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STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume XLIV, Number 2, June 1999

GENERALIZED CONTRACTIONS FOR SOLVING RIGHT FOCAL
POINT BOUNDARY VALUE PROBLEMS

VASILE BERINDE

Abstract. The main goal of the present paper is to use the generalized
contraction mapping principle [4] instead of the classical contraction map-
ping principle, in order to obtain a more general existence and uniqueness
theorem for the n*® order ordinary differential equation with deviating

arguments (1.1) - (1.3).

1. Introduction

Second order as well as higher order boundary value problems with deviat-
ing arguments arise naturally in several engineering applications. In spite of their
practical importance, only a few papers are devoted to boundary value problems(see
[2] and references therein), even if initial value problems for higher order differential
equations with deviating arguments have been studied intensively. Consequently, let
us consider, as in [2] ( all concepts and notations related to ODE are taken from this

paper), the n** order ordinary differential equation with deviating arguments
™ (t) = f(t,z o w(t)),t € [a,b], (1.1)

where z o w(t) stands for (z(wo,1(t)), ..., #(wo p(0)()), .-, (D (wg p(g) (),
0 < ¢ <n~—1 (but fixed), and p(i),0 < i < g, are positive integers.
The function f(t,< z >) is assumed to be continuous on [a,b] x R, ,where

q
< z > represents (Zo,1, .-, £0,p(0); -» Lq,p(q)) and N = Y p(é). The functions
1=0
w;j,1<j<p(i),0<i<yg,

1991 Mathematics Subject Classification. 34K10.
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GENERALIZED CONTRACTIONS

are continuous on [a, b] and w; ; (t) < b for all t € [a, b];
Also, they assume the value a at most a finite number of times as ¢ ranges
over [a, b].
Let
o =minfa, inf wi;(t) 1<i<p(i),  0<Li<q)
If @ < a, we assume that a function ¢ € C9|[a, d] is given.
Let k be a fixed integer such that 1 <k < n—1 and let » = min{q, & — 1}.

We seek a function
z € B=CMa,b]n CD[a,a)n C[q,],
having at least a piecewise continuous n** derivative on [a, b], and such that:
if
a<a and ¢>k—1then z(t)=¢0)(t),0<i<q, t€]a,a; (1.2)

ifa<aand ¢g<k—1,then
20(t)=pl)(t), 0<i<yq, t€le,al;
ea)=A; ¢+1<i<k-1;
if @ = a, then
e@a)=4; 0<i<k-1
and
eD®)=B; k<i<n-1; (1.3)

Also, z is a solution of (1.1) on [a, b].

2. Equivalent integral equation

To obtain an existence and uniqueness theorem for the boundary value prob-
lem (1.1)-(1.3) we shall convert it into its equivalent integral equation representation.
To this end we need the Green’s function expression, g(t,s), for the boundary value

problem
g™ =0, 2D@)=0, 0<i<k-1, zO@F) =0, k<i<n-1. (2.1)

4



GENERALIZED CONTRACTIONS

From Lemma 2.1 [2], we have that g(t, s) is given by

z,.—;‘—mg(":‘)(t—a)‘(a—s)"“"-‘, if s<t,

y(t’s)z n-1 . .
—zni—mg; Nt —a)i(a—s)"—"L, if s>t

It is known [2] that

(=D)"*gO(t,5) >0, 0<i<k, (t,5) € [a,b] x [a, b];

(=D)"g@(t,s) >0, k+1<i<n-—1, (t,s) € [a,b] x [a, b];

b
sup / |g(i)(t,s)ldSSC,.,;(b—a)"", 0<i<n-1,

a<lt<b
a

where g()(t,s) = 8g(t,s)/0t and

k—i=1 . .

' (nilj! DY (n;-l)(—l)"-]_l l 0<i<k—-1,
Cn,c' = j=0

In—ll)!’ k<i<n-1.

The boundary value problem (1.1)-(1.3) is equivalent to the integral equation

b

2(t) = ¥(t) + 0(t) / 9(t, ) (s, 2 0 w(s))ds,

a

(2.2)

where

, otherwise,

O(t):{ 0, t € [a,ad]
1

and the function 1 is defined as follows.

Ifa<aand ¢g>k—1,then

o0 = { elt) t€fma,
Pn—-l(t)) tE[a,b],




GENERALIZED CONTRACTIONS

where a; = p()(a), 0<i< k-1, B;=B;, k<i<n-—1l,and ps_i(t) is the unique
polynomial (see Lemma 2.2,[2]) of degree n — 1 satisfying

PO (@)=a;, 0<i<k—1land P ()=pi,k<i<n-—1.
If a < aand ¢ < k— 1,then
(1), L€ [, a],
¥(t) =
Pn_l(t), te [a,b],
where a; = p()(a),0< i< ¢q, s = A;, g+1<i<k-1,and fi =B;, k<i<n-1.
If a = a, then ¥(t) = Pa-1(t),t € [a,a], where
a;=A;,0<i<k-land ;=B ,k<i<n-1
It is easy to see that ¢ € B, and for all ¢ € [a, b],with

wi j(8) = a, ¥ (wi3(t) = P (a +0).

3. Generalized contraction mapping principle and main result

We shall use a local variant of the generalized contraction mapping principle

[4, Theorem 1.5.1.] to state our main result.

Lemma 3.1. (Generalized contraction mapping principle [4]). Let (X,d) be a com-
plete metric space and let > 0, p € R, S(uo, p) = {u € X : d(u,uo) < p}. Further,
let T be an operator which maps S(uog, pt) into X, and

(i) for all u,v € S(ug,p),d(Tu,Tv) < ¢(d(u,v)), where ¢ is a (c)-comparison

function;

(1) po = d(Tuo,uo) < pp — b(p)-
Then
(1) T has a fired point u* in S(ug, po);
(2) u* is the unique fized point of T in S(uo, fto);

(8) the sequence {un}, where umy1 = Tum, m = 0,1, ..., converges to u* with

d(u", um) < s(6™ (d(uo, 1))
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and

d(u*, um) < s(d(Um, Um+1));

where s(t) is the sum of the seriesgo: o*(t).
k=0
— .
(4) for any u € S(uo, po), u* = ”}%T u.

Remark. For the notion of (c)-comparison function we refer to [4]. A typical compar-

ison function is
$t)=x, 0<A<I, te[0,00). (3.1)

For ¢ given by (3.1), from Lemma 3.1 we obtain Lemma 2.3 [2].

Let 4;, 0 < i< k—1and B;, k < i< n—1,be given fixed numbers and
¥2 € B the function defined in [2], Section 4. Following [2], a function T € B is called
an approrimate solution of (2.2) if there exist nonnegative constants ¢ and § such that

wherever v (1), %$7 (1) and 7 (t) are defined,

sup |95(t) —9D(t)| < €Cai(b—a)™, 0<i<y, (3.2)
a<lt<b

b
sup 170(0) = 9§(0) — 6(0) [ 09(5,0)S(5, 0 w(e))ds < 6Cns(b-a)",0< i < g
a<t<b

a

(3.3)
If we consider the following norm on the space B:
| z ||= max {(%b;“)—‘) sup | z()(t) | wherever z0)(t) e:cists}
0<i<q Mt T aki<b
and apply Lemma 3.1 we can prove in a standard way.

Theorem 3.1.. Suppose that (2.2) has an approzimate solution T € B and

(1) f satisfies the Lipschitz condition

q p(4)
[flt,<z>)=f(t,<y>)|<Y -21 Lij| z; ;=yi 4l
].__‘

=0

Jorall (t,< z >),(t,<y>) € [a,b] x Dy, where
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Di={< > 2y - sO(wis0) 1< oS 1< <), 0<i<a)s
(1) ¢ is a (c)-comparison function and
(e +8)Cn o6 — )" < 1 — $()- (3.4
Then
(1) There exists a solution z*(t) of (1.1)-(1.8) in S(%, po);

(2) z*(t) is the unique solution of (1.1)-(1.3) in S(Z, po);
(3) The sequence {zm(t)} of successive approzimations, defined by

b .
Emts(t) = ¥(t) + 00) [ 9(t,)1(5,2m 0 w(e))ds, m=0,1,..

and zo(t) = Z(t), converges to z*(t) with

2" —2m ||< s(¢™ (Il wo — w1 1),

lz* = zm |I< s(ll um — um4a |]);

(4) for any zo(t) = z(t), where z € S(7, po), the iterative process converges to z*(t) .

Remarks

1) For ¢(t) as given by (3.1), from Theorem 3.1 we obtain Theorem 4.1 in [2];

2) If , for instance , we take the comparison function ¢ : Ry — R, given by :
1
4, 0<t<1
sit)=4 2"
t—1 t>1,

then an operator T, which satisfies all assumptions in Theorem 3.1, will be gen-
erally not a contractive operator ( with respect to the norm , see [4]), that is, an

operator satisfying for all u,v € S(Z, o), the classical contraction condition

NTu-Tv||[<Alju-v]|, 0<A<],
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but T is a generalized contractive operator. Consequently, Theorem 4.1 from [2]
does not apply, while Theorem 3.1 apply to this class of higher order differential

equation with deviating argument.
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A NOTE ON THE TRIVIALITY OF THE
BOHR-COMPACTIFICATION OF LIE GROUPS

BRIGITTE BRECKNER

Abstract. We determine a class of connected Lie groups for which the
triviality of the Bohr-compactification is equivalent to the triviality of
the Bohr-compactification of the simply connected covering group. We
derive from these results some information on the structure of the Bohr-

compactification of some class of connected topological groups. *

1. Introduction

A topological group G has a trivial Bohr-compactification if (f,{1}) is the
Bohr-compactification of G, where f: G — {1} is the trivial homomorphism. One
shows quickly that if a topological group G has a simply connected covering group
G and if G has a trivial Bohr-compactification, then G itself must possess a trivial
Bohr-compactification. The converse of this statement is not always true, i.e., that
the triviality of the Bohr-compactification of a topological group G does not imply the
triviality of the Bohr-compactification of its simply connected covering group G (if this
covering group exists). In the present paper we look for conditions when this converse
is true. The main results are contained in Section 2: We find a class of connected
Lie groups for which the triviality of the Bohr-compactification is equivalent to the
triviality of the Bohr-compactification of the simply connected covering group (see
Theorem 2.10). As we shall see in Section 3, Theorem 2.10 implies statements about
the structure of the Bohr-compactification of connected simple Lie groups and of
connected semisimple Lie groups. For the sake of completeness we include as a final

result of this section the structure theorem for the Bohr-compactification of solvable

1991 Mathematics Subject Classification. 43A60,22E15.
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BRIGITTE BRECKNER

connected topological groups. We mention that Neeb investigates in Proposition
X.1 of [5] the structure of the Bohr-compactification of Lie groups, too. But his
methods differ essentially from ours. The last section of the paper contains an example
for a connected topological group satisfying the property that it has a trivial Bohr-
compactification while its simply connected covering group has a non-trivial Bohr-
compactification.

We denote by (ig, G®) the Bohr-compactification of the topological group G.
For the sake of simplicity we shall say that G® is the Bohr-compactification of G.
With this notation, the triviality of the Bohr-compactification of G is equivalent to
the fact that G* = {1}.

We recall the well-known fact that the Bohr-compactification of a topological

group G is also the universal topological group compactification of G.

2. Passing to the universal covering group

It is easy to see that if the simply connected covering group Gofa topological
group G has a trivial Bohr-compactification then G has also a trivial Bohr-compac-

tification. This fact follows from the following lemma. .

Lemma 2.1. Let f: H — K be a dense and continuous homomorphism between

topological groups. If H® = {1}, then K® = {1}.

Proof.  The universality of (ig, H?) implies the existence of a continuous homo-

morphism ¢: H® — K® such that the diagram

commutes. Since H® = {1}, we deduce that

ik (f(h)) =1, forallhe€ H.

The density of f and the continuity of ix now imply that K® = {1}. o

12
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Corollary 2.2. Let G be a connected topological group and G its simply connected
covering group. If (G)® = {1}, then G® = {1}.

Remark. The converse of Corollary 2.2 is not always true. We postpone the presen-

tation of an example (see Proposition 4.1).

In the remainder of this section we look for conditions on a Lie group G which
“ensure that the converse of Corollary 2.2 is also true. The following well-known lemma

on topological groups (whose proof we omit) will be very useful for our purposes.

Lemma 2.3. Let G, H, and K be topological groups, ¢: G — H a quotient homo-
morphism of topological groups, and f: G — K a continuous homomorphism. If
ker g C ker f, then there exists a unique continuous homomorphism f: H — K such

that the diagram

G—2-H
1| |7
K——K

is commutative.
We derive from Lemma 2.3 the following isomorphism results for topological groups:

Corollary 2.4. Let G be a topological group, N a normal subgroup of G, and H an
arbitrary subgroup of G. The map ¢: H/(HNN) — HN/N defined by ¢(h(HNN)) =
hN, for all (HN N) € H/(H N N), is a continuous algebraic isomorphism.

Corollary 2.5. Let G be a topological group, N a normal and closed subgroup of
G, and H a compact subgroup of G. Then the map ¢ defined in Corollary 2.4 is a

homeomorphism.
The next theorem is basic for what follows.

Theorem 2.6. Let Z -5 H 25 G be a sequence of continuous homomorphisms of

topological groups satisfying the following properties:
(i) f(2) = kerp.

13




BRIGITTE BRECKNER
(ii) Z is abelian.
(iii) p is a quotient map.
(iv) G® ={1}.

Then H® is abelian.

Proof. The universality of (iz, Z%) implies the existence of a continuous homo-

morphism f': Z® — H® such that the following diagram
z 2y gb

2.1) 7 |7

H —— H*
iH
commutes.
We first prove that f(Z°) is a closed normal subgroup of H®. It is obvious
that f/(Z%) is a closed subgroup of H®.
The fact that f(Z) = ker p implies that the subgroup f(Z) is normal in H.

Thus for an arbitrary h € H we have
hf(Z)h™" C £(2).

Applying ig to both sides of the above inclusion and taking into account (2.1), one

obtains that

(2.2) in(h)f'(iz(2))(iu (k)™ C f'(i2(2)) C F(2°).

Since the inner automorphisms of H® are continuous and since H® is Hausdorff and

compact, the following equality holds

(2.3) in (h)f'(iz(2))(in (R))~! = in (k) f (iz(2)) (iu (b)) ™.

Using the continuity of f’, the density of iz, and the fact that H® is Hausdorff and

compact, one gets the following equalities

(24) Fiz(2)) = f(iz(2)) = £(2°).
Relations (2.2), (2.3), and (2.4) imply that

(2.5) in(B)f'(2°)(in(h)™" C £(2").
14
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Taking into account that ig (H) = H®, one concludes from (2.5) that f’(Z®) is normal
in H°.

Let K := H%/f'(Z%) be endowed with the quotient topology. Since H® is a
compact topological group and since f'(Z%) is a closed normal subgroup of it, K is a
compact Hausdorff topological group. Denote by ¢: H?> — K the canonical quotient
map.

We now show that there is a continuous homomorphism ¢ : G — K such that

the diagram

H—-2, @G
(2.6) qo,-,,l 14,
K K

commutes. For this we observe that
(2.7 ker p C ker(q o ig).
Indeed, ker p = f(Z) and we know by (2.1) that
ig(kerp) = in(f(2)) = f'(iz(2)) C f'(2").
Since f!(Z%) = ker g, one obtains from the above relation that
(g0 in)(kerp) C {1},

e., (2.7) holds. Applying Lemma 2.3, there exists a continuous homomorphism
¢: G — K such that (2.6) is commutative.
Since G® = {1}, we must have that

#(g) =1, forall g € G.
Thus
(pop)(h) =1, forallh € H.
From the commutative diagram (2.6) we now get that

(goim)(h) =1, forallh € H,

15
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ie.,
ig(H) C kerg = f'(2°).
Since kerg is closed and since iy is dense, it follows that H®> = f'(Z%). According

to condition (ii) of the hypotheses we know that Z is abelian. Then so are Z° and

F'(Z°). Thus H? is abelian. O

We recall that for a group G, the commutator subgroup is denoted by G'.

Lemma 2.7. Let G be a connected Lie group. Then G® is abelian if and only if

kerig = G'.

Proof. First suppose that kerig = G’. The inclusion G’ C kerig implies that
ig(G) is abelian. Then so is ig(G) = G®.

Now assume that G® is abelian. This implies the inclusion
(2.8) G’ C kerig.

To prove the converse inclusion, consider T := G/G'. Thus T is a connected abelian
Lie group. According to Korollar II1.3.25 of [3] there are natural numbers m and n
such that T is both algebraically and topologically isomorphic to the direct product
R™ x (R/Z)". It follows that ip: T — T® is injective.

Denote by ¢: G — T the canonical quotient map. The universality of (i¢, G®)
implies the existence of a continuous homomorphism §: G® — T® which makes the
diagram _

G —= G
Jo |
T — T
ir
commutative. Now consider an arbitrary element g € kerig. Thus §oig(g) =1, or,
by the commutativity of the above diagram, iz(g(g)) = 1. Since ip is injective, it

follows that ¢(g9) = 1, i.e., g € kerg = G’. Thus

(2.9) kerig C G’
By (2.8) and (2.9) one obtains the desired conclusion. m]
16
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The following result is a consequence of Theorem 2.6 and Lemma 2.7.

Corollary 2.8. Add to the hypotheses of Theorem 2.6 that H is a connected Lie
group. Then kerig = H.

We define now a special type of topological groups, which will enable us to
give an answer to the problem of the triviality of the Bohr-compactification presented

in the previous section.
Definition 2.9. A topological group G is called topologically perfect if G = G'.

The next result gives a class of Lie groups for which the converse of Corollary

2.2 is true.

Theorem 2.10. Let G be a connected Lie group satisfying the property that the sim-
ply connected covering group G of it is topologically perfect. Then G® = {1} if and
only if (G)® = {1}.

Proof. If (G)® = {1}, then Corollary 2.2 yields that G® = {1}. For the converse
statement let p: G — G bea covering morphism and denote by Z := kerp. It is
known that Z is an abelian subgroup of G. Denote by i: Z — G the inclusion map.

