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Ball comparison for three optimal eight order methods under weak
conditions

Ioannis K. Argyros1 and Santhosh George2

Abstract

We considered three optimal eighth order method for solving nonlinear
equations. In earlier studies Taylors expansions and hypotheses reaching
up to the eighth derivative are used to prove the convergence of these
methods. These hypotheses restrict the applicability of the methods. In
our study we use hypotheses on the first derivative. Numerical examples
illustrating the theoretical results are also presented in this study.
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1 Introduction

In this paper we are concerned with the problem of approximating a solution
x∗ of the equation

F (x) = 0, (1.1)

where F : D ⊆ S −→ T is a Fréchet-differentiable operator defined on a convex
set D, where S, T are subsets of R or C.

Equation of the form (1.1) is used to study problems in Computational
Sciences and other disciplines [4, 6, 14, 16, 20]. Newton-like iterative methods
[1–23] are famous for approximating a solution of the equation (1.1).

In this paper, we study the local convergence analysis of the methods defined
for each n = 0, 1, 2, · · · by Siyyam et al. [19]

yn = xn −
1

F ′(xn)
F (xn),

zn = xn + (1 + β)
1

F ′(xn)
(F (xn) + F (yn)),

− 1

F ′(xn)
F (xn)(F (xn)− F (yn))−1F (xn)
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−β(
1

F ′(xn)
F (xn) + (F ′(xn) + F 2(xn)F ′(xn))−1F (yn)) (1.2)

xn+1 = zn −A−1n F (zn),

where x0 ∈ D is an initial point, β ∈ S, An = F ′(xn) + ([xn, yn, zn;F ] +
[xn, xn, yn;F ])(zn−xn)+2([xn, yn, zn;F ]−[xn, xn, yn;F ])(zn−yn) and [., ., .;F ]
denotes a divided difference of order two for function F on D. The second and
third method are due to Wang et. al. [23] and are defined, respectively as

yn = xn −
1

F ′(xn)
F (xn),

zn = xn −
1

F ′(xn)
F (xn)(F (xn)− 2F (yn))−1(F (xn)− F (yn)),

xn+1 = zn −
1

F ′(xn)
F (zn) (1.3)

×

1

2
+

1 + 8F (yn)
5F (xn)

+ 2
5 (F (yn)

F (xn)
)2

1− 12
5

1
F ′(xn)

F (yn)
(1 + F ′(yn)−1F (zn))

 ,
and

yn = xn −
1

F ′(xn)
F (xn),

zn = xn −
1

F ′(xn)
F (xn)(F (xn)− 2F (yn))−1(F (xn)− F (yn)),

xn+1 = zn − F (xn)−1F (xn)

[
1− 2

5
1

F ′(xn)
F (yn) + 1

5 (F (xn)−1F (yn))2

1− 12
5

1
F ′(xn)

F (yn)

+(1 + 4
1

F ′(xn)
F (yn))F ′(yn)−1F (zn)

]
. (1.4)

Convergence ball of high convergence order methods is usually very small
and in general decreases as the convergence order increases. The approach in
this paper establishes the local convergence result under hypotheses only on
the first derivative and give a larger convergence ball than the earlier studies,
under weaker hypotheses. Notice that in earlier studies [19,23] the convergence
is shown under hypotheses on the eighth derivative. The same technique can
be used to other methods. As a motivational example, define function f on
D = [− 1

2 ,
3
2 ) by

f(x) =

{
x3lnx2 + x5 − x4, x 6= 0
0, x = 0

(1.5)

Choose x∗ = 1. We also have that

f ′(x) = 3x2lnx2 + 5x4 − 4x3 + 2x2,

f ′′(x) = 6xlnx2 + 20x3 + 12x2 + 10x
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and
f ′′′(x) = 6lnx2 + 60x2 − 24x+ 22.

Notice that f ′′′(x) is unbounded on D. Hence, the results in [19,23], cannot ap-
ply to show the convergence of method (1.2) (see also the numerical examples).

