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PROPERTIES OF A NEW CLASS OF ABSOLUTELY SUMMING
OPERATORS

CRISTINA ANTONESCU

Abstract. In [1] there was been introduced a new class of absolutely sum-
ming operators and there was been obtained some of its properties and,
also, the relations with the known classes of absolutely summing operators.

In this article we go on with the study of the properties of this

new operator class.

1. Preliminaries

We shall just refer briefly to those notions and results which are necessary
for the proofs.

Let E, F be Banach spaces over the field T, where T is the set of the real or
of the complex numbers. In the sequel we shall use the following notations:

1) L(E,F):={T: E — F: T is linear and hounded} .

2) E* := L(E,T).

3) Ugi={z € B |lall <1}.

4) Fora € E* and z € E, let (x,a) := a(z).
)

5) Let a € E* and y € F. We deuote by a ® y the following operator

a®y:E—F, (a®@y)(x)=(r,a) -y, forallz € E.

6) We dcnote by I, the set of all real number sequences, {z,}, , with the

n

property

Key words and phrases. p-absolutely summing operators, p-q absolutely summing operators, symmetric

norming function, Lorentz-Zygmund sequence ideals.




CRISTINA ANTONESCU

|zl == sup |za] < oo.
n natural

7) We denote by cq the set of all real number sequences, {z,},, with the

n

property

fim J,] = 0.
n—co

8) We denote by [,, 0 < p < ac. the set of all real number sequences, {z,},

with the property

1

0 P
llzll, := (Z |.r,,|p> < 0.
n=1

Definition 1. ([7])

For z = {z,},, € lx. let

Sp(z) :=inl{o > 0:card {i:|v;| > o} <n}.
Rewmark 1. ([7])

If the sequence x = {x, },, € I is ordered such that |z,| > |zn41], for any

natural n, then

Sn ('E) = ,:I-’rll .
Proposition 2. ([7])

The numbers s, (x) have the following properties:

Lol2)l,, = s1(x) > s2(2) > ... >0, forall & = {a,}, €lx,
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2. sptm-1 (2 +y) <sn(z)+sm(y), forall z = {z:}; €lo,y = {vi}; €l,
and n,m € {1,2,...}, where 2 +y = {z; + 4};,

3. Snamo1 (£ y) <su(x)-sm (y), forall r ={&;}; €l y = {yi}; €los,
and n,m € {1,2,..}, where z -y = {&; - yi };,

4.1 2 = {z;}; €l and card {i : x; # 0} < n then s, (x) = 0.

Let us remark the similarity between the properties of the sequence s, (z),
where 2 = {z,}, € le, and the axioms from the definition of an additive and

multiplicative s-scale, an s-scale being a rule, s : T — {s,, (T)},,, which assigns

n

to every linear and bounded operator a scalar sequence with the following properties:

LT =81(T)>s2(T)>...>0, forall T € L(E, F),

2. Snamet (T4 5) < sn (T) + 50 (S), Torall T, S € L(E, F)

and n.m € {1,2,...},

3. Sngm—1(T095) <5, (T) - sm (), forall T € L(F, Fy),5 € L(E, F)

and n,m € {1,2,...},

4.5, (T) =0, dimT" < n,

5.5, ({g) = 1, if dimE > n, where Ig (x) =, forallz € E.
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We call s, (T') the n-th s—number of the operator T.

For properties, examples of s—numbers and relations between diferent s-
numbers it can be seen [3], [4], [5], [6]. [7]-

We continue by giving some basic facts about the classical real interpolation
method, called the K-method.

For those interested to find an introduction on interpolation theory we rec-

ommend, for example, [2], [9].
Definition 3. ([2], [8])

For a compatible couple (Xp, X}, in the sense of the interpolation theory, of

normed or quasi-uormed spaces, and t > 0 consider the functional:

K (t,z) :=inf {|lzo | Xo|l +1t-|l21 | Xy

rx=zo+ o,z € X;i=0,1}.

Let 0 < # < 1 and 0 < ¢ < oc. The interpolation space (XOle)o.q is

defined as follows:

1

oQ

- e . . dt

(.\()._\1)9#:: r=x9+21.2; € X;,i=0,1: /[t—o,[\(t,x)]qT <o,
0

if ¢ < 00, and

(.\'O,Xl)g.m = {m =zo+x, 0 €N, i=0,1:supt™ - K (t,2) < oo} .
>0

The operator classes Py, ¢, introduced in 1], are closed related to the Lorentz-
Zygmund sequence spaces. For that we shall recall here a few things about these

sequence spaces and the Lorentz-Zygmund operator ideals.
Definition 4. ([7])

Let 0 < p,¢ < o0 and —oc < ¥ < 0. The Lorentz-Zygmund sequence

spaces are defined as follows

lpgry = {z ={z:i}; €co: i [i%‘i (14 logi)” - s,-(z)]q < oo}.

i=1
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These are quasi-normed spaces, with the quasi-norm

2l g,y := (Z (373 (1 +1080) s (ﬂ]q)

i=1

Q=

Definition 5. ([7],[8])

Let E, F be Banach spaces, s an additive s-number and 0 < p < o0, 0 < ¢ <
00, =00 < ¥ < 0o. We introduce the following operator classes:

LS}~ (E,F) =

{T € L(E.F): |ITII) = (i} [n7 - (1+Logn)” -5, ('r)]" : n‘1> e oo},
and for ¢ = o© "

LYy (B, F) =

{Te LB F): Tk, = son (L togn) -5, (7) < 0.

P.oo,y

We denote by L,(,'j,),,-y = U L;’)),,a, (E, F).

E.F Banach spaces

Remark 2. ([7],[8])

Let s be an additive s-nurmber and 0 < p < 00, 0 < ¢ < 00, —0 < 7 < 0,
then (L,E,‘fgm ||||§f‘)7 1) is a quasi-normed operator ideal.

We are giving now an interpolation result obtained by classical methods
Proposition 6. ([8])

Let E, F be Banach spaces, 0 < pg < p1 < 20,0 < ¢0,41,9 < 00,0 < 7,1 <
oo and 0 < 8 < 1. Then

(£8ane (B F) Loy (B F)) € Lty (BLF), where b = 1= 4 &
andy=(1-6) v+0 7. !

At the end of this section we shall remind the construction of the operator

classes Pp 4.4 and one of the properties proved in [1].
Definition 7. ([4])

Let E be a Banach space and I an index set. An E-valued family {&;:};c, 1s
said to be absolutely r-summable if {]|z;||} € I (I). The set of these families is

denoted by [l (I), E].
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For {z:};c; € [I- (I), E] we define:

1/r
e} [ U (1) E]l| = (lemillr) :

If theze is no risk of confusion, then we use the shortened symbol ||{x;} | I+]].

Moreover,we write [l., E] instead of [, (N), E].
Proposition 8. ([4])

[l (1), F] is a Banach space.
Definition 9. ([4])

Let £ be a Banach space and [ an index set. An E-valued family {x;},., is
said to be weakly r-summable if {(z;a)} €l (I) for alla € E~.
The set of these families is denoted by [w, (I), E].For {x;};c; € [w, (I), E]

we define:

1/r
N(z:) | [eer (1), Ellj = sup{ (Z I(:r;,a)lr) ta € UE.} .

If there is no risk of confusion, then we use the shortened symbol ||{w;} | /||

Moreover,we write [w;,, E] instead of [w, (N), E].
Proposition 10. ([4])

[w, (1), E] is a Banach space.

Remark 3. ({1])

Using the Lorentz-Zygmund sequence spaces, I, 4 4, we can define, in a similar

way, the spaces [l 44 (1), E] and [wy 4.~ (1), E].
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Definition 11. ([1])

Let E, F' be Banach spaces and 0 < p1,p2 < 00,1 < ¢2 < ¢q1 < 00, —00 <
v1.92 < o0. An operator T' € L(E, F) is called absolutely (p;2, ¢12,y12) —summing

if there exists a constant ¢ > 0 such that

(i [ip‘—ra‘: (1 +log i)™ -\\m\]q‘);_‘ <

i=1

1

a1

n a1 q2 q . .

<c- sup (Z [iplz a2 - (1+logd)” - l(xi,a)l] ) ’ , for every finite family
a€Uge \iz=1

of elements z,, ...2, € E. The set of these operators is denoted by Py, g,0.v,2 (£, F').

For T € Ppiy.q12mv2 (£, F) we define mp, g5, (T) := infe, the infimum

being taken over all constants ¢ > 0 for which the above inequality holds.

Theorem 12. ([1])

Pp.5.q12,m12 18 an injective Banach operator ideal.

2. Results

We start. by giving a result concerning the ”lexicografic order™ of the Lorentz-

Zygmund sequence spaces.
Proposition 13.

We have the following inclusion:

lp.goy € lp g v, Where 0 <p < oo, 0 <gqo< gy <00, v>0.

Proof. We whall need the following result, established by N. Tita, in [8], for the

operator ideal case.



Proposition 14.

Let 0 < p<o00,0< ¢g<ooand0<vy< oo then

N | =

{zn}, Elpgq & {‘2%"" - Son-1 (.r)} €lrq, where v =
n

Q|

Moreoever there are the constants ¢ and ¢, which depend on p. q,~, such that:

{2 e},

We start now our proof.
LS
Let £ = {€n},, € Lhgon © {2 P San- S)}” € lrqo, Where y = 1 — .

(
% — (711 It follows that

n—1
< Mlelly gy <7 {27 5201 (@)}

n

Tq r.q

Let ¢; > go and ry such that v =

1 1 -1 _ L 1 -1 1 _ 1 1 1
F T = q1<:>,_l ,.+(q1 qz):>r1<r:>rl>r‘

From the ”lexicografic orderliness” of the Lorentz sequence spaces, [4], [7],

we know that . oo C L. .

n—=1

So {2 P sy (e)}n €lrg &€= 1{n), € Lpgi
In conclusion Iy g, v C lp g, for 0 < p<o0,0< g0 < q1 <00, 7>0. a

Proposition 15.

Let 0 < po < p1 <00,0<¢o,91.9 <00,0< 7,71 <ocand 0 <8 < 1. Then

(IPO,QO,"IOJI‘LQL.“II)o‘q C lpqy, Where % = '1;_0‘9‘ + pe_, andy=(1-0)-y0+6-m.

Proof. 1f we take account of the similarity between the properties of the sequences

{sn (T)},, where s is an additive s-scale, T € L(E, F), and {s, (2)},,, where & =

{zn},, € lw, the proof of the above inclusion will have the same course like the proof
of the Proposition 6.
We shall consider ¢ < o0, the proof of the case ¢ = oc being similar.
From the Proposition 13 it follows that we have the inclusion
(lpo‘quﬂo'lPth-"/l)o,q c (an.“L’Yolll’hC‘O,’h)o'q .
So it will be enough to prove the relation

(IPD.OO.‘VD! lPl 100,71 )0‘q g lp.q,*/-

10
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Let 2 = {zn},, € (lpo,0,v0+lp1.c0m ) - We shall consider the arbitrary de-
composition

z =2+, where ' = {z}} €l o, i€{0,1).

Let z € {0, 1} then

o= {23}, €Elpicony ©

& el o = sup [0F - (Lt logn) - sn ()] < 00 =
.” . 1 n . .
= s, (2) <n7F - (1+1logn)™" - |2t ”p“mm, for any natural n.
We shall evaluate ||z||, . ., -
q X r o - q 1
(lellpgn) = & [n¥ - (1 +logn) - sn(@)] 1 =
n=1
& L1 - q
- {(Q.n—l)F‘E-('l—i—log(‘z-n— 1))'-52"_1(1»)} +
?’021 11 q
+ 5 [(2 n)3=5 (14 log(2 - 1)) - s2m (.zr)] <
n=1

+ i [(2 . n)%—% (14+10g(2 1)) 5901 (:c)] <

n=1 o L. ) q
<epg) 3 [n3E (L logn)T s2ami ()] <
n=1
oc
<e(pan): L [p575 (1+logn) (s, (2°) + 5 (&))" <
n=1
<e(pg,7)-
[ 11 vy — L 11 - q
nzz:l [np 7 (14 1logn)" """ n" ¥ (”,zonpomﬁo_}.npu pr (14 logn)™™ M “mlﬂphmm)] :

The decomposition ¢ = r° + »! being arbitrary and taking account of the
p g y g

K-functional’s definition
A - )
K (z‘ylpo - (1 + logn) ™™ .l,-(,.m.w'll’m‘Om) we obtain that
0 L L Yo="1 ||..1
”.z' “po,m.‘ya +nro b (14 logn) ’ “'E ”pn,com <

< K (2,npe7 5 (14 logn)™ ™" 1 !
<K ({z,npo"pr (14 ogn) vipo,c0,v00 bp1,com

S0 (l2llpg) <

- q
<c- 3 [n%"no (14+1logn)” ™K (z,nﬁ%_m (1 +logn)7°—7‘)} 5 <
n=1

© 1_ 1 1 _ q
cl.f[trm(ulogz)v-% K (x,m-s%(uzogt)% ’)] d

t
1

o

1

IA

1—-6

_ q
t‘tT’LBaT"ﬁ (1+ logt)(l_ah""'h‘_% I (z.ffo__ﬁ (1+ logt)m’—")] % =

11

—




[e] ‘ q
= f [t‘*’(;’rﬁ) (1 + logt)~00e=m) k¢ (m,t#‘# (1+ logt)“"‘)] g -
1

[e o]

-0 ' q9
=c-f [(tF‘E'SlT (14 logt)7°—7‘) -K (m,tﬁ—ff (1 +logt)7°_7‘)] ?.
1

Let now define f : (1,00) — (0,00), f (¢) =t (14 logt) ™™ |
I (1) = (l’—ln-~ ;1T> .tﬁ—ﬁ ,(1+logt)‘70"h +

1 _
+(y0 =) 17 TR (L4 logt) T - e e =

R S U ~“o—"1
=tp P - (14 logt)” ™" ~(—l——~*+('yo 1)‘T*Tlt,£7‘fz>§<'3'f(f)-

Po

‘- [ [(t”” P (14 logt) ™" 7') K (m,th_p_ll' (1 +logt)wro—m)]q (_iﬁ _

q
Hence we obtain (HJ?”P 7 7)

:w{Um”wuaﬂmrﬂmﬁﬁﬂs@?pﬂrfﬂwﬂmf
() dt =
=c3- f[ 0K (: ]q & < .

(We have made the following change of variable f (t) = s.)

|-

-
=
—i

In conclusion x € [, 4 . (]
Proposition 16.

Let 7 be any infinite index set. An operator T € L(E, F) is absolutely
(P12, q12,v12) —summing if and only if T'(7) : {#:};c; — {T;}; defines a linear and

bounded operator from [wy, ¢,.v. (1), E] into {i5, 4,4, (I), F]. When this is so, then

Trl’\':»’lnﬂm (/r) = ”T (1) : [wquz.w (1) ’ F] - [ll’l.lll,‘h (1) ’ F]” .

Proof. It is simlar to the proof for the similar result for absolutely (r, s) —summing
opertators, see Proposition 1.2.2 from [3].
Suppose that T' € P, 41570 (B F) and (2);¢; € [Wpyg57, (1) E]. Then we

have

(ZP* (1+logi)" unm])%s

i
L

e S N “ 92\ 92
_<. Tpi2diz, iz (T) © sup Z [I P2 92 (] + lOg 7’) e |<l'iva'>|] , for all F,
a€Upge 1

1" € F (I) . Passing to the limit [ yields

12
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"(T‘Bi)iel l [lm.q:m (1) ’ F]“ S 7rl’|2,‘]12,"/12 (T) . Il(xi)iel l [wpz,frz"h (1) ) E]

This proves that

”T(I) : ['U)szq:e,‘rz (I) 7E] - [lplvqu’YI (]) ’ F]“ S TrPn;Qu.‘hz (T) .

The reverse inequality is obvious. O
Theorem 17. (interpolation theorem)

Let E,F be Banach spaces. If 0 < p; < p3 < 00, 0 < p2 < o0, 0 <
41,92, 93.q4 < o0, 0 < 71,73 < oo and 0 < < 1, then

Povssarsms (B ) Py gioimss (B2 F))
L0y 2 and yg= (1= 6) 71 +0- 7.

P P3

] ol , J S
6,94 g }Pnyq-a:.‘hz (L‘I )v Wll(l'(t‘ ra

Proof. We use the idea from the proof of the interpolation theorem for the abso-
lutely (p, ¢) —summing operators. This theorem can be found in [4], Proposition
1.2.6.

Let {z;}; € [wy,,4p,v2, F]. We define the operator

X T € L(E,F) —» {T'%;};. From the Proposition 16 it follows that, for
T € Ppragrays (B F), AT} € p, qyyis Fland, for T € Py, gy v (B, F), {Tri}, €
[ps.92.720 F]-

So for

TE (Pplhmz,’hz (EvF},PPu.qaz.’Yaz (EwF))o =

;94
= {Tzi}i € (lpigoms F]'UP&QJF{JVF])Q’W C [pasgavar F1. We have applied

the Proposition 15.
In conclusion

"\’ : T € (PP|2,012.’712 (bv F) ) Ppaz'qn,‘hz (E' F))(i,q.. - {T'Ti}i € [11‘4.4«‘74' F]'

Hence the assertion follows from the Proposition 16. 0
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PERTURBATION ANALYSIS OF MONOTONE GENERALIZED
EQUATIONS

ANDRAS DOMOKOS

Abstract. Our goal is to establish new methods and results in reflexive
Banach spaces to the theory of local stability of the solutions of some non-
compact generalized equations, including parametric variational inequal-
ities. The continuity of the projections of a fixed point onto a family of
nonempty, closed, convex sets will he also studied using these methods.
The results from this paper generalize results proved in finit dimensional

spaces and Hilbert spaces.

0. Introduction

Stability topics for parametric variational inequalities were studied in many papers
in finite or in infinite dimensional Hilbert spaces [1, 3, 4, 8, 11]. The proofs in those
papers are closely connected with the Hilbert spaces’ properties (for example, the
nonexpansivity of the metric projection onto a closed, convex set).

Our method is independent from the above mentioned properties and also from com-
pactness assumptions (for compact perturbation of monotone operators see [7].
Papers [3, 11] use the strong-monotonicity condition in finite dimensional spam‘?& We
will replace this condition by a weaker one, p-uniform-monotonicity (used also in [1]
). In Banach spaces this is a weaker and more usefull condition, (see Proposition 1.1,
Examples 5.1 and 5.3) that the strong-monotonicity.

We will discuss also some aspects with respect to a consistency condition. Consis-
tency conditions are frequently used in the theory of implicit function theorems [1, 2,

4]. Our condition is a generalization of those used in [1, 4]. We will show that the

1991 Mathematics Subject Classification. 49J40, 49K 40.
Key words and phrases. normalized duality mapping, normal cone operator, variational inequality,

@-uniformly-monotone mappings, metric projection.
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consistency condition is satisfied under reasonable conditions, as pseudo-continuity or
lower-semicontinuity (see Corollary 2.1, Examples 5.1 and 5.2). The continuity of the
projection of a fixed point onto a family of nonempty, closed, convex sets implies the
consistency of the normal cone operator. A result similar to the Holder continuity of
the projections of a fixed point onto a pseudo-Lipschitz continuous family of closed
convex sets [11] holds for uniformly-convex Banach spaces. We will use a generaliza-
tion of the metric projection operator introduced by E. Zarantonello [12].

We will denote by €, A, W topological spaces and by X a reflexive Banach space.
Throughout this paper we will work with the fixed points ¢ € X, wo € Q, Ag € A,
wo € W and with their neighborhoods Xog = B(xzg,r) (the closed ball centered at
29 and radius r) of xg, Qo of wo, Ag of Ag, and Wy of wg. We need a single-valued
mapping f : Xo x Qo = X*, a set-valued mapping F' : Xo x Wy ~ X* and an other
set-valued mapping C' : Ap ~ X with nonempty, closed, convex values.

Let us consider the following parametric variational inequality

find x € C(A) such that

(VI(w, )
(flz,w),y—z) > 0, forall yeC(N)
and the equivalent generalized equation
0 € flz.w) + Ney (@), (GE(w,)

where
Nepy(z) = {e* € X o {e*  y—x) <0, forall ye C(A)}

is the normal cone to the set C'(A) at the point z.

The normal cone mappings Ny @ X ~ X* are maximal-monotone, because the
sets C'(A) are nonempty, closed and convex.

In a reflexive Banach space we can introduce equivalent norms for which the space
is strictly-convex with st.rictvly—cohvex dual or locally uniform-convex with locally
uniform-convex dual. The continuity and monotonicity properties from this paper
remain the same when we use these equivalent norms, so we can use them when we
nced better properties for the duality mapping.

16 ‘
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PERTURBATION ANALYSIS OF MONOTONE GENERALIZED EQUATIONS
1. Preliminary results

In this section we present basic definitions and results.

Definition 1.1. [1] The mappings F (-, w) are said p-uniformly-monotone for allw €
Wo, if there exists an increasing function ¢ : Ry — Ry, with o(r) > 0 when r > 0,
such that for all w € Wy, z,,z9 € Dom F(-,w), 2} € F(z1,w), 235 € F(z2,w) hold

(21 =2, 21— 22) > @(llay = 2l]) llz1 — 2ol -

If the function ¢ 1s defined as o(r) = ar, with a > 0, then the mappings F (-, w) are

said strongly-monotone with conslant a.

