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Abstract. A different amalgamation of non-polynomial splines is used
to find the approximate solution of linear and non-linear second order
boundary value problems. Cubic spline functions are assembled with
exponential and trigonometric functions to develop the different orders
of numerical schemes. Free parameter k of the non-polynomial part is
also used to form a new scheme, which elevates the accuracy of the
solution. Numerical illustrations are given to validate the applicability
and feasibility of the present methods and also depicted in the graphs.
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1. Introduction

To demonstrate the basic concept and idea of our technique, we consider
the following general non-linear second order two point boundary value problems
(BVPs), which arise in a wide variety of engineering applications

u(2)(x) = f(x, u), −∞ 6 a 6 x 6 b 6∞ (1.1)

with the boundary conditions (BCs)

u(a) = A1, u(b) = A2, (1.2)

where Ai, i=1, 2 are arbitrary finite real constants and −∞ < u <∞. The function
f(x, u(x)) is a continuous function of two variables with fu > 0 on [a, b]. DE (1.1)
with BC (1.2) has a unique solution, whose existence and uniqueness can be studied
in [24]. For the linear case, f(x, u) = p(x)u + g(x) with p(x) and g(x) continuous
functions on the interval [a, b].

It is well acknowledged that numerous real-life phenomena in physics and
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engineering sciences often convert to boundary value problems for second order dif-
ferential equations such as in heat transfer, optimal control, deflection in cables and
plates, vibration of springs, electric circuits and in a number of other scientific appli-
cations [19]. Most of the BVPs are essentially solved using numerical approaches as
those are not explained enough using existing analytical approaches. Consequently,
some useful numerical schemes were being promoted, most notably spline-based’
schemes. Spline functions were applied by many authors to establish the accurate
and efficient numerical schemes for the solution of boundary value problems [4]. An
exploration of the literature on a number of polynomial and non- polynomial spline
techniques to solve the second order BVPs can be comprehended as quadratic spline
method [8, 26, 32, 42, 49], cubic spline method [2-3, 5, 9-12, 15, 20-23, 27-28, 30-34,
36-38, 40-41, 50], quartic spline method [6, 13-14, 29, 47], quintic spline method [7,
16, 43, 48] and others [39, 46]. Voluminous research work have been contributed to
this field but we are mainly concerned on those papers which have implemented
non-polynomial splines for the solution of second order BVPs with various types of
boundary conditions.

For instance, Rashidinia et al. [40] built up a technique based on cubic non-
polynomial spline functions of the form

Tn = Span{1, x, sin(τx), cos(τx)}, (1.3)

They applied their scheme to acquire the numerical solution of the following form
of second order two point BVPs

− d

dx

[
p(x)

du

dx

]
= g(x); u(a) = u(b) = 0. (1.4)

Here, authors employed direct method to simplify the obtained system and facil-
itated the smooth approximations to linear second order BVPs. Similar approach
was exercised by Islam and Tirmizi [27] to find the approximate solution of the sys-
tem of two-point second order BVPs with Dirichlet BCs (1.2). They established the
consistency equations to attain the desired results and solved linear second order
equations to show the feasibility of their method. Khan and Aziz [34] proposed the
parametric cubic spline functions with a parameter for attaining approximations to
the solutions of the system of BVP. They presented improved results while com-
paring with some existing methods. Former approach [35] was yet again instituted
by Khan in [33] to solve the following second order linear BVPs

y(2)(x) = f(x)y(x) + g(x); a 6 x 6 b (1.5)

with Dirichlet BCs (1.2). Here, the author developed the method of order four for
specific values of parameters, or else his method was of order two. Over again,
Zahra et al. [50] used cubic non-polynomial spline function space (1.3) to compute
approximation to the solution of above linear BVPs (1.5) but with Neumann BCs.
Kalyani and Rao [31] also adopted similar approach demonstrated by [27, 40, 50]
to solve the following BVP of second order

− d

dx

[
p(x)

du

dx

]
+ v(x)u(x) = g(x); u(a) = u(b) = 0. (1.6)

They solved many linear and non-linear examples to study the performance of their
method. Cubic non-polynomial spline scheme was once more deliberated by Jus-
tine and Sulaiman [30] to solve the general linear second order BVPs subject to
Dirichlet BCs. To solve the obtained linear system, they used successive over relax-
ation in conjunction with Gauss-Seidel method. However, to establish the result,
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here authors considered the total number of iterations, execution times along with
maximum absolute error (MAE).