The map p is a quotient map since it is a covering morphism. Thus the sequence
z5LG65aG

satisfies the conditions (i)—(iv) of Theorem 2.6. Applying Corollary 2.8, one obtains
that
kerig = (G)'.
Since G is topologically perfect, one concludes that ker i = G, ie., (C~r')b ={1}. O
Connected semisimple Lie groups are common examples of topologically per-

fect groups. Thus the following result is a direct consequence of Theorem 2.10.

Corollary 2.11. Let G be a connected semisimple Lie group and G the simply con-
nected covering group of it. Then G® = {1} if and only if (G)® = {1}.
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3. The structure of the Bohr-compactification of Lie groups

As we shall see, Corollary 2.11 implies statements about the structure of the
Bohr-compactification of connected simple Lie groups and of connected semisimple
Lie groups. For this we also need the following theorem, which is a consequence of a

deep result by RUPPERT.

Theorem 3.1. The Bohr-compactification of a non-compact connected simple Lie

group G with finite center is trivial.

Proof. This statement follows from two results of [7], namely from Theorem

I11.1.19 and assertion (i) of Theorem IIL.6.3. 0

Theorem 3.2. Let g be a simple non-compact Lie algebra and let G be a connected
Lie group with Lie algebra g. Then G® = {1}.

Proof.  Let G be a simply connected covering group of G. According to Satz 1.5.19
and Satz I1.7.1 of [3] there is a connected linear Lie group G* possessing a Lie algebra
isomorphic to g. Since G* is a simple linear Lie group, Proposition 5.1 of Chapter 1 of
[6] implies that it has finite center. Applying Theorem 3.1, we get that (G*)® = {1}.
Now consider a simply connected covering group G* of G*. Corollary 2.11 yields that
(cT*)b = {1}. On the other hand, the Lie groups G* and G are isomorphic having
isomorphic Lie algebras. Thus (G)® = {1} and so the assertion follows from Corollary

2.2. 0

Now we turn our attention to connected semisimple Lie groups. A first step in
determining the structure of their Bohr-compactification is contained in the following

result:

Lemma 3.3. Let n > 1 be a natural number and let 5 be a semisimple Lie algebra
with the property that

§=5® O sn,
where s; are simple and non-compact ideals of 5. If S is a connected Lie group with
Lie algebra s, then S° = {1}.
18
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Proof. Forie {1,..., n} let S; be a simply connected Lie group with Lie algebra
5;. Put

Then S is a simply connected Lie group whose Lie algebra is isomorphic to s. Denote
by fi: S; = S (i = T, n) the canonical injections. The subgroup £;(S;) (i € {1,...,n})
of S is a connected Lie group whose Lie algebra is isomorphic to s;. Thus, ac-

cording to Theorem 3.2, the group f;(S;) has trivial Bohr-compactification for each

i€{1,...,n}. It follows that
ig(fi(Si)) = {1} for each i € {1,...,n}.

Since
S=fi(51) ... (),

one obtains that z§(§) = {1}, 1i.e., (5)® = {1}. Since the group S is a simply connected
covering group of S, Corollary 2.2 yields that S® = {1}. o

In stating the structure theorem for the Bohr-compactification of connected
semisimple Lie groups we need the following result about the structure of connected
semisimple Lie groups. In the proof of this result one uses the structure theorem of

semisimple Lie algebras (see Satz I1.3.7 of [3]).

Lemma 3.4. Let G be a connected semisimple Lie group and g its Lie algebra. Then

the following statements hold:
(1) There are two finite sets I and J and simple ideals ¥; (i € I) and s;
(3 € J) of g satisfying the properties that ¥; is compact for each i € I, s;
is non-compact for each j € J, and
1= Do Ds
iel jed
(By definition, if I = 0, then ®;er¥; := {0} and similarly, if J = 0, then
®jess; = {0}.)
19
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(2) There is a compact connected normal subgroup K of G and there is a closed
connected normal subgroup S of G such that
LK) = P, L(©S)=Ps;, and G= KS.
i€l jed

Moreover, K NS s a discrete subgroup of G.

We are now prepared for the structure theorem of the Bohr-compactification

of a connected semisimple Lie group.

Theorem 3.5. Let G be a connected semisimple Lie group and g its Lie algebra.
There is a compact connected narmal subgroup K of G and there is a closed connected
normal subgroup S of G such that the following assertions hold:
(i) G=KS.
(ii) The groups G/S and K/K NS are algebraically and topologically isomor-
phic.
(iii) If ¢: G = G/S denotes the canonical quotient map, then (q,G/S) is the
Bohr-compactification of G. ‘

Proof. Let K and S be the subgroups of assertion (2) of Lemma 3.4. Then (i)
obviously holds.

(ii) This assertion follows from (i) and Corollary 2.5.

(if) According to (ii) the pair (¢, G/S) is a topological group compactifica-
tion of G. Consider an arbitrary continuous homomorphism f: G — T of G into
a compact Hausdorff topological group T. We know by Lemma 3.3 that S® = {1},
hence f(S) = {1}, i.e., kerg = S C ker f. Applying Lemma 2.3, we find a continuous
homomorphism f: G/S — T such that the diagram

G —2- G/S
1| |7
T T

is commutative. This means that (¢, G/S) is the universal topological group com-

pactification of G, hence also the Bohr-compactification of G. O
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For the sake of completeness we finish this section with some considerations
on the Bohr-compactification of another important class of Lie groups, namely the
solvable Lie groups. We determine even the structure of the Bohr-compactification
of solvable connected topological groups. For this we state first the following useful

result:

Proposition 3.6. A compact connected Hausdorff topological group G which is solv-

able is abelian.

Proof.  Proposition 9.4 of [4] implies that G” = G’. Since G is solvable, it follows
that G’ = {1}. Thus G is abelian. )

We are now able to give the structure of the Bohr-compactification of solvable
topological groups. For a topological group G denote by T the quotient group G/G'
and by ¢: G — T the canonical quotient map.

Theorem 3.7. Let G be a solvable connected topological group. Then (i o ¢, T®) is
the Bohr-compactification of G.

Proof. It is clear that (ir o ¢,T®) is a topological group compactification of G.
Now consider an arbitrary continuous and dense homomorphism f: G — K of G into
a compact Hausdorff topological group K. Since G is connected and solvable, so is

f(G). Thus the group f(G) = K is also connected and solvable. Hence Proposition
3.6 yields that K is abelian. It follows that

kergq = G’ C ker f.

In view of Lemma 2.3 there exists a continuous homomorphism f’: T'— K such that

the diagram

G 25T
(3.1) 1| |
K ——K
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commutes. The universality of (i, T°) implies the existence of a continuous homo-

morphism f: 7% — K such that the diagram

T T, b

(3.2) ’| 7
K K

commutes. The diagrams (3.1) and (3.2) yield

foirog=foq=f,

i.e., the following diagram
G T, b

1| \7
K K
is commutative. This shows that (ir o ¢, T?) is the universal topological group com-

pactification of G, hence also the Bohr-compactification of G. o

Remark. Suppose in addition to the hypotheses of Theorem 3.7 that G is locally
compact. In view of assertion (iii) of Theorem 7.57 of [4] the connected locally com-
pact abelian group T is both algebraically and topologically isomorphic to the direct
product R™ x C with a compact connected group C. Since the Bohr-compactification
of this direct product is known, it is now clear what the Bohr-compactification of a

solvable connected locally compact topological group looks like.

4. An example

We give now the example promised in the remark after Corollary 2.2 for
a connected topological group satisfying the conditions that it has a trivial Bohr-
compactification and the simply connected covering group of it has a non-trivial Bohr-
compactification. Let G =R x §l(2,]R) be the direct product of the additive group of
real numbers (endowed with the usual topology) and the simply connected covering
group of the special linear group. Let T = Z +1/2Z. We know by Lemma 1.3.14 of [3]
that T is a dense subgroup of R. It is known (see, for example, Theorem V.4.37 of [2])
that §1(2,]R) has a discrete center which is isomorphic to Z. Denote by z € §l(2,]R)
22
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the generator of this center. Now consider the subgroup Z of G generated by the
elements (1,1) and (v/2,z). Then

Z ={(m+nv2,z")| m,neZ}.

The subgroup Z of G is discrete and normal in G. We consider the quotient group

G:= é/Z . For this group we can state the following proposition:

Proposition 4.1. The topological group G has a trivial Bohr-compactification. The

Bohr-compactification of its simply connected covering group G satisfies (é)b ~ R®,

Proof. Denote by q: G — G the canonical quotient map. Since g is a homomor-

phism, we have
q«@0=G4

Thus G' = (G‘)’Z/Z . Applying Corollary 2.4, there is a continuous isomorphism
¢: (GY/((GY N Z) - (GY'Z/Z. Hence ¢: (GY/((G)' N Z) = G' is a continuous
isomorphism. On the other hand, since §l(2,1R) is simple, we have the following
equality

(G) = {0} x SI(2,R).
Thus (G) N Z = {(0,1)}. Tt follows that (G)'/((G)’ N Z) is both algebraically
and topologically isomorphic to SI(2,R). Thus (G)'/((G)' N Z) has a trivial Bohr-
compactification by Theorem 3.2. Applying Lemma 2.1 to the map ¢, we conclude
that (G’)® = {1}. Let us observe that

G'=gq ((C:)'z) .
Since
T x SI(2,R) C (G)'Z
and since T = IR, we deduce that
@yz=3a.
The continuity of ¢ and the above relations yield that
G=4q(@) Cq((G)2) =T
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Thus G’ = G. Taking into account that (G')® = {1}, it follows that ig(G’) = {1}.
Since G’ = G, the continuity of ig implies that ig(G) = {1}, i.e., G® = {1}. Since ¢
is open and since ker ¢ = Z is discrete, it follows that ¢ is a covering morphism. Since
Gis simply connected, it is a simply connected covering group of G. On the other

hand, since S1(2, R) has a trivial Bohr-compactification, one has that (G)* ~Rb. O

Note. This paper is a part of the author’s doctoral dissertation written at Darmstadt

University of Technology under the direction of Professor Karl H. Hofmann.
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SCHUNCK CLASSES OF n-SOLVABLE GROUPS

RODICA COVACI

Abstract. The paper deals with some properties of X-maximal subgroups,
X-pro-

jectors and X_—coveriné subgroups in finite w-solvable groups related to a
n-closed Schunck class X, where 7 is an arbitrary set of primes. The
main results are: 1) an existence and conjugacy theorem for X-maximal
subgroups; 2) the proof of a property of covering subgroups in the more
general case of projectors and some important corollaries if « is the set of

all primes.

1. Preliminaries

The aim of this paper is to study in the case of finite w-solvable
groups some special subgroups introduced by W. Gaschiitz in [6] and [7].
All groups considered in the paper are finite. We denote by 7 an arbitrary set of
primes and by #‘ the complement to 7 in the set of all primes.

The notions in the paper are resumed in the following definitions.

Definition 1.1. a) ([7]) We call X a class of groups if the members of X _are finite
groups and X has the properties:

(1) 1€ X;

(2) if GeX and fis an isomorphism of G then f(G)eX.

b) ([8]) A class X of groups is a homomorph if X is closed under homomorphisms, i.e.
if GeX and N is a normal subgroup of G imply G/NeX.

c) A group G is primitive if there is a maximal subgroup W of G with coregW =1,

where

1991 Mathematics Subject Classification. 20D 10.
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coregW =N { W9 / geG }.
d) ([8]) A homomorph X is a Schunck class if X is primitively closed, i.e. if any group

G , all of whose primitive factor groups are in X, is itself in X.

Definition 1.2. Let X be a class of groups, G a group and H a subgroup of G.
a) ([7]) His X-mazimal in G if:

(1) HeX;

2)H<K<G,KeX=>H=K. :

b) ([7]) H is an X-projector of G if for any normal subgroup N of G, HN/N is
X-maximal in G/N. c¢) ([6]) H is an X-covering subgroup of G if:

(1) HeX;

(2) H <K < G, Ko < K, K/KoeX = K = HKq.

Definition 1.3. a) ([5]) A group is m-solvable if every chief factor is either a solvable
m-group or a r'-group. If m is the set of all primes, we obtain the notion of solvable
group.

b) A class X of groups is w-closed if:

G/On‘(G)e X = GeX,

where O7‘(G) denotes the largest normal 7‘-subgroup of G. We shall call m-homomorph

(w-Schunck class) a m-closed homomorph (Schunck class).
We shall use in the paper the following result given by R. Baer in [1]:
Theorem 1.4. A solvable minimal normal subgroup of a group is abelian.

2. Basic properties of special subgroups

We remind here some basic properties of special subgroups defined in 1.2.

Theorem 2.1. ([6]; [8] ) Let X be a homomorph, G a group and H a subgroup of G.
a) If H is an X-covering subgroup of G, then: |

(1) for any r€G, H® is an X-covering subgroup of G;

(2) for any normal subgroup N of G, HN/N is an X-covering subgroup of G/N;

(8) for any subgroup K with HKK<G, it follows that H is an X-covering subgroup of
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K.

b) If N is a normal subgroup of G and H < H* < G such that N C H* H is an
X-covering subgroup of H* and H*/N is an X-covering subgroup of G/N, then H is
an

X-covering subgroup of G.

Theorem 2.2. ([7]) Let X be a class of groups, G a group and H a subgroup of G.
a) If H is an X-projector of G and z€G, then H® is an X-projector of G.

b) H is an X-projector of G if and only if:

(1) H is X-mazimal in G;

(2) HM/M is an X-projector of G/M for all minimal normal subgroups M of G.

¢) If H is an X-projector of G and N is a normal subgroup of G, then HN/N is an
X-projector of G/N.

Theorem 2.3. Let X be a class of groups, G a group and H an X-mazimal subgroup
of G. Then:

a) for any 2€G, H® is an X-mazimal subgroup of G,

b) for any subgroup K with H < K < G, it follows that H is X-marimal in K.

Concerning to the connection between X-maximal subgroups, X-projectors

and

X-covering subgroups in finite groups we give:

Theorem 2.4. ([4]) Let X be a class of groups, G a group and H a subgroup of G.
a) If H is an X-covering subgroup or an X-projector of G, then H is X-mazimal

in G.

b) If further X is a homomorph,then: H is an X-covering subgroup of G if and only if
H is an X-projector in any subgroup K with H < K < G. Particularly, any X-covering
subgroup of G is an X-projector of G.

Remaark. The converse of the last assertion does not hold, as the following example

shows: Let A be the homomorph of all finite abelian groups. Any subgroup of order
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4 which is not normal in the symmetric group Sy is an A-projector, but is not an

A-covering subgroup in S4.
3. Existence and conjugacy theorems

The fundamental problem on the special subgroups defined in 1.2. is to
prove the existence and conjugacy theorems. We give below such theorems for finite
m-solvable groups.

All groups in this section are finite m-solvable.

Theorem 3.1. ([2]) Let X be a w-homomorph.
a) X is a Schunck class if and only if any w-solvable group has X-covering subgroups.

b) Any two X-covering subgroups of a w-solvable group G are conjugate in G.

Theorem 3.2. ([9]; [4]) Let X be a m-homomorph. Then: X is a Schunck class if

and only if any w-solvable group has X-projectors.

Corollary 3.3. Let X be a wm-homomorph. The following conditions are equivalent:
(1) X is a Schunck class;
(2) any m-solvable group has X-covering subgroups;

(3) any m-solvable group has X-projectors.

Theorem 3.4. ([9]) If X is a n-Schunck class, then any two X-projectors of a =-
solvable group G are conjugate in G.

In the proof of 8.4. given in [3], we use a lemma, important in itself, because it can be
considered as an ezistence and conjugacy theorem for X-mazimal subgroups in finite

m-solvable groups.

Theorem 3.5. ([3]) Let X be a w-Schunck class, G a w-solvable group and A an
abelian normal subgroup of G with G/A€X. Then:

a) there is a subgroup S of G with SEX and AS = G (which imply that there is an
X-mazimal subgroup S of G such that AS = G);

b) if Sy and Sy are X-mazimal subgroups of G with AS; = G = ASs, then S; and S,

are conjugate in G.
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4. New results on projectors

In our intention to study some properties of special subgroups in finite -
solvable groups we raised the following question: Does an analogous property of
2.1.b) hold for projectors? The answer is affirmative in finite m-solvable groups, as

the result below shows.

Theorem 4.1. Let X be a m-Schunck class, G a w-solvable group such that for any
minimal normal subgroup M of G which is a 7 “-group we have G/M€EX and let B be
a normal abelian subgroup of G such that:

(1) S is X-mazimal in BS;

(2) BS/B is an X-projector of G/B.

Then S is an X-projector of G.

Proof. We consider two cases:

1) B = 1. Then BS/B = S and G/B = G. By (2), S is an X-projector of G.

2) B # 1. To prove that S is an X-projector of G we use 2.2.b).

(1) S is X-maximal in G. Indeed, if we put S* = BS, our assumptions (1) and (2)
imply that S is X-maximal in $* and S*/B is an X-projector of G/B. Then S€X. Let
S < T < G and TeX. We show that S = T. From BT/B = T/BNT and X being a
homomorph we obtain BT/BeX. By 2.4.a), S*/B is X-maximal in G/B. This and
BS/B < BT/B, where BT/B€X, imply BS/B = BT/B, hence S* = BS = BT and T
< S* But S < T < S* TeX and S X-maximal in S* imply S = T.

(2) For any minimal normal subgroup M of G, MS/M is an X-projector of G/M.
Indeed, M being a minimal normal subgroup of the w-solvable group G, two cases are
possible:

a) M is a solvable w-group. Then, by 1.4., M is abelian. X being a m-Schunck class, 3.2.
shows that the m-solvable group G/M has an X-projector T*/M. We shall prove that
MS/M and T*/M are conjugate in G/M, hence, by 2.2.a), MS/M is an X-projector
of G/M.

