Strongly nonlinear periodic parabolic equation in Orlicz spaces
DOI:
https://doi.org/10.24193/subbmath.2025.1.04Keywords:
The periodic solution, Nonlinear parabolic equation, Galerkin method, Orlicz spaces, weak solutions,Abstract
In this paper, we prove the existence of a weak solution to the following nonlinear periodic parabolic equations in Orlicz-spaces:
∂u/∂t− div(a(x,t,∇u)) = f(x, t)
where −div(a(x, t,∇u)) is a Leray-Lions operator defined on a subset of \(W^{1,x}_{0} L_{M}(Q)\). The Δ2-condition is not assumed and the data f belongs to \(W{−1,x}E_{\overline{M}}(Q)\). The Galerkin method and the fixed point argument are employed in the proof.
References
Agarwal, R.P., Alghamdi, A.M., Gala, S., Ragusa, M.A., On the regularity criterion on one velocity component for the micropolar
uid equations, Math. Model. Anal., 28(2)(2023), 271-284.
Azroul, E., Redwane, H., Rhoudaf, M., Existence of a renormalized solution for a class of nonlinear parabolic equations in Orlicz spaces, Port. Math., 66(1)(2009), 29-63.
Benkirane, A., Elmahi, A., Almost everywhere convergence of the gradients of solutions to elliptic equations in Orlicz spaces and application, Nonlinear Anal, Theory Methods Appl., 28(1997), 1769-1784.
Boldrini, J.L., Crema, J., On forced periodic solutions of superlinear quasiparabolic problems, Electron. J. Di erential Equations, 14(1998), 1-18.
Brezis, H., Browder, F.E., Strongly nonlinear parabolic initial boundary value problems, Proc. Nat. Acad. Sci. U.S.A., 76(1979), 38-40.
Donaldson, T., Inhomogeneous Orlicz-Sobolev spaces and nonlinear parabolic initial boundary value problems, J. Di erential Equations, 16(1974), 201-256.
El Hachimi, A., Lamrani Alaoui, A., Existence of stable periodic solutions for quasilinear parabolic problems in the presence of well-ordered lower and upper-solutions, Electron. J. Differential Equations, 9(2002), 117-126.
El Hachimi, A., Lamrani Alaoui, A., Time periodic solutions to a nonhomogeneous Dirichlet periodic problem, Appl. Math. E-Notes, 8)(2008), 1-8.
El Hachimi, A., Lamrani Alaoui, A., Periodic solutions of nonlinear parabolic equations with measure data and polynomial growth in jruj, Recent Developments in Nonlinear Analysis, (2010).
El-Houari, H., Chadli, L.S., Moussa, H., On a class of Schrodinger system Problem in Orlicz-Sobolev spaces, J. Funct. Spaces, 2022(2022).
Strongly nonlinear periodic parabolic equation 67
Elmahi, A., Strongly nonlinear parabolic initial-boundary value problems in Orlicz spaces, Electron. J. Di er. Equ. Conf., 9(2002), 203-220.
Elmahi, A., Meskine, D., Parabolic initial-boundary value problems in Orlicz spaces, Ann. Polon. Math., 85(2005), 99-119.
Gossez, J.-P., Some approximation properties in Orlicz-Sobolev spaces, Studia Math., 74(1982), 17-24.
Gwiazda, Swierczewska-Gwiazda, P., W oblewska-Kami nska, A., Generalized Stokes system in Orlicz space, Discrete Contin. Dyn. Syst., 32(6)(2012), 2125-2146.
Gwiazda, Wittbold, P.,Wroblewska-Kaminska, P., Zimmermann, A., Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces, J. Differential Equations, 253(2012), 635-666.
Gwiazda, Wittbold, P., Wroblewska-Kaminska, P., Zimmermann, A., Renormalized solutions to nonlinear parabolic problems in generalized musielak orlicz spaces, Nonlinear Anal., 129(2015), 1-36.
Krasnosel'skii, M., Rutickii, Y., Convex Functions and Orlicz Spaces, P. Noordho Groningen, 1969.
Landes, R., On Galerkin's method in the existence theory of quasilinear elliptic equations, J. Funct., 39(1980), 123-148.
Landes, R., Mustonen, V., A strongly nonlinear parabolic initial boundary value problem, Ark. Mat., 25(1987) 29-40.
Robert, J., Equations d' evolution; paraboliques fortement non lin eaires, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 1.3-4(1974), 247-259.
Yee, T.L., Cheung, K.L., Ho, K.P., Integral operators on local Orlicz-Morrey spaces, Filomat, 36(4)(2022), 1231-1243.