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Abstract. The Conjugate Gradient (CG) method is a powerful iterative
approach for solving large-scale minimization problems, characterized by
its simplicity, low computation cost and good convergence. In this pa-
per, a new hybrid conjugate gradient HLB method (HLB: Hadji-Laskri-
Bechouat) is proposed and analysed for unconstrained optimization. We
compute the parameter βHLB

k as a convex combination of the Polak-
Ribière-Polyak

(
βPRP
k

)
and the Mohd Rivaie-Mustafa Mamat and Ab-

delrhaman Abashar
(
βRMIL+
k

)
i.e βHLB

k = (1 − θk)βPRP
k + θkβ

RMIL+
k .

By comparing numerically CGHLB with PRP and RMIL+ and by using
the Dolan and More CPU performance, we deduce that CGHLB is more
efficient.
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1. Introduction

Consider the nonlinear unconstrained optimization problem

min
x∈Rn

f (x) (1.1)

Where f : Rn → R is a continuously differentiable function, bounded
from below. The gradient of f is denoted by g (x) . To solve this problem, we
start from an initial point x0 ∈ Rn. Nonlinear conjugate gradient methods



2 Ghania Hadji, Yamina Laskri, Tahar Bechouat and Rachid Benzine

generate sequences {xk} of the following form:

xk+1 = xk + αkdk, k = 0, 1, 2, ...., (1.2)

where xk is the current iterate point and αk > 0 is the step size which
is obtained by line search [6] .

The iterative formula of the conjugate gradient method is given by (1.2),
where dk is the search direction defined by

dk+1 =

{
−gk si k = 1
−gk+1 + βkdk si k ≥ 2

(1.3)

where βk is a scalar and g (x) denotes ∇f (x) [7]. If f is a strictly convex
quadratic function, namely,

f(x) =
1

2
xTHx+ bTx, (1.3bis)

where H is a positive definite matrix and if αk is the exact one-
dimensional minimizer along the direction dk, i.e.,

αk = arg min
α>0
{f(x+ αdk)} (1.3tris)

then (1.2), (1.3), (1.3bis), (1.3tris) is called the linear conjugate gradient
method. Otherwise, (1.2), (1.3) is called the nonlinear conjugate gradient
method. Conjugate gradient methods can broadly be classified based on the
used strategies of the way in which the search direction is updated and the
algorithms dealing with the step size minimization along a direction [24]. In
[26] , a convex combination of LS and FR ( [1] ) is proposed with a newton
descent direction.

The line search in the non linear conjugate gradient methods is often
based on the standard Wolfe conditions [19] :

f (xk + αkdk)− f (xk) ≤ ραkgtkdk (1.4)

gtk+1dk ≥ δgtkdk (1.5)

where 0 < ρ ≤ δ < 1.
Conjugate gradient methods differ in their way of defining the scalar

parameter βk. In the literature, there have been proposed several choices for
βk which give rise to distinct conjugate gradient methods [12], [22] . The
most well known conjugate gradient methods are the Hestenes–Stiefel (HS)
method [14], the Fletcher- Reeves (FR) method [1], [10], the Polak-Ribière-
Polyak (PRP) method [16 ] , [28 ], the Conjugate Descent method(CD) [10],
the Liu-Storey (LS) method [15], the Dai-Yuan (DY) method [08], [09] , Hager
and Zhang (HZ) method [13] and the RMIL+ method [17] , [18] . The update
parameters of these methods are respectively specified as follows:

βHSk =
gTk+1yk

dTk yk
, βFRk = ‖gk+1‖2

‖gk‖2
, βPRPk =

gTk+1yk

‖gk‖2
, βCDk = −‖gk+1‖2

dTk gk
,
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βLSk = − g
T
k+1yk

dTk gk
, βDYk = ‖gk+1‖2

dTk yk
, βHZk =

(
yk − 2dk

‖yk‖2
dTk yk

)T
gk+1

dTk yk
,

βRMIL+
k =

gTk+1(gk+1−gk−dk)
‖dk‖2

.