We are in the hypotheses of 3.5. because T* is a 7-solvable group and M is an abelian
normal subgroup of T* with T*/MeX. By 3.5.a), there is an X-maximal subgroup T
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of T* such that MT = T*. We shall prove that T is X-maximal in G. Indeed, T€X.
Further, let T < T’ < G with T’€X. We show that T = T’. Since T* = MT < MT’
it follows that

T*/M < MT’/M = T’/MNT’eX.

Using that T*/M is an X-projector of G/M, that means that T*/M is X-maximal in
G/M, we obtain T*/M = MT’/M, hence MT = T* = MT”.So T < T’ < T*. But T
is an

X-maximal subgroup of T* and T’€X. Then T = T’. So T is X-maximal in G.

Let A = BM. Clearly A is a normal abelian subgroup of G. Further AS/A and AT/A
are X-projectors of the m-solvable group G/A. By 3.4., AS/A and AT/A are conjugate
in G/A. It follows that AS9 = AT for some g€G. But S and T are X-maximal in G. By
2.3.b), S9 and T are X-maximal in AT = AS9. Applying now 3.5.b) to the w-solvable
group AT and its abelian normal subgroup A with AT/A€X, it follows that S¢ and
T are conjugate in AT. Hence M S9/M and MT/M = T*/M are conjugate in G/M.
Then MS/M and T*/M are conjugate in G/M and so MS/M is an X-projector of
G/M.

B) M is a w‘-group. Then M < On‘(G) and

G/ On‘(G) = (G/M)/( On‘(G)/M).

But M being a minimal normal subgroup of G which is a 7‘-group, we have G/MeX.
So, X being a homomorph, we also have G/ On‘(G) €X. It follows, by the n-closure
of X, that GEX. But S is X-maximal in G. Then S = G is its own X-projector, which
means also that MS/M = G/M is its own X-projector. O

From now on let 7 be the set of all primes, i.e. all groups we consider are finite
solvable groups. Theorem 4.1. has in this particular case the following immediate

corollaries (given also in [7]).

Corollary 4.2. Let X be a Schunck class, G a solvable group, S a subgroup of G and
G=G>G1>...>2G, =1 '
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such that for any i, G; < G and G;/G;+1 is abelian. Then S is an X-projector of G if

and only if for any i, G;S/G,’ is X-mazimal in G/G;. .

Proof. By induction on |G|. If S is an X-projector of G, then, by 1.2.b), for any i,
G;S/G; is X-maximal in G/G;. Conversely, let, for any i, G;S/G; be X-maximal in
G/G;.

By the induction, G,_;S/G,_; is an X-projector of G/G,—;. Then putting in 4.1. B
= G,-1, we obtain that S is an X-projector of G. O

Corollary 4.3. Let X be a Schunck class, G a solvable group, H a subgroup of G and
S an X-projector of G such that S C H. Then S is an X-projector of H.

Proof. G being solvable, there is a chain

G=Gp>G1>...2G, =1

such that for any i, G; < G and G;/G;4; is abelian. We denote for any i, H; = HN
Gi. Then

H=H¢>H;>...>2H, =1

is a chain with H; < H and H;/H;;; abelian for any i. Applying 4.2. for the X-
projector S of G, we obtain that for any i, G;S/G; is X-maximal in G/G;. But, for
any i, we also have:

H;S/ H; = S/SNn H; = S/SN(HNG;) = S/(SNH) N G; = S/SNG; = G;S/G;

and

H/H; = H/HNG; = HG;/G; < G/G;.

It follows that for any i, H;S/ H; is X-maximal in H/H;, hence, by 4.2., S is an
X-projector of H. ]

From 2.4.b) and 4.3. follows:

Corollary 4.4. Let X be a Schunck class, G a solvable group and S a subgroup of G.
Then S is an X-covering subgroup of G if and only if S is an X-projector of G.
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LE PROBLEME EXTERIEUR DE DIRICHLET EN DEUX
DIMENSIONS POUR LES CHEMINEMENTS ALEATOIRES SUR
DES DEMIGROUPS DISCRETS

OCTAVIAN MUSTAFA

Abstract. The paper examines some problems concerning the exterior

Dirichlet problem for random walks on discrete semigroups.

1. Introduction. Périodicité et récurrence. La fonction caracteristique

>
Soit (Z,+) un démigroupe commutatif, dénombrable et dans lequel toute

équation a + = = b, ol a,b € Z, admet au plus une solution. Supplémentaire, 0 € Z.

Ezemple 1.1. Toutes les parties stables d’un groupe lesquelles le zéro du groupe est

contenu.

Soit (2, F, P) un espace de probabolité, f, : @ — Z, n > 1 des variables
aléatoires independentes et identiquement repatisées et So = 0, S, = fi + -+ + fn,

n > 1, un cheminement aléatoire sur Z.

Proposition 1.2. Soit z,2' € Z. Si l’équation z + ¢ = 2’ n’a pas de solution et
P(Sn, =2) #0, alors
P(Sn+1 = ZII Sn = Z) =0.

On défini 'application T': Z x Z — [0, 1] par

T(z, ') = T(0,l), pour z+1=72

0, en rest,

ot T(0,1) = P(fo = 1), n > 1. Evidemment, ZT(O,:) = 1. T est la fonction de

Z€Z
transition du cheminement aléatoire considéré.
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Proposition 1.3. Si P(S, = z) # 0, alors
T(z,2') = P(Sn41 = 2| Sn = 2).
Supplémentaire,
T(z+ 1,2 +1) = T(z,7"), pourz,2',l€ Z.
Et, si z+ 2' =0, alors
T(z,0) = T(0, 2").

En effet, le chaine de Markov homogéne {S,| n > 0} a la matrice des proba-

bilités de transition
P = ||T(z,2')|;,20¢2- .
Pour 2,2’ € Z, on défini .

To=4, Th =T,

Tn(z,2") = Z T(z,21)...T(20-1,72"), n>2

Z21y22y.092n—1 €Z

ol § est le symbole de Kronecker. Biensiir, si P(Sy, = z) # 0, alors

Tn(2,2') = P(Sm4n =2'| Sm=12), n>1.

Soit
Fo=0, =T,
Fa(z,2)= Y, T(z,21)...T(2a-1,7).
21,..,Zn—1#2’
Finalement,

Gn(z,2') = ZTk(z,z’), n>0.

k=0
Proposition 1.4. a) Fy(z,2) = Fa(0,0),
b)Y B ) < 1,
&) Gal(2,2) < Ga(0,0),
d) Th(z+ 1,2 +1) = Th(z,2'),
&) Ga(2,2) = Ga(0,0),
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n
f) Tu(2,2") = EFk(z,z')T,,_k(z',z'), n>1, zz/l€Z
k=1

o o]
Un état z € Z, avec F(z,z) = 1,0ou F = ZF,,, est récurrent. Du b) on
n=1
obtient que 0 < F(z,2') < 1, pour 2,2’ € Z. Si F(z,z) < 1, ’état z est transitoire (a

voit [4.3], I-er tome, pag. 353 et [4.4], pag.19).

Observation 1.5. Parce que F(z,z) = F(0,0), (V) z € Z, si un état z du cheminement
aléatoire est récurrent (transitoire), alors tous ses états sont récurrents (transitoires),

le cheminement etant récurrent (transitoire).
On définit
L:={z€2|T(z,0)>0}, Zt:={z€Z|(3)n>0, ta(z,0) >0},
Z:={z€2| (3, €zt s+ =2"}.

Proposition 1.6. L’ensemble Zt contient toutes les sommes finies d’éléments de
et (Z*,+) est le plus petit démigroupe de Z pour lequel & C Z*. (Z+,+) est le plus
petit sousgroupe aditif de Z avec Zt C Z.

Proposition 1.7. Si le cheminement est réccurent, alors Zt =7 et
F(0,2)=1, z€Z, F(0,2)=0, z€2Z\Z.

Observation 1.8. Les ensembles ¥ et Z1 sont les inverses des ensembles ¥ et Zt

definis en [4.2].

On dit que le cheminement aléatoire T' est apériodique si et seulement si
Z = Z. Particulierement, Z doit étre groupe.

Soit Z CR%, d> 1. Pour z = (21,...,24) € Z et 8 = (01,...,04) € R% on
utilisera les notations suivantes

d

d d
=Y 1P, 167 =D 16:1% =0=) a6
1=1 i=1

i-1
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La fonction caracteristique asociée au cheminement aléatoire T est

®(a) = Z T(0, z)e'**, pour a € R%.
T€Z

Soit C = {0] |6;] < 2w, 1 < i< d}. Alors,

a) [®(0)" = Z Ta(0,2)e**®, 6 € R,
z€Z

) Tu(0,9) = (2m)¢ [ o)1 ds, ye .
c
Ici, [®]" sera remplacée par ®", en concordance qvec [4.2].

Sid=1, soit

tr = Zx"T(O,z), k=12, m= Z |z|T(0, z).
T€EZ T€EZ

Proposition 1.9. Si m; < oo, alors ® est du classe C* et '(0) = ip;.
La réciproque n’est pas valable. Pourtant,
Proposition 1.10. Si T'(0,z) =0 pour £ < 0 et s
0 < —i®'(0) = lim 1220 _ . 00,
- -0 0
alors p; = my; = a.
Finalement,

Proposition 1.11. Si gy =0 et 02 = py — p? < oo, alors

t 3
lim Z T,,(O,:c)=2—11r-/ e~ 7dy, teR.
-0

n—o00

z</n-ot

2. Démigroupes suffisants. La caracterisation des cheminements aléatoires

sur les démigroupes suffisants

On dit qu’un sousgroupe G de R?, d > 1, est suffisant si et seulement si:
V(A CGl 6 >0, 0 € Ax) 3 (ﬂ(k)GAkl G,Ek):oneqji;nﬂk), 1<k<d.
k
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Proposition 2.1. Pour tous les groupes suffisants G C R? il existe 1 < k < d et des

vecteurs i, ...,zx en G independents sur R tels que
G=27z®x Lz
(G est un Z-module de dimension k).
Démonstration. A voir [4.1], les pages 24-25. ]

Un démigroupe (groupe) aditif Z, denombrable, inclus en R? est consideré comme
suffisant par raport au cheminement T : Z x Z — [0, 1] si et seulement si Z est un

groupe suffisant de R4.

Ezemple 2.2. Tous les cheminements sur le démigroupe suffisant N¢ C (R9, +) sont
transitoires (F =0, G=1,0u G = G(0,0),G= le Gr). Ce qui donne un reponse
n oo

au celebre probléme du vol des oiseaux!

Proposition 2.3. Soit Z C (R?,+) un groupe suffisant par raport au cheminement

T. Alors, le cheminement est apériodique si et seulement si
{6eR @) =1}={0 € RY (2n)"'z0 € Z, z € Z}.

Démonstration. Biensir, X = {§ € RY (2m)"'20 € Z, 2 € Z} C E = {0 €

Ré| ®(0) =1} = {9 € R4 @) = ZT(O,Z‘) cos(z6) = 1}.
T€EZ
Si Z =7 et ®(0) = 1, alors ZT(O,.r)cos(w@) = ZT(—:L',O) cos(zf) =
T€Z T€EZ
Z T(z,0) cos(zf) = Z T(z,0) cos(zf) = 1,donc (27)"'z € Z,z € . Et "(0) =
zeZ z€ED
1= Z Tn(y, 0) cos(yb) = Z Tn(y,0) cos(y8) = 1, donc (2m)~'z0 € Z, z € Z*
veZ Ta(y,0)>0

et (2m)~1z6 = (2m)~ (21 — 22)0 € ZZ, pour T = ) — z3, ol z1,22 € ZF, d'olt

@2r)z0€Z,ze€Z =2.
Reciproquement, si Z est un sousgroupe propre de Z, il existe des vecteurs
independentes sur R : aj,...,ax € Z, 1 < k < d, avec Z =7a & @ Zag. Si

k<d-1,soit {ai,...,ak,ak+1,...,aqs} unde base algébrique en R? et  un vecteur
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3. Moment d’arrét. Moment d’impact. La fonction H4. Le probléme

exterieur de Dirichlet en deux dimensions

On considére I’espace de probabilité (2,,F;, P;), z € Z, ou
1) Q, = {2} x Z", i.e. w €Q, si et seulement si wy = 2z, ot N* = N\ {0}.

2) F, est la plus petite des sous o-algébres de 2, qui contient les cilindres
An={weQ|wi=gq; i=1,...,n}.
3) P, : F, — [0,1] est I’'unique mesure de probabilité avec
P,(A;) =T(z,61)T(a1,az) ... T(an-1,an)
Evidemment,
P(w € Q|wiy, = @iy, ... wi,, = ai,) = T;, (2,85 ) Tiy—iy (@i, @ig) - - Timi 1 (@i y @i,

Pour X;”Q, — Z, Xi(w) = wk, k > 0, on note avec S§, S;, les fonctions
0,X: + - -- + X, définies sur Q,. Dans ce cas-la, {S;;| n > 0} est un cheminement

aléatoire avec la fonction de transition 7.

Proposition 3.1. a) P(z+ Sk =yk; k=1,...,.n) =P (Xx =y; k=1,...,n);
b) P,(Xk41 =Xk +2') =T(0,2'), k> 0;
¢) P,(Xm41 = Xm +v; Xng1=Xn+1t)=T(0,v)T(0,t), m#n >0.

{Xal| n > 0} signifie la translation de vecteur z du cheminement {S,| n > 0}.

Soit Fk ;, & > 0, la plus petite des sous o-algébres de F, qui contient tous
les ensembles {w € Q;|wn =y}, y€ Z, k> n>0.

Une application T : Z x ZN° 5 N, ot N=NU {+0o0}, s’appelle moment

d’arrét si et seulement si
[ € 0| Tha, (@) = k} € Fasy (¥) k20, 2 € 2
Pour A C Z, soit Ty : Z x ZN° — N le moment d’arrét:

Ta(w) =min{k| 1< k<oo: Xp(w) €A}, weZx 2z,
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oo
ol P,[T4q = +o0] :=1~— Z P,[Xx € A], 2z € Z, s’appelle le moment d’impact avec '
k=1 |
A. Pour A = {z}, on utilise la notation Ty = Tj.

Soit H™ : Z x A = [0, 00),
P Xr,=2;Ta=n], z€ Z\ A
Hl(,,")(z,z')= 0, 2€ A, n>1
0(z,2'), z€ A, n=0.
Soit Hy : Z x A — [0, 00),

P, [Xr, =2 T , Z\A
O A
d(z,7'), z € A.
Proposition 3;2. a) Hf‘")(z,z’) = Z T(z,z1)...T(2n-1,2'), 2 € Z \ A4,
21,..,2p-1€Z\A
n>1;
oo
b) Ha(z,2') =Y H{P(z,7), z€ Z\ A.
n=1

Proposition 3.3. a) P;[T, = n] = F,(z,y);
b) P, [T, < +00] = F(z, z);
¢) P,[Tay, =n] = Po[Ta =), z,y,2 € Z.

Démonstration. c)

P,[Tay, =n]= Z T(z,w1)...T(wn-2,wWn-1) Z T(wn-1,wn)
Wi, Wno1FA+2 wn€A+2

St wit1 # wk + Wi g, (V) Wiy € Z, pour 0 < k< n—1, 0l wy = z, alors

T(wk,wk+1) = 0. Donc

Pz[TA+z = n] =
= > T(z,z+t1) ... T(z+ts4+ - +tn_1, 24+t 14+ - +tg) =
itkgA,lngn—l;zn:tkEA
k=1 k=1
= Z T(0,w1)... T(wn-1,wn) = Po[Ta =n], z€2Z.

{wi,...,wn-1€Awa EA}
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Soit d = 2, (Z,+) un démigroupe par raport a T' et A un sousensemble de Z. On

pose le probleme:

( D T(,y)f(y) = f(z), z€Z\ A

yez

(ProbDirich) < flz)=p(z), z€ A

( 1f(#)] < oo

Si A est infinie, on ajoute la condition suivante:
(infini) |p(z)| < oo.

Proposition 3.4. Si T est la fonction de transition d’un cheminement aléatoire arbi-
traire (récurrent ou transitoire), alors le probléme bidimensional exterieur de Dirichlet

admet la solution

F(z) =" Halz,9)e(y).

y€B

La solution est unique si:
a) le cheminement est récurrent et apériodique;
b)ilyay € A, avec Z\AC y+Z et T est récurrent (donc Z n’est pas

necessairement un groupe!).

Démonstration. Pour z ¢ Z \ A,

Y T(z,t)Ha(l,y) = Po[X1y =4 Ta =1+ Y Y T(2,t)Pe[Xr, =u; Ta=k] =
teZ teZ\Ak=1

=PXr, =y, Ta=1+ Y Y P[Xi=t; Xp, =y, Ta=k+1]=
teZ\A k=1

=Y P[Xr, =y; Ta =kl = Pe[Xr, =y; Ta < +o0] = Ha(z,y), yE€ A.
k=1
Evidemment, |f(#)| < supyea lp(y)| < +oo0, donc f est majorée. Si fi, f

sont des solutions du probléme de Dirichlet, h = f; — fo le serait aussi pour |4 = 0.
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Soit M > 0, avec |h(z)| < M,z € Z,d’0d
|h(z)] < MP[Ta > n] < MP;[Ty >n], z€Z\A yeA, n>1l

A voir [4.2]. Enfin,
n
|h(z)| < nli’ngo MP;[T, > n] = Jim M (F(a:,y) - ?:_:le(zay) + Po[Ty = +°°]) =

= M P, [Ty = o],
en concordance avec b) de la derniére proposition.
Mais 1 = P;[T, € N] = F(z,y) + P;[Ty = +00]. D’aprés la condition b),
F(z,y) =F(z+y,y) =F(2,0), W)z € Z\A, z=2+y, 2€Z.
Maintenant,

1) la condition de récurrence a comme consequence
F(z,0)=1, z€ Z, d’0t P,[Ty = +00] =0, z € Z \ A.
2) la condition d’apériodicité et récurrence implique
P[Ty=+400]=0=1-P[Ty < 4+o0]=1- F(z,y) =1- F(0,y—z) =0,

pour tous les z,y de Z. ' O
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ON DARBOUX LINES
NEBI ONDER AND ABDULKADIR OZDEGER

Abstract. In this paper, we first prove that the only surface (other then
a sphere) on which the two families of Darboux lines form a Tschebycheff
net and the third family of Darboux lines is transversal to one of the
two families of Darboux lines is a cylinder of revolution. We next show
that the surface (other than a sphere or a developable surface) on which

the Darboux lines correspond to those on its parallel surface is a surface

of constant mean curvature. Moreover, if the two families of Darboux
lines on a surface of constant mean curvature form a Tschebyscheff net,
then a surface becomes a cylinder of revolution or a plane. Furthermore,
we prove that surfaces (other than a sphere or a plane) whose Darboux
lines are preserved under inversion are Dupin’s cyclides or, in particular, a
pipe surface of revolution. Finally, we show that Molure surface on which
the two families of Darboux lines which are different from the lines of
curvature form two semi-Tschebyscheff nets together with a family of lines

of curvature are either a surface of revolution or a pipe surface.

