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Motto:

\_

“The fuzzy set was conceived as a result of an
attempt to come to grips with the problem of
pattern recognition in the context of imprecisely
defined categories. In such cases, the belonging
of an object to a class is a matter of degree, as is
the question of whether or not a group of objects

form a cluster.”

The founder of Fuzzy Logic, Prof. Lotfi A. Zadeh, University of Berkeley (1981)
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Fuzzy Sets — Definitions

o Fuzzy set A: X — [0,1], A(z) is membership degree

e Special sets: X () =1; 0(z) =0, Vx € X

e A=B <— A(x)=B(z),Vr € X

e ACB <— A(x) < B(x),Vx e X
v

e A(x) =1— A(x),Vz € X

o (AN B)(x)
o (AU B)(x)

T(A(x),B(x)), T — triangular norm

S(A(x), B(x)), S — triangular conorm

e 7', S commutative, associative, non-decreasing, T'(a,1) = a, S(a,0) = a

/

Prof.Dr. Horia F. POP, Fuzzy Sets in Data Analysis: Between Theory and Applications 4



Fuzzy Sets — Properties

e Ts5(a,b) = min{a, b}, Sg(a,b) = max{a,b}
e T7(a,b) =max{a+b— 1,0}, Sr(a,b) = min{a + b, 1}

Property Crisp sets T and Sg 17 and S,
(1) Idempotence laws Valid Valid Invalid
(2) AUA=X AnA=0 Valid Invalid Valid
(3) Distributivity laws Valid Valid Invalid
(4) De Morgan laws Valid Valid Valid
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Rough Sets — Alternative

e Approximation of sets using a collection of sets — Pawlak (1982)

e Given a collection of sets C' = {C},C5, ...}, and a set D

e [ower approximation of D by C: D = UC; such that C; N D = C;

o Upper approximation of D by C: DY = UC; such that C; N D # ()

e Boundary of D by C: DY = DY — D,

e A set D is rough if it has a non-empty boundary when approximated by C'

e Otherwise, the set D is crisp

e Fuzzy rough sets, rough fuzzy sets
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Fuzzy clustering — Discussion

Data representation: objects are vectors of measured values

Feature extraction: to reduce data dimensionality and eliminate

redundant characteristics
Clusters shape: different geometric prototypes; norms or scalar products
Clusters size: use of adaptive distance or adaptive algorithms

Clusters validity: optimal number of classes through validity functionals,

clusters merging/splitting or by using a hierarchical approach
Final fuzzy partition: needs to be defuzzitied; it should not be discarded

Method: fuzzy objective function minimization; two step iterative

\_

procedure that continually decreases the value of the objective function
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Fuzzy clustering — Generic algorithm

Aim: minimize J(P, L) ZZA ()™ D(2?, L;)

=1 j=1
Given:¢c,n, m,and 27,5 =1,....,n, 1 =0;
Initialize fuzzy partition PO = {A;,... A.}

Compute prototypes L; that minimize J(PW", .) — may be costly

s w o=

. Compute fuzzy partition PUT1 that minimizes J(-, L)

] 1

> (P

k=1

5. Compare PUtD with P If close enough, then STOP, else increase I by
1 and GOTO STEP 3

~
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Fuzzy clustering — Variants and improvements

Geometric prototypes

Fuzzy c-Means — Dunn (1974), Bezdek (1974)

Fuzzy c-Varieties and Fuzzy c-Elliptotypes — Bezdek et.al. (1981)

Fuzzy c-Ellipsoids — Lenart (1989)

Adaptive Fuzzy Clustering — Dave (1989), Dumitrescu, Pop (1990)

Use of fuzzy covariance matrix — Gustaffson, Kessel (1979)

L, Fuzzy c-Means — Miyamoto, Agusta (1998), Hathaway, Bezdek (2000)

Empty shell prototypes

\_

Fuzzy c-Shells — Dave (1990), Krishnapuram, Nasraoui, Frigui (1992)
Adaptive Fuzzy c-Shells — Dave, Bhaswan (1992)

Fuzzy c-Ellipsoidal Shells — Frigui, Krishnapuram (1996), Gath, Hoory (1995)
Fuzzy c-Quadric Shells — Krishnapuram, Frigui, Nasraoui (1993, 1995)

Fuzzy c-Rectangular Shells — Hoppner, Klawonn, Kruse (1997)
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Fuzzy clustering — Variants and improvements (2)

Fuzzy clustering with incomplete data
e Unsupervised fuzzy competitive learning — Chung, Lee (1994)
e Whole data strategy — Hathaway, Bezdek (2001)
e Partial distance strategy — Hathaway, Bezdek (2001)
e Optimal completion strategy — Hathaway, Bezdek (2001)
e Nearest neighbour strategy — Hathaway, Bezdek (2001)

Other methods and models
e Fuzzy divisive hierarchic clustering — Dumitrescu (1988)
e Cross-clustering — Dumitrescu, Pop (1995)
e Noise Clustering — Dave (1991), Dave, Sen (1997)
e Possibilistic, Probabilistic — Krishnapuram, Keller (1993), Gath, Geva (1989)