Some of these methods, such as Fletcher and Reeves (FR) [10], Dai and
Yuan (DY) [8] and Conjugate Descent (CD) [10] have strong convergence
properties, but they may have modest practical performance due to jamming.
On the other hand, the methods of Polak and Ribière and Polyak (PRP) [16],
Hestenes and Stiefel (HS) [14] or Liu and Story (LS) [15] may not generally
be convergent, but they often have better computational performance.

In the process of obtaining more robust and efficient conjugate gradient
methods, some researchers suggested the hybrid conjugate gradient algorithm
which combined the good features of the methods involve in the hybridiza-
tion. Even though conjugate gradient improvement using hybridization is a
classic deeply investigated problem; it still an attractive topic for the research
community due to its contemporary use in numerous prominent disciplines
[27] .

The first hybrid conjugate gradient method was given by Touati-Ahmed
and Storey (1990) [20] to avoid jamming phenomenon.

The researchers were motived by the works of Andrei [3], [5]; Dai and
Yuan [9] ; Zhang and Zhou [21]. Their parameter βNk is computed as a convex
combination of βFRk and β∗k other algorithms, i.e

βNk = (1− θk)βFRk + θkβ
∗
k

The Wolfe line search was employed to determine the step length αk > 0
and the new method proved to be more robust numerical wise as compared
to FR and other methods. The global convergence was establised under some
suitable conditions.

In ([5]) Andrei has proposed a new hybrid conjugate gradient algorithm
where the parameter βAk is computed as a convex combination of the Polak-
Ribière- Polyak and the Dai- Yuan conjugate gradient algorithms i.e

βAk = (1− θk)βPRPk + θkβ
DY
k

and θk is presented to satisfy the conjugacy condition

θk = θCCOMB
k =

(ytkgk+1) (ytksk)− (ytkgk+1) (gtkgk)

(ytkgk+1) (ytksk)− ‖gk+1‖2 ‖gk‖2

where sk = xk+1 − xk. To satisfy Newton direction he takes

θk = θNDOMB
k =

(ytkgk+1 − stkgk+1) ‖gk‖2 − (ytkgk+1) (ytksk)

‖gk+1‖2 ‖gk‖2 − (ytkgk+1) (ytksk)

but in the combination of HS and DY from Newton direction, he puts

θk =
−stkgk+1

gtkgk+1
.
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On the other hand, from Newton direction with modified secant condi-
tion (Hybrid M-Andrei), Andrei has proposed another method

βHYBRIDMk = (1− θk)βHSk + θkβ
DY
k

where

θk =

(
δηk
stksk
− 1
)
stkgk+1 − ytkgk+1

ytksk
δηk

gtkgk+1 +
gtkgk+1

ytksk
δηk

δ is parameter. In [11] Salah Gazi Shareef and Hussein Ageel Khatab
have introduced a new hybrid CG method

βNewk = (1− θk)βPRPk + θkβ
BA
k

where βBAk is selected in [2].
Recently Delladji et al. [25] proposed a hybridazation of PRP and HZ

shemes using the congugacy condition.

In this paper, we present another hybrid CG algorithm noted CGHLB
(HLB is an abbreviation to Hadji; Laskri and Bechouat), witch is a con-
vex combination of the PRP ([16]) and RMIL+ ([17]) conjugate gradient
algorithms.We are interested to combine these two methods in a hybrid CG
algorithm because PRP has good computational properties and RMIL+ has
strong convergence properties. In section 2, we introduce our hybrid CG
method and prove that it generates descent directions. In Section 3 we present
and prove global convergence results. Numerical results and a conclusion are
presented in section 4. By comparing numerically CGHLB with PRP and
RMIL+ and by using the Dolan and More CPU performance, we deduce
that CGHLB is more efficient.