1. Introduction

Let S be a surface of class C* in Euclidean 3-space and let C be a line on S.

C is said to be a Darboux line if the relation

drg _ _
D=—=+(p=Pn)pg=0 (1.1)

holds all along C, where D is the Darboux’s direction function and p,,pg, 7, and s
are, respectively, the normal curvature, the geodesic curvature, the geodesic torsion
and the arc-length of C, p,, being the normal curvature of the orthogonal trajectories

of C.

1991 Mathematics Subject Classification. 53A20, 53A25.
Key words and phrases. Darboux lines, Tschebycheff net.
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Let a Darboux line make angles 4* and v** (y*+~** = §) with the parametric
lines v = const. and u = const. respectively. Then, by using the respective generalised

Euler, Ossian-Bonnet and Liouville formulae
pm = {r* cos¥* siny** + r**siny* cosy** + (t* —t**)sinv* siny**}/siné
T = {t* cosy* siny** + t** siny* cos ¥** + (r** — r*)siny* siny**}/sind

pg = {(g" +77)siny*™* + (¢** — v3*)siny*}/sind

the equation (1.1) can be expressed in the form

* * %k >k * 2 o,k
D= lsm-y. + 157 cos'y.sm'y n (1.2)
sin é sind
1% siny™* + 13" siny* in y* o
L(4 v '+ 2 8SInvy sm'y'cos'y +
sin § sind

(r-u _ 7'*)1 sin ')’" + (1’" _ 7'*)2 sin 7- sin 7# sin 7**
+ _ N +
sind sind

e {(7] iy + 5 siny")[(r** — 7*) sin? 4
sin” &

—(t* — t**) cos y** sin y**] + (9}* siny** + 73* siny*)[(r** — r*)sin® 4"+
1
sin? §
(" —t7") cos(d — 29" )H(g" + 1) siny™ + (¢™ — 13") siny"} = 0

+(t* —t**) cosy* siny*]} + {(r* — r**)sin(d — 2" )+

where *,r**; g%, g**;1*,t** are, respectively, the normal curvatures, geodesic curva-
tures and geodesic torsions of the parametric lines and 1, 2 are the indices of the first
order invariant derivatives.

The derivative of the differentiable function f(u,v) in the direction of the

curve C is

% =[(f)18in9 + (f)2sin @]/ sind,

where 1, ¢ are the angles between the tangent of the curve C' and the parametric
lines u =const., v =const., respectively, and s is the arc-length of C; (f); and (f),
being the invariant derivatives of f in the direction of the parametric lines v =const.,
u =const.
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If the lines of curvature of S are taken as parametric lines, then (1.2) becomes
(1.2))  —Fsin® p + (F2 — 2ry) sin? pcos p + (271 — 1) sinpcos? p 4+ rycos? p = 0

where ¢ is the angle between a Darboux line and the line v =const., and r, 7 are the
principal curvatures of S.

A vector field @ making an angle ¢ with the unit tangent vector field  of the
curve C on S will undergo a parallel displacement along C in the sense of Levi-Civita
if

dp
E = —Pg, (13)

where pg and s are, respectively, the geodesic curvature and the arc-length of C [1].
We assume that the angle ¢ is measured in the positive sense around the normal of
S from ¢ towards 1.

A Tschebyscheff net is by definition a set of parameter curves p =const.,

¢ =const., on a surface in terms of which the linear element takes the form
ds® = dp® + 2 cos pdpdq + dg¢*

or, equivalently, a net is a Tschebyschedd net if and only if the tangent vector field of
either family of the net undergoes a parallel displacement in the sense of Levi-Civita
along each curve of the other family [2].

A curve C is called a transversal of a vector field, if the vector field undergoes
a parallel displacement along C'.

The couple (D1, D3) of two families of curves on S is called a 2-net. A 2-net
is said to be a semi-Tschebyscheff net if one of the two families of this net is the

transversal of the tangent vector field of the other family.

2. Tschebyscheff nets formed by Darboux lines

In this section surfaces on which the two families of Darboux lines form a
Tschebyscheff net and the third family of Darboux lines is transversal to one of the
two families of the Tschebyscheff net will be determined.
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Let the three families of Darboux lines on the surface S be denoted by
D1,D2,D3. Withput loss of generality, we can take the two families D;, D2 as the
families of parametric lines v =const., u =const., respectively. In this case, from (1.2)

we obtain

&+ [(r" — r**) + (¢* — t"")cotgdlg® = 0 (2.1)

£5* + [~ (r" — ™) + (t* — t**)cotgd]g"™* = 0. (2.2)

The conditions for the 2-net A = (Dy,D;) to be a Tschebyscheff net are,
according to (1.3)

gt =48, =0, g* +4, =0. (23)

On the other hand, the condition for the third family D3 to be transversal of

the tangent vector field to one of the two families D; and D, to D; say, is, according
to (1.3)

dy*
—5 ~ (Pg)Ds =0 (24)

where (pg)p, is the geodesic curvature of the curves belonging to Ds, s being the

arc-length of Dj. ,
The conditions (2.3) and (2.4) give

9" =0, §=14(v). (2.5)
Then, by using the Gauss equation [3]
K =r*{r** +1* — t*)cotgd — t** =

=[g3 — 91 + 99" — 99" + ¢d1 + 812]/sind

where
_ (g™ —d2)cosd — (g* +441) __(g** —382) — (g" + 1) cosd
q= T y 9= :
sind sind
we have
K =r*[r** + (t** —t*)cotgd] - t*2 =0 (2.6)
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so that S is a developable surface.

Under the conditions (2.5), from (2.1) it follows that
t* = h(v) (2.7)

where h(v) is an arbitrary differentiable function of its argument.

Differentiating (2.2) with respect to u and making use of the relation
(r** —r*)cotgd = t* +t**, (2.8)
we obtain
toy = (20, cotg28)ty” (2.9)
where we have assumed that
(2.8)’ 8 # g
For
£ £0, ' (2.10)
integration of (2.9) gives
(2.10) ty" = f(u)sin26(v)

where f(u) is an arbitrary differentiable function of its argument.
Under the conditions (2.3), (2.4), (2.7), (2.10)’, the Mainardi-Codazzi equa-
tions [3]
ry = [(t* —t**) (" — 82)/sind + {r* — r** — (t* — t**)cotgd}(g* + &) + (2.11)

+t3 cosd —t1*]/sind

Pt = [(° = t°)(g" +61)/sind + {r* — r** — (t** — t*)cotgd})g™* — 62) + (2.12)

+t5 —t1* cosd]/sind
take the respective forms

_ f(u)sin24(v)

rt = k' (v)cotgd(v) sin 6(v)

(2.13)
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e _ M) :
" = Snd(o) f(u) sin 26(v)cotgd(v). (2.14)

Differentiating (2.8) with respect to u and v and using (2.13), (2.14), (2.10)’
and (2.7) we have

N O PR V70)
Tw = sin d(v) ), ™ sin 26 (v)

—2f(u)cosd(v) + 2t** g**. (2.15)

With the help of (2.13) and (2.15), the integrability condition »}, = 3, for

r* gives

1 d [ R’ (v) = —2f'(u) = A = const. (2.16)

cosd(v) dv | siné(v)
Differentiating (2.6) with respect to u and using (2.7), (2.8), (2.10)’ and the
first equation of (2.15) we get

2 Rv) u 2 h'(v) _
() [sin 5(v) 21 )] + sind(v) 0 (2.17)
(2.17) r*? = —h?%(v) [1 - h_’(;)%m]
with
(2.17)” ™ #£0, h'(v) #0.
Differentiating (2.17)’ with respect to u and using (2.15) and (2.16) we obtain
= —(A/2)h2(’l)) v) = h'(v)/ sin 6 (v
T ) -2 ()= e Emel) (218
where
(2.18)’ I(v) — 2f(u) # 0.
Substituting of r* in (2.17)’ gives
A2 B o
[ i) ] l(v) = =2f(u) = B = const. (2.19)

From (2.16) and (2.19) it follows that »* = 0 which contradicts the condition
™ #0in (2.17)”.
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Now we consider the cases where the conditions (2.18)’, (2.17)”, (2.10), (2.8)’
are not satisfied, namely the cases

I. K (v)/siné(v) —2f(u) =0, IL. A'(v) = 0, III. »* = 0, IV. £3* = 0, V.
d(v) =m/2.

It is easy to see that the cases I and III cannot hold.

In case II, from (2.17) it follows that

h?(v) f(u) = 0. (2.20)
If, in (2.20) f(u) =0, then (2.10)’ gives t}* = 0 which contradicts (2.10).
If, in (2.20) h(v) = 0, then from (2.16) and (2.7) we get A =0, f(u) = C; =

const. and t* = 0. Substituting of f(u), h(v) and t* in (2.15), (2.14), (2.13), (2.10)’,
(2.2) yields

7-:‘ = —201, 1"; — —2C1 COS J(U) (221)
= —-2C cos? §(v), rg* =-2C1cosé(v) +2t™g™ (2:22)
t; = Cysin26(v), " = 2™ g™ cotg2d(v) (2.23)

With the help of the condition (2.3), (2.23) gives
t** = (Ciu + C2)sin28(v), (Ci,C2) = const. (2.24)
Then, from (2.24) and (2.22), we obtain
r** = —2(Cyu + Cy) cos? 6(v) — 2C, /cos d(v)dv+ Cs (Cq = const.) (2.25)
Substituting the values of #**,#*,¢** in (2.6) and remembering that r* # 0, we get
2C, /cosJ(v)dv =Cy

from which it follows that C; = C4 = 0. In this case, from the first equation of (2.23)
we find that ¢** = 0 which contradicts (2.10). Therefore, the case II can not hold.

In case IV, we have
" = k(v) (2.26)
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where k(v) is an arbitrary differentiable function of its argument. Then, Mainardi-
Codazzi equations become
h'(v)
* _ 3/ *n
ry = h'(v)cotgd(v), r}* = Sné(0)°
Differentiating (2.8) with respect to u and v and using (2.27), (2.28), we get
o W) 20M()

" Gnd(v)’ " T sin20(v)
By means of (2.28) and (2.29) it follows that

(2.27)

+ 2k(v)g™". (2.28)

!
r™=A /cos d(v)dv + Aju+ A, M— = A, =const., A; = const.) ,
sin é(v)
™ = Aju+ Az + / A + 2k(v)g** (v)| dv (As = const.). (2.29)
cos d(v)

If (2.30), (2.27) and (2.7) are taken into consideration, the Gauss equation (2.6)

reduces to
A3 + Ay [a(v) + A)]u + a(v)B(v) — B (2) = 0
where we have put

a(v) = A2 + A /cos&(v),

Bv) = A2 + / [cosAﬁ + 2k(v)y"(v)] dv + (k(v) — h(v))cotgd(v),
from which it follows that
A1 =0, a(v)B(v) —h%(v) =0. (2.30)
Combining (2.31) with (2.30) we get
h(v) = const., /2k(v)g" (v)dv + (k(v) — h(v))cotgd(v) = %:- — Ag (2.31)
where we have assumed that
Ay #0. (2.32)
Differentiating (2.32) with respect to v, we obtain
—k(v)g** cos26(v) + %k'(v) sin2d(v) + Bg** =0, (9" =4dy)
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which, by the condition g** — §, = 0, gives
k(v) = Bcos2§(v) + Dsin26(v), (D = const.) (2.33)

On the other hand, (2.34) and (2.32) give

(2.34) k(v) = Bcos26(v) + (—ﬁ—:— - A3) sin 28(v).

With the use of (2.34)’, (2.32) and (2.31), the equations (2.30), (2.27) and (2.7)

become respectively

2
t* =B, t" = Bcos2(v)+ (%— - Aa) sin 26(v)
2

2
™ = A;, " = A3+ Bsin26(v) — (ﬁ— - Aa) cos 26(v).
2

Then it can be easily seen that one of the principal curvatures is zero while the other
one is a constant which means that S is a cylinder of revolution.

We next consider the case where the condition (2.33) is not satisfied. Namely,
the case of A3 = 0. Then, from (2.31) we get B = 0 by which the equations (2.30),
(2.27) and (2.7) reduce to

t*=0, t*=k), =0 r= 2/k(v)g"dv + As. (2.34)
If these values of t*,t**,7*, r** are substituted in (2.8) we obtain
(2/k(v)g"dv + A3> cotgd(v) = k(v). (2.35)
Differentiating (2.36) with respect to v we get
Kv) _ s
*(o) 26" (v)cotg2d(v)

where k(v) # 0. (In case of k(v) = 0, S is a plane), from which it follows that
k(v) = Cysin26(v) (Cy = const.)
Then, from (2.36) we find that As = 0, by which (2.35) becomes
t* =0, t*=0Csin26(v), r* =0, r** =2C,sin’d(v)

which means that, S is a cylinder of revoluti
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In case V, from (2.1), (2.2), (2.3), (2.5) we obtain

gF=g¢"=0, t"'=-t"=4 (2.36)

r* =1l(u), ™ =mv), : (2.37)
where [(u) and m(v) are arbitrary functions of their arguments.

By the use of (2.37) and (2.38), the Gauss equation yields

m(v) = % = B = const. (2.38)

where we have assumed that
l(u) #£0. (2.39)
By (2.39), the equations (2.38) become
v =1l(u), »r* =B

stating that S is a cylinder of revolution or a plane.

Finally, we consider the case where the condition (2.41) is not satisfied.
Namely, the case of I(u) = 0. In this case, we have A = 0. Then the equations
(2.38) and (2.37) become

tr=t"=0, =0 r=m).
With these values of t*,¢**,7* and r**, (1.2) reduces to
m/(v) sin® y* siny** =0
from which it follows that
m(v) = const.

Therefore, S is a cylinder of revolution or a plane.

Summing up what we have found above we obtain the
Theorem 2.1. The only surface (other than a plane) on which the two families
of Darbouz lines form a Tschebycheff net and the third family of Darbouz lines is
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transversal to one of the two families of the Tschebycheff net is a cylinder of revolu-

tion.

3. Darboux lines on parallel and inverse surfaces

3.1. Surfaces on which the Darboux lines correspond to those on their
parallel surfaces. Let S be a real surface in Euclidean 3-space with vector equation
# = #(u,v). A surface S parallel to S is defined by T = £4C (C = const.) where 7 is
the unit normal vector of S. If the lines of curvature of S are taken as the parametric
lines, the coefficients of the first fundamental form of S denoted by E, F, G are given
by

= _(C-a\? =_o =_(C=8)\
E_< - )E F=0, G_(T) G (3.1)

where E and G are the coefficients of the first fundamental form of S, @ = 1/r and
B = 1/7 being its the radii of principal curvatures. The principal radii of curvatures,

denoted by R and R, of S are given by

(e = +1) (3.2)

If the lines of curvatures of S are taken as the parametric lines, the equation

(1.2) becomes
—71 tan® o + (F2 — 2r3) tan® p + (2F, — r1) tanp +r2 = 0. (3.3)
Using the fact that tanp = (G/E)l/zj—v, (3.3) takes the form
u

~74G*(dv)® + (Fy — 2r,) EG(dv)?du + (27, — ry) EGdv(du)? + r, E*(du)® = 0.
(3.4)

Using this equation and remembering that the lines of curvature on S and §

correspond, the differential equation of the Darboux lines of S is obtained in the form

~R.G(dv)® + (R, — 2R,)E G(dv)2du + (2R, — Ru)E Gdv(du)? + R, E*(du)® = 0.
(3.5)
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The Darboux lines of S and S will correspond to each other, if and only if the
respective coefficients of the equations (3.4) and (3.5) are proportional. Then, with
the help of (3.1) and (3.2), from (3.4) and (3.5) it follows that

:62 _ —B o? + 2auﬂ2 _ "2,3ua2 + aufe _ a?
(B—0C)2 " —Pu(@a=0C)2+20,(f—C)2 ~ —2Bu(@—C)2+0au(B—C)?  (a-C)>
(3.6)

where we have assumed that

(3.6)' ay#0, By #0.

From (3.6) we get

Pu(B—a)1-CW)=0, (B-a)(1-CW)(aufs —4a,fu)=0  (3.7)

B-a)1-CW)=0, ay(f-a)1-CW)=0 (3.8)

where W is the mean curvature of S and K # 0.

In the case of K = 0, the Darboux lines of S and S do correspond.

If S is neither a sphere nor a developable surface, from (3.7) and (3.8), we
get 1 — CW = 0 which means that S is a surface of constant mean curvature.

Now we consider the cases where the conditions in (3.6)" are not satisfied,

namely
I. B,=0, II. a,=0.