Above, we have summarized numerous contributions that are made to deal
with the solution of various types of second order BVPs choosing non-polynomial
splines. The present research could contribute remarkably to this field as it includes
some novel methods to solve non-linear second order BVPs with significant results.
Our method is based on distinctive exponential and trigonometric spline function
space given as

T3 = Span
{

1, x, ekx, sin(kx)
}

= Span

{
1, x, (

2

k2
)
(
ekx − kx− 1

)
, (

6

k3
) (kx− sin(kx))

}
, (1.7)

where k is the frequency of trigonometric and exponential part of the spline func-
tion, which can be real or pure imaginary. It follows that if k → 0, T3 reduces
to Span

(
1, x, x2, x3

)
. In this paper, we have developed different order methods

along with a modified k-dependent method based on the angular frequency of the
non-polynomial part for smooth approximation of the second order linear and non-
linear BVPs. We have solved several examples using our developed methods and
also shown comparisons of our results with some known methods like collocation,
finite difference, Galerkin, Adomian decomposition and other spline methods. Our
spline method solution and comparisons demonstrate that our algorithm performs
comparatively better with more precise results.

Now, the paper is organized as follows: section 2 shows the formulation of our
schemes and section 3 describes the solution of BVPs using the developed scheme.
Section 4 deliberates the convergence of the schemes, while in section 5 some exam-
ples are solved using our developed spline methods. Paper is concluded in section
6.

2. Derivation of the method

In this section, we develop a numerical method to approximate the solution
of second order BVP (1.1)-(1.2). To do that, we first set a framework of N + 1
equally spaced points xi of an interval [a, b] and divide them into N equal sections

such that xi = a + ih, i = 0, 1, 2, ...., N where x0 = a, xN = b and h = (b−a)
N

.
Then, our spline function Pi(x) holds the following structure in every section of the
interval

Pi(x) = aisink(x− xi) + bie
k(x−xi) + ci(x− xi) + di; i = 0, 1, 2.., N (2.1)

where ai, bi, ci and di are constants and k is free parameter, which can be real
or purely imaginary and will be used to raise the accuracy of the method. The
function Pi(x), which interpolates S(x) at the mesh points xi and reduces to cubic
spline as k → 0, where S(x) is the approximate solution of (1.1). Let u(x) be the
exact solution and Si be an approximation to ui = u(xi) obtained by the segment
Pi(x) of the spline function passing through the points (xi, Si) and (xi+1, Si+1).
Then the mixed spline defined by the function S(x) = Pi(x).

Now, we assume

Pi(xi) = Si, Pi(xi+1) = Si+1, P
(2)
i (xi) = Mi, P

(2)
i (xi+1) = Mi+1,
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to get the following value of coefficients

ai =
1

k2sin(θ)
[eθMi −Mi+1], bi =

1

k2
[Mi],

ci =
Si+1 − Si

h
+
Mi+1 +Mi

k2h
− 2eθMi

k2h
, di = Si −

1

k2
[Mi],

whereby θ = kh and i = 0, 1, 2, ....., N .
Next, use the continuity condition of the first derivative and substitute the

value of coefficients ai, bi, ci and di. After some algebraic manipulations, we can
obtain the following main relation

Si−1 − 2Si + Si+1 = h2[αMi−1 + βMi + γMi+1]; i = 1, 2, ...N − 1, (2.2)

where,

α =
θeθ {sin(θ) + cos(θ)}+ sin(θ)(1− 2eθ)

θ2sin(θ)
,

β =
2eθsin(θ)− θeθ − θ {sin(θ) + cos(θ)}

θ2sin(θ)
,

γ =
θ − sin(θ)

θ2sin(θ)

and Mi = S(2)(xi) = f(x, u), by discretizing the considered DE (1.1) at the nodal
point xi. As k → 0, α = 1/6, β = 4/6 and γ = 1/6, our scheme (2.2) reduces to
ordinary cubic spline scheme [5] and then, it is evidently second order convergent.

