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STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume XLIV, Number 4, March 1899

SOME APPLICATIONS OF ORE’S GENERALIZED THEOREMS IN
THE FORMATION THEORY

RODICA COVACI

Abstract. Ore’s theorems [9] are a powerful tool in the formation theory
of finite solvable groups. In [4] we obtained a generalization of some of
these theorems on finite w-solvable groups, where # is an arbitrary set of
primes. The present paper applies Ore’s generalized theorems to prove the

existence and conjugacy of covering subgroups in finite w-solvable groups.

1. Preliminaries

All groups considered in the paper are finite. We denote by 7 an arbitrary

set of primes and by #‘ the complement to 7 in the set of all primes.

Definition 1.1. 1. A class X of groups is a homomorph if X is closed under
homomorphisms.
2. A group G is primitive if G has a stabilizer, i.e. a maximal subgroup H
with coregH = 1, where coregH = N { H? / g€G }.
3. A homomorph X is a Schunck class if X is primitively closed, i.e. if any

group G, all of whose primitive factor groups are in X, is itself in X.

4. If X is a class of groups and G is a group, a subgroup E of G is called an
X-covering subgroup of G if: (i) E€ X; () EX V<G, Vo<V, V/Vp€
X imply V = E V.

Definition 1.2. a) A group G is m-solvable if every chief factor of G is either a solv-
able m-group or a m‘-group. When = is the set of all primes, we obtain the notion of
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solvable group.

b) A class X of groups is said to be m-closed if:

G/Ox(G) eX=> G €X,

where On‘(G) denotes the largest normal 7‘-subgroup of G. We shall call m-homomorph

a w-closed homomorph and w-Schunck class a m-closed Schunck class.

Let X be a homomorph. The following properties given in [8] are also true

for any finite group:

Proposition 1.3. If E is an X-covering subgroup of G and E < H < G, then E is

an X-covering subgroup of H.

Proposition 1.4. Let E be an X-covering subgroup of G and N a normal subgroup
of G. Then EN/N is an X-covering subgroup of G/N.

Proposition 1.5. If N is a normal subgroup of G, E*/N is an X-covering subgroup
of G/N and E is an X-covering subgroup of E*, then E is an X-covering subgroup of
G.

Finally, we shall use a result of R. Baer [1] which we give below:
Theorem 1.6. A solvable minimal normal subgroup of a group is abelian.
2. Ore’s generalized theorems

In [3] we gave some properties of finite primitive groups, among which we

remind the following:

Proposition 2.1. If G is a primitive group and W is a stabilizer of G, then for any
minimal normal subgroup M of G we have MW = G.

In [4] we proved the following theorems generalizing Ore’s theorems from [9]:

Theorem 2.2. Let G be a primitive w-solvable group. If G has a minimal normal
subgroup which is a solvable w-group, then G has one and only one minimal normal
subgroup.

4
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Corollary 2.3. If G is a primitive w-solvable group, then G has at most one minimal

normal subgroup which is a solvable n-group.

Corollary 2.4. If a primitive w-solvable group G has a minimal normal subgroup
which is a solvable w-group, then G has no minimal normal subgroups which are ‘-

groups.

Theorem 2.5. If G is a primitive m-solvable group and N is a minimal normal sub-

group of G which is a solvable w-group, then Cg(N) = N.

Theorem 2.6. Let G be a w-solvable group such that:

(i) there is a minimal normal subgroup M of G which is a solvable w-group and Cg (M)
=M;

(i) there is a minimal normal subgroup L/M of G/M such that L/M is a © ‘-group.

Then G is primitive.

Theorem 2.7. If G is a w-solvable group satisfying (i) and (ii) from 2.6., then any
two stabilizers W and W* of G are conjugate in G.

Theorem 2.8. If G is a primitive m-solvable group, V < G such that there is a min-
imal normal subgroup M of G which is a solvable m-group and MV = G, then V is a
stabilizer of G.

3. Existence and conjugacy of covering subgroups in finite r-solvable groups

We give here a new proof of the existence and conjugacy theorems of covering
subgroups in finite m-solvable groups [2]. The proof from [2] is based on some R.
Baer’s theorems (see [1]). According to the importance of Ore’s theorems in the
formation theory of finite solvable groups, we put the question if Ore’s generalized
theorems could not be used to prove the existence and conjugacy theorems of covering

subgroups in finite m-solvable groups. The answer is affirmative as we show below.

Theorem 3.1. If X is a w-homomorph and G is a w-solvable group, then any two

X-covering subgroups of G are conjugate in G.
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Proof. By induction on |G|. Let E and F be two X-covering subgroups of G.

If GeX, using 1.1.d) we obtain E = F = G and so E and F are conjugate in G. Let
now G¢X. If N is a minimal normal subgroup of G, by 1.4. we have that EN/N
and FN/N are X-covering subgroups of G/N. By the induction, EN/N and FN/N are
conjugate in G/N and so EN/N = (FN/N)*" | where x€G. But this imply EN = F*N,
We distinguish two cases:

1) There is a minimal normal subgroup M of G such that EM # G. We put N = M.
By 1.3., E and F* are X-covering subgroups of EM, hence by the induction E and F*
are conjugate in EM and so E and F are conjugate in G.

2) For any minimal normal subgroup N of G we have EN = G = FN. We prove that
any minimal normal subgroup N of G is a solvable n-group. Indeed, since G is -
solvable, N is either a solvable 7-group or a w‘-group. Supposing that N is a 7‘-group,
we obtain N < On‘(G). From

G/ On*(G) = (G/N)/( O=*(G)/N)

and

G/N = EN/N 2 E/ENN € X

it follows G/ O7‘(G) € X. By the m-closure of X we obtain the contradiction G € X..
Thus N is a solvable n-group and by 1.6. N is abelian.

Now E is a stabilizer of G. Indeed, E is a maximal subgroup of G since E # G (E€X but
G ¢ X) and if E < H < G then E = H, because otherwise let h € H~E, h = en, e€E,
neN and n = e—'h € NNH = 1 (N being abelian) which means the contradiction
h=e€E. Further coregE = 1, for supposing coregE #1 we have a minimal normal
subgroup M of G with M < coregE, hence G = EM = E coregE = E, in contradiction
with E € X and G ¢ X. So E is a stabilizer of G and G is a primitive m-solvable
group. Since F < G

( FEX but G¢X ) and since, for any minimal normal subgroup N of G, N is a solvable
m-group and FN = G, applying 2.8. we obtain that F is also a stabilizer of G.

By 2.2., G has one and only one minimal normal subgroup N. By 2.5., C¢(N) = N. So
condition (i) from 2.6. is valid. Further, we shall prove below that condition (ii) from

2.6. is also true. Indeed, let us suppose that (ii) is not valid. It means that there is
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not a minimal normal subgroup L/N of G/N such that L/N is a 7*-group. G/N being
w-solvable, we deduce that any minimal normal subgroup L/N of G/N is a solvable
n-group. But N being a solvable m-group, it follws that L is a solvable m-group. L
being normal in G, we have two possibilities, both leading to a contradiction:

a) L is a minimal normal subgroup of G. But G having one and only one minimal
normal subgroup N, we deduce that L = N, a contradiction with L/N # 1.

b) L is not a minimal normal subgroup of G. Then N < L, hence

G=EN<EL <G,

a contradiction.

We proved that G is a m-solvable group satisfying conditions (i) and (ii) from 2.6.
Then, by theorem 2.7., we obtain that the two stabilizers E and F are conjugate in

G. O

Theorem 3.2. Let X be a w-homomorph. X is a Schunck class if and only if any

w-solvable group G has X-covering subgroups.

Proof. Let X be a m-Schunck class. We prove by induction on |G| that any m-solvable
group G has X-covering subgroups. Two cases are considered:

1) There is a minimal normal subgroup M of G such that G/M ¢ X. By the induction,
G/M has an X-covering subgroup H*/M. Since G/M ¢ X we have H* < G. By the
induction, H* has an X-covering subgroup H. Applying now 1.5., H is an X-covering
subgroup of G.

2) For any minimal normal subgroup M of G we have G/M € X. Two possibilities
can be considered again:

a) G is not primitive. Let G/K be a primitive factor of G. Since K # 1, there is a
minimal normal subgroup M of G such that M C K. We have G/M € X. Hence
G/K = (G/M)/(K/M) € X.

By the primitively closure of X, G € X. So G is its own X-covering subgroup.

b) G is primitive. Let S be a stabilizer of G. If G€X, then G is its own X-covering
subgroup. Let now G ¢ X. We shall prove that S is an X-covering subgroup of G.
First
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S € X. Indeed, let M be a minimal normal subgroup of G. Since G is primitive and S
is a stabilizer of G, by 2.1. we have MS = G. On the other side, G being m-solvable,
M is either a solvable m-group or a w‘-group. But if we suppose that M is a m‘-group

we have
M < Ox(G)
and
G/0x(G) = (G/M)/(0x(G)/M) € X,

hence by the w-closure of X we deduce that G € X, a contradiction. Thus M is a

solvable w-group. Applying 1.6., M is abelian. This and G = MS lead to MNS = 1.
Then

S=S/1=S/MNS=MS/M=G/MeX.

So S€ X. Further if S < V < G, Vo < V, V/Vo € X, we shall prove that V = SV,.
Because S is a maximal subgroup of G, two possibilities can happen: V=S or V =
G.If V=S, we have V = VVy = S V4. If V = G, we notice that Vy is a normal
subgroup of G and Vo # 1 (else, G = V = V/1 = V/V; € X, a contradiction). Then
let Mg be a minimal normal subgroup of G such that Mg C V. Applying 2.1., MeS
= G. Hence

V =G = MpS = VoS = SV,.

Conversely, let X be a m-homomorph such that any w-solvable group has X-covering
subgroups. We prove that X is primitively closed. Suppose that X is not primitively
closed and let G be a w-solvable group of minimal order with respect to the conditions:
any primitive factor of G is in X but G ¢ X. Let M be a minimal normal subgroup
of G. By the minimality of G we have G/M € X. G being m-solvable, G has an
X-covering subgroup H. From H < G = G, M < G, G/M € X follows G = MH. By
the m-closure of X, M is a solvable m-group and so by 1.6. M is abelian. From this
and from G=MH we obtain MNH =1. Like in the proof of theorem 3.1., we obtain
that H is a maximal subgroup of G. Two cases are possible:

1) G is primitive. Then G = G/1 is a primitive factor of G and by the choice of
G, we obtain G = G/1 € X, in contradiction with G ¢ X. So this case leads to a
8
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contradiction.

