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Motto:

�The fuzzy set was conceived as a result of an
attempt to come to grips with the problem of
pattern recognition in the context of imprecisely
de�ned categories. In such cases, the belonging
of an object to a class is a matter of degree, as is
the question of whether or not a group of objects
form a cluster.�

The founder of Fuzzy Logic, Prof. Lot� A. Zadeh, University of Berkeley (1981)
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Fuzzy Sets � De�nitions

• Fuzzy set A : X → [0, 1], A(x) is membership degree

• Special sets: X(x) = 1; ∅(x) = 0, ∀x ∈ X

• A = B ⇐⇒ A(x) = B(x),∀x ∈ X

• A ⊆ B ⇐⇒ A(x) ≤ B(x),∀x ∈ X

• Ā(x) = 1− A(x), ∀x ∈ X

• (A ∩B)(x) = T (A(x), B(x)), T � triangular norm

• (A ∪B)(x) = S(A(x), B(x)), S � triangular conorm

• T , S commutative, associative, non-decreasing, T (a, 1) = a, S(a, 0) = a
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Fuzzy Sets � Properties

• TS(a, b) = min{a, b}, SS(a, b) = max{a, b}
• TL(a, b) = max{a + b− 1, 0}, SL(a, b) = min{a + b, 1}

Property Crisp sets TS and SS TL and SL

(1) Idempotence laws Valid Valid Invalid
(2) A ∪ Ā = X, A ∩ Ā = ∅ Valid Invalid Valid
(3) Distributivity laws Valid Valid Invalid
(4) De Morgan laws Valid Valid Valid
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Rough Sets � Alternative

• Approximation of sets using a collection of sets � Pawlak (1982)

• Given a collection of sets C = {C1, C2, . . .}, and a set D

• Lower approximation of D by C: DL = ∪Ci such that Ci ∩D = Ci

• Upper approximation of D by C: DU = ∪Ci such that Ci ∩D 6= ∅
• Boundary of D by C: DU

L = DU −DL

• A set D is rough if it has a non-empty boundary when approximated by C

• Otherwise, the set D is crisp

• Fuzzy rough sets, rough fuzzy sets

Prof.Dr. Horia F. POP, Fuzzy Sets in Data Analysis: Between Theory and Applications 6



'

&

$

%

Fuzzy clustering � Discussion

Data representation: objects are vectors of measured values

Feature extraction: to reduce data dimensionality and eliminate
redundant characteristics

Clusters shape: di�erent geometric prototypes; norms or scalar products

Clusters size: use of adaptive distance or adaptive algorithms

Clusters validity: optimal number of classes through validity functionals,
clusters merging/splitting or by using a hierarchical approach

Final fuzzy partition: needs to be defuzzi�ed; it should not be discarded

Method: fuzzy objective function minimization; two step iterative
procedure that continually decreases the value of the objective function
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Fuzzy clustering � Generic algorithm

Aim: minimize J(P, L) =
c∑

i=1

n∑
j=1

Ai(x
j)m ·D(xj, Li)

1. Given: c, n, m, and xj, j = 1, . . . , n; l = 0;

2. Initialize fuzzy partition P (0) = {A1, . . . , Ac}
3. Compute prototypes Li that minimize J(P (l), ·) � may be costly

4. Compute fuzzy partition P (l+1) that minimizes J(·, L)

A
(l+1)
i (xj) =

1
c∑

k=1

(
D(xj, Li)

D(xj, Lk)

) 1
m−1

5. Compare P (l+1) with P (l). If close enough, then stop, else increase l by
1 and goto step 3
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Fuzzy clustering � Variants and improvements

Geometric prototypes
• Fuzzy c-Means � Dunn (1974), Bezdek (1974)
• Fuzzy c-Varieties and Fuzzy c-Elliptotypes � Bezdek et.al. (1981)
• Fuzzy c-Ellipsoids � Lenart (1989)
• Adaptive Fuzzy Clustering � Dave (1989), Dumitrescu, Pop (1990)
• Use of fuzzy covariance matrix � Gusta�son, Kessel (1979)
• Lp Fuzzy c-Means � Miyamoto, Agusta (1998), Hathaway, Bezdek (2000)