The rest of the paper is organized as follows. In Section 2 we present the
local convergence analysis of methods (1.2)–(1.4). The numerical examples are
given in the concluding Section 3.

2 Local convergence

The local convergence of method (1.2), method (1.3) and method (1.4) is based
on some functions and parameters. Let K0 > 0,K > 0, L0 > 0, L > 0, M ≥ 1
and β ∈ S be given parameters. Let g1, p1, hp1

, p2 and hp2
be functions defined

on the interval [0, 1
L0

) by

g1(t) =
Lt

2(1− L0t)

p1(t) =
L0t

2
+Mg1(t)

hp1
(t) = p1(t)− 1,

p2(t) = L0t+
M2t2

1− L0t

hp2(t) = p2(t)− 1

and parameter r1 by

r1 =
2

2L0 + L
. (2.1)

We have that g1(r1) = 1 and for each t ∈ [0, r1) : 0 ≤ g1(t) < 1. We also get that

hp1
(0) = hp2

(0) = −1 < 0 and hp1
(t) −→ +∞, hp2

(t) −→ +∞ as t −→ 1
L0

−
. It

then follows from the intermediate value theorem that functions p1 and p2 have
zeros in the interval (0, 1

L0
). Denote by rp1

and rp2
the smallest such zeros of

functions hp1
and rp2

, respectively. Let r̄ = min{rp1
, rp2
}. Define functions g2

and h2 on the interval [0, r̄) by

g2(t) =
Lt

2(1− L0t)
+

2M2g1(t)

(1− L0t)(1− p1(t))

+
|1 + β|Mg1(t)

1− L0t
+
M |β|g1(t)

1− p2(t)

and h2(t) = g2(t) − 1. We have that h2(0) = −1 < 0 and h2(t) −→ +∞ as
t −→ r̄−. Denote by r2 the smallest zero of function h2 in the interval (0, r̄).
Moreover, define functions q and hq on the interval [0, r̄) by q(t) = L0t+ (K +
K0)(1 + g2(t))t + 2(K0 + K)(g1(t) + g2(t))t and hq(t) = q(t) − 1. We get that
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hq(0) = −1 < 0 and hq(t) −→ +∞ as t −→ r̄−. Denote by rq the smallest zero
of function hq on the interval (0, r̄). Let r̄0 = min{r̄, rq}.

Finally, define functions g3 and h3 on the interval [0, r̄0) by

g3(t) = (1 +
M

1− q(t)
)g2(t)

and h3(t) = g3(t) − 1. We get that h3(0) = −1 < 0 and h3(t) −→ +∞ as
t −→ r̄−0 . Denote by r3 the smallest zero of function h3 on the interval (0, r̄0).
Define the radius of convergence r by

r = min{ri}, i = 1, 2, 3. (2.2)

Then, we have that

0 < r < r1 <
1

L0
(2.3)

and for each t ∈ [0, r)
0 ≤ gi(t) < 1, i = 1, 2, 3 (2.4)

0 ≤ pj(t) < 1, j = 1, 2 (2.5)

and

0 ≤ q(t) < 1. (2.6)

Let us denote by U(v, ρ), U(v, ρ) the open and closed balls in S with center
v ∈ S and of radius ρ > 0.

Next, we present the local convergence analysis of method (1.2) using the
preceding notation.

THEOREM 2.1 Let F : D ⊂ S −→ T be a differentiable function. Let also
[., ., .;F ] denote a divided difference of order two for function F on D. Suppose
that there exist x∗ ∈ D

F (x∗) = 0, F ′(x∗) 6= 0 (2.7)

and
‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ L0‖x− x∗‖. (2.8)

Moreover, suppose that there exist L > 0 and M ≥ 1 and K > 0 such that for
each x, y, z ∈ D0 = D ∩ U(x∗, 1

L0
)

‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ L‖x− y‖, (2.9)