2) G is not primitive. Then coregH #1, else H is a stabilizer of G and G is primitive.
By the minimality of G we have G/coregH € X. By 1.4., H/coregH is an X-covering
subgroup of G/coregH. It follows that H/core¢gH = G/coregH, hence H = G, in
contradiction with H € X but G ¢ X. This case lea;ds also to a contradiction.

It follows that X is primitively closed and so X is a Schunck class. O

References

(1] Baer, R., Classes of finite groups and their properties, Illinois J. Math., 1, 1957, 115-187.

[2] Covaci, R., Projectors in finite w-solvable groups, Studia Univ.“Babes-Bolyai” Math.,
XXII, 1, 1977, 3-5.

[3] Covaci, R., On primitive w-solvable groups, Studia Univ.“Babes-Bolyai”, Math.,
XXXVIII, 4, 1993, 3-6.

[4] Covaci, R., A generalization of some of Ore’s theorems, to appear, Studia Univ. “Babes-
Bolyai”, Math.

[5] Gaschiitz, W., Zur Theorie der endlichen auflésbaren Gruppen, Math. Z., 80, 4, 1963,
300-305.

[6] Gaschiitz, W., Selected topics in the theory of soluble groups, Australian National Uni-
versity, Canberra, Jan.-Feb. 1969.

(7] Huppert, B., Endlichen Gruppen I, Springer Verlag, Berlin - New York, 1967.

[8] Schunck, H., H-Untergruppen in endlichen auflosbaren Gruppen, Math.Z., 97, 4, 1967,
326-330.

[9] Ore, O., Contributions to the theory of groups of finite order, Duke Math. J., 5, 1939,
431-450.

“BABES-BoLYAI” UNIVERSITY, FACULTY OF MATHEMATICS AND COMPUTER ScCI-
ENCE, 3400 CLUJ-NAPOCA, ROMANIA.




STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume XLIV, Number 1, March 1999

ON o-TYPE UNIFORMLY CONVEX FUNCTIONS

IOANA MAGDAS

Abstract. We determine necessary and sufficient condition for a function
f with negative coefficients to be n-uniformly starlike of type o and we
obtain a conection between the class of all such functions UT,(a) and the
class of the functions n-starlike of order @ and type 8 with negative coef-

ficients T (o, 8). Distortion bounds and extreme points are also obtained.

1. Introduction

Denote by S the family of functions
F@2)=2+4) ans" (1)
n=2

that are analytic and univalent in the unit disk U = {2z : |2| < 1} and by 5",
respectively S°(a) the usual class of starlike functions, respectively convex functions

of order a, a > 0.

Definition 1. A function f is said to be uniformly convex in U if f is in S° and has
the property that for every circular arc v contained in U, with center ¢ also in U, the

arc f(¢) is a convex arc.

Let be UCV or US* denote the class of all such functions.
Goodman gave the following two-variable analytic characterizations of this
class, then Ma and Minda [1] and Renning [2] independently found a one variable

characterization for U S°.

Theorem A. Let f have the form (1). Then the following are equivalent:

1991 Mathematics Subject Classification: 30C45.
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(i) f € US®
(21) Re {1 + (2 - C)f”(Z)

zf"(z) 2f"(2)
(iit) Re{1+ 0 } > ) | forallzeU

(iv) 1+ ZJ{'(S) < g, where ¢(z) = 1+ ”22- (log i tg

mapping function fromU to Q = {w=u+iv: v <2u—1}={w: Rew > |w—1|}.

> 0 for all pairs (z,{) € U x U

2
) is a Riemann

Note that Q is the interior of a parabola in the right half-plane which is
symmetric about the real axis and has vertex at (1/2,0).

Denote by T the subclass of S consisting of functions f of the form
f(z)=2-) anz", an>0(neN\{0,1}), z€U 2
n=2

and denote by T*(a) and T°(a) the class of functions of the form (2) that are,
respectively, starlike of order @ and convex of order a, a € [0,1), and denote by

UT°® =US°NT the class of functions uniformly convex with negative coefficients.

Definition 2. A function f of the form (1) is said to be uniformly convex of a-type,

a>0if

2f"(2)
f'(2)

Re{l-i—fﬂﬂ}Za , (3)

1'(2)

forallzeU.

We let US°{a) denote the class of all such functions.
Note that US¢(0) = S¢, US°(1) =US® and US°(a) CUS® for a > 1.

Remark. A function f of the form (1) is in US®(a) if and only if 1+ 2f"'(2)/f'(2) € D
for all z € U, where D is:
i) for a > 1 bounded by the ellipse

12
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ii) for @ = 1 bounded by the parabola

vP=2u—1
iil) for a € (0, 1) bounded by the positive branch of the hyperbole

2 \2
Lot
(u 1—0:2) v?

a? 1
(1-a?)? 1-a?

=1

iv) for a = 0 the half-plane u > 0

In conclusion US¢(a) C S¢(a/(a + 1)) for a > 0.
In [5] is defined UT?(a) = US®(a) NT and it is given a coefficient character-

ization for this class.

Theorem A. Let f have the form (1) and « > 0. f is in UT®(a) if and only if
Y ilila+1)—ale; <1, (4)
j=2

hence UT*(a) = T*(a/(a + 1)).

Saldgean [4] introduced the differential operator

D":A— A, neN, A={feHU): f(0)=f(0)-1=0}
13
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defined by D°f(z) = f(z2), D*f(z) = Df(z) = zf'(z), D" f(z) = D(D"~!f(z)), for
n > 2 and it is easy to prove that
(s}
D' f(z) =z + Zj"ajzj. (5)
i=2
He also defined the class S,(a, B) of n-starlike functions of order a and type
B by

Sn(a,B)={f€A: |J(f,n,e;2)|< B}, a€]0,1), B€(0,1], n €N

where

Dt f(2) — D™ f(z)
D+ f(z) + (1 —2a)Drf(z)’
Denote by T, (a, 8) = Sp(a, 8) N T the class of functions n-starlike of order

J(f,n,a;2) =

zeU. (6)

o and type B with negative coefficients.

Saldgean [4] gave a coefficient characterization for this class.

Theorem B. Let f have the form (2), @ € [0,1), B € (0, 1] f is in Ty (e, B) if and
only if
D ili— 148G +1 - 2a)]e; < 28(1 - ). (7)
i=2
The result is exactly and the extremal functions are

26(1 - o)
- 1483+ 1-2a)]

Definition 3. A function f of the form (1) is said to be n-uniformly starlike of type
o,a>0and n € Nif

fi(z)=z— Z, jeN;=N\{0,1}. (8)

Re{Dan(z)} > o ©)

D" f(z)

Des
D~ f(z)
forallz e U.

We let US, (a) denote the class of all such functions.

Note that USo(1) = S, introduced in [3], USi(1) = US° and because
USn(a) C Sn(0,1) C S* follow that the uniformly functions of type a are univa-
lents.

14



ON a-TYPE UNIFORMLY CONVEX FUNCTIONS

Remark. fisin USp() if and only if D"*t!f(z)/D"f(z) € Dforall z € U.

Denote by UTy, () = USh(a) N T the class of n-uniformly starlike functions
of type a with negative coefficients.

We will give a coefficient characterization for this class.

2. Main results

Theorem 1. Let f have the form (2), « > 0, n € N. Then f is in UT,(a) if and
only if
o0
Y _i"lila+1)—ale; < 1. (10)
Jj=2

The result is exactly and the extremal functions are

1 i
T 3%,
*lia+1) - a]
Proof. Assume that f € UT,(a), then

fi(z) =2z— j €N, =N\ {0,1}.

n+1 n41
Re {22 F(AN o PP () (11)
Drf(z) J = | D*f(2)
forall z€e U.
For z € [0, 1) the inequality become
o0 . o0 .
1- 3 j"*a;zi~! 2. 3"~ Va;z
=2 [ (12)
1- Z j”ajzj‘l 1-— Z j"ajzf—l
j=2 j=2
Since UT, (a) C T,(0,1) we have:
Ejn-}-laj <1
i=2
then
Zj"ajzj_l <1
j=2
Inequality (13) reduce to
o . o .
1=> " et > a) " (i — a2~
j=2 =2
15
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and letting z — 1~ along the real axis, we obtain the desired inequality

> ili(e+1) —ala; < 1.
j=2

Conversely we assume the inequality (11) and it suffices to show that:

* D) D1f(2)
—an(z) -1| - Re{——D"f(z) - 1} <L
We have
DrHi(z) ‘_ {D_m_ } D™f(z) ,
M I 7o R Bl W0y 2 Ry Ll o (P i
5 3m( = 1)alzi=t 550G - 1)
<(a+ 1) <(e+)Zm—<1
1-— Z Jtajlz)i-1 1- Z: Jj"a;
j=2 j=2

according to (11), and the proof is complete.
Remark. For n = 1 we obtain the Theorem A.
Corollary 1. Let f have the form (2). If f is in UT, (a) then
. < —
Y2 Fhletn -

Corollary 2. Fora>0andn €N, UT,(a) = Th(a/a+1,1).

Jj €N,

(13)

Proof. Replacing o with a/a + 1, 8 with 1 in the necessary and sufficient coeffi-

cient conditions in Theorem B, we obtain the corresponding coefficient condition of

Corollary 2.

Theorem 2. If f € UT,(a), a > 0 then

1 2 1 2
- < < -
Tlayy <O EGTyT =
1l ————— < / - p2 ’
2n—1(a+2)r— If (Z)l S 1+ 2n—-1(a+2)r

The results are the best possible.

16
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Let f and g be two functions of the form (2)

o . b .
f(z)=2z- Zajz’ and g(z) =z-) b;2’

j=2 j=2
then we define the (modified) Hadamard product or convolution of f and g by

[oe]

(f*9)(2)=2~— Zajbjzj.

ji=2
Theorem 3. If f,g € Ul (o), a >0 then fxg € UT, (Tﬁ—), where
-p

1

R (. S—
p (e +2)2 - 1
This result is sharp.
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NOTE ON SPREADS AND PARTIAL SPREADS

DANUT MARCU

Abstract. The aim of this note is to give an answer to a question of [1].

1. Introduction

In this note, we show the existence of a spread, which is not a dual spread,
thus answering to a question in [1]. We also obtain some related results on spreads
and partial spreads.

Let P = PG(2t — 1, F) be a projective space of odd dimension (2t —1, t > 2)

over the field F'. In accordance with [1], we use the following definitions. A partial

spread S of P is a collection of (t — 1)-dimensional projective subspaces of P, which
are pairwise disjoint. S is maximal, if it is not properly contained in any other partial
spread. In particular, if every point of P is contained in some member of S, then S is
a spread. If each (2t — 2)-dimensional projective subspace of P contains exactly one

member of S, then S is called a dual spread.