The following proposition shows that -uniform-monotonicity is a natural one in

uniformly-convex spaces.

Proposition 1.1. [10] A Banach space X is uniformly-conver if and only if for each
R > 0 there exists an increasing function pr : Ry — Ry, with pp(r) > 0 when

r > 0, such that the normalized duality mapping J : X ~ X*, defined by
Je) = {2m e X" @ a) = 2l flell = eI}
is pr-uniformly-monotone in B(0, R).
Definition 1.2. Let A, B C X. The Hausdorff distance between A, 3 1s defined as
H(A, B) = max{e(4, B), ¢(B, A)} ,
where
e(A,B) = :1618 blglg [la —b]| .

Definition 1.3. Let (A,d) be a metric space.

a) The set-valued mapping C' is pseudo-continuous at (Ag, ro) € Graph (' if there exist
neighborhoods V C Ag of Ao, U C Xo of &g and there exists a function 5: Ry — Ry
continuous at 0, with B(0) = 0, such that

C(ho) NU C C(A) + B(d(X Ao)) B(0,1) (1.1)
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and
C(A)NT C C(X) + B(d(A, X)) B(0,1) (1.2)

forall A e V.

b) The set-valued mapping C is pseudo-continuous around (Ao, zo) € GraphC if there
exist neighborhoods V C Ag of Ao, U C Xo of zo and there exists a function §: Ry —
R, continuous at 0. with $(0) = 0, such that

C(AM)NU C C(A) + B(d(A,A2)) B(0,1) (1.3)

Jorall Ay, \p € V.

¢) If the function B is defined as 3(r) = Lr, with L > 0, then we say that C s
pseudo-Lipschitz continuous at (Mo, 2o) (resp. around (Ao, zp)).

d) The sct-valued mapping C' is pseudo-continuous on the set Ay C Ao, if it is pseudo-
continuous at each point (A, z) € GraphC, X € A,.

Remark 1.1. If the set-valued mapping C'(-) N X is continuous with respect to the
Hausdorff distance at Ay (resp. in a neighborhood of Ag), then the set-valued mapping
C' is pscudo-continuous at (Ag, 2o) (resp. around (Ag, zg)).

In [11] it is proved the following theorem:

Theorem 1.1. [n the case of Q C R™, A C R?, X = R", let us suppose:
(i) zo 1s a solution of VI(wg, Ao);

(ii) there exists | > 0 such that

f(z1,w1) = flza,wall < L(ller — 22l + flwr —woll)

for all £y, 29 € Xo, wy,ws € Qo,

(i11) the mappings f(-,w) are strongly-monotone with a constant a > 0, for allw € Qq;
(iv) the set-valued mapping C' is pseudo-Lipschitz continuous around (g, zo) € GraphC.
Then there exist constants I, , [, > 0 and there exist neighborhoods Q' C Qo of wy,
A C Ag of Ao such that:

18
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a) for every (w,A) € Q' x A’ there exists a unique solution x(w,A) of VI(w, ),
b) for all (wy, A1), (w2, A2) € ' x A’ we have

llz(wi, A1) = z(wa, Aa)l| < lupllwr — wall + DaollAr = Aal|7

The Holder continuity with respect to A it is the consequence of the following

result :

Proposition 1.2. [11] Let Q@ C R" and X = R™. Let us assume that the set-valued
mapping C is pseudo-Lipschitz continuous around (Ao, o).

Then there erxist neghborhoods Q' C Qy of wg and X' C Xy of o and there exists a
constant I' > 0 such that

[ Peinnxe(®@) = Popamaxe ()] < VA = Aall?

forall \y, A2 € A’ and z € X'.

We denoted by Pc(a)nx,(2) the metric projection of the point z onto the set
C(X) N Xy, i.e. the unique point in C(A) N Xy with minimal distance to z.
The continuity of C(-) N Xg, with respect to the Hausdorff distance, at Ag is assumed

in [3] and the continuity of Pc(x)nx, at Ag is proved.
2. An implicit function theorem for monotone mappings

In this section we will show that Theorem 4.3 of [1] remains true when we
suppose X a reflexive Banach space (Theorem 2.1). We will use this theorem to study
the stability of the solutions of V' I(w, A), using only the consistency of the normal
cone operator which is a weaker property then the continuity of the projections of a

fixed point onto a family of nonempty, closed, convex sets.

Lemma 2.1. [5] Let T : X ~ X* be a marimal-monotone set-valued mapping. For

all integers k > 1 we define the follounng single-valued mappings:
Po = (J+KT)™' - X* =5 X.

If a sequence (zy), with zi41 = Pi(Jxy) is bounded, then there exists T € X such
that 0 € T(T) and (zx) has a subsequence weakly converging to T.
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Remark 2.1. From z4+1 = Pi(Jzx) we have

(Jek — Jzr41) € T(xk41) ,

x| =

so zx4+1 € D(T).
If D(T) is bounded, then (k) is also bounded and T has a zero in D(T).
If Ty = T + Npo, is maximal-monotone for an € > 0, then there exists 2 € B(0,¢)

such that 0 € T'(x) + Np(o.¢). If ||z|| < ¢, then 0 € T'(z).

Lemma 2.2, Let T : X ~ X* be a marimal-monotone map. We suppose that there
exist 0 < § < € such that D(T)NintB(0,e) # 0 and (y,z) > 0, for all x € X, with
d < |le|| <€ and for all y € T(2).

Then there exists T € B(0,4), such that 0 € T(T).

Proof.  Because of D(T) N intB(0,<) # 0, Ty = T + Np(o,c) is a maximal-monotone

mapping with D(T}) = B(0,¢).

If » € B(0,€) and y; € T1(x), then there exist y € T(x), n € Np(o,)(x) withn =0
corn=AJ(x), A> 0, such that y, = y+ n.

Then (y;.z) = (y+n,z) > (y,z) and hence the assumptions of Lemma 2.2 are also

satisfied by 7.

Let us denote
Pe(z) = (J+ k)" (J2), 21 =0, zpq1 = Pe(ax) .

We will prove that ||zx|| < 4, for all £ > 1.
Let us suppose the contrary and let kg be the first integer such that ||ag,|] < é and

|[2ko+1]] > 6. Then
Jzp, € Jxpor1 + koTi(Thot1) s
50 Zko+1 € D(T1) = B(0,¢) and there exists uk,41 € T1(Zko+1), such that
J;L‘k_o = JJTA~U+1 + k0uk0+1 .

Then

I ekollllzrorrll > (Trot1, JTho) = (Thot1s JThot1) + ko(Thot 1) Wkop1) >
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> [[ko 1l
Hence ||zko|| = ||[J2Zkoll > ||Zko+1]] > &, which is a contradiction.
So, (zx) C B(0,6) and using Lemma 2.1 together with the weakly-compactness of
B(0,4), we can found T € B(0,4), such that 0 € T1(%).
But Npo,)(T) = {0}, s0 0 € T(Z).

Remark 2.2. Let us fix an 2¢ € X.

If we use Lemma 2.2 for F(z) = T'(x + xg) we get:

Let 0 < 8 < ¢ be such that D(T) NintB(xg,c) # 0 and (y,z) > 0, for all x € X with
d <|lz|]| € & and for all y € T(z + o).

Then there exists T € B(xo,d), such that 0 € T(T).

Definition 2.1. Let F : X x W ~ X* be a sct-valued map and let yo € F(xo, wo).
We say that F is consistent with respect to w at (zg, wo, Yo) in a neighborhood Wy of
wo, if there exists a function B : Wy — Ry, continuous at wg, with f(wy) = 0, such
that for all w € Wy there exists (2, yu) € GraphT (-, w), satisfying ||z, — zo|| < B(w)
and [|yw — yol| < B(w).

Remark 2.3. For example, F is consistent in w at (zo,wy, yo), if F(-, we) has a
continuous selection trough (xg, yo) € GraphF (-, wq).

In [4] it is used a stronger assumption (z,, = z¢ for all w € W), but in the study of
the parametric variational inequalities this form cannot be used. We will show also
that the normal cone operator is consistent if the projection operator is continuous

with respect to the parameter A.

The following theorem is the generalization of the Theorem 4.3 of [1], in the case of
reflexive Banach spaces. We will suppose that X is renormed strictly-convex with

strictly-convex dual.

Theorem 2.1. Let us assume that:
i) 0 € F(zo, wo);
i) F is consistent with respect to w at (g, 1w, 0) tn Wy,
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i11) the set-valued mappings F(-,w) are marimal-monotone and p-uniformly-monotone
for all w € Wy.
Then there ezists a neighborhood W1 of wg and a unique mapping x : W1 — X,

continuous at wq, such that x(wg) = xp and 0 € F(z(w), w), for all w € Wi.

Proof. Let us fix 0 < € < £, such that B(zg,€1) C Xo. Let W C Wy be a neigh-
borhood of wy, such that f(w) < €;, for all w € W'.

Let 0 < § < e and w € W’ be choosen arbitrarily.

Then D(F(-,w)) N intB(zo,e,) # 0, because from assumption i) , there exists
(Tw,Yw) € GraphF (-, w), such that ||z, — 2oj| < B(w) < €1 and ||yw|| < B(w).

Let us choose z € X, with § < ||z|| < ¢ and y € F(z + &y, w). Then

e(llzlDNzll € (Y= v 2) = (¥, 2) — (Yu, )

and hence

(v.) > 9(6)5 — eflw) .
Let us denote My, = {6 > 0 : dp(8) > ef(w)}.
We can see that M,, # { for all w in a neighborhood W; C W’ of wg and inf My, — 0,
when w — wy. So, we can choose a selection §(w) € My, such that 6(w) — 0, when
w — wy.
Using Remark 2.2 we can find, for all w € W, a solution z(w) € B(zyw,d(w)) of
[3] and this solution is unique because of the g-uniform-monotonicity of F(-,w). We

have also

llz(w) = zoll < ll2(w) = zwll + l|lzu — 2ol| < 8(w) + Hw) =0,

when w — wy.

Remark 2.4. In the case when F is a single valued mapping the assumptions of
Theorem 2.1 can be written as:

1) 0 = F(zo, wo);

i1) the mapping F is continuous al (zo, wo);

it1) the mappings F(-,w) are hemicontinuous and @-uniformly-monotone on Xy, for
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allw € Wy.

In the following two corollaries we will study the continuity of the solutions in a

neighborhood of the fixed parameter wg.

Corollary 2.1. Let (W, d) be a metric space.
If we replace assumption ii) of Theorem 2.1 by:
') the set-valued mappings F(x,-) are pseudo-continuous on Wy, for all z € Xo,

then the mapping z is continuous in a neighborhood of wy.

Proof. We will show that the pseudo-continuity at (wg,0) € Graph F(zo, ') implies
the consistency condition ii). Indeed, there exist neighborhoods U of 0x., V of wg

and a function 8 : Ry — Ry continuous at 0, with 85(0) = 0, such that
F(zo,wo)NU C F(zo,w) + Bo(d(w,we))B(0,1)

and
F(zo,w)NU C F(zo,wo) + Bold(w,wo))B(0,1)

for all w € V. Hence, for 0 € F'(xg,wp) NU and for all w € V, there exists z, €
F(zo,w) such that ||z,|| < Bo(d(w,wq)).

Now we use Theorem 2.1 to obtain a neighborhood Wi of wy and a unique mapping
r: Wp — X, continuous at wg, with z(wp) = 2o and 0 € F(z(w),w) for all w € W;.
The continuity of the mapping z at wq implies that there exists an open neighborhood
W{ C W, of wp, such that 2(w) € int X, for all w € W].

If we choose w € W] arbitrarily, a constant 7 > 0, such that B(x(w),7) C X, and
we use the pseudo-continuity of F(z(w@),-) at (w,0), which implies the consistency
at (z(w),@,0), then we can use Theorem 2.1 to find a neighborhood W C W, of @
and a unique mapping T : W — B(x(W).F) continuous at W, such that T(w) = z(w),
and 0 € F(Z(w), w) for all w € W. The uniqueness of the mappings ¢ and T implies
that they coincide on W, so we have proved the continuity of the mapping z at w.
Because W has been choosen arbitrarily, the continuity holds on W{.
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Corollary 2.2. Let (W, d) be a metric space. Let us suppose that in Theorem 2.1 we
replace assumplion i) by:
iiy) there exists a constant L > 0 and for each © € X there exists a neighborhood

Uy of Ox. such that
F(z,w)NU; C F(z,ws) + Ld(w;,w2)B(0,1)

for all wy,ws € Wy,

and assumption iit) by:

itiy) the set-valucd mappings F (-, w) are marimal-monotone and strongly-monotone
with a constant a > 0, for all w € Wy.

Then the mapping x is Lipschitz-continuous, with the constant %, in a neighborhood

of wy.

Proof. Using Corollary 2.1 we obtain a neighborhood W{ of wq, such that the
mapping « is continuous on Wj.
Let us choose w;, w2 € W] arbitrarily. Assumption #ip) implies that for z(w;) € X,

there exists a neighborhood U of 0x. such that

Fle(uw),z)NnU C F(x(wy),t) + Ld(=,t)B(0,1)

for all z,t € W,.
Hence for 0 € F(x(uq),w;) N U there exists z3 € F(x(w;),ws) such that ||z3]| <
Ld(w;,wq). Then

afle(wn) = 2(w)]* < (22— 0, 2(w)) — z(un)) <

< lz2llfle(wer) = z(wa)ll -

So,

L

[l (wy) = x(ws)|] < —d(wy,wa) .

a
In the followings we will apply Theorem 2.1 in the study of VI(w, ). We suppose
the consistency of the normal cone operator instead of the continuity, with respect
to parameters, of the projections. The adventage of this approache is that the as-
sumptions a-d) of Theorem 2.2 are independent from the geometrical properties of the
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reflexive Banach space X. We will show also that, in locally-uniform convex Banach
spaces with locally-uniform convex dual, the consistency is a weaker property that
the continuity of the projection. Assumption #i¢) of Theorem 1.1, due to Proposition

1.2, implies the continuity of the projections which it is supposed also in {1] and [3].

Theorem 2.2. Let us suppose that:

a) 0 € f(zo,wo) + Nc(ao) (o),

b) f is continuous on Xo x Qo;

¢) the mapping N (x,A) = Neoyax, () is consistent with respect to X at (zo, Ao, —f (20, wo))
n Ag;

d) the mappings f(-,w) are p-uniformly-monotone on Xy, for all w € €.

Then there exist neighborhoods QU and Ay of wy and Ay and a unique mapping

r: Q) x A = X, continuous at (wg,Ao), such that z(wg,Ao) = zo and 0 €

f(a:(w,/\),w) + NC(A)(:C(“}"\))'

Proof. Let us denote W = Q@ x A and F(z,w) = F(z,w,A) = f(x,w)+ Neopynx, ().
The mappings F(-, w) are maximal-monotone. These mappings are also p-uniformly-
monotone on Xg as a sum of a p-uniformly-monotone and a monotone mapping.
Assumption c) implies the existence of a function 51 : Ag = Ry, continuous at Ag,
with £ (Ag) = 0, such that for all A € Ay there exists (ry.ny) € GraphN(-, A) such
that J|zx — zo]| < B1(A) and ||na + f(zo,wo)|| < B1(A).

Let us choose (w,A) € Qo x Ag.

We denote z, » =z and y, » = nx + f(za,w).

Then y, » € F(xw r,w,A) and
lywall < llna + f(zo,wolll + [If(2x,w) = f(zo,wo)|| <

< Bi(A) +If(zx,w) = f(zo,wolll = Blw, A) .

Using the continuity of f, we get f(w,A) — 0, when (w,\) = (w0, Ao), hence the
assumptions of Theorem 2.1 are satisfied and the existence and continuity at (wg, Ao)

of the solutions of 0 € F(x,w) are proved.

When (w, A) is close enough to (wo, Ag), then z(w, A) € int.Xy and hence Ng(xy(z(w, A)) =
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Neaynx, (2(w, A)), so the proof is complete.

Remark 2.5. We observe that if in Theorem 2.2 we suppose the same type of pseudo-
continuities for the set-valued mapping N, as in the previous corollaries for F, then

we obtain same continuities for the mapping z.

Definition 2.2. [12] Let " C X be a nonempty, closed, convexr set. The projection
onto C is the mapping Pc : X* — X defined by

Pe(a®) = (J + Ne)7' (z%) .

In the case when X is a Hilbert space, this i1s the metric projection onto C.

Let X be a locally-uniform convex, reflexive Banach space, with X* locally-uniform
convex. In this case the normalized duality mapping is continuous from the strong
topology of X to the strong topology of X*.

Let us define the mapping P : X* x A = X by

P(I*,/\) = Pc-(,\)nxo(z*).

The following result shows that the continuity of the projection with respect to a

parameter implies the consistency of the normal cone operator.

Proposition 2.1. If for an ng € N(zg, Ag), P(Jza + ng, ) is continuous at Aq, then

N s consistent with respect to A at (xg, Ao, ng) in a neighborhood of Ag.

Proof. Let us take zy = P(Jry+ ng, A). Because of 2o = P(Jzg + ng, Ao) and the
continuity of P hold ||zx — x¢|| = 0, when A — Aq.

We have also

Jrog+ng € Jzy + N(za, )
and hence

Jzog+ng—Jzx € N(zp,A) .
We can take

ya =Jzo+mno— Jzy,
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B(A) = max {|[zx — zol|, ||[Jzx — J20o|| }

and the consistency of N is proved.

3. Continuity of the projection with respect to a parameter

In this section, assuming the pseudo-continuity of the set-valued mapping
C, we will show that the continuity, with respect to a parameter, of the projection
operator holds in a uniformly-convex Banach space. We cannot obtain the same type
of Holder-continuity as in Proposition 1.2 because, as will be shown, that holds only

in Hilbert-spaces.

Proposition 3.1. Let (A, d) be a metric space.

Let A : Xo = X* be a continuous, p-uniformly-monotone mapping. Let us suppose
that the set-valued mapping C is pseudo-continuous at (Ao, zo) € GraphC and 0 €
A(zo) + Nc(ag) (20)-

Then there exist a neighborhood V' C Ag of Ao, a function f; : Ry — Ry continuous

at 0, with 31(0) =0, and a constant s > O such that the generalized equation
0 € Alz) + Ne(z) (3.1)
has a unique solution 2(\) € B(zo,s) for all A € V and also hold
@ ([lz(A) = zol) ll2(A) — zoll < 51 (d(A, o)) - (3:2)

Proof. We choose a constant 0 < s < r such that the pseudo-continuity of C' can be
written as:
- there exist a function @ : Ry — R continuous at 0, with 3(0) = 0, and a neigh-

borhood V' C Ag of A\g such that
C(Xo) N B(zo,s) C C(A) + B(d(\ Ao)) B(0, 1)

and

C(A)N B(ra,s) C C(Ao) + B(d(X, Ao)) B(0,1)
27
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for all A € V.

Using the continuity of 8 at 0, we can choose € > 0 such that B(Xp,e) C V' and
B(d(X, Xo)) < s, for all A € B(Xo,€).

Let us define V. = B()\o,€).

Let A € V. be choosen arbitrarly. Then the inclusion
zo € C(Ao) N B(ro.s) C C(A) + B(d(A, X)) B(0,1)
implies the existence of an uy € C(A) such that
llzo — uall < B(d(A, X)) < 5.

This means that C'(X\) N B(xg, s) is nonempty for all A € V. Corollary 32.35 of [13]

shows that the generalized equation
0 € A(z) + Ne(nB(ro,s) ()
has a unique solution z(A) € C(A) N B(xg,s). So
(A(z(N)), u—z(X)) >0

for all u € C(A) N B(xyp, s).
The pseudo-continuity of the set-valued mapping C' implies that for 2(\) there exists
an element ug € C'(Ag) such that ||x(A) — uo|| < B(d(M, Ao)).

Using the -uniform-monotonicity of A we obtain
@ (Ile(A) = zoll) [le(A) = zol| < (A(2(A)) = Alxo) , 2(A) = 20) <
S <A(.B(/\)) — A(-TO) s -l'(/\) - .L‘()) + <A(.lfo), Ug — .230) +

+ (Alz(N)), ur —z(})) =

= —(A(z(A), un = 20) + (A(20), uo — z(}))

IA

< NlAGD)IHIus = 2oll + [[A(zo)ll w0 — (M| <

< 2MB(d(M Ao))
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where M = sup {||A(z)|| : = € B(zo,s)} is finite, because a continuous, monotone

mapping is bounded on the interior of its domain. The inequality
@ (llz(A) — zoll) llx(A) = zoll < 2MB(d(A, Ao))

means that 2(A) = zg, when A — Ag.
We can choose a neighborhood V' C V. of Ag, such that |[z(A) — zo]| < s, for all

A € V. This means that for A € V

Ne)(x(A)) = NeynB(zo,s)(2(A))
and hence z(A) is a solution of the problem (3.1).

The inequality (3.2) is satisfied with gy(r) = 2Mp(r).