Accordingly, Eq.(2.2) provides a system of N − 1 non-linear algebraic equa
tions in the N − 1 unknowns Si, i = 1, 2, ..., N − 1, which by discretizing can be
written as(
Si−1 − αh2f(xi−1, Si−1)

)
−

(
2Si + βh2f(xi, Si)

)
+

(
Si+1 − γh2f(xi+1, Si+1)

)
+ ti = 0.

(2.3)

Then, the local truncation error ti, i = 1, 2, ...., N − 1, can be written as

ti = {1− (α+ β + γ)}h2u
(2)
i + (α− γ)h3u

(3)
i +

{
1

12
− 1

2
(α+ γ)

}
h4u

(4)
i

+
1

6
(α− γ)h5u

(5)
i +

{
1

360
− 1

24
(α+ γ)

}
h6u

(6)
i +O(h7).

(2.4)

Thus, our schemes (2.2) and (2.4) give rise to a family of methods of different
orders as follows:

2.1. Different order of methods

Case (i): First order method

For α+ β + γ = 1, α 6= γ. Here,

ti = (α− γ)h3u
(3)
i +O(h4),

‖ T ‖= |(α− γ)|h3M3, M3 = max|u(3)(x)|. (2.5)

Case (ii): Second order method

For α+ β + γ = 1, α = γ and α+ γ 6= 1
6
. Here,

ti =

{
1

12
− 1

2
(α+ γ)

}
h4u

(4)
i +O(h5),
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‖ T ‖=
∣∣∣∣ 1

12
− 1

2
(α+ γ)

∣∣∣∣h4M4, M4 = max|u(4)(x)|. (2.6)

Case (iii): Fourth order method

For α+ β + γ = 1, α = γ and α+ γ = 1
6
. Here,

ti =

{
1

360
− 1

24
(α+ γ)

}
h6u

(6)
i +O(h7),

‖ T ‖=
∣∣∣∣ 1

360
− 1

24
(α+ γ)

∣∣∣∣h6M6, M6 = max|u(6)(x)|. (2.7)

where ‖ . ‖ represents the ∞ norm in matrix vector.

2.2. Modified k-dependent method

In this section, we will use the parameter k to raise the order of accuracy of
the obtained scheme (2.2). To do this, we first rearrange the terms in Eq. (2.4) in
the following manner

ti =h
4

[
1

θ2
+

(eθ − 1)(1− cos(θ)) + sin(θ)(1 + eθ)

θ3 sin(θ)

]
(k

2
u
(2)
i − u(4)

i )

+h
5

[
eθ(sin(θ) + cos(θ))− 1

θ3 sin(θ)
+

2(1− eθ)

θ4

]
k
2
u
(3)
i

+h
6

[
1

12θ2
−

1 + eθ(sin(θ) + cos(θ))

2θ3 sin(θ)
+

(1 + eθ)

θ4

]
k
2
u
(4)
i

+h
6

[
(sin(θ) + cos(θ)) + 1 + eθ(sin(θ)− cos(θ)− 1)

θ5 sin(θ)

]
k
2
u
(4)
i

+h
6

[{
1

360
+
−eθ(sin(θ) + cos(θ))

24θ sin(θ)
+

(2eθ − 1)

24θ2

}
u
(6)
i (η1) +

{
1

24θ2
−

1

24θ sin(θ)

}
u
(6)
i (η2)

]

+h
7

[
eθ(sin(θ) + cos(θ)− 1)

6θ3 sin(θ)
+

(1− eθ)

3θ4

]
k
2
u
(5)
i + · · ·

Equating the coefficient of the leading term in the above equation to zero,
we can get the equation in ki as

k2
i =

u
(4)
i

u
(2)
i

=
f ′′(xi, ui)

f(xi, ui)
(2.8)

For the linear case, f(xi, ui) = piui + gi. Then,

k2
i =

(p′′i + p2
i )ui + 2p′iu

′
i + pigi + g′′i

piui + gi
(2.9)

Thus, from above we see that calculation of ki requires the approx-
imations for ui and u′i. Approximation for ui can be obtained by means
of our developed scheme (2.2) for k = 0 and for u′i, following steps can be
adapted:

(i) Differentiating Eq. (2.1) at x = xi, to get

P
′
i (x) =

1

ksin(θ)

{
(sin(θ) + e

θ
)Mi −Mi+1

}
+

(Si+1 − Si)
h

+
1

k2h

{
(1− 2e

θ
)Mi +Mi+1

}
,
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(ii) If the limit k going to zero in the above Eq., we obtain