2. Main results

In the sequel, |S| will denote the number of subspaces in S.
Theorem 1. If F is finite, then S is a spread if and only if S is a dual spread.
Proof. Suppose that S is a spread, which is not a dual spread of P. Let § be any
correlation of P (for the existence of such a §, see [2, p.41]). Then, S¢, the image of
S under 4, ia a partial spread, which is not a spread. But, |S®| = |S| and F is finite.

So, we obtain a contradiction. Similarly, every dual spread is a spread. O

1991 Mathematics Subject Classification: 51E14, 51E23.
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For simplicity, we now specialize to the case t = 2 and we assume that F is
commutative, to facilitate the notion of regulus.

We say that a spread S is regular provided that, for every line ! of P which
is not in S, the lines of S meeting ! form a regulus R of P.

Not al spreads are regular. We can obtain a new non-regular spread S’ from
S, by the process of replacing some regulus R by its opposite regulus R’. If S’ can be
obtained from a regular spread S by finitely many iterations of such a process, then
S is called subregular.
Theorem 2. Every regular spread S of |bfP is a dual spread.
Proof. Let 7 be any plane of P. Then, 7 contains at most one line of S. To show that
there must be one, let | be any line of 7, which is not in S. The lines of S, meeting [,
form a regulus R. Let p and ¢ be any two lines of the opposite regulus R’, different
from l. Then, p and ¢ meet 7 in distinct point P and @, not on l. The line PQ of
meets | and, hence, meets three lines of R’. Thus, PQ is a line of R, that is, of S. O

A straightforward extension of this argument yields the following
Theorem 3. Let S be a spread, which is a dual spread. Suppose that S contains-
a requlus R. Then, the spread S’', obtained from S by replacing the regulus R by its
opposite regulus R', is also a dual spread.
Corollary 1. Every subregular spread is a dual spread.
Theorem 4. There exists a spread S of P, such that S is not a dual spread and no
four lines of S are contained in a regulus.
Proof. Let F be infinite and countable. Choose any plane 7 and list the points in
7(Py, P2, Pa, ...) and the points not in 7(Q1, @2, @3, ...). Through Py, construct the
line I} = P1@;. Suppose that I1,1s,...,l, have been constructed, such that:

(a) no l; isin m,

(b) no two [; intersect and

(c) no four I; are in a regulus.

We now show that I, can be constructed in such a way, that (a)-(c) are

satisfied also by {l1,ls,...,ln4+1}.
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NOTE ON SPREADS AND PARTIAL SPREADS

If n is odd, let X = P; be the first pint in m, which is on none of the lines
li,l,...,l, and Y = @y the first point not in m, such that:

(d) Y is on none of the n planes X/;, ¢ =1,2,...,n and

(€) XY does not belong to any one of the (n3) reguli determined by l1,1s,...,l,.

Then, put l,41 = XY = P;Qx.

If n is even, let X = @, be the first point not in 7, which is on none of the
l;iyi=1,2,...,nand Y = P, the first point in 7, such that (d) and (e) are satisfied.
Then, put Iy = XY = Q,P;.

Clearly, l1,15,...,ln41 satisfy the conditions (a)-(c). Furthermore, our con-
struction guarantees that each point of P is on a line of S. Thus, the theorem is
proved. O

There is an interesting consequence of the Theorem 4, that is,

Corollary 2. Mazimal partial spreads W, which are not spreads, ezist in P.

Proof. Consider the image W of S, under any correlation of P. O

Remark. the above corollary is also true if F is finite (for an example in PG(3,4), see
(3])-

We end this note with the following
Conjecture. There exist such mazimal partial spreads W, with ¢> — ¢+ 1 < |W| <
¢*—q+2 in PG(3,q), for any q.
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FUZZY SYSTEMATIC SPACES

M.R. MOLAEI

Abstract. In this paper fuzzy systematic spaces are considered. In terms
of definitions of fuzzy cover and fuzzy sheaf it will be defined fuzzy coho-

mology in the sense of Cech.

1. Introduction

In philosophy [1,2,3] there are some definitions of systems. These definitions
help us to define fuzzy systematic spaces, which are suitable spaces for description of
language [6]. It will be shown that on a consistent fuzzy systematic space the notion
of fuzzy cover is acquired, so we can define fuzzy sheaf cohomology in the sence of
Cech.

Fuzzy relations have been studied by Zadeh [8], Kaufman [5], Rosenfeld [7]
and in this paper in the one hand the fuzzy relations are used and in the other hand

a fuzzy systematic space is explained.

Definition 1.1. A fuzzy system for the fuzzy set X is a collection S = {Ry}, y €T
which satisfies the following conditions:

(?) Ry C X x Y, are fuzzy relations;

(¢2) for every & € X there exist v € I and y, such that (z,y,) € R,.

A fuzzy systematic space is an order pair (X, S).

Ezample 1.2. Let (C, C) be a Site [4], for all a € C define R, = {(a,b) : b C a} and
My, (@,0) == max{p(a), pc(b)}. Then (C,{R.}) is a fuzzy systematic space. (u is a

membership function.)

1991 Mathematics Subject Classification: 04A72.
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Definition 1.3. Let (X,S) be a fuzzy systematic space. Then an object R € S is
called a speciality of S if forally e I', RNR, € S.

Definition 1.4. A consistent fuzzy systematic space is a fuzzy systematic space with

the following condition:

For all R; and R; belong to S, Ry N Ry € S and [T

= “RzlnlnRg
An inconsistent fuzzy systematic space is a fuzzy systematic space which is

not consistent.

Theorem 1.5. Let (X,S) be a fuzzy systematic space. Then there are subsets, X,
Xr of X and S., Sy of S such as:

(i) X = X, UXy;

(#5) S=S.USr, and Sc.NSr=0;

(222) (Xe¢, Se) 15 a consistent fuzzy systematic space and (X, Sy) 1s an inconsistent

fuzzy systematic space that has no speciality.

Proof. Let S = {R,} put
Se = {Ry:(VBET)(RyNRs € S)};

Sy = S-S,
X = {zeX:(z,y) € Ry forsome Ry € S.};
X; = {z€X:(z,y) € Ry forsome R, €S} M

O

Definition 1.6. If §’ C S, then the fuzzy systematic space (X,S’) is called a sub-

systematic space of (X, .S).
2. Fuzzy Sheaf
There must be a definition of fuzzy Grothendieck topology on S, define as a
map:
”Element of S — A subset of the powerset”

with the following conditions:
(a) {R} € G(R) for all R€ S;
(b) It {R;} € G(R) then R; C Rand pp = pip, -
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A fuzzy cover for R € S is an element of G(R).

Definition 2.1. A subset U of the fuzzy system S is a fuzzy cover for S if for all

R € S,U contains at least one fuzzy cover of R.

A fuzzy cover U’ is a finer fuzzy cover than U, if for all R’ € U’ there exists
Re U so that R C R and p,, be equal to u, on R'.

We define a fuzzy presheaf P on a fuzzy systematic space (X, S) as a map;

Object in S —— Fuzzy abelian groups
R — T(R,P) '

together with restriction maps
Pur T(F,P)—T(R,P) f RCF

that satisfies the following properties;
(¢) The restrictions are fuzzy group homomorphisms;
() H R C F and G C R then p,, = id, p5r0prr = Por-

A fuzzy presheaf P on systematic space (X,S) is a sheaf if satisfies the fol-
lowing conditions:
(i11) For every fuzzy cover {R;} of R and a,b € T'(R, P), if a|r; = b|r, for all ¢, then
a=b;
(v) For every fuzzy cover {R;} of R, if a; € T'(R;, P) and a;|r; = aj|g, for all 4, j,
then there exists a € I'(R, P) such that a|g; = a;.

Ezample 2.2. Suppose that X is an n-dimensional complex fuzzy manifold
S={Ryv =UxV:U and V are charts of X}

and py (v, v) = max{p, (uv), py (v)} for all (u,v) €U x V;
(a) If T(U x V, B) be the fuzzy group of bounded holomorphic functions on chart
UxVof X x X then the map, R,, — I'(U x V, B) is a fuzzy presheaf that is not

a fuzzy sheaf.
(b) ¥ T(U x V,0(m)) be the fuzzy group of homogeneous holomorphic functions of
degree m on chart U x V then the map R, — I'(U x V,0(m)) is a fuzzy sheaf.
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3. Fuzzy Cohomology

Now we define fuzzy cohomology in the sence of Cech for a consistent fuzzy
systematic space.

Suppose that U is a fuzzy cover for a consistent fuzzy systematic space (X, S).
A g¢-simplex is a ¢ + 1 tuple of elements of U. For § = (Ro, Ry,...,Rq) define
[0] = RoN Ry N---N Ry A g-cochain with respect to U with coefficients in a fuzzy
sheaf P is a map;

{6 :6 is a ¢ — simplex} N UT(é, P)

§ — f(9)
If 6 = (Riy, Riy,..., Ri,) then we denote f(8) by fi,..i, and {fivir..i, € T(Rip 0
R;, N---NR;,, P)} is a called g-cochain. The set of these g-cochains is denoted by
CY(U, P). The coboundary operator is:

P
{fioiv.ig} 5 {P[.-o,,.l .,..-q+11}

where p, is restriction to R;,.

As usual we define Z9(U, P) = Kerdgy1 and BY(U, P) = Indy. The set
HY(U, P) = Z9(U, P)/B3(U, P) is called the fuzzy Cech cohomology of P with re:-
spected to U and the set H9(S, P) = li&n indHI(U, P) is called the fuzzy Cech coho-
mology of (X, S) with cofficients in the fuzzy sheaf P, where limind is the inductive

limat.

Theorem 3.1. Let (X,S) be a fuzzy systematic space and suppose that there exists
R € S so that R is the mazimal element of S with respected to the inclusion. Then
HY(S, P) =T(R, P).

Proof. Let d € H°(S, P) = (U°H®(U, P)/ ~) that ~ is the usual equivalence relation.
So d = [(gi)] where g; € T'(R;, P) for some fuzzy cover V of S. By the condition ég = 0,
we have;

(09)i; =9; —9i =0 on R;NR;
Therefore there is a global section g € T'(R, P) which agrees with the g; locallym O
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SOME QUALITATIVE PROPERTIES OF THE SOLUTIONS TO
QUASI-LINEAR DIFFERENTIAL INCLUSIONS

MARIAN MURESAN

Abstract. The aim of the present paper is to introduce some recent results
on the existence and on some qualitative properties of the solutions to some

differential inclusions of evolution.

