, f(2)=7, f(3)=31, f(4)=85 and we want to 

compute the values of this polynomial in the points 5, 6, 7, … The method of the finite 

differences relies on computing the values from the following table: 

 

 

x f(x) D1(x) D2(x) D3(x) 

0 1 0 6 12 

1 1 6 18 12 

2 7 24 30 12 

3 31 54 42 12 

4 85 96  12 

5 (181)?   12 

 

 

On the first column we have the values of x for which we want to compute f(x). On the 

second column we write with black the values of f(x) we already now (we have computed 

them manually). On column “D1(x)” we have the first order differences: D1(0) = f(1)-f(0), 

D1(1) = f(2) – f(1), … On column “D2(x)” we have the first order differences: D2(0) = 

D1(1) - D1(0), D2(1) = D1(2) – D1(1), … On column “D3(x)” we have the first order 



differences: D3(0) = D2(1) - D2(0), D3(1) = D2(2) – D2(1), … The values written in black 

are the one we already know and the values written in green or red are the ones we are going 

to compute. We can see in the table that the difference of the third degree remains constant 

to 12. This value depends on the actual polynomial, but it is constant. When we reached the 

difference of the degree of the polynomial (i.e. 3
rd

 degree for our example), in order to 

compute the next value of the polynomial, f(5), we can go backwards, so we first complete 

the D3(x) column with all those red values of 12, then we know that D3(2)=12, so we can 

compute D2(3) = D3(2) + D2(2) = 42. Knowing D2(3) = 42, we can now compute D1(4) = 

D2(3) + D3(3) = 96. Knowing D1(4), we can now compute f(5) = f(4) + D1(4) = 181. This is 

the method of finite differences. The advantage of this method is that there's no need for 

multiplication and division operations which are harder to implement in hardware, so we can 

compute the value of this polynomial using just additions and subtractions. The disadvantage 

is that we need to compute all the values of f( ) in all these points and all the differences up 

to the point that we are interested. Charles Babbage's idea was to use the differential engine 

in order to produce an accurate book with tables of values of various polynomial functions, 

because there were so many books with mathematical tables used throughout the British 

empire and they had various differences/errors. You can now see the connection between 

these books that contain tables with various mathematical results and the Babylonian clay 

tablets which contained equivalent things. I have told you that the differential engine wasn't 

built in Charles Babbage's lifetime, but it was later built in 1995 by the London Science 

Museand you can see here a video on how the differential engine worked: 

https://www.youtube.com/watch?v=BlbQsKpq3Ak. 

 

 

 
Fig. 2.1 Copy model of Differential Engine at London Science Museum,  

Charles Babbage, 1822-1842
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https://www.youtube.com/watch?v=BlbQsKpq3Ak


 

 
Fig. 2.2 Copy model of Analytical Engine,  

Charles Babbage,  1837
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Now moving on to the analytical engine. Sometime along the way, Charles Babbage 

abandoned the project of the differential engine and he started thinking about a more 

complicated machine, a machine that would be as large as a locomotive and that was called 

the analytical engine. Actually, this was the first general purpose computational machine 

because it could add, subtract, divide and multiply, compute polynomial functions as the 

differential engine, but also it could perform conditional execution like we have today in 

programming languages the conditional instruction, “IF”, it had loop cycles and a primitive 

form of parallel programming. Also, it had its own memory, it had a memory store that was 

able to store 1000 numbers of 40 decimal digits each, so that would be equivalent to 16.2 

kilobytes of memory in today's memory terms. The input was on punch cards - you will see 

what punch cards are in a couple of paragraphs, and it had an arithmetical logic unit (a mill) 

which could perform additions, subtractions, multiplications, division and square root. And 

it also had a sort of procedures or functions and a primitive form of assembly language. One 

could actually program it, one could write a program for it. That's what Ada Lovelace did, 

she wrote a program specification for this machine, but of course the program never worked 

because the machine was never completely built, but this is what Ada did and Ada Lovelace 

who was the first programmer in history. There is a programming language named in honor 

of Ada which is is still active today. This machine was later built, in 1990s for a museum. 
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Fig. 2.3. Charles Babbage, 1791-1871 

 

Moving on with the history of general purpose computing machines, we arrive at looms (i.e. 

in Romanian this is “razboi de tesut”). When I was a child, I don't know, 8 or 10 years old, 

my grandmother who lived in the countryside had a loom made from wood. I could watch 

her making carpets when I was at her house, in vacation. The loop had some pedals that you 

press and then you need to pass the needle which is a big (about 20 cm long) pointy shaped 

piece of wood, through some walls of threads. You can see pictures of loom in Fig. 2.4.  

 

                      
 

Fig. 2.4. Looms 
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A French guy, named Joseph Marie Jacquard who lived in France and had small looms 

company came to an idea in 1804 that instead of manually moving that wooden needle 

between those threads in the rolls of threads, he could write a template on a paper like the 

one depicted in Fig. 2.5 and the loom can “read” this template one line at the time and saw a 

tapestry according to this template. A hole in a row of the template means that the needle 

should pass below the roll of threads and a full space means that the needle should pass 

above the roll of threads.  

 

 
Fig. 2.5. Punched cards for loom templates
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So, Joseph Marie Jacquard thought he could use this kind of punch cards to describe a 

sewing pattern and then he could program those looms to build a specific tapestry according 

to those patterns. And this should be done automatically. Well, I don't know all the details 

for this, but I'm expecting that there was a human person who only needed to press some 

pedals and no more interaction was needed from the human person with the loom. So those 

punched cards patterns would tell the loom exactly what to do and when to move the needle 

below the threads and when to rise it above the threads. Jacquard invented this in 1804 and 

Charles Babbage thought of using the punched cards on the analytical engine in 1837 as a 

way of writing programs on punched cards. Starting with Babbage, punched cards started to 

be used as a medifor storing programs until about 1970 when the keyboard and the mouse 

were invented and also the monitor and the floppy-disk storage. While punched cards were 
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used in the computing history up to 1970 in Western Europe and the United States , in 

Romania, they were used up to 1992, immediately after the anti-communist revolution in 

1989. So punched cards were used in Romania a lot until 1992 and in the university students 

would program a computer by writing the program on each on these punch cards. They 

wouldn't operate the computer. There was only one computer per university and the students 

would not operate a computer like we do it today. Now I have my own notebook and I 

operate it myself, but back then, the students would operate a tabulating machine (i.e. a 

machine that punches holes into paper/cardboard cards). So the students would write 

programs on punched cards and they would come with the stack of punched cards to the 

operator, i.e. the computer technician and they would give that stack of punched cards 

representing a program to that technician and the technician would run the program written 

on those punched cards on the computer and then the student would come the next day to 

collect the output of the program which would be a listing on paper and that listing could be 

the result of running the program or usually, that listing would contain a compiling error or a 

runtime error. A compiler error means that there was one of the cards punched incorrectly. 

So the student would have to take this the stack of cards and then replace the incorrect card a 

correct one and submit the program again to the technician. This is how programming 

happened before 1989 in Romania and throughout the world using punched cards. 

 

 
Fig. 2.6. Old computer punched card (1944)
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Fig. 2.7. My collection of “modern” punched cards 

 

Any one of these punch cards contains one line of code of the program, so you can imagine 

that it takes a lot of cards to write a complete program. There is no standard for punched 

cards; different manufacturers use different formats. Most formats rely on 6-bit BCDIC 

code, where some bits represent a “zone” and the rest represent “an index in that zone”. A 

column always encodes one symbol (letter, digit etc.) from the current line of code. There 

are 9 rows for the “index” (1-9) and three rows for the “zone” (0, 11, 12) – 4 zones (0, 11, 

12 or none punched). You can see the rows of the “index” and the “zone” in Fig. 2.8. An 

example of a format is at: 

http://www.columbia.edu/cu/computinghistory/026.html 

Depending on which row on a specific column is punched, that is the index, and depending 

on the zone selected using the extra 3 rows, we obtain the character that is encoded by that 

column. This code is just a two level code, first one hole selects the zone and depending on 

that zone, the other hole selects a specific symbol digital letter from a specific symbol set. 

 

 

http://www.columbia.edu/cu/computinghistory/026.html


Fig. 2.8 The “index” and “zone” rows of a punched card
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In the United States , in 1804 Hermann Hollerith who was a businessman, an inventor and a 

statistician worked for the United States  Census Bureau. The census in the United States  

was usually performed this way: a designated person from United States  Census Bureau 

would come to each family's home and he/she would have a list of papers to fill; he/she 

would write on paper how many adults live in this home, how many children live in this 

home, what's their religious beliefs, how many are girls, how many are boys, educational 

level etc. Then, the person working at the Census Bureau would gather all these statistical 

data on paper and would bring it to some offices and there all the statistical data from the 

county would be reunited and transcribed and saved. Needless to say that the census was a 

laborious process. Herman Hollerith thought that this process would happen a lot faster if 

used punch cards to store all the statistical data. And he built machines that would process 

these punch cards automatically and produce statistics. These are called tabulating machines 

– you can see one in Fig. 2.9. 

 

 
Fig. 2.9. A tabulating machine
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These tabulating machines that Hermann Hollerith built would tabulate data meaning they 

would produce holes into cards and there were also the second type of machines that would 

process those cards and read the holes, i.e. the data, from the punched cards. Hermann 

Hollerith used these tabulating machines in the 1819 US census and the census was 

completed two years before the estimated time, so it was quite efficient. And then he started 

a company producing tabulating machines and this company later merged with other three 

companies and they formed a large company which also exists today and is called IBM 

(International Business Machine). The company of Hermann Hollerith was called the 

Tabulating Machine Company. 
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    Fig. 2.10. Hermann Hollerith    Fig. 2.11. 1819 US census 

 

 

 

Now we should actually move to the theoretical foundations of computer science. 

Theoretical foundations of computer science are linked to three individuals that well, are 

very smart individuals, geniuses, but each of them had their own peculiarities. Each of them 

were in their own way “special” meaning they had traits that separate them from the rest of 

the population besides the fact that they were really, really smart. And those three 

individuals are Kurt Goedel who is an Austrian mathematician, logician and philosopher, 

Alan Turing who is a British mathematician and John von Neumann who is a Hungarian-

American mathematician, chemist, a physicist, computer scientist and many other things. 

John von Neumann was a lot of things and you will see that at the end of this section. All of 

them were really bright individuals. But the whole story starts with David Hilbert (see Fig. 

2.12), a German  mathematician, and his list of unsolved mathematical problems. David 

Hilbert proposed in 1900 in Paris at a Math conference a list of 10 initial unsolved, 

important problems in the field of Mathematics. These problems are unsolved problems 

similar to the one I have talked about in previous sections, Fermat’s last theorem about the 

Pythagorean numbers. I have also told you the legend surrounding that theorem that 

remained unsolved for about 300 years when it was finally solved by Andrew Wiles in 1995.  

 
Fig. 2.12. David Hilbert 



So these 10 initial problems are those kind of unsolved problems in mathematics that existed 

in mathematics for a long time. David Hilbert completed this list soon afterwards with other 

13 more problems, resulting in a total list of 23 unsolved problems. You can see the list 

below
16

: 

1. The continuum hypothesis (i.e., there is no set whose cardinality is strictly between 
that of the integers and that of the real numbers).  

2. Prove that the axioms of arithmetic are consistent.  
3. Given any two polyhedra of equal volume, is it always possible to cut  the first into 

finitely many polyhedral pieces that can be reassembled to yield the second?  
4. Construct all metrics where lines are geodesics.  
5. Are continuous groups automatically differential groups?  
6. Mathematical treatment of the axioms of physics:  

(a) axiomatic treatment of probability with limit theorems for foundation of statistical  
 physics 
(b) the rigorous theory of limiting processes "which lead from the atomistic view to  
the laws of motion of continua". 

7. Is ab transcendental, for algebraic a ≠ 0,1 and irrational algebraic b ? 
8. The Riemann hypothesis ("the real part of any non-trivial zero of the Riemann zeta 

function is 1/2") and other prime number problems, among them Goldbach's 
conjecture and the twin prime conjecture. 