P
′
i (x) = −

h

6
f(xi+1, ui+1)−

h

3
f(xi, ui) +

(Si+1 − Si)
h

; i = 0, 1, ....., N. (2.10)

3. Composite non-polynomial spline solution

To develop the approximation to the solution of BVP (1.1)-(1.2) based
on our developed spline method, we write our scheme (2.2) in the following
standard matrix form:

A0S
(1) − h2Bf (1)

(
S(1)

)
= C(1), (3.1)

where A0 and B are three-band square matrices of order N − 1, given by

A0 =



−2 1
1 −2 1

1 −2 1
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

1 −2 1
1 −2



B =



β γ
α β γ

α β γ
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

α β γ
α β


Matrix: f (1)(S(1)) = f(xi, S

(1)
i ), S(1) = [S1, S2, ..., SN−1]t and

C(1) =

 −A1 + h2αf(x0, A1), i = 1,
0, i = 2, 3, ...N − 2,

−A2 + h2γf(xN , A2), N − 1.

Likewise,
A0U

(1) − h2Bf (1)(U (1)) = C(1) + T (1), (3.2)

where the vector U (1) = u(xi) is the exact solution with truncation error

T (1) = (t
(1)
i ), for i =1, 2,...,N-1.

From (3.1) and (3.2), we have

[A0 − h2BQ]E(1) = T (1) (3.3)

where E(1) = U (1) − S(1) = [e
(1)
1 , e

(1)
2 , ....., e

(1)
N−1]T and Q = diag

(
∂f

(1)
i

∂u
(1)
i

)
,

i = 1, 2,....,N-1 is the diagonal matrix of order N − 1, whereas for the linear
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case, Q =diag(f
(1)
i ).

Thus, the Eqs. (3.1) - (3.3) demonstrate our scheme, using which one
can obtain the approximate solution of non-linear DE (1.1) with the BC (1.2).
We shall use Newton’s method to obtain the solution of the non-linear system
(2.2), which converge to the solution of (1.1)-(1.2) for all sufficiently small
values of h [24, 46].

4. Convergence Analysis

Now, we will derive a bound on
∥∥E(1)

∥∥. From Eq. (3.3), we get

AE(1) = T (1),

where, A =[A0−h2BQ] is a tri-diagonal matrix. The elements of A are given
by

aij =


−2− h2βfu(xi, ui), i = j,
1− h2αfu(xi, ui), i− j = 1,
1− h2γfu(xi, ui), j − i = 1,

0, |i− j| > 1.

From above, we have ∥∥∥E(1)
∥∥∥ ≤ ∥∥A−1

∥∥∥∥∥T (1)
∥∥∥ .

(See [24])
∥∥A−1

∥∥ ≤ (b−a)2/8h2 and so, we can infer the following convergent
schemes:

Case 4.1 : First order convergent method

For (α, β, γ) =(75/1920,1755/1920,90/1920),
∥∥T (1)

∥∥
∞ = 1

128h
3M3.

Then from Eq. (2.5), we get∥∥∥E(1)
∥∥∥ ≤ K1h ∼= O(h1). (4.1)

This relation (4.1) shows that the method is first order convergent.

Case 4.2 : Second order convergent method

For α = γ = 3
38 and β = 32

38 ,
∥∥T (1)

∥∥
∞ = 1

128h
4M4.

Then it follows from (2.6) that∥∥∥E(1)
∥∥∥ ≤ K2h

2 ∼= O(h2). (4.2)

The relation (4.2) confirms second order convergence of the method.

Case 4.3 : Fourth order convergent method

For α = γ = 1
12 and β = 10

12 ,
∥∥T (1)

∥∥
∞ = 1

240h
6M6.
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Then from Eq. (2.7), we have∥∥∥E(1)
∥∥∥ ≤ K3h

4 ∼= O(h4). (4.3)

which confirms fourth order convergence of the method.

5. Numerical Illustration

To illuminate the use of our developed methods, we have considered
several linear and non-linear examples of second order BVPs and also
compared our results with other existing methods.