Empty shell prototypes
• Fuzzy c-Shells � Dave (1990), Krishnapuram, Nasraoui, Frigui (1992)
• Adaptive Fuzzy c-Shells � Dave, Bhaswan (1992)
• Fuzzy c-Ellipsoidal Shells � Frigui, Krishnapuram (1996), Gath, Hoory (1995)
• Fuzzy c-Quadric Shells � Krishnapuram, Frigui, Nasraoui (1993, 1995)
• Fuzzy c-Rectangular Shells � Höppner, Klawonn, Kruse (1997)
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Fuzzy clustering � Variants and improvements (2)

Fuzzy clustering with incomplete data
• Unsupervised fuzzy competitive learning � Chung, Lee (1994)
• Whole data strategy � Hathaway, Bezdek (2001)
• Partial distance strategy � Hathaway, Bezdek (2001)
• Optimal completion strategy � Hathaway, Bezdek (2001)
• Nearest neighbour strategy � Hathaway, Bezdek (2001)

Other methods and models
• Fuzzy divisive hierarchic clustering � Dumitrescu (1988)
• Cross-clustering � Dumitrescu, Pop (1995)
• Noise Clustering � Dave (1991), Dave, Sen (1997)
• Possibilistic, Probabilistic � Krishnapuram, Keller (1993), Gath, Geva (1989)
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Fuzzy classi�cation

Crisp input, crisp output
• The original approach

Fuzzy input, crisp output
• Most fuzzy generalisations

Fuzzy input, fuzzy output
• Fuzzy Nearest k Neighbors
• Fuzzy Nearest Prototypes
• Restricted Fuzzy Clustering � Pop (1995)
• Fuzzy Decision Hyperplanes � Lenart (1993)
• Fuzzy Competitive Learning Variants
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Fuzzy classi�cation � Details

Restricted Fuzzy Clustering
• Consider the set X, fuzzy partition P , extra item x0

• Use Fuzzy Clustering on the set X ∪ {x0} but freeze fuzzy
membership degrees of data items in X

Fuzzy Competitive Learning
1. vi

k initialized as random; iteration = 1; step = 1.0;
2. loop for all data items xj

• loop for all k: if xj
k is available then, for all i,

vi
k = vi

k + step · Ai(x
j)m · (xj

k − vi
k)

3. iteration = iteration + 1; step = step/iteration
4. if old and new centers v are close enough, then stop, else goto step 2
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Regression techniques � The problem

Aim: to relate, corelate or model a measure response based on the value of
a given variable

Common approach: use the linear Least-Square method

Assumption: data is homoscedastic � y-direction error is independent of
the controlled variable

Robustness: heteroscedastic data and presence of outliers are common

Problem: most of current robust methods do not provide best results in all
situations

Problem: quality measures are not method independent

Suggestion: need for fuzziness as a way to model data items weights

Validation: direct comparative analysis, cross-validation, etc
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Fuzzy regression � Discussion

Clustering techniques: able to detect the cluster substructure of a data
set; do not work for c = 1

Necessity: to determine the fuzzy set A and the prototype L that best
describes the data set

Motivation: useful in search of good robust regression methods: the
weights are fuzzy membership degrees

Method: determine a fuzzy partition {A, Ā}; Ā is a class with a

hypothetical prototype, characterized by D(xj, L̄) = δ :=

(
α

1− α

)m−1

Objective function:
J(A,L) =

n∑
j=1

A(xj)mD(xj, Li) +
n∑

j=1

Ā(xj)m

(
α

1− α

)m−1

, α ∈ (0, 1)
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Fuzzy regression � Generic algorithm

1. Given α; Initialize A(0)(x) = 1, l = 0

2. Compute prototype L that minimizes J(A(l), ·)
3. Compute fuzzy set A(l+1) that minimizes J(·, L)

A(l+1)(xj) =

α

1− α
α

1− α
+ D(xj, L)

