Y

" Lecture #8
Cloud loT

Spring2024

MQTT

Message Queue Telemetry Transport

'ﬁ ¢ . o8)
..‘~$ ' . » . l
‘lb)‘- »
7 - SN |
.. ; . . v
X . g |
J - 2 L -;\ ' .
o ' . .'4 - ‘
&f:. y ‘ "" ' '
; y S
.o § o & A - " ,)
") \0. " . — - .
D T e) - - e -, SV - - -~ * . y - e e —— e - — — - —
»- n o > - - 2 2 """‘ , - d .
v . - e T ' ,® P » e b . . - e
- N =
& R ‘ ¢ . rm n.‘. . &
~ e g . = i ‘ ‘ 4 --'- ‘.

e Publish-subscribe.

* A message broker is required.

e Standard: ISO/IEC PRF 20922.

 Developed in 1999 (and released royalty free in 2010).

e Small code footprint.

e Limited network bandwidth / constrained environments.

e Data agnostic.

Model

Publisher Subscriber Subscribed to "Topic 1"
Broker

Publisher Topic 1 Subscriber Subscribed to "Topic 2"
Topic 2

Publisher Subscriber Subscribed to "Topic 1"

Broker Benefits

Eliminates insecure
connections.

Easily scales.
Manages client connect states.

Reduce network strain.

Wwhat i1s a broker

LEONARDO DICAPRIO

B THE WOLF

Software running on OF WALL STREET
CO m p Ute r_ - 3% . %&ﬁo{\be \ ?\\\3\\ Mobile Phone
Running on premise

cloud.

MQTT Broker Cluster

Self-Built or 3rd parf]

Open source or prof

ic/
broker/top
://

mqgtt

Receiver/subscriber

Sender/publisher Broker
l 5 w— !

Receiver/subscriber

One-to-many communication using Emitter

Sender/publisher

SN

Sender/publisher :__: ‘
/ 1

. Many-to-one communication using Emitter

Broker Receiver/subscriber

loT Platform

Device

Bidirectional cgmmunication

Connecting to the broker

Value Return Code Response Description
0 0x00 Connection Accepted Connection accepted
1 0x01 Connection Refused, unacceptable The Server does not support the level of the
protocol version MQTT protocol requested by the Client
2 0x02 Connection Refused, identifier rejected The Client identifier is correct UTF-8 but not
allowed by the Server
3 0x03 Connection Refused, Server unavailable The Network Connection has been made but
the MQTT service is unavailable
4 0x04 Connection Refused, bad user name or The data in the user name or password is
password malformed
5 0x05 Connection Refused, not authorized The Client is not authorized to connect

6-255 Reserved for future use

Publishing to a topic

PUBLISH
packetld
topicName
gos

rrrrrrr lag

Subscribing to a topic

e Example:
* Topic #1: home/groundfloor/kitchen/temperature
e Topic #2: office/conferenceroom/luminance
 Wild cards
e Single-level:

* home/groundfloor/+/temperature (to subscribe to all the temperature
readings in all the rooms of the ground floor)

e Multi-level:

* home/groundfloor/# (to subscribe to all the readings in all the rooms of
the ground floor, not only the temperature)

Quality of Service

e 0: The broker/client will deliver
the message once, with no
confirmation.

* 1: The broker/client will deliver
the message at least once, with
confirmation required.

e 2: The broker/client will deliver
the message exactly once by
using a four step handshake.

Last will and testament

CONNECT o

clientId “client-1*
cleanSession

username “hans*
password “letmein
lastWillTopic “/hans/will”
lastWillQos

lastWillMessage “unexpected exi
keepAlive 6

L earn More

Learn more: mqgtt.org ! garn
Software: mqtt.org/software m 0 re

Recommended broker (C):
Mosquitto (mosquitto.org) , \

Lots of good tutorials out the
on Android Things, Python,
Java and Mobille.

http://mqtt.org
http://mosquitto.org

Architecture of an loT
System

LALLL SALLL ALLL)

ooo {{o}} 0 @"

mwin Ty

TN

LLLLL AL

@ {@i

i i

Sensors Connectivity loT Cloud Platform Application

loT System Architecture

Top 7 loT Cloud Platforms

e Amazon Web Services (AWS) loT Platform
 Microsoft Azure loT

e Google loT

e |BM Watson loT

e Cisco loT Cloud Connect

e ThingsBoard Open-Source loT Platform

e Oracle loT Intelligent Applications

Monitor

Connect
Connect one device

» Connect many devices

Test
» Device Advisor
MQTT test client

Device Location New

Manage
» All devices

» Greengrass devices

AWS loT

How it works

Connect devices to AWS loT so they can send and receive data. Bold text refers to an entry in the Connect menu

of the navigation pane.