In case I, by (3.1) and (3.2), equations (3.4) and (3.5) take the respective

forms
Edu { —-Zg + 2%2-] G(dv)? + Z—;dedu - Z—;’E(du)z} =0 (3.9)
Edu { [— b + 2a ] G(dv)? + 2 __Gdvdu — ——EX——.E_(du)z} =0
B-C)P?  (a=C)? (a=C)? (a=C)? B
(3.10)
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showing that one of the families of Darboux lines on S and S coincides with the family
of lines of curvature u = const. The other two families of Darboux lines on S and S

are given by

By ay a a
[—— + 2;—5 G’(dv)2 + ;}dedu - B{—;E(du)2 =0,

32
[— b\ 2 ] G(dv)? + —= _Gdvdu — — =~ _F(du)? = 0
B-C)2  (a-0C) (a—C)? (a-C)? o
These lines will be in correspondence provided that
Bu(B—a)(1-CW)=0 (8.11)
B-a)l-CW)=0 (3.12)
ay#0, a,#0 (3.13)

By (3.14) we get 1 - CW = 0 from which it follows that a,, = 0 contradicfing
with (3.15).
Next we consider the cases where the conditions in (3.15) are not satisfied.
Namely,
I' a;=0, ", a, =0.

In case I’, using (3.1) and (3.2), from (3.4) and (3.5) we find that

-5 23] Gtaop - et =0 519
[- (8 fUC)'-’- * (az—avc*)z] Gldv)* - (7,—5"67)5?(‘1“)2 =0. (3.15)

Since the coefficients of (3.16) and (3.17) must be proportional, we obtain
(B — a)(1— CW) = 0. (3.16)

(3.18) gives 1 — CW = 0 for a # 3 showing that S is a surface of revolution
of constant mean curvature other then a sphere.
In case IT”, we have 8, = 0, a, = 0 implying that S is a cylinder of revolution

or a plane.
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In case II, we apply the same reasoning as above and obtain the same results

included in case I.

We therefore obtain the
Theorem 3.1. Let S be a surface parallel to S and suppose that S is neither a sphere
nor a developable surface. If the Darboux lines of S and S correspond to each other,

then S s a surface of constant mean curvature.

3.1.1. Surfaces of constant mean curvature on which the two families of Darbouz lines
form a Tschebycheff net. 1t is well known that [4] the Darboux lines of a surface of
constant mean curvature other than a sphere, a cylinder of revolution or a plane, cut
each other under an angle of 120°.

Suppose that the lines of curvature on S are taken as the parametric lines.
Let the lines of the two families D; and D, of Darboux lines make, respectively, the
angles ¢ and ¢ with the parametric line v =const. Then ¢ — ¢ = 120°.

The conditions for the 2-net A = (D1,D;) to be a Tschebycheff net are,
according to (1.3),

d(e - ¢) d(¢ — ¥)
—B_ $-%) _ _ 1
ds2 B (pg)2’ d31 (pg)l (3 7)
where s1, 52; (pg)1, (pg)2 are the arc-lengths and the geodesic curvatures of D, and D,
given by
(pg)1 = prcosp+ pasingp + gcosp + Fsing =0, (3.18)
(pg)2 = d1cosd + $asing + gcosd + gsing = 0. (3.19)

Using the fact that ¢ — ¢ = 120°, by (3.20) and (3.21), (3.19) becomes
[p1 + g]cos p + [ip2 + g]sinp = 0,

o1 + g] cos(p + 120°) + [p2 + F] sin(p + 120°) = 0

from which it follows that

pr1+9=0, p2+7=0. . (3:20)
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With the help of (3.22), the integrability condition 12 — w21 = g1 + G2

for ¢ gives
92—51—92—§2=K=0

which means that S is a developable surface. On the other hand, since 2W = é+% =
r+ 7 =const., S is a cylinder of revolution or a plane.

Thus, we obtain the ‘
Theorem 3.2. A surface of constant mean curvature on which the two families of

Darbouz lines form a Tschebycheff net is a cylinder of revolution or a plane.

3.2. Surfaces on which the Darboux lines are preserved by inversion. Let
the surface S be given by the vector equation ¥ = Z(u,v) and let S* be its inverse.
Then S* is defined by the equation * = %255:‘ , ¢ being the radius of inversion. Denoting
by E, F,G and E*, F*,G* the coefficients of the first fundamental forms of S and S*

respectively, we have

4 4

* 4 * C4 * 4

If the lines of curvatures on S are taken as parametric lines, the principal

curvatures, denoted by 7* and 7 of S* are given by
SR = - (7 3.22
= g(re? £ 2p), = — (a4 29) (3:22)

where p is the perpendicular distance, measured in the sense of the unit normal vector
of S, from the centre of inversion to the tangent plane of S at the point considered.

The quantities r, 7, p, ¢ are related by

(3.24)' 20y = —(2%)ur, 2py = —(22),

sl

Using the fact that tanp = (G/E)l/"’;ﬁ, (1.2) takes the form
u

—7,G%(dv)? + (Fy — 2ry) EG(dv)?du + (274 — 1) EGdv(du)? + 7, E?(du)® = 0.
(3.23)
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Since the lines of curvature on S and S* correspond, the differential equation

of the Darboux lines of S* is obtained in the form
—75G*2(dv)® + (7} — 2r}) E*G* (dv)?du + (3.24)

+(27% — ) E*G* dv(du)? + r} E*%(du)® = 0.
The Darboux lines of S and S* will correspond, if and only if the respective

coefficients of the equations (3.25) and (3.26) are proportional. Consequently, by
using (3.23), (3.24), (3.24)’, from (3.25) and (3.26) we get

2 (220 — (Fo — 2r0)(€%)u = 0, (3.25)
ra(z®)u =0, Fy(e?)y =0, (3.26)
Fu(@?)y +ru(22)u = 0, (3.27)

(Fo = 2r) (2%)u — (2)0(2Fu — 1) =0, (3.28)
2ry (2%)y + (2Fu — ru)(2%)y = 0 (3.29)

from which it follows that

ry =Ty =0, (3.30)
Tu(z?)s +70(2?)u =0 (3.31)

where we have assumed that
() #0, (2%)y #£0. (3.32)

It is well known that the conditions (3.32) characterize the Dupin’s Cyclides [5].
The general solution of (3.33) is

z? = ¢(r —7)

which means that the curves » — 7 =const. are spherical.
If, in (3.34), (z?)y =0, (2?), = 0 it is clear that S is a sphere.
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Now suppose that one of the quantities (z2), and (22),, say (z?). is zero.

Then, we find that

F=const.,, r,=0, g=0

showing that S is a pipe surface of revolution.

We therefore obtain the
Theorem 3.3. If the Darbouz lines of the surfaces S (other then a sphere) and S*
correspond to each other, then S belongs to one of the following two classes:

1. S is a Dupin’s cyclide and the curves r — ¥ =const., are spherical,

2. S is a pipe surface of revolution.

3.3. Molure surfaces admitting two semi-Tschebycheff nets formed by Dar-
boux lines. In this section, we consider Molure surfaces which include pipe surfaces
as a special case and are characterized by the condition 7y = 0 (7 = f(v), f(v) being
a differentiable function of its argument).

It is easy to see from (3.4) that one of the families of Darboux lines on a
Molure surface coincides with the family of lines of curvature u =const. Then the
other two families of Darboux lines are given, according to (3.3), by

T2

tan® p — = "I tan e+ =0 (3.33)

—2ry To — 219

where we have assumed that
(3.35) To — 2ry # 0.

Let the two families of Darboux lines make, respectively the angles ¢ and 9
with the parametric line v =const.
The conditions for the family D; : u =const. to be transversal of the tangent

vector fields of the other two families are, according to (1.3),

™ T
( 9 ¢l) N g, ( 2 ¢2) 2 g (3 )
Since the geodesic curvature g of the lines of curvature u =const. is zero, by

a suitable choice of the parameter v, we can make G = 1. Then, (3.36) becomes

(3.36)" ¢y =1y = 0.
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Taking the invariant derivative of (3.35) in the direction of u =const., and

using (3.36)’ and replacing ¢ by ¢ and i we respectively get

_ (?(1));1_21._2)2 tan ¢+ (Wzgl =0, (f'(u)r1 2r2) tan y+ (?’U)—)r_inz);:

from which it follows that

T1 T9

o) =2 = a(u), o) =2 = b(u) (3.35)
where a(u), b(u) are arbitrary differentiable functions of their arguments.
From (3.37), it follows that
_ f®alw) _ f(v)b(u)

T 1+2b(u)’ 2T 1+ 2b(n) (3.36)
where we have assumed that
(3.38)’ 1+ 2b(u) # 0.
Integration of the second equation in (3.38) we obtain
= S0 S’)Q"b((‘g) +C(w) (3.37)
C(u) being an arbitrary differentiable function of its argument.
Substituting r in (3.38) and assuming that
F0)£0, a(u)#0 (3.38)
we get
p _(f) u
(3:40) vE=(735) v+ (77) 70
where
" u b'(u) T = S+ 2b(w)]
(3.40) Ulu) = a(u)[1+ 2b(u)]’ Ulu) = a(u) )
With the help of (3.39) and (3.38) the Mainardi-Codazzi equation ry = (r —
T)g gives
v)R(u) - C(u f(v) L \'g u)| =
UoRE -cw | (H2) v + (775 T )J = (33
= [1 - R()][f(v)U (u) — U(u)]
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where

(3.41) R(u) = %

Differentiating (3.41) with respect to v, we obtain

(X (v)R(u) — Y (n)C(w)]U () + [Z(v) R(u) — T(v)C(u)]U (u) = [1 - R(w)]U (u)

(3.40)
where we have put
PNZION ) \”
50
(v (v
(3.42) X() = +—; (v() )) L yw= (ff ,((v)))
o (2] 1y
2 = Lf(v) (f'(v)) ] T(v) = (f’(v))
f'(v) ’ f'l)
Differentiation of (3.42) with respect to v and division through by
T'(v) # 0 (3.41)

gives the equation

(3.43)' [X(v)R(u) = Y (2)C(u)]U (u) + [Z(v) R(u) = C(u)]U(u) =0

where
" —vz_m _vzyl(v) —v:Z’(’U) ! (v
By X =g YO =gy T =y (TE)#0).
Differentiating (3.43)’ with respect to v and dividing the resulting equation
by
Z #0 (3.42)
we get
: X (v) Y'(v) 7
3.44 —/U(u)R(y) = =/—U(u)C(u) + U(u)R(u) =0
(3.44) Z(v)()()z(v)()(H()()
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Finally, differentiation of (3.44)’ with respect to v we have

U (u) [(-;—((Z)l) R(u) — (}_Z,,EZ;) C(u)] =0. (3.43) |

If, in (3.45) U(u) = 0, by (3.44)°, (3.43)’ and (3.40), it follows that E = 0
which is not possible.

For U (u) # 0, (3.45) becomes

7o)
(3.45) Zw) _cw

?_,(v) "= Ra) = d = const.
(7wJ
where we have assumed that
(3.45)" (i“ﬁ #0, R(u)#0.
Z (v)

By (3.43)”, (3.45)’ gives
X(v) =dY (v) + eZ(v) + kT(v) +1, C(u) = dR(u)

where e, k,l are arbitrary constants. Substitution of X(v) and C(u) in (3.44)’ and
(3.43)’, by (3.42), we obtain

U+T=0, k+ed=0, (1+z)11%2b%)7=1

from which it follows that b(x) =const. Then, from (3.40)” we get U(u) = 0 which
can not be the case.
Now, we consider the case where the conditions (3.45) are not satisfied. Here,

we distinguish two cases:
— ! 5/ !
Y (v) Y (v)
la. =0, R(u)#0; 1b. R(u) =0, =] #0
(7w0 w? “ (iw)
In case 1a, by (3.45) and (3.43)’ we obtain

Y (v) = C1Z(v) + CoT(v) + Cs, (3.44)

X(v) = C4Z(v) + CsT(v) + Cs (3.45)

62



ON DARBOUX LINES

where Ci,C2,Cs,C4,Cs, Cg are arbitrary constants. Substitution of X (v), Y (v) in
(3.44)’, (3.43)’ and (3.42) we have

[C)4R(u) — C1C(u)]U (u) + U(u)R(u) = 0, (3.46)
[CsR(u) — C2C(u)]U (u) — U(u)C(u) =0, (3.47)
(Cs + 1)R(u) — CsC(u) = 1. (3.48)
Using (3.42)’, from (3.46) and (3.47) we get
f(v) (%)I = C4f(v) (J,—,%;)I +Cs (T’%v“))l + Csf(v) + Cy, (3.49)

(fL’((%)I =G (f_f:%j)' +C (%,,)'),-chf(v) +Cs (3.50)

C7 and Cj being arbitrary constants. Combining (3.51) and (3.52), for
(3.52)' (C1—1)f(v) + C2 £0,
we obtain
Caf?(v) = [(1 = Cg) — (C1 — 1)(Cs — 1) + C5C4] f*(v)—-
~[C3Cs — C7(Cy — 1) — Co(Cs — 1) — C4(1 — Ca))f(v)+
- +[C5(1 — Cg) — Ca(1 — Cs) + C5C7] = 0.

Since f(v) #const., this equation gives

C3=0, C7(C1—1)+Cy(Cs—1)+ C4(l-Cs) =0,

(1-Cs) - (C1 = 1)(Cs ~ 1) =0,
05(1 - CB) - Cz(l - Ce) + C,C7 = 0.

With the help of these relations, from (3.50), (3.41)’ and (3.40)” it follows
that U(u) = 0 which is not possible.

Suppose now that the condition (3.52)’ is not satisfied, i.e. (Cy — 1)f(v) +
C,; = 0. We then have C; = 1, C3; = 0 so that the equation (3.52) reduces to
(1 — Cg) — C3f(v) = 0. But this gives Cg = 1, C3 = 0. Under these conditions U (u)

becomes zero which cannot be the case.




NEBI ONDER AND ABDULKADIR OZDEGER

In case 1b, by (3.41)’ and (3.40) we find that U(u) = 0 which is impossible.

Therefore the cases 1a and 1b can not hold.

If the condition (3.43) or (3.44) is not satisfied considerations similar to that
given above show that these two cases cannot hold.

We next consider the case where (3.40) is not satisfied. Then, either 1°.
f'(v) =0, a(u) =0o0r2°. f'(v)#0, a(u) =0. In case 1°, from (3.38) it follows that
r =const. from which we obtain 73 — ro = 0 which contradicts (3.35)’. In case 2°,
from (3.38) and (3.39) we get

flv) = (7'(u)(;,?;)26(u))2 = Dj =const., b (u)#0 (3.51)

Then, by (3.38), we obtain 7, = r, = 0 which contradicts (3.35)’.
If, in (3.53) b'(u) = 0, then from (3.38) and (3.39) we have C(u) =const., so

that
r=r(v), FT=TF()
which shows that S is a surface of revolution.

Finally, suppose that the condition 1+ 2b(u) # 0 in (3.38)’ is not satisfied. In
this case, from (3.37), it follows that f’(v) = 0 which means that S is a pipe surface
[5].

We therefore obtain the
Theorem 3.4. If the two families of Darbouz lines different from the lines of curva-
ture on a Molure surface form two semi-Tschebycheff nets together a family of lines
of curvature, then such a surface is either a surface of revoluion or a pipe surface.
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ON WIRTINGER AND OPIAL TYPE INEQUALITIES IN THREE
INDEPENDENT VARIABLES

B.G.. PACHPATTE

Abstract. In this paper we establish some new integral and discrete in-
equalities of Wirtinger and Opial type involving functions of three inde-
pendent variables. The analysis used in the proofs is elementary and our

results provide new estimates on inequalities of this type.

1. Introduction

The inequalities of Wirtinger and Opial type and their variants have played a
vital role in the study of many qualitative as well as quantitative properties of solutions
of differential equations. Because of their usefulness and importance these inequalities
have received a wide attention and a large number of papers have appeared in the
literature. During the past few years, various investigators have discovered many
useful and new Wirtinger and Opial type inequalities involving functions of more
than one independent variables, see [1-16] and the references given therein. The main
purpose of the present paper is to establish some new integral and discrete inequalities
of the Wirtinger and Opial type involving functions of three independent variables.
An important feature of the inequalities established in this paper is that the analysis
used in their proofs is elementary and our results provide new estimates on this type

of inequalities.
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Key words and phrases. Wirtinger and Opial type inequalities, three independent variables, integral and

discrete inequalities, Hoélder’s integral inequality, Schwarz inequality.

65



B.G. PACHPATTE

2. Integral inequalities

In what follows R denotes the set of real numbers. We use the notation
E = [a,z] % [b,y] x [c, 2] for a,b,c,z,y,z € R. If f(r,s,t) is a differentiable function
defined on E, then its partial derivatives are denoted by D, f(r,s,t) = -g; f(r,s,1),
Dyf(r,s,t) = %f(r,s,t), D3f(r,s,t) = -%f(r,s,t), and

3

a
D3D2D1f(7', S,t) = mf(r, S,t).