9. Find the most general law of the reciprocity theorem in any algebraic number field.  
10. Find an algorithm to determine whether a given polynomial Diophantine equation 

with integer coefficients has an integer solution.  
11. Solving quadratic forms with algebraic numerical coefficients.  
12. Extend the Kronecker–Weber theorem on Abelian extensions of the rational numbers 

to any base number field. 
13. Solve 7th degree equation using algebraic (variant: continuous) functions of two 

parameters. 
14. Is the ring of invariants of an algebraic group acting on a polynomial ring always 

finitely generated? 
15. Rigorous foundation of Schubert's enumerative calculus.  
16. Describe relative positions of ovals originating from a real algebraic curve and as limit 

cycles of a polynomial vector field on the plane. 
17. Express a nonnegative rational function as quotient of sums of squares.  
18. (a) Is there a polyhedron that admits only an anisohedral tiling in three dimensions?  

(b) What is the densest sphere packing? 
19. Are the solutions of regular problems in the calculus of variations always necessarily 
analytic? 
20. Do all variational problems with certain boundary conditions have solutions?  
21.Proof of the existence of linear differential equations having a prescribed 
monodromic group. 
22. Uniformization of analytic relations by means of automorphic functions. 
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23. Further development of the calculus of variations.  
 

 

Many of those problems would shape the evolution of the mathematical science in the next 

century. Some of them were later disproved, some others were proved, but still there are 

some of them that are still unresolved to this day. Many of them require intensive 

mathematical knowledge like problem 8, checking out whether the real part of any non-

trivial zero, i.e. any root of the Riemann Zeta function is 1/2. But others like Goldbach’s 

conjecture on prime numbers is very simply formulated, i.e. it is very easy to understand it. 

Golbach’s conjecture lies unsolved for more than 300 years. It is stated like this: every even 

number greater than two can be described as the sum of two prime numbers. Actually it was 

partially demonstrated using powerful computers and simulations and it was shown to be 

true for numbers up to 4 times 10 at the power of 18. But still it's not proven for any general 

even natural number. There are very large prices like one million dollars offered by various 

organizations for those who will solve one of these long lasting problems. So if you want to 

get rich and you are really good in math, you could take a swing at these problems. We are 

not interested here by all these problems, but rather with the second problem from the list 

and this problem is proving that axioms of the arithmetic are consistent. The idea of this 

problem is if you remember when we talked about Euclid and the beginning of axiomatic 

thinking and axiomatic science. When he wrote the very famous book called “The Elements” 

which introduced axiomatic geometry, he envisioned the following thinking for a general 

science or an abstract science like mathematics: each abstract science should start with a set 

of axioms which are common truths, very simple truths that are assumed true a priori by 

everybody and starting from this set of simple truths, all the knowledge in a specific area 

like arithmetics or geometry can be derived by logical reasoning, by syllogisms and other 

logical reasoning. This is also generally true even for experimental science like physics; so, 

you start with a set of common truths and then you put in logical reasoning and then you add 

external observed data and you mix them together and you come up with new theories in 

physics. But mostly this is true for abstract sciences like mathematics. Euclid’s principle 

guided mathematical thinking and mathematical development throughout the years, even 

today we use the same principles; we start with those axioms, then build on them some other 

theorems derived from the axioms, then use those simple theorems in order to derive some 

more complex theories and so on build on them in a way we reuse software in software 

engineering today. In software development, we start from simple system calls that perform 

input/output functions, these system calls are implemented by the operating system, then we 

take library like the libc library in Linux or lib32 in Windows that wrap these simple system 

calls and add further functionality and then, we use some other libraries like the node.js 

interpreter which wraps over all these system libraries and build something more complex 

and then use node.js packages that use all these functions and build on them and do 

something more complex and so on. This process is similar in Mathematics and it was 

introduced first by Euclid in ancient Greece. Euclid formulated a set of axioms, simple 

common truths like the one which says it is possible to draw a straight line between any two 

points or we can extend the line segment to the left and to the right infinitely or we can 

describe a circle with the center of the circle and the radius of the circle or if we have one 

line we can draw through a point exterior to that line on the same plane only one single 

parallel line to the initial one (i.e. the axiom of parallels). So these are the axioms that were 

introduced by Euclid and are general truths accepted as true by most of the population and 



starting from those, we can build through logical reasoning more advanced theories, but it's 

very important that those theories are derived from the initial axioms using logical 

reasoning. We have the same thing for Arithmetics, we have several axiomatic systems for 

arithmetic, the one of the most famous being the Peano’s axioms:  

1. 0 is a natural number. 
2. For every natural number x, x = x. That is, equality is reflexive. 
3. For all natural numbers x and y, if x = y, then y = x. That is, equality is symmetric. 
4. For all natural numbers x, y and z, if x = y and y = z, then x = z. That is, equality is transitive. 
5. For all a and b, if b is a natural number and a = b, then a is also a natural number. That is, the 
natural numbers are closed under equality. 
6. For every natural number n, S(n) is a natural number. That is, the natural numbers are 
closed under S. 
7. For all natural numbers m and n, m = n if and only if S(m) = S(n). That is, S is an injection.  
8. For every natural number n, S(n) = 0 is false. That is, there is no natural  number whose 
successor is 0. 
9. If K is a set such that: 0 is in K, and for every natural number n, n being in K implies that 
S(n) is in K, then K contains every natural number. [The Induction axiom] 
 

Hence, we start with a set of simple axioms and we derive all the arithmetic theories. The 

Greeks brought their contributions to mathematics and revolutionized mathematics, then the 

Macedonian conquered the Greeks, under Macedonian ruling, the Greek mathematics still 

progressed because the Macedonians allowed Greek cities to rule themselfs and then the 

Roman empire conquered the Greeks. During Roman ruling the mathematical progress 

stopped evolving, along came the middle ages when people were more concerned with wars 

and how to survive and there weren't important science development during the middle ages 

in Western Europe. But the Indians carried on with the mathematical thinking and then, 

when the Arabic population conquered most of Europe, thy went to Asia, conquered the 

Indians, the Mongolian and so they adopted the knowledge from the Indians and brought it 

back to Europe. Starting with the renaissance period, the mathematical science continued to 

evolve, there were new theories added to mathematics, there was Pierre de Fermat in 1600, 

Isaac Newton and Gotfried Leibnitz in the 1500s who introduced the infinitesimal calculus, 

there was Leonard Euler in the 1700s and throughout these years, Mathematics became a 

powerful science capable to explain many of the world phenomenons. Most mathematicians 

assume that starting with arithmetics axioms (although this is true with respect to all areas of 

mathematics), we can derive from them more complicated truths and using those truths, we 

can derive more complicated truths and so on. They implicitly thought that if a 

mathematician is wise enough, he/she can prove this by deriving the mathematical sentence 

from those set of axioms or arriving to a contradiction starting from the initial set of axioms 

(which would disprove the initial statement). This means that mathematics is complete. The 

mathematicians considered this to be an implicit truth, but sometimes during 1800s 

mathematicians challenged this and tried to to logically prove this. They started asking 

themselves whether this can be said about any possible statement in arithmetics. So they 

wondered whether given a random arithmetic statement, whether we can say about this that 

it is true or it is false meaning we can derive this statement from the set of axioms or we can 

get to a contradiction starting from a set of axioms. So every mathematician assumed this is 

true, but nevertheless, they tried to prove this. Another way of describing this problem is to 



prove that the axioms of arithmetic are consistent. This is the reason this problem lies here 

on David Hilbert's list because it's not so easy to prove that the arithmetic system is 

consistent. Kurt Goedel, an austrian mathematician and philosopher who lived in Austria and 

then moved to Princeton US, proved the incompleteness theorem in 1931. He proved that the 

axioms of arithmetic are not complete. He called it “Einscheindung's problem” or the 

problem of decidability (i.e. deciding whether the axioms of arithmetic are complete or not). 

Kurt Goedel proved that there are mathematical assertions for which we cannot prove that 

they are either true or false starting from that set of axioms using mathematical thinking and 

this is not linked to the mathematical abilities of the person that tries to prove this. In 1931 

he proved this result in a conference, but few mathematicians actually believed it, even 

fewer mathematicians actually understood the demonstrations which was quite complicated. 

So it took some time until Kurt Goedel's result actually got accepted by the mathematical 

computing. By the way, he proved this theorem by offering a counter example, meaning he 

offered an example of a mathematical statement which he proved that cannot be derived 

from the initial set of axioms and he can also not disprove that statement. Maybe you can 

imagine that the counter example he had given looks simple, but it was very abstract, it was 

defined using just symbols. Another proof of the fact that arithmetic system is not consistent 

was later given by Alonso Church who was Alan Turing's advisor from the United States . 

And yet another demonstration of the incompleteness theorem belonged to Alan Turing.  

 
Fig. 2.13 Kurt Goedel 

 

Kurt Goedel actually proved two incompleteness theorems the first one is that no consistent 

system of axioms like the aromatic system is capable of proving all available truths in the 

system so there are statements there are mathematical assertions or there are assertions about 

the natural numbers that cannot be proven correct within the arithmetic system. And the 

second theory is that the consistency of an axiomatic system cannot be proven from within 

the system, meaning there are statements that need to be proven from outside the system 

using something else than just the axioms of the system and this does not matter on on how 

many axioms you use for your system. I have told you that he lived in Vienna, in Austria, 

but then he moved to Princeton, United States . He was good friend with Albert Einstein.  

 



  
Fig. 2.14. Kurt Goedel and Albert Einstein 

 

I have told you that besides the brains, what separates these three individuals (i.e. Kurt 

Goedel, Alan Turing and John von Neumann) from the rest of the world is other 

particularities. Goedel was a very introverted person, a very shy person. He didn't have many 

friends and one interesting fact about this is that he lived in Princeton and after the second 

world war there was the tensions between the United States  and the communist Russia, 

there were all sorts of conspiracy theories flying around in US that the russian communists 

would come to United States  to make the United States  of America a communist nation and 

so on. At that time there was the beginnings of the cold war between the United States  and 

Russia. There were spy stories all around and Kurt Goedel only ate food prepared by his 

wife, he only trusted the food that was prepared by his own wife because of his fears that the 

food might be poisoned by russian communists. So when his wife died, he refused to eat 

anymore and he died of starvation and when he died, he weighted about 32 kilograms.  

 

The second man that layed the theoretical foundations of Computer Science was Alan 

Turing. Alan Mathison Turing lived between 1912 and 1954 in England and United States , 

besides the fact that he was really smart, his particularity (which was uncommon at that 

time) was the fact that he was homosexual and at that time it was illegal to be homosexual in 

England. And actually this is what partially caused his death, but I will get to that later. By 

the way, there is a nice movie from five years ago called “The imitation game” about the life 

of Alan Turing. Alan Turing was interested in science at a very young age. He liked 

mathematics and physics and he didn't like so much social sciences like literature, history 

and so on. But the focus on the public Britain schooling system at that time was on social 

sciences, art and literature and what we inherited from the ancient Greeks. The headmaster 

of the Sherborne school where Alan Turing studied when he was a a child said to his parents  

“If he is to be solely a Scientific Specialist, he is wasting his time at a Public School.”. 