\_
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Fuzzy classification

Crisp input, crisp output
e The original approach
Fuzzy input, crisp output
e Most fuzzy generalisations
Fuzzy input, fuzzy output
e Fuzzy Nearest k Neighbors
e Fuzzy Nearest Prototypes
e Restricted Fuzzy Clustering — Pop (1995)
e Fuzzy Decision Hyperplanes — Lenart (1993)

e Fuzzy Competitive Learning Variants
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Fuzzy classification — Details

Restricted Fuzzy Clustering

e Consider the set X, fuzzy partition P, extra item x

e Use Fuzzy Clustering on the set X U {xy} but freeze fuzzy

membership degrees of data items in X

Fuzzy Competitive Learning

1. v,i initialized as random; iteration = 1; step = 1.0;
2. loop for all data items 2/
e loop for all k: if 31:‘,7C is available then, for all 7,
vl = vl + step - Ai(z)™ - (x] — vl)
3. iteration = iteration 4 1; step = step/iteration

4. if old and new centers v are close enough, then stop, else goto step 2

/
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Regression techniques — The problem

Aim: to relate, corelate or model a measure response based on the value of

a given variable
Common approach: use the linear Least-Square method

Assumption: data is homoscedastic — y-direction error is independent of

the controlled variable
Robustness: heteroscedastic data and presence of outliers are common

Problem: most of current robust methods do not provide best results in all

situations
Problem: quality measures are not method independent

Suggestion: need for fuzziness as a way to model data items weights

Validation: direct comparative analysis, cross-validation, etc

\_ /
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Fuzzy regression — Discussion

Clustering techniques: able to detect the cluster substructure of a data
set; do not work for ¢ =1

Necessity: to determine the fuzzy set A and the prototype L that best
describes the data set

Motivation: useful in search of good robust regression methods: the

weights are fuzzy membership degrees

Method: determine a fuzzy partition {A, A}: A is a class with a

m—1
hypothetical prototype, characterized by D(z7, L) = § := (1 c )
—

Objective function:

J(A, L) = Z A(2))"D(2?, Ly) + Zfl(xj)m (

8}

1l — «

\_

)ml, ae€ (0,1)

~

/
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Fuzzy regression — Generic algorithm

1. Given o; Initialize AY(2) =1,1=0
2. Compute prototype L that minimizes J(AW, ")

3. Compute fuzzy set AUV that minimizes J(-, L)
e

A(H_l)([ljj) _ - 1 —Oé'
+ D(a’, L)m—1

1 -«
4. Compare AU with AW If close enough, then STOP, else increase [ by

1 and GOTO STEP 3

Improvement: scale independence: introduction in step 3 of relative

distances

\_
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Fuzzy regression — Properties

. Alx)=1< D(z,L)=0 Alx)=a < D,(x,L) =1

i. A(zr) €la,1] forallz e X (consequence)

i. a=0< A(x)=0forallz e X a=1< A(z)=1forallz e X
Iv. A(x)=A(y) < D(x,L) = D(y, L) A(x) < A(y) & D(x,L) < D(y, L)

e constant « sets the polarization of the fuzzy partition {A, A}

e Remarkable flexibility; best results with o =~ 0.10

e Linear version (Fuzzy Linear Regression)

(a) dissimilarity: square distance to the line (not vertical distance)

(b) linear prototype determined by fuzzy mean and principal component
(c) operational in all testing conditions; better than most methods
)

(d) allows detection of data type through repeated runs
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Robust regression — Other approaches

Non-fuzzy regression
e Weighted Least-Square
e |terative Reweighted Least-Square

(weights - inverse of variance, residuals, etc)

Fuzzy regression
e Deal with fuzzy and crisp data; use of fuzzy regression coefficients
e Using minimium fuzziness criterion
e Using least-squares of errors criterion

e Using interval analysis (data and coefficients are fuzzy intervals)

(Chang, Ayyub, 2001)

\_
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Data projection and selection

e Visualisation of high-dimensional data items

e Projection methods
— Linear projection methods (e.g. PCA)
— Non-linear projection methods (e.g. MDS)

e Variables selection methods
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Data analysis methods

e use of projection methods to reduce data dimensionality for further

clustering
— certain projection methods are better for to be used together with
certain clustering methods
e use of projection methods as a visualisation tool, to help in
understanding the clustering results
— display the reference vectors using some distance-preserving projection
method
e use of MDS methods as a way to apply metric-based clustering
algorithms to non-metric data