Problem 5.1. Consider the linear BVP

u(2)(x) =
2

x2
u− 1

x
; 2 < x < 3; u(2) = u(3) = 0. (5.1)

The theoretical (exact) solution of (5.1) is

u(x) =
1

38
(−5x2 + 19x− 36

x
). (5.2)

Comparing the given Eq. (5.1) with (1.1) at x = xi, we have

f(xi, ui) =
2

x2
i

ui −
1

xi
.

Table 1. Absolute error for the solution of Problem 5.1 at
different value of x for N = 8.

x Our method for k = 0 Our k-based method Value of k

17/8 2.36×10−5 4.28×10−6 1.0674
18/8 3.66×10−5 6.31×10−6 0.9581
19/8 4.16×10−5 6.86×10−6 0.8623
20/8 4.07×10−5 6.45×10−6 0.7781
21/8 3.52×10−5 5.38×10−6 0.7040
22/8 2.61×10−5 3.87×10−6 0.6387
23/8 1.42×10−5 2.05×10−6 0.5809

For the linear case, f(x, u) = p(x)u+ g(x), so pi = p(xi) = 2/x2
i ; gi =

g(xi) = −1/xi and Eq.(3.1) is changed to AS = C, where A = A0 − h2BQ;
Q = diag(fi). By substituting these values, we get system of linear Eqs. for
Problem 5.1 that can be solved using any suitable method. Absolute errors
at different point of x are summarized in Table 1 for k = 0, i.e. (α, β, γ) =
(1/6, 4/6, 1/6) and k-based method, when h = 1/8. Results indicate that
the modified k-dependent method provides better results than the method
for k = 0. The value of parameter k at different value of x is also listed in
Table 1(col. IV).
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Table 2 reports the MAE at different value of N for second or-
der schemes together with k-based technique. Table indicates that k-based
method is a third order convergent method. Comparison of numerical re-
sults with other existing methods is also included in this table. Fourth order
method solution when (α, β, γ) = (1/12, 10/12, 1/12) of Problem 5.1 for
N=10 is presented in Table 3, along with comparison with Galerkin method.

Table 2. Comparison of maximum absolute errors for
Problem 5.1.

Our method N = 4 N = 8 N = 16

Our second order methods
(α = γ = 3/38, β =32/38) 5.94×10−6 2.00×10−6 5.37×10−7

(α = γ = 1/13, β =11/13) 9.88×10−6 3.01×10−6 7.90×10−7

Our method for k = 0 1.65×10−4 4.16×10−5 1.04×10−5

Our k-based Method 5.05×10−5 6.86×10−6 8.61×10−7

Quadratic spline [9] 1.60×10−4 2.66×10−5 5.58×10−6

Centered Difference method [10] 2.79×10−4 5.42×10−5 1.19×10−5

Quadratic spline [42] 7.93×10−5 2.06×10−5 5.20×10−6

Cubic spline [10] 5.49×10−5 1.87×10−5 5.07×10−6

Cubic non-poly. spline [33] 2.05×10−5 5.74×10−6 1.47×10−6

Discrete cubic spline [21] 1.77×10−5 5.00×10−6 1.29×10−6

Figure 1. [a] Comparison of approximate and exact values
for Problem 5.1.
[b] Error graph for Problem 5.1 at different values of N (Table 3).

Problem 5.2. Consider the linear BVP

u(2)(x) = 100u; 0 < x < 1; u(0) = u(1) = 1. (5.3)
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Table 3. Comparison of MAE for the solution of Problem
5.1(Fourth order method)

x 2.1 2.2 2.3 2.4 2.5

Our method 3.73×10−8 5.89× 10−8 6.92×10−8 7.15×10−8 6.78×10−8

Galerkin method [25] 2.52× 10−7 1.15×10−6 6.73 ×10−7 6.90 ×10−7 1.24× 10−6

x 2.6 2.7 2.8 2.9

Our method 5.96× 10−8 4.81×10−8 3.39×10−8 1.77×10−8

Galerkin method [25] 4.51×10−7 7.90×10−7 9.70× 10−7 3.17×10−7

Figure 2. [a] Comparison of approximate and exact values
for Problem 5.2.
[b] Error graph for Problem 5.2 at different values of N (Table 4).