2. HLB conjugate gradient method

The iterates x0, x1, ........ of the proposed HLB algorithm are computed by
means of the recurrence (1.2) where the step size αk > 0 is determined
according to the wolfe line search conditions (1.4) , (1.5). The directions dk
are generated by the rule:

dk =

{
−g0 if k = 0
−gk + βHLBK−1 dk−1 if k ≥ 1

(2.1)

where
βHLBk = (1− θk)βPRPk + θkβ

RMIL+
k

i.e

βHLBk = (1− θk)
gtk+1yk

‖gk‖2
+ θk

gtk+1 (gk+1 − gk − dk)

‖dk‖2
(2.2)

HLB is an abbreviation to Hadji; Laskri and Bechouat; θk is a scalar
parameter which will be determined in a specific way to be described in the
folloing section. Observe that if θk = 0 then βHLBk = βPRPk and if θk = 1,
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then βHLBk = βRMIL+
k . On the other hand if 0 < θk < 1, then βHLBk is a

convex combination of βPRPk and βRMIL+
k . The parameter θk is selected in

such away that at every iteration the conjugacy condition is satisfied . It can
be noted that,

dk+1 = −gk+1 + (1− θk)
gtk+1yk

‖gk‖2
dk + θk

gtk+1 (gk+1 − gk − dk)

‖dk‖2
dk (2.3)

so multiply both sides of above equation by yk and by using the conju-
gacy condition

(
dtk+1yk = 0

)
we have:

0 = −gtk+1yk + (1− θk)
gtk+1yk

‖gk‖2
dtkyk + θk

gtk+1 (gk+1 − gk − dk)

‖dk‖2
dtkyk (2,4)

After a simple calculation we get

θk =
gtk+1yk ‖gk‖

2 ‖dk‖2 −
(
gtk+1yk

)
(dtkyk) ‖dk‖2((

gtk+1 (yk − dk)
)
‖gk‖2 −

(
gtk+1yk

)
‖dk‖2

)
(dtkyk)

(2.5)

So, to ensure the convergence of this method when the parameter θk
goes out of interval ]0, 1[ ; i.e. when θk ≤ 0 or θk ≥ 1, we prefer to take βHLBk

as following:

βHLBk =

 (1− θk)βPRPk + θkβ
RMIL+
k if 0 < θk < 1

βPRPk if θk ≤ 0

βRMIL+
k if θk ≥ 1

(2.5(bis))

We are now able to present our new algorithm, the Conjugate Gradient
CGHLB Algorithm:

CGHLB Algorithm
Step 1: Initialization:
set, k = 0, select the initial point xo ∈ Rn.select the parameters 0 <

ρ ≤ δ < 1, and ε > 0
compute f (x0), and g0 = ∇ f (x0). consider d0 = −g0
Step 2: Test for continuation of iterations:
If ‖gk‖ ≤ ε then stop else set . dk = −gk
Step 3: Line search:
Compute αk > 0 satisfying the Wolfe line search condition (1, 4) and

(1, 5) and update the variables, xk+1 = xk + αkdk; compute f (xk+1), gk+1

and sk = xk+1 − xk; yk = gk+1 − gk.
Step 4: θk Parameter computation:

If
((
gtk+1 (yk − dk)

)
‖gk‖2 −

(
gtk+1yk

)
‖dk‖2

)
(dtkyk) = 0;

then set θk = 0, otherwise, compute θk as in (2.5).
Step 5: βHLBk Conjugate gradient parameter computation:
If 0 < θk < 1, then compute βHLBk as in (2.2)

If θk ≥ 1, then set βHLBk = βRMIL+
k
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If θk ≤ 0, then set βHLBk = βPRPk

Step 6: Direction computation:
compute dk+1 = −gk+1 + βHLBk dk
Set k=k+1 and go to step 3.
The following theorem shows that our method assures the descent con-

dition, when 0 < θk < 1 .