‖F ′(x∗)−1F ′(x)‖ ≤M, (2.10)

‖F ′(x∗)−1[x, x, y;F ]‖ ≤ K0, ‖F ′(x∗)−1[x, y, z;F ]‖ ≤ K (2.11)

and
Ū(x∗, r) ⊆ D, (2.12)

4



where the radius of convergence r is defined by (2.2). Then, the sequence {xn}
generated for x0 ∈ U(x∗, r)−{x∗} is well defined in U(x∗, r), remains in U(x∗, r)
for each n = 0, 1, 2, · · · , and converges to x∗. Moreover, the following estimates
hold

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r, (2.13)

‖zn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ (2.14)

and
‖xn+1 − x∗‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (2.15)

where the “g” functions are defined previously. Furthermore, for T ∈ [r, 2
L0

) the

limit point x∗ is the only solution of the equation F (x) = 0 in D1 = D∩Ū(x∗, T ).

Proof. We shall show that method (1.2) is well defined in U(x∗, r) remains in
U(x∗, r) for each n = 0, 1, 2, . . . , and converges to x∗ so that estimates (2.13)–
(2.15) are satisfied. Using hypothesis x0 ∈ U(x∗, r)− {x∗}, (2.3) and (2.8), we
have that

‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖ ≤ L0‖x0 − x∗‖ ≤ L0r < 1. (2.16)

It follows from (2.16) and the Banach Lemma on invertible functions [4, 6, 14]
that F ′(x0) 6= 0 and

‖F ′(x0)−1F ′(x∗)‖ ≤ 1

1− L0‖x0 − x∗‖
. (2.17)

Hence, y0 is well defined. By the first sub-step of method (1.2) for n = 0, (2.3),
(2.4), (2.7), (2.9) and (2.17), we get in turn that

‖y0 − x∗‖ = ‖x0 − x∗ − F ′(x0)−1F ′(x0)‖
≤ ‖F ′(x0)−1F ′(x∗)‖‖

×
∫ 1

0

F ′(x∗)−1(F ′(x∗ + θ(x0 − x∗))− F ′(x0))(x0 − x∗)dθ‖

≤ L‖x0 − x∗‖2

2(1− L0‖x0 − x∗‖)
≤ g1(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r, (2.18)

which shows (2.13) for n = 0 and y0 ∈ U(x∗, r). We can write by (2.7) that

F (y0) = F (y0)− F (x∗) =

∫ 1

0

F ′(x∗ + θ(y0 − x∗))(y0 − x∗)dθ. (2.19)

Notice that ‖x∗+θ(y0−x∗)−x∗‖ = θ‖y0−x∗‖ < r, so x∗+θ(y0−x∗) ∈ U(x∗, r)
for each θ ∈ [0, 1]. Then, by (2.10), (2.18) and (2.19), we get that

‖F (y0)F ′(x∗)−1‖ ≤M‖y0 − x∗‖ ≤Mg1(‖x0 − x∗‖)‖x0 − x∗‖. (2.20)
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We must show in turn that F (x0) − F (y0) 6= 0 and F ′(x0) + F 2(x0)
F ′(x0)

6= 0. We

have by (2.3), (2.5), (2.8) and (2.20) that

‖(F ′(x∗)(x0 − x∗))−1(F (x)− F (x∗)− F ′(x∗)(x0 − x∗)− F (y0))‖

nonumber ≤ ‖x0 − x∗‖−1(
L0

2
‖x0 − x∗‖2 +M‖y0 − x∗‖) (2.21)

≤ p1(‖x0 − x∗‖) < p1(r) < 1, (2.22)

so

‖(F (x0)− F (y0))−1F ′(x∗)‖ ≤ 1

‖x0 − x∗‖(1− p1(‖x0 − x∗‖)
. (2.23)

Sinilarly, by (2.3), (2.5), (2.8) and (2.20) (for x0 = y0) that

‖F ′(x∗)−1(F ′(x0)− F ′(x∗) +
F 2(x0)