1. Introduction

By a study of some qualitative properties of the set of solutions to a differ-
ential inclusion (similarly to the case of a differential equation) we mean a study of
one or several aspects in connection with: the existence of a solution, dependence
on the initial value, parameter and/or right hand side, connectedness of the set of
solutions, relaxation, periodicity and/or stability of the solution(s), etc. without a
straight access to the solution(s).

Let us recall some well-known facts from the theory of differential equations.

Consider I =[0,7], 0 < T, X = R™. We have the following result

Theorem 1 ([23], p. 10). Let z, f € X; f(t,z) is continuous on I x {z | |z —zo |<
b}; M is a bound for | f(t,z) | on I x {z | |z —zo |< b}; @ = min{a,b/M}. Then

z' = f(t,z), =z(0)==o (1)

possesses at least one solution & = z(t) on [0, a].

Remarks. In this case each solution is continuously differentiable on the interval ]0, of.
The solution is not unique. For uniqueness it is necessary an extra assumption, e.g.
a Kamke condition. The above theorem fails in-an infinite dimensional spaces, [6].

1991 Mathematics Subject Classification: 34A60.
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Adding a Lipschitz condition in respect to the second variable, the local existence is

guaranteed.

When function f is not longer continuous, but it is continuous in z for almost

all ¢ and measurable in ¢ for all z (it is a Carathéodory function), then we have

Theorem 2 ([21], p. 4). Fort €I, |z —zo |[< b let f be a Carathéodory function
and | f(t,z) |< m(t), the function m being summable. Then on the closed interval
[0,d], where d > 0, there exists a solution of the initial value problem (1). In this
case d satisfies: d € (0,T], ¢(t) := [; m(s)ds, ¢(t+d) <b.

Now a solution is an absolutely continuous function on I. The assumptions
are weaker, the conclusions are weaker, too.

These two situations may be encountered similarly in the case of more general
Banach spaces. We have to notice that in a general Banach space X an absolutely
continuous function defined on I is not almost everywhere differentiable on ]0,T7.
But if the Banach space X is reflezive, thanks to a theorem of Komura, [6, p. 16], we
know that every X -valued absolutely continuous function « on I is a.e. differentiable
on ]0,7T[ and z(t) = =(0) + fot (dz/ds) (s)ds, t € I. Here the integral is considered
as a Bochner integral, [18] or [17].

Now we take a look to the case of linear differential equations when X = R".

Consider the following two systems of ordinary differential equations
z'(t) = A(t)=(t) (2)
&'(t) = A(t)z(t) + f(t), =(0) = o, 3)

where A is a n X n matrix and f is a function, both continuous on I. If Y is the

fundamental matrix of equation (2), then the solution of equation (3) is given by

2(t) = Y't, 0)zo + /0 Y2, 5)f(s) ds, (1)

where Y (t) = Y (t,0). Obviously, this solution is continuously differentiable on 7. If
f € LY(I), then z is absolutely continuous on /.
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If X is a Banach space, the function defined by (4) is said to be the mild
solution of equation (3), if it exists. The study of the equations of the form (3) in
infinite dimensional spaces is performed, e.g., (6], [34], [47], [48]; applications [34],
[41].

Now we turn for a while to observe some very elementary properties of the
differential inclusions. For the beginning we remark that a differential inclusion is a
differential equation whose the right-hand side is a set-valued function (multifunction,
correspondence, etc.), [21], [3], [16], [31].

Consider the following differential inclusion z' € {-1,+1}, z(0) =0, t €
[0,1]. We see that if we require that the solution to be continuously differentiable,
then the set of solutions is very poor; but if we permit to a solution to be absolutely
continuous, then the set of solutions is rich enough. In this case one can construct a
sequence of solutions z,, converging uniformly to the constant function £ = 0. But
z = 0 is not a solution, hence the set of solutions is not always a closed set.

A classical way to obtain a differential inclusion, (3], [4], is that, starting
from a dynamical system z'(t) = f(¢,z(t),u(t)), z(to) = o, ”controlled” by the
parameters u € U, to define F(t,z(t)) = {f(¢, 2(t), u(t)) }uev. For definitions of the
solution of a differential inclusion we refer to [21]. The coincidence of the sets of
solutions was studied for the first time by Wazewski in [57). The set-valued functions
and differential inclusions are useful tools not only in control problems, but also in
economical problems, [31]. |

Let Z be a linear topological space. We will use the following notations:
PZ)={ACZ|A#0}, C(Z)={A€P(Z)]| Aclosed}, CCo(Z) = {4 € C(Z) |
A convex}, KCo(Z) = {A € P(Z) | A compact and convex}.

The Hausdorff-Pompeiu metric of the sets A,B € C(X) ((X,p) 1s a
metric space) is defined by D(A4, B) = max{d(4, B), d(B,A)} where d(A,B) =
sup{d(z,B) | ¢ € A}. Several properties of the Hausdorfl-Pompeiu metric may
by found in [11], [8]. '

Let I be the interval I = [0,T], T" > 0 fixed, and X a Banach space.
A family of bounded linear operators U(t,s), on X, 0 < s <t < T, depending
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on two parameters is said to be an evolution system, [48], if there are fulfilled the
following two conditions U(s,s) =1, U(t,r)U(r,s)=U(t,s) for 0 <s<r<t<T;
(t,8) — U(t, s) is strongly continuous for 0 < s <t < T, where by strongly continuity
is meant that lim\,U(t,s)z =z, forall z € X.

By a Cauchy problem for a quasi-linear differential inclusion we mean

dz(t)
dt

€ A(t,z(t))z(t) + F(t,z(t)), ae te I, and z(0)=zo, (CP)

where A(t,w) is a linear operator from X to X depending on t € [ and w € X,
and F is a set-valued map.

If operator A depends on t and w), the differential inclusion in (CP) is said
to be quasi-linear, if A depends only on ¢, the differential inclusion is said to be
semi-linear, and if A depends neither on ¢ nor on w, the differential inclusion is said
to be linear.

We are interested to study the mild solutions of the (CP), i.e. continuous

functions having the following representation

t
2(t) = Us (2, 0)a + / Uslt,5)f(s)ds tET, £ €Sk oty
0

where S}: = 11,.’(,) = S}.(_,x(.)) is the set of Bochner integrable selections from
F(,=()).

We use the following assumptions:

(X1) X is a separable Banach space;
(X2) X satisfies (X1) and, moreover, it is reflexive;

(A) For every u € C(I,X) the family of linear operators {A(t,u) | t € I}
generates a unique strongly continuous evolution system Uy(t,s), 0 < s <
t<T,

(Uh) If we C(I,X), the evolution system Uy,(t,s), 0 < s <t < T satisfies
(1) there exists a ¢; > 0 with ||[Uy(t,s)|| <c1 for 0 < s <t < T,
uniformly in u;
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(i1) there exists a c; > 0 such that for any u, v € C(I,X) and

any w € X we have

I (2, s} — U (2, s)wl| < czlle/’ llu(r) — v(r)l| d7;

(U2) fue C(I,X) and 0 <s <t <T,then Uy(t,s) is a compact operator,

i.e. it transforms bounded sets in relatively compact sets. In this case,

[48, p. 48], Uy(t, s) is continuous in the uniform operatorial topology.

(Us) If t,t+6€1,d>0,then lims_,oly(t +4,t) = 1, uniformly in » and ¢.

Remarks. If operator A does not depend on w, but it depends on ¢, then the as-

sumption (A) reads as follows: {A(t) |t € I} generates a unique strongly continuous

evolution system U(t,s), 0 < s <t < T. In this case we take c; = 0 (in (ii) from
(U1)). The dependence that is used in (U;) (ii) was inspired by [48, p. 202], [32,

lemma 2.2].

In connection with the multifunction F we will use the following assumptions:

(F1)
(F2)
(F3)

(F)

F:IxX — C(X) and for any z € X, F(-,z) is measurable;
F:IxX — CCo(X) and for any ¢ € X, F(-,z) is measurable;
F satisfies (F,) and for any t € I, F(t,-) : X = C(X) is lower semi-
continuous from X in C(X) and it is upper semicontinuous from X in
C(w—X), where w—X is X endowed with the weak topology;
F satisfies (F}), it is product-measurable and for all t € I, F(t,-) : X —
C(X) is upper semicontinuous;
F satisfies (F1) and, moreover, it is k(f)-Lipschitz, i.e. exists k €
LY(I,Ry) such that for almost all ¢ € I and for all z, y € X,
D(F(t,z), F(t,y)) < k(t)l|z—y||, D being the Hausdorff-Pompeiu metric;
F is integrably bounded by a function m € £!(I, Ry), that is, for all
¢ € C(I,X) and t € I we have F(t,z(t)) C m(t)B, B is the closed unit
ball in X;
the function ¢ — d(0, F(¢,0)) is integrable on I.
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By an inclusion of evolution we mean an inclusion of the following form

©0) € A ew)et) + F.al), ae tel

Remark. The evolution inclusions have been investigated in a series of works: [48],
[47], [50], [2], [44], [45], [1], etc. A different approach of evolution inclusions is used
in [5], [28] Their approach is based on the Galerkin approximations (e.g. [15], [33]).

2. Existence of solutions

We need the next assumption (M;) If A depends on w, then for any t € I,
M,(t) is relatively compact in X, where b = (||zo|| + ||m]|1)c1,

My = {z € C(1, X) | 2(0) = 2o, ||2l| < b}, Ms(t) = {y(?) | ¥ € ¥(2),z € Ms},

$e) = 11 90) = U, 00 + [ U, )1(6)ds, 2(0) = 70, f € 83,).

Based on fixed point techniques we have proved the following two existence

theorems

Theorem 3 ([40]). If there are satisfied the following assumptions (X3 ), (A), (U1),
(F2), (Fs—6) and if 0 < c3 < 1, (ca = c2T(||zo]| +||Im|l1) + c1]||k|l1) , then there exists
a mild solution of the problem (CP) in M.

Theorem 4 ([40]). Suppose there are satisfied the following assumptions

(l) (X'Z): (A)! (Ul)r (Us), (F2)r (FS—G);
(i) (M) or (U2);
(lll) (Fs) or (F4)

Then there ezists a mild solution in M, of the (CP) problem.

Theorem 3 uses a multivalued version of the Banach fixed point principle,
while theorem 4 is based on the Bohnenblust-Karlin fixed point theorem, [16], [49].
More refined existence results may be obtained by the method developed in [19], [20].
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3. Filippov-Gronwall theorems

By a Filippov-Gronwall theorem we understand a result which from the ex-
istence of a function or a solution of a differential equation ensures the existence of a
solution of an other differential equation or inclusion provided a ”closeness” condition
is satisfied.