Theorem 2.1. In the algorithm (1.2) , (1.3) and (2.5) assume that dk is a
descent direction (gtkdk < 0), and αk is determined by the Wolfe line search
(1.4) ; (1.5). If 0 < θk < 1 then the direction dk+1given by (2.3) is a descent
direction.

Proof. Multiply both sides of (2, 3) by gk+1 we have:

gTk+1dk+1 = −‖gk+1‖2 + (1− θk)
gtk+1yk

‖gk‖2
dtkgk+1

+θk
gtk+1 (gk+1 − gk − dk)

‖dk‖2
dtkgk+1

gTk+1dk+1 = − (1− θk + θk) ‖gk+1‖2 + (1− θk)
gtk+1yk

‖gk‖2
dtkgk+1

+θk
gtk+1 (gk+1 − gk − dk)

‖dk‖2
dtkgk+1

gTk+1dk+1 =

[
− (1− θk) ‖gk+1‖2 + (1− θk)

gtk+1yk

‖gk‖2
dtkgk+1

]

+

[
− (θk) ‖gk+1‖2 + θk

gtk+1 (gk+1 − gk − dk)

‖dk‖2
dtkgk+1

]

gTk+1dk+1 = (1− θk)

[
−‖gk+1‖2 +

gtk+1yk

‖gk‖2
dtkgk+1

]

+ (θk)

[
−‖gk+1‖2 +

gtk+1 (gk+1 − gk − dk)

‖dk‖2
dtkgk+1

]
since 0 < θk < 1 then

gTk+1dk+1 ≤

[
−‖gk+1‖2 +

gtk+1yk

‖gk‖2
dtkgk+1

]

+

[
−‖gk+1‖2 +

gtk+1 (gk+1 − gk − dk)

‖dk‖2
dtkgk+1

]
(2.6)

If the step length αk is chosen by an exact line search. Then gTk+1dk = 0.



CGHLB, Hybrid Convex Combination of PRP and RMIL+ 7

If the step length αk is chosen by an inexact line search
(
gTk+1dk 6= 0

)
then we have:

gTk+1dk+1 < 0

because the algorithms of (PRP ) and (RMIL+) satisfied the descent
property.

The proof is completed. �

3. Global convergence properties

The following assumptions are often needed to prove the convergence of the
nonlinear CG :

Assumption 1
The level set Ω = {x ∈ Rn/f (x) ≤ f (x0)} is bounded, where x0 is the

starting point.
Assumption 2
In some neighborhood N of Ω, the objective function is continuously

differentiable and its gradient is Lipschitz continuous, namely, there exists a
constant l > 0 such that:

‖g (x)− g (y)‖ ≤ l ‖x− y‖ for any x, y ∈ N

Under these assumptions on f , there exists a constant µ such that
‖g (x)‖ ≤ µ, for all x ∈ Ω.

Lemma 3.1. [23] Suppose Assumption 1 and 2 hold , and consider any con-
jugate gradient method (1.2) and (1.3); where dk is a descent direction and
αk is obtained by the strong Wolfe line search. If

∞∑
k=1

1

‖dk‖2
= +∞ (3.1)

then

lim inf
k→∞

‖gk‖ = 0 (3.2)

Assume that the function f is uniformly convex function , i.e, there
exists a constant Γ ≥ 0 such that,

for all x, y ∈ Ω : (∇f (x)−∇f (y))
t
(x− y) ≥ Γ ‖x− y‖2 (3.3)

and the steplength αk is given by the strong Wolfe line search.

f (xk + αkdk)− f (xk) ≤ σ1αkgtkdk (3.4)

∣∣gtk+1dk
∣∣ ≤ −σ2gtkdk (3.5)

For uniformly convex function which satisfies the above assumptions, we can
prove that the norm of dk+1 given by (2.3) is bounded above.

Using the above lemma, we obtain the following theorem.
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Theorem 3.2. Suppose that Assumption 1 and 2 hold . Consider the algorithm
(1.2) ; (2.3)and (2.5) , where 0 ≤ θk ≤ 1 and αk is obtained by the strong Wolfe
line search ((3.4) and (3.5)).