1
m−1

4. Compare A(l+1) with A(l). If close enough, then stop, else increase l by
1 and goto step 3

Improvement: scale independence: introduction in step 3 of relative
distances
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Fuzzy regression � Properties

i. A(x) = 1 ⇔ D(x, L) = 0 A(x) = α ⇔ Dr(x, L) = 1

ii. A(x) ∈ [α, 1] for all x ∈ X (consequence)
iii. α = 0 ⇔ A(x) = 0 for all x ∈ X α = 1 ⇔ A(x) = 1 for all x ∈ X

iv. A(x) = A(y) ⇔ D(x, L) = D(y, L) A(x) < A(y) ⇔ D(x, L) < D(y, L)

• constant α sets the polarization of the fuzzy partition {A, Ā}
• Remarkable �exibility; best results with α ≈ 0.10

• Linear version (Fuzzy Linear Regression)
(a) dissimilarity: square distance to the line (not vertical distance)
(b) linear prototype determined by fuzzy mean and principal component
(c) operational in all testing conditions; better than most methods
(d) allows detection of data type through repeated runs
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Robust regression � Other approaches

Non-fuzzy regression
• Weighted Least-Square
• Iterative Reweighted Least-Square
(weights - inverse of variance, residuals, etc)

Fuzzy regression
• Deal with fuzzy and crisp data; use of fuzzy regression coe�cients
• Using minimium fuzziness criterion
• Using least-squares of errors criterion
• Using interval analysis (data and coe�cients are fuzzy intervals)
(Chang, Ayyub, 2001)
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Data projection and selection

• Visualisation of high-dimensional data items

• Projection methods
� Linear projection methods (e.g. PCA)
� Non-linear projection methods (e.g. MDS)

• Variables selection methods
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Data analysis methods

• use of projection methods to reduce data dimensionality for further
clustering
� certain projection methods are better for to be used together with
certain clustering methods

• use of projection methods as a visualisation tool, to help in
understanding the clustering results
� display the reference vectors using some distance-preserving projection
method

• use of MDS methods as a way to apply metric-based clustering
algorithms to non-metric data
� create a metric space with a distance that best preserves the original
dissimilarities
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Principal Components Analysis (PCA)

• Aim: data dimensionality reduction by determining new, fewer variables

• The new variables are called principal components and correspond to the
axes of maximal elongation of data

• The number of principal components necessary to conserve 90% of data
variance is considerably less than the size of data space

• The principal components are linear combinations of the original
variables; need to determine the relevant variables

• Problem: Points isolated with respect to (a) the data set; (b) principal
directions
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PCA Algorithm

1. Compute the covariance or corelation matrix

Covij =
1

n− 1

n∑

k=1

(xk
i − x̄i) · (xk

j − x̄j)

Corij =
Covij

si · sj
, si =

1

n− 1

n∑

k=1

(xk
i − x̄i)

2

2. Compute the eigenvectors and eigenvalues of this matrix; these are the
principal components and the scatter values

3. Based on these scatter values, select the necessary number of principal
components

4. Determine the values of data for the new variables (i.e. project the data
set in the space of the selected principal components): X ′T = XT · E
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Fuzzy PCA, �rst component

• Problem: points isolated with respect to the �rst component ONLY

• Method: Membership degrees according to the distance to the �rst
component

• Fuzzy Regression with linear prototype = eigenvector corresponding to
the largest eigenvalue of the fuzzy covariance matrix

Cij =

∑n
k=1 A(xk)m · (xk

i − x̄i) · (xk
j − x̄j)∑n

k=1 A(xk)m
, i, j = 1, . . . , p. (1)

• Advantage: the �rst principal component will count the merits of each
data item; as such, will consider the isolated points with less signi�cance

• To be optimised: the other principal components
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Fuzzy PCA, orthogonal

• Problem: fuzzy�cation of all components, not only the �rst one

• Idea: A di�erent approach, by projecting the data in smaller-sized spaces

• After the �rst fuzzy eigenvector is determined, all data is projected to the
hyperplane rectangular on it

• The eigenvectors corresponding to the projected data will be orthogonal
to the eigenvector determined above

• The projection continues further on, etc.; �nally, the eigenvectors are
rebuilt in the original space

• Advantage: the compotation of the other fuzzy components is reduced to
the computation of the �rst fuzzy component of a smaller-sized matrix