Meaning he could just learn the scientific part home with some tutor in order to be an 



engineer or something like that because the focus of public schools was on social science 

sciences. He really loved school, there's one story about his first day of school which 

coincided with a general strike of railway and train workers and he couldn't get to school by 

train so he rode a bike for 97 kilometers. He started the journey one day before the school 

started and he spent the night at the local inn, but he got there in time when the school 

started. So this is to show that he really loved school. He showed stunning abilities for 

mathematics. By the age of 15 he could solve advanced mathematical problems without 

studying elementary calculus, that's the calculus which involves derivatives and the 

infinitesimal calculus. At the age of 16 he could understand Einstein's theories of relativity, 

the special one  and the general relativity one and from 1931 to 1934 he studied at King's 

College in Cambridge. After his master dissertation in 1935 at the age of 22, he was elected 

as a fellow of King's College meaning he started to teach there. He proved in his dissertation 

the central limit theory in probability. Then he wrote a paper “On Computable Numbers, 

with an Application to the Entscheidungsproblem” in 1936 in which he proved Goedel’s 

theorem using Universal Turing Machines. The Universal Turing Machines are just abstract 

computers and actually the computers that we use today like my notebook and your 

notebooks, they all follow Turing and John von Neumann's architecture. In 1936 he moved 

to Princeton and in 1938 he obtained a PhD in mathematics under the supervision of Alonzo 

Church. Alonzo Church also invented lambda calculus and he established the roots of 

functional programming. John von Neumann wanted to hire Alan Turing as a postdoc 

assistant, but Alan Turing left for England. Now let's talk about this article “On computable 

numbers with an application to the einscheidungsproblem” from 1936. Turing transformed 

Kurt Goedel’s decidability problem into the halting problem and he offered another proof in 

this way of Kurt Goedel's incompleteness theorem. The decidability problem is whether we 

can decide/prove that a statement is true or false. Turing's halting problem is to say whether 

we can say or prove that any program-input data pair eventually terminates or not. The 

Universal Turing Machine is a mathematical model of an abstract computing machine (i.e. a 

computer). Is just an abstract computer that would have a brain and then will have a strip of 

tape and on this tape there are symbols and this tape is the input tape and also the output tape 

and the machine will just read one symbol at a time from this tape and depending on the 

internal state of the machine it will move to a different state and then advance on the input 

tape or it could write a symbol on the output tape. Alan Turing proved that the halting 

problem of the universal Turing Machine is equivalent to the decidability problem and he 

proved that the halting problem is undecidable. He proved this by reduction at absurdum, he 

assumed that it is true and he then showed that we get a contradiction.  

 

 

https://en.wikipedia.org/wiki/Universal_Turing_machine
https://en.wikipedia.org/wiki/Universal_Turing_machine
https://en.wikipedia.org/wiki/Universal_Turing_machine


Fig. 2.15. The Universal Turing Machine graphical concept 
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The formal definition of the Turing Machine is: A Turing machine is similar to an 

automaton , it is a tuple M=(S, A, b, Σ, T, s0, F) where: 

• S is  a finite, non-empty set of states 

• A is a finite non-empty set of tape alphabet symbols 

• b ϵ A is the black symbol (the only symbol allowed to occur on the tape infinitely 
often at any step during the computation) 

• Σ ⸦ A\{b} is the set of input symbols (that can appear on the input tape) 

• s0 ϵ S is the initial state 

• F ⸦ S is the set of final/accepting states 

• T : (S \ F) x A → S x A x {L,R} is a transition function, L is a left shift, R is a right 
shift. If T is not defined on the current state and the current tape symbol, then the 

machine M halts. 

The mathematical definition of a Universal Turing Machine is very similar to an automaton 

which is studied in the formal languages and compilers domain. An Universal Turing 

Machin would be a tuple which is formed by a set of states which define the automaton and 

the Turing Machine moves from one state to another one, it has an alphabet of tape symbols, 

it has a black symbol which is just an empty symbol, it has the set of input symbols which is 

just the alphabet without the black symbol (those input symbols appear on the input-output 

tape) and then it has a an initial state just like an automaton and a set of final states. The 

execution of the Turing Machine is completed by reaching one of the final states and the 

transition function specifies the movement from one state to another one and performs the 

left shift on the tape or right shift on the tape.  

 

Turing actually proved three incompleteness theorems. He first proved a theorem that would 

establish an equivalence between the decidability problem and the halting problem and he 

said that if there were a method/algorithm to prove that the statement S is true or false, then 

a Turing Machine M would be able to execute this method/algorithm and would eventually 

terminate with the result true or false. If the statement is true, the algorithm would terminate 

with the result true, if it is false, the algorithm would terminate with the result false. So this 

is the equivalence between the decidability problem and the halting problem. Then he 

proved the second theorem which says that there is no Turing machine M that can say for 

any arbitrary (computer program – input data) pair whether this program will finish running 

or will continue forever. For most of the pairs computer program and input data, the Turing 

Machine M can say whether the execution terminates or not, but for some of them, it cannot 

say. Let’s consider the example: if there exist a function halt(p) that determines whether 

program p terminates for any p (halt(p) returns true or false), consider the following p: 

    function p() { 

 if (halt(p)==true) { loop_forever() } 

    } 

Then the function halt(p) gives contradictory results for the above p( ) example. 

    

In the above example, there is a function halt(p) that determines whether the program p 

terminates for any program p. So halt(p) returns true if the program terminates or false if it 
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doesn't terminate. Let’s try to evaluate halt(p). Let's assume that the actual program p 

terminates. If p terminates, then halt(p) is of course true, but in that case there's a loop 

forever and halt(p) returns true although the program does not terminate because it loops 

forever. Now if we assume that p does not terminate, in this case, when we evaluate halt(p), 

it is not evaluated to true because it doesn't finish. So halt(p) should return true although we 

assume that p does not terminate, which gives contradictory results. And this is how, in just 

a very short summary, Alan Turing proved that there are statements, i.e. computer program 

input data pairs for which the Turing Machine cannot say whether its execution terminates or 

not. 

 

Some other important facts and important accomplishments of Alan Turing were related to 

the second world war namely to British intelligence and decrypting german encrypted 

messages. During the war much less than today the atmospheric space was filled with radio 

messages, today even more now with the wi-fi networks and cellular networks. Today we 

have a lot of electromagnetic waveforms around us. Nowadays the  atmospheric space is 

very crowded with electromagnetic waves, but during the second world war even if it was 

not that crowded, there was still radio communication used for the actual radio service, but 

also for sending messages from the army headquarters to the troups on the field. Let's say 

the German army headquarters in Berlin wanted to send commands and informative 

messages to ships in the Atlantic Ocean or to the infantry fighting in Europe and the same 

thing did the British and the Allied forces and of course since the  whole message is sent 

through the air using radio waves, you may imagine that the enemy would detect the radio 

waves and would get the message. So it's very important to encrypt the message and the 

Germans used a very famous encryption system called the German Enigma machine and this 

is a symmetric cryptography system. 

 

A quick side note here about encryption systems. There are two basic cryptographic systems 

nowadays, one of them is encryption with a symmetric key which means that you use the 

same secret key in order to encrypt the message and in order to decrypt the message and the 

other one is a cryptographic system with asymmetric keys meaning that you have one key 

for encrypting the message and you have a totally different key in order to decrypt the 

message. The first system, the  symmetric key encryption system, is based on the fact that 

you start with the  initial message which is composed of letters and then you do all sorts of 

permutations and shifts they are grouped usually in boxes and you do all those permutations 

and shifts linked together, but sometimes even in parallel and then you unite the results in 

order to get to a sequence of letters which are very different than the initial unencrypted 

data. And it was the same idea with the Enigma machine. Even if you talk about modern 

symmetric key cryptographic systems like DES (i.e. Data Encryption Standard) or AES (i.e. 

Advanced Encryption Standard) they are all based on these boxes of shifts and xors and bit 

rotations and they apply this sequentially a large number of times so that we start from an 

initial set of unencrypted data and we get an output encrypted sequence of characters which 

are totally different than the unencrypted sequence of characters. The advantage of the first 

system is that is  pretty fast to encrypt the text and to decrypt it assuming that the encryption 

key is not extremely long, but even if it is extremely long it's pretty fast. The disadvantage is 

that of course if I want to pass a encrypted message to one of my friends, I would have to 

encrypt this message with the secret key then I would have to give this person the encrypted 

message, but also I have to give him the secret key because without the secret key he cannot 



decrypt the message and there's the problem that if I have to pass to the friend  the secret key 

so that nobody finds out the secret key, then I could just pass him the secret message without 

encrypting it and decrypting it. So this is an important disadvantage, if I can pass the secret 

key to my friend and I suppose that nobody captures that key, then in the same way I could 

just pass the message unencrypted. This disadvantage is solved by the second encryption 

system, the asymmetric encryption system which is also called private and public key 

encryption system and which was invented by Rivest, Shamir and Adelman. The most 

famous algorithm of public and private key encryption is RSA. The idea of RSA is that you 

start with two very large random prime numbers with a lot of digits, more than 10 digits and 

based on these random numbers, you compute two keys, one is the public key and one is the 

private key and these two keys have an important property, they are complementary: you use 

one of the keys to encrypt the message and the other one to decrypt the message. And if we 

get back to the situation that I mentioned before, so I have a friend and I want to send an 

encrypted message to that friend, then my friend can generate a public and a private key and 

he would keep the private key to himself as a secret and he would show the public key let's 

say on his website for everybody to see. I can take this public key, I encrypt my message 

with the public key and I show my message on my website publicly to everybody to see 

because nobody can decrypt it if they don't have the  secret key which is the  private key 

kept by my friend. My friend can see the message and can decrypt the message using his 

private key. In this case there's no problem, we avoid that problem of me sending him some 

secret stuff like the secret key and then sending him the secret message, i.e. the encrypted 

message. Because we are using very large numbers, it's very hard to do a brute force attack 

on this public-private key system meaning that in order to check all the combinations, 

scientists assumed that it would take the current computing power hundreds of years to 

compute all the possibilities in a brute force attack. Of course, there are legends about NSA, 

the National Security Agency in the United States  who supposedly have this powerful 

quantum computer and they can decrypt messages encrypted with public-private keys in 

days, but those are just legends. RSA is used in emails encryption, the HTTPS protocol, 

internet banking. So RSA is used in a lot of services today and if we wouldn't have RSA, 

then none of these services would be possible. An important note is that actually RSA is 

hard to compute, so RSA is used only in the beginning of the communication in HTTPS to 

establish and encrypt a symmetric key and then the symmetric key is used further because 

it's a lot faster to encrypt and decrypt using that one. That symmetric key is refreshed from 

time to time during the lifetime of that communication session.  

 



 
Fig. 2.16 German Enigma
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Enigma was a symmetrical cryptographic system and the Polands actually cracked the  

enigma system. The Poland spies captured a bunch of Enigma machines and managed to 

crack it in 1932. But then the Germans produced the second generation Enigma which was a 

lot harder to crack and nobody could brute force attack it. Because Poland and the British 

forces were allies in the second world war, the Poland shared their knowledge of Enigma 

with the British spies in 1939 and this is how Alan Turing got to know Enigma. What Alan 

Turing's teams what in Bletchley park did was to invent a electromechanical computer called 

the Bomb (by the way, the Poland machine that would decrypt the first Enigma was also 

called the bomb) that would simulate all the possible combinations of Enigma (i.e. it would 

perform a brute force attack) very fast and most of the combinations would get to a 

contradictory result, so using Turing's bomb one could simulate all Enigmas possible states 

and you can you can rule them out in a matter of hours and then there were still a few cases 

that needed to be checked by hand and that thing could be done a couple of hours by a 

humans. Imagine that the British forces would capture the radio messages at night and they 

would need a decrypted message by morning so it was more than enough time for the British 

to decrypt the  German messages. A bombe contained 26 Enigma simulators and can execute 

jobs in parallel. 
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Fig. 2.17. Turing’s Bombe
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The Enigma chiper is a German encryption machine which scrambles the 26 letters of the 

alphabet and it has in one variant with four rotors 10 at the power of 22 possible rotor setting 

meaning that you would have to brute force and test all this 10 at the power of 22 possible 

settings and this is what the bomb did. It would simulate all these settings but very fast. The 

bomb would not simulate all these states completely, meaning the bomb could rule out a lot 

of this possible state as impossible. When a key is pressed one or more rotors rotate and each 

rotor had 26 letters and it had 26 contacts which would connect to the electrical contacts of 

the next rotor and so on. So a key is just an electrical pathway through this system of rotors.  

      
Fig. 2.18. Enigma rotor system
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The idea of the bomb is to use a text which is already known to be present in the encrypted 

text as examples of such text are ‘Heil Hitler’ which would be a text that would be present in 

all german encryption messages or weather because usually you send weather reports to 

ships and to forces. Alan Turing assumed that this text will always be present in the 

encrypted message and using this assumptions, he was able to rule out a lot of possible 

combinations of Enigma. It is assumed that Turing’s bomb and the decryption work of Alan 

Turing in Bletchley Park has shortened the war by two years and saved thousands of lives. 