If dk tends to zero and there exists non negative constants η1 and η2
such that;

‖gk‖2 ≥ η1 ‖sk‖2 and ‖gk+1‖2 ≤ η2 ‖sk‖ (3.6)

and f is uniformly convex function, then

lim
k→∞

gk = 0 (3.7)

Proof. From (3, 3) it follows that

ytksk ≥ Γ ‖sk‖2

since 0 ≤ θk ≤ 1 , from uniform convexity and (3.6) we have

∣∣βHLBk

∣∣ ≤ ∣∣∣∣∣gtk+1yk

‖gk‖2

∣∣∣∣∣+

∣∣∣∣∣gtk+1 (gk+1 − gk − dk)

‖dk‖2

∣∣∣∣∣
≤
∣∣gtk+1yk

∣∣
‖gk‖2

+

∣∣gtk+1yk
∣∣

‖dk‖2
+

∣∣gtk+1dk
∣∣

‖dk‖2

≤ ‖gk+1‖ ‖yk‖
‖gk‖2

+
‖gk+1‖ ‖yk‖
‖dk‖2

+
‖gk+1‖ ‖dk‖
‖dk‖2

from Lipschitz condition

‖yk‖ ≤ l ‖sk‖

∣∣βHLBk

∣∣ ≤ ‖gk+1‖ ‖yk‖
η1 ‖sk‖2

+
‖gk+1‖ ‖yk‖
‖dk‖2

+
‖gk+1‖
‖dk‖

≤ µl ‖sk‖
η1 ‖sk‖2

+
µl ‖sk‖α2

k

‖sk‖2
+
µαk
‖sk‖

=
µl

η1 ‖sk‖
+
µlα2

k

‖sk‖
+
µαk
‖sk‖

Hence

‖dk+1‖ ≤ ‖gk+1‖+
∣∣βHLBk

∣∣ ‖dk‖
≤ µ+

µl ‖sk‖
η1αk ‖sk‖

+
µl ‖sk‖α2

k

αk ‖sk‖
+
µαk ‖sk‖
αk ‖sk‖

= 2µ+ µlαk +
µl

η1αk
which implies that (3.1) is true.Therefore, by lemma 1 we have (3.2),

which for uniformly convex functions is equivalent to (3.7) . �
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4. Numerical results and discussion

In the present numerical experiments, we analyze the efficiency of βHLB , as
compared to the classic methods: βPRP and βRMIL+. These comparisons
are based on the number of iterations and CPU time per second to reach
the optimum. All the comparisons are done with two or three different ini-
tial points and different number of variables ranging from 2 to 20000 . All
variables have been experimented to each function test [4] . For the numeri-
cal tests, the strong Wolfe line searches parameters have been experimently
fixed to ρ = 10−3 and δ = 10−4. All tests were terminated when the stopping
criteria ‖gk‖ ≤ ε is fulfilled, where ε = 10−6. When the iteration number
exceeds 2000 or the CPU execution time exceeded 500 seconds, the test is
considered as failed.

Figure 1. Performance Profile based on the CPU time

Figures 1 and 2 show that the method of βHLB is superior when com-
pared to βPRP and βRMIL+ with the least duration of CPU time . The
highest percentage of successful comparison is with βHLB at 98.34%, fol-
lowed by βRMIL+ with 93.72%. However, the successful rate comparison for
βPRP is low at 90.05%. Hence, our method (βHLB) successfully solves the
test problems, and it is competitive with the well-known conjugate gradient
methods for unconstrained optimization.
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Figure 2. Performance Profile based on the iteration number

Tabel 1. A list of test problems.