\ /
~ T ~ B ,’
) = = =
C—)
| w—

Connect one device Connect many devices
The Quick connect wizard walks you through the steps Fleet provisioning templates define security policies
to create the resources and download the software and registry settings when a device connects to AWS
required to connect your loT device to AWS loT. loT for the first time.

https://console.aws.amazon.com/iot/home

Create a thing object

AWS loT

Monitor

Connect
Connect one device

» Connect many devices

Test
» Device Advisor

MQTT test client

Manage

P All devices

» Greengrass devices

» LPWAN devices

» Remote actions

» Message Routing
Retained messages

P Security

» Fleet Hub

Device Software
Billing groups
Settings

Feature spotliaht

AWS loT Connect Connect one device

Step 1

Prepare your device

Step 4

Step 5

Prepare your device i

How it works

Q@ &

In this wizard, we'll be creating a
thing resource in AWS loT. A thing
resource is a digital representation
of a physical device or logical
entity.

Prepare your device

Q.

A thing resource uses certificates to
secure communication between
your device and AWS loT. AWS loT
policies control access to the AWS
loT resources. This wizard creates
the certificate and policy for your
device.

1. Turn on your device and make sure it's connected to the internet.

2. Choose how you want to load files onto your device.

> QR

When a device connects to AWS
loT, policies enable it to subscribe
and publish MQTT messages with
AWS loT message broker.

1. If your device supports a browser, open the AWS loT console on your device and run this wizard. You can

download the files directly to your device from the browser.

2. If your device doesn't support a browser, choose the best way to transfer files from the computer with the

browser to your device. Some options to transfer files include using the file transfer protocol (FTP) and using a

USB memory stick.

3. Make sure that you can access a command-line interface on your device.

1. If you're running this wizard on your loT device, open a terminal window on your device to access a command-line

interface.

Register and secure your

AWS loT

Monitor

Connect
Connect one device

» Connect many devices

Test
» Device Advisor

MQTT test client

Manage

P All devices

» Greengrass devices

» LPWAN devices

» Remote actions

» Message Routing
Retained messages

P> Security

» Fleet Hub

Device Software
Billing groups
Settings

Feature spotlight

Documentation [#

AWS loT Connect

Step 1

Prepare your device

Step 2
Register and secure your
device

Step 3

Step 4

evice

Connect one device

Register and secure your device i
Represent your device in the cloud

A thing resource is a digital representation of a physical device or logical entity in

AWS loT. A thing resource lets your device use AWS loT features such as Device

Shadows, events, jobs, and other device management features. Certificates

authenticate your device, and policies authorize access to other AWS resources and
> actions.

This wizard helps you create the thing resource, policy, and certificate resources
necessary to connect your device to AWS loT so that it can publish simple messages.
After you complete this wizard, you can edit the resources to explore AWS loT
features further.

Thing properties

© Create a new thing Choose an existing thing

Thing name

Enter a unique name containing only: letters, numbers, hyphens, colons, or underscores. A thing name can't contain any spaces.

Additional configurations

You can use these configurations to add detail that can help you to organize, manage, and search your things.
» Thing type - optional

P Searchable thing attributes - optional

Choose platform and SDK

AWS loT Connect Connect one device

Step 1

Choose platform and SDK i

Prepare your device

R Choose the software for your device
Register and secure your device

Step 3

Choose platform and SDK

This wizard helps you download a software development kit (SDK) to your
device. AWS loT supports Device SDKs that run on your device and include a

sample program that publishes and subscribes to MQTT messages. AWS loT

supports Device SDKs in the languages shown below.
Step 4

Step 5 Platform and SDK

Choose the platform OS and AWS loT Device SDK that you want to use for your device.

Device platform operating system

lhis is the operating system installed on the device that will connect to AWS.

© Linux / macOS
Linux version: any
macOS version: 10.135+

Windows

Version 10

AWS loT Device SDK

Choose a Device SDK that's in a language your device supports.