— create a metric space with a distance that best preserves the original

dissimilarities
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Principal Components Analysis (PCA)

e Aim: data dimensionality reduction by determining new, fewer variables

e The new variables are called principal components and correspond to the

axes of maximal elongation of data

e The number of principal components necessary to conserve 90% of data

variance is considerably less than the size of data space

e The principal components are linear combinations of the original

variables: need to determine the relevant variables

e Problem: Points isolated with respect to (a) the data set; (b) principal

directions

/
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PCA Algorithm

. Compute the covariance or corelation matrix

1 . _
Covij = > (af —3) - (af — 2))

n—1
k=1
n
Cov;; 1
Corjj = —=, 8 = E (27 — ;)
Si * S n—1

k=1
. Compute the eigenvectors and eigenvalues of this matrix; these are the

principal components and the scatter values

. Based on these scatter values, select the necessary number of principal

components

. Determine the values of data for the new variables (i.e. project the data

set in the space of the selected principal components): X' = X1 . F

/
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Fuzzy PCA, first component

e Problem: points isolated with respect to the first component ONLY

e Method: Membership degrees according to the distance to the first

component

e Fuzzy Regression with linear prototype = eigenvector corresponding to

the largest eigenvalue of the fuzzy covariance matrix

S A @) @)
i i AR S

e Advantage: the first principal component will count the merits of each

data item; as such, will consider the isolated points with less significance

e [o be optimised: the other principal components

oo (1)

/
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Fuzzy PCA, orthogonal

e Problem: fuzzyfication of all components, not only the first one
e |dea: A different approach, by projecting the data in smaller-sized spaces

o After the first fuzzy eigenvector is determined, all data is projected to the

hyperplane rectangular on it

e The eigenvectors corresponding to the projected data will be orthogonal

to the eigenvector determined above

e The projection continues further on, etc.; finally, the eigenvectors are

rebuilt in the original space

e Advantage: the compotation of the other fuzzy components is reduced to

the computation of the first fuzzy component of a smaller-sized matrix

/
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FuzzyPCAFirst Algorithm

. Determine the optimal « optimal (leads to maximisation of a quality

criterion of the first principal component)
. Determine the fuzzy membership degrees for the o determined above

. Using these fuzzy membership degrees, compute the fuzzy covariance
matrix C' (1)

. Compute the eigenvectors and eigenvalues of C'; these are the fuzzy

principal components and the coresponding scatter values
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FuzzyPCAOrthogonal Algorithm

It p <2, use FuzzyPCAFIRST(); otherwise, continue

. Determine the optimal a optimal (leads to maximisation of a quality criterion of the
first principal component)

. Determine the fuzzy membership degrees for the o determined above
. Using these fuzzy membership degrees, compute the fuzzy covariance matrix C' (1)

. Compute the eigenvectors and eigenvalues of C'; the maximal eigenvalue A and its
eigenvector e are called "current’

. Compute the data scores and remove the values on the first positions

. Recursively call FuzzyPCAORTHOGONAL() on this set of reduced-size and
determine the eigenvalues and eigenvectors from this projected space

. Return to the original space and rewrite these eigenvectors and eigenvalues in terms
of the original set of coordinates. The new values are Xy, ..., A, and €*, ..., €?
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Multidimensional scaling (MDS)

e usefullness with dimensionality reduction and non-metric data

e metric MDS: Eyy = Y, (dit — djy)?

e non-metric MDS: Eny = Z,ﬁél (f(dr) — 25)2/Zk¢z( ;cl)2

— f — monotonically increasing; maps original distances to such values

that best preserve the rank order
e Sammon mapping: Eg = Zk# (dy — d;d)2 [d
o di; = d(k,l) is the dissimilarity of original items x; and z;

o d,, = d'(k,l) is the corresponding distance in the projected space.
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Software: SADIC

System for Automatic Data Investigation and Classification

Implementation: Methods:

e C++: object oriented coding

e wxWidgets: platform-independent
class library

e Any C++ compiler on Windows,
Linux and MacOS

e Console application with command
line interpreter

e Visual application

e XML reports; XSL transformation
to HTML output

e Easy to extend; no redundant code

e Dimensionality reduction: (F)PCA,
MDS

e Selection of relevant variables

e (Fuzzy) solid clustering

e (Fuzzy) incomplete data clustering
o (Fuzzy) shell clustering

e Horizontal, hierarchic and
cross-clustering

e (Fuzzy) supervised classification
e (Fuzzy) (non-)linear regression
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Applications of Fuzzy Data Analysis

e Optimal selection of solvent systems

e Roman pottery (terra sigillata)

e Greek muds and pelloids

e Fuzzy system of chemical elements

e Romanian and American coals

e Intramolecular interactions and catalyst modeling
e Assesment of heart disease

e Electric network distribution systems
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Final word

e Prof. Dan Dumitrescu
e Prof. Militon Frentiu

e Prof. Costel Sarbu, Prof. Thomas Cundari

e Prof. Lotfi Zadeh (founder of Fuzzy sets)
e Prof. Donald E. Knuth, Leslie Lamport (creators of TEX and ATEX)

e Cluj C.S. Department and Faculty members
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“[...] When | read (and reread) their papers and discuss
them with my students, | am often struck by the whimsi-
cal image of Mendeleev sitting at a computer, entering his
collected elemental properties into the fuzzy classification
programs developed by the Cluj team, and assessing the
various elemental relationships at different levels of fuzzi-
ness! How much sooner would eka-aluminum and other
new elements have been isolated had Mendeleev had such

tools at his fingertips? [...]"

Prof. Thomas Cundari, University of Memphis (2000)

/
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