First results on this topic have been published by Filippov in [19], [20]. Later
there were published more and more papers in connection with Filippov’s results, let
us mention just a few of them: [25], [29], [42], [26], [3], [16] and [59]. In the case
of linear evolution inclusions such a problem has been investigated in [22] and [55].
Tolstonogov, in [55], studied also the case when A is an m-dissipative operator.

In the sequel we consider a new Cauchy problem

d"’i—(tt) = A(t, y(t)y(t) +9(t), g€ LI, X), ae.te], andy(0)=w. (5)

(S1) Suppose that problem (5) has a mild solution y(t) = Uy(t,0)yo +
fotuy(t,s)y(s) ds,tel.

It is shown that if the initial values and the nonlinear parts to (CP) and
(5) are sufficiently close and (Si) it holds, then problem (CP) has a mild solution

whose distance to y does not exceed a certain value.

We consider problems (CP) and (5) under the assumptions (X1 ), (A4), (F5)
and (Fg). Denote § = ||lzo — yoll, p = ca(lzol| + ||m]l1), ke(t) = k(t) +€, € > 0,
K(t) = fot[p + ke(s)]ds, E(t) = exp(K(t)), t € I. Moreover, we admit assumption
(S1) and let «(t) = d(g(t), F(t,y(t)), t € I. Based [40, lemma 2.15] we have that
v € L' and then consider n(t) = [0+ f3(v(s) +¢€)ds], te 1.

Theorem 5 ([38]). Suppose that the following assumptions are fulfilled: (X;), (A),
(U1), (Fs), (Fs), (F7) and (S1). Then problem (CP) has a mild solution = €
C(I, X) such that

ll2(t) - y()Il < n@®E() = e [6E(t>+E(t) [ (v(s)+e)ds], tel,  (6)
17) = 9l < 7() + &+ n(Oke(DEQ) ae. L€ 1. (7)
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The method of the proof (as in [19], [20], [22], [55]) consists in constructing
two convergent sequences (zn)n>1 C C(I, X) and (fn)a>1 C £1(I, X) such that z,
the limit of (2,)n>1 in the uniform topology from C([, X), is the mild solution of the
problem (CP) and it satisfies (6). f, the limit of the sequence (fn)n>1 in L1(, X),

satisfies (7) and appears in the formula of «.

Remark. 1f problem (CP) is linear, we get a result from [22]. Obviously, in this case

the assumption ( Fg) is useless and ¢; = 0 implies that p = 0.

Theorem 6 ([38]). Suppose there are satisfied all the assumptions of theorem 5.
Then problem (CP) has a mild solution x € C(I,X) such that

) = Ol < o1 [5EC) + [ Ebr(s) +e)ds], ve ®)
() —g@®)|| < v(t) + €+ ke(t)er [JE(t) +/0 %%('y(s) +¢) ds] , ae tel

Remark. It is obvious now, comparing (6) and (8), that the estimations in theorem 6

are better than the estimations in theorem 5.

Theorem 7 ([38]). Suppose there are satisfied all the assumptions of the theorem 6
with the only change that instead of the function n we consider Ti(t) = ¢; [6 + f(: 2v(s) ds],
K is replaced by K (t) = f; [p + 2c1k(s)] ds, and E is replaced by E(t) = exp(K (t)),
t € I. Then problem (CP) has a mild solution z € C(I,X) such that
— PE(t
ll(t) - y(t)]| < ex [JE(t) + / EIOPwE ds] , onl
o E(s)
"E()
E(s)

Remark. In [55] it is considered only the case of linear inclusions. This fact implies

£ — 9@l < 2v(t) + 2k(t)ex [aﬁ(t) + /0 2v(s) ds] , ae tel

that the evolution system U depends only on t. Thus condition (ii) in (U} ) is useless
and we may take c; = 0 (hence p = 0). The assumption (ii) in (Uy) gives us the
dependence way of the evolution system I, in respect to the function u € C(/, X).
This kind of dependence may be met in the so called ”hyperbolic” case, [48], [41, p

272]. Theorem 7 contains, for the case of linear inclusion, theorem 3.2 in [55].
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4. Continuous dependence results

It is useful to know the manner of dependence of the set of solutions of an
initial value problem upon the initial value, a parameter or the right hand side of an
equation or inclusion. The continuous dependence results are widely used in numerical
methods, too. For ODE dependence results may be found in many books, for instance
[23].

Recent dependence results on differential inclusions may be found in: [43],
[51], [59], [55], [13] and [14].

The uniqueness of the mild solution of the Cauchy problem for quasi-linear

equations follows from

Theorem 8 ([40}). Let f,g € LY(I,X), x = ||f — g|l» and § = ||zo — yol|| such that
there are satisfied all the assumptions of theorem § taking f instead of F. Denote
by ¢ and y two mald solutions of the quasi-linear equations corresponding to f, zq,

respectively g, yo. Then the following estimation holds
llz(t) = y(O)ll < e1(x + 6) exp [ca(min{]|zol], ||yoll} + min{||fll1, gl )], tel.
Corollary 1 ([40]). If the assumptions of the above theorem are satisfied, then
e = vllca,x) < ex(8 + x) exp ez (min{||zol|, [lyol[} + min{]|F|1, 191l })T]

Corollary 2 ([40]). If the assumptions of the above theorem are satisfied and if 6 =

x =0, then x =y, hence the mild solution of problem (5) is unique.

Remark. If in problem (5) the operator A is linear, then the uniqueness problem is

discussed, for instance, in [48, p. 106].

Let us denote by S(zo) the set of mild solutions of (CP). For problem (CP)

there holds a Lipschitz dependence upon the initial values:

Theorem 9 ([38]). Suppose there are satisfied all the assumptions of theorem 7 and,

moreover, that (5) is a differential inclusion having F instead of g. Then

D(8(20), S(y0)) < Lllzo — yoll,
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where L =, E(T).

Corollary 3 ([38]). Ifin the inclusion (CP) A does not depend on w, then we obtain
theorem 4.1 in [55].

Corollary 4 ([38]). If in the above mentioned theorem we consider A =0, then we

get corollary 1, [3, p. 121], and if we suppose, moreover, that F is single-valued, then
we obtain estimation (4), in 3, p. 119].

Remark. Under the assumptions of the above mentioned theorem the set-valued map
zg — S(zo) is globally Lipschitz. This set-valued map is studied under various

assumptions, for instance, in [55] and [59].
Now we are interested in dependence of the set of solutions upon a parameter.

Definition. Suppose that assumptions (X;) and (A) are satisfied. Then a function
z(-,€) : I x X = X is said to be a mild solution of the problem (CP) with a = ¢ if
there exists f(-,£€) € £1(I, X) such that

f(t,€) € F(t,z(t,£)), a.e.onl,

t
z(t,€) = Uz(.£)(t, 0)¢ +/0 Us(.e)(t,5)f(s,€)ds, foreachtel.

We need the following hypothesis (which is (S; ) with ¢ = 0):
(S1). The next problem
de(t
-% = A(t,z(t))z(t), ae. tel, andz(0)=¢,
has a mild solution, let it be o(t,£) = Uzy(.¢)(t,0)€, for all t € 1.
Theorem 10 ([38]). Suppose the following assumptions are satisfied: (X1), (4),
(U1), (Fs), (Fe), (F7) and (S}). Denote by S(€) the set of solutions of the problem

(CP), the initial value being equal to €, (a = £). Then there ezists a function z(-, -) :
I x X — X such that

z(-,€) € S(€) foreach € € X,
& = z(-,€) is continuous from X in C(I, X).

38




QUASI-LINEAR DIFFERENTIAL INCLUSIONS

Partially, the method is the same to the method used in the proof of the
theorem 6. Here we do not search integrable selections, but based on theorem 3.1 in

[24] and proposition 2.2 in [14] at each iteration we choose a continuous selection.

Remark. If the differential inclusion in (CP) is linear, then we recover a result from
[51] or theorem 3.3 in [52]. If the differential inclusion in (CP) is semi-linear, then

¢ = 0 and the assumption (Fg) are unnecessary.

5. Connectedness of the set of solutions

The connectedness and the arcwise connectedness of the set of solutions is a
topic discussed in several papers such as [51], [52], [63], [54] and [56].

In [56] it is studied problem (CP) with A depending on ¢ only and it is
shown that if A is an m-dissipative operator or if it is linear and the infinitesimal
generator of a strongly continuous semi-group, then the set of solutfons of problem
(CP) is connected. The method introduced in [56] may be used also to the case of a

quasi-linear inclusion. More exactly we have the following result

Theorem 11. We suppose that the assumptions (X1 ), (A), (U1), (Fs), (Fs), (Fz)
and (51 ) are fulfilled and consider problem (CP). Then S(zo) is closed and connected.

Proof. In addition to the Lebesgue measure on I we consider the measure defined
by dp = exp (——2c1c20 fot k(s) ds) dt, where cy0 = exp(p), p = ca(||zo]l + lIml|1)-
The two measures are equivalent, [7, p. 157]. Also consider the space £y(I,u,X) of
(classes of) Bochner integrable functions in respect to the measure g and to the norm
Il = ST IIF(@®)]Idp(t). Let j be the identity map j : L1(I,X) — LI, u, X).
We see that the norms || - || and || -||i« are equivalent. Thus j establishes an
homeomorphism between the spaces £}(I,X) and L!(I,p, X).

For z € C(I, X) from lemma 2.2 in [38] we have that t — F(t,2(t)) is mea-
surable, and by the assumptions we have that it has closed values and it is integrably
bounded. It follows that Sk # @, and by [24, theorem 3.2], it results that Sk is
a bounded set in £,(/,X). By theorem [24, theorem 3.1] we know that S} is a
decomposable set. Hence S, € D and S, is a bounded set in £4(1, X).
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Take f € £1(I,X). Based on theorem 8 the equation (5) with g = f has a
unique mild solution on I. We define the map d : £4(I, X) — C(I, X) such that to
a member f € £;(I, X) corresponds the mild solution of the above mentioned quasi-
linear equations, namely d(f) = = iff z(t) = U,(t,0)z0 + f; Us(t,s)f(s)ds, t € I.
From the corollary 1 it follows that d is a Lipschitz map, so it is continuous. But d
is also one to one.

Let us take the following set-valued map @ : £4(I, X) = C(L1(Z, X)) defined
by &(f) = F( d(s)) - It follows that &(f) € D and &(f) is bounded in £y(I, X), for
each f € Li(1,X).