  

Alan Turing also devised several other electromechanical computers while he worked at 

Bpetchley Park after the war ended. Alan Turing also invented the famous Alan Turing 

artificial intelligence test which is not met by any artificial intelligence machine today. The 

idea is to have two rooms separated by a screen and the person from one room cannot 

see/interact with the person from the other room. But the first room has a terminal like a 

monitor and a keyboard and if a person comes in to the first room, he/she could write 

questions using the keyboard for the person or the machine sitting in the second room (that 

the first person cannot see). The person or the machine in the second room writes answers 

and those answers appear on the monitor in the first room. The idea is that if the first person 

in the first room asks questions and if in the second room there's a machine who answers the  

first person questions and the first person doesn't realize that it's a machine answering (and 

not a human), then this means that that machine has artificial intelligence. This is like a 

reverse captcha test if you know those captcha tests used on the web that ask the user to 

compute a very simple addition or just say that this is a bridge or a plane or whatever - this 

is a test to check whether there's a human user behind the computer. Some other notable 

facts about Alan Turing are that he was a very good athlete and he won several athletic 

contests. I already mentioned that Turing was homosexual and it was illegal in Great Britain 

in that time to be homosexual and some thieves broke into his house and he had to call the 

police and the police somehow discovered that he was homosexual, so he was sentenced to 

either do prison time or to accept a hormonal therapy in order to decrease the homosexual 

traits. He accepted the hormonal therapy, but it was making him very sick and he died in 

1954. He died of cyanide poisoning, it was most probably suicide, but no one really knows 

for sure whether it was suicide or someone killed Alan Turing. In 2009 the British 

Government and the Queen issued a public pardon for the way the British Government 

treated Alan Turing during the war and the most famous prize in computer science has the 

name of Alan Turing. The Alan Turing prize is the most famous award issued by ACM 

(Association for Computing Machinery); it is like the Nobel prize in computer science or the 

Fields medal in mathematicians. Also about Turing's legacy, Turing's nephew Dermot 

Turing makes public presentations all over the world about Alan Turing's work and he said 

that Alan Turing probably committed suicide because he felt like he was losing control 

control over his body, control over his life and he probably committed suicide. In Fig. 2.19 

you can see Dermot Touring on the scene of the Students Cultural House in Cluj-Napoca in 

2017 giving a public presentation at the “IT days” conference. He will probably come again 

to Cluj Napoca.  
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Fig. 2.19. Dermot Turing giving a public presentation in Cluj-Napoca, 2017 

 

Now we move on to John von Neumann. He lived between 1903 and 1957. He was an 

Hungarian-American mathematician. His original name was Janos Lajos, but he changed his 

name to John von Neumann when he moved to the United States . He was jewish and he 

moved to the United States because of the Holocaust and the nazis action against jewish 

people. He was a mathematician, physicist, computer scientist, engineer, polymath, a very 

bright person. He made a large number of important contributions even if he lived only 50 

years. He had contributions in foundation of mathematics, ergodic theory, functional 

analysis, statistics and many more, but also in physics, quantum mechanics, nuclear physics, 

economics game theory and computing. He was renowned for his instant intelligence, I mean 

he was able to instantly compute something or discover something. I have told you when 

Kurt Goedel presented his incompleteness theorem and the proof of the incompleteness 

theorem at the conference, a few mathematician actually thought it was true and few of them 

actually understood the demonstration. But John von Neumann was present at that 

conference and immediately said corollary of that incompleteness theorem. So he 

immediately realized something that even Kurt Goedel didn't thought of it. He published 

over 150 papers, he was part of “the martians” – a group of Hungarian mathematicians that 

fleed Europe and moved to United States  to universities because of the nazi occupation. The 

martians group was made from: Paul Erdos, Paul Halmos, Theodore von Karman, John G. 

Kemeny, John von Neumann, George Polya, Leo Szilard, Edward Teller, and Eugene 

Wigner. Among them, there was Paul Erdos who is very famous for his large number of 

scientific collaborations. He created the Paul Erdos number which is a graph that links 

scientific authors who collaborated (in paper writing) with Paul Erdos and he defined the 

Paul Erdos number of a scientist as the path distance in this graph from Paul Erdos to the 

vertex of that scientist. Paul Erdos had the number 1. Another martian was John Kemeny 



who taught at Dartmouth College and laid the foundation of the first programming 

languages. Then there was Leo Szilard which made important contribution to mathematics, 

then DNA and biology. John von Neumann was born in Budapest, he was a true child 

prodigy. At age of six he could divide two eight digit numbers in his head and could speak 

ancient Greek. By the age of eight he was familiar with differential and integration integral 

calculus.He studied at public Lutheran Fasori Evangélikus Gimnázium, but also had private 

tutors. At age 15 he studied advanced calculus with the renowned Gabor Szego and on their 

first meeting he was brought to tears by the boy’s mathematical talent. By age 19 he 

published 2 major math papers, in one he gave the modern definition of ordinal numbers 

(which superseded Cantor’s definition). In 1923 he entered Pázmány Péter University in 

Budapest as PhD candidate in mathematics and ETH Zurich as chemical engineering student 

(to please his father because his father wanted him to be an engineer). He completed his 

habilitation in math in 1927 and started lecturing as privatdozent at Univ. of Berlin in 1928 

(the youngest person ever elected in the history of the university on any subject). By 1929 he 

published 32 major papers in mathematics (at a rate of nearly 1 major paper per month in the 

last 2 years which is mind blowing). In 1929 he moved to Princeton University, US and in 

1933 he was offered lifetime professorship. John von Neumann also participated to the 

Manhattan project. The Manhattan project reunited a set of preeminent american scientists, 

mathematicians and physicists and so on like John von Neumann Richard Feynman, Albert 

Einstein etc. and they suggested the American president Roosevelt to seriously consider 

using the  atomic bomb on the Japanese because the Americans faced the threat of maybe 

losing the war or if not losing the war, faced the threat of having a very long war. Then 

president Roosevelt finally used the atomic bomb on two Japanese cities, Hiroshima and 

Nagasaki. The team of scientists involved in the Manhattan project performed various 

nuclear tests at Los Alamos and used computer simulations (ENIAC, a computer we will talk 

about a subsequent section) which showed that the blast effect of the atomic bomb would be 

larger if the atomic bomb would detonate above the ground not when it hits the ground. And 

that's why those two bombs, Fat John and Little boy, that were launched over Hiroshima and 

Nagasaki actually exploded 100 meters above the ground to produce more destruction. John 

von Neumann died because of the nuclear test he participated in Los Alamos because no one 

knew many things about nuclear radiation and he died of bone, pancreatic and prostate 

cancer. He died in pain in 1957 under military surveillance, 24 hours per day due to all the 

secrets he knew. He invented the Merge Sort algorithm in 1945. He was a consultant to build 

the  important ENIAC and EDVAC American supercomputers. While he was consulting for 

EDVAC, he described the computer architecture where the program and the data are stored 

in the memory, both of them. He described this architecture which now we call the Turing-

von Neumann architecture. This is the modern computer architecture that we have today for 

my notebook, for the tablet or phone etc. The computer has a memory and we store here the 

program and the data, has the control unit which set which establishes what should be 

executed next, it has an arithmetic unit which computes arithmetic operations and an input 

and an output (see Fig. 2.20).  

 



 
Fig. 2.20. The Turing-von Neumann computing architecture
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Some fun facts about von Neumann was that he could quickly memorize whole pages from 

the telephone book and he would entertain friends by reciting addresses. He would just look 

over two pages from the phone book for a couple of seconds and then he would close it and 

was able to recite from his head any number or any address that was present on those page 

books. Then he was socially active. The weirdness of John von Neumann was that he used to 

drink and he was also - I don't know the term in English – “a women’s man”. He was a very 

bad driver, but because he was well paid, he used to come with a new car at the beginning of 

each university year. He had a lot of accidents and one of the accidents was reported to the 

police like this: he said that well it was such a nice weather, I used to drive very peacefully 

and all the trees on the right side would pass in an orderly fashion one after another on the 

right side and suddenly one of them jumped in front of the car. So he really didn't care much 

about these things. He used to eat and drink, he used to throw parties at his house in 

Princeton every weekend - actually there were a significant number of scientists that were 

complaining about the loudness coming from Neumann's house, one of them being Einstein. 

But he liked this loud environment, he could think very well in this loud environment 

playing loud music, he would he was married two times, he took great caring his clothing, 

always wore formal suits. 

 

                                                             
21 http://www.wikipedia.org 



 
Fig. 2.21. John von Neumann 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

History of primitive computing devices   
 

 

Charles Babbage designed the differential engine and the analytical engine around 1820 to 1840 

and those two, especially the analytical engine were the first general purpose mechanical 

calculators. This means that they could compute the four basic arithmetic operations: addition, 

subtraction, multiplication and division, but also more complicated mathematical expressions like 

evaluating a polynomial, exponential and logarithmic function and also, at least the analytical 

machine, had the ability of performing  conditional instructions, loops, had input on punched 

cards and had an operating language. But simple mechanical computing devices equivalent to 

pocket calculators (i.e. they could perform only additions, subtractions, divisions and 

multiplications) that existed before Charles Babbage. Actually, simple computational devices 

existed even in the ancient history. And this is the subject of this section. And  although we will 

generally focus on mechanical calculators that existed before Charles Babbage, i.e. before 1800s, 

we will still go after 1800s until about 1960 just to see how they evolved, but still restrict our 

discussion to basic calculators that could compute the four basic arithmetic operations. Actually, 

the oldest devices were just tools that assisted humans in performing computations and some of 

them didn't compute any arithmetic operations, but were used to predict the positions of the moon 

or the sun, to predict the next solar eclipse and other astronomical events. 

 

Let’s start with various  ancient  devices used for computing in ancient history. One of the oldest 

one is the abacus which was used in  2400 BC. The babylonian used it, the romans used it and 

they used it in order to perform arithmetic computation. They used it in commerce, but also in 

engineering, in computing taxes. It worked in base 10. They have rods of iron on which there are  

several balls placed and you can move them around. It's just like computing additions with the 

help of your ten fingers, but this time you have more than ten fingers because you have a lot of 

balls that you can move around from left to right in order to add numbers.  

 
Fig. 3.1 Abacus, 2400BC 

 

Another very old computing device is the Antikythera mechanism that was used by ancient 

greeks around 150BC and 100BC. Few things are known about this mechanism. It is considered 



the first analog computer.  We don't know a lot of things about it, because it was discovered by  

scuba divers near some islands in Greece and they actually found  a stone on which there were 

imprinted a couple of  metal wheels, but that's all we have. We know that it predicted 

astronomical positions, follow moon’s movements, predict eclipses. It's a complex clockwork 

having 37 gear wheels, the one we know about. You can see in Fig. 3.2 a graphical representation 

of it although it's not an accurate representation. It was able to compute  the position of the sun in 

a quite complicated way because it used the old, inaccurate, egocentric system where the earth 

was in the center of the universe and the sun and the planets rotated around the earth, which is 

wrong, but it was the common conception at the time. This is the first analog computer meaning 

it doesn't represent data using numbers, but it represents data using a wheel movement.  