Corollary 3.1. If in Proposition 3.1 we suppose that the sel-valued mapping C 1s

pseudo-continuous around (Ao, xy), then
@ (llz(A1) — (X)) le(A1) —2(A2)] < Bi(d(A1,A2))
forall \j, Ay € V.
Proof. Let us choose the constant 0 < s < r and the neighborhood V' C Ag such that
C(A1) N B(xo,s5) C C(A2) + B(d(A1.A2))B(0,1)

for all Aj, Ay € V.
As in the proof of the Proposition 3.1 we obtain the neighborhood V of A¢ and the
solution r(A) of (3.1), for all A € V.
Let us choose A, Ay € V. For z(\) € C'(A) N B(zo, s) there exists uy € C'(A2), such
that

llz(A1) = ual| < B(d(A1, A2)) -

For z(A2) € C(A2) N B(xg, s) there exists u; € C(A;) such that

llz(A2) —wi|| < B(d(A1,A2)) -

Then
@ ([lz(A1) = z(A)]]) [le(Ar) —z(Aa)]] <
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< (A(x(A1)) — A(z(A2))» (A1) — 2(A2)) <

< (Ax(M)) = Az(X2)) s 2(M) — 2(A2)) + (A(2(A1)), w1 — (M) +
+ (A(z(Aa)), ua — (X)) =
= (A(z(M)), ur —z(A2)) = (A(z(A2)), 2(M) —u2) <
< NAEADIHR — 22l + (A 2(A1) — wo]] <
< 2MB(d(A1, A2)) = Bi(d(Aq, A2)) -

Corollary 3.2. Let (A,d) be a metric space and let X be a uniformly-convexr Banach
space. If the set-valued mapping C is pseudo-continuous at (Ao, o) (resp. around
(Ao, o)), then P(-,z*) is continuous at Ay (resp. in a neighborhood of Xy ) for all
t e X*.

Proof. Let us choose », R > 0 such that z¢ € int B(0, R), B(zo,r) C B(0, R). Let us
fix an element z* € X*. We use Proposition 3.1 (resp. Corollary 3.1) in the case of
the mapping A : B(zo,7) = X*, defined by A(z) = J(z)—z*, which is ¢g-uniformly-
monotone due to Proposition 1.1. In this way we obtain a neighborhood V of Ag and
a unique mapping ¢ : V — X continuous at Ag (resp. in a neighborhood of Ap), such

that for all A € V' we have
0 € J(x(A)) =z* + Nepy(e(A) ,

which means that z(A) = P(2*, A).

Remark 3.1. If we suppose that C is pseudo-continuous around (Ag,zo), then
P(-,z*) is continuous in a neighborhood of .

We observe that in a uniformly-convex Banach space, which is not a Hilbert space,
we cannot prove the Holder-continuity of Proposition 1.2, even when C is pseudo-
Lipschitz continuous. The Holder-continuity holds only in a Hilbert space because
only in this case is the normalized duality mapping strongly-monotone.
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4. Parametric variational inequalities

In this section we generalize Theorem 1.1, on the continuity of the solutions
of VI(w, ), in the case of reflexive Banach spaces. The continuity of the projection
operator or the consistency of the normal cone operator will be not supposed. A
consequence of Theorem 4.1 is that all the results from (1], [3], (8], [11] remain true
in reflexive Banach spaces.

We suppose that X is renormed strictly-convex with strictly-convex dual and let (A, d)

be a metric space.

Theorem 4.1. Let us suppose that:

a) 0 € f(xo,wo) + Nc(ao)(Zo)s

b) f is continuous on Xo x Qp;

c) the mappings f(-,w) are p-uniformly-monotone on Xy, for all w € Qo;

d) the set-valued mapping C is pseudol-continuous at (Mg, zo)-

Then there erist neighborhoods Q' of wg, A’ of Ao and a unique mappingz : Q' x A’ —

Xo continuous at (wg, Ag), such that x(wo, Ao) = zo and
0 € f(:u(w,/\) ' OJ) + NC(/\)(I(“"a/\))

forallwe Y, Ae A
Proof. We choose the positive constants ¢, r small enough to
B(d(A, X)) < 7,

C(Ro) 0 B(zo,r) C C(N) + Bd(\ A BB, 1)
and
C(A) N B(zo,r) C C(Xo) + B(d(X, X)) B(0,1),

for all A € B(\o,¢).
As in the previous proofs, for all A € B(Ag,¢), the set C(A) N B(zo,r) is nonempty.

Hence, for all (w,A) € o x B(Ao,¢€) there exists a unique element z(w, A) such that

0 € f(z(w.A),w) + Nepy(z(w,A)) .
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Using Proposition 3.1 we deduce that for all w € ¢ the mappings z(w, -) are contin-
uous at A\g and Theorem 2.2 implies that z(-, A¢) is continuous at wp.

The above continuities shows that the mapping z is continuous at (wo, Ag).

Remark 4.1. As in the previous section, if we suppose that the set-valued mapping
C is pseudo-continuous around (Ao, Zo), then the solution mapping z is continuous in

a neighborhood of (wyg. Ag).

5. Applications

The reason of the following examples is to show that Theorem 2.1 is usefull in
the study of the continuity of the solutions of parametric integral equations and evo-
lution differential inclusions. We will also show that the consistency condition appear
under well-known assumptions and it is important because some of the mappings are

not defined everywhere, they have only dense domains.

Example 5.1. Let (a,b) C R be an open interval, let p,g > 1 be such that
%+ % =1, let Ap € R, let Ag be a neighborhood of A\¢ and let ug € LP(a,b).

We suppose that the mappings F : (a,0) x R x Ag > R and K : (a,b) x (a,b) = R
satisfy the following conditions:

(F1) the mappings F(-,7,\) are measurable for all r € R and A € Ao,

(Fy) the mappings F(x,-, A) ave continuous a.e. & € (a,b) and A € Ay,

(

F3) for each A € Ay there exist g € L9(a,b) and ¢y > 0 such that

|F(z, 7, M) < galz) + exlrfP™!

forallr € R and z € (a,b);
(F4) there exists a constant d > 0 such that

(F(z,r1,A) = F(z,ro.A)) (r — r2) > dlry — raf?,

for all z € (a,b), r1,72 € R, A € Ag;
(F5) the mappings F(-,ug(-), A) converge uniformly to F(-,uo(-), Ao) on (a.b), when
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/\—}/\0;

(K1) there exist constants cy,ca > 0, s,t > 1 such that

b :
(/ IK (2, 9)* (la:)
b g
(/ |K (2, ) dy) < ca, ae z€(ab),

p=s, <1~§>P5t;
p

(K2) for all u € LP(a,b), u+# 0 we have

IN

c1, ae yE€(ab),

A

b b
/ / K(z,y)u(z)u(y)dedy > 0.

Remark 5.1. Assumptions (F3) and (F,) do not exclude. We can take, for example,
F(z,r,A) = A + |r|P~?r.
Assumptions (F}), (F2), (F3) imply that ([9]) for all A € Ag the mappings (-, ) :
LP(a,b) — L%(a,b). defined by H(u,A)(z) = F(z,u(x),A), are well-defined and
continuous.
Assumption (F}) implies the @-uniform-monotonicity of the mappings H(-, A), with
w(r) = drP~!. This means that the strong-monotonicity is satisfied locally when
1 < p <2 and is not satisfied when 2 < p.
Assumption (K1) implies that ([9]) the mapping G : L9(a, b) — LP(a,b), defined by

b

@) = [ Kw)ds,

a
is well-defined and continuous (not nescesarrily compact).
Assumption (K'2) implies the strict-monotonicity of G.

Let us consider the following parametric Hammerstein integral equation:

b
u(x) + / K(z,y)F(y,u(y),\)dy = w(zx). (5.1)
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Proposition 5.1. Let us consider that assumptions (Fy) — (Fs), (K1) — (K2) are
satisfied and there exist ug,wo € LP(a,b) such that

, .
uo(z) + / K(z,y)F(y, uo(y), Ao)dy = wo(x).

Then there exists a unique mapping u : LF(a,b) x Ag = LP(a,b) such that u(w,A) s
a solution of (5.1) for all (w,X) € L*(a,b) x Ao, w(wo, Ao) = uo and the mapping u is

continuous at (wq, o).

Proof. The existence of the solutions u(w, A) is proved in [9]. We will prove now the
continuity.

Equation (5.1) can be written as
v+ GoH(u,A) = w
or equivalently
0€ H(w,\) = G Hw—1) .
We define the mapping T : LP(a,b) x L"(a,b) — L9(a,bd) by

T(w,u) = -G N w—u).

The mappings T'(w, -) are linear, continuous, maximal-monotone and strictly-monotone
and hence G~! is linear, continuous, maximal-monotone on Dom G~!. We observe
also that in this case Dom G~! is dense in L?(a,b) ([12]).

Let us fix w € LP(a,b). Then we can choose u, € LF(a,bd) such that ||u, — uol| <
llw —wo|| and w—u,, € Dom G~!. Hence G~ (w—1u,) = G~ }(wo—1up), when w — wy,
so we proved the consistency of T' with respect to w at (ug,wo, T'(wo, o))-
Assumption (Fs) implies that the mapping H (uy, -) is continuous at Ag and using the
continuity of the mappings H (-, A) we conclude that H is continuous at (ug, Ag). This
continuity together with the consistency of T implies that H + T is consistent with
respect to (w, A) at (wo,wo, Ag, 0).

Now we can use Theorem 2.1 for the mapping H + T to get the desired continuity.
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Example 5.2. Let H be a Hilbert space. Let us consider the following problem:

u' + A(w,A) D
() 3 f 62
u(0) =0
in the case when T > 0, p.q > 1, %+% =1, fe L0, T;H), o € R, Apis a

neighborhood of Ag, 4 : LP(0,T; H) x Ag = L9(0,T; H).

Definition 5.1. Let X and Z be topological spaces. A set-valued mapping F : X — Z
is called lower-semicontinuous at (xg, z0) € GrafF, if for all neighborhood Zy of zg

there exists a neighborhood X of xq such that F(z)NZy # 0, for all ¢ € Xo.

Lemma 5.1. [13] The linear mapping L : LP(0,T;H) — L9(0,T; H), defined by
L(u) =« and DomL = {u€ W'r(0,T; H) : u(0) = 0}, 2s mazimal-monotone.

Proposition 5.2. Let us suppose that:

a) there exist ug € Dom L and vy € A(ug, Ao) such that ug + vo — f = 0;

b) the set-valued mapping A is lower-semicontinuous at ((ua, Ao) , vo);

c) the set-valued mappings A(-, A} are marimal-monotone and p-uniformly-monotone
for all X € Ao.

Then there exist a neighborhood A’ of A\g and a unique mapping v« : A’ — LP(0,T; H)
such that u(Ao) = ug, u(A) is the unique solution for each A € A’ for (5.2) and u is

continuous at Ag.

Proof. Let us denote X = LP(0,T; H). Assumption b) implies that for all € > 0
there exists 7 > 0 such that, for all (v, ) € X x Ag, with ||u—wuo|| < 7, |[|A = Xo|| < 7,
hold A(u, ) N B(vg,€) # 0.

Hence for all £ > 0 there exists vy x € A(u, A) such that ||v, x — vo]| < €.

Let us consider the sequence (€5)neN, €n = %, and a corresponding sequence (7,)neN
converging to 0 such that B(Ag,71) C Aq.

Let us choose arbitrarily A € B(Xo,71). Then for all u € B(ug, 1) we have A(u, A) N
B(ug,1) # 0, so B(ug,m) C DomA(:,A). In this way we can see that L + A(-, )
is maximal-monotone and as a sum between a monotone and another y-uniformly-
monotone mapping, is p-uniformly-monotone.
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Let 7,, be the smallest number in the sequence (7,)nen for which A € B(Aq, 7a,).

Then there exists vy € A(uo, A) such that ||vy — v]| < 2. Hence

1
I|L(uo) + va — fIl = [|L(w0) 4+ va — L(uo) — wol| = |loa — wo|| < e
We define the function 8 : B(Ao,m1) = Ry by
B(\) = max {n i} .
ny

Using this function @ we conclude that the mapping L + A — f is consistent with
respect to A at (ug, Ao, 0) in B(Ao,71). The conclusion of this proposition follows now

from Theorem 2.1.

Example 5.3. Let  C R” be a bounded domain, p, ¢ € Ry such that 2 < p < 400,
%+%:landlet/\eR+‘
We denote X = W, 7(Q) and

n

a(u,v,A) = A(?‘_‘;

Ou

dx;|  Or; 0x;

r=2 ,
Ou O + Auv) de |

Fr(v) = /1 f(z)v(z)dz .
§
Let us consider the following problem:

- for f € LI(Q) and A € Ry, find v € X such that
a(u,v,A) = Fy(v), forall veX. (5.3)

Let us define the mapping A: R4 x X — X~ by

P=2 Hu Hu
—_— A dz . 5.4
(91’,‘ 3Ii + uv) I (d )

n

AN u)(v) = a(u,v,\) = /n (Z

i=1

Au
81-,-

Proposition 5.3. [13] For all A € Ry and v € X, the mapping A(\ u) is well-
defined and the mappings A(\,-) : X — X* are continuous, @-uniformly-monotone,

with o(r) = ¢;rP~ 1L,

Proposition 5.4. For all A € Ry and f € LI(Q), the problem (2.3) has a unique
solution u(\, f) € LVOI‘p(Q) and these solutions are continuous in \ and f.
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Proof. Using the surjectivity and the p-uniform-monotonicity of the mappings A(-, A),
we deduce that for all f € LI(2) and A € Ry there exists a unique element u(A, f) €
X such that A(u,\) = Fy.

For all Ay, A2 € R4 and u,v € X hold

(A(u, A1) — A(w, A9)  v) = /(/\1 = X)uvdr <
Q
< = Agffullez flolle < A= Aafelul[{fo]] -

Hence

NAGwe, Ay) = A(u, A2 < efAr = Ao |1,

which means that the mappings A(w, -) are continuous on R.

Let us fix Ao € Ry and fy € LI(Q).

Theorem 2.1 implies the existence of a neighborhood Ag x Up of (Ag, fo) and of a
unique mapping ug : Ag x Uy — X continuuous at (Ag, fo), such that ug(A, f) is
the unique solution of the problem (2.3) for all (X, f) € Ag x Uy. The uniqueness of
the solutions implies that the mappings o and u coincide on Ay x Uy. Hence the
continuity of u at (Ao, fo) 1s proved.

(Ao, fo) being choosed arbitrarily, the continuty holds for all (A, f) € Ag x Up.
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ON THE GOURSAT PROBLEM FOR HYPERBOLIC
FUNCTIONAL-DIFFERENTIAL EQUATIONS

LUBOMIR P. GEORGIEV

It is known that in many problems of nonlinear fields theory, plasma physics
and etc. (cf. [1]) arise hyperbolic functional-differential equations with so-called ’dis-
tributed’ deviations (cf. [2]). The main purpose of the present. paper is to formulate
conditions under which there exist solutions of the Goursat problem, characteristic
of functional-differential equations with ’concentrated’ deviations (particular case of
distributed deviations), using the fixed point theorems, proved by Angelov [3].

Typical in this respect is the following simple example, where the disconti-

nuity of the initial function generates the discontinuity of the solution:

Ugy (2, y) = k(z, Yugy(z — 1,y = 1), (z,y) €RLI={(z,y): >0, y> 0}
U(Z‘,y) = W(r)y)v (w~y) (S AO UBO,

where
- 8%u ‘
v 8xdy’

Bo={(z.y): -1<2<0, y> -1}

Ao ={(z,y): z> -1, -1 <y <0},

1, (z,y) € RS URY,
plr,y) = BT ={(z,y):2>0, y=0}, By ={(x,y): z=0, y> 0}
0, (z,y) € AgUBp\ ([[1":_ UIR‘K_)

' 1
k(z,y) =1- 1+n,(;z:.y)EA,,UB,, (n=1,2,...),
Av={(z,9): 2>n-1,n—-1<y<n},Bpo={(z.y): n—-1<z<n, y>n-1}.

Integrating the above equation we have

u(z,y) — k(z,y)u(z — 1,y — 1) = Ci1(x) + Ca(y).
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Then the conditions
u(0,0) — k(0,0)u(—1,—1) = Cy(0) + C2(0),
u(z,0) - k(r,0)u(z — 1,-1) = Cy(z) + C2(0),
u(0,y) — k(0,y)u(-1,y — 1) = C1(0) + C’z(ﬂff)

imply C;(z) + Ca(y) = 1, so that we obtain the problem

k(z,y)u(z —1,y—1)+1, (z,y) €eRY
<P(.‘l.',y), (x,y)EAOUBQ

u(z,y) =

It is quite obvious that when (x,y) € A,UB, then (x—1,y—1) € A,_1UB,_,

and we can construct immediately the following solution

{

0, (z,y) € (40U Bo)\ (R URY)

1, (r,y) € (4:UB)\ (RS URY™

(1= +1, (2.9) € (42U By) \ (R URYT?)
u(z,y) =4 --.
-H0-H.. (1-F)+0-HYa-1.. . (1-55)++

+(1- ) +1= 328 (0,0) € (4 U Ba) \ (RT™ URY)

<

where R = {(z,y) : = > n, y =n}, RY" = {(z,y) : z = n, y > n},
n=20,1,2,...

The fixed point technique for operators in metric spaces has been very well
developed (cf. [4]), but the above example shows that the hyperbolic functional-
differential equations of neutral type (following the terminology introduced in [5])
possesses solutions with locally essentially bounded mixed derivative ugy. (We note
the known results [6]-[8], where only continuous solutions have been obtained with
restrictions on the deviations of retarded type.) Moreover the example shows: |

1. the Goursat problem allows L9 -solutions so that it cannot formulate as
an operator equation in Banach or metric space.

2. the operator defined by the right-hand side (even in the linear case) will
be not a global contraction because of esssup{k(z,y) : >0, y >0} =1.
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That is why, we shall use the fixed point theorems from [3].

Let X be a Hausdorfl sequentially complete uniform space with uniformity
defined by a saturated family of pseudometrics {pq(Z,y)}ae4, A being an index set.

Let ® = {®,(t) : a € A} be a family of functions ®,(t) : [0,00) — [0, 00)
with the properties

1) ®,(t) is monotone non-decreasing and continuous from the right on [0, 00);

2) @,(t) <t, V>0,
and j : A — A is a mapping on the index set A into itself, where j%(a) = a,
M) =j(* (), kEN.

Definition. The map T : Y — Y is said to be ®-contractionon Y if

' pa(T:c,Ty) < Qa(ﬂj(a)("‘v y))

forevery z,y€eYanda € A, Y C X.
Theorem 1. (theorem 2 from [3]) Let us suppose
1. the operator T : X — X is a ®-contraction,
2. for each a € A there exists a ®-function ®4(t) such that

sup{®;x(a)(t) : k=0,1,2,...} < Balt)

and ®,(t)/t is non-decreasing;

3. there exists an element o € X such that pjx(4)(zo,T20) < p(a) < o0
(k=0,1,2,...).

Then T has at least one fired point in X.

Theorem 2. (theorem 3 from [3]) If, in addition, we suppose that

4. the sequence {pjr(q)(Z,y)}3Lo s bounded for each « € A and z,y € X,

ie.

Pix(ay(2,9) < q(z,y,0) <o (k=0,1,2,...).

Then the fized point of T is unique.
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Consider the general Goursat problem for hyperbolic functional-differential
equation:

Ugy(2,y) = F(z,y,u(A, 1), us(a, B), uy (6, £), usy (1, v)), (,y) ERY
u(z,y) = ’d’(l’, y): ul’(xvy) = dlr(zvy)’ “y(-’”:y) = '/’y(lay): (2)
u;y(l‘, y) = 1/}11/(1')3/)1 (Ivy) € Rz\sz

Wh("re F(&L’,y, 31,22,33,34), A = A(xvy)) T

- T(1:7y)7 a = a(xvy)v ,U = ,B(l"y),

0=0(z,y), « = w(z,y), p = p(z,y), v =v(z,y) and ¢(z,y) are given functions.
We set

v(z, y) = uey(2,y), when (z,y) € R2,

o(r,y) = Yry(z,y), when (z,y) € R\ RE
and after standard calculations, we obtain

z py
u(r,y)=<po(x‘y)+/o [) v(€,n)dnd¢,
Yy
wr(as) = pas) + [ vtz

w9 = eaw) + [ vl
where

po(x,y) = ¢(0,y) +¢(x,0) - (0,0),
901(‘1:):"/)1‘(‘1’10)' Y’?(y) :'l’y(ovy)v
so that the problem (2) corresponds the following problem

A T NG}
F(w,yv¢o+/ /v(&n)dnd«f-@]+/ v(a, n)dn. P+
o Jo 0
v(z,y) =

[’}
+/vmwammmxmweﬁi
0
p(z,y), (z,y) € RZ\RZ,

(3)

where Dy = po(A(z,y), 7(z,9)), 1 = pr1(a(z,y)), Pr = w2(k(z,y))-

Definition. The function u(z,y) is said to be a solution (in generalized
sense) of problem (2) if the function v(z,y) is a solution of problem (3).

[ee)

In what follows, we look for a solution of (3), belonging to Lf3..
42
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We say that the function G : R? — R? has the property (M) if inverse image
of every set with null measure is measurable.

Let us suppose:
(A1) ¢ is absolutely continuous;
¥(z,0),%(0,y), ¥=(z,0), %y (0, y) are continuous and ¢ = v, € L2 (R*\R3).