Prof.Dr. Horia F. POP, Fuzzy Sets in Data Analysis: Between Theory and Applications 23



'

&

$

%

FuzzyPCAFirst Algorithm

1. Determine the optimal α optimal (leads to maximisation of a quality
criterion of the �rst principal component)

2. Determine the fuzzy membership degrees for the α determined above

3. Using these fuzzy membership degrees, compute the fuzzy covariance
matrix C (1)

4. Compute the eigenvectors and eigenvalues of C; these are the fuzzy
principal components and the coresponding scatter values
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FuzzyPCAOrthogonal Algorithm

1. If p ≤ 2, use FuzzyPCAFirst(); otherwise, continue

2. Determine the optimal α optimal (leads to maximisation of a quality criterion of the
�rst principal component)

3. Determine the fuzzy membership degrees for the α determined above

4. Using these fuzzy membership degrees, compute the fuzzy covariance matrix C (1)

5. Compute the eigenvectors and eigenvalues of C; the maximal eigenvalue λ and its
eigenvector e are called 'current'

6. Compute the data scores and remove the values on the �rst positions

7. Recursively call FuzzyPCAOrthogonal() on this set of reduced-size and
determine the eigenvalues and eigenvectors from this projected space

8. Return to the original space and rewrite these eigenvectors and eigenvalues in terms
of the original set of coordinates. The new values are λ2, . . . , λp and e2, . . . , ep

Prof.Dr. Horia F. POP, Fuzzy Sets in Data Analysis: Between Theory and Applications 25



'

&

$

%

Multidimensional scaling (MDS)

• usefullness with dimensionality reduction and non-metric data

• metric MDS: EM =
∑

k 6=l (dkl − d′kl)
2

• non-metric MDS: EN =
∑

k 6=l (f(dkl)− d′kl)
2 /

∑
k 6=l (d

′
kl)

2

� f � monotonically increasing; maps original distances to such values
that best preserve the rank order

• Sammon mapping: ES =
∑

k 6=l (dkl − d′kl)
2 /dkl

• dkl = d(k, l) is the dissimilarity of original items xk and xl

• d′kl = d′(k, l) is the corresponding distance in the projected space.
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Software: SADIC

System for Automatic Data Investigation and Classi�cation

Implementation:
• C++: object oriented coding
• wxWidgets: platform-independent
class library

• Any C++ compiler on Windows,
Linux and MacOS

• Console application with command
line interpreter

• Visual application
• XML reports; XSL transformation
to HTML output

• Easy to extend; no redundant code

Methods:
• Dimensionality reduction: (F)PCA,
MDS

• Selection of relevant variables
• (Fuzzy) solid clustering
• (Fuzzy) incomplete data clustering
• (Fuzzy) shell clustering
• Horizontal, hierarchic and
cross-clustering

• (Fuzzy) supervised classi�cation
• (Fuzzy) (non-)linear regression
• . . .
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Applications of Fuzzy Data Analysis

• Optimal selection of solvent systems

• Roman pottery (terra sigillata)

• Greek muds and pelloids

• Fuzzy system of chemical elements

• Romanian and American coals

• Intramolecular interactions and catalyst modeling

• Assesment of heart disease

• Electric network distribution systems

• . . .
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Final word

• Prof. Dan Dumitrescu

• Prof. Militon Frenµiu

• Prof. Costel Sârbu, Prof. Thomas Cundari

• Prof. Lot� Zadeh (founder of Fuzzy sets)

• Prof. Donald E. Knuth, Leslie Lamport (creators of TEX and LATEX)

• Cluj C.S. Department and Faculty members

• . . .
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�[. . . ] When I read (and reread) their papers and discuss
them with my students, I am often struck by the whimsi-
cal image of Mendeleev sitting at a computer, entering his
collected elemental properties into the fuzzy classi�cation
programs developed by the Cluj team, and assessing the
various elemental relationships at di�erent levels of fuzzi-
ness! How much sooner would eka-aluminum and other
new elements have been isolated had Mendeleev had such
tools at his �ngertips? [. . . ]�

Prof. Thomas Cundari, University of Memphis (2000)
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