We denote by F(E) the class of continuous functions f : E — R for which
le('l', s, t)l D2f(7', 8, t)r Daf("', s, t)) D3DZD1f(r1 S,t)

exist and continuous on E such that f(a,s,t) = f(z,s,t) = f(r,b,t) = f(r,y,t) =
f(r,s,c) =f(r,s,z) =0fora<r<z b<s<y c<Lt<z

Our main result on Wirtinger type integral inequality involving functions of
three independent variables is given in the following theorem.
Theorem 1. Let p(r,s,t) be a real-valued nonnegative continuous function defined
on E. Suppose that f; € F(E) fori=1,2,...,n, and let m; > 1 fori=1,2,...,n

are constants. Then

_/: /by /: p(r,s,t) [ﬁlfi(r,s,t)lmi] " dtdsdr < (2.1)

i=1

T py Pz
< l.R'(a,b,c,:r:,y,:z,n,ml, cee,y) (/ / / p(r,s,t)dtdsdr) X
n a Jb Je

z Y z n
X / / / Z | D3 Dy Dy fi (v, 5,)|>™ dtdsdr,
a b ¢ =1

where
25 m PR
1 "i:l 1+: Z( 1‘1)
K(a,b,c,z,y,z,n,my,...,m,) = (5) [(z — a)(y — b)(z — ¢)] z" ,
(2.2)
s a constant depending on a,b,c,z,y,z,n,my,...,my,.
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Proof. From the hypothesis, it is easy to observe that the following identities hold for
i=1,2,...,n and (r,s,t) € E:

r 3 t
filrs,t) = / / / Ds D, D fi(u, v, w)dwdvdu, (2.3)
a Jb Je
fi(r,s,t) = —/ / / D3Ds D fi(u, v, w)dwdvdu, (2.4)
a Jb Jt
r Yy t
fi(r,s,t) = ——/ / / D3 D, D fi(u, v, w)dwdvdu, (2.5)
a s (4
T s t
fi(r,s,t) = ——/ / / D3 Dy D, fi(u, v, w)dwdvdu, (2.6)
r b Je
r orY pz
fi(r,s,1) :/ / f D3 D, D fi(u, v, w)dwdvdu, (2.7)
a s ¢
x Yy t
fi(r,s,1) :[ / / D3D; D, fi(u, v, w)dwdvdu, (2-8)
fi(r,s,1) :/ / / D3 Dy D, fi(u, v, w)dwdvdu, (2.9)
r b Jt
T Y r2
fi(r,s,t) = —-/ / / D3 Dy D, fi(u, v, w)dwdvdu. (2.10)
r s t
From (2.3)-(2.10) it is easy to observe that
1 T Y z
[fi(r,s,8)] < gf / / | D3 D3 D f;(u, v, w)|dwdvdu, (2.11)
a Jb c
for i = 1,2,...,n and (r,s,t) € E. From (2.11) and using the Holder’s integral
inequality in three dimensions with indices m; and m;/(m; —1) fori =1,2,...,n we
obtain
™
s < (5) o= o=y - x (2.12)

T py pz
x/ / / |D3D2 D fi(u, v, w)|™ dwdvdu.
a Jb Je
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From (2.12) and using the elementary inequalities (see [4])

n i/n 13 '
(H bi) <- an (2.13)
i=1

=1
(for by, b, . ..,b, nonnegative reals and n > 1) and
n 2 n
(Z bi) <n) b (2.14)
i=1 i=1
(for by, ba, . .., b, reals) and Schwarz integral inequality in three dimensions we observe
that
n 2/n
[II \filrs, t)l"“] < (2.15)
i=1

< [ﬁ (3) te-aw-i-arx

i=1

T
X

——
T
M e—~—

a

)

n z Yy z 2
x H/ / / | D3 Dy Dy fi(u, v, w)|™ dwdvdu/™| <
a Jb Jec

=1

2 2/n
| D3 Dy D, fi(u, v, w)|""'dwdvdu] =

m;

D llz—a)y-b)(z -]

3o

n
2
n—

(mi-1)
1

28 m o
= (%) R (PP PR PS) L =R

2
1 &[5 [Y [ .
X[;Z f /b / |D3D2D1fz'(“,v,w)l"‘*dwdvdu] <

i=1
25 m, 2 (.
]- "i.—_l :Z(m'—l)
<(3)7 le-aw-be-at 5"
1 n T py z 2
xﬁnz[/ /b / |D3D2D1f,-(u,v,w)|’""dwdvdu] <
i=1 e ¢
2y, mi 2 v~
1) » &=t 7 XL (mi-1)
<(3) e~ )y — b)(z — o) &7 x

x;li[(‘” —a)(y—b)(z - C)]Z/: /by /z |D3 D2 D fi(u, v, w)|*™ dwdvdu =

i=1
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= —K(a b,c,z,y,z,n,my,...,mp) / / / E|03D2D1f,(u v, w)|*™ dwdvdu.

Multiplying both sides of (2.15) by p(r, s,t) and integrating the resulting
inequality over E we get the desired inequality in (2.1). The proof is complete.
Remark 1. We note that in the special cases when (i) m; =1 fori=1,2,...,n, (ii)
n=2,(ili)n=1,(iv)n =2and my =my =1, and (v) n = 1 and m; = 1, the
inequality established in (2.1) reduces respectively to the following inequalities

ﬂ

[ [romoffimos] sows s
5% {(a,b,¢,z,9,2,m,1,. (/ /)b’*’/ rs,t)dtdsdr)x

///E|D3D2D1fa(7‘bt)|2dtdsdr

T py pz
///p(r,s,t)[fl(r,s,t)|"“|f2(r,s,t)|"‘2dtdsdr (2.17)
1

—K(a,b,c,z,y,2,2,m;, my) (/// rstdtdsdr)

2
X/ / [|D3D2D1f1(1’ S t)lZm, =+ |D3D2D1f2(1" S t)|2m2] dtdeT,
a b c

/T /y /2 p(r, s, )| f1(r, 5,t)|*™ dtdsdr < (2.18)

' K(a,b,c,z,y,2,l,m) (/ /by/ rstdtdsdr)
x/ / / |D3D3 D1 fi(r, s,t)|*™ dtdsdr,
a b c

/ / / p(r,5,0)|fu(r, 5,0) || fo(r, 5, 1) didsdr < (2.19)

%I(abcxy,z,?,l,l (/// rstdtd.sdr)

/ / / (1DsDs Dy f(r, 5,4) + | DsDa Dy fo(r, 5, 1) [2)dedsdr,

T pyYy pz ’
/ / / p(r, s, t)| fi(r, s,t)|*dtdsdr < (2.20)
a Jb Jc
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T pryY 12
< K(a,b,c,zy,2,1,1) (/ [ / p(r, s,t)dtdsdr) X
a Jb Je

T pyYy 2z
X / / / |Ds Dy D1 f1 (r, 5,t)|*dtdsdr.
a Jb Je

We note that the inequalities obtained in (2.17) and (2.19) are the three
independent variable analogues of the Wirtinger type inequalities established by the
present author in [10] and the inequality obtained in (2.20) is a three independent
variable analog of the Wirtinger type inequality established by Traple in [15, p‘.160].

The following theorem deals with an integral inequality of Opial type involv-
ing functions of three independent variables.

Theorem 2. Let the functions p(r,s,t), fi(r,s,t) and the constants m; for i =
1,2,...,n be as in Theorem 1. Then

/: / / Vilr. 1) [H lf-(r,s,t)lm-] ", (2.21)

X Y |D3Dy D fi(r, s,t)|™ dtdsdr <

=1

T py 3 1/2
< [K(a,b,c,x,y,z,n,ml,...,m,.)/ / / p(r,s,t)dtdsdr] X
a Jb Je

T UVl z N
x/ / / Z|D3D2D1fi(1',S,t)lz'""dtdsdr,
a Jb Je

i=1
where the constant K(a,b,c,z,y,z,n,my,...,my) is defined by (2.2).
Proof. By using the Schwarz integral inequality in three dimensions and the inequal-
ities (2.1) and (2.14) we observe that

z z n ’ i/n n
/ /:// ,/P(r, S,t) [Hlfi("', s, t)lm.] X EID3D2D1fi(7'a S,t)lm‘dtdsdr <
4 ¢ i=1

=1

T z n 2/n 1/2
< l:/a /b'y/c p(r,s,1) [13 lf.-(r,s,t)l] dtdsdr} X
2 1/2
T prY 2 n
g [/a /b /c (§|D3D2D1fi(7‘,3,t)|m‘) dtdsdr] <
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T pY pz
< [lK(a, b,c,z,y,z,my,...,myp) (/ / / p(r, s,t)dtdsdr) X
n a Jb Je

Tz py pz N 1/2
x/ / / 2IDaDlefi(r,s,t)l"""dtdsdr X
a Jb

¢ i=1

T Yy oz D 1/2
X n/ / / Z|D3D2D1f,~(r,s,t)[z"‘idtdsd,- =
a Jb

¢ =1

T rY P2 1/2
=[K(a,b,c,w,y,z,n,ml,...,m,,) (/ / / p(r,s,t)dtdsdr)] X

/ f / E'DaDszf-(r,st)|2m-dtdsdr

This is the desired mequa.hty in (2.21) and hence the proof is complete.
Remark 2. If we take

(i) mi=1fori=1,2,...,n,

(i) n=1,

(iii) n =1 and m; = 1in (2.21),

then we get respectively the following inequalities

z z n 1/n n
/ /by / Vo(r,5,t) [Hlf.'(r,s,t)l] X ) " |DaD; D fi(r, s,t)|dtdsdr < (2.22)

=1

T y 2z 1/2
g[K(a,b,c,z,y,z,n,l,...,1)/ / / p(r,s,t)dtdsdr] X

/ / f Z|D3D2D1fz(r,8t)|2dtdsdr

T pY Pz
/ / / Vp(r, s, t)| f1(r, 5,t)|"* | DDy Dy fi(r, 5,t)|™  dtdsdr < (2.23)
a Jb c

T Y z 1/2
< [K(a,b, c,x,y,z,l,'ml)/ / / p(r,s,t)dtdsdr] X
a Jb Je

T pY 2
X / / / |D3D2 Dy fi(r, s,t)|*™ dtdsdr,
a Jb c

[ /,, | VRSBl s OID8DaDs (s, )dsdr < (224)
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y pz /2
< [K(a,b,c,z,y‘,z,l,l)/\"/ / p(r,s,t)dtdsdr] x
a Jb c

T py Pz
X / / / |D3D2D1f1 (7’, s,t)|2dtdsdr.
a Jb Je

We note that the inequality obtained in (2.24) is a three independent variable
analog of the Opial inequality established by Traple in [15, p.160]. In the special case
when p(r, s,t) is constant, then from (2.24) we have the following Opial type inequality

r py pz
/ / / lfl(r,s,t)||D3D2D1f(r,s,t)ldtdsdr S (225)
a Jb Je
<[K(a,b,¢,2,9,2,1,1)(z — a)(y — b)(z — ¢)]*/?x
T Py pz
X / / / |D3D2D1f1 (1", S,t)|2dtd8d’l’.
a Jb c

For similar inequalities involving functions of two independent variables, see
[6,8,10,14].
3. Discrete inequalities
Let N = {1,2,...} and for z,y,z in N, we define
A={1,2,...,z+1}, B={1,2,...,y+1}, C={1,2,...,2+1}
and Q@ = A x B x C. For a function f : N3 — R, we define the difference operators
Ay f(r,s,t) = f(r+1,s,t) — f(r,s,1),
Az f(r,s,t) = f(r,s +1,t) — f(r,s,t),
Asf(r,s,t) = f(r,s,t+ 1) = f(r,s,t),
Ay f(r,s,t) = Ag[Ay f(r,s,1)]
and
A3 Ay f(r, s, t) = As[AA f(r,s,1)].
We denote by G(Q) the class of functions f : Q@ — R such that
f(1,s,7)= f(z +1,s,t) = f(r,1,¢) = f(r,y+ 1,8) = f(r,s,1) = f(r,s,z+ 1) = 0.

The discrete analogue of the inequality given in Theorem 1 is embodied in
the following theorem.
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Theorem 3. Let p(r, s,t) be a real-valued nonnegative function defined on Q. Suppose
that f; € G(Q) fori=1,2,...,n and let m; > 1 for i = 1,2,...,n are constants.
Then

z Yy 2z n 2/n
ZZZP(’US:‘) [H |fi(7‘,8,t)|mi] S (31)

r=1s=1t=1 i=1

< %M(z,y,z,n,ml,...,m,.) (iiip(r,s,t)) X
r=1s=1t=1
x Ziz [Z |AsALA fi(r, s t)|2'"-]
where e
2 3 o, n
M(z,y,z,n,myq,...,my) = (%) ) E‘ ' (a:yz)1+%i§x(mi—1), (3.2)
is a constant depending on x,y,z,n,my,...,My,.

Proof. From the hypotheses, it is easy to observe that the following identities hold
fori=1,2,...,n and (r,s,t) € Q:

r—1s—-1t-1

fi(r)s)t) = z Z Z AeA2A1fi(uvvxw)) (33)

u=lv=1w=l

r-1s-1 z

filrs,t) ==Y " AcdsA fi(u, v, w), (3.4)

u=1lv=1w=t

r-1 y t-1

(r,s,1) 30D A fi(u,v,w), (3.5)
u=1lv=sw=l1
z s—-1t-1

(r,s,1) ZZ Z A AA; fi(u,v,w), (3.6)

u=rv=1lw=l1

Yy z

i (7, 5,1) EZZA Mg fi(u, v, w), (8.7)

u=lv=s w=t

z Y

i (7, 5,1) ZZEAeAZAlf, (u,v,w), (3.8)

u=rv=sw=1
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r s-1 z

f,(r,s t) = ZZZA Ao fi(u, v, w), (3.9)

u=rv=1lw=t

z Yy oz
fi(ry S,t) = - ZZZ A8A2A1fi(u’v)w)) (310)

u=r v=s w=t

From (3.3)-(3.10) it is easy to observe that

\fi(r,8,8)| < < ZZZ |A3A2 A fi(u, v, w)], (3.11)

u—l v=1w=1
for (r,s,t) € Q and i = 1,2,...,n. From (3.9) and using the Holder’s inequality for
summations in three dimensions with indices m;, m;/(m; — 1) for i = 1,2,...,n we
obtain

|fi(r,s,8)|™ < (%) i (zyz)™ ! x ZZ Z [A3A2A; fi(u,v,w)|™.  (3.12)

u=lv=1w=1
From (3.12) and using the elementary inequalities (2.13) and (2.14) and

Schwarz inequality for summation in three dimensions we observe that

n 2/n
[H lfi(r» S, t)lmil S (313)

=1
i=1 u=lv=1w=1

n\™ z ¥y 3 afn
S H (g) (zyz)m;—l X Z Z Z |A3A2A1f,~(u’ U,‘w)l""jl =

i=lu=lv=lw=1

1 %Zj:m; 2'}”:('"- 1) n T Yy z 1/n]?
= (1) 5 {HZZZlAsAzAzfi(u,v,w)l"”] <

NIE™ 2Ry 1 [
< (g) = (ey)" = [;Z [ZZZ |As A2 fi(u,v w)l""H
i=1 lu=lv=1lw=1
NEE™ 28 1 A&
<(3) ™ @t BT Ly ZZZlAaAzAm(uvw)lm}
i=1 lu=lv=1w=
1 /135 %im- ) & . 2
s;(‘é) (zyz)™ = xZwyz)ZZZlAsAzAlﬂ (v, W)™ =

u=lv=1lw=1

= %M(z)yyz;nyml, o ‘;mn) X ZZZ [E lAsAzAlfi(u,v,w)lzm‘] .

u=lv=1lw=1 Li=1
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Multiplying both sides of (3.13) by p(r,s,t) and taking the sum over ¢,s,r
from 1 to z, 1 to y, 1 to z respectively we get the required inequality in (3.1). The
proof is complete.

Remark 3. If we take (i) m; =1fori=1,2,...,n, (i) n=2,(ii)n=1, (iv)n =2
and m; = mg =1 and (v) n =1 and m; = 1, then the inequality established in (3.1)
reduces to the various new inequalities which can be used in certain applications.

The following theorem deals with the discrete analogue of the inequality given
in Theorem 2.

Theorem 4. Let the functions p(r,s,t), fi(r,s,t) and the constants m; for i =
1,2,...,n be as in Theorem 3. Then

z

1/n n
ZZE\/ r,s,1) [Hlf,(rs t |m'] x> |A3BA fi(r, s, t)|™ < (3.14)

r=1s=1t=1 i=1

x ; 1/2
< [M(:c,y,z,n,ml,...,m,,)zzy: p(r,s,t)} X
r=1s=1t=1
x ZZZ Z lAaAzAlf,-(r,s,t)l”."'] :

r=1s=1t=1 Li=1
where the constant M(z,y,z,n,my,...,my,) is defined by (3.2).

Proof. By using Schwarz inequality for summation in three dimensions and the in-
equalities (3.1) and (2.14) we observe that

T Yy 2z

1/n n
ZZZ\/p(r s,t) {H[f, (r,s,1) |’"] Cox Z[AaAgAlf;(r,s,t)V”‘ <

r=1s=11t=1 i=1

< [iizp(r 5,1) [H]f, (r,5,1) |'"r/n] 1lzx

r=1s=11t=1
. v 27 1/2

X [ZZZ [Z|A3A2A1fi(rlsat)|mi:| ] S
r=1s=1t=1

< [%M(x,y,z,n,ml,...,mn) (iij:i:l’(r,&ﬂ) X

L ) r=1s=1t=1 12

D359 ISR i
r=1s=1t=1 Li=1
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Tz Y z n 1/2 |
X [’HZEZ [z_; |A3A2A1f,-(r,s,t)|2""'” X

.
X [HZZZ [Z |A3A2A1f,(1'13 t)|2m,]] —
r=1s=1t=1 N
- [M(l,y,z,n’ml,_‘ mn)ZZZP(r s t)] X
r=1s=1t=1
X EZE [Z IA3A2A1f,(r s, t)|2m ] ]
r=1s=1t=1

This is the desired inequality in (3.14) and hence the proof is complete.
Remark 4. In the special cases, if we take (i) m; = 1fori=1,2,...,n, (ii) n = 1, (iii)
n=1and m; =1 in (3.14), then we get the new inequalities which may be useful in
certain situations. For similar inequalities, see [7,9,11,12,13] and the references given

therein.
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AN EXTENSION OF RUSCHEWEYH’S UNIVALENCE CONDITION

IRINEL RADOMIR

Abstract. We obtain a new sufficient univalence condition, generalizing

the univalence criterion of S.Ruscheweyh.

1. Introduction

We denote by U, the disk of z—plane, U, = { 2 € C : |z| < r }, where
r€(0,1], Uy =U and I = [0, 00).
Let A be the class of functions f which are analytic in U with f(0) =0 and f'(0) = 1.

Theorem 1.1. ([4]). Let s=a+if, a > 0 and f € A. Assume that for a certain
ceCandalzeU,

s a1ty L (10 DY L g2
P s -a- ) [ (14 L) w -9 LB <,
where
M={ als|+|s+cj(a=1) , 0O0<a<l, @
Is| , a>1.

Then the function f is univalent in U.

We will need Loewner’s parametric method to prove our results.