(A2) The functions A, 7,a,08,0,k,p,v : ]R?,_ — R are measurable, have the

property (M) (without A and ) and map bounded sets into bounded sets.
(A3) V (2,y) € R for which (A(z,y), 7(z,y)) € RE (or (afx,y),B(x,y)) €

R2, or (6(z,y),k(z,y)) € RE is fulfilled A(x,y) + 7(z,y) < z + y (respectively

+|
oz, y) + B(x,y) <z +y, or bz, y) +6(z,y) <z +y);
360 > 0 such that V (x,y) € ]Ri s (p(z,y)v(x,y) € ]Rlﬁ_ is fulfilled ye(xz, y) +
Ri x R* — R satisfies the
z4) and

viz,y) <z +y—do.
(A4) The function F(z,y, 21,22, 23, 24)
Caratheodory condition (measurable in z and y and continuous in zj,

the conditions:
|F(x,y, 21,22, 23, 24)| < Qu(=,y, |21, |22], 23], |2a])

‘F(w,y‘21,22,23,34) - F(xv y)—EhEZvES\EAl)l S
S Q'_’.(Iyyl lzl - E1|7 lzz - EZl) 23— E3I| |24 —24”)
—4 —
ts) : B x B, — [0,00) (B} = [0,00) x -+ x
4) € L[P:c(]]:{:?{-)x

where the functions Q4 o(z,y,t1,

[0,00) - n times) satisfy the Caratheodory condition, Q;(-,-,t
., t4) is non-decreasing in t1,...,t4 and

Jwe L“”(]Ri) such that V ¢ > 0 Qa(-, -, ¢,¢,¢,t) < tw(-, ') a.e. in IR_Q'_.

Q?(‘T‘ y) tlv s .
Let A be the set of all compact sets A C R2 Denote by Ky = K NR%, we

I(...:@

define the map _] A= A
. K,
iK)y=< i . . .
Kas U [\a,j U Ry, U I\uy, Ky ?é ]

AY aa,

where Kar = Ka x K7, Kop = Ko X Kp, K¢ = K¢ x K,

K ={(p(x,y),v(x,y)): (2,y) € K},

43




LUBOMIR P. GEORGIEV

[Ainf) Aaup],

Ainf <0< Asup

Ka = [O»Asup]’ Ainf > 0
[Ainfy O]: Asup S 0
[Tinf; Taup]) Tinf < 0< Tsup
K; = [O:Tsup]; Tinf Z 0
[Tinjy 0]) Tsup < 0
[,Binj‘ﬁsupL ﬂinf <0< ﬂ.mp
["ﬁ =9 [Ov ﬂ:ur]u ,Hinf Z 0
L [:Binf1O]7 ﬁaup S 0
[0infyasup]y oinf <0< gaup
Ky = T [O,Osup]v Binf >0
L [0inj)0]; oaup S 0
Ko =a(K), Kx=«(K)

(Aing =inf{A(z,y) : (z,y) € K4}, ..., 0.up =sup{f(x,y) : (z,y) € K} }).
It is obvious that j(K) is compact set and j'(K) can be defined inductively:
FHK) = j('Y(K)) for all { € N.
Now we assume:

(A )VKeAIKeA: j(N)cKVI=0,1,2,...

We prove the following existence-uniqueness result:

Theorem 3. If conditions (A1)-(A5) hold true, then there exists a unique
solution v(z,y) € L2, (R?) of problem (3).

Proof. Let X be the uniform sequentially complete Hausdorff space consist-
ing of all functions, belonging to L (R?), which equal ¢(z, y) for a.e. (z,y) € RZ\R?,

loc

with a saturated family P = {px : K € A} of pseudometrics

p(f,9) = esssup{e”XIFHD | f(2, 4) — g(2,9)] : (2,9) € K},

where K runs over all compact subsets of R? (with some A > 0).
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The operator T : X — X is defined by the formula:
Fry,s00+/ / f(&, m)dndg, w1+[ fla,n)dn, 6+
()@ y) = / £(6, R)E. F 3, ), (2,) € Y

o(z,y). (z,y) € R*\ R,
The measurability of T'(f)(z,y) follows from the fact that «, 3,0, «, u, v have the

property (M).
T(f) € L2 (R?) because of conditions A1, A4. Consequently T'(f) € X.

loc

Let A" C R? be any fixed compact set. Of Ky =  then T(f) — T(9) = 0
for all f,g € X ae. in K. Let Ky # 0. For ae. (z,y) € K N (R?\ R%) we have

T(f) - T(g) = 0.
For a.e. (2,y) € Ny we obtain (by means of (A4)):

IT(f)(z,y) =~ T(g)(z,9)| <
< Qo(x y,l/ / (f(E,m) — g(&,m))dndé], I/ (e, 1) — g(a,n))dn|,
1/ F(E.%) = g(€,m))dEL 1 (1t v) — gl )])

If (A(z,y), 7(z,y)) & RZ then
/OA /Or(f(f,n) —g(&,n))dndé =0
and respectively if (a(z, ), A(z.y)) ¢ R% then
/ " (tarm) gl m)dn = 0,
if (0(z,y),k(x,y)) & !R'i then
/ " UFE.R) — 9(6, ))dE =0,

if ()u(l‘a y)v I/(;L', y)) ¢ R‘i then f(ﬂr U) - g(ﬂ) U) =0.
For positive values of A(z,y), 7(z,y); a(z,y), B(z,y); 8(z,y), (z,y); p(z,y),

v(x,y) we obtain as follows:

I// f(&m) —g(&n) dnd€l<//|f£n 9(& m)|dnd¢ <
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A pT

<esssup{e D | f(€,n)—g(&,n)| 1 0<E<Auup, 0 < 7 < Toup} / / e+ dnd¢ =
0 0

=22k, (f,9) (2 =1)(e}=1) <AT2MB+) gy < ATZAEH) e (f, g) (e (A3)).

B8 B
| / (Flavn) = gl ))dn] < / | Flavm) — glam)ldn <
0 0

B8
< esssup{e™ @) | f(a, ) — glar )| 0< 7 < Buup}er® / My <
0
<A Yok, (F,9)e (€ —1) <AL gy (F,9) <A o (f,9) (ef(A3)).

In the same way we prove (by means of (A3)) that

]
| / (F(€.x) — g(€, K))dE| < AT+ e (£, ).
0

(i, v) = glu, v)| < X esssup{e™ @D [ f(p,q) — g(p,q)| : (. q) < K} <
< ARV ppe (f9) S AR p (f,9) (ch.(AB)).
Let A > 1. Chosing ¥ so that
AL o> 1
A" = max{A"}, A70) = 0=
Aho 0< by <1

we obtain (since Qa(z,y,t1,...,tq) is non-decreasing in t;,...,14)

IT(f)(=,y) — T(9) (=, y)| <
< Qo y, A7V gy ) (£,9), ATTNE ) s ) (£ 9),
ATV o (£,9), AT oy (£r9)) <
<A (fLg)w(z,y)  (cf.(A4)).
Define (for t > 0)
Blt) = { 0, it Ky =0
A wllpeo(ky), f Ky #0

We can find and fix A so that A7 > ||w||Lm(R1). Consequently @ (1) < t

Vt>0, VK €A and $g(t) is continuous non-decreasing in [0,00). On the other
hand

pr(T(f),T(9)) = pr (T(f), T(9)) < ®klpj(x)(f,9)),
ie. T: X = X 1s a $-contraction.
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YV K € A we set ’55 = & (recall that (A5) assures an existence of such a
[_?that K C K (1=10,1,2,...)) and so sup{®;ix)(t) : 1 =0,1,2,...} < D (t),
EKT(t—)- = const = non-decreasing.

Hence condition 1, 2 of theorem 1 is fulfilled.

We choose the element fy € X:

0, a.e. on ]Ri
fo(x)y) =
o(2,9), (2,y) ER?\ RS,

Then for any integer { > 0 we have

piv k) (fo. T(fo)) < pg(fo,T(fo)) = P}—(fo,T(fo)) =

+
= esssup{e "+ |F(2,4,50. %1, 72,0)| : (2,4) € K4} < 00

{i.e. condition 3 of theorem 1 is fulfilled).

Besides pji (k) (f,9) < p—}?—+(f,g) for abitrary f,g € X, i.e. condiyion 4 of
theorem 2 is also fulfilled.

All conditions of theorems 1 and 2 are satisfied. Therefore the problem (3)
has a unique solution v € L2 (R?).

We are going to formulate conditions for the existence and uniqueness of a
solution of (3) belonging to L}, (R?) for some p € (1, 00):

(A1’) The initial function 1 is absolutely continuous;

¥(x,0), %(0,y), ¥s(z,0), ¥y (0, y) are continuous and ¢ = ¥,y € LT (RI\R3).

(A4’) The function F(z,y,z1,%2,23,24) : [Rﬁ, x R* 5 R satisfies the
Caratheodory condition (measurable in z and y and continuous in z1,...,24) and

the conditions:
|F(z,y, 21, 22, 23, 24)| < a(z,y) + b(|z1] + |22] + |23] + |24])
|F(z,y, 21, 22, 23, 24) — F(z,y,%1,72,%3,24)} <
<wi(z,y)|21 = 71| + wolz2 — T2 + walzs — Za| +walzs — T4l

where a(-,-) € L}, (R2), b= const > 0, wy(, ") € LP(R3), w2 3(-) € LP(R}),

loc
wq = const >0
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(A6) The transformations

u=p(z,y)
v=1u(z,y)

u=o(z,y) u==z
v =k(z,y)

v=Yy

. * % D(“*)V) o) 2
are admissible, sufficiently smooth and af,, &7, Do) € L= (R]), where

(a*(a(z,9),9),9) = (z,9), (2.6 (z,k(2,9))) = (z,9),

(™ (u(z, ), v(2. 9)), v (u(z, ), v(2,9)) = (2,9).
Theorem 4. If conditions (A1°), (A2), (A3), (A4’), (A5), (A6) hold true,
then there exists a unique solution v(r,y) € L} (R?) of problem (3).
Proof. Let X be the space consisting of all functions, belonging to Lf (R?),

which equal p(z,y) a.e. (z,y) € IPZ'\FP?.;F, with a saturated family P of pseudometrics

o (£ 9) (/ [etsiisay) - (z,ynwxdy)" (K € A),

where A is the family of all compact sets in R?, A > 0.

The map j : A = A and the operator T : X — X are defined as in the proof
of theorem 3.

For any K € A, f,g € X we have T(f)(z,y) — T(9)(z,y) = 0, for ae.
(2,5) € K\ Ky;

If (x,y) € K4 # 0, then

IT(N) (2. y) =T (g) (e, y)P <

_(wlzw// F(E,m) — g€, m))dnde] + waly 1/ (o0, ) — g(a, m))dnl+
14
+ws(zx) I/ g(&, ))dE| + wa(f(p, )—g(ﬂvV)l) <
A T B
54P-‘(w';(x»y)| /O / (1) = 9(€. 7)) dnd€ P +2 (y)] /0 (o) = glor, m))dnlP+

/]
+w§(17)|/0 (f1€,x) —g(cf,ff))dfl”+wf§|f(#m)—g(u,l/)l”)-

If (A7), (a,8), (6, k), (1, v) € B2, then T(f)(z,y) — T(g)(z,y) = 0.
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If (A, 7) € R%, then (with 117+ ‘-} =1)

A T P
0 /0 (F(En) — 9(€,m))dnde

14
(/ / I£(€;m) g(&nldndg) =
LN ?
:(/0 /0e;(e+n—e—n)|f(6,n)-y(ﬁ,n)ldndg) <
a o e
S(/o /Oep(f+n)d77d5) /0 /oe-/\(£+ﬂ)lf(£’n)_g(frrmpdndfS

P—l 2(p~1) AA
<(B2) 7 e, (o <

1\ 2(r-1)
s(”—A—]) A, (£,9) (cL(A3).

If (a, B) € R, then
P

v
jo (e, m) — g(a,m))dn| <

P

8 P B
S(/O If(a,n)—y(a.n)ldn) =</0 eF(“*”'“'”)If(a,n)—y(a,n)ldn) <
< (/ (“”)dn) /p e~ @) | f(a,m) — g(a, n)|Pdn <

< (p—r 1) Aet) / et | (o) - g(a, )Py <
Q0

-1 B
< (p; I)P em+y)/ e~ Mot £ ) — g(a,n)|Pdy  (cf.(A3)).
0

In the same way (by means of (A3)) we obtain: if (6, k) € R%, then

0
[ rtem) - ste.mnee| < (25
o]

Hence

/ / e MHIDT(£)(2,y) - T(g) (2, y) P dady <
K

P _ 1 p—1 [’}
< (L) eA(w+y)/ e~ MER) | f(£, k) — g(€, K)|PdE.
0
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1\ 2p-1)
<4 ( (B—)\_l) pﬁ(m fr9 / / Pz, y)dedy+
p—1 p—1 ) )
+ (——’\—) /;{+ /Wg(y)‘/(; € +n |f(a>7l) g(“yﬂ)lpdnd:cdy+

_1 p-1 ]
* <p_r> /K / wh(z) / e MEFR) | £ (¢ k) — gl€, k) |PdEdady+

oMo / / e £, v) —y(u,V)I‘"dwdy)-
K4

Denote Ky = {y : (x,y) € Ky}, Kp = {z: (z,y) € K4 }. Consequently

4
[ [ah) [ e 00,m) gl dndedy <
S/ ‘-"‘27(”)/ /h ok (e, v)[e ™A+ f(w, n) = g(u, n)|Pdydudv <
Ky JKp

<ol i, (129) [ whlo)ds

Ky

and similarly

0
[, s [ e isten —atemrdezy <

< wpllneem2) P, (f1 9 / wh(u)du.

/ / M| £ (1, w) — g, v) Pdedy =
K4

D™, v') | <autw) p
YN f(u,v) — g(u, v)|Pdude <
/Kw/ Dl 1) 1/( g(u,v)]
D(p~,v")
<= oy, (f9)
= I D('U,'U) Lw(ﬁi) Kuv

Thus we receive the estimate

_ 2p—-2
pl;\,(T(f),T(g)) < 4r=lp J(]\)(f J)( (P \ 1) ”“)llle }\A,)+

p—1\""! p—1\""" 5
+ (T) Callwallfp(k,) + (T) Cullwalllp .y + A% Cuudl |,

Al U
where Co = |log || (R3) Cx = ”'”u”Lw(R?) Cuv = “——“J—v)—)

L= (R3)
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Define
(o3 (t) =

0, Ky=90
—2\2p—2 —4\P-1 A L (4wg)PC
{ A (22) T el oy + (3554) 7 Colloalll oy + (4572) " Cnllosll o, ) + S50,

Ky # "]

~Then px (T(f). T(9)) < @k (pjx)(f9)) VK €AV fg€X.
We can find and fix A > 1 so that

@w-2\?? ap—4\P7! .
(Z22) oty + (B0) Colloallay +

(4W4 )p C“u

YD <1

4;)—4)"’_l »
() ol +

for example
2
A > max{2%(p — 1)“‘01”%/"(“‘1)’ 49C/? (p - 1)”“"—’”1»(1}«;)*
4QCZ/P (p — ])”w;;”%p(nki) , Cb£50(4w4)1’/6o } .

Consequently ®x (t) < t, Px(t)/t = const and T is a ®-contraction.

K4 is bounded set = A(R}),7(K4),a(K4),£(K4) are bounded sets too,

so (A1’) implies 3 Cx = const > 0:
IF (2,3, 9o(D. 7). p1(a). @3(x), 0)] < a(z,y) + bCk € LE, (B3) (cL.(AL")).

We choose the element fy € X:

0, a.e. on R'i
f()(l',y) = 2 2
@(I,y), (Iyy) € R \R-I-

F(.l,‘, yvﬁPO(A1T)q‘Pl(a)“PQ(’C)»O)a a.€. on Ri N T(fo) ex
p(z,y), (z,y) e R?\RY.
and consequently
T (erixy < NT(SF) = T(f)llLexy + T (FollLe(x) <
< ( max WD) (T(f), T(fo)) + IT(f)llLr(x) <

T (zy)EK
< (K, \p)piry(f> fo) + 1T (folllLe (k) ¥V f € X.

4
CLurnamogy 7% )
Oc )

MaTEMaTICR Y
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But pjx)(f, fo) < Wfllzegrynmz) = T(f) € X,
Besides the estimates pjik)(fo.T(fo)) < pi(fo,T(fo)), pjuk)(f.9) <

K
pg(f,g) for any integer | > 0, V f,g € X (cf. (A5)) show that conditions 3 of
theorem 1 and 4 of theorem 2 are fulfilled. Using once again (A5), we check that
condition 2 of theorem 1 is also fulfilled, which completes the proof of theorem 4.
Acknowledgement. The author thanks Prof. V. Angelov for his very useful

suggestions.
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GLOBAL EXISTENCE AND ESTIMATES FOR SOLUTIONS OF
CERTAIN HIGHER ORDER DIFFERENTIAL EQUATIONS

B.G. PACHPATTE

Abstract. In this paper results on the global existence and estimates for
solutions of general higher order differential equations are established. The
main tools employed in our analysis are based on the applications of the
Leray-Schauder alternative and certain integral inequalities which provide

explicit bounds on the unknown functions.

1. Introduction
Let ri(t) > 0, i=1,2,...,n =1 and z(t) be sufficiently smooth functions on

[ =[to.T]. to >0, T > 0. Then for x(f) the r-derivatives are defined as follows

Dﬁo)r =z,

D,(.n).‘l,' — (D,(,"_.l);l,')l.
In this paper we consider the n-th order (n > 1) differential equation of the

form

(P) DMy = (¢, Dy, Dy, .., D"~ y),
with the given initial conditions

(Po) Dﬁ"‘)y(to):cm, m=0,1,2,...,n—1,

where f : I x R* — R is a continuous function, R denotes the set of real numbers and

¢m are given real constants. We define B = C"~!(I) = C"~!(I, R) to be the Banach
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space of functions u such that D™Dy is continuous on I endowed with norm
llul| = max{|Dulo, | DM ulo, . .., D Dulo},

where |ulp = max{|u(t)| : t € I}. In the past two decades there has been a great
deal of interest in the study of oscillatory and asymptotic behavior of the solutions
of equations of the form (P) and its various special versions. We choose to refer here
the papers by Fink and Kusano [3], Kusano and Trench [4], Pachpatte [7,8], Philos
[14,15], Philos and Staikos [16] and Trench [17,18] and the references given therein.
As noied by Nusano aud Ticich [(4,p.081], it scoms that very little is known
about the global existence and various other properties of the solutions of such equa-
tions in the literature. The main purpose of this paper is to establish some results
concerning the global existence and estimates for solutions of (Py) which in turn con-
tains in the special cases a number of higher order differential equations studied by
many authors by using different techniques. The main tools employed in our aﬁalysis

are based on the applications of the Leray-Schauder alternative and certain integral

inequalities which provide explicit bounds on the unknown functions.

2. Global existence of solutions

In order to obtain our result on the global existence of solutions of (P)—(Py),
we need the following theorem, which is a version of the topological transversality
theorem given by A. Granas in [2,p.61].

Theorem G. Let B be a conver subset of a normed linear space E and

assume 0 € B. Let F' : B — B be a completely continuous operator and let
UF)={x € B: v=\Fx for some 0 < A < 1}.

Then either U(F) is unbounded or F has a fired point.
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For our purposes, for any integers m and & with 0 < m <k < n—1, we

introduce the function R which is defined on I by

(1, itm =k
/LZ m 1 /sm+, 1 .
— R
Rmk (t) - to 7'm+1(sm+1) to 7'm+2(5m+2) (21)
Sk-1 1
T ds); ... dspminds cifm < k.
L /lo "A~(TL,-) / m+ m+1

In particular, for any integer k& with 0 < k < n — 1, we put
Ri(t) = Rox(t), t>to.

The following theorem constitute the main result of this section.
Theorem 1. Supposc that there exists a function a € C(I, Ry), Ry = [0, 00)
such that

n-1
|f(t, Dy, DMy, .. DI=Vy)| < a()H (Z ID,(-’"‘)yI> : (2.2)

m=0
where H : Ry — (0,00) is a conl'nuous nondecrcasing function. Then the problem

(P) — (Po) has a solution y in B provided that T satisfies

intT M(s)ds < /w ds_ (2.3)
° . H(s)
where
n-1 n~1
c= Z |('m'+ Z lcklRmk(’I):l ) (24)
m=0 k=m+1

in which Rk (T) is defined by takingt =T in (2.1) and

n-1 t s
1 1 m+32 1
M(t) = E / / —_— X 2.5
( ) rm+l(t) to Pm42(Sm42) to 7'm+3(sm+3) ( )

m=0

Sn-2 1 So=1
X / —«——/ a(s)dsdsp—y -+ X dsp 13dSm42,

to Tn-1(Sn-1) to
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Proof. First we establish the a-priori bounds for the problem (P)), -
(Po), A €(0,1), where

(P D™y = Af(t, Dy, DMy, ..., D"~ Vy).