F ′(x0)
)‖

≤ L0‖x0 − x∗‖+
M2‖x0 − x∗‖2

1− L0‖x0 − x∗‖
= p2(‖x0 − x∗‖)

< p2(r) < 1, (2.24)

so

‖(F ′(x0) +
F 2(x0)

F ′(x0)
)−1F ′(x∗)‖ ≤ 1

1− p2(‖x0 − x∗‖)
. (2.25)

and z0 is well defined. Using the second substep of method (1.2), (2.3), (2.17),
(2.18), (2.20), (2.23) and (2.25) we obtain in turn that

z0 − x∗ = x0 − x∗ − F ′(x0)−1F (x0) + (2 + β)F ′(x0)−1F (x0)

+(1 + β)F ′(x0)−1F (y0)− 2
F 2(x0)

F ′(x0)(F (x0)− F (y0))

−βF ′(x0)F (x0)− β F (y0)

F ′(x0) + F 2(x0)
F ′(x0)

= y0 − x∗ − 2[F ′(x∗)−1F (x0)][F ′(x0)−1F ′(x∗)]

×[(F (x0)− F (y0))−1F ′(x∗)][F ′(x∗)−1F (y0)]

+(1 + β)[F ′(x0)−1F ′(x∗)][F ′(x∗)−1F (y0)]

−β[F ′(x∗)−1F (y0)][(F ′(x0) +
F 2(x0)

F ′(x0)
)−1F ′(x∗)], (2.26)

so

‖z0 − x∗‖ ≤ ‖y0 − x∗‖

+
2M2‖y0 − x∗‖‖x0 − x∗‖

‖x0 − x∗‖(1− L0‖x0 − x∗‖)(1− p1(‖x0 − x∗‖)

+
|1 + β|M‖y0 − x∗‖
1− L0‖x0 − x∗‖

+
|β|M‖y0 − x∗‖

1− p2(‖x0 − x∗‖)
= g2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r, (2.27)
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which shows (2.14) for r n = 0 and z0 ∈ U(x∗, r). Next, we must show that
A0 6= 0. Using (2.3), (2.6), (2.8), (2.11), (2.18) and (2.27), we get in turn that

‖F ′(x∗)−1(A0 − F ′(x∗))‖
≤ L0‖x0 − x∗‖

+(K0 +K)[‖z0 − x∗‖+ ‖x0 − x∗‖] + 2(K0 +K)[‖z0 − x∗‖+ ‖y0 − x∗‖]
≤ L0‖x0 − x∗‖+ (K0 +K)(1 + g2(‖x0 − x∗‖)‖x0 − x∗‖

2(K0 +K)(g1(‖x0 − x∗‖) + g2(‖x0 − x∗‖))‖x0 − x∗‖
= q(‖x0 − x∗‖) < q(r) < 1,

so

‖A−10 F ′(x∗)‖ ≤ 1

1− q(‖x0 − x∗‖)
(2.28)

and x1 is well defined. Then, from (2.3), (2.4), (2.18), (2.20) (for y0 = z0),
(2.28), and the last substep of method (1.2) for n = 0, we have that

‖x1 − x∗‖ ≤ ‖z0 − x∗‖+
M‖z0 − x∗‖

1− q(‖x0 − x∗‖)
= g3(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r, (2.29)

which implies (2.15) holds for n = 0 and x1 ∈ U(x∗, r). By simply replacing
x0, y0, z0, x1 by xk, yk, zk, xk+1 in the preceding estimates we arrive at (2.13)–
(2.15). Using the estimate ‖xk+1 − x∗‖ ≤ c‖xk − x∗‖, c = g3(‖x0 − x∗‖) ∈
[0, 1), we deduce that limk→∞ xk = x∗ and xk+1 ∈ U(x∗, r). The proof of the
uniqueness part is standard [7]. �

Next, we introduce the needed functions as the corresponding ones above
Theorem 2.1 but for method (1.3). Define functions ϕ1, ϕ2, ϕ3, hϕ1

, hϕ2
, hϕ3

on
the interval [0, 1

L0
) by

ϕ1(t) =
12

5

Mg1(t)

1− L0

2 t
, hϕ1(t) = ϕ1(t)− 1,

ϕ2(t) =
L0

2
t+ 2Mg1(t), hϕ2(t) = ϕ2(t)− 1,

ϕ3(t) =
L0

2
g1(t)t and hϕ3

(t) = ϕ3(t)− 1.