The theoretical solution of (5.3) is

u(x) =
cosh(10x− 5)

cosh 5
. (5.4)

Problem 5.3. Consider the linear BVP

u(2)(x) = u+ cos(x), 0 < x < 1; u(0) = u(1) = 1. (5.5)

The theoretical solution of (5.5) is

u(x) =
−3cosh(1) + 3sinh(1) + cos(1) + 2

4sinh(1)
ex

+
3cosh(1) + 3sinh(1)− cos(1)− 2

4sinh(1)
e−x − cos(x)

2

(5.6)

Maximum absolute errors at the different values of N are tabulated
in Table 4 for Problem 5.2 and in Table 5 for Problem 5.3. Fourth order
method solution and error graphs at different values of N are also given in
Figures 1- 3 respectively for Problems 5.1-5.3.
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Table 4. Comparison of maximum absolute errors for
Problem 5.2

Our method
N = 16 N = 32 N = 20 N = 40

α = γ = 3/38, β=32/38 1.95×10−4 7.15×10−5 1.54×10−4 4.75×10−5

α = γ = 1/13, β=11/13 3.37×10−4 1.07×10−4 2.47×10−4 7.08×10−5

Our method for k = 0 6.10×10−3 1.50×10−3 3.90×10−3 9.65×10−4

Our k-based method 1.16×10−2 1.11×10−3 5.40×10−3 5.57×10−4

Our fourth-order method 1.12×10−4 7.28×10−6 4.75×10−5 2.99×10−6

Cubic non-poly. spline [33] 7.22×10−4 2.06×10−4 5.00×10−4 1.34×10−4

Discrete cubic spline [21] 6.18×10−4 1.80×10−4 4.32×10−4 1.17×10−4

Quadratic spline [42] 3.06×10−3 7.58×10−4 — —
Collocation method [32] — — 1.80×10−3 4.70×10−4

Cubic spline [10] 2.27×10−3 6.84×10−4 1.57×10−3 4.53×10−4

Table 5. Comparison of maximum absolute errors for the
solution of Problem 5.3

x
Our

method
for k = 0

Our
k-based
method

Our
fourth
order
method

Standard
Tau-
method
[45]

Perturbed
Tau-
method
[45]

EADM
[17]

EFM
[44]

1/8 5.24×10−4 7.13×10−6 8.97×10−8 1.00×10−4 2.10×10−4 4.37×10−7 6.88×10−5

2/8 9.69×10−4 1.17×10−5 1.50×10−7 0 1.10×10−4 8.07×10−7 4.93×10−5

3/8 1.26×10−3 1.43×10−5 1.84×10−7 1.00×10−4 7.51×10−5 1.05×10−6 3.21×10−5

4/8 1.37×10−3 1.50×10−5 1.93×10−7 1.00×10−4 6.25×10−5 1.14×10−6 2.63×10−5

5/8 1.26×10−3 1.39×10−5 1.79×10−7 2.00×10−4 4.31×10−5 1.05×10−6 2.16×10−5

6/8 9.69×10−4 1.11×10−5 1.42×10−7 2.00×10−4 2.43×10−5 8.07×10−7 1.09×10−5

7/8 5.24×10−4 6.56×10−6 8.32×10−8 2.00×10−4 1.13×10−5 4.37×10−7 1.01×10−5

Abbreviations: EADM: Extended Adomian Decomposition Method; EFM: Exponential fitting
method

Problem 5.4. Consider the non-linear BVP

u(2)(x) = 2(u(x))3, −1 < x < 0; u(−1) = 1/2, u(0) = 1/3. (5.7)

The theoretical solution of Eq. (5.7) is

u(x) =
1

(x+ 3)
(5.8)

To solve non-linear BVP (Problem 5.4), compare the Eq. (5.7) with (1.1) at
x = xi and we have

f(xi, ui) = 2(u(xi))
3;

Using Eq. (3.1), we obtain a system of non-linear Eqs. that have been
solved using Newton’s method. Results are verified with MATLAB builtin
solver(fsolve) command. Tables 6 and 7 show the maximum absolute errors,
in case of k=0, modified k-dependent method and fourth order method solu-
tion. Tables clearly indicate that our developed methods produce the better
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Figure 3. [a] Comparison of approximate and exact values
for Problem 5.3.
[b] Error graph for Problem 5.3 at different values of N (Table 5).

accuracy than some other specified methods. We have also listed the value of
parameter k at different value of x in Table 8.

Table 6. Comparison of MAE at N=10 for the solution of
Problem 5.4.