Let y(t) be a solution of (P)x — (Py). Then y(t) and its derivatives can be

written as

n~1

t
. 1
Dﬁm) t)=cm + E cp Roe(t +A/ —_—X 2.6
y( ) ’ A( ) 0 7’m+1(9m+l) ( )

k=m+1
Sm41 1 Sn-2 1 Sn-1 __
x / - .. / S — / fly(s))dsdsn—y ... dsmyodsmyr,
to T‘m+2(5m+2) to 7'17—1(511—1) to

for 0 <m <n—1, where

Fly) = £(t. DOy(t), DDVy(t), ... D= Ny(t)), (2.7)

and Rmk(t) 1s defined by (2.1). From (2.6) and using the condition (2.2) we have

n-—1 Sm41 1
DIMy(t)] < e+ / / - X 2.8
Z I )I Z to 7'm+l -5m+1 Tm+2(5m+2) ( )
Sn-2 1 Sn—1 (
X —_— « x H D; m) dsds,, _1...ds;p4ads ,
/;0 rn—l(sn—l)/t; ( ';)l 1- n+ m+1
where ¢ 1s defined by (2.4). Define a function wu(t) by the right side of (2.8). Then
n—1
ST DI ()] < ut). w(to) =
m={
and
n—1 t
1 1 m+2 1
u'(t) < / / — X 2.9
< m=0 Tm1(t) Jiy Pmea(sSme2) Ji, Tm+3(Sm+3) 29)
.. / / S)H (n(s))dsdsn_1 X dsmyadsmes < M(0)H (u(t)),
to Pn-1(Sn— l) -
for t € I. From (2.9) it follows that
w'(t)
—— < M(t). 2.
H(u(t)) — ® (2.10)
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The integration of (2.10) from #; to ¢ and the use of the change of variable
and the condition (2.3) give
u(®) ds / w'(s) / T ® ds
- ——ds < M(s)ds < / M(s)ds < —_ 2.11
; H(u(s) Wi < J, M&b< | gy 1Y

From (2.1 1) it follows that «(t) must be bounded on I, i.e. there is a positive
n—1

constant « independent of A € (0, 1) such that u(t) < o and hence Z IDI™y(t)] < a
m=0

for t € I. Thus we have IDim)y(t)l <a,t€lfor0<m<n-1,and consequently

llyll < e
In the next step we rewrite the problem (P) — (P;) as follows. If y(t) =

n-1

z(t) + e(t), where e(t) = co + Z("'R"‘(()‘ t € I, then it is easy to see that z(tp) =

o) - elto) = 0, -

¢ 1 S1 1 Sn-2 1
A0 = /ro ri(s1) /to ra(52) /to Tao1(6n1) x (2.12)

x / " fr(z(s) + e(s))dsdsn— . ..dsadsy,
to

if and only if y(¢) satisfies (P)— (Py), where we have used the notation f*(z(s)+e(s))

for
F(5, DO (=(s5) + e(5)), DV (2(s) + e(s)), ..., DLV (=(s) + e(s)))-

Define F : By — By, Bo={z € B: :z(tg) = 0} by

Fz(t) = /' L / ! /_ L (2.13)
T i mils) Ji, rals2) Sy maci(sn-n) '
x/ " F7(z(s) + e(s))dsdsp—1 . .. dsadsy, -
to

for t € I. Then F is clearly continuous. Now we shall prove that F is completely
continuous.

Let {wx} be a bounded sequence in By, i.e. ||wi]| < @ for all k, where 3 is a
positive constant. From (2.13) and using condition (2.2) and setting M* = sup{M(t) :
tel}ande* = sup{]D,(nm)e(t)| :tel, 0<m<n-—1}, we have

D Emo < [ s [T
ty Tt (Sm41) to Tmy2(Sm+2)
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Sn-2 Sn-1
X / —————1 / [£* (wr(s) + e(s))|dsdsn—1 . ..dSmi2dSm41 <
to r"-l(sn—l) to
<M*(Hn(B+e )T —-t) =1L,

for ) < m < n—1, where L > 0 is a constant. Hence from (2.14) we obtain || Fwl|| < L.
This means that { Fw} is uniformly bounded.

Now we shall that the sequence {Fuwy} is equicontinuous. Let tp < t; <
ty < T. Then from (2.13) and using the condition (2.2), and letting {wx}, M", e" as

defined above, we ohserve that

IDI™ (Fun(t2)) = D™ (Fux(th))] < (2.15)

ta 1 S 1 *Sp—2 1
[t e L
t Tma1(Sme1) Jeg Pma2(Smt2)  Jig Ta-1{8n-1)

x/ " | £ (wi(s) + e(s))|dsdsn=1 ... dsmyodsmyr <
to

t2 1 Sm+41 1 Sn-2 1
s
—Jun Tm+1(Sm41) to Pm42(Smy2) to rn-1(sn-1)

Sn—1 n-—1
X / a(s)H (Z [| D™ wy (s)] + |D,(.'"‘)e(s)|]> dsds,_1...dsmi2dsmyr <
to m=0

t2 1 /8m+1 1 /"n—Z 1
< —_— ——— .. _—_—x
- /t, rm+1(5rn+l) to 7'm+'l(3m+‘2) to rn—l(sn—l)

PSn—1 t2
X / M*H(n(B + e*))dsds, -\ ... dspmiadsyppr < / M H(n(3 + e"))ds.
Jeo t

A

From (2.15) we conclude that { Fiy} is equicontinuous and hence by Arzela-
Ascoli theorem the operator F' i1s completely continuous.

Moreover, the set U(F) = {: € Bg: z=AFz, A€ (0,1)} is bounded. Since |
for every z in U(F) the function y(t) = z(t) + e(t) is a solution of (P)y — (Py), for
which we have proved that ||y|| < o and hence ||z|| < ai. By applying Theorem G,
the operator F' has a fixed point in By. This means that the problem (P) — (Fp) has
a solution y(t) in B. The proof is complete.

Remark 1. We note that our Theorem 1 extends the well known theorem
of Wintner [20] on the global existence of solution of Cauchy problem for first order
differential equation, to higher order differential equations (P)—(P,). For some recent

58

]



HIGHER ORDER DIFFERENTIAL EQUATIONS

extensions of Wintuer’s theorem, see [1,5-10,12,13]. Further we note that out Theo-
rem 1 contains in the special cases the global existence of solutions of the following
differential equations

(P)  (r(@)y=D@) = f(t, 7(O)y(t). 7)Y (), 7(O)" (1), . .., r(t)y" =D (2)),

(P) (r@)y ()1 = f(t.y(). #(Oy (). (r(NY (1)), ... (»(1)Y/ (1)) =),

(P3) y™(t) = f(t.y(), ¥ (2),...,y" (1)),

with some suitahl given initial conditions, and studied by many authors in the liter-

ature with different viewpoints, see [3,4,14-19].

3. Estimates on tie solutions

In this section we obtain estimates on the solutions of (P) — (Py) which can
be used to study the various properties of the solutions of equations (P) — (Po), by
using the integral inequalities given in {11, Theorem 3.3.1, p.222 and Theorem 1.3.2,
p.13].

The following theorem deals with the estimates on the solution and their
derivatives of the problem (P) — (Py).

Theorem 2. Suppose that the function f in (P) satisfies

n-1
17t D0y, DMy, ... DMy < L (z, > IDﬁ"‘)yl) , (3.1)
m=0
fort € I, where L : I x Ry — R4 be a continuous function such that
(L) 0 < L(t,u) = L(t,v) <w(t,v)(u—v),

fort €I and w> v >0, where w: I x Ry — Ry is a continuous function. If y(t) is

a solution of (P) — (%) on I, then

n-1 t t
IDIMy(t)] < a(t) +b(t) [ L(s,a(s)) exp (e,a(0))b(0)do ) ds,  (3.2)

to
where
n—1 n-—1
"(t) = Z [lcml + Z IckRmk(t)l] ’ (33)
m=0 k=m+1
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n-1 .t 1 Sm41 1 S$n—2 1 (‘; )
N ey U G T
( ) Z=:0 to Tmt1(Sm+1) to Tm+2(Sm42) to Tn—1(Sn—-1)

m

XdSp—1...dSmy2dSmi1,

fort € I and Rmk(t) ts defined by (2.1).
Proof. If y(t) is a solution of (P) — (Ps), then y(t) and its derivatives can

be written as

n-1

t
1
DIMy(t) = em+ Y ckRmk(tH/ — (3.5)
to Tm+1

Sm+1 1 Sn-2 1 Sn—1 __
% - . [ — f(y(s))dsdsp—1 ...dsmyodsmyr,
~/to Tnt+2(STR+3) v/to rn_l(s"‘l) ‘/'0 ) i "t "

for 0 < m < n—1, where Ry« (t) and f(y(t)) are defined by (2.1) and (2.7) respectively.
From (3.5), (3.1), (3.3) and (3.4) we observe that

Z|D<m> |<a()+1)/ <Z|D"" ) (3.6)

Now an application of Theorem 3.2.1 given in [11,p.222] to (3.6) yields the
desired inequality in (3.2). The proof is complete.

Our next theorem deals with a slight variant of Theorem 2 which can be used
niore conveniently in certain applications.

Theorem 3. Suppose that the function f in (P) satisfies the condition (3.1).
If y(t) s a solution of (P) — (Py) existing on I, then

n-—1

DI y() = ¢m(e)] < (3.7)

m=0

< gq(t)+0(t) (/ Jw ( Z [0 (5 )eq) (/ b(o u'( 2 |1/’ ) ) 9),
m=0

fort € I, where

n—1

YU (t) = e + Z ek Rk (t), (3.8)
k=mn+1

a(t) = b / ( ZIW‘ ) (3.9)
m=0
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fort € I, Ryk(t) and b(t) are defined by (2.1) and (3.4) respectively.
Proof. If y(t) is a solution of (P) — (Py), then y(t) and its derivatives can

be written as

t 1 Sm+1 1
——-—/ — ..x (3.10)
o Tmat(Smy1) S, Tma2(Sm+2)

Dy(t) = ¢ () + /
t

- (Sn-—l

Spn=-2 1 Sn—1 .
x / T < / f(y(s))deSn-l - ~d5m+2d5m+1y
to Pn-1 ) 0

where f(y(t)) is defined by (2.7). From (3.10), (3.1), (3.9), and the condition (L) we

observe that

= pim s < S S 1
Jole m)(4)] < / ox (311
Z I y( - Z= Tm+1 5m+1) "m+2 ( )

m=0 -(sm.+2)

~1(sn-1

t n-1
< b(1) / L ( 3 |D£"”y(s)|) ds <
to m=0
t n-1 n—1
<b / [L ( IDE™ y(s) = 4™ () + S Iu"’"’(s)l) -
to

m=0 m=0

n—1
(z) (z_ow )i

n-—1
< q(t) +b(t f ( Zw»m )ZID(’" — (™) (s)|zds.

m=0 m=0

Sn-2 1 Spn—1 _
% j ;——:—_——_)/ {f(y(S))dsdsn_l o dSmypadsmyr <
to n o

Now an application of Theorem 1.3.2 given in [11,p.13] yields the required
inequality in (3.7). The proof is complete.

Another useful variant of Theorem 2 which deals with the bounds on the
solution y(t) of (P) — (Po) and its derivatives is given in the following theorem.

Theorem 4. Suppose that the function f in (P) satisfies the condition

|£(t, DDy, DMy, ..., DI~ Vy)| < h(2) (Zln‘m yl) (3.12)
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fort € I, where h : I — R, is a continuous function. If y(t) is a solution of
(P) — (Po), then

nﬁlwﬁm) (t)] < a(t) + b(t) th(s)a(s)ex th.(a)b(a)da ds, (3.13)
L IRCEEVRCIED

fort € I, where a(t) and b(t) are defined by (3.3) and (3.4) respectively.
Proof. Let y(t) be a solution of (P) — (Py) for t € I, then the solution y(t)
and its derivatives can be written as in (3.5). From (3.5), (3.12), (3.3) and (3.4) we

have
n—1 t n—1
21D y(0)] < alt) + b(t) / h(s) ( > tDﬁ'"-)y(sn) ds. (3.14)
m=0 to m=0

Now an application of Theorem 1.3.2 given in [11,p.13] yields the desired
bound in (3.13). The proof is complete.

Our next result deals with the depondéncy of solutions of equations (P) on
initial values.

Theorem 5. Let y1(y) and y.(t) be the solutions of (P)—(Py) with the given

initial conditions

D™y (to) = ¢, (3.15)
and

D™ ys(tg) = dom, (3.16)
respectively, form = 0,1,2,...,n =1, where ¢,,,. dy, are given real constants. Suppose

that the function f in (P) saltisfies the condition

[£(t, Dy, DMy, DI Dyy) = f(t. D yy, DMy, ..., DI~ V)| < (3.17)

n—1
< h(t) (Z |DMy, — Dﬁ”")yzl> :

m=0

fort €I, where h : I — R, 1s a continuous function. Then

n—1
D DMy (1) — DM ya(t)] < (3.18)
m=0
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< A(t) + b(t) /t h(s)A(s) exp (/: h(a)b(a‘)da’) ds,

to
where

n-1 n-1
Alty=Y" {km —dnl+ Y ek -dklRmk(t)} , (3.19)
m=0 k=m+1
fort € I, Rmk(t) and b(t) are defined by (2.1) and (3.4) respectively.
Proof. In view of the facts that y;(t) and ya(t) are the solutions of (P) with

the given initial conditions (3.15) and (3.16) respectively, we have

n-—1
Dv‘rm)yl (t) - Dim)y'-’(t) = (e —dpm) + (ex — di) Rk (t) + (3.20)
k=m+1

t 1 Sm41 1 Sp-2 1
T
to 7'm+1(3m+1) to T'm+'_>(3m+2) to Tn.—l(sn—l)

x / ” (Fwi(s)) — Fly2(s))dsdsnwy ... dsmyadsmyr,

]

where Rnyx(t) and f(y(t)) are defined by (2.1) and (2.7) respectively. From (3.20),
(3.17), (3.19) and (3.4) we observe that

n—1

D IDIMyi(t) = DM ya(t)] < (3.21)

m=0

t n-1
< A(t) + b(t) / h(s) (Z DIy (s) - Di"”y-_»(sn) ds.
to m=0

Now an application of Theorem 1.3.2 given in [11,p.13] yields the required
inequality in (3.18) and hence the proof is complete.

We next consider the following differential equations

(@1) DMy = f(t, Dy, DMy, ..., D=y, ),

(@2) DMy = f(t, D%, DMy, ..., D"~ Ny, po),

with the given initial conditions in (Py), where f : I x R® x R — R is a continuous
function and ¢, po are real parameters.
The following theorem shows the dependency of solutions of equations (Q1) —

(Po) and (Q2) — (Po) on pure parameters.
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Theorem 6. Suppose that

1£(t, Dy, DMy, ... D"~ Ny, o — f(t, DOF, DV, ..., D Vg p)| < (3.22)

n—-1
< (1) (z Dy Dimm) |

m=0
|f(t, Dy, DMy, ..., D" Vy, p) — (3.23)
—f(t. DOy, DMy, .., DIy, o) < g(t)|p — prol-

where h,g - [ — Ry are continuous functions. If yi(t) and ya(t) are solutions of

(Q1) — (Po) and (Q2) — (Fy), then

3100y (1) — DEM (0] < (3.24)
m=0 °
At) +b tl.Zse th b(e)do | ds,
<A+ (t)[o () (s) “’(./s (a)()a) ;
fort € I, where
) = = molb(t) [ a(sias, (3.25)

fort € I and b(t) is defined by (3.4).
Proof. Let z(¢t) = y1(t) —y-(¢) for t € I. As i the proof of Theorem 5, from

the hypothesis we observe that

D™ 3(t) = DMy (t) — DI ya(t) = (3.26)

4 1 Sm41 1 Sn-2 1
[t e [ e
to rm+1(3m+1) to T'm+2(5m+2) to Tn—l(sn—].)

x/ {f(s, Dy (s), DDy (s). ..., DOV (s), )~
to
—f(s, D ys(s), DM ya(s), ..., DI Nya(s), )+
+f(s, DO ys(s). DM ya(s), ..., DI Vya(s), p)—

—f(5, DPys(s), DM ys(s), ..., D Vya(s), o) Ydsdsn_y . .. dsmi2dsmyr.
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From (3.26), (3.22), (3.23), (3.25) and (3.4) we observe that

n—1 (m) t 1 Sm41 1
|szt)</—_—~/ Y 3.97
mzz:o r ( ' “ i rm+1(3m+1) to T'm+2($m+2) ( )
Sn—2 1 Spn=1 n—1 ( ) ( )
X T h(s Drm _ Drm +
/to rn—l(sn-l) /t; ( ) r:L:JOI g (S) yz(s)l)

+g(8)|pe — ;1.U|}dsdsn_1 codsmyads;myr <
t n—1
< b(t) / {h(s) (Z |D£"”:(s)|) +9(s)ln - Mol} ds =
to m=0
t n—1
= A(t) +b(t)/ h(s) (Z |D£’"-)z(s)|) ds
to m=0

Now an application of Theorem 1.3.2 given in [11,p.13] yields the required
inequality in (3.24) and the proof is complete.
Remark 2. We note that the results obtained in this paper can be very

easily extended to the more general integrodifferential equation of the form
@ DMy = f(t, Dy, DMy, ..., D[Py,

t
/ o(t, 5. DOVy(s), DU y(s). ..., D=y(s))ds),

to
with the given initial conditions in (Py), under some suitable conditions on the func-

tions involved in (Q) and by using the suitable general versions of the inequalities

given in Chapters 1 and 3 in [11]. For similar results, see references [7-10,12,13].
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ANALYSIS OF SOME NEUTRAL DELAY DIFFERENTIAL
EQUATIONS

RADU PRECUP

Abstract. The paper is devoted to the study of the neutral differential
equation with delay =’ (t) = f(t,z (¢),z(8(¢)),z' (6(t))). Our analysis is
concerned with the existence, uniqueness and monotone iterative approx-
imation of the nondecreasing global solutions of the initial-value problem.
We use fixed point theorems (Schauder, Krasnoselskii, Leray-Schauder)

and monotone iterative techniques.

1. Introduction

In this paper, we are concerned with the following nonlinear neutral delay

equation

()= fta(t),z(0(1), 2 (0(1), (1.1)

where —7 < 6 (t) <t for some 7 > 0.

Equations of this type arise when modelling biological, physical, etc., pro-
cesses whose growth rate at any moment of time t is determined not only by the
present state, but also by past states and the past growth rate. For example, such
models are described by K. Gopalsamy [4] and Y. Kuang [§], from population dynam-
ics, and by R.D. Driver {3], in connection with the two-body problem.

Basic theory and much literature on differential equations with delay, includ-
ing the neutral ones, can be found in the monographs by V. Lakshmikantham, L.
Wen, B. Zhang [9], V. Kolmanovskii, A. Myshkis 7], D. Bainov, D.P. Mishev [1] and
J. Hale [5].

1991 Mathematics Subject Classification. 34140, 34A45.
Key words and phrases. nentral differential eqnation, delay differential equation, initial-valne problem,

fixed point, monotone iterationas.
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Recently, T.A. Burton [2] established an analogue of the Peano local existence

theorem for the Cauchy problem (1.1)-(1.2), where
z(t)=¢(), —-T<1<0. (1.2)

Motivated by the above paper, this article deals with the global solvability {(on a given
interval [0, T]) of the Cauchy problem (1.1)-(1.2).
We shall assume that f is nonnegative and continuous, € is continuous, ¢ €

(" [-7.0] and satisfies the sewing condition

¢’ (0) = £(0,6(0),4(0(0)).4"(6(0)))- (1.3)

We shall look for nondecreasing solutions z € C' [0, T] with = () € [a, R] and 2’ (0) =
b, where @ = ¢ (0), b = ¢/ (0) and a < R < oc. In case that R = oo, all intervals of
the form [c, R] should be interpreted as [c,oc) and all inequalities of the form ¢ < R,
as ¢ < 00.

Let
K={ceC'[0,T}; a<zon[0,T)}
and
Kp={s€eRN: x<Ron [0,T]}.

Clearly. K is a closed convex set of ('} [0, 7] and (1.1)-(1.2) is equivalent to the fixed

point. problem A (x) = 2 for the map A: h'g = K,
it
A(z)(t) = a+/ f(s,x(s),T(0(s)),2"(6(s)))ds, 0<t<T, (1.4)
0

where ¥ (t) = ¢ (t) on [—7,0) and ¥ (t) = « (¢) on [0,7]. Obviously, each fixed point x
of A also satisfies « (0) == a and 2’ (0) = b and so, its prolongation by ¢ is a function
in C—r,1T].

Notice that the dependence of f({,z,y,z) on the neutral variable z is the
cause that A is not completely continuous. This is why one tries to represent A as
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a sum of a completely continuous mapping and a contraction. This happens when f

admits the decomposition
ftzy,2)=foltz,y)+ fi(t,z,y.2), (1.5)

with fo continuous and f; satisfying the Lipschitz condition

itz y,2) - 0T 9 <ale—T|+Bly-yl+ 7|z -7 (1.6)
for o, 7> 0and 0 <+ < 1. Then A can be represented as A = Ag + 4;, where

Ao =at [ foloz (o) FOE)ds
and
A 0= [ Jilov (9.5 0(6) .7 0 ().

The mapping Aq is completely continuous by the Ascoli-Arzeld theorem, while A;
is a contraction with respect to a suitable norm on C![0,7] as shows the following

lemma.

Lemma 1.1. Suppose 0 <y < 1. Then, for each y > max{(a«+3)/ (1 =), a+ 5+

v}, Ay is a contraction on Kpg with respect to the norm

lelly , = max {Jlello, 1]l }

on C1[0,T), where
lello = masle (0] exp (<n1)).
Proof. Let 2,y € Kg. Using 6 (t) < t, we obtain

A1 (2) (8) = 41 (v) (B)] < ”/o 2 (s) — y (s)] s
+ﬂ/0 Ii(ﬂ(s))—ﬂ(ﬂ(s))lds+v/() I (0(s) = 7 (6(s))] ds

t
< a/o [ (s) —y(s)|exp (—ns)exp (ns) ds
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8 ] 1(8(s)) — 7 (6 (s))] exp (—nf (5)) exp (16 (5)) ds
v / I (6.(s)) — 7 (0(5))]exp (=16 (5)) exp (16 (s)) ds

U+ B n Ml —yllo, + 107 12" = ¥llg ) exp (nt) .