We have that hϕ1(0) = hϕ2(0) = hϕ3(0) = −1 < 0 and hϕ1(t) −→ +∞,
hϕ2(t) −→ +∞, hϕ3(t) −→ +∞ as t −→ 1

L0

−
. Denote by rϕ1 , rϕ2 , rϕ3 the small-

est zero of functions hϕ1
, hϕ2

, hϕ3
, respectively on the interval (0, 1

L0
). Moreover,

define functions g2 and h2 on the interval [0, rϕ2) by

g2(t) = (1 +
M2

(1− L0t)(1− ϕ2(t))
)g1(t)
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and h2(t) = g2(t) − 1. We get that h2(0) = −1 < 0 and h2(t) −→ +∞ as
t −→ rϕ2 . Denote by r2 the smallest such zero. Finally, for

r̄ = min{rϕ1 , rϕ2 , rϕ3}

define functions g3 and h3 on the interval [0, r̄) by

g3(t) = [1 +
M

1− L0t
(
1

2
+

1 + 8Mg1(t)

5(1−L0
2 t)

+ 2
5 (Mg1(t)

1−L0
2 t

)2

1− ϕ1(t)
)

×(
1

2
+
Mḡ2(t)

1− L0

2 t
]g2(t),

h3(t) = g3(t)− 1

and

ḡ2(t) = 1 +
M62

(1− L0t)(1− ϕ2(t))
.

We have that h3(0) = −1 < 0 and h3(t) −→ +∞ as t −→ r̄−. Denote by
r3 the smallest zero of function g3 on the interval (0, r̄). Define the radius of
convergence ρ1 by

ρ1 = min{ri}, i = 1, 2, 3. (2.30)

Finally, for method (1.4), define functions g1 and g2 as in method (1.3) but
define function g3 and h3 by

g3(t) = [1 +
M

1− L0t

1 + 2Mg1(t)

5(1−L0
2 t)

+ 1
5 (Mg1(t)

1−L0
2 t

)2

1− ϕ1(t)

×(1 +
4Mg1(t)

1− L0

2 t
)
Mḡ2(t)

1− ϕ3(t)
]g2(t),

h3(t) = g3(t)− 1

and radius of convergence ρ2 by

ρ2 = min{ri}, i = 1, 2, 3. (2.31)

Next, drop the hypotheses on the divided differences and K from Theorem 2.1
and exchange the “g” functions and r with the corresponding “g” functions for
method (1.3), ρ1 and method (1.4), ρ2. Call the resulting hypotheses (C) and
(H), respectively. Then, we obtain the corresponding results.

THEOREM 2.2 Under the (C) hypotheses the conclusions of Theorem 2.1
hold for method (1.3) with ρ1 replacing r.

THEOREM 2.3 Under the (H) hypotheses the conclusions of Theorem 2.1
hold for method (1.4) with ρ2 replacing r.
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REMARK 2.4 (a) The radius r1 was obtained by Argyros in [3] as the con-
vergence radius for Newton’s method under condition (2.13)-(2.15). Notice
that the convergence radius for Newton’s method given independently by
Rheinboldt [18] and Traub [21] is given by

ρ =
2

3L
< r1. (2.32)

As an example, let us consider the function f(x) = ex − 1. Then x∗ = 0.
Set D = U(0, 1). Then, we have that L0 = e − 1 < l = e, so ρ =
0.24252961 < r1 = 0.3827.