There holds the equality S(zo) = {d(f) | f € &(f)}. If z € S(xo) there exists
f € Sk, such that z(t) = u,,(t,O)xo+f0tuz(t,s)f(s) ds,t € I. Then z = d(f). Hence
fe S;‘(~,d(f)) , thatis f € &(f). Vice versa, we suppose that z = d(f) with f € &(f).
Then z(t) = Us(t,0)z0 + J; Us(t,8)f(s)ds, t € I and f € Sk(.a()) = Sk, - Thus
z € S(zo).

We define the multifunction & : £1(I, u, X) = P(LY(I, p, X)) by & = jbj~!.
Obviously, (f) € D, &(f) is bounded for each f € L1(/, ;z,.X), and the sets of fixed
points of the two multifunctions & and & are equal.

We intend to show that the set of the fixed points of the multifunction @ is
an absolute retract, [9, p. 85]. Since the map j is an homeomorphism, the set of the
fixed points of the multifunction @ is an absolute retract, [9, p. 86). Its image by
d still remains an absolute retract and coincides with S(zo). Hence S(zo) being a

retract, it is connected, [27, p. 27], and closed.

Take f,h € £L1(1,X), 2 =d(f), y=d(h) and a3 = fo exp[ —2¢1¢90 fot k(s) ds] dt

For each v € Sk and € > 0 we choose u € S, such that |[v(t) — u(t)|| <
d(v(t), F(t,y(t)) +eai’ < D(F(t,z(t)), F(t,y(2)) +ea; ' < k(t)llz(t)—y(O)l|l+ea7 ™.
Then

t
||u—v||1*=/ exp[ 201020/ ( s)ds] l[u(t) - v(0)|| dt
0 0
t
5/ exp[ 2c1020/ k(s ] Mz () — y(t)|| dt + eaa™?,
0 0
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and by theorem 8 we have

< /OTexp [—261020 / ()ds] (t)eseao / 17(s) — h(s)||ds dt + ¢

g-%/oT [exp (—261czo/ k(s) )] / 1£(s) = h(s)|| dsdt + &

T

1
=—= 2cic k(s)d ds
2exp[ 6120/ (5 s]/“fs) s)|l 0

o " exp [2esess [ k8] 10 - @t 4

< L= hlh e

[V

Since ¢ is arbitrary it follows that d(v,®(h)) < i||f — hll1. and d(&(f), (k) <

3)|f = h|l1s. If we change f by h and vice versa, then we have

D(&(£), &() < 3If — il

Based on [10, theorem 1], the set of the fixed points of the multifunction @ is an
absolute retract. Then the set of the fixed points of the multifunction @ is an absolute

retract. Then S(zo) is an absolute retract, too. Thus the theorem is proved. ]

6. Relaxation result

The relazation theorems (also called Filippov-Wazewski theorems and ap-
peared in [19], [58]) concern with the case when the set of solutions of a differential
inclusion (whose right-hand side is not convex) is dense in the set of solutions of a dif-
ferential inclusion whose right-hand side is, usually, the convex hull of the right-hand
side of the first inclusion.

Such theorem may be considered as an existence one for the first inclusion
since if it is proved that the convexified inclusion has a solution and the set of solutions
of the first inclusion is dense in the set of solutions of the convexified inclusion, then
the first inclusion has a solution, too.

The importance of the relaxation theorems in the qualitative theory of the
differential inclusions and control theory is emphasized in [3, pp. 123-124]. Recent
results on this topic may be found, e.g. in [22], [59], [55] and [30].
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Let us consider two Cauchy problems, namely (CP) and the relaxed one
dz(t) _
—5 € A(t, z(t))z(t) + cOF (t,z(t)), ae. t€l, andz(0)=a. (CP.)

Theorem 12 ([39]). Suppose there are satisfied the following assumptions: (X)),
(A), (U1), (Fs), (Fs), (F7) and (S1). Then

Ss1,.(a) = S5y (a).

Remarks. (a) Theorem 12 is a generalization of the theorems 2.1 and 2.5 in {22]. The
generalization concerns the fact that we get the similar results for the corresponding
quasi-linear case as well as the fact that in theorem 2.5 in [22] it is supposed the
integrable function in the assumption (Fs) is equal to the function k in ( Fs), which
is not necessary. This last observation was remarked also in [55].

(b) In [55, theorem 3 6] it is proved (for the case of the linear inclusions and under the

supplementary assumption that F' has weak compact values) the following equality
Ssy..(a) = Ssy (a).
7. Periodic solutions

The last part of this paper exhibits two theorems on a boundary value problem
and as a particular case it results sufficient conditions for the existence of a periodic

solution.

Consider the following boundary value problem for quasi-linear inclusion
dz(t)
5 € A(t,z(t))z(t) + F(t,z(t)), ae.t€l and Lz=0, (BP)
where L is a linear and continuous operator from C(I,X) in X.

In order to get ‘existence results we reduce the boundary value problem to
a fixed point problem. This reduction may be performed by the general method
presented in [35], [36].

We need some assumptions

(L) L is a continuous bounded linear operator from the Banach space C(I, X)

onto X . Let’s take D = ker L. Hence D € CCo(C(7, X)).
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(Ly) For every v € D we consider the linear mapping L;, : AC(I,X) —
L*(I,X) and it is the same with L; in [36, p. 18], if A does not depend
on w. Otherwise, Lj, is the linear and onto mappingdefined by Liyz(-) =
= AC, ().

(Sy) For each v € D S, is the unique pseudo-inverse of the restriction of L to
ker L;, and it is denoted by S if A does not depend on w. Since we have
a set of mappings S, it is naturally to impose a condition dependence
on v. Hence we suppose there are ¢ and ¢ € Ry such that ||S,]| < ¢,
1Se = Sull < gllu —vll, u,v € D.

(P) For each v € D we define the linear and continuous projector Pi,
on C(I,X) by Pi,(z) = Uy(-,0)z(0). For each v € D let Psy be

"the linear and continuous projector from ker Ly, to ker L;, defined by
P3,(Uy (-,0)xc) = Uy(-,0)z¢,, 2. and z., being two fixed elements in X
such that Im P3, = ker(Lly.,z,.)-

(C) Suppose that the following compatibility condition is satisfied Vv € D,
(1x —LauSu)(L [y Us(t,5)f(s)ds) = 0, t € I, f € Sk, where Lz, =
Ller 1y, -

Under the assumptions (X), (A), (F1) by a mild solution of the boundary

value problem (BP) we mean a function z € C(I, X) which satisfies
z(t) = U (t,0)z(0) /Uzts )f(s)ds, Lz =0, tel, feSk,.

Remark. From [36] it follows that the set of mild solutions of problem (BP) is con-
tained in the set of the fixed points of the mapping ¥ : D — P(D), ¢¥(v) = Cy(v)
defined by Cy(z) = {y € D | y(t) = Psu(Prs(2)) — SoL f; Us(t,5)f(s)ds +
fo (t,s)f(s)ds, t € I, f € Sp_}. Taking into account [35] it follows that we

may suppose the first term in the formula of y as zero, that is Ps,(Py,(z)) = 0, for

each z € D.

The t-section of ¢(D) is C(t) = {y(t) | y € Cy(v), v € D}. Similarly to

(M;) we need the assumption
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(M3) If A depends on w, suppose that for each t € I, C(t) is relatively compact in
X.

For an arbitrary positive u let us denote cs = (c||L||+1) [c1||kull1 + c2T||m||1]+
ger||Li[ llml]s -

Theorem 13 ([37]). If there are satisfied (X2), (A), (U1), (F2), (Fs), (Fe), (F3)
or (Fa), (L), (L1), (S), (P), (C) and, moreover, 0 < c3 < 1, then there exists a
mild solution of problem (BP) in D.

Theorem 14 ([37]). Suppose that there are satisfied the following assumptions

(i) (X2)r (A)’ (FZ)’ (F5—6)a (Ul)) (U3)» (L)) (Ll)) (Su)) (P)) (C):
(i) (Mz) or (Uz);
(lll) (Fa) or (F4),

then there erists a mild solution of problem (BP) in D.

Remarks. (a) If operator A in (BP) does not depend on w, then in [46] it is proved

a stronger result.

(b) If in (BP) we take Lz = z(0) — =(T), then, based on theorems 13 and

14, we get sufficient conditions for existence of periodic solutions.
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ON A CLASS OF VOLTERRA INTEGRAL EQUATIONS WITH
DEVIATING ARGUMENT

VIORICA MURESAN

Abstract. Existence and data dependence results for some Volterra inte-

gral equations with linear deviating of the argument are given.

1. Introduction

Differential-functional equations with linear deviating of the argument have
been studied in many papers ([1]-[10], [18], [19],...).

In [9], by using the Picard operators’ technique and a suitable Bielecki norm,
we have given existence and uniqueness theorems for some Volterra integral equations
which contain a linear deviating of the argument.

In this paper we study the existence and the data dependence for the solutions

of the following Volterra integral equation with linear deviating of the argument:
¢
z(t) = (0) +/ f(s,z(As))ds, t€[0,b], 0<A<L
0

We use the weakly Picard operators’ technique, a fixed point theorem given

by Rus in [12] and some data dependence results given by Rus and Muregan in [17].

2. A fixed point theorem

Let (X, d) be a metric space and A : X — X an operator. We denote by Fy4
the fixed point set of A, that is
Fyq:={z € X| A(z) = z}.

1991 Mathematics Subject Classification: 34KXX, 47H10.
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We have:

Theorem 2.1. (Rus [12]) Let (X, d) be a complete metric space and A: X — X o
continuous operator. We suppose that there erists o € [0, 1] such that

d(A%(z), A(z)) < ad(z,A(z)), forallz € X.

Then:
a) Fa #0;
b) A™(z) = z*(z) as n — oo, for allz € X, and z*(z) € F4.

3. Volterra integral equations with deviating

argument

We consider the following Volterra integral equation with deviating argument:

z(t) = z(0) + /: f(s,z(Xs))ds, te[0,b], 0<A<], (3.7)

where f € C([0,b] x R).
~ We have
Theorem 3.1. We suppose that there exists L > 0 such that

[f(s,u) — f(s,v)] < Llu—v|, forall s €[0,b] and all u,v € R.
Then the equation (3.1) has solutions in C[0, ).
Proof. Let (C[0,b],||-||s) be, where
llzllz = max (lz(@)le™™), 7> 0.

tel0,b]

We consider the operator
A (C[0,8], I - ll8) = (C[0, 8], I - ll8)
defined by
A(z)(t) :=z(0) + /Ozf(s,:c(/\s))ds, te0,b, 0<A<1, (3.2)

which is a continuous operator.
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This operator is not a contraction.
We have

A% (C[O,b]’ ” : ”B) - (C[O’b]v ” . ”B)’

t As
A?(z)(t) == z(0) +/ f (s,z(O) + f(u,x(Au))du) ds.
0 0

It follows that

As

M%wm—A@WNSLA £ (1 2(r))ds

z(0) — z(As) +

ds.
By denoting As = v, we obtain

. L At
@0 - A0 < § [

dv =

2(0) — 2(v) + /0 " Flu, z(0w))du
L

At
3 /0 |A(z)(v) — z(v)|e”™e™dv <

L , L ,
< 1A = 2lla(e™ —1) < =||A(2) - 2llze™.
Therefore,

|4%(2)(8) — A()(t)]e=" < irnA(z) — a||p, for all t € [0, 8].