It follows that

Ay () = A (Wllo, < (a+ B+ 07 Iz =l , -

Similarly

|Ai () (1) = Ay () (1)] < el (1) — y (1))
+B1T (0 (1) — g (0 ()] + 77 (6(1) — 7 (6(t))]

t 6(t)
<o [We-y@lass [ @67

(0 (0) — 7 (0 ()] < (o + ) / 12’ (5) — ¥ (5)] ds

Y [F (O () =g (O W) < [(a+8) 07" +4]ll2" = ¢llg,,, exp (nt) .

Henee

4 (@) = A @)l , <e+B) 07" +]lle =y, -
Therefore
lA1 (2) = AL (Wl < Llle = 9lly (1.7)
where
L=max{(a+B8+7) 0" (a+8)n~" +7}. (1.8)
O
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There is a remarkable case when in spite of the neutral variable, we still can
work with completely continuous mappings: the case when the step method applies.

We are in this case if
#(t) <t on (0,T]and inf{t > 0; 6(t) >0} >0. (1.9)

By using the step method, the solving of (1.1)-(1.2) is reduced to that of a finite
number of Cauchy problems for equations without deviated arguments. To explain

this, let to = 0 and
tp =inf {t € (tn=1,T); 0(t) > th1}, n=12, .., (1.10)

where we set ¢, = T in case that the infimum is taken over the empty set. Obviously,
{tn) is a bounded nondecreasing sequence and if t,, = T for some m, then t, =T for

all n > m. In addition, if ¢, < T, then
O(th) =tn-1 and 0 (t) <tp_ forto_1 <t <ty (1.11)

The second inequality in (1.9) implies ¢y < t; < T, while the first one assures the
strict. monotonicity t,_; < t, whenever t,_; < T, and also the existence of a k > 1
with t,—1 < tx = T. Indeed, otherwise, we should have g < t; < ... < t, < ... < T.
If we denote t, = lim t,, then 0 < ¢, < T and 6 (t.) = t., which contradicts (1.9).

n—00

Thus, there exists a finite partition of [0, T], say
O=to<ti <. <tp_1 <ty =T.

A solution to (1.1)-(1.2) will be defined step by step, on each subinterval [—7,t,],
n = 1,2,....k. Denote 2o = ¢ and let zp41 € C![-7,tn41] be a prolongation of

z, € C1[—7,t,] by a solution of the following problem

2 ()= F (L2 (), 20 (0() b (B(1), ta < U< tng,

z(th) = an,

(1.12)

where ap, = x5, (t,), n=0,1,...,k — 1. It is clear that x; will represent a solution of
(1.1)-(1.2). Thus, at each stcp n, we have to solve (1.12), or equivalently, to find a
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fixed point of the completely continuous mapping A, : C[tn, thy1] = C[tn, tat1],

t
An (2) (1) = an + [ £ (5,2 (5),2a (8(s)) .2 (6.(1))) ds. (1.13)
Organization of the paper

In Section 2, we discuss the initial value problem for (1.1) in case that the
step method applies. In Section 3, the same problem is studied when the step method
does not apply. In Section 4, we obtain minimal and maximal solutions to the Cauchy
problem. We use fixed point theorems (Schauder, Krasnoselskii, Leray-Schauder) and

monotone iterative techniques.

Notice that by a somewhat similar approach, we discussed in [6] the initial
value problem for a delay integral equation modelling infectious disease (see also [11]).
The results are new and they improve and complement the existing literature (see [10]
for example, for related topics).

We finish this introductory section by some abstract existence principles.

Fixed point theory

Theorem 1.2. (Schauder) Let X be a Banach space and D C X nonempty bounded
closed conver. Suppose A : D — D is compact (i.e. continuous with A (D) relatively

compact). Then A has at least one fired point.

Theorem 1.3. (Krasnoselskii) Let X be a Banach space and D C X nonempty
bounded closed conver. Suppose Ag : D — X is compact, Ay : D — X is a con-
traction and that Ay (x)+ Ay (y) € D for all z,y € D. Then Ay + A\ has at least one
fized point.

Theorem 1.4. (Leray-Schauder) Let X be a Banach space, K C X closed convex

and {7 C K bounded open in K. Suppose A:U — K is compact and
(I=Xzo+AA(x)#2 forallz € U and X € [0,1],

for some xo € UU. Then A has at least one fized point in U.

-~
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ANALYSIS OF SOME NEUTRAL DELAY DIFFERENTIAL EQUATIONS
2. Existence via the step method

Let us list our assumptions:
(al) 8 € C[0,T], —7 < 6 and (1.9) (step condition) holds.
(a2) ¢ € C'[~7,0] and (1.3) (sewing condition) is satisfied.
(a3) f (¢, z, y, z) is nonnegative and continuous on D = [0, T]x[a, R]x[m, M]x[m', c0),
where a < R < oo, m = min_, ¢ (t), M = max{R,ma.x[_,yo](zS(t)} and m' =
min {0, minj_, )¢’ (1)} .
(ad) f(t.z,y.2) < a(t)B(x)v(y, z) on D, where a, 3, are continuous, > 0, 5 > 0,
>0 and

R gu

T
' V) t)dt — .
P M) 1002 [ )< [T (21)

(Wintner type condition).
We make the convention that when the left side in (2.1) equals oo, then the

right side is oo too.

Theorem 2.1. Suppose (al)-(a4) are satisfied. Then (1.1)-(1.2) has at least one
solution z € C* [-7,T) witha <z < R and 2' >0 on [0,T].

Proof. First we prove that for each * € C! [-7,1,] with @ < 2 < R and satisfying
(1.1) and (1.2) on [0,¢,,], there exists R, € [a, R) depending only on the restriction
of z to [—7,tpn-1], such that z < R, on [0,1,].

Indeed, by (ad), we have

Divide by 3 (z (t)) and integrate from 0 to ¢, to obtain

z(tn) du tn / tn
= < M,
/a B (u) o Blz( /

where M, = maxp,,_,17 (z (6 (t)),z' (6 (t))). By (2.1), this implies

::(t) R du
/u M / f) (lt < i W
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Thus z (t,) < R, < R, where

bn Ro du
M,,/O a(t)dt = ) _Z“_) (2.2)

Since z is nondecreasing on {0,¢,], we have z () < z (t,) < Ry, for all t € [0,1,], as
claimed. .
Now suppose we have already defined x, € C'[-7,t,], a solution of (1.1)-

(1.2) on [~7,1,], with @ < z, < R and 2, > 0 on [0,t,]. Then 2z, < R, < R

4r du tn
——— Y 8 A 2w.
/a ) < Mn/o a(t) dt, (2.3)

where R, is given by (2.2), with M, = maxo,_,17 (zn (0 (2)) . 2}, (0 (1)) .

and

Next we try to extend z, to a solution z,41 € C![—7,1,41] satisfying a <
Tne1 < Rand ., > 0 on [0,th41]. Let R,yq be given by (2.2), for My =
maxgo,¢,]17 (zn (6 (t)), 25, (0(2))) . It is clear that M,, < Mpyy and Ry < Ray1 < R.
Choose a finite R’ € (Rn41, R] and define

KNp={2 € Clin,twt1]: a<z}, Uy={z€ Ky; z <R}

anc

¢
An :Up = Ky, Ap(2) (1) = a, + /z Fs,z(s),zn(0(s)),zl, (0(5))) ds.

Obviously, N,, C C'[ty,tns1] is closed and convex, U, C K, is bounded and open
in N, the constant function a, belongs to U, (because a, < R, < R’') and A, is
completely continuous. Also, if z is a fixed point of A,, then z (t,,) = a,, @' (t,) =
x; (t,) and the prolongation 2,41 of z, by x will represent a solution of (1.1)-(1.2)
on [—7,1,41] satisfying a < 2,41 < Rand 2}, ., >0 on [0,tn41].

The existence of a fixed point of A,, will follow by the Leray-Schauder prin-

ciple if the boundary condition

r#(1=Xan+ XA, (z) forallzedl,, A€ (0,1) (2.4)
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holds. To check it, suppose z € U, satisfies z = (1 — \)a, + AA, (z) for some
A€ (0,1). Then, z (t,) = a, and

(@) = Af(t,z (), zn (B(2), 2, (B(1)) forall t € [tn,tns1].

As ahove, we obtain

w(tat1) gy tat1
=t < 1) dt.
/a" 7 < MnH/t o (l)dt

Taking into account (2.3) and M,, < My +1, we deduce

T(tnt1) du tngr
— < M, / « (t) dt.
[ grgsien [ a0

Hence  (tn41) < Rn+1 and consequently, z < Ry41 < R on [ta,tny1]. Thus, z ¢ 0U,

n

and (2.4) is proved. 0

Remark 2.1. The conclusion of Theorem 2.1 remains true if instead of (aj) the
following condition is satisfied:

(af’) f(t,z,y,2) <B(x)d(t,y,z) on D, where 3> 0,6 >0 and

R du .
T 'S"D[O,T]x[m,M}x[m’,ho)J(tvy‘ Z) < m (25)

Remark 2.2. Suppose R = oo and that in (a4’), B (u) = u+c, where ¢ > 0. In this
case, (2.5) trivially holds since its right side equals to infinity. Moreover, a fired point
of A, follows directly by Schauder’s fired point theorem. Indeed, if R = oo, the map
An can be defined on the entire K, and A, (K,) C K,. In addition, for n > 0 and

r € X, we have

0< A, (Jr)(t)gan-{—ﬁn/t (z(s)+c)ds

t
:a,.+cM,,(t—tn)+Mn/ z(s)ds
< a, + Mn")-l “13”(),7 exp(—nt), tn <t <tntas
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where My, = maxg, 1.8 (t, 2 (6(1)), 2, (0 (1)) and @y = an + My (tng1 — tn) . In

consequence,

IlAn (2)]lo,, < @n + Mun™! ”’3”0,:7 (z € Kn).

Thus. if we choose n > M, and R’ > an/ (1 - Mnn‘l) , then Schauder’s theorem
applics on {x € Kp; ||l , < R'}.

Remark 2.3. Suppose R = oo and that a more restrictive condition than (a}’) holds,
namely

(af”)1f ey, 2)— f(t 2,9, 2)| <L(tyz)|zr—%& onD,

where L 1s continuous and nonnegative.

From (a{”),
f(tey,2) <Lty =) (x—a)+ f(tayz)<d(ty e,

where § (t,y,z) = max{L(t,y,z),f({,a,y,2)/a}. Hence we are in the frame of Re-
mark 2.2. In addition, the initial value problem has a unique solution and at each step,
the unique fired point of A, can be obtained by means of the contraction principle.

Indeed, for n > 0 and z,y € K,,, we have

14 (2) (8) = An (y) ()] < /t L(s,zn(0(s)), 2, (0(5))) |z (s) — y(s)ds

t
<M, / | (s) -y (s)|ds < Mun~'|le - Yllo,, exp (=nt),
Jta

where M, = maxq, ¢, .1 L (£, 0 (0(1)) 2, (0 (1)) . Now our claim follows if we choose
7 > Wn.

3. Existence without the step condition

The assumptions for this section are as follows:
(Al) e C'[0, T and —7 < 6(¢t) < 1t.
(A2) = (a2).
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(A3) f(t,z,y.2) is nonnegative on D and admits the decomposition (1.5), where
fo, fi are continuous and f; satisfies the Lipschitz condition (1.6) for some «a, 8 > 0
and v € [0,1).
(A4) f(t,z,y.2) < a(t) B (x) on D, where a, § are continuous, a > 0, 8 > 0 and
T R

/0 a(t)dt < j % (3.1)
Theorem 3.1. Suppose (A1)-(A4) are satisfied. Then (1.1)-(1.2) has at least one
solution ¥ € C'[—7,T) witha < # < R and &' > 0 on [0,T]. Moreover, any such

solution satisfies

r() <R, 0<t<T, (3.2)
where R, < R s so that
T R, du
a(t)dt = . 3.3
[ ewa=[" 55 (33)

Proof. With the notations of Section 1, the mapping A : Kg — K is the sum Ao+ Ay,
where A4g is completely continuous and A, is a contraction with respect to a suitable
norm on C'[0,7].

We claim that (3.2) holds for each solution z € Kg to
z=(1-Aa+rA{z) (A€0,1]). (3.4)

Once the claim is satisfied the result follows from the Leray-Schauder principle applied
to A:U = K, where U = {z € I'; & < R' on [0.7T]} and R’ is any number such that
R.< R <R

To prove the claim, let £ € K'r be any solution of (3.4). Then
2 () =M (L), (0(1),¢ (01) <a®B(e() on [0,1.
It follows that

/az(t)%:/otﬁ%%dsg/ota(s)ds.

This together with (3.3) implies (3.2). O
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Suppose now that instead of (A4), the following condition holds.
(AY) |fo(t,z,y)] < ooz + Boly] + 6 on D, where ag,fB and § are nonnegative

constants.

Theorem 3.2. Suppose (A1)-(A3), (A4’) are satisfied and R = oo. Then (1.1)-(1.2)
has at least one solution ¢ € C! [—1,T) such that a <z and 2’ >0 on [0,T].

Proof. Since R = o0, we may define A: ' — K and, as above, A = Ay + Ay, where
Ao is completely continuous and A, is a contraction with respect o the norm ||.||, .
on C'[0.7], for n > max{(a+B8) /(1 —v), a+ B +7}. .

We claim that there exists n sufficiently large and a finite R’ > 0 such that

rye K, el , < R lylly,, < R imply (|40 () + 41 (W)l < R (3.5)

Once the claim is proved the result is a consequence of the Krasnoselskii fixed point
theorem.

To establish (3.5) we need the following estimates:

t ¢
|40 (z) (2)] §a+ao/o :r(s)ds+[30/ Z(0(s))ds+ ot
0

=a+ ao/ a:(s)rls+ﬁ0/(0<o( ))m(()(s))ds+ﬂ0/ @ (6(s))ds+ bt

0 (6(s)<0)

< a+ (g +Bo) 0" zlly,, exp (nt) + Bo llgllg T + 6T

= (avo + Bo)n~! ||.'L'||(,‘,7 exp (nt) + ¢

Also
Ao (=) (1)] < oz (8) + 6oF (0(1)) +6
t a(t)
:ao/ z’(s)(ls+/30/ ' (s)ds+ (co+ Po)a+6
0 0
< (o +Bo) 0~ 2 llg , exp () + Bo |9l T + (oo + Bo) a + &
= (o + Bo) ™ 2|l ,, exp (nt) + cf.-
78



ANALYSIS OF SOME NEUTRAL DELAY DIFFERENTIAL EQUATIONS
Thus
140 (@)ll;., < (0 + Bo) n~ |l , + co.
This together with (1.7) yields
140 () + AL (Wl < (@0 +Bo) ™" llxlly  + LIyl + €
where L is given by (1.8). It is clear that if 7 is sufficiently large, then (o + Bo) ™! +

L < 1 and we may find R’ > 0 such that (3.5) holds. O

4. Minimal and maximal solutions

Theorem 4.1. Suppose (al)-(a3) are satisfied and w € C'[0,T], a < w < R, is an

upper solution, t.e.
w (t) > f(tw(t), @), w (), 0<t<T. (4.1)

In addition assume that

Fz,u1,21) < f(t, 22,92, 22) (4.2)

foroy <za<w(t),ys <y <W(O(Y)) and 21 < zo < @' (0 (1)) . Then we may define

Lh (t) on [_T7t"]
Eop (1) = { : (4.3)

lim up; (t)  on [t thgi]
j=ec

and

Ty (¢ on [-1,t,
Tnga(t) = { ! [ ! (4.4)

Lim v, (1) on [ta,tn+1),
J—=mo

where Uno (t) = a, Uno (t) =w (t) y Unj = _A_n (uﬂj—])v Unj = An ('Unj—l) )

A, (2) (1) =z, (ta) + : f(s,2(s), 2, (6(s)) . 25 (0(5))) ds,

An (2)(£) = Bn (ta) + / £ (5,2 (s) ,Bn (0(5)) En (6 (s))) ds
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(t€[th.ths1]), 7 =1,2,...,n=0,1,...,k — 1. Moreover, x = z, and & = & are the

minimal and mazimal solutions of (1.1)-(1.2) satisfying a <z < w on {0,717,

a<z<z<w, 0<z' <& <w on0,T],
Uno < tUn1 < oo Sty <oooon [ty tayg]

LD up > on [tn, tng]

Uno 2 Uni

v

and
Unj (t) = 2 (), vaj(t) 22 (t) asj—ooc
uniformly on [tn,thy1] (n=0,1,..,k—1).

Proof. Suppose we have already defined z,, and &, such that

a<z, <z, <wand0<z, <z, <won [0,t,]. (4.5)

- =
First we prove that
a <ty <vpj <w on [tn,tnyi], (4.6)

by induction after j. For j = 0, (4.6) trivially holds. Assume (4.6) is true for some j.

Then, using also (4.2), we casily see that

a < An (a) S An (“‘Hj) S illn (U"j) S A"- (’Un__,') S ‘4” (w) S w,

which shows that (4.6) also holds for j+1. Thus (4.6) is true for all j > 0. Since 4, and
A,, are completely continuous, the sequences (“”J')jzo and (v,,])jzo will contain con-
vergent subsequences. Due to their monotonicity, the entire sequences will converge
on [tn, tny1], which justifies (4.3) and (4.4). Also, by (4.6),a <z, < &ny1 < won
[0,¢741] - Then

0 S £:1+1 (t) = f (tv£11+l (t) 'y Ln (9 (t)) 1£:1 (0 (t)))
S f(ta‘i'n+1 ([) »'i'n (6 (t)) r'i':z (9([))) = i:z+l (t)

< FlLw(t) @ (00), @ (0(1) < ' (1).
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Hence (4.5) also holds for j + 1. O

The next result is about the equality £ = z in Theorem 3.1.

Theorem 4.2. Suppose the assumptions of Theorem 3.1 are satisfied. In addition as-
sume a > 0 and that there exists a function x : [ay, 1) = R, where a, = amingp 771/w (t),
such that for all p € [ay,1),t € [0,7], ¢ € [a,w(t)], y € [m,M] and z € {m’, o),

one has

1>x(p)>p and f(t,pz,y,2) > x(p) f(t.2,y,2). (4.7)

Then @ = T is the unique solution of (1.1)-(1.2) satisfyinga <z < w on [0,T].

Proof. We show succesively that z, = &, for n = 0,1,...,k. For n = 0, this trivially
holds. Assume z, = &, for some n. Then A, = A,. Clearly, the restrictions of
Zpt1r Tns1to [tn,tn+1] represent the minimal and maximal fixed point of B, := An
satisfying @ < z < w on [tn,th41]. To show that z,,, = Zpy1 on [tn, taga], let
po = ming_ ;o 1(Zn4q (8) /Znta (t)). We have po € [ay, 1]. We claim that po = 1.
Assume pg < 1. Since z,,, (t) > max{a, poZn41 (t)} = pomax{a/po, Zny1 (t)} > a

on [ty th41], we get

Tny1 = By (£n+l) > B, (po maX{”/PO‘ in+l})

> X (po) Bn (max{a/po,&nt1}) 2 X (P0) Bn (En41) = X (p0) Tn41,
on [tn,ta41]. It follows pg > x (po) , a contradiction. Therefore pg =1 and so z,,, =

ZTp41 ON [trlvtn,+1]~ O

Remark 4.1. For erample, we may take Y (p) = p®, where o € (0,1), in case that
f(t.x,y,z) is of the form z%g (t,y,z). Also, x (p) = log(l + ap) /log(1+ a) for
f(tey.2)=g(ty 2)log(l+2).

Theorem 4.3. Suppose (A1)-(A3) are satisfied and that w € C'[0,T], a < w < R,

is an upper solution. In addition assume that (4.2) holds. Denote

Us(t)=a, Vo(t) =w(t), Uny1 = A(Uyn) and Vg = A(Vn)
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(t€0,7]). n=0,1,... Then

a:UoSU]_S...SUnS...<VnS...SV1$V0=w, (48)

0<U] <. <UL <. <Vp<.. <V <o (4.9)
on [0,T]. Also, the following limits erist

2(t) = lim Un(t), ()= lim Va(2) (4.10)

n—+o0o

uniformly on [0,T). Moreover, z, & are the minimal and maximal solutions to (1.1)-

1.

T
(1.2) in K satisfying ¢ < w on [0,

Proof. From a < w we see that a < A(a) < A(w) < w and 0 < A(a) < A(w) <
w,ie. Up < U < V) < Vpand 0 < U <V < w. Further, (4.8) and (4.9)

follow succesively. Let a be the Kuratowski measure of noncompactness on the space

C'[0,T] endowed with the norm ||.||; .. Since

(Un)py1 = A (((}71)71_)_0) :

Ag 1s completely continuous and A, is a contraction, we have

a ((U")"-Z‘) = (A ((Un-)nzo)) o (AO ((U")"ZO>>

+a (Al ((Uﬂ)nZO)) =a (-41 ((Un)nzo)) < La ((Un)nzo) .

where L is given by (1.8). Recall that L < 1. In consequence, a (((/,,_)n>(,) = 0.
Thus (U/5),,>, contains a convergent subsequence. By the monotonicity, the entire

sequence (U,) will converge. Similarly, (14,) is convergent. O

Remark 4.2. Let (A1)-(A2) be satisfied. In addition assume that the following con-
dition holds instead of (A3):

(A3’) f(t,z,y,2) is nonnegative and continuous on D,

Then Theorem 3.2 is still truc with the meaning that x and & are weak so-
lutions of (1.1), 1.e. z, T € AC[0,T) (are absolutely continuous) and satisfy (1.1)
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almost everywhere on [0,T]. Indeed, by ({.8), (4.9) and the Beppo-Levi theorem, there
exist 2,y € L' (0,T) with

Us(t) > z(t), U,@)—y() on[0,T],
Up—z and U, —y L' (0,T).