Moreover, the new error bounds [3–6] are:

‖xn+1 − x∗‖ ≤
L

1− L0‖xn − x∗‖
‖xn − x∗‖2,

whereas the old ones [14, 16]

‖xn+1 − x∗‖ ≤
L

1− L‖xn − x∗‖
‖xn − x∗‖2.

Clearly, the new error bounds are more precise, if L0 < L. Clearly, we
do not expect the radius of convergence of method (1.2) given by r to be
larger than r1 (see (2.4)) .

(b) The local results can be used for projection methods such as Arnoldi’s
method, the generalized minimum residual method(GMREM), the gen-
eralized conjugate method(GCM) for combined Newton/finite projection
methods and in connection to the mesh independence principle in order to
develop the cheapest and most efficient mesh refinement strategy [3–6].

(c) The results can be also be used to solve equations where the operator F ′

satisfies the autonomous differential equation [4, 6, 14, 16]:

F ′(x) = p(F (x)),

where p is a known continuous operator. Since F ′(x∗) = p(F (x∗)) = p(0),
we can apply the results without actually knowing the solution x∗. Let as
an example F (x) = ex− 1. Then, we can choose p(x) = x+ 1 and x∗ = 0.

(d) It is worth noticing that method (1.2) are not changing if we use the new
instead of the old conditions [23]. Moreover, for the error bounds in prac-
tice we can use the computational order of convergence (COC)

ξ =
ln‖xn+2−xn+1‖
‖xn+1−xn‖

ln ‖xn+1−xn‖
‖xn−xn−1‖

, for each n = 1, 2, . . .

or the approximate computational order of convergence (ACOC)

ξ∗ =
ln‖xn+2−x∗‖
‖xn+1−x∗‖

ln‖xn+1−x∗‖
‖xn−x∗‖

, for each n = 0, 1, 2, . . .
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instead of the error bounds obtained in Theorem 2.1. Related work on
convergence orders can be found in [8].

(e) In view of (2.9) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x)− F ′(x∗)) + I‖
≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ 1 + L0‖x− x∗‖

condition (2.11) can be dropped and M can be replaced by

M(t) = 1 + L0t

or
M(t) = M = 2,

since t ∈ [0, 1
L0

).

3 Numerical Example

We present a numerical example in this section.

EXAMPLE 3.1 Returning back to the motivation example at the introduction
on this paper, we have L0 = L = 96.662907, M = 1.0631,K = K0 = L

2 , β = −1.
Then, the parameters for method (1.2) are

r1 = 0.0069, r2 = 0.0051 = r, r3 = 0.1217.

We have ACOC = 1.7960 and COC = 1.8371.
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solving nonlinear equations, Elsevier, 2013.

[18] W.C. Rheinboldt,An adaptive continuation process for solving systems of
nonlinear equations, In: Mathematical models and numerical methods
(A.N.Tikhonov et al. eds.) pub.3, (19), 129-142 Banach Center, Warsaw
Poland.

[19] H. I. Siyyam, M. Taib, I. A. Alsubaihi, A new one parameter family of iter-
ative methods with eight-order of convergence for solving nonlinear equa-
tions, Itern. J. Pure and Appl. Math., 84, 4, (2013), 451-461.

11



[20] J.R. Sharma, Some fifth and sixth order iterative methods for solving non-
linear equations, Ranji Sharma Int. Journal of Engineering Research and
Applications, Vol.4, Issue 2 (Version 1), February 2014, 268–273.

[21] J.F. Traub, Iterative methods for the solution of equations, Prentice- Hall
Series in Automatic Computation, Englewood Cliffs, N. J., 1964.

[22] X. Wang, J. Kou, Semilocal convergence and R-order for modified
Chebyshev-Halley methods, Numerical Algorithms, 64 (1), (2013), 105–
126.

[23] X. Wang, L. Liu, New eight-oredr iterative methods for solving nonlinear
equations, J. Comput. Appl. Math., 234, (2010), 1611-1620.

12