So, we have that
|A%(z) — A(z)||s < —L;”A(z) — z||B, for all z € C[0, b].

L
We can choose 7 so that v <1. Let T= Y + 1 be.
We denote

A
Thus

|A™+ (2) — A ()| < @™||A(2) — zllB
and

|AMtP (z) — A™(z)||B < —%—QHA(LC) —z||p, forallne Nandallpe N, p> 2.
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So (A™(z))nen- is a Cauchy sequence, for all z € C[0, b]. Because (C[0, ], d),
where d(z,y) = ||z — y||B, is a complete metric space, we have that (A" (z))nen. isa
convergent sequence, for all z € C|0, b].

We denote A®(z) = nango A™(z). From A"t!(z) = A(A™(z)) and the conti-
nuity of the operator A we have that A®(z) € Fy, that is F4 # 0.

So, the equation (3.1) has solutions in C[0, b]. a

4. An example of weakly Picard operator

We have
Definition 4.1. (Rus [16]) Let (X, d) be a metric space. An operator A : X — X
is a weakly Picard operator if the sequence (A™(z))nene converges for all z € X and
its limit, denoted by A*(z), is a fixed point of A.

For more details about the Picard operators and the weakly Picard operators
see [13]-[16].

Let (C[0,8], || - l|c) be, where ||z||c = tm[g)g] |z(t)].
e )
We consider the following operator:

A= (C[0,8], |- lle) = (C[0,8], 1 - llc),
defined by
A(z)(t) := z(0) +/0‘ f(s,x(As))ds, tef0,b], 0< A1, (4.1)

where f is as in the Theorem 3.1.

We have
Theorem 4.1. The operator A defined by (4.1) is a weakly Picard operator.

Proof. We consider (C[0, ], || -||8), where
= -('L“H)t
lells = max (la(@)le(5+1).
From the proof of the Theorem 3.1 we have that the operator
A (C[0,8, 1] - 1IB) — (C[0, ], || - |B),

A(z)(t) == =z(0) + /Ot f(s,z(As))ds, te€[0,b], 0<A<,
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is a weakly Picard operator.
But || - ||c on C[0, b] is metric equivalent with ||- || on C[0, b]. Therefore, the
operator A defined by (4.1) is a weakly Picard operator. O

Remark 4.1. The operator
A: (C[Owb]) ” : "C) - (C[O)b]r“ : ”C),

defined by ,
A(z)() := /0 f(s,z(Xs))ds, t€[0,b],0<A<]1,

is a Picard operator (F4 has a unique fixed point).

So the integral equation
z(t) = /: f(s,z(As))ds, te€[0,b],0<A<1,
has a unique solution in C[0, b] (Theorem 3.1.1, [9]).
5. Data dependence of the solutions set
Let (X, d) be a metric space. We use the following notations:
P(X)={Y CX|Y #0},

Py oi(X) = {Y € P(X)| Y is bounded and closed}

and
04(z) = {z, A(z), A%(z), ..., A™(z),...} (the orbit of z € X).
Then we have
3(Y) = sup{d(a,d)| a,b € Y}, the diameter of Y € P(X)
and

H: Pb'c[(X) X Pbycz(X) - R+,
H(Y,Z) = inf d(a,d), inf d(a,b) |,
,2) = s s o ). g nf )
the Hausdorff-Pompeiu distance on Py o1(X) set.
Let A,B : (X,d) = (X,d) two operators for which there exists n > 0 such
that d(A(z), B(z)) < n, for all z € X. The data dependence problem of the solutions
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set is to estimate the ”distance” between the two fixed point sets F4 and Fp of these
operators.

In order to study the data dependence of the solutions set of the equation
(3.1), we need the following result:
Theorem 5.1. (Th.2.4, [17]) Let (X, d) be a complete metric space and A,B : X — X
two orbitally continuous operators. We suppose that:

(i) there ezists a € [0,1] such that d(A%(z), A(z)) < ad(z, A(z)), for dll

zeX
and
d(B%(z), B(z)) < ad(z, B(z)), forallz € X;
(i) there exists n > 0 such that d(A(z),B(z)) <1, forallz € X.
Then
n
H(Fa,FB) < T—a
Now we consider the following Volterra integral equations with deviating
argument:
¢
2(0) =2(0) + [ flo,2(0))ds, t€[0,8], 0< A<, (5.)
0
t
z(t) = z(0) +/ g(s,z(As))ds, te[0,b],0< <1, (5.2)
0

in which X is the same and f,g € C([0,3] x R).
We have

Theorem 5.2. We suppose that
(i) there exists L > 0 such that

|f(s,u) — f(s,v)| < Llu—v|, forall s € [0,b] and all u,v € R,
and
lg(s,u) — g(s,v)| < Llu—v|, for all s €[0,b] and all u,v € R;

(i1) there exists 1 > 0 such that

|7(s,u) — g(s,u)| < n1, for all s € [0,b] and all u € R;
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(iii) Lb < 1.
Then
(a) FA # 0 and Fg # 0;
(b) H o (Fa, FB) < mb where by H)j.|| we denote the Hausdorff-Pompeiu

1-Ld’
metric with respect to || - ||c on C[0,b].

Proof. (a) By using the results of the Theorem 3.1 we have that F4 # 0 and Fg # 0.
(b) We consider the operators

A, B :(C[0,8],]- lle) — (C[0, 8], I - lle),
defined by

A(z)(t) .= z(0) + /: f(s,z(Xs))ds, te[0,b], 0<A<],

t
B(z)(t) = 2(0) + / o(s,2(As))ds, te 0,8, 0<A<1,
0
in which X is the same.
Then

At
@)1 - ADOI< 5 [ 140 - =)l <

< Lb||A(z) — z||c, for all t € [0,5].
Therefore,
|lA%(z) — A(z)|lc < Lb||A(z) — z]|c, for all z € CJ0,b].
Similarly,
||B*(z) — B(z)||c < Lb||B(z) — z||c, for all z € C[0,3)].
From (ii) we obtain that
l|A(z) — B(z)||c < mb, for all z € C[0,b].

By applying the Theorem 5.1 we have that

b
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ON HARDY-OPIAL TYPE INTEGRAL INEQUALITIES

B.G. PACHPATTE

Abstract. The aim of the present paper is to establish some new integral
inequalities of the Hardy-Opial type involving functions and their deriva-
tives. The analysis used in the proofs is elementary and our results provide

new estimates on these types of inequalities.

1. Introduction

This paper is concerned with the integral inequalities of the following type
b b
/ slulPdz < / r|u'|Pdz, §))
a a

b

b
/ slulPluldz < / rlu'PHide, ()

a

where s and r will usually positive continuous functions on the open interval (a, b), p is
asuitable constant, and the inequalities will hold for u € C*(a, b) which satisfy certain
other conditions. The inequalities of the forms (1) and (2) are called Hardy and Opial
type inequalities, see [3, p.706]. A great many papers have been written dealing with
integral inequalities of the type (1) and (2), probably so by the challenge of research
in various branches of mathematics, where such inequalities are often the basis for
proving various theorems or approximating various functions. Excellent surveys of
the work on such inequalities together with many references are contained in the
books by Beckenbach and Bellman [2], Hardy, Littlewood and Polya [5], Mitrinovic
(6] and the papers by Beesack [3], Shum [12] and the present author [9-11]. In this
paper we establish a number of new integral inequalities involving functions and their
derivatives which claim their origin to the Hardy and Opial type inequalities given in

1991 Mathematics Subject Classification: 26D15, 26D20.
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(1) and (2). Our proofs are elementary and the inequalities developed here provide

new estimates on these types of inequalities.

2. Statement of results

In this section we state our main results to be proved in this paper. In what
follows, we denote by R, the set of real numbers and let J = [a,b], @ < b for a,b €R.

Our first theorem deals with the inequalities in which the constants appearing
do not depend on the size of the domain of definition of the function.
Theorem 1. Let u be a real-valued continuously differentiable function defined on J
such that u(a) = u(b) = 0.

(a1) If a,p,q be nonnegative real numbers such that ¢ > 1 and A = (p+
q)/(a +1), then

b b
[ tetuptear < a0 [Pl @, ®

b b
/ [¢1*|u(t)PHadt SA”“"q/ |t]otPHe|y’ (2)|PHadt. (@)
a a
(a2) If a,p,q,r be nonnegative real numbers such that ¢+ e > 1 and B =
(p+qg+r)/(a+1), then

b b
f, P O de < B [ et Pl @) d, 6

b b
/ |t]*+ " Ju(e) P9 (2)["de < BPH / [t[eFPHE ! (£) P dt. (6)
a a

Remark 1. It is interesting to note that the inequalities obtained in (3) and (6)
are similar to that of the Opial’s type inequality given in (2), see also [7-10]. The
inequality (3) yields the lower bound on the integral of the form arising on the left
side of (2). The inequality obtained in (4) is analogous to the Hardy’s type inequality
given in (1) and the inequality established in (5) is different from both the inequalities
in (1) and (2).
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In the following theorems we establish the inequalities in which the constants
appearing depend on the size of the domain of definition of the function.
Theorem 2. Let u be a real-valued continuously differentiable function defined on J
such that u(a) = u(b) = 0.

(b1) If p >0, g > 1 be real numbers and K = (p+ q)(b — a)/2, then

b b
/a lu(t)P+edt < K° / lu(t)[P | (1) odt, (1)

b b
[ oo < gt [ juprea, (®)
a a

(b2) If p,q,r be nonnegative real numbers such that ¢ +r > 1 and L =
(p+q+r)(b—a)/2, then

b b

J wopraird < o [ P ©)
b b

[ woptira < e [ (10)

Remark 2. We note that the inequalities obtained in (7) and (10) are similar to that of
the Opial’s type inequality given in (2) which in turn yields lower and upper bounds
on the integral of the form involved on the left side of (2). The inequality (8) is
analogous to the Hardy’s type inequality given in (1), while the inequality obtained
in (9) is different from those of the inequalities in (1) and (2).

Theorem 3. Let u be a real-valued twice continuously differentiable function defined
on J such that u(a) = u(b) = 0.