From

t
Up (1) = a+ / Ul (s) ds
0

we then derive

which shows that z € AC'[0,T] and 2’ (t) = y(t) for a.e. t € [0,T]. Letting n — co

in
e (0= £ (6,00 (1), T (00)), T4 (6.2)))
we obtain
y(t) = f (L2 (). E(0(1),5(0 (1) for allt € [0,T),
ie.
()= f(hz () E(00),F0) ae telo,T).
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ON THE UNIVALENCE OF FUNCTIONS RELATED TO
HYPERGEOMETRIC FUNCTIONS

IRTNEL RADOMIR

Abstract. In lucrare se studiaz& univalenta unei clase de functii expri-

matd prin intermediul functiei hipergeometrice.

1. Introduction

Let A be the class of function f which are analytic in the unit disk
U={:€e€C: |z| <1} with f(0) = 0 and f’(0) = 1. In this note we improve

the result from [2] using another univalence criterion.

2. Preliminaries
Theorem 2.1. ([2]). Let f € A and let o be a complex number, Rea > 0. If

=f"(3)
I'(2)

then for all compler numbers 8 with Re3 > Re«, the function

| — |:|2Rea
Rea

‘51, V) zeU (1)

z 1/p
Fs(z) = [,3/ uf*-‘f'(u.)du] (2)
0
15 analytic and univalent in U.

3. Main results

It is easy to prove the following:

Lemma 3.1. Let o, v be complex numbers and let the function

z
1—-2

1= IZI'ZHea

Ton , || < 1. (3)

E(a, v,2,2) = 0%
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If 0 < Rea < 1, then

o Nl
E(a) 7!‘2:2) S RCO” (V)Z € U. (4)
If Reaw > 1, then
E(C(, 7!215)S2l7|) ,(V)ZEL,. (5)

Theorem 3.1. Let a, B, v be compler numbers. If

lv] < Rea < 1, (6)
Iyl < % and Rea > 1, U
Ref > Rea, (8)
then the function
Fp(z)=z-[F(B v, B+1, )" 9)

is analytic and univalent in U7, where by F(a,b,c,z) we denoted the hypergeometric

function.

Proof. If in (2) we make the change u = tz, we obtain

1 1/8
Fg(z) == [/J/ t’a"lf’(l:)dt] . (10)
0
In the following we cousider the function
f(2) :/ (1 —w)"du (1)
0
For this function we obtain
') _ =
) —'}1_ p and
1-— !Z!ERCQ Zf”(z)l 3 1— |z|2RcaI 2 |
Rea f'(z) ' Rea T

According to Lemnma 3.1 we deduce that the condition (1) from Theorem 2.1, for the

function (11) is verified in the cases

(@) bl < Rea<1;
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Gi) 5-;- and Rea>1.

Replacing in (10) the function f defined by (11) we obtain

Fp(z) ==z- [ﬁ/olt”“(l —tz)'”dt]llﬂ =

=z-[F(8, 7 B+1,2)]"".

where by F(a,b,c,:) we noted the hypergeometric function.
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FIBER PICARD OPERATORS THEOREM AND APPLICATIONS

IOAN A. RUS

Abstract. In this paper we study the following problem: Let (X,dk),
k =0.p, p > 1, be metric spaces and Ax : Xo x --- x X —= Xk, k=0,p

he operators. We suppose that

(a) the operators Ax are continuous, k =0,p

(b) the operators Ao, Ax(to,...,2k-1,-), k = 1, p are (weakly) Picard operators.
Establish conditions which imply that the operator
Bp:Xox---xXp—=Xox--xXp

Bp(To, .. -,l"p) = (440(10)1141(1‘071‘1)3 . 'rAP(xO) ce 1IP))'

is a (weakly) Picard operator.

1. Introduction

Let (X,d) be a metric space and 4 : X — X an operator. In this paper we
shall use the following notations:

P(X):={Y C X| Y # 6},

Fs:={z € X| A(z) = z} - the fixed point set of A,

I(4) :={Y € P(X)] A(Y) CY}.
Definition 1.1 (Rus [9], [11]). An operator A : X — X is weakly Picard operator
(WPO) if the sequence

(A™(x))nen

converges, for all r € X, and the limit (which may depend on ) is a fixed point of

A.

1991 Mathematics Subject Classification. 4TH10, 45G15.
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Definition 1.2 (Rus [9], [11]). If A is WPO, then we consider the operator A%
defined by
A® X 5 X, A%(x):= lim A"(z).
We remark that, A®(X) = Fy4.
Definition 1.3 (Rus [9], [11]). If A is WPO and F4 = {z*}, then by definition the
operator A is a Picard operator.

Ezxample 1.1. Let (X, d) be a complete metric space and A : .X = X such that
d(A%(x), A(2)) < ad(z, A(2))

for all z € X and for some a €]0,1[. Then 4 is weakly Picard operator (see [8], [9],

(11]).

Ezample 1.2. Let (., d) be a complete metric space and A, B : X — X such that
d(A(r), B(y)) < ald(x. A(z)) + d(y, B())]

for all z,y € X for some a € ]0 [ Then A and B are Picard operators.

3
Ezample 1.5. X = C[0,1], d(x.y) = ||z — yllc,

A(z)(t) = z(0) +/{; K(t,s)z(s)ds, te€]0,1]

where K € C([0,1] x [0, 1]). Then A4 is WPO.

For other examples see [13]. [10], [1], [2], [20],...

We have the following characterization theorem for WPO.
Theorem 1.1. Let (.X,d) be a metric space and A : X — X an WPO. Then there
extst X; € [(A), i € I, such that

X=X XinX;=0,i#j,

i€l
(i) A’X 1s a Picard operator, i € I.

Proof. Let € F4. Let X, be the domain of attraction of z. It is clear that

x= X

T€F,

is a partition of X and that X, € I(A4). By the definition of X,, we have that

FA ﬂ“\'z = {.L‘}
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In this paper we study the following problem:
Problem 1.1. Let (X,d) and (Y, p) be the metric spaces and A = (B,C): X xY —

X x Y a triangular operator, i.e.
A(z,y) = (B(z),C(z,y)), z€X, yeY.

We suppose that the operators B : X = X, C(z,"):Y - Y, z € X, are
Picard operators. Establish conditions which imply that the operator A is Picard
operator.

If the operators, B: X = X, C(z,:): Y =» Y, z € X, are WPO, establish

conditions which imply that the operator 4 is WPO.

2. Fiber Picard operators theorem

The following result is given by M.W. Hirsch and C.C. Pugh ([5], 1970):
Theorem 2.1 (Fiber contraction theorem). Let (X,d) be a melric space and B :
X — X be an operator having an atractive fized point p € X. Let (Y, p) be a metric
space and C : X x Y =Y an operator such that

(i) there exists X € [0, 1[, such that the operator C(z,) is a A-contraction for
adlere X;

(1) the operator A : X xY — XxY, A(z,y) := (B(z),C(z,y)) is continuous.

Let ¢ € Y be a fived point for C(p,-).

Then (p,q) is an attractive fired point for A.

For some generalization of this theorem see [10]-[15], [18] and [19].

We have
Theorem 2.2. Let (X,d) and (Y, p) be two metric space and A = (B, C) a triangular
operator. We suppose that

(i) (Y, p) is a complete metric space;

(it) the operator B : X — X s WPO;

(i11) there ezists o € [0, 1{, such that C(x,-) is an a-contraction, forallz € X;

(iv) if (*,y*) € Fa, then C(-,y*) is continuous in z*.

Then the operator A is WPO.
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If B is Picard operator, then A is Picard operator.
Proof. Let (z,y) € X x Y. Let y* the unique fixed point of C(B*(z),-). We shall
prove that A™(z,y) = (B®(z),y*) as n = co. Let A®(z,y) = (£n,yn). Then

xﬂ = Bn(r)y yn == C(xn—l>yn—l)~

The proof that y, — y* as n — oo is similarly with the proof given in [5] for
the Theorem 1.
Remark 2.1. The proof that y, — y* as n — oo follows, also, from the following
Lemma 2.1 (see [13]). Let (X, d) be a complete metric space and A,, A X = X,
n € N, some operators. We suppose that

(a) the sequence (An)nen pointiwse converges to A;

(b) there exist a € [0, 1] such that the operators A, and A, n € N, are
a-contractions.

Then the sequence (An 0 Aj—10---0 Ag)nen poinwise converges to A™®.
Remark 2.2. In the proof of Lemma 2.2 on uses the following
Lemina 2.2 (see [13], [14] and [15]). Let an,b, € Ry, n € N We suppose that

(a) an = 0 as n — oo;

o0

(b) Zbk < +oo.
k=0

Then

n
E apbn_r = 0 as n = oo.
k=0

Remark 2.3. For to have a generalization of the Theorem 2.2, we need suitable gene-
ralization for Lemma 2.1 and Lemma 2.2. For some generalization of these Lemmas,
see [15] and [19].

Remark 2.4. By induction, from the Theorem 2.2 we have

Theorem 2.3 (see [13}). Let (.Xx,dk). k =0,p, p > 1, be some metric spaces. Let
Ak:,YoX-”X,‘(k-—)lYk, k:W

be some operators. We suppose that:
(a) the spaces (Xk,di). k = 1,p are complete metric spaces;
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(b) the operator Aq is WPO,;
(c) there exist ay € [0, 1] such that the operators Ax(zo, ..., zk-1,") are

ag-contractions;

(d) if (ma,...,x;) € Fp,, B, = (Ao,...,Ap), then the operators
Ak(-,.,.,‘,.l‘,:),
k=T,p, are continuous in (zy, 23, ..., TE_q).

Then the operator B, is WPO.
Remark 2.5. The next conjecture is in connection with our results.
Discrete Markus-Yamabe Conjecture (see [3], [6], [1]). Let A be a C' function
from R" into itself such that A(0) = 0 and for any x € R™, JA(z) (the Jacobian
matrix of A at z) has all its eigenvalues with modulus less than one. Then A is a
Picard function.

From the fiber Picard operators theorem we have
Theorem 2.4. Let A : R" = R™ be a C'! triangular function, A = (A, ..., Ap).

If there exists o €]0,1[ such that
J0A;

Bz;

<a, t=1,n.

)

Then the function A is Picard function.
A. Cima, A. Gasull, F. Maiosas prove that the Discrete Markus-Yamabe
Conjecture ([3], 1999) is a theorem for 4 provided

0A;

61’]'

<1, j=L1i i=1n

3. Applications

The fiber Picard operators theorem is very useful for proving solutions of
operatorial equations to be differentiable with respect to parameters (see [17], [12],

[13], [14], [15], [20], [18]). For example:

o (J. Sotomayor) differentiability with respect to initial data for the solution

of differential equations

a:l:f(t,;v), r(te) =9, f:Q— R*, QC Rt
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e (LLA. Rus [12]) differentiability with respect to A for the solution of the

integral equation
1
z(t) =1+ /\/ z(s)z(s — t)ds, t€0,1],
t

where \ € R;
¢ (A. Tamasan) differentiability with respect to lag function for pantograph

equation
z(t) = f(t), z(t). z(At)), ¢t>0; 0<A<1, z(0)=0.

In what follow we apply the fiber Picard operators theorem to study the
following integral equations modelling population growth in a periodic environment,

(see [10], [7])

t

z(t) = f(s,z(s); A)ds (1)

t—71

where f € C(R x [o, 8] x J,[m, M], with 7,a,3,m,M € R and J C R a compact

interval.
Let
Xy :={z € C(Rx J,[e,8))] z(t +w,A) = (¢, N),
forallt e R, A€ J}, w>0.
We consider on X, the metric d(z,y) := ||z — y||c. We have

Theorem 3.1. We suppose that
(a)0<m<M 0<a<p,a<mr, >Mr;
(b)) m< f(t,u; \) <M, fort € R.wée o, B), A€ J;
(c) ft +w,w;A) = f(t,w;A), t€ R, u€a,d], A€ J;
(d) there eaists l(t), such that

|f(t,wX) = f(t,v; A)] <1(t)|u — ]
forallt € R, u,v € [a,0)];
(e) there ezists ¢ €]0, 1] such that

t
/ l(s)ds < g, forallt € R.
t

-7
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Then
(i) the equation (1) has in X,, a unique solution z*;

(i) for all zg € X, the sequence defined by

t
zn+1(tv’\) = / f(31 xn(S)A))ds

converges uniformly to z*,
(iii) if f(t,-,)) € CL, then z*(t,-) € C1(J).
Proof. (1)4+(ii). We consider the operator

B:X,—>C(RxJ), B(z)(t,A):= /t f(s,z(s,N))ds

From (a) and (c) we have that X, € I(B). From (d) it follows that B is a
contraction.

By the contraction principle we have that B is a Picard operator.

.. oz 81‘

(i11). Let we prove that there exists _é%- Y € C(Rx J).
»¥

If we suppose that there exists ——f—-, then from

oA

z(t,A) = /t f(s.z(s,A); A)ds

we have

ds.

0zt/\ 3fs:c3x\ )iA) s/\ Of(s,z(s,A);A)
d+/ Pl e i)

This relation suggest us to consider the following operator
A X, xY, > X, xY,

defined by
A= (B,C), A(z,y)=(B(z),C(z,y)),

where

Oleyay = [ LN o yygyy [ Aozl AN,

and Y, ;== {y € C(Rx J)| y(t +w,A) = y(t,A), tE R, A€ J}.
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Now we are in the condition of the fiber Picard operators theorem. From this

theorem, the operator A is a Picard operator and the sequences
Tn4l = B(rn)

and
Ynt1 = C(zn, yn)

converge uniformly to (z*,y*) € Fa, forall xo € X, yo € Yo

Ozg Oz,

If we take zg € X, yo € Y, such that yg = i then we have that y, = N

for alln € N.
So

unif.
Tn T as n — 00,

(’)l'n um’;. -
e as n — 00.
X v

Using a Welerstrass argument we conclude that z* is differentiable and y* =

dzr*
o’
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FIBER ¢—CONTRACTIONS

MARCEL-ADRIAN SERBAN

Abstract. This paper containes some conditions for proving that if an
operator is fiber Picard operator then this operator is Picard operator.
The result obtained is used for proving the differentiability with respect

some parameters.

1. Introduction
Let X be a nonempty set and A : X — X an operator. We note by:
P(X):={Y C X |V #0}
Fq:= {‘L'.E X|A(z) ==z} — the fixed point set of A.

Definition 1.1. (I.A. Rus [6]}). Let (X,d) be a metric space. An operator A: X — X
is (uniformly) Picard operator if there exists z* € X such that:

(a) Fa={z"},

(b) the sequence (A™(z)),n converges (uniformly) to z*, for all z € X.

Definition 1.2. (I.A. Rus [6]). Let (X,d) be a metric space. An operator A: X — X
is (uniformly) weakly Picard operator if:

(a) the sequence (A™(z)),cn converges (uniformly), for all z € X,

(b) the limit (which may depend on x) is a fixed point of A.

If A is weakly Picard operator then we consider the following operator:
A® X 2 X,

A% (z) = lim A™(z).

n-~-+0o
1991 Mathematics Subject Classification. 4TH10.

Key words and phrases. Picard operators, fiber Picard operators, comparison function, (c)-cornparison

function, fixed point, ¢ —contraction.
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In this paper we consider the following class of operators:

A X x ..o x Xp =2 X1 x...x Xp
(;El,.AA,J,‘p) — (141(1'1),142(131,.’132),4..,Ap(1)1,...,.’L'p)),

where (X,,d;), ¢ = 1, p, are metrical spaces and A : X; x ... x Xp = X, k = 1,p

are such that the operators
A/.;(Il‘ oy Thk—1, ) Xk = Xk

are weakly Picard operators, for all z; € X;, i =1,k, k =1,p.

The aim of this paper is to give an answer of Problem 4.2 from I. A. Rus [5].
We replace the condition that Ag(z1, ..., z4-1, -) is «—contraction with Ag(zq, ..., k-1, )
is ¢ —contraction and we give the conditions for @i to obtain that operator A 1s a

Picard operator.

2. Comparison functions and (c)-comparison function

Definition 2.1.(1.A. Rus [5]). A function  : 1 — Ry is called comparison function
if:
(a) ¢ is monotone increasing: t; <t; == ¢(1;) < p(t2), {1t € Ny
(b) (#™ (1)), en converges to 0, as n — oo, for each t.
We are interested in finding that comparison functions which satisfies the
condition:
—
D k() < oo (1)
k=0
V. Berinde in [2] gave a necessary and sufficient result for the convergence of the series
of decreasing positive terms.

(o]
Theorem 2.1.(V. Berinde [2]). A series ) ux of decreasing positive terms converges

k=0
o0
if and only if there exists a convergent series of nonnegative terms Y vy such that:
k=0
&H—<a<],for n > ng, (2)
Up + Up — -

s satisfied.
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Using this result we obtain which comparison functions satisfy the condition (1).
Corollary 2.1.(V. Berinde [3]) Let ¢ : Ry — R4 be a comparison function. The

00
series Y. ©*(t), t € Ry, is convergent if and only if there exists a number a, 0 <
k=0

o0
a < 1, and there exists a convergent series of nonnegative terms ) vx such that:
i=0

$0k+1(t)

O+ on <a<l, for k> ko (3)

[eo]
Remark 2.1. If 3 v; is a convergent series of nonnegative terms and 0 < a then also
1=0
® . . . . a, .
>~ awv; is a convergent series of nonnegative terms, so we can write the condition (3)
=0
in equivalent form:

PHt) < ap®(t) + vk, (4)

where 0 < a < 1, i ) 15 a convergent series of nonnegative terms.
By Coroll;(;l 2.1 and Remark 2.1 we obtain a new class of comparison func-
tions.
Definition 2.2.(V. Berinde [1], [2]) A function ¢ : R4 — R4 is called (c)-comparison
function if the following condition hold:
(a) ¢ is monotone increasing: t; < t; == (1) < p(ta), t1,t € Ry
(b) there exist two numbers ky, o, 0 < o < 1, and a convergent series of

o0
nonnegative terms y . vx such that:
1=0

PH(E) < o (1) + i,

for each t and k > ko.
Theorem 2.2. (V. Berinde (1], [3]) /T ¢ : ®4 — R4 is a (c)-comparison function
then:
(1
(i

) ¢(t) < t, for each t > 0;
) ¥

(ii1) the series Z @ (t) converges for each t € R ;
)

is contmuous in 0;

(iv) the sum of the series (1), s(t), is monotone increasing and continuous in 0;
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(v) (¢™(t)),en converges to 0, as n — oo, for each t.

Ezample 2.1. The function ¢ : Ry — Ry, ¢(t) = HLl is a comparison function, but
is not a (c)-comparison function.

Ezample 2.2. The function ¢ : ®4 = N4, ¢(t) = of, 0 < a < 1, is a (c)-comparison
function.

Lrample 2.3. The function ¢ : Ry — N4,

at t € [0;2d] .
o(t) = ,where 0 <a<l,a~-35 <b<lande<0isa
bt+c t>2a

comparison function.

b=1c¢c= -1 we obtain

Erample 2.4. For the function from Example 2.3, if a = 3

L
2’
a (c)-comparison function.

Definition 2.3. (I.A. Rus [8]) Let (X,d) be a metric space and ¢ : Ry — R} isa

comparison function. A mapping f:.X — X is a p—contraction if:

d(f(x}, f(y)) < p(d(z,9)),

for every z,y € X.

3. Fiber Picard operators problem

We'll start with a result which generalize Lemma 3.2 from I.A. Rus [5].
Lemma 3.1.Let o, ERyp, n € N, and v : Ry — Ry such that:
(i) an = 0 as n = ¢,
(1) ¢ is a (c)-comparison function.

(&9}
Then 5" " *(agx) = 0 as n — oo,
k=0

Proof. We split the partial sum of the series in two parts:

n (3] n
=Y H ) = Y @+ Y (e
k=0 k=0

k=[2]+1
For the first part of partial sum we have:
n—k : n—-k
Z " T () < " " (maxag) - 0
T« neN
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as n — 00, because of the fact that ¢ is a (c)-comparison function and the point (iii)
from Theorem 2.2.

For the second part of the partial sum we have:

n n
n—-k n—k
< xa.:) < .
" F(ak) < E @ (I}lsa’icaj) < s(ljnsarzc a;)
k=[2]+1 k=[2]+1

Using the continuity of s in 0, (Theorem 2.2, (iv)), and the fact that maxa; — 0 as
sn

n — oo we deduce that the second part also tends to 0 as n — oo. O

Considering the open problem 3.1 from L.A. Rus [5], we’ll give the following
result: Lemma 3.2.Let (X,d) be a complete metric space, v : Ry — Ry a (c)-

comparison function and A,, A: X = X, n € N, operators such that:

(1) » s subadditive: p(t; +1ta2) < p(t1) + p(t2), Vi1, ta € Ry,
(ii) the sequence (A,,)neN pointwise converges lo A;

(iii) A, and A, n € N, are p—contractions.