Our
method
for k = 0

Our
k-based
method

Our fourth
order
method

Quintic
spline [7]

Cubic
spline[20]

Quartic
spline [6]

2.65×10−5 8.08×10−6 3.23×10−7 8.82×10−6 1.68×10−5 4.67×10−6

Table 7. Maximum absolute errors at different value of N
for Problem 5.4

Our method N = 4 N = 8 N = 16

Our method for k = 0 1.63×10−4 4.13×10−5 1.03×10−5

Our k-based method 1.28×10−4 1.53×10−5 6.83×10−6

Our fourth-order method 2.56×10−6 1.64×10−7 1.08×10−8

Table 8. The value of k at different value of x for the
solution of Problem 5.4

x -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1

k 1.6499 1.5748 1.5062 1.4433 1.3855 1.3321 1.2827 1.2368 1.1941
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Figure 4. [a] Comparison of approximate values and exact
values for Problem 5.4.
[b] Error graph for Problem 5.4 at different values of N (Table 7).

Figure 5. [a] Comparison of approximate values and exact
values for Problem 5.5.
[b] Error graph for Problem 5.5 at different values of N (Table 9, col. III)

Problem 5.5. Consider the non-linear BVP (Bratu Problem)

u(2)(x) + 2eu(x) = 0, 0 < x < 1; u(0) = u(1) = 0. (5.9)

The theoretical solution of (5.9) is

u(x) = −2 ln(cosh(1.17878 (x− 0.5)))/cosh (0.589388). (5.10)
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Table 9. Comparison of MAE for the solution of Problem
5.5 at N=10.

Our method for
k = 0

Our k-based
method

Our fourth
order method

LGSM [1] Quintic
spline [7]

8.83×10−4 3.56×10−5 3.64×10−6 5.7×10−6 6.22×10−6

B-Spline
method [18]

Quartic spline
method [6]

Cubic
spline[20]

LADM [35] ADM [22]

5.29×10−5 1.10×10−4 6.26×10−4 1.24×10−2 1.52×10−2

Abbreviations: ADM: Adomian Decomposition Method; LGSM: Lie-group shooting
method; LADM: Laplace Adomian Decomposition Method.

Problem 5.6. Consider the non-linear BVP

u(2)(x) =
1

2
(1 + x+ u)3, 0 < x < 1; u(0) = u(1) = 0. (5.11)

The theoretical solution of (5.11) is

u(x) =
2

(2− x)
− x− 1. (5.12)

The other non-linear BVPs mentioned in Problems 5.5 and 5.6, are also
solved just like Problem 5.4 using Newtons method. Obtained results show the
efficiency and accuracy of our proposed methods. Maximum absolute errors
at the nodal points with a comparison with other methods are summarized
in Table 9 for Problem 5.5 and in Table 10 for Problem 5.6, respectively.
Figures 4-6 demonstrate the fourth order method solution and error graphs
for nonlinear Problems 5.4-5.6 respectively with comparison of errors at the
nodal points.

Table 10. Comparison of MAE for Problem 5.6 with
Approaching spline method at N = 5.

x values 0 0.2 0.4 0.6 0.8 1

Our method for k = 0 0 1.30×10−3 2.40×10−3 3.10×10−3 2.80×10−3 0

Our k-based method 0 2.70×10−5 5.25×10−5 7.19×10−5 6.49×10−5 0

Our fourth order method 0 3.80×10−5 7.26×10−5 9.92×10−5 9.96×10−5 0

Approaching spline [31] 0 1.40×10−4 2.60×10−4 3.20×10−4 2.70×10−4 0

6. Conclusion

A unique approach based on a different combination of non-polynomial
cubic splines is used to develop various orders methods for solving linear
and non-linear second order BVPs. We have also developed a parameter k -
based method for smooth approximation of these BVPs. The convergence of
the developed method is also established. Competence of the demonstrated
technique can also be weighed through comparisons with the literature given
in tables, which show that our results are comparatively better with more
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Figure 6. [a] Comparison of approximate values and exact val-
ues for Problem 5.6.

[b] Error graph for Problem 5.6 at different values of N (Table 10).

precise result. Graphs are plotted at different values of N for all the prob-
lems, which clearly show that absolute errors decrease rapidly as step size N
increases.
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