(c1) If po, p1,p2, p3 be nonnegative real numbers such that
ps>1, ps>p1, pi+p2+ps—(p3a—p1)/(pa—1) >0,

and

M = [(p1 + p2 + ps — 1)/(po + 1)["*[(po + p1 + p2 + p3)(b — a)/2]P>7P*,
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then
b b A
f lu(t)Pelu'(t)[Pr+P2+Podt < M/ lu(t) Po+P Ju' (2) P2 |u” (2) 1P dt, (11)
a a .
(c2) If po, p1, P2, P3, P2 be nonnegative real numbers such that
ps>1, pops—p1pa >0, p3+pa>p1+ (p1pa)/ps,
4
> i + (p1pa)/ps — [(ps + pa — (P1P4)/Pa))/(ps + pa — 1)] > 0,
=1
and _
4 pP3 4 (ps—p1)
N= [(Em + (p1p4)/p3 — 1) /(Po — (p1p4)/P3 + 1] X [(Z pi) (b- a)/2] ,
=1 =0
then

b b
/IU(t)I”°|u'(t)|p‘+”’+"’IU"(t)I"‘dtSN/ |u() PP | () P2 [u" () PoFPedt. (12)

Remark 3. It is easy to observe that the inequality obtained in (11) is analogous
to the Opial’s type inequality given in (2), which yields a new upper bound on the
integral of the form arising on the left side of (2). The inequality (12) is different

from those of the inequalities given in (1) and (2).

3. Proof of Theorem 1

(a1) By rewriting the integral on the left side of (3) and making use of the
integrati.on by parts, the fact that u(a) = u(b) = 0 and the Holder’s inequality with
indices ¢, ¢/(q — 1) we observe that

b b
[ tetuopteat = — [ L agnuodt = (13)

a a+1l
b b
= —A/ [t|o+ sgn tlu(t) [P+~ ! (t)sgn u(t)dt < A/ [t]oH ()P o' (2)|dt =
b :
=A/ (e[ >+ = =D afu(t) Pl ()] x [jg] @V 9u(t)pre=t-®/ D] <

1/q (¢-1)/q
SA[/b|t|°+qxu(t>1*’|u'(t>r1dt} x[/bntrlu(tn“w] .
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b

If / [t|*|u(t)|PT9dt = 0, then (3) is trivially true, otherwise dividing both
a

-1
sides of (13) by [/b Itl"lu(t)lp"'th] o and then taking the gth power on both
sides of the resultinag inequality we get the required inequality in (3).
Rewriting the integral on the right side of (3) and using the Holder’s inequality
with indices (p + q)/p, (p + 9)/q we observe that

b b
/ e () P edt < A9 / [jt] (P B+ () ] x [[e|=+o- (@2 @+ |/ (1) q)dt < (14)

b p/(p+q) b
<A [/ 1t|°|u(t)|ﬂ+4dt] x [ / ltl""”*"lu’(t)l””dt]
a a

Now by following the arguments as in the last part of the proof of inequality

q/(p+q)

(3) with suitable modifications, we get the required inequality in (4).
(a2) By rewriting the integral on the left side of (5) and using the Holder’s
nequality with indices (¢ + r)/r, (¢ + r)/q and the inequality (4), we observe that

b
/ 1 () P+ o 2 de = (15)

b
= / [it12 = O (e) PG (Jt] ol (2)])7] x [Jt] <P/ 0¥ uz) pra=ED/a+]at <

q/(g+r)

b r/(r+q) b
s[ / |t|“+q+’1u(t)xp|u'(t)|q+'dt] x [/ |t|°‘|u(t)|*’+q+’dt] <
a a

r/(g+r)

b
s[ / |t|“+q+'|u<t)|"|u'(t)|q+'dt] x

b a/(g+r)
go [ Itl"*"*'lu(t)I”Iu’(t)lq"'dtJ =

b
= B9 [ I )P ()1
This completes the proof of inequality (5).

Rewriting the integral on the right side of (5) and using the Holder’s inequality
vith indices (p + ¢)/p, (p + ¢)/q we observe that

b
/ [+ u(t) P ]u’ ()] dt < (16)
a
b
;Bq/ [[£](aFIP/ P+ gy (2) [P |u’ (2)| TP (PHa)  [[g|ctatr=(atr)(p/ (+a)) |o/ ()| 947 = (rP)/ (PHa) | gy <
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] p/(r+q) q/(p+q)

b b
< B? [ / 1% |u (@) P9 o’ ()" dt x [ / [e|oFPHadT ol () PHatT dt
a a

Now by following the arguments as in the last part of the proof of inequality

(3) with suitable modification, we get the required inequality in (6). The proof is

complete.

4. Proof of Theorem 2

(b1) From the hypothesis of Theorem 2 we have
b b
WH(O) = (p+) [ s = (p+a) [ W s (1)
a t
From (17) we observe that

b
WOP* < [0+ a)/2 [ lul)P*~tu (o). (19

Integrating both sides of (18) from a to b, and rewriting the right side of the
resulting inequality and then using the Holder’s inequality with indices ¢,¢/(g — 1)

we have

b b
[ wopta < & [Pt ol = (19)

b
=K / [lu(t) P/ (&) ()P o=~ @/t <

b Yar b
SK[ / Iu(t)l"lu'(t)l"dt] [/ |u(t)|"+th}

b
If / |u(t)|P*? = 0, then (7) is trivially true, otherwise dividing both sides of

b (¢-1)/q
(19) by [ / |u(t)|PFadt and then taking the gth power on both sides of the

(¢-1)/a

resulting inequality, we get the required inequality in (7).

By using the Holder’s inequality with indices (p+¢)/p, (p+¢)/q on the right
side of (7) and following the arguments as in the last part of the proof of inequality
(7) with suitable changes, we get the required inequality in (8).
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(b2) Rewriting the integral on the left side of (9) and using the Holder’s
inequality with indices (¢ + r)/r, (¢ + r)/q and the inequality (7), we observe that

[ moprora = [oE s e e s e

q/(g+7)
] <

b b

< [ TP W1 dte x [/ ju(e) P+ dt
e a

]r/(q+r)

] q/(g+r)

b b
< [ [a |u(t) P |’ (£)|7*" dt X [K‘”’ / |u(t) Plu’ ()7 dt

= K9 /b [u(®)|P |’ (¢)|91" dt.
This is the required inequal‘ilty in (9).
The details of the proof of inequality (10) are very close to that of the proof
of inequality (6) given above with suitable changes and hence we omit it here. The

proof is complete.

5. Proof of Theorem 3

(c1) Be rewriting the integral on the left side of (11) and making use of the
integration by parts, the fact that u(a) = u(b) = 0, the Holder’s inequality with

indices p3, ps/(ps — 1) and the inequality (9), we observe that

b
/ |u(t)|PoIu/(t)lP1+P2+Padt — (21)
a
1 b d +1 ' +pa+pa—1 /
i) E(IM(t)IP" sgnu(t)| x [[o/(t)PrHP4P " sgn o/ (t)] dt =
0 a
_ pr+p2t+p3—1 ® patl ' +patpa—1.,.1 ’ 2
= | [u(t)[Pet sgn u(t)|u' (¢)|Pr P24~ xu (t) (sgn o/ (t))°dt <
Po +1 a -
. -1 b
< (Miﬁi__) / u(t)[PorL o () [PrP+Po=2 |y (1) |dt =
po+1 a
—1 b
= (M) / [Ju(t)|@otp)/es |y (£)|P2/P3 |u ()] %
po + 1 a
x“u(t)lpo+l—(l’o+?1)/Pa'ul(t)IP\+P2+P3—2—(P2/P3)]dt <
1/
pr+p2+p3—1 b Pt " ”
< B [u(@)[Porrr o/ (8) [P |u” (2) [P dt X
0 a
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(ps—1)/ps
[

b
X [/ |u(t)'P0+(P3—P1)/(P3-—1) x Iul(t)lp1+p,+p3_(p3_p1)/(;,a_I)dt
a

—_ b 1/ps
S (pl + p2 + p3 1) / Iu(t)lPO'Hh |ul(t)|pglul/(t) Ipa dt %
Pot+1 a

: b (pa—1)/ps
X[(po + b1 + pa + po) (b — a) 2137 [ JACI |P*+P=+P=dt]
Now by following the arguments as in the last part of the proof of inequality
(7) with suitable changes, we get the required inequality in (11).
(c2) Rewriting the integral on the left side of (12) and using the Holder’s
inequality with indices (ps + ps4)/pa, (p3 + p4)/p3 and the inequality (11), we observe
that

[ el = (22)

b
= / []u(t) I(P0+P1)(P4/(P3+P4)) Iu’(t) I (paps)/ (Pa+ps) |u” (t) Ip,] y
a

x[lu(t)IPo—(Pu+P1)(P4/(P3+P4)) X Iul(t)|P1+P9+P3—(Papc)/(p3+p4)]dt <

pa/(pPs+p4)
] »

b
s [/ lu(@)[Por? [u! (2) P2 |u” (2) [P+P+ d.
a

p3/(ps+p4)
I

b
X [ / |u(t)|Po=Pr2)/Ps  |y! (1) |Pr+(Prpa)/po)+pa+(Patpa) gy
a

Pa/(Ps+p4)
] N

b
: U fu(€) Pt [ (P2 o (2) P+
a

pa/(ps+pa)

b
- [/ '““)IPW*tu'(tnm|u"<t>|m+f"‘”] )
a

=¥ [ P P P
This is the requiredainequality in (12). The proof is complete.
Remark 4. The multidimensional integral inequalities of the type (1) and (2) and
their variants are established by many authors in the literature by using different
techniques. In particular, in [4] Dubinskii has established the multidimensional in-
equalities analogues to the inequalities (7), (9), (11) and (12), see also [1], by using
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the divergence theorem, Young’s inequality and imbedding theorems. Here we note
that our proofs of Theorems 1-3 are quite elementary and the constants involved in

these inequalities provide precise information.
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STUDIA UNIV. “BABES-BOLYAI”", MATHEMATICA, Volume XLIV, Number 1, March 1999

ABOUT AN INTEGRAL OPERATOR PRESERVING THE
UNIVALENCE

VIRGIL PESCAR

Abstract. In this work an integral operator is studied and the author

determines conditions for the univalence of this integral operator.

1. Introduction

Let A be the class of the functions f which are analytic in the unit disc
U={z€C;|z| <1} and f(0) = f/(0) —1=0.

We denote by S the class of the function f € A which are univalent in U.

Many authors studied the problem of integral operators which preserve the

class S. In this sense an important result is due to J. Pfaltzgraff [4].

Theorem A ([4