2. Preliminaries

Theorem 2.1. ([3]. Let r be a real number, r € (0,1]. Let L(z,t) = a;(t)z+az(t)2%+
,a1(t) # 0 ,be analytic in U, , for allt € I, locally absolutely continuous in I and

1991 Mathematics Subject Classification. 30C55.

Key words and phrases. univalent functions, Ruscheweyh'’s criterion.
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locally uniform with respect to U, . For almost all t € I suppose

3L(z t) 6L(z t)

=pzt)——  (Vz€l:,

where p(z,t) is analytic in U and satisfies Rep(z,t) >0, z€ U, t € I.
If |a1(t)] = oo fort — oo and { L(z,t)/ai(t) } forms a normal family in U, ,
then for each t € I, L(z,t) has an analytic and univalent extension to the whole disk

U.

3. Main results

Theorem 3.1. Let f € A and let s, ¢ be complez numbers, s = a+ i3, a > 0, c #
0, |s +¢| < |s|. If there exists an analytic function in U,.p(z) =14ciz+..., such
that

+s| <|s|, ®3)

£

—— |z + 5 —a(l = |2|¥*) [s (1-+ zf”(z)) + (4)

f'(z)
+Hi- )Zf’ p( ) ”

for all z € U, then the function f is unwalent inU.

p(Z)

Proof. The conditions (3) and (4) implies that p(z) # 0 and f(z)f'(2)/z # 0
inU. Ifc#0let

1) = £e73) [t S = gt ] ©

The inequalities |c+s| < |s| and Re s > 0 imply a/c ¢ [0, 00). It follows that there
exists r € (0, 1] such that

L= =(e¥ — 1)p(e™"2)e™" 2! (7*'2)/ f(e™**2) # 0

for all z € U, and t > 0, and hence the function f(z,) is analytic in U, for all ¢ > 0.

0] [ -2 4o

Furthermore
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in I, and lim_, o0 I-a—fégﬁll = oo (we have chosen a fixed branch for 9%%9). It follows
that { f(z,t)/a—f;,,(%l } forms a normal family in U,,, ro < r.

A simple calculation yields

0f(z,t) 0f(z,t) sl + P(e~*z,t)

!t Te 1— P(e—*tz,t)’
where
P(z,t) = ge—ﬂp (:,t) +1—(1—e2)H,(e"'z) %;and (6)
o (12 @Y L ) @)
m@=s(1+ T )+ T e

If h(z,t) = Qg—’tl/(z%z—’tl) then the inequality Re h(z,t) > 0 for all z € U and

t € I is equivalent to
laP(e™z,t) +iB | < |s|, z€U, tel. (7)
Replacing the function P(z,t) defined from (6) in (7) we obtain

‘ e % (ﬁ + s) +(1—e 2) —aH,(e”*2) + 5] | < |2| . (8)

In order to prove the inequality (8) we consider the function

Q(Z,t) = e—2t (5-(_6:0‘"_2) + S) + (1 - C—Zt)[ —aH,(e"’tz) =+ 3]
which for all t € I\ {0} is analytic in U and hence
max| Q(z,1) |=1Q(*,1)], feR. 9

If € = e~*te'®, then €| = e~ e~t = |¢|*/* and by (8), (9) and (4) it results

&P/ (1765)—“) +

+(1-163) [—at (@ +5] | <l
forall z€ U and t € T\ {0}.

Ift = 0, then Q(z,0) = ¢/p(z) + s and by (3) it results that |Q(z,0)| < |s| for all
z € U and hence the inequality (8) holds true for all z € U and t € I.

1Q(=,1) | <|Q(e”,1) | =
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Theorem 3.2. Let f € A and let s, ¢ be complez numbers, s =a+if, a > 1, c#
0, |s+c¢c| < |s|. If there exists an analytic function in U, p(z) = 1+c1(z)+..., such
that

|5+ | < (10)
l$|z|2+s—a(l—-|z|2)[s(l—i--z?f%i—;l)-i-’ (11)
40T EL TE ] <y,

for all z € U, then the function f is univalent in U.

Proof. The function
c

w(e) =2 (55

is analytic in U for all A € [0, 1]. From (10) and (11) it results that

+ s) + (1 =X -aH(2)+s]

|w(z, |?) | < Is]  (V)z€U; (12)
lw(z, )| < |l (V)zel. (13)
If X increases from A; = |2]? to Ay = |z|>/* , then the point w(z,\) moves on the

segment whose endpoints are A = w(z, |z|?) and B = w(z, 1), and hence from (12)

and (13) it results that
| w(z, 12*%) | < |s] (14)

for all z € U. Because

(e, 1o19) = —ESlP1% + 5~ al1 - 4f7) [ (1 + "'f,"(z)) + W

WU AL

@ )

from (14) and (15) it results that (4) holds true for all z € U and from Theorem 3.1

it results that the function f is univalent in U. Remark. For a > 1 and p(z) = 1,
from Theorem 3.2 we obtain Theorem 1.1 .
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SOME PROPERTIES OF THE w-LIMIT POINTS SET OF AN
OPERATOR

BOGDAN RUS, IOAN A. RUS AND DAMIAN TRIF

Abstract. In this paper we study the w -limit points set of an operator, in
the terms of the fixed points set, the periodic points set and the recurrent

points set.

1. Introduction

Let (X, d) be a metric space and A : X — X an operator. In this paper we
shall use the following notations and notions:

P(z):={Y C X|Y #0},

I(A) :={Y € P(X)|A(Y) C Y},

Fj = {z € X|A(z) = z} - the fixed points set of A,

Py:= U . F4n - the periodic points set of A,

Py ::nfi'v € X|A*¥(z) # =,k = T,n—1,A"(z) = z}-the n-order periodic
points set of A,

wa(z) .= {y € X| 3 nx = oo, such that f**(z) 5 y as n — oo} - the w -
limit points set of A,

wa(X) = | wa(),

T€EX

R4 :={z € X|z € wa(z)} - the recurrent points set of A,

Ou(z) := {z, A(z),..., A% (2),...}.

The purpose of this paper is to study the w - limit points set of an operator

A in the terms of Fs, P4, Ra.

1991 Mathematics Subject Classification. 47TH10.

Key words and phrases. w -limit, fixed points, reccurent points.

85



BOGDAN RUS, IOAN A. RUS AND DAMIAN TRIF
2. F4, P4, P? and wy. Examples. Basic problems
3 3 A

Let (X, d) be a metric space and A : X — X an operator. It is clear that
FpCPyCRyCwa

In what follow we give some examples and counterexamples to these notions.
Ezample 2.1 (see[20], [21] and [23]). Let (X, d) be a metric space and
A : X = X a weakly Picard operator. Then

Fp = Py = Ry =wa(X).
Ezample 2.2 (see [1], [2]). X = {z € C||z| = 1} and A(z) := €'®z. If @ = 1, then
Fa=0, PA=Ra=ws(X)=X.
If a/7 is an irrational real number, then
Fa=Ps=0, Ra=wa(X)=X.

Ezample 2.3 (see [3], [5], [7]). Let A € C([0,1],[0,1]). If P§ # 0, then P} # 0, for all
n € N* (Sarkovskii’s theorem).

Ezample 2.4 (see [19]). Let A € C(R, R) such that A2 = 1g (an involution). Then
F4 = {z*} and P4 = R.

Ezample 2.5 Let (X, d) be a metric space and A : X — X an operator. We suppose
that

HX = 'LeJIXi’ Xi#0, XiNX; #0, i £ 5;

(i) X; € I(A),

(i1)el(X;) = int(X;),i € 1.
Then
wa(X:)[wa(X;) =0,
for all i,j € I,i % j.
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Ezample 2.6 (see [4]). Let A € C([0,1],[0, 1]). Then,

Ezample 2.7 (see [26]). Consider the nonlinear Cauchy problem

du

= —u—ud =
p u—u”, u(0) =U €R,

where w(U) = {0} for all U € R.. Application of the forward Euler numerical method

gives
Unt1 = Un — AYU, + U3), Uy = U,
where U, ~ u(nAt), n =0, 1,... and At is the time step. If A(u) = u — At(u+ u3),
it may be shown that
wa(U)=0 for At(1+U?) €(0,2)
wA(U):{—U,U} for At(l+U2)=2
|[Unl >0 asn— 00 for At(l1+U?) € (2,+00)

Thus, if At < 3 +2U, we obtain the correct asymptotic behaviour of the differen-

tial equation. If U = \/Kzt' — 1 we obtain a spurious period two solution U, =
(-1)*y/Z& — 1,ie. F4#0, P #0for all At € [0,2].

The following problems arise:
Let (X, d) be a metric space and A : X — X an operator.
Problem 2.1 (see [4], [24]). Establish conditions on X and A which imply that

a)Ps #0;

b)P7 # 0.
Problem 2.2 (see [11]). Which are the operators with the following
property:

Pys#0 = Fa#07

Problem 2.3 ([4]). Which are the metric spaces, X, with the following property

A€C(X,X) = Pa=Ra
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Problem 2.4 Let n € N. In which conditions on X, A and n we have:
Fa=Pi=0,k=2n—1 and P #0, k> n.

Problem 2.5 (see [3], [4], [6], [9], [12], [16], [21], [25]).
Establish conditions on X and A which imply that:
a)wa(z) #0, Vz € X;

b)Ra # 0;

c)wa(X) = Fa;
d)wa(X) = Pa;
e)wa(X) = Ra;

f) there exists ¢ € X 1wy (z) = X.
For other examples and countraexamples to the above problems and for some results

see [2], [5], [7], [8], [10] and [25].

3. Periodic points

Theorem 3.1. Let (X, <) be a complete lattice and A : X — X a monoton operator.
Then P4 # 0.
Proof. If the operator A is monoton increasing, then by the fixed point theorem of
Tarski we have that F4 # 0. If the operator A is monoton decreasing then A? is
monoton increasing, so, Fu2 # 0.
Theorem 3.2. Let (X, S, M) be a fized point structure (see [22]) and
A X — X an operator. We suppose that there exists k € N* such that

(i)A* € M(X);

(1i) there ezists Y € S(X) such that A¥(X) C Y.
Then Pp # 0.
Proof. From A* : X — X and A*¥(X) C Y C X we have that Y € I(AX). On the
other hand, A¥ € M(X) implies that A*|y € M(Y), so, Fax # 0.

If in the Theorem 3.2 we consider the fixed point structure of Schauder
(X - Banach space, S(X) = Pep,cv(X) and M(Y) = C(Y,Y)) we have
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Theorem 3.3. Let X be a Banach space and A : X — X a continous operator such
that there exists k € N* such that A¥(X) is relatively compact. Then, P4 # 0.
Proof. If we take Y = ¢0A*(X), then Y € P, cv(X) and we are in the conditions of
the Theorem 3.2.
\ Theorem 3.4. Let X =[—a,a] CR and f: R = R such that A(u) = u+ Atf(u) is
| a contraction on X, A: X — X and A(0) = 0, where At > 0. Then the numerical
method Up41 = A(Uyn), Up = U € X (forward Euler method for the Cauchy problem
4 = f(u),u(0) = U € X) has no spurious period two solutions in X.
Proof. By the above conditions, A2 is a contraction on X and by theorem 3.2. for
the fixed point structure of Banach, A? has a unique fixed point in X and this point
is 0.
Ezample 3.1. Let f(u) = —u — u® and A(u) = u — At(u + u?) for At € (0,1). Let

X = [-y/5A /54 It may be shown that A : X — X and A is a contraction

on X. Thus we have no spurious period two solutions.
Note that all Runge-Kutta methods retain all the equilibria of %‘ti = f(u)
(see [26], Th. 5.3.3.). Consequently, the forward Euler method gives the correct

asymptotic behaviour of this differential equation on X.

4. Recurrent points

Lemma 4.1 (see [9], [18]). Let (X, d) be a compact metric space and
A: X — X a continuous operator. Then Ry # 0.
Theorem 4.1. Let (X, d) be a metric space and A : X — X such that
(i)A is continous;
(ii) there ezists k € N* such that A*(X) is relatively compact.
Then, Ra # 0.
Proof. 1t is clear that clA¥(X) € I(f). So, the operator
A : A¥(X) — A¥(X) satisfies the conditions in the Lemma 4.1.

Theorem 4.2. Let (X,d) be a complete metric space, o : P,(X) = Ry a

measure of noncompactness (see [23]) on X and A : X — X an operator. We suppose
that:
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(i)A is continuous;
(i1)A is a (a,a) - contraction.
Then, Ra # 0.
Proof. Let Y7 := A_()—(T, vy Youg = X(_i/,,_), n € N*. We remark that

Yn € Poat(X)()1(A),n €N*
From the condition (ii) we have that
a(Y,) <aa(Yn_1) <---<a”a(Y) = 0 as n — oo.

But «a is a measure of noncompactness on X, i.e, a satisfies the following conditions
(see [23]):

(a)a(A) =0 = A€ Pp(X),

(b)a(A) = a(A), for all A € Py(X),

(c)AC B = a(A) < a(B), for all A, B € Py(X),

(d) If A, € Pyci(X), Ant1 C An, n €N, and a(A,) = 0 as n — oo, then

Ao = ﬂ Ap #0 and a(Ax) = 0.
neN

From the condition (d) and (a) we have that

Yoo i= [ Ya € Ip(A).
neN

Now the theorem follows from the Lemma 4.1.
Theorem 4.3. Let (X,d) be a bounded metric space, app a Danes-Pasicki measure
of noncompactness (see [23]) and A : X — X an operator. We suppose that
(i) the operator A is continous,
(ii) the operator A is app - condensing.
Then, Ra # 0. _
Proof. Let 2o € X. By Lemma 3.1. in [22], there exists Ag C X such that

cl(f(40) ({20}) = 4o
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This implies that app(Ag) = 0. Thus
Ao € Pep(X) [ I(4).

Now the proof follows from Lemma 4.1.

5. The set wy

In what follow we consider operators on ordered metric space (for the ordered
Banach spaces see [6], [10], [11], [25]). We have
Theorem 5.1. Let (X, d, <) be an ordered metric space and A : X — X an increasing
operator. Then

(i)z <Az = z<wa(z)

and y > A(y) = y2waly);
(1) wa(z) <y = wa(z) <waly) and
z<waly) = wa(z) <waly);
Proof. (i) Let, for example, z < Az. Then z < A™(z) for all n € N. This implies
that z < w4(z).
(ii) Let, for example, z,y € X, such that wa(z) < y. Since
wa(z) € I(A), it follows that wa(z) < T™y for all n € N. Hence we have wy(z) <
wa(y)-
Remark 5.1. The above results improve some results given by E.N. Dancer in [6].
Remark 5.2. From the Theorem 5.1. we have the following results given in [23]:
Theorem 5.2. Let (X, d, <) be an ordered metric space and A : X — X an operator
and z,y € X such that ¢ <y, < A(z), y > A(y). We suppose that
" (i) A is weakly Picard operator;

(ii) A is monoton increasing.
Then

(a) z < A®(z) < A®(y) <,

(b) A (x) is the minimal fized point of A in [z, y] and A®(y) is the mazimal
fized point of A in [z,y].
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INEQUALITIES FOR GENERALIZED CONVEX FUNCTIONS WITH
APPLICATIONS, 1.

JOZSEF SANDOR

Abstract. The Theory of Inequalities has a majore role in Mathematical
Analysis, and in almost all areas of Mathematics, too. In this theory,
the convex functions and the generalized convexity plays a special role.
The author has published a series of papers with applications of convexity
inequalities in various fields of Mathematics. We quote applications in
geometry (see e.g. [16], [22]), special functions ([19], [18], [23]); number
theory (see many articles collected in the monograph [34]); the theory of
means ([24], [25], [31], [33]), etc.

The aim of this series of papers (planned to have 4 parts) is to
survey the most important ideas and results of the author in the theory
of convex inequalities. In the course of this survey, many new results and
applications will be obtained. In most cases only the new results will be
presented with a proof; the other results will be stated only, with con-
nections and/or applications to known theorems. All material is centered
around three most important inequalities, namely: Jensen’s inequality,
Jensen-Hadamard’s (or Hermite-Hadamard’s) inequality and Jessen’s in-

equality.

1. Jensen’s inequality

One of the most important inequalities is Jensen’s inequality either in its
discrete or in its integral form. In what follows we will discuss various generalizations,

extensions, special cases, or refinements.

1991 Mathematics Subject Classification. 26A51.
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A. Let start with f : [a,b] & R, a convex function in the classical sense, and let
L : Cla,b] = R be a linear and positive functional defined on the space Cfa, b] of all
continuous functions on [a,b]. Put ex(z) = z*, z € [a,}], (k € N).