Then the sequence (Ap 0 An_10...0 AO)n.eN pointwise converges to A®.

Proof. From (iii) we deduce that there exists a unique z* € Fy4, so A®(z) = z*, for
all z € X. Let z € X. We have:
d((An 0 An_1 00 Ag) (¢),27) <
<d((AnoAn_10---0Ag)(2), (ApoAp_yo---0Ao) (7)) +
+d((AnoAn_10:--0Ag) (), An(x")) +d(An(2%),2") < -+ <
< "HHd(e, 2%)) + 9" (d(Ao(2™), 27)) + " d(Ar(27), 2%) + - - + d(Aa(2), 2°).

Let ak := d(Ak(x*),z*). It is obvious that ax — 0 as k — oo and the proof of the

theorem follows from Lemma 3.1. O

Lemma 3.3.Let (X,d) and (Y,p) be two metric spaces, r,,,z* € X, ¢ Ry = R} a
(c)-comparison function and f: X xY — Y an operator such that:
(i) zn — z*as n = oo;
(ii) ¢ is subadditive;
(iit) the operator f(-.y) : X = X is continuous for ally €Y,
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(iv) f(z,-):Y =Y is p—contraction for all z € X;

(v) (Y.p) is a complete metric space.
Then the sequence defined by: yn41 = f(Tn,Yn), Y1 =y, n € N converges to y*, the
unique fized point of f(z*,:), forally €Y.

Proof. The proof is a simple application of Lemma 3.3 with 4, : Y = Y, A.(y) =
flzn,y), ALY =2 Y, Ay) = f(27,y). 0

The main result of this paper is related to the open problem 4.1, (I.A. Rus
[8]). This result is an answer of open problem 4.2, (I.A. Rus [5]), which generalize the
Theorem 4.1.

Theorem 3.1.Let (Xy,di), k=0,p, p> 1. be some metric spaces. Let
AkZ/\'nX...XXk—)Xk, k:(],—p,

be some operators such that:
(1) the spaces (Xk,dy), k = 1,p, are complete metric spaces;
(i) the operator Ao is (weakly) Picard operator,
(11) there exist gy : R4 — Ny subadditive (c)-comparison functions such that
the operators Ag(xq. ..., x_1.") are pp—contractions, k =1, p;
(wv) the operators Ay are continuous with respect to (ry, ..., xk—1) for all ) €
X, k=T1p.
Then the operator B, = (Ag, ..., A,) s (weakly) Picard operator. Moreover if Ag 1s a

Picard operator and
Fa, = {z3}, Fa,gy = {21} s Fayes, €)= {ap}

then

Proof. We prove this theorem by induction respect to p € N*. First we consider the
case of p = 1.
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Let £9 € Xo and z; € X,. We show that
Bf (zo, 21) = (AF (20), 21(z0))

as n — 0o, where z}(x¢) is a unique fixed point of A;(Ag°(z¢),-) It si easy to check

that
B?(;l?(),.l'l) = (Ag(‘r()))yn))

where yo = 21, 1 = A1(Z0,Y0), v Ynt1 = AL(AG(20), Yn), -

Using again Lemma 3.3 we obtain the proof in the case p = 1.

Now we suppose that the statemant of the theorem is true for the p < k and
we prove the theorem for the p = k + 1. We remark that By4y = (B, Ak41), where
By is (weakly) Picard operator, so we are in the case p = 1 and thus the proof is

complete. O

Remark 3.1.The Lemima 3.2, Lemma 3.3, Theorem 4.1 from [.A. Rus [5] can be

obtained using ¢ as in Example 2.2.

4. Application

We consider the folowing integral equation:

b
z(t) =g(t) + A- / K(t,s.2(s))ds, t € [a:b]. (5)

Theorem 4.1. Suppose that the following conditions hold:
(i) g € Cla;b], K € C([a;b] x [a; ] x R);
(i) there exists Lx > 0 such that: |K (¢, s, u) — K(t,s,v)| < Lg |u — v|, for all
t,s € [a;b], u,v e N;
(iii) AgLg (b—a) <1, where Ao € R7.
Then
(a) the equation (5) has a unique solution z*(-,A) in C([a;b]), for all A €
[=X0: Ao);
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(b) for all 2o € C([a;b]) the sequence (z,), ¢, defined by

b
Tor1(GA) =g(t) + A / K(t,s,z,(s))ds,

converges uniformly to a*, for all t,s € [a;b], A € [—Ao; Ag);

{c) we have the estimation:

an
lfzn —*lc < T—a llz1 — zollc

where a = AL (b — a);
(d) the function &* : [a;b] x [=Xg: Ag) = R (t,A) —> £~ (t; A) is continuous;
(e) if K(t,s,-) € CY(R), for all t, s € [a;b], then

z™(t;) € CH{[~Ao; Mo))
for all ¢t € [a;b].

Proof. We consider the Banach space X := (C([a:b] x [=Ao; X)), ||-||c), where |||~

1s Chebyshev norm, and the operator defined by

Ao X o X,
b
Ag(2)(L; ) = g(t) + A /Ix'(t, s, z(s; A))ds,
for all t,s € [a;b], A € [=Ao; Ad].
Using (11) we obtain:
140(x) = Ao (Wl < Aol (b= a)-llz—yllc (6)

for all 2,y € X, so Ap is a p—contraction, where ©(t) = at is a (c¢)-comparison
function because of (iii). From Theorem 3, (V. Berinde, [2]) we conclude (a), (b), (c),
(d).
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»*

XN

We’ll prove that there exists . If we formally derivate the relation (5)

respect to A we obtain:

b b
Oz(t: \) =/I\'(t,s,x(s;/\))ds+z\-/6[\ (t’zz(S;A)) 2 g

oA A 1)

a

This relation sugest to consider the following operator:

Al Z‘YX.}(—))&',
/ / oK A
Az, y) (5 A) = / K(t,s,2(s;A))ds+ X - / —l%ﬂ -y(s; A)ds.

We estimate that:

|A1(z, 1) — Ai(z,y2)llc < AoLk (b—a) |ly1 — v2llc,
for all z € X. If we take the operator
B: X xX—-X«xJX, B = (Ao, A1)

then we are in the conditions of Theorem 3.1, thus B is a Picard operator and the

sequences
b
Tppr(t;A) :=g(t)+ A / K(t,s,z,(s))ds

b b
Yn41(t; A) ::/I\'(t,S.J:n(.S':/\))ds+,\ / oK (t'séi"(S;/\))
a a

~Yn(s; \)ds

converges uniformly (with respect to t € [a;b], A € [—Xo; Ao]) to (z*,y*) € Fp, for

0 . .
all 2o, yo € X. But for fixed zo,yp € X we have that y; = —5{;\1 and by induction we
Or,
prove that y, = ———, so we have:
oA
unif. .
z, — &' as n— oo,
Oz, unif.
oA
as n — 00.
These imply that there exists 2% and 0% = y* o
1€S¢e al Lne XIstS —— and — = .
Py E3) ox Y
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Remark 4.1.1f K(t,s,-) € C™(R) then z*(t;-) € C™([—Ao; Ao))-
Remark 4.2. For other examples of integral equations where Theorem 3.1 is used see

I. A. Rus [4], [6], M. A. Serban [9].
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SOME APPROXIMATION IDEALS

NICOLAE TITA

Abstract. We consider some approximation ideals of operators on oper-
ator spaces. The method used is similar to that from [8], [10], [11]. in the

case of the classical Banach spaces. or [2], [7] for the case of Hilbert spaces.

l. Introduction

The theory of the approximation ideals is well known for the case of linear
and bounded operators on Hilbert, or Banach, spaces [2], [6], [7], [8]. [11].

Here we consider the special case of the completely bounded operators on
operator spaces. For these notions it can be seen [1], [3], [5].

We begin by recalling some definitions.

An operator space F , in short O.S, is a Banach space, or a normed space
before completion, given with an isometric embedding J : £ — L(H), where L(H) is
the space of all linear and bounded operators T : H — H, H being a Hilbert space.
We shall identify often E with J(E) and so we shall say that an O.S is a (closed)
subspace of L{H).

If E C L(H) is an operator space then M, © F can be identified with the
space of all » x n matrices having entries in E, that it will be denoted by A1, (E).

Clearly M, (E) can be seen as an o.s. embedded in L(H"), where

H* = H ®...® H (number of H is n).

Let us denote by ||-||, the norm induced by L(H™) on M, (E), in the par-
ticular case n = 1 we get the norm of E. Taking the natural embedding A, (E) —
My 41 (E) we can consider My, (E) included in M4, (E), and ||-||,, induced by ||-||,, 4, -

Thus we may consider { JM,, (E') a normed space equipped with it’s natural

n

norm |||l -
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We denote by K [E] the completion of | JMy,, (E). If we denote by

Ko = UM, the case E = C, then the ZOmpletion of Ky coincides isometri-
cally with the 6‘-algebra, C(l3), of all compact operators on the space ls.

It is easy to check that { JM,, (E) can be identified isometrically with R © E.

The basic idea of o.s. isntha.t the norm of the Banach space E is replaced by

a sequence of norms {||||,,},, on {Af, (E)}, or by a single norm ||-||, on the space

K [E].
Definition 1. Let E; C L(H,) and E+2 C L(H4) be operator spaces,

u: Ey — E5 be a linear map and
wy : (Xij) € My (Ey) = (u(x;;)) € My (E2). We say that v is completely

bounded, c.b., if sup||u,|| < oo and we define ||ul|, , := sup |[un]|.
n n

Definition 2. (equivalent) u is completely bounded if the maps u, can be ex-

tended to a single bounded map u~ : N [E1] = K [E2] and we have |||, , = ||[ucll-

Definition 3. ¢.b. (E, F3) := {u: Ey > E2: uis c.b.}. We shall consider the
e.b. (7). Ea) equipped with |||, , .

Remark {. The similar definition of the uniform norm for the bounded operators can

be written as follows:
)l , = sup {||ucl| : & € K [E],||2]] < 1}.

Remark 2. Likewise the case of an isomorphism between two Banach spaces, we say
that two o.s. ), £y are completely isomorphic, completely isometric, if there
is an c.b. isomorphism u : B} — E2 with c.b. inverse and in addition ||u||cs =

e Hueplles. =1

Let 'y C L(Hy) and E2 C L(H+) be operator spaces. There is an embedding
J:EyDFEy— L(H; © Ha) defined by J (£1 ® z2) (h1 © ha) = 1 (hy) ® T2 (ha).

We denote by E; ®min E2 the completion of E} @ E» equipped with the norm
T = ||J2|.
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Obviously J can be extend to an isometric embedding. So we can see Ej ®min
Fs as an o.s. embedded into L(H; @, H>). This space is called the minimal, spatial,
tensor product of E; and E». (H; ®, Ha is the hilbertian tensor product, [7], [11].)

If E C L(H) is an o.s. then M; ®@min £ can be identified with the space
M, (F) and K [E] can be identified isometrically with K @min E. Thus, for any
linear map u : Ey — Ea we have ||u||., = [/ ®u: K @min E1 = K Onin Ea|| =
D w: K Onin E1 = K ®@uin Eal|. . . More generaly it can be shown that, for any
os. FC L(ﬁ), we have ||[Ip @ u : F @min E1 = F ®min Ea|| <||ul|, . . Further on, if
v : Fy — F5 is another ¢.b. map, we obtain

@ v: Fi @min E1 = F2 Omin Ballcp. < lvlles. - lleelles -

This relation will be very useful in the sequel.

For others properties of the minimal tensor product it can be seen the papers

{1]. [5], etc.

2. Approximation numbers of completely bounded operators

Definition 4. Let u : E — F be a completely bounded map, u € ¢.b. (E, F'). The

approximation numbers, aS? (x) will be defined as follows

aS? (u) ;= inf{|lu—d||,, :a €cb (E,F),rank(a) <n}, n=1,2,.

Remark 3. From this definition it results that |[u|., = a$® (1) > a§® (u) > ... > 0.

Proposition 1. The approzimation numbers aS® (u) verify the following inequali-
ties:

k

1. Za (ug +ug) <2 Z (aZ® (u1) + aZ® (u2)) ,for k =1,2,...

n=1
k
2. Z ai” (upou) <2 Z (aS® (u) - a5 (ua)) for k=1,2,...
n=1
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Proof. 1) Let € > 0. There are a;, i = 1,2, such that rank (a;) < n and
i = aill, 5. < ai® (i) +
We obtain:

™

ash_y (ur +uz) <|(wr + w2) = (a1 +az)]lp, <
<l = alfey +lue — aall. . <

< ap® (ur) +ag® (uz) +e

Since ¢ is arbitrary it follows that:

a$b_ (u +un) < aSht () + alb (ua).
[‘urther on it results:

k
Z alt (uy 4 un) < Z a§b_ ) (up+u2) + 3 agh (ur +ug) <
n=1

n=1
<2 Z ah_ (w +ua) <2 ): (a5 (uy) + a® (u2)) .

2) We (‘OH\IC]PI‘ also a;, 1 =1,2, mlu‘h that rank (a;) < n and
llwi = aillep. < ai® (wi) +
We obtain:

cb

™

(w1 o uz) < ||(uy o uz) — [ug 0az +ay o (uz — az)lll., =

= l(wr = @) o (w2 = a2)llep. < (a5 (ur) + %) - (a5® (u2) +5) -
Since ¢ 1s arbitrary it follows that:

a$h_ ) (wg o ua) < al? (up) - a&b (ua).

Likewise the 1) results 2).

O

Remark /. For the case of the linear and bounded operators between Banach spaces

the above inequalities are known, [8], [11].

In the sequel we deduce an inequality for the case of the c.b. operator u; @n,

w2 using a similar method with that from [9], [10], used for the classical case of the

bounded operators on Banach spaces.

Proposition 2. The approzimation numbers a&® (w1 @min ) verify the inequalities:

K K
Z(’f{b‘ (41 Omin u2) _ o Z“f{b' (1) Nuallep, + ag® (u2) - 1l s, fo
n — )
n=1

n

n=1

112

rk=1,2,...




SOME APPROXIMATION IDEALS

Proof. Let € > 0. There are a;, ¢ = 1,2, such that rank (a;) < n and

llwi — aill.p. < aSb (ui) + %

We obtain:

a%? (11 Omin t2) < ||t1 @min u2 — a1 Omin a2l =

= ||(21 = @1) Omin U2 — @1 Omin (u2 — ﬂ:zmc.b. <

<= ailley - lluelloy, + llanlles, - llue = aaflc, <

< (ag® (w) + §) - Realle o+ llar = ur + wlf oy - (a5 (w2) +5) <
< (a5 (w) + 5) - lualles + (llar = wllep + lhalles) - (> (u2) +5) <
< (a5 () + §) -llusllep. + 2 - flulley, - (a5 (u2) +5) -

Since ¢ 1s arbitrary we obtain:

ay2 S (21 ®@min u2) < 2- ( (w1) - fluzll. . + ay, . (w2) - flurlle ) -

Taking account that the sequence of the aproximation numbers is decreasing

we can writte:

k. J

SO faMomelsl o (1@ minti2) <> (2:n+1) _____(u;‘gj.,,...uz) where j2 <k < (j + 1)?
n=1 T n=1
Now we obtain:

k (u‘(‘)mmu)) < i 2. n+ 1 “n2 ("1®mm“z) < 3. 2" a2 (U1 @ minti2) <

— n? =
n=1 n=1 n=1
j c.0. k c.b. c.b.
<6 ZJ: i (ua)luallgy +ag® () lhaalle o <65 a%® (uy)lualle p +ag” () fledles,
iy n —_ n
n=1 n=1\

This finishes the proof. O

Remark 5. By means of these approximation numbers we can define special approxi-

mation ideals in ¢.b. (E, F).

3. Special approximation ideals

Definition 5. Let =z = {z1,z2,...} be a real sequence and let

card (x) be card {i € N : z; # 0}.

Let K be the set of all real sequences ¢ € I having the following two
properties:
1. card(x) < n(z), n(2) is a natural number
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2. 212222 ... 2 Tn(r) > 0.

A function ® : K — R is called a symmetric norming function if:
.P(x)>0ifxr € K and 2 # 0;
. P(x-z)=a- -®(x), forevery o > 0and r € K;

.9 ({1,0,0..h)=1;
k k
Ifz,ye K and Yz, < 5 i, forevery k =1,2,..., then ® (r) < & (y).

i=1 =1

1
2
3. B(e+y) <P(x)+P(y), for every z,y € K;
4
5

Remark 6. The above definition can be extend on the whole space [, taking

¢ (x) = "ILHOIOQ({M{,...,;v’,',,O,O...}), where ™ = {27 };cn 15 the sequence

{|i]};en rearranged in decreasing order.

Definition 6. In the sequel we shall consider a subclass of ¢.b. (E, F') which is defined

as follows:

b —cbhb (E F):= {u €cb (E,F): Hqub'b' = ({al® (u)}”) < OO} .

Remark 7. We prove that this class has similar properties with the similar classes
defined for linear and bounded operators. (For the case of the Hilbert spaces it can

be seen {2], [7] and for the case of the Banach spaces it can be seen [8], [9], [10], [11].)
Proposition 3. (4) —cb., ||prb) s a quasi-normed operator ideal.

Proof. 1. Auy unidimensional operator , « € c.b. (£, F'), belongs to

®—c.b.(E, F) because, in this case, the sequence {aS® (u)} = {||u]l., ,0,0,...}
and hence @ ({ag?® (u)}n) = J|u]., < .

2. If uy,u2 € c.b. (E, F) then uy + uy € ¢.b.(E, F). This results from the
proposition 5 (1). and from the properties of ®, as follows:

® ({ag® (w1 + ltg)}n) <29 ({as? (w1) +a® (113)}71) <

<2 (@ ({a5t w)},) + @ ({a5? (w)},))

JHvecd (B E), u€®—cb (E,F)and w € c.b.(F, F) then
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wouov€®—cb (E,F).
From the proposition 5 (2) and from the definition of aS?® (u) it follows that

alt (wouow) <|fwll,, - a&® (u) - ||v||.,. and hence

® ({a* (wouo v)},,_) < “"’“(-_u <@ ({ai® (0)},) Nolles. - o

Remark 8 We present now some properties similar to the properties of the classical

approximation ideals Lg, [8], [11].

c.b.

Lemma 1. The approrimation numbers aS°® (u) verify the inequalities:

k

k k
Za%ﬁ, () < Z &b (u) < 2 z i (w), k=1,2,....
n=1 n=1

n=1
Proof. The first inequality is a consequence of the fact that the sequence {af,'b' (u)}n
is decreasing.
The second inequa]ity results as follows:

Za”’ u) <Zac"(u <Za§ u+2a2n
k
Xa agl =
Corollary 1. H-u.”fi,'b' =@ ({as%_, (u)}n) is a quasi-norm equivalent
with |]u||fbb' =@ ({ag® (u.)}") .

k k n p
Remark 9. Since 3 (a5 (0))’ < 32 (% -y ast (u)) <
i=1

n=| n=1

k
<eclp) X (a5 (W) 1<p<oo k=12,
. n=1
see the Hardy inequality [11], it follows that

o ({(as> )} ) <o ({(Z())}) <o ({? @)}

—_— n
and hence l|'u.||fp':7,;) is equivalent with ||u||§,':") = P ({% SYyoagt (u)} ) ,
P N
n
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where @) ({zi}) = @ ({27}) isa symmetric norming function, [2], [6], [7],
[11], for 1 < p < 0.

L n )
Because a%® (u) < (a§® (u) ... al® (w))™ < L. Z b () it follows, also,
that

{as? ("')}n €ls,, if gu (v) = {(aﬁ'b‘ (u) - ... aS® (u))x}n €l
{1711} € l‘l’(,,) — (I)(l‘) ({‘E"}) < 0.

Remark 10. If we consider the special case of the function

6(,3) : ({af“b (u)}) - P ({(afl—bn(ul}) ,

where 1 < p < 20, the classes ®(,) — c.b. (E, F) are tensor product stable.

o

Proposition 4. If uy € 5(,,) —c.b. (Eg, F¢), k= 1,2., then

Uy Qmin U2 € 6(p) —c.b. (El Omin E2) F1 ®@min F‘Z) .

Proof. It is similar to that for the classical approximation ideals [10], [11].

First we remark that, using the relation

n? (ul Jmin 11'7) <2 (afz.b‘ (ul) ’ ||“2Hc.b + a:‘t.b' (u-:') ' H“‘lnc b,)

we can obtain

§o (06" (0 Omn ) ) gL () alles)” (a5 (1) il )

n

A}
n=1 n=1

for k = 1,2, ..., see Proposition 6 for p = 1.

Now taking into account the properties of the functions ® it follows that

P <{ (ac b (ll] min 112))p }) <
c(p)-® ({ (GC b. (u; n”?lollc b) N (aycl,b. (wa) - Huxllcbv)p }) |
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Hence
3(p) ({“c"’ (1 @min “2)})
<er(p) - (@) ({ag® (w)}) - llualley, + By ({ai® (u2)}) -llalle,) <
S2-01 (») - 3(;» ({az> (u)}) - @ ({a3* (u2)}) ,
et () =c(p)? and [lwll,, < Bpp) ({05 (wi)}), k= 1,2
The proof is fulfiled. O

Remark 11. The above result remains true if we consider the maximal tensor prod-

uct.
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