 
Fig. 3.2 Antikythera mechanism, 150BC - 100BC  

 

Another very important device is Al-Jazari's castle clock. Actually, a lot of these computational 

devices that computed time and computed solar positions and moon positions were built in 

towers in castles. Al-Jazari’s castle clock was built around 1206, it works with water and it is able 

to display the zodiac, the solar position and the lunar orbits. It is able to compute the time and 

whenever there was a fixed hour there were a bunch of robotic figurines, little soldiers that would 

exit the tower and move around in front of the tower and then go back inside. Also, there was 

music during this operation. The device was programmable, the earliest programmable analog 

computer. You could program the length day and night every day. Al-Jazari’s castle clock had a 

gold zodiac dial breathtaking bronze birds on its battlements and fine group of mechanical 

musicians at its gate. The hours since sunrise were shown by the open doors on the clock front as 

well as by roundels that lit up the passage of time. The minutes were reflected by the progress of 

a crescent moon across the clock's freeze. At its top a large dial mimicked the movement of the 

moon and stars across the sky as the sun rose and set within. The clock movements were 

regulated by an ingenious system of reservoirs, troughs and pulleys. The clock central mechanism 

was a reservoir from which an accurately calibrated flow of water was allowed to seep into a float 

chamber and into a plate and spout as a weighted float. Descendent within the reservoir it tugged 

at two pulleys one that set the cart on its motion and another that slowly pulled a sphere which in 

turn rotated a cut-out crescent disc to shine light from candles onto the randles and shift the sun 

and moon dial on top of the clock. As the cart moved along its road upon the hour a vertical shaft 

triggered the upper and lower doors to reveal the figure of the man and the words dominion is 

god. When this happened the gate on a rail behind the doors opened to release two balls which 



traveled down chutes and into the beaks of two gold falcons which then tilted and dropped the 

balls into two copper vases.  

 
Fig. 3.3 Picture with Al-Jazari’s castle clock 

 

We now skip through the years and we get to 1600  and talk about John Napier's calculating 

tables or John Napier's bones which were tables or bones actually columns or cylinders of bone 

material on which there were numbers imprinted and those columns or those tables could be used 

in order to perform additions, subtractions, multiplications and divisions. They look like Fig. 3.4. 

 

   
Fig. 3.4 John Napier’s bones
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They could perform multiplications as a sequence of addition operations and division as a 

sequence of subtract operations. And the way this would work is the following. I can show you 

an example of how multiplication was performed
23

. You would have  one column with the digits 

from one to nine and ten columns with ten values each, each column corresponding to the digits 

                                                             
22 http://www.wikipedia.org 
23 https://en.wikipedia.org/wiki/Napier%27s_bones 



from one to nine. In order to compute 425 x 6 = 2550, you would do the following. Starting from 

the column bone with the digits and 3 other columns corresponding to digits 4, 5 and 6 (see Fig. 

3.5), you would take the row of numbers corresponding to 6 and you would compute the result by 

adding diagonally 4 to 1, then 2 plus 3 – see Fig. 3.6. So these are John Napier's  bones or John 

Napier’s calculating tables they were used in England in 1600s.  

 
Fig. 3.5 Computing 425 x 6 using Napier’s bones
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Fig. 3.5 Computing 425 x 6 using Napier’s bones
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The next device is the slide rule from 1620. It has real numbers represented on a row  as distance 

on a line and it allows multiplication and division operation to be carried out faster than it was 

previously possible. You can compute exponents and trigonometric functions and roots and 

logarithms with it. You can do this by moving the mobile piece in the center. I cannot explain 

how it functions because I don't really know.  

 
Fig. 3.6. The slide rule, 1620 

                                                             
24 https://en.wikipedia.org/wiki/Napier%27s_bones 
25 https://en.wikipedia.org/wiki/Napier%27s_bones 



We go to the first digital mechanical calculator in 1623. It was built by Wilhelm Schickard. It 

was mechanical based on wheels and rotors, but it represented data with digits the way John 

Napier’s bones do. The machine was designed to assist in all the four basic functions of 

arithmetic (addition, subtraction, multiplication and division) on 2 multi-digit numbers. 

 
Fig. 3.7 Schickard’s digital mechanical calculator, 1623 

 

Another machine is the Pascaline built in 1642 by Blaise Pascal. It took a lot of time for Blaise 

Pascal to build this - about 20 years. He started working to the Pascaline in 1642 when he was 19 

years old and he finally built 50 prototypes until he got to a final working version. He then built 

20 more. He got the Pascaline idea as a tool to help his father compute taxes. This computing 

device would represent negative number as complements in different bases. It could perform 

additions, subtraction, multiplications and divisions through repeated additions and subtractions. 

 
Fig. 3.8 Pascaline, 1642 

 

Another computing device is Leibniz’s Stepped Reckoner in 1672. It has a long shaft and rotors 

and wheels. Leibniz worked 40 years on its design and finally, he produced two working 

prototypes. He initially tried to add automatic multiplication to the Pascaline. Finally, the 

prototype could perform more complicated operations: adding or subtracting eight digit numbers 



to/from a 16 digit number, multiply two eight digit numbers to get a 16 digit result and divide  a 

16 digit number by an eight digit divisor. Multiplication and division procedure is detailed here: 

https://en.wikipedia.org/wiki/Stepped_reckoner 

 
Fig. 3.9. The Stepped reckoner 

 

The next mechanical computing device is the Thomas Arithmometer. It was built in 1820. It was 

the first commercial  mechanical device. It was the first digital mechanical calculator reliable 

enough to be used on a daily basis in an office in France. A 12-digit arithmometer sold for 300 

francs in 1853 which was 30 times the price of the table of logarithms book. It had various 

models with capacities of 10 12 16 and 20 digits. It could perform additions, subtractions, 

multiplications and divisions with numbers of 10 12 16 and 20 digits.  

 

 
Fig. 3.10. Thomas Arithmometer, 1820 

 

Another post 1800 mechanical calculator is the Addiator used in Berlin between 1920-1982. It 

was made by Addiator Gesellschaft, Berlin. It could perform naturally additions and 

substractions. There were also procedures for multiplications and divisions through severall 

additions and substractions. It looked more modern then previous calculators.  

https://en.wikipedia.org/wiki/Stepped_reckoner


 
Fig. 3.11. Addiator, Berlin, 1920 

 

Another one which looks more modern it's the Comptometer used in the United States between 

1887-1970.  

 
Fig. 3.12. Comptometer, US, 1887-1970 

 

There was also the Monroe machine used in the United States between 1912-1970. 



 
Fig. 3.13. Monroe machine, US, 1912-1970 

 

Another device was the Curta device used in Austria between 1930-1970. 

 

 
Fig. 3.14. Curta, Austria, 1930-1970 

 

First all electronic desktop calculator was ANITA MarkVIII used in the United Kingdom starting 

with 1961. 



 
Fig. 3.15. ANITA MarkVIII, UK, 1961 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Generations of Electrical Computers   
 

 

I have talk about primitive mechanical computing devices that existed before 1900 in a previous 

section. Those were mechanical devices built using rotors and cylinders and wheels and 

performed mostly the four basic arithmetic operation. After 1900 general purpose electrical 

computers started to appear (they worked based on electricity). Today all the general 

purpose computers are electrical computers, but in the beginning of the 20
th

 century the first 

general purpose computers also contained mechanical parts. So they were mix of mechanical 

and electrical parts and slowly moving towards only electrical parts. So we will start this 

section with mechanical-electrical computers that appeared starting from 1900 and then 

move to all electric computers and you will see that there are four generations of electrical 

computers: a) the first generation were based electrical components built using vacuum  

tubes, b) then the second generation was based on the transistor which replaced the vacuum  

tubes, c) the third generation was based on  integrated circuits which are just more complex 

and miniaturized circuits based on a large number of  transistors on the same board and d) 

the fourth generation is based on microprocessors - the one that started the miniaturization 

process where everything shrank and it led to the development of desktop computers, IBM 

personal computers. The fourth generation actually continues today when everything is 

shrinking we still have some desktop computers today, but they are slowly being replaced by 

notebooks which are even smaller and tablets and phones which are even smaller. This 

whole miniaturization process and this whole process of commercialization of computers to 

the general population started in 1972 once the Intel corporation invented the 

microprocessor.  

 

First mechanical-electrical computers (before generation 1) 

 

Before the first generation of computers there were mechanical-electrical computers built 

using mechanical parts and electrical relays. Electrical relays are still used today although 

quite seldomly. They are the equivalent of an electrical switch, so you can turn it on and let 

the current pass through it or you can turn it off and stop the current from passing through it. 

One of the first mechanical-electrical computers that were developed was the series of 

computers named Z1, Z2, Z3 and Z4 invented by the german scientist Konrad Zuse between 

1938-1949. The first computer invented by Konrad Zuse is Z1. Zuse invented Z1, a 

mechanical computer in 1938 in his parent’s flat and using his own money. The computer 

never worked due to insufficient mechanical precision (similar to Charles Babbage’s 

problems with the differential engine and the analytical engine, nearly a century ago). It u sed 

22-bit floating point binary numbers, it read instructions from a tape perforated 35 mm film. 

The computer had limited programmability, 9 instructions in total; 1 instruction took 1-20 

cycles. An electrical motor gave the clock frequency of 1Hz. It weighted 1000 kg and had 

mechanical metal parts and a few electrical relays. The design documents were destroyed in 

1944 by British bombing.  

 



 

 
Fig. 4.1 Z1 (1938) 

 

The second computer build by Zuse is Z2 in 1939. It is similar to Z1, but it implemented the 

arithmetic and control unit using electrical relays. It had the same mechanical memory with 

64 words. It used 16-bit floating point arithmetic. The clock frequency was 5Hz. An addition 

operation took 0.8 seconds and it weighted 300 kg and consumed 1000 watts. 

 
Fig. 4.2 Z2 with Konrad Zuse (1939) 

 

The third mechanical-electrical computer in the series in Z3 built in 1941. Z3 was the 

world’s first working, programmable digital computer. It used 2000 electrical relays and had 

a clock frequency of 5.3Hz. The Arithmetic unit could add, subtract, multiply, divide, 

extract square root of 22-bit floating point numbers. The program and data were stored on 

punched tape film. It was Turing-complete, it had loop instructions, but no conditional 

instruction. The addition operation took 0.8 seconds and the multiplication took 3 seconds. It 

weighted 1000 kg and consumed 4000 Watts. 



 

 
Fig. 4.3 Z3 (1941) 

 

The fourth computer in the series is Z4 built in 1945. The computer had a frequency of 

40Hz. An addition operation took 400 ms and a multiplication took 3 seconds. Input and 

output was provided on punch tape and programs were written on 35mm punched film. It 

used 32-bit floating points. It had 2.500 electrical relays and consumed 4KWatts of power. 

Zuse realized it is difficult to program in machine code, so he invented a programming 

language called Plankalkül. 

 
Fig. 4.4 Z4 (1945) 

 

 

Since we will be talking a lot about clock frequency and computing cycle and you will see 

that as we advance through human history, there are better and better computers built that 

were faster and faster and they achieved this mostly through an increased clock frequency 



also through reducing the clock cycles required by one instruction, but mostly through clock 

frequency increase, it's very important in the beginning to actually really know what we are 

talking about when we say clock frequency and computing cycle. The clock frequency is just 

the number of beats, the number of clock signals per second. 1 Hz means that a clock or a 

device emits a time signal one time per second in each real second. There are electrical 

components called clock generators which are built inside a lot of electrical devices. You 

have at least one of them built in the notebook, in a phone, in a computer, in a tablet, but 

also in non-computer devices like a radio machine device or a television set. So a clock 

generator circuit just measure times meaning it sends  periodic  signals, electrical signals  on 

a circuit on a board. The clock signal generators just measure time, but not the actual real 

time, but rather a virtual time. Clock generators that generate 8 thousand clock signals per 

second have a clock frequency of 8000 Hz or 8KHz. Why is there a need for a clock 

generator inside a computer system ? Almost every relatively complex electronic device, not 

to mention computer systems need such a clock generator circuit because the execution of 

instructions inside the computing system must be synchronized. The execution of an 

instruction must be synchronous, i.e. you need to have a lower, but most specifically an 

upper limit to the time it takes for an instruction to be executed in the computer system. 