Theorem 1.1. (see [9] and [22]) If the above conditions are satisfied and the functional
L has the property L(eo) = 1, then the following double-inequality holds true:

fL(en) s 140 < 2(e) LY =1@] MO 2200 U

Proof. See [22].
b
Corollary 1.1. Let L(f) = E—l-—a/ f(t)dt. Then L(eg) = 1 and the relation (1)
- a

gives us the classical Jensen-Hadamard inequality

6-a7 () < [ 1eie < - a) [[H10)] @)

which will be considered later.

n
Corollary 1.2. Let w; > 0 (i = 1,n) with Zw,— =1, and let a; € [a,b], (i = 1,n).

i=1

n
Let us define the functional L(f) = Z w; f(a;), which is linear and positive. From
. i=1
(1) we can deduce the double relation

() ) ]
i=1 i=1

=1

The left side of this relation is the famous discrete (pondered) inequality by
Jensen ([5], [8], [10]).
Corollary 1.3. Let p: [a,b] = R be a strictly positive, integrable function, and let

g : [a,b] = R continuous, strictly monotone on [a, b]. Define

b
/ p(2) flo(2))dz

/ab p(z)dz

Lg(f) =
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We can deduce from (1) the important integral inequality by Jensen:

b b
/,, p(2)g(z)dz / p(2) flo())dz

[ pasae : [ pierie

with various applications in different branches of Mathematics. We will see later, how

f

’ (4)

can be applied (4) in the theory of means.
Remark. From the proof of the left side of (1) one can see that in place of convex

functions one can consider invex functions related to 7 : [, )] x [a, b] — [a, b] (see

[32]). This gives the following result:

' Theorem 1.2. If the function f : [a,b] & R in invex related to a given function 7,
and the following condition is satisfied:
L(n(e1, L(e1))) = 0, ()

then one has

f(Lfer)) < L(f). (6)

; Corollary 1.4. Under the above conditions, as well as the conditions of Corollary

1.2, if in addition we assume that

' | o (ai,zn:w.-a.-) =0,

i=1 i=1

then

f (Z w;a,-) <) wif(ai). (7)
i=1 i=1

We note that this relation holds true (with the analogous proof) for invex
functions f: S — R with S C R (see [32]).
B. Let f : [a,b] - R and put a = (a1,...,a,) € ([a,])". Let us consider the

following expression

Men= Al =g 3 [Tt ®)

" 1<i<<ik<n
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(where C¥ = (Z)) Clearly

Apn=f (u) - ay, = Hla) ot San)

a n

This expression was considered for the first time by S. Gabler [7]. A more

general (pondered) form is given by

1 Wi, @iy + -+ Wi, a4
Agn(a, W) = —p——r (wiy + -+ w; )f( 1100 k k>
n C,’:_%Wn 1<i Z 1 k w;, + - 4wy,

<-<ig<n
(9)
n
with W,, = Z w;. The following refinement of the Jensen inequality holds true:
Theorem £=31 ([29]) One has
n
D wia;
f i=1VV =Apn < L{Appin < Apn <. A=
Z w; f(a;)
=l (10)

==
D wi
i=1

Corollary 1.5.

1
n—1

w1a1+---+ﬁ,~a,~+---+wna,.) <

Z(w1+.+w‘+.+wn)f( U)1+"'+"T)i+"'+wn

lzﬁif(ai)
noy.

where w; denotes the fact that the term w; is missing in the summation with n — 1

<

(11)

terms (between n terms).
Proof. Apply (10) for k =n — 1.
Another refinement of Jensen’s inequality is contained in
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n

Theorem 1.4. ([29]) Let w; > 0, Zw; =W,>0, a € [a,b] i =T,n). If
i=1

f :[a,b] = R is convez, then for all u,v > 0 with u + v > 0 one has the inequality

(o) < () Em ()

lJ 1

<o Yowif(). (12)

C. The above theorems still hold in arbitrary linear spaces, by considering the ele-
ments a; (i = 1, n) to be contained in a convex subset.

Let now X be a real prehilbertian space with scalar product (,) and norm
Il -1|- Let S C X be a convex subset of X. The function f : S — R will be called

uniformly-convex on S if

Af(@) + (1= NFY) = fDe+ (1= N)y] > A1 = )|z — ]l (13)

forallz,y e S, A€[0,1].

Holds true the following characterization of uniformly-convex functions:
Proposition 1.1. ([27]) Let f : S — R defined on the convex subset S C X. Then
the following assertions are equivalent:

(1) f is uniformly-convex on S

(it) £ = -]|? is convex on S.

Ezamples. 1) Let A : D(A) C X — X let be a linear, symmetric operator on the

subspace D(A) of X, which is coerciv, i.e. satisfying the relation
(Az,z) > 1l|z|l?, ¥ = € D(4) (7 > 0).
Then the function f4 : D(A) = R, fa(z) = -I-(Az, z) is uniformly-convex on
v
D(A).
2) Let f : (a,) C R — R be a twice differentiable functions satisfying
2
f'(z) >0>0,z € (a,b). Let g(z) = ;—n—f(:c), z € (a,b). Then g is uniformly-convex.
The following theorem gives also a refinement of Jensen’s inequality, in case

of uniformly-convex functions:
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Theorem 1.6. ([27]) Let f : S C X — R be uniformly-conver functions on the
n

convez set S; let w; > 0, W, > 0, (where W, = Zw;) and let a; € S (i = 1,n).
i=1

Then '

-ﬁl,: Y wif(a:) - f (Wl';Zw,-a.-) >

1=1 =1

2
> 0. (14)

=1

1 ¢ 9 1
2 W:;wtnai" - “W; Zwtaz

Corollary 1.6. Let A : D(A) C X — X be an operator defined as in Example 1.
Then for all ¢; € D(A), w; > 0, W, > 0 (i = 1, n), holds true the following inequality:

W,.Zn:w,'(Aa.-,a.-) - (A (ia;w;) ,zn:a;w.-) >
=1 i=1 =1

n 2
> wiai ) > 0. (15)

Corollary 1.7. Let f : (a,b) — R be defined as in Example 2. Then for all a; € (a, d),
w; > 0 with W,, > 0 (i'= 1, n), we have

Win Z;wif(ai) -f (W%Zwiai) 2

=1

2
m| 1l ¢ 2 1 -
> P} [Wn;wsai _W,? (;w:xs> } > 0.

D. The convex functions of order n were introduced in the science by Tiberiu

> (W,. Y willad? -

=1

Popoviciu [11]. The following result is related to the discrete inequality by Jensen:
Theorem 1.7. Let f : (a,b) & R be a concave and 3-convez function. Let (a;), (b;)
(¢ = 1,n) two sequences in (a,b) having the properties
a1<a2 < <8 Kb << b2 < by
@ip1—ai > bi—biyy (i=1,2,...,n-1) (n>2).
Then

1 n T
W;;wif(ai)—f (%,;;wmi) <
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Zw, £(b) - (Wi” Zn:w.'b.-) ) (16)

=1

Proof. We will use induction with respect to n. Let n = 2. For simplicity, let us
assume that Wy = w; + wy = 1. Let a9 = wyay + waas, bg = wiby + wabs. If by = bs,
by concavity of f it results wy f(a;1) + waf(a2) — f(wia1 + weaz) < 0, which shows
that (16) is true in this case. If by # by, then a1 < ap < a2 < b3 < by < by, so f being

3-convex, we can write:

fla1) flaz) f(ao)
(a1 —a2)(a1 —ao) (a2 —ai)(az —ao) (a0 —ai)(ao —az) ~
f(b1) + f(b2) f(bo) (*)
= (b1 —ba)(b1 —bo) (b2 —b1)(b2—bo) ~ (bo — b1)(bo — b2)

By definition, ag— a; = wa(az — a1); a2 —ap = wi(az —ay), so by multiplying

both sides of (*) with w;ws(as — a;)?, one can deduce

wy f(a1) + w2 f(az) — flao) < [wif(b1) + waf(b2) - (bo)](( bz)):

By concavity of f it results wy f(b1) + wa f(b2) — f(bo) < 0. From a3 —a; >
by — by > 0 we get wi f(a1) + waf(az2) — fao) < w1f(b1) + waf(b2) — f(bo), proving
(16) for n = 2.

Let us assume now that (16) holds true for all arguments from 2 to n — 1.

Then

W, - Zw, f(ai) ———Ew,f(b

i=1
=W {Wn-l ;w,f(a,)

n

Wy Wn-— 1 n—-1

( Zw,b,) }+—[ (an) = F(a)]-

Let

-1 =1
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n—1 '
=) wibi/Wa_1, da=bn.

i=1
Then the sequences {c,c2} and {d;, d>} satisfy the conditions of the theorem. Ap-
plying the above proved case n = 2 with W,,_; and wy, in place of w;, ws, we obtain
the desired inequality.
Corollary 1.8. Let b > 0 and a; € (0,b] (: = 1,n). Let f : (0,2] = R have a

negative second derivative and a nonnegative third derivative. Then

S wis(a) -1 ( zw.a.) <

" =1 =1

i=1

< Zw, (2b—a;) - f (ﬁll—Zw;(%—ai)). (mn
n " =1

Proof. Put b; = 2b — a;, where a; < a3 < -+- < a,. Then the conditions of Theorem
1.7 are satisfied, and we get relation (17). This inequality has been obtain by N.
Levinson (see [5]) as a generalization of the famous inequality of Ky Fan ([5], [4],
[13]). .

Let a; € (0, 5], (i=1,n),

An(a) = W Zw,a., Gn(a) = f[a}”"w",
n i=1

i=1
where a = (a1, ...,a,). Put Al (a) = Apn(1 —a), Gln(a) = Gn(1 — a). Then
G,
= < n 18
Gr. A (18)
1
Proof. Apply (17) with b = % to f(z) ;= Inz. Then f’(z) = - <0, f'z) =
-3 > 0, and after certain elementary computations we obtain Ky Fan’s inequality
(18).
Let now, for simplicity, w; = 1, (i = 1, n). Then relation (17) can be written

also as

=3 a) = FAn) < = 30 01— @) - f(An) (19)
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where A, is the (unweighted) arithmetic mean of (a), and A/, is the (unweighted)
arithmetic mean of (1 — a).
Let us introduce also
H, = Ha(a) = n/z Z, Hiy = Ha(w) = Ha(l - a),
i=1
the corresponding harmonic means. Let f(z) = 1 in (19). Then we can deduce the
z

following ” additive variant” of the Ky Fan inéquality:

1 1 1 1
Z— <A——-}I—,n. (20)

For other variants and refinements we quote the author’s papers [13], [14].
See also [4].
E. Inequalities for nondiﬂ'erehtiable n-invex functions generally are fairly difficult to
obtain. More precisely, either we must assume that the function f satisfies certain
complicated functional equations (see [32]), or if we do not admit such relations, the
informations contained in these inequalities are more restrictive.

Let us remind that the function f: S — R is called 7-invex on the 7-invex

domain S, if one has
Flu+ Anp(z,uw)) < Af(z) + (1 = A)f(u) forall z,u € S, X € [0,1]. (21)

Y4 .
Let A= —— (p,q > 0). From (21) it follows
P (p,g>0) (21)

f[p+q u + pn(z, u)] < pf(@) +af(w) (22)

p+q p+aq

Let now S C Ry = [0,00) and apply relation (22) to p := zi, ¢ := g,

T := z1 + x4, yielding:

f [(wl +22)ut zin(@s +23,9)] _ 21 f(e1 +22) + 22/ (w)
1+ xy = z1+ &2 '

By interchanging z; with 5 we can write

zof(z1 + 22) + 1 f(u)
Ty + 22 ’

f [(wl + z2)u + z29(z1 + T2, u)
1+ 22
“TECA FACY,
3 00 Ly 101
CLUJ-NAPOCA
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By addition we get
f(z1 +z2) + f(u) > flu+ ain(zs + z2,u)] + flu+ aon(z1 + z2,u)]  (23)

where ay + a2 =1, a1 > 0, ag > 0.

Put u := 0 in (23) and assume that f satisfies
f(ab(d)) > f(ab) cu a,b >0 (24)
where 6(z) = 5(z,0). By taking into account of

fl 2t o) 2 S 1|

Ty

T2
> )
2 be + )| 2 f(a)
one gets the inequality

f(z1) + f(z2) < f(z1 +22) + f(0), with z; >0, 2 > 0. (25)

By mathematical induction it easily follows now that

fle)+-+ f@a) < fl@r+ - +2a)+ (n=1)f(20), 2:>0(=T1n)(n21)
(26)
So, we have proved the following result:
Theorem 1.8. Let f : [0,00) = R be 7-invex function and let 6(z) = 5(z,0) with
z > 0. Let us assume that for a,b > 0 one has the inequality f(a8(b)) > f(ab). Then,
for all z; > 0 (i = T, n), (n > 1) we have the inequality (26).
Remark. For convex f and #(z) = z we can reobtain from (26) the known inequality
by M. Petrovié ([10]). '
In what follows we shall introduce the notion of invex combination. Let
X be a linear space and let S C X be an invex subset of X. We say that z is an
invex combination of z; and z, in notation z € inv(zy, z3) if there exists A € [0, 1]
such that z = z3 + An(z1,z2). Let zy1,...,2, € S. Then z € inv(zy,z2,...,2,)
(invex combination of n elements) if there exist y € inv(zi,...,2,-1) and there

exists A € [0, 1] such that

z =y + A\p(zn,y) € inv(y, zn).

We can prove the following analogue of Jensen’s inequality:
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Theorem 1.9. Let f : S — R be n-invex function. Then foralln > 2 andzy,z3,...,2, €
S and z € inv(z1, 23, . ..,2,) there erists Z € conv(f(z1),..., f(2a)) with the prop-
erty

fz)<z (27)

where conv is the convexr combination.

Proof. We shall proceed by mathematical induction. For n = 2 we have z €
inv(zy,22) € S, so z = z3 + Ap(z1,z2) and from (21) we can deduce f(z) <
M(z1)+(1=A) f(z2) = Z € conv f(z1), f(z2)). Let us assume that relation (27) holds
for n elements, and let 2/ € inv(zy, 23, ..., Zn4+1), where 2 € inv(zy,22,...,2,). Then
z1 has a form 2/ = z + An(Zn41, 2) so we can write f(z/) < Af(znt1) + (1= A f(2) =
M (2ns1)+H(1=N[1 f(z1)+X2f(z2)+ -+ X f(20)] where X1 4- - -4+X, = 1. Therefore,
£2) < T(1= N f(e1) + Rl = N f(22) + - -+ An(1= V) f(2n) + Af(Zn41)- Remarking
that X3 (1=A) 4+ -+An(1=A)+ X = 1 we get f(2!) < Z1 € conv(f(21),-- -, F(@n+1)),
finishing the proof of Theorem 1.9.

F. In this final subsection on Jensen’s inequality we mention certain applications.
First we reobtain the classical inequality of weighted means. This inequality plays a
central role in information theory (Shannon’s theory of entropy) [1], in the theory of
codes (Kraft’s inequality), in the theory of functional equations and rational group
decision [2], etc. (See e.g. [3] for applications and economics, and [6] for geometric
programming).

Theorem 1.10. (Theorem of means) Let a; > 0, g; > 0 (j = 1,n) with Zn:qj =1

i=1
Then we have

IIa¥ <> gja (28)

Proof. Select b; :=loga; and the convex function f(t) = e* (t.e (—o0,00)) and apply

Jensen’s discrete inequality.

. 1 1 L, 11
By letting n = 2, ¢ = =, g2 = —; a; = zP, a3 = y? with — + - = 1, we
p q P 9

obtain:
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Corollary 1.9. a) (Young’s inequality)
zy < l:::‘”+ly", where l+l=1, p>1 (29)
p q p g

b) (Holder’s inequality)

e o 1/q
Sone(£0) (50) e
j=1

Proof. 1t is sufficient to consider

n 1/p n 1/q
j=1 Jj=1

and apply (29) for = := ¢;/u, y := y;/v. After summation we get (30).

The following little known refinement of (23) is due to the author [15]:
Theorem 1.11. Let A > 0, p > 0 and let
n -p-1 i/p
H(l + Aa; + Az)¥ -1

J(“:’;‘I:‘;P» A) = p/ =l ) dz
0

and
-1/p

. pe
J(ai,qi,p) = P/O [H($+aj)‘“} dz

j=1

Then we have the following inequalities:

H 93 < J(a,,q,,p) < J autha Z (31)

j=1 Jj=1

Proof. Since this result has been published in a journal with reduced circulation, we

give here the proof of (31). First we prove that

n n
Hagj < —/1\— I:H 1+/\aJ)qJ - 1} < Za_,q] (32)
Jj=1

Jj=1 ji=1

104




INEQUALITIES FOR GENERALIZED CONVEX FUNCTIONS WITH APPLICATIONS, 1.

Indeed, let f(z) = In(1+ Ae®), z € R, which is strictly convex since f”(z) =
Xe? /(14 Ae®)? > 0. By Jensen’s inequality we have

> g =
In (1 + Aei=t ) < qu In(1 4+ Ae?).

j=1

By the substitution e* — a; we obtain

1+,\H %< H(1+,\a,)'h

j= Jj=1

On the other hand, from the inequality of means we can write

InI (14 Xa;)¥ < 1+)\ZanJ,

Jj=1
which combined with the above inequality gives (32). Apply now this inequality to

aj + = in place of a; and integrate the obtained relation. We can successively deduce

n n
H(aj+z S H1+/\aJ+Az"’—1:|<ZanJ+z
i=1 =1

J=1
and since p > 0, we have

n -p-1

-p-1 H(z + Ag; + Az)¥ — 1

00 n oo iy
/ E(z +a;)% dz > / = dz >
0 Jj=1 ~Jo A B

-p=1 -p

o0 n 1 n
> / 2+ gj0 dz==|> gja;| . (33)
0 i=1 P\i=

By Holder’s integral inequality for n functions (which for 2 functions is in
fact a consequence of (30), while for n functions follows by mathematical induction,

see e.g. [8]) we can write

N
/ H(:c-f—aj)‘“ d:z:_/ H[x—l—a “P1%dr <
o ;o1
n fo’e) q; n l ‘
<[ @raprae]” =TT 307,
Ji=1 0 j=1p

105

 —




JOZSEF SANDOR

which combined with (33) gives us

n 1 oo n —p-1
z pq;>/ T+ a;)% dz >
I_I > |2t >
i= j=1
n ) -p—-1
H(l +Aaj + Az)% -1 -p
o

=1 1
>/ L = gja ,
= 0 A p ;.7.7

finishing the proof of theorem.
oo 1/p
Corollary 1.10. (ajaz...a,)/" < {p/ [(z+a1)...(z+ a,,)]‘(P+1)/"d:l:} <
0

<

00 1/n 1/n _ 17 P1 ~i/p
< {p/ [(1+Aa1+/\x) ...)(‘1+/\a,,+/\:c) 1] dx}

< oot o). (34)

(Put gy == go = = in (31)).
Application. Let n = 3 in (34). We shall apply this relation in the theory of
geometric inequalities. Let ABC be a triangle of sides a, b, c; with r as the inscribed
circle radius, R as the circumscribed circle radius. Then (see [186]) it is known that

a+b+e (abe)'/3
R> —— d 2r < —F——.
=T33 TR

From the above inequality for n = 3 we can obtain the following refinements
2rV/3 < (abe)'/® < J(a,b,c,p) < J(a,b,c,p,A) < %(a +b+4¢) < RVS,

implying in fact infinitely many refinements of the classical Euler inequality 2r < R.
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