No. Function Dimension Initial points
01 Alpine 1 4, 5, 7, 10, 12, 30, 100 (1, ..., 1)
02 Beale 2 (−1,−1) ; (0, 0) ; (1, 1)
03 Booth 2 (−1,−1) ; (1, 1) ; (3, 3)
04 Branin 2 (−1,−1) ; (0, 0) ; (1, 1)
05 Diagonal 1 2, 4, 6, 8, 10, 20, 100, 200 (1, ..., 1) ; (2, ..., 2) ; (3, ..., 3)
06 Diagonal 2 2, 4, 10, 100, 200, 400, 500, 600, 1000 (−1, ...,−1) ; (0, ..., 0) ; (1, ..., 1)
07 Diagonal 4 1000, 5000, 8000, 10000, 14000, 16000, 20000 (2, ..., 2) ; (5, ..., 5) ; (10, ..., 10)
08 Exponential 2, 4, 6, 8, 10, 12, 14, 15, 16, 20 (1, ..., 1)
09 Griewank 10, 100, 500, 1000, 2000, 5000, 10000 (−2, ...,−2) ; (2, ..., 2)
10 Hager 2, 4, 10, 100, 200, 500, 800, 1000 (−1, ...,−1) ; (0, ..., 0)
11 Himmelblau 2, 4, 10, 100, 1000, 5000, 10000, 20000 (−5, ...,−5) ; (5, ..., 5)
12 Leon 2 (−0.5,−0.5) ; (0, 0) ; (0.5, 0.5)
13 Matyas 2 (1, 1) ; (2, 2) ; (5, 5)
14 Penalty 2, 10, 100, 500, 1000, 2500, 4000, 5000, 10000 (−1, ...,−1) ; (0, ..., 0) ; (1, ..., 1)
15 Perquadratic 2, 4, 8, 10, 20, 50, 200 (−5, ...,−5) ; (3, ..., 3) ; (5, ..., 5)
16 Power 2, 4, 8, 10, 20, 50, 100, 500 (−2, ...,−2) ; (2, ..., 2)
17 Qing 2, 10, 100, 200, 300, 400, 500, 1000, 2000 (−2, ...,−2) ; (2, ..., 2)
18 Quadratic 2, 10, 100, 200, 500, 750, 1000 (2, ..., 2) ; (4, ..., 4)
19 Quartic 2, 4, 10, 100, 200, 500 (1, ..., 1) ; (2, ..., 2)
20 Rastrigin 2, 10, 100, 200, 500 (−5, ...,−5) ; (5, ..., 5)
21 Raydan 1 2, 4, 10, 20, 50, 80, 90, 100 (−2, ...,−2) ; (2, ..., 2)
22 Raydan 2 2, 10, 100, 500, 1000, 2000, 3000 (−2, ...,−2) ; (2, ..., 2)
23 Rosenbrock 2, 10, 10, 50, 100, 200, 1000, 2000, 5000, 10000 (0, ..., 0)
24 Schwefel 2. 20 2, 4, 10, 20 (−1, ...,−1) ; (2, ..., 2)
25 Schwefel 2. 21 5, 10, 15, 20 (1, ..., 1) ; (2, ..., 2)
26 Schwefel 2. 23 2, 5, 10, 20 (−1, ...,−1) ; (1, ..., 1)
27 Sphere 2, 10, 20, 100, 1000, 5000, 20000 (−4, ...,−4) ; (4, ..., 4)
28 Styblinski 2, 10, 100, 500, 1000, 2000, 5000 (0, ..., 0) ; (2, ..., 2)
29 Sumsquares 2, 10, 20, 100, 300, 500, 1000 (5, ..., 5) ; (10, ..., 10)

5. Conclusion

Numerous studies have been devoted to develop and improve hybrid conju-
gate gradient methods . In this paper we have presented a new convex hybri-
dation of the PRP and the RMIL+ conjugate gradient algorithms; HLB. The
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global convergence of our method is demonstrated for 0 < θ < 1 . Numerical
experiments reveal that our method is reaching the optimum in less iteration
number and CPU time comparing to RMIL+ and PRP.
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