Node.js
Version 10+

Requires Node.js and npm to be installed

© Python
Version 3.6+
Requires Python and Git to be installed
Java
Version 8

Requires Java JDK, Maven, and Git to be installed

AWS loT Connect

Step 1

Prepare your device

Step 2

Register and secure your device

Step 3

Choose platform and SDK

Step 4

Download connection kit

Connect one device

Download files to your

device

Download connection kit e

Install the software on your device

' >
ZIP

Connection kit
Certificate
TutorialTestThing.cert.pem

Script to send and receive

messages

start.sh

Download

We created the AWS loT resources that your device needs to connect to AWS loT. We also
created a connection kit that includes the resources in a zipped file that you need to install
on your device. The resources in the connection kit are listed below. In this step, you'll
install them on your device.

Private key AWS loT Device SDK
TutorialTestThing.private.key Python
Policy

TutorialTestThing-Policy
View policy

If you are running this from a browser on the device, after you download the connection kit, it will be in the browser's

download folder.

If you are not running this from a browser on your device, you'll need to transfer the connection kit from your browser's

download folder to your device using the method you tested when you prepared your device in step 1.

[Download connection kit

AWS loT Connect

Step 1

Prepare your device

Step 2

Register and secure your device

Step 3
Choose platform and SDK

Step 4

Download connection kit

Connect one device

Download files to your

device

Download connection kit i

Install the software on your device

= — @

Connection kit
Certificate
TutorialTestThing.cert.pem

Script to send and receive

messages

start.sh

Download

We created the AWS loT resources that your device needs to connect to AWS loT. We also
created a connection kit that includes the resources in a zipped file that you need to install
on your device. The resources in the connection kit are listed below. In this step, you'll
install them on your device.

Private key AWS loT Device SDK
TutorialTestThing.private.key Python

Policy

TutorialTestThing-Policy

View policy

If you are running this from a browser on the device, after you download the connection kit, it will be in the browser's

download folder.

If you are not running this from a browser on your device, you'll need to transfer the connection kit from your browser's

download folder to your device using the method you tested when you prepared your device in step 1.

[Download connection kit

Run the sample

AWS loT Connect Connect one device

Step 1

Run connection kit i

Prepare your device

S How to display messages from your device
Register and secure your device

Step 1: Add execution permissions

Step 3

Choose platform and SDK On the device, launch a terminal window to copy and paste the command to add
execution permissions.

Step 4

chmod +x start.sh Copy

Download connection kit

Step 5 Step 2: Run the start script

Run connection kit On the device, copy and paste the command to the terminal window and run the @

start script.

.Jstart.sh Copy

Step 3: Return to this screen to view your device's messages
After running the start script, return to this screen to see the messages between your device and AWS loT. The
messages from your device appear in the following list.

Subscriptions sdk/test/Python Pause Clear

sdk/test/Python

Waiting for messages

Running pub/sub sample application...

Connecting to al3hikvzkye6lx—-ats.iot.us—-east-l.amazonaws.com with client ID
Connected!

Subscribing to topic 'sdk/test/Python’'...

Subscribed with QoS.AT LEAST ONCE

Sending messages until program killed

Publishing message to topic 'sdk/test/Python': Hello World! [1]
Received message from topic 'sdk/test/Python': b'"Hello World! [1]"'
Publishing message to topic 'sdk/test/Python': Hello World! [2]
Received message from topic 'sdk/test/Python': b'"Hello World! [2]"'
Publishing message to topic 'sdk/test/Python': Hello World! [3]
Received message from topic 'sdk/test/Python': b'"Hello World!

Output

Run connection kit i

AWS loT Connect Connect one device

Step 1

Prepare your device

S L How to display messages from your device
Register and secure your device

Step 3 Step 1: Add execution permissions

Choose platform and SDK On the device, launch a terminal window to copy and paste the command to add

execution permissions.

i chmod +x start.sh Copy

Download connection kit

Step 2: Run the start script
On the device, copy and paste the command to the terminal window and run the @
start script.

Step 5
Run connection kit

Jstart.sh Copy

Step 3: Return to this screen to view your device's messages
After running the start script, return to this screen to see the messages between your device and AWS loT. The
messages from your device appear in the following list.

Subscriptions sdk/test/Python Resume Clear

sdk/test/Python

v sdk/test/Python September 14, 2022, 10:47:44 (UTC-0700)

"Hello World! [3]"

¥ sdk/test/Python September 14, 2022, 10:47:43 (UTC-0700)

"Hello World! [2]"

Azure lo!1

i Change feed

R —— NE——
|
: Stream processing |
| | Operational
’: / \ : transactions ’ “" O O
"- % —E—OD
: ‘fq‘ | 4 & @
IoT/ Streaming data : Stream Azure : Azure Cosmos DB Operational Mobile, web app,
sources I Analytics Function | (Operational store) custom app kiosk users
|
aaemheLE LU PR ETE - @) S |
“ : Insights :
I
A I
. r====-L--o1 | e
Connected vehicles, | Stream ingestion | | g | APIs | ‘ Q "
Fleet management : : ::-4- ______ ----I'---ﬁ'--’ | O :
I a M | | ! Analytical |
I N\ I Azure Data Evept Hub _— ' I custom app I
" ——-2' | Lake Storage Azure Digital | 1 "
| L \ | : Twin : :
m : IoT Hub ! A I o I . v :
| | e : ' /) ‘ |
Connected I I | | I Ed I
manufacturing | e ! | : | ADXWebUI | o
T, @ o | g
.H | J 1 | 5_ g
| Event Hub | ° : | > g B
= | | >, (£
T4 1 o
%N I] ' Power BI |
o I | . |
Facilities I | Azure Dd.lH Explorer ! I
. I | (Analytical Store) | |
management I I 1 I
I
I afls | I
- -K-df;kd- p—— : Grafana —-:j
ML scoring in 1
((T)) ﬂ Azure Data Explorer : | % >
0 ! | 528
v
Sensors, Towers ! [= a
: Logic App | g e
! |
I ©
| OA. |
. t I
BB Microsoft ! ceide |
o
. Azure : Notebook |

ML models training

Launch the Cloud Shell

To launch the Cloud Shell:

1. Select the Cloud Shell button on the top-right menu bar in the Azure portal.

I Iy QO & @ &

O G

If this is the first time you've used the Cloud Shell, it prompts you to create storage, which is required to use

the Cloud Shell. Select a subscription to create a storage account and Microsoft Azure Files share.

2. Select your preferred CLI environment in the Select environment dropdown. This quickstart uses the Bash

environment. You can also use the PowerShell environment.

O G

Some commands require different syntax or formatting in the Bash and PowerShell environments. For more

information, see Tips for using the Azure CLI successfully.

Bash 0?2 B RN O D

Cloud Shell.Succeeded.
brminal. ..

PowerShell

https://portal.azure.com/

Prepare CLI sessions

e In the first CLI session, run the az extension add command. The command adds the Microsoft Azure |loT Extension

for Azure CLI to your CLI shell. The IOT Extension adds loT Hub, loT Edge, and loT Device Provisioning Service (DPS)

specific commands to Azure CLI.

Azure CLI I Copy

-—name azure-1iot

After you install the Azure |OT extension, you don't need to install it again in any Cloud Shell session.

() Note

This article uses the newest version of the Azure l0T extension, called azure-iot. The legacy version is called

azure-cli-iot-ext .You should only have one version installed at a time. You can use the command az

extension list to validate the currently installed extensions.
Use az extension remove —--name azure-cli-iot-ext to remove the legacy version of the extension.

Use az extension add -—-name azure-iot to add the new version of the extension.

To see what extensions you have installed, use az extension list.

e Open the second CLI session. If you're using the Cloud Shell in a browser, use the Open new session button. If

using the CLI locally, open a second CLI instance.

Open new session

Connecting terminal...

Create an loT hub

1. In the first CLI session, run the az group create command to create a resource group. The following command

creates a resource group named MyResourceGroup in the eastus location.

Azure CLI ™ Copy
+ —name MyResourceGroup ——location eastus
2. In the first CLI session, run the Az PowerShell module iot hub create command to create an loT hub. It takes a few
minutes to create an loT hub.

YourlotHubName. Replace this placeholder and the surrounding braces in the following command, using the name

you chose for your |oT hub. An loT hub name must be globally unique in Azure. Use your loT hub name in the rest

of this quickstart wherever you see the placeholder.

Azure CLI ™ Copy

. ——resource-group MyResourceGroup ——name {YourIoTHubName}

Create and monitor a
device

1. In the first CLI session, run the az iot hub device-identity create command. This command creates the simulated

device identity.
YourlotHubName. Replace this placeholder below with the name you chose for your loT hub.

simDevice. You can use this name directly for the simulated device in the rest of this quickstart. Optionally, use a

different name.

Azure CLI ™ Copy

te —d simDevice -n {YourIoTHubName}

2. In the first CL| session, run the az iot device simulate command. This command starts the simulated device. The

device sends telemetry to your loT hub and receives messages from it.

YourlotHubName. Replace this placeholder below with the name you chose for your loT hub.

Azure CLI

e —d simDevice -n {YourIoTHubName}

To monitor a device

1. In the second CLI session, run the az iot hub monitor-events command. This command continuously monitors the
simulated device. The output shows telemetry such as events and property state changes that the simulated device

sends to the loT hub.

YourlotHubName. Replace this placeholder below with the name you chose for your loT hub.

Azure CLI

az iot hub monitor-events —-—output table -p all -n {YourIoTHubName}

Starting event monitor, use ctrl-c to stop...
event:
annotations:
iothub-connection-auth-generation-id:
iothub-connection-auth-method: '{"scope":"device","type":"sas","issuer":"iothub","acceptingIpFilterRule":null}’
iothub-connection-device-id: simDevice
iothub-enqueuedtime: 1653493361818
iothub-message-source: Telemetry
x-opt-enqueued-time: 1653493361826
x-opt-offset: '599%84'
x-opt-sequence-number: 117
component: '’
interface:
module: "'
origin: simDevice
payload:
data: 'Ping from Az CLI IoT Extension #14°'
id:
timestamp: '2022-05-25 15:42:41.809391"
properties:
application: {}
system:
content_encoding: utf-8
content_type: application/json

2. After you monitor the simulated device in the second CLI session, press Ctrl+C to stop monitoring. Keep the

second CLI session open to use in later steps.

Use the CLI to send a
message

1. In the first CLI session, confirm that the simulated device is still running. If the device stopped, run the following

command to restart it:
YourlotHubName. Replace this placeholder below with the name you chose for your loT hub.
Azure CLI

late —d simDevice -n {YourIoTHubName}

2. In the second CLI session, run the az iot device c2d-message send command. This command sends a cloud-to-

device message from your loT hub to the simulated device. The message includes a string and two key-value pairs.

YourlotHubName. Replace this placeholder below with the name you chose for your loT hub.

Azure CLI I Copy

nessage send -d simDevice —-data "Hello World" —-props "key@=value®;keyl=val

Optionally, you can send cloud-to-device messages by using the Azure portal. To do this, browse to the overview

page for your loT Hub, select loT Devices, select the simulated device, and select Message to Device.

3. In the first CLI session, confirm that the simulated device received the message.

C2D Message Handler [Received C2D message]:
{ 'Message Properties': { 'content _encoding': 'utf-8',
'key@': 'value@',
'keyl': 'valuel',
'message_1id':
‘Payload’': 'Hello World',
"Topic': '/devices/simDevice/messages/devicebound’}
Device simulation in progress: 19%|####iHHHHHHHHHEHEHEHHHHHHHH

T

Register a device and send
messages to loT Hub

&1 contosoHub | Devices = - X
ol Hub
A Search (Ctrl+/) - View, create, delete, and update devices in your |oT Hub.
N Overview Device name

@ Activity log | enter device I

8 —_— Find devices </> Find using a query
" Access control (IAM) g _

¢ Tags Add Device |() Refresh
/? Diagnose and solve problems
Events Device ID Status Last Status Update Authentication Type Cloud ...

() Pricing and scale

Device management

Devices

& |oT Edge

- - ,

~ Configurations
1\

¢ Updates

B Queries

Credentials

Contoso-Test-Device

contosoHub

T Message to Device
Device ID @
Primary Key @
Secondary Key @
Primary Connection String @)
Secondary Connection String @@

Enable connection to loT Hub @

Parent device @

<

Direct Method } Add Module Identity

Contoso-Test-Device

(@) Enable O Disable

-~ o
(W =

Device twin

1

3y Manage keys

(_) Refresh

Ih

Ih

In
D

https://github.com/Azure/azure-iot-sdk-csharp

Google loT

= Google Cloud Platform

New Project

€} You have 11 projects remaining in your quota. Learn more.

Project name

pi-iot-project

Project ID

pi-iot-project C

Enabling APIs

Google Cloud Platform &e pi-iot-project ~

..