Time limits are needed for the execution of every operation that happens in a computer 

system. Every operation in a computer system needs to be programmed precisely. You 

cannot have a working computer system if you have parts of it that function randomly. Let 

me give you an example. Every component in the computer system should know in advance 

how long it takes for every single operation in the computer. We have the CPU which is the 

microprocessor in the computer and the CPU is linked with the memory, actually usually 

you'd have a memory control chip that discuss directly with the memory and the CPU  only 

talks with this memory controlling chip, but let's ignore this for a fact. Let's say that the CPU  

discusses this directly with the memory. And let's say we want to increment a value from a 

variable from the computer memory. You already know this from the assembly language 

courses in the first year that when I want to increment a variable in the memory actually this 

requires several operations not only one. First, we need to get the value from the memory 

and copy it onto one register from the CPU. This is accomplished with the move operation if 

you remember from the assembly language. So, first the CPU must copy using the move 

instruction the value from the memory on a CPU register, then it could increment the value 

from that CPU register (like the accumulator register AX, EAX) and then it should move 

back into the memory the value incremented that resides on the CPU register. So the first 

thing that the CPU needs to do is to get the value from the memory. In order to do this, it 

would send a command on the control bus that links the CPU with the memory to the 

memory which includes something like this: give me the double word (i.e. four bytes)  from 

the memory address X. So the CPU sends this command to the memory and then it listens on 

the data bus that links the CPU with the memory to receive the actual 32 bits of that double 

word from the memory. And now the question arises: how much time should the CPU  wait 

for the data to arrive from the memory to the CPU ? It could wait one microsecond, but what 

happens if not all those 32 bits arrived at the CPU ? The data is incomplete. It could wait a 

longer time interval instead of two seconds or three seconds. But this long wait would not be 

very  efficient because if the data arrived at the CPU  in the first millisecond and the CPU 

just waits for two seconds for nothing, that's going to lead to inefficient execution. So that's 

why there should be a bound, a time limit on each operation that happens in a computer 

system. And this time limit could be given in seconds, but that's quite a low granularity time 



scale, so it should be lower than seconds. But there's no reason for the time in the computer 

system to match exactly the real time that exists in the real world. That's why we could just 

have a timer, a clock generator circuit on the computer system that generates clock signals 

periodically. They don't need to match  the real time meaning they don't need to send one 

signal in each second or in each millisecond, but it should have a clock frequency, so they 

should be periodically periodical and they should have a clock frequency. If we have a clock 

frequency throughout the computer system then you could say that every operation of getting 

data from the memory to the CPU takes two cycles for example, where a cycle is the interval 

between two clock signals; the computing cycle is just the interval between two consecutive 

clock signals. For Z1 for example, it says that one instruction takes 1 to 20 cycles. Let's say 

it takes 20 cycles because the clock frequency is 1 Hz, so a computing cycle takes 1 second; 

it says here that the clock frequency is 1 Hz meaning that one clock frequency is generated 

per second. 20 cycles would be equivalent to 20 seconds in the real time. So one instruction 

in Z1 would take 20 seconds in the real time. In the same way, in each computer every 

operation including the operation of getting data from the memory or sending data through 

the memory is predefined to take a fixed number of computing cycles. Actually normally 

you would have in a computer several clock generators not only one and if the CPU works 

with a clock frequency of let's say 10 Hz, but the memory is cheaper or it's weaker and it 

works with a clock frequency of only 1 Hz, then there is a negotiation and actually the 

discussion between the CPU and the memory will always follow the lowest frequency, that 

is 1 Hz, not 10 Hz. Please note that the clock frequency of a computer is a measure of its 

performance. If you have a high clock frequency, then you execute computation a lot faster 

than a computer with a low clock frequency. Let's take an example. Let's say we have one 

CPU  that has a clock frequency of 10 Hz, that is there are 10 clock signals generated in one 

second - this is CPU1 and let's say we have a CPU2 with a clock frequency of 100 Hz. 

Usually an instruction takes one or two or 4 cycles. Remember that the computing cycle is 

just the time interval between two consecutive clock signals. CPU1 would have 10 

computing cycles per second, because there are 10 clock signals per second (10 Hz) and 

CPU2 would have 100 computing cycles per second. Let's assume that an addition operation 

takes one cycle which means that CPU1 can perform 10 additions per second since CPU1 

has 10 cycles per second. But CPU2 can perform 100 additions per second. So we can say 

that CPU2 is 10 times faster than CPU1 because it can perform 10 times more additions than 

CPU1 per second. For a long time the clock frequency this one the clock frequency was the 

driving force or that or the driving principle of CPU development and companies like Intel 

or Advanced Micro Devices  kept increasing this clock frequency. Now we skip a little bit to  

the modern era and continue a little bit with the discussion about the clock frequency. So  

the clock frequency was the driving force of CPU development  from the beginning of the 

20th century to about 2004 or 2005. If a CPU  has a larger clock frequency, then it performs 

a lot better it computes a lot faster than another CPU. But this comes with a problem.  

Because in order to increase the clock frequency of the CPU you need to put a lot more 

transistors on that CPU and also you need to consume a lot more electrical power. If you 

consume more electrical current, you also generate more heat during that consumption. You 

generate more heat which needs to be dissipated. If you have some advanced cooling system 

like based on liquid nitrogen then that's no problem, but usually in commercial personal 

computer systems like notebooks and tablets and phones and so on, even desktop computers 

you'd have a cooling system based on a fan that spins on top of the CPU and takes the heat 

and dissipates the heat in the environment. And in order to dissipate more heat with the fan, 



you need to consume more electrical power with the fan to spin a lot faster and to dissipate 

more heat. This also means more electrical consumption which also generates heat and this 

is a vicious circle that leads nowhere. So in order to make the CPU run faster you would 

increase the clock frequency you have to increase the electrical power consumption  because 

of this there's more heat that needs to be dissipated because of this heat that needs to be 

dissipated there's more  the fan should spin a lot faster which also means that the fan would 

consume more electrical current and this is a vicious circle and cannot get out of it. Actually 

the way out of it was taken by the Intel corporation in 2004 or 2005 when they switched to 

some other driving force of CPU development and CPU improvement. From 2004 to 2005 

the clock frequency  improvement is no longer the driving force in CPU  industry. They 

thought we cannot increase the clock frequency without increasing the electrical 

consumption and generating more heat, so what we can do is just keep the clock frequency at 

a level and increment the number of brains on the CPU, so move to the multi-core 

architecture. And for from 2004 and 2005 the whole industry shifted towards multi-core 

computer architecture where you have several cores on the same CPU and that completes 

this whole parenthesis, i.e. this whole side discussion about the clock frequency and the 

performance of the computer system.  

 

First generation computers (based on vacuum  tubes): 1940-1960 
 

We move to the first generation of electrical computers, those based on vacuum  tubes. They 

were developed between 1940 and 1960. The vacuum  tubes are made of a glass chamber 

and the chamber contains nothing, it's vacuum  or it may contain some gas; inside this sealed 

chamber, you would find a cathode through which a hot filament passes and then a plate 

which is the anode. The anode has the opposite electrical charge and is actually a diode. 

There are more complicated vacuum  tubes. They are also called valves by the British or 

thermionic valves. And they could also have several layers, several grids inside them. When 

the electrical current passes through this filament, it heats and it gets hot and because of this  

electrons are released from the cathode and they are attracted by the anode which means that 

when the filament heats, electrical current passes from the cathode to the anode although 

they have no physical contact. The vacuum  tubes could be used to amplify electrical 

current, if the filament gets more heat, then more electrical current would pass from the 

cathode to the anode.  Or if you have another grid here you can you can also  charge it 

electrically this grid which then filters the passing of the current from the anode from the 

cathode to the anode  and it works like a switch like a sort of an IF. So it allows the current 

to pass sometimes depending on how much current passes through this grid. It allows the 

current to pass from this cathode to anode or it stops the current from passing from this 

cathode to the anode. So they are useful in electrical devices and in computers as switches. If 

you remember, a bit is just a sequence of imaginary information that has values zero or one. 

A bit doesn't exist in the real world, it exists only in our minds. But it also has a physical 

equivalent called the bistable circuit which is just a circuit with a resistance and with a 

switch and when that switch is closed then the electrical current passes through it and we say 

that the bit corresponding to that circuit has the software value one and when the switch is  

open the current does not pass through the circuit and we say that the bit corresponding to 

that circuit has the software value zero. And the vacuum  tubes are used exactly for the 

switches because they can be programmed by sending current through them or not. They can 

be programmed to close the circuit close the switch or release the switch  they were later 



replaced by transistors which were a lot more reliable and perform the same function. 

Transistors are ubiquitous, a CPU is made of thousands and billions of transistors squashed 

together on a silicon plate. Ttransistors were invented in 1948 by John Bardeen, William 

Shockley and Walter Brattain. The transistors were a lot more reliable than vacuum  tubes 

and the vacuum  tubes were not so reliable because they heated and they would crash. And 

when the transistors came along, they were a lot cheaper to produce, they wouldn't dissipate 

heat (they also generate heat, but not that much), so they replaced pretty much all vacuum  

tubes in all electronic devices except as far as I know devices in the musical industry like 

amplifiers from musical instruments. The ones that are more expensive and used in concerts 

still use vacuum  tubes because vacuum  tubes produce the sort of distortion that it's also 

called warm distortion and is very sought by singers in the musical industry.  

 

 
Fig. 4.5 Vacuum  tubes 

 

The one of the first computers built by the United Kingdom's army was the Colossus. Built 

between 1943 and 1945, it was developed by the British code breakers from Bletchley Park 

and used in the cryptographic field. It was used to break the Lorenz german chipper. Just 

like Alan Turing built the bomb or in similar way it was Colossus built and used. It used a 

lot of vacuum  tubes, it was programmed by switches and plugs and not by a store program 

which means that when I want to add  let's say if I want to compute the s  1+2 I would have 

to operate a bunch of switches. Using some switches I would load the two values in the 

memory then I would use some other switch in order to choose between additions or 

subtractions and I would use some other switch to choose between multiplication and 

division. So you do all this programming using manual switches - that's what it means that it 

was programmed by switches and plugs and not by a stored program. Everything is based on 

simple circuits that have a switch, even my phone; if the switch is on the electric current 

passes through it, if it's not it doesn't pass. In the beginning, all those electrical circuits with 

a resistor and a switch would have to be turned on and off manually. Nowadays we write 

programs with instructions and those instructions are executed by the CPU and the CPU has 

components that are called transistors that allow us to automatically close and open circuits 

corresponding to individual bits so we now close and open electrical circuits using programs 



using instruction using software. But the idea is the same. Back then you wouldn't have a 

program, but you have to do this manually. It had no memory, input on paper tape and for  

output there was an electric type writer. 

  

 

 
Fig. 4.6 Colosus, UK 

 

The next ones are two powerful computers, one is ENIAC built by the United States Army 

1946 and the other one is EDVAC. The ENIAC was a Turing-complete electrical general 

purpose computer. The name ENIAC comes from Electronic Numerical Integrator and 

Computer. It was built by John Mauchly and J. Presper Eckert from Univ. Pensylvannia for 

US Army. It could calculate a bomb trajectory in 30 seconds much faster than a human who 

would do it in 20 hours. It costed about 487.000 $  which would be equivalent to 6.887.000 $ 

in today’s money. It contained 20,000 vacuum  tubes, 7200 crystal diodes, 1500 relays, 

70,000 resistors, 10,000 capacitors and approximately 5,000,000 hand-soldered joints. It was 

big, it weighted 27 tons, occupied 167 squared meters and consumed 150 KWatts of 

electricity. The input and output was on IBM punched cards. It had a 100-word magnetic 

memory. It could do 385 multiplications per second, 40 divisions per second and 3 square 

root per second. It had a 200 micro second cycles (100KHz). It could perform complex 

sequences of operations, including loops, branches, and subroutines but not with stored 

programs, but with manual switches. It wav very unreliable, vacuum  tubes would break 

daily – longest runtime approx. 5 days. Because it was so large and it consumed so much 

power 150 kilowatts, there were various legends that when the computer was turned on, the 

lights in homes in the state of Philadelphia dimmed because it consumed so much power. 

There are still two or three factories worldwide but that produce vacuum  tubes for the 

musical industry  one of them is in China one of them is in Russia and I think one of them in 

the Czech Republic.  

 

 



 

 
Fig. 4.7 ENIAC, 1946 

 

Let's move on to EDVAC which was the next supercomputer built by US Army in 1949.  

built by the same people John Mauchly and J. Presper Eckert with John von Neumann as 

consultant for the US Ballistics Research Laboratory. EDVAC comes from Electronic 

Discrete Variable Automatic Computer. The cost of EDVAC was similar to ENIAC, 500.000 

$. EDVAC used a binary system (not decimal like ENIAC) and stored programs in memory. 

This was the idea of John von Neumann to store the program into the memory and don't have 

manual switches for everything, but just run the program from the memory. It could do an 

addition in 867 microseconds and a multiplication in 2,9 milliseconds. It had a memory of 

approximately 5.5 KB. It had almost 6,000 vacuum  tubes and 12,000 diodes, and consumed 

56 kW of power;. It occupied 45.5 sq. meters, weighted 7,8 tons. It used to ran 20 hours per 

day. 

 
Fig. 4.8 EDVAC 



 

Some other computers from the first generation were a series of 4 computers, Harvard Mark 

I-IV built in the United States between 1944 – 1952. The computers were IBM Automatic 

Sequence Controlled Calculator (ASCC). It was built from switches, relays, rotating shafts, 

and clutches. It used 765,000 electromechanical components and hundreds of miles of wire . 

It comprised a volume of 23 m
3
 (16 m x 2.4 m x 0.61 m). It weighed about 4,500 kg. It could 

do 3 additions or subtractions in a second. A multiplication took 6 seconds, a division took 

15.3 seconds, and a logarithm or a trigonometric function took over one minute . 

 
Fig. 4.9. Harvard Mark I 

 

There's another computer called Manchester Mark I built in the UK in 1948. It was 

developed by the University of Manchester, consumed 25 kilowatts and it used words on 40 

bits.  

 
Fig. 4.10 Manchester Mark I 



 

Before we move to the second generation of computers based on transistors, I just want to 

briefly pause and have a global view on computer history and to look a little bit at the 

evolution of computers from  1950 to the present day. So in 1950 we have a supercomputer 

like ENIAC, then after the transistor was invented everything began to shrink more and more 

and then we go to the microchip which is just a set of transistors soldered together on the 

same board and this allowed for even smaller computers and then starting with the invention 

of the first microprocessor from the Intel company, this allowed everything to become even 

smaller and actually it company companies to build computers for the home users because 

the previous ones were only for the army and powerful institutions like universities. But the 

miniaturization of the microprocessor allowed to build small computers like IBM-PC for the 

end users and this miniaturization process can continue even more around the years 2000s.  

Notebooks were invented a little bit before 2000. Computer notebooks were invented which 

shrank things even more, then tablets and smartphones which shrank things even more so 

everything is shrinking. But actually if we look at a Google data center or Facebook data 

center which is just a large building with a lot of computers. The computer is just a small 

part of this large data center. So if you come to think about it, this whole process starting 

with miniaturization from 1950 getting to the microprocessor in 1972 where things shrink a 

lot more and it allowed us to have  personal computers, desktop computers back home and 

then it shrink more based on the microprocessor and the integrated circuit it allowed us to 

develop even smaller computer devices which are notebooks and phones and tablets, but 

nowadays the whole thing moves backwards to increasing things and having this large data 

centers and actually you may not even notice this, but I think this is the direction where we 

are going; we have all the computations usually done in a super computer like a data center 

and we would in the future I think we will only use the laptop and the tablet and  the phone 

the smartphone we will only use them as terminals like screen monitors for sending  

computing tasks to the cloud. This already happens like when watching youtube, I just have 

a small player based on javascript on my local terminal, but everything happens and 

everything is stored in a data center in a youtube data center right so everything is sent from 

there it is automatic, it is selected there, converted there from one format to another one and 

it is sent to me where this small  javascript player just displays the video. So it's ironic that 

from 1950 the history of computer devices  started this long journey of shrinking everything 

to smaller and smaller devices going to personal computers and notebooks and then phones 

and tablets but now it's starting to enlarge everything again  just to have data centers and I 

think in the future we will have this notebooks and tablets that are just basic terminals used 

in order to interact with the actual computer that's inside the data center. 

 

 

Second generation computers (based on transistors): 1950-1970 

 

The second generation of computers of computers is based on transistors and built using 

transistors. They were built between 1950 and 1970 and the transistors are just an improved   

vacuum tube meaning that it's just an electrical switch, it allows current to pass or it stops 

current to pass between the source and the drain, depending on the inner state of the 

transistor. Transistors were invented by John Bardeen, William Shockley and Walter 

Brattain at Bell Labs in 1948. It can be used as an electric amplifier or electronic switch. 

Using transistors we can build logic gates and using logic gates, we can build an Adder (i.e. 



circuit that performs the addition of two numbers and using an adder we can create an            

ALU (Arithmetic and Logic Unit) which is an essential component in a CPU. 

                      
 Fig. 4.11 Transistors           Fig. 4.12 Replica of the first working transistor 

 

Transistors have replaced the vacuum tubes because they were more reliable, they wouldn't 

generate heat and then they wouldn't break so often as the vacuum tubes and also it's a lot 

cheaper to produce transistors. They pretty much function the same way as the vacuum  

tubes meaning they function as electrical electronic switches and this is very important in the 

computing world. It's very important to be able to turn on and off a switch that closes an 

electrical circuit because everything nowadays and for a lot of time, everything in computing 

is based on bits of information. The concept of a bit is the smallest quantity of information 

that can be stored in a binary computer. Pretty much all computers are binary systems. You 

can store on one bit the value zero or one, but as you as you know or imagine the bit is a 

software concept, it doesn't exist in the real world, it only exists in our mind. But the bit has 

an equivalent in the real world which is a bistable circuit which is just a simple circuit with a 

wire and a resistance and a switch on it. And when that switch is closed then the current 

passes through the circuit and we consider that from a software point of view that circuit has 

the software value one. And when the switch is open there's no current passing through the 

circuit and we consider that is equivalent to the software value zero. Everything that's done 

in computing is set bits to zero or one that's all a cpu does  it just sets values to one and zero 

we how does it set well it depends on what we are trying to do. If we are trying to do an 

addition then it sets the zeros and one in the result depending on the operation and the actual 

data that we want to add  and actually in the first version of computers, you would program 

them manually by switches. If you want to set the value 2 in binary in the memory you 

would have to use at least two switches and you have to turn on the first switch 

corresponding to one and turn off the second switch corresponding to zero so 10 is 2 in 

binary. If you have a larger value you would have to use more switches. And then you have 

to use a switch in order to load values into the memory. But later on using transistors and 

specialized transistors or specialized integrated circuits or microchips called mosfets, those 

were able to dictate / control the switch on some other circuit. So one circuit, one transistor 

would be able to control a circuit corresponding to a bit, would be able to close it and open 



the circuit depending on some state of the transistor. So we have electrical circuits that 

control other electrical circuits.  

 
Fig. 4.13 Transistor inner parts 

 

Depending on the actual electrical current that is received on this gate which is one of the 

leg of the transistor,  it would allow current to pass between the source which is one of the 

tiny legs of the transistor to the other tiny leg of the transistor which is called the drain. 

Basically this means that it functions like an electrical switch:  you allow the current to pass 

from one pin to the other or you just shut it off depending on the current that's being sent 

through this middle pin of the transistor. And using this functionality you're able to build   

logic gates which are just simple circuits that implement the logical operations and, or 

exclusive or and not. In the following figure, you can see an AND logic gate implemented 

with 2 transistors. 

 
Fig. 4.14 AND logic gate implemented with 2 transistors 

 

And using those logic gates you can build a component that would perform an addition for 

example which is called an adder or you can build a component that would perform the 

subtraction operation which is called a subtractor or another component that performs 

multiplication and another component that performs division and using these four 

components you can build an arithmetic and logic unit which is an important part of the 

CPU. The logic gates signs are represented in the following figure. 



 
Fig. 4.15 Logic gates 

 

 

 
Fig. 4.16 Half-Adder using XOR and AND gates 

 

 

In a half adder the carry bit is not used later on, but using this simple component we can add 

numbers that have eight bits each. It's very important to add two bits and then add the next 

two bits and also to that result add the carry from this result and just using several of these 

components in sequence we can build a full adder of eight bit numbers. For example and in 

similar ways we can build the subtractors and dividers and multiplicators.  

 

Some examples of computers from the second generation that use the transistor technology   

are the following. One of them is IBM 306 in 1957.  It had more than 3000 germanium 

transistors. It was programmable using an electric control panel. It could store 40 nine-digit 

numbers in the memory (magnetic core). It could perform 4,500 additions per second, it 

could multiply 2 nine-digit numbers, yielding an 18-digit result in 11 milliseconds, it could 

divide an 18-digit number by a nine-digit number to produce the nine-digit quotient in 13 

milliseconds. It was supplied with a type 535 card reader/punch which had its own control 

plugboard. 

 



 
Fig. 4.17 IBM 306, 1957 

  

Another computer was Olivetti Elea 9003 built in Italy in 1959. Elea 9003 was able to run 8- 

10000 instructions per second. It could store 160.000 words in the memory. Mass storage 

was on magnetic tape. The input was on punched paper tape or punched cards. The output 

was on line printer. 

 
Fig. 4.18 Olivetti Elea 9003, 1959 

 

Another 2
nd

 generation computer was IBM 7007 built in 1958. It was IBM’s first stored-

program computer. The CPU speed was 27 KIPS. It costed $813.000. Disk storage had a 

capacity of 6 million digits. 



 
Fig. 4.19 IBM 7007, 1958 

 

Another computer was the Honeywell 200 built in US in 1960. It used 6-bit characters. It 

could store 524.288 characters in the main storage. The addition would take 12 useconds. It 

had COBOL and Fortran compilers. Fortran is actually the first high-level programming 

languages that was invented in 1950s and Cobol was another programming language from 

the early programming languages. 

 
Fig. 4.20 Honeywell 200, 1960 

 

Another computer was the PDP-8 built in 1965 in US.  

 



Fig. 4.21 PDP-8, 1965 

 

Another computer was IBM M44/44X, built in 1965 in the United States. This one was built 

for research experimentally it explored memory paging so dividing the memory into pages 

also it simulated virtual machines back then in 1965.  

 
Fig. 4.22 IBM M44/44X, 1965 

 

 

Third generation computers (based on the microchip): 1960-present 
 

The third generation of computers is based on the microchip and the fourth generation is 

based on the microprocessor, but the microprocessor is just a specialized microchip, so we 

may say that the fourth generation is kind of included in the third generation. That's why we 

say that the computers of the third generation was were produced from 1962 till the present 

but still the microprocessor-based ones are more specialized generation of computers than 

the third generation of computers based on the microchip. The integrated circuit (i.e. 

microchip) was invented independently by Jack Clair Kilby and Robert Noyce. It is a set of 

electronic circuits on a small flat piece of semiconductor material, silicon. It integrated many 

tiny transistors as a one component, instead of linking discrete transistors with wires . As of 

2016, typical chip areas range from a few square millimeters to around 600 mm
2
, with up to 

25 million transistors per mm
2
. Related to the number of transistors on a microchip there's 

the Moore law from Gordon Moore which is the co-founder together with Robert Noyce of 

the Intel corporation that says that the number of transistors in the integrated circuit doubles 

every two years. The number of transistors employed on a chip in 2016 is 10 billion 

transistors.  

 

 

 

 

 



    
     Fig. 4.23. Microchips        Fig. 4.24. Jack Kilby’s original prototype 

 

Nowadays pretty much all microchips are built using silicon hence the name silicon valley in 

United States, in San Francisco and the whole silicon revolution. Silicon is a semiconductor 

material – is between an electrical conductor and an insulator. If it is doped (i.e. treated with 

chemical substances) or electrical field is applied on it its electrical conductivity can be 

modified. It is the second most frequent element on earth (after oxygen). It is used as the 

base, substrate for transistors, MOSFETs, integrated circuits. By applying electrical current 

to the semiconductor to the silicon you can modify the electrical conductivity of the material 

and a microchip is built using mosfets. In a Mosfet you have this plate, this body displayed 

which is a semiconductor material well actually it has several layers and then you have a lot 

of components, on top of it which has the source and then the drains the current passes 

through this depending on the gate this is the gate so the current passes from the source to 

the drain. The Mosfet is one of the most famous transistors used in in integrated circuits. 

Integrated circuits are just transistors a bunch of mosfets components built on a plate of 

silicon semiconductor material which connects them together. Actually this semiconductor 

material, this silicon has several layers in order to work but it allows current to pass between 

them depending on the current applied to the to various parts, various areas of the 

semiconductor plate.  

 
Fig. 2.25 The Mosfet 

 

where S = source terminal, D = drain terminal, G = gate (metal), B = body (the 

semiconductor made of several layers of silicon); under the gate G is an insulator plate. 

 



And actually the microprocessor that we have in a notebook is actually a specialized form of 

a microchip or integrated circuit, but a specialized one for very fast computations additions 

abstractions multiplications and division. There are at least two types of microchips: 

microcontrollers and microprocessors. A microcontroller  (e.g. Atmel Atmega 328p used in 

Arduino board) is an embedded system on a chip having functions like the ones provided by 

the CPU, but also including memory, clock component, pins and controllers for external 

components. A microprocessor (CPU, e.g. Intel 4004, 8008, 8086) is a highly specialized 

microchip having functions like addition, subtraction, multiplication and division of integer 

numbers and logical bitwise operations. Usually the cpu does not contain all the components 

of a microcontroller, it doesn't contain memory on it I mean it contains small memory the 

registers but not large memory it doesn't contain a clock in it it doesn't contain ports on it for 

for controlling external devices so it's a more specialized component. 

 

Some computers from the third generation built on the microchip are: IBM-360 series, 

Honeywell-6000 series, IBM-370/168, TDC-316, Nova. IBM 360 series, model 85 was built 

in 1968. It had a storage from 500KB to 4MB. The major machine-cycle time was 80 ns. 

Main storage data flow was 16 bytes. Main storage cycle time was either 960 or 1,040 

nanoseconds. It would operate with floating point numbers with 28 fractional digits.  

 

 
Fig. 2.26. IBM 360 series, model 85 (1968) 

 

 



 
Fig. 2.27. Data General Nova, 1969 (costed 8000$) 

 

Fourth generation computers (based on the microprocessor): 1971-present 

 

 

And the fourth generation of computers are the ones built on the microprocessor which is a 

specialized kind of microchip, a specialized integrated circuit. The microprocessor was 

invented by Intel in 1971. It incorporates CPU functions in a single integrated circuit. The 

microprocessor is a multipurpose, clock driven, register based, digital -integrated circuit 

which accepts binary data as input, processes it according to instructions stored in its 

memory, and provides results as output. It  operates with binary numbers at a clock 

frequency of 740 KHz. The instruction cycle took 10.8 us. 

 

 

 
Fig. 2.28. Intel 4004, the first microprocessor; invented by Intel in 1971 



The first Intel CPUs were: 

• Intel 4004, 1971, first CPU, 4 bits registers 

• Intel 8008, 1972, 8 bit regs, double the power of 4004 

• Intel 8080, 1974, 8 bit regs, used for many microcomputers like Altair 8800 (sold 
thousands in a few months) 

• Intel 8088, 1978, 8 bit regs, used in IBM-PC 

• Intel 8086, 1978 – introduced the 16 bit x86 architecture 

• Intel 80286, 1982, 16 bit regs 

• Intel 80386, 1985 – introduced the 32-bit comp. architecture (IA-32) 

• Intel 80486, 1989 

• Intel Pentium, 1993 

• Intel Xeon, Pentium 4, 2004 – introduced Intel 64 (x86-64), 64 bit architecture 
 

Microcomputers, Personal Computers 

 

Supported by the development of the microprocessor, computers became smaller and smaller and 

were accessible to end consumer. The most famous one is IBM-PC 5150 built in 1981. IBM-PC 

5150 was an important milestone in the evolution of microcomputers for home consumers. Most 

computers produced in the following decades for home users were IBM-PC compatible. Modern 

desktop computers are IBM-PC descendants. It costed $1565. It used Intel 8088 at 4.7MHz. It 

had a memory 16KB – 640KB. It used PC DOS 1.0 OS. The storage was on 5.25’’ floppy disks 

or optional hard disk. It had IBM 5153color display. 

 

 
Fig. 2.29 IBM-PC 5150, 1981 

 

Another microcomputer from which IBM-PC 5150 was inspired is Altair 8800 commercialized in 

1974. It was sold for $395 as a kit and $650 assembled. It used Intel 8080 at 2MHz. It had a 

memory of 256 bytes, max 64KB. The Operating System was CP/M. It had storage on paper tape, 

floppy disk, cassette. Links demonstrating functionality: 

http://oldcomputers.net/altair-8800.html  

https://www.youtube.com/watch?v=suyiMfzmZKs&ab_channel=deramp5113  

http://oldcomputers.net/altair-8800.html
http://oldcomputers.net/altair-8800.html
http://oldcomputers.net/altair-8800.html
https://www.youtube.com/watch?v=suyiMfzmZKs&ab_channel=deramp5113
https://www.youtube.com/watch?v=suyiMfzmZKs&ab_channel=deramp5113


https://www.youtube.com/watch?v=EV1ki6LiEmg&ab_channel=deramp5113  

https://medium.com/dev-genius/how-to-write-a-program-for-altair-8800-computer-3a4583fe601e  

 

 
Fig. 2.30 Altair 8800, 1974 

 

Another microcomputer from which IBM-PC 5150 was inspired is IMSAI 8080 developed in 

1975. It was sold for $599 as a kit and $931 assembled. It  used Intel 8080 at 2MHz. It supported 

max 64KB memory. The storage was on cassette or floppy disks. The OS was CP/M. The 
machine cycle is 0.5 usec. Links: http://rwebs.net/micros/Imsai/intro.htm  

 

 
Fig. 2.31. IMSAI 8080, 1975 

 

Finally, another microcomputer from which IBM-PC 5150 was inspired is Apple I 

commercialized by Steve Jobs and Steve Wozniak in 1976. It costed  $666.66 . About 200 were 

produced. The CPU was a MOS 6502, 1.0 MHz. The memory was 4K - 64K. It had monochrome 

display with resolutions: 280 X 192, 40 X 24 text. Keyboard was not included. The operating 

system was Apple BASIC on cassette. 

https://www.youtube.com/watch?v=EV1ki6LiEmg&ab_channel=deramp5113
https://www.youtube.com/watch?v=EV1ki6LiEmg&ab_channel=deramp5113
https://medium.com/dev-genius/how-to-write-a-program-for-altair-8800-computer-3a4583fe601e
https://medium.com/dev-genius/how-to-write-a-program-for-altair-8800-computer-3a4583fe601e
http://rwebs.net/micros/Imsai/intro.htm
http://rwebs.net/micros/Imsai/intro.htm


 
Fig. 2.32 Apple 1, 1976 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The history of the Internet 
 

 

In 1958, DARPA (Defense Advanced Research Projects Agency) was created by the DoD 

(Department of Defense) in US. In 1962, J.C.R. Licklider published a paper about a "Galactic 

Network". He was the first director of DARPA. He then influenced his successors at DARPA 

about the importance of networking concept. In 1961, Leonard Kleinrock, professor at UCLA 

published a paper about packet-switching being more efficient than circuit-switching 

communication paradigm. In 1965, Thomas Merrill & Lawrence Roberts connected 2 computers 

using a low-speed dialup telephone line to prove that Kleinrock was right. In 1966, Lawrence 

Roberts went to DARPA and planned the "ARPANET" and presented it at a conference (L. 

Roberts, "Multiple Computer Networks and Intercomputer Communication," ACM Gatlinburg 

Conference, October 1967). At this conference, Lawrence Roberts met with Roger Scantlebury 

who told him about two other similar, packet-switched network ideas, from UK: one created by 

Donald Davies and Roger Scantlebury at NLP (they also had a paper about this at the same 

conference) and another one created by Paul Baran and others at RAND. Roberts adopted the 

term "packet" from the NLP paper and the network speed of ARPANET was set to 50kbps. He 

refined the plans for the packet-switched network at DARPA until 1968 and  DARPA released an 

RFQ (Request for Quote/Quotation) for the packet switches of ARPANET (called Interface 

Message Processor - IMP). In 1968, a group lead by Frank Heart from BBN (Bolt Beranek and 

Newman) won the DARPA contract and created the IMP with a team including Robert (Bob) 

Kahn who created ARPANET architecture; another team of the group leaded by Lawrence 

Roberts and Howard Frank worked on the network topology and economics; and L. Kleinrock's 

team from UCLA worked on the network measurement system. In september 1969 first 2 nodes 

were connected to ARPANET (Stanford-UCLA), IMPs were installed at both ends; "LOgin" is 

the first text sent over the ARPANET; 2 additional computers were connected by the end of 

1969(Univ. Utah, UC Santa Barbara). Additional computers were added to ARPANET and in 

1970 the Host-to-Host protocol (NCP - Network Control Protocol) was created by S. Crocker - 

predecesor of TCP/IP. In 1972, large successful presentation of ARPANET at a conference by 

Robert Kahn at the International Computer Communication Conference (ICCC). Ray Tomlinson 

from BBN invented the hot application, email. In 1972-1973 Robert Kahn introduced the open-

network architecture (several networks managed independently, but interconnected together) at 

DARPA and then saw that NCP was not good for this architecture (NCP could nod address 

machines past the next IMP), so Robert Kahn and Vinton Cerf (from Standord) produced the 

TCP/IP protocols. They wanted to have only secure communication in a virtual-circuit pattern, 

but tests with voice packets showed them that for some class of applications, the application 

should decide what to do after packet losses, not the end host. So they have split initial TCP intru 

reliable TCP (the one we have today) and unreliable communication provided by UDP. DARPA 

signed 3 contracts with Stanford (a group lead by Cerf), BBN (a group lead by Ray Tomlinson) 

and UCL (a group lead by Peter Kirstein) to implement TCP/IP (it was simply called TCP in the 

Cerf/Kahn paper and it included both protocols). In 1973 Ethernet technology was developed by 

Bob Metcalfe at Xerox PARC. In 1976 Kleinrock published a book on ARPANET which was 

instrumental in the wide spread of the network. The number of independently managed networks 

increased, so Paul Mockapetris of USC/ISI invented the Domain Name System (DNS) which 

allowed scaling the distributed system. Initially, only one routing protocol was used in the 

ARPANET, but as the number of independently managed network increased, Interior Gateway 



Protocol (IGP) was invented in order to be used inside a local network and Exterior Gateway 

Protocol (EGP) was used to interconnect the independent local networks. DARPA assigned UC 

Berkeley to implement TCP/IP in Unix, and UC Berkeley rewrote the BBN code into Unix BSD - 

which contributed a lot to the success of the network; In January 1, 1983 it was the "flag-day", 

carefully prepared several years ago, when all computers on the ARPANET should 

synchronously change from the NCP host protocol to TCP/IP. By 1985 there were a lot of 

networks inspired from the Internet technology of ARPANET: MFENet of Dept. of Energy, 

HEPNet for High Energy Physics, MilNet for military, CSNet for academic research in computer 

science, .. In 1985, NSF started the NSFNet program which reunited several of existing networks 

for academic research. In 1988, a National Research Council committee, chaired by Kleinrock 

and with Kahn and Clark as members, produced a NFS report "Towards a National Research 

Network", which was influential on then Senator Al Gore and laid the foundation for the future 

information superhighway. In 1994, a National Research Council report, again chaired by 

Kleinrock (and with Kahn and Clark as members again), Entitled "Realizing The Information 

Future: The Internet and Beyond" was released. 

 

 
Fig. 1 Leonard Kleinrock, creator of packet-switched communication 

 

 
Fig. 2 Vinton Cerf, creator of the Internet 



 

 
Fig. 3. Bob Kahn, creator of the Internet 

 

 
Fig. 4. Johnathan Postel, the first RFC editor 

 

 