{0, Cloud Launcher

Ba Billing
API APIs & Services > Dashboard
. Library
>
T Support Credentials
© 1AM & admin >
@ Getting started
COMPUTE
-®- App Engine >
{z}] Compute Engine >
() Kubernetes Engine >

() Cloud Functions

STORAGE

7 Riatahle

https://console.cloud.google.com/apis/library?project=pi-iot-project

Enabling APIs

Google Cloud Platform §e pi-iot-project ~

..

{0, Cloud Launcher
B4 Billing
API APIs & Services > Dashboard

Library
Support

Credentials

L}
© 1AM & admin
S

Getting started

COMPUTE

@ App Engine

{=}] Compute Engine
@) Kubernetes Engine

() Cloud Functions

STORAGE

/-’\ﬁ Rin alls

https://console.cloud.google.com/apis/library?project=pi-iot-project

& APl Library

Google Cloud Pub/Sub API
Google

Provides reliable, many-to-many, asynchronous messaging between
applications.

ENABLE TRY THIS API [

Enabling APIs

Google Cloud Platform §e pi-iot-project ~

..

{0, Cloud Launcher
B4 Billing
API APIs & Services > Dashboard

Library
Support

Credentials

L}
© 1AM & admin
S

Getting started

COMPUTE

@ App Engine

{=}] Compute Engine
@) Kubernetes Engine

() Cloud Functions

STORAGE

/a Rin alls

https://console.cloud.google.com/apis/library?project=pi-iot-project

& APl Library

.'0

Google Cloud Pub/Sub API
Google

Provides reliable, many-to-many, asynchronous messaging between
applications.

ENABLE TRY THIS API [

& API Library

Google Realtime API
Google

The Google Realtime APl makes it easy to build realtime
collaboration into your application. Note...

ENABLE

Enabling device re
and devices

gistry

lol Core
Device registries Field Value
Registry ID P13-DHT11-Nodes
. _ , Cloud region us-centrall
A device reqgistry allows you to group devices and set properties
that they all share, such as connection protocol, data storage MQTT
location, and Pub/Sub topics. To start connecting devices to Cloud Protocol HTTP

loT, first create a device reqgistry to place them in. Learn more

Default Telemefry TOpiC device-events
Create device registry
g Default state topic dhtTl

Enabling device registry
and devices

m loT Core & Create device registry

Set shared properties for devices in this reqgistry.
Registry ID
lol Core Pi3-DHT11-Nodes

Device registries

Cloud region

us-centrall ~
. , ,) Protocol
A device reqgistry allows you to group devices and set properties v MQTT
that they all share, such as connection protocol, data storage v/ HTTP
location, and Pub/Sub topics. To start connecting devices to Cloud Pub/Sub topics

loT, first create a device reqgistry to place them in. Learn more Default telemetry topic

projects/pi-iot-project/topics/device-events v
Create device registry
Device state topic
projects/pi-iot-project/topics/dht11 v

Add CA certificate

£ o

Public key

m loT Core & Device details 2’ EDIT DEVICE €% UPDATE CONFIG B BLOCK COMMUNICATION @ DELETE

Device ID: Pi3-DHT11-Node

Numeric ID: 2771385318201261 Registry: Pi3-DHT11-Nodes
& Allowed

Details Configuration & state history

Latest activity
Heartbeat (MQTT only) -
Telemetry event received -
Device state event received —
Config sent -
Config ACK (MQTT only) -

Error -

Device metadata

None

Authentication

Add public key

No authentication keys have been added for this device.

The device won't be able to connect to Google Cloud Platform without a valid key.

openssl req -x509 -newkey rsa:2048 -keyout rsa private.pem -nodes -out rsa cert.pem -subj "/CN=unused"

Public key

Add authentication key

Specify a public key that will be used to authenticate this device. Learn more

Input method
® Enter manually
Upload

Public key format
RS256
ES256

® RS256_X509
ES256_X509

Public key value

T T O A T T T I YT IO O o O D P T T T OO T I KPP C oy O PP CCr TGO T T T
6IC/Derrh2DPiHoSbjc/dDhyqQDtulohWxQvV+LL8a1GFVXBW36SDVAT Sy 4mKm4C
HiDaNliePXsAerQ5xTStocLC+ncFAUExqicO9vwZWFAAThCtNmxP517Z1185d+gRt
tMQW2TZIUm+BReAkxGZFxg32gcf lumf5SblaEUs/hdMk/kBz7ULJ8N/dQguTchld
bFRHWItMC8 JMNyAB SbBCAWEAAANQME 4wHQYDVROOBBYEFKQQ2F J6ZF SOq7Ms 280G
VASS5SMKLMBBGATUAIWQYMBaAFKQQ2F J6ZF SOq7Ms 280GVAS S SMKLMAWGA TUdEWQF
MAMBAT BWDQYJKoZIhvcNAQELBQADggEBAFORMIDVPZOHSFyMHND 78 XrmbamGxRNe
LnRebkivFsV+XZsgl j2hob151+QF yzp6+rNtMTfH+xTzx3bGIglQIBIUu3E96KZz+M
b+sb/ADDDBwtnkm7/cMrsFtvCMiVEKHvKaSyAs1S1zG5zYVIdwVED 583y Z+tKsO
abYDwKf zxpuNKM4prOwcl j JXJJP1W84dBINNSCHBorKqut 6NpRsQbX+Xo0yZ17KB
nddpi 1TOmuB460oUckLfz11fy6YkjU/DUgeSdb+1MkpEnX1rQ+D8PH+71Ba3+1sVT
a790818bYad4GuBebbVeKO8mbWHBgb5U/PpBT706ulYajAqUKVU4d]scg=

----- END CERTIFICATE====~

Public key expiration date
Expires on:

CANCEL ADD

openssl req -x509 -newkey rsa:2048 -keyout rsa private.pem -nodes -out rsa cert.pem -subj "/CN=unused"

Setting up Raspberry Pi
with DHT11 node

ceceseceeseeessma DHTI1DatatoRPIGPIO2 PPPPPPHPPPPPPPPPP PP PP PP
DHT11 GND to RPI GND T v v v e e e e e

|

Raspberry Pi 3 Model B v1.2
© Raspberry Pi 2015

~
>
<
-
o
n
L)
(=]
~
-
n
(=}

AENENNENENENENER
(VY¥3UVI) ISO
ETHERNET

fritzing

Setting up Node.|s

1. Open a new Terminal and run the following commands:

$ sudo apt update
$ sudo apt full-upgrade

2. This will upgrade all the packages that need upgrades. Next, we will install the latest version of

Node.js. We will be using the Node 7.x version:

$ curl -sL https://deb.nodesource.com/setup_7.x | sudo -E bash -
$ sudo apt install nodejs

3. This will take a moment to install, and once your installation is done, you should be able to run the

following commands to see the version of Node.js and npm:

$ node -v
$ npm -v

Developing the Node.|s
device app

1. From the Terminal, once you are inside the Goog le-IoT-Device folder, run the following command:

$ npm init -y

2. Next, we will install jsonwebtoken (https://www.npmjs.com/package/jsonwebtoken) and mqtt

(https://www.npmijs.com/package/matt) from npm. Execute the following command:

$ npm install jsonwebtoken mqtt--save

3. Next, we will install rpi—-dht-sensor (https://www.npmjs.com/package/rpi-dht-sensor) from npm.

This module will help in reading the DHT11 temperature and humidity values:

$ npm install rpi-dht-sensor --save

package.json

1

"name": "Google-IoT-Device",
"version": "1.0.0",

n. nmn

"description": "",

"main": "index.js",

"scripts”: {

"test": "echo "Error: no test specified" && exit 1"

h

n

eywords": [],

n., nmn

"author": "",

"license": "ISC",
"dependencies”: {
"Jjsonwebtoken": "A8.1.1",
"mqtt": "A2.15.3",
"rp1-dht-sensor": "A0.1.1"

¥
¥

Project Structure

File Edit Tabs Help

pieraspberrypi: tree -I "node_modules”

1 directory, 4 files

var fs = require('fs');

var Jwt = require('jsonwebtoken');

var mqtt = require('mqtt’);

var rpiDhtSensor = require('rpi-dht-sensor’);

var dht = new rpiDhtSensor.DHT11(2); // 2" => GPIO2

var projectld = 'pi-1ot-project’;

var cloudRegion = 'us-centrall’;

var registryld = 'Pi3-DHT11-Nodes';
var deviceld = 'Pi3-DHT11-Node';

var mqttHost = 'mqtt.googleapis.com'’;

var mqttPort = 8883;

var privateKeyFile ='../certs/rsa_private.pem’;
var algorithm = 'RS256';

var messageType = 'state'; // or event

var mqttClientld = 'projects/' + projectld + '/locations/' + cloudRegion + '/registries/' + registryld + '/devices/' + deviceld;
var mqttTopic = '/devices/" + deviceld + /' + messageType;

var connectionArgs = {
host: mqttHost,
port: mqttPort,
clientld: mqttClientld,
username: unused’,
password: createJwt(projectld, privateKeyFile, algorithm),

var connectionArgs = {
host: mqttHost,
port: mqttPort,
clientld: mqttClientld,
username: unused’,
password: createJwt(projectld, privateKeyFile, algorithm),
protocol: 'mqtts’,
secureProtocol: "TLSv1_2_method'

I

console.log('‘connecting...");
var client = mqtt.connect(connectionArgs);

// Subscribe to the /devices/{device-1d }/config topic to receive config updates.
client.subscribe('/devices/' + deviceld + '/config');

client.on('‘connect’, function(success) {
1f (success) {

console.log('Client connected...");
sendData();

}else {
console.log('Client not connected...");

}
1)

client.on('close’, function() {
console.log('close');

1)

client.on('error', function(err) {
console.log(‘error', err);

1)

client.on('message’, function(topic, message, packet) {
console.log(topic, 'message received: ', Buffer.from(message, 'base64’).toString('ascit'));

1)

function createJwt(projectld, privateKeyFile, algorithm) {
var token = {
1at"; parselnt(Date.now() / 1000),
'exp': parselnt(Date.now() / 1000) + 86400 * 60, // 1 day
‘aud’: projectld
53
var privateKey = fs.readFileSync(privateKeyFile);
return jwt.sign(token, privateKey, {
algorithm: algorithm
3
h

function fetchData() {
var readout = dht.read();
var temp = readout.temperature.toFixed(2);
var humd = readout.humidity.toFixed(2);

return {
'temp': temp,
'humd'; humd,

algorithm: algorithm
1)
h

function fetchData() {
var readout = dht.read();
var temp = readout.temperature.toFixed(2);
var humd = readout.humidity.toFixed(2);

return {
'temp': temp,
'humd': humd,
'time": new Date().tolISOString().slice(0, 19).replace('T", "' ")

33
¥

function sendData() {
var payload = fetchData();

payload = JSON .stringify(payload);
console.log(mqttTopic, ": Publishing message:', payload);
client.publish(mqttTopic, payload, { qos: 1 });

console.log('Transmitting in 30 seconds');
setTimeout(sendData, 30000);

¥

Running

$ sudo node index.js

And we should see something like this:

Console

Device ID: Pi3-DHT11-Node

Numeric ID: 2771385318201261 Registry: Pi3-DHT11-Nodes
Device communication: @ Allowed

Details Configuration & state history

v/ Configuration history v/ State history C

Cloud update: February 17, 2018

Device State

Format
Base64
@ Text
{"temp":%26.00","humd":"20.00" ,"time":"2818-02-17 083:57:41%} IEI
Cloud update 9:27 AM

& STATE Cloud Update: 9:27 AM eyJOZW1wljoiMjYuMDAILCJodW1kljoiMjJAUMDAILCJ0aW1lljoiMjAXOCOWMIOXNyAwMzoT1NzozNiJ9
& STATE Cloud Update: 9:27 AM eyJOZW1wljoiMjYuMDAILCJodW1kljoiMjJAUMDAILCJ0aW1lljoiMjAXOCOWMIOXNyAwMzoT1NzozMCJ9
& STATE Cloud Update: 9:27 AM eyJOZW1wljoiMjYuMDAILCJodW1kljoiMjluMDAILCJ0aW1lljoiMjAxOCOwWMIiOxNyAwMzo1NzoyNSJ9
& STATE Cloud Update: 9:27 AM eyJOZW1wljoiMjYuMDAILCJodW1kljoiMjAUMDAILCJ0aW1lljoiMjAxOCOwWMIOXxNyAwMzo1Nzox0SJ9
@ STATE Cloud Update: 9:27 AM eyJOZW1wljoiMjYuMDAILCJodW1kljoiMjAUMDAILCJ0aW1lljoiMjAXOCOwWMIOXNyAwMzoTNzoxNCJ9
& STATE Cloud Update: 9:27 AM eyJOZW1wljoiMCAwMCIsImh1bWQIOilwLjAwliwidGItZSI6lj)lwMTgtMDItMTcgMDM6ENTc6MDgifQ==

Lecture outcomes

e MQTT Protocol O UTC O M E <—

e Cloud

e AWS
* Azure / , \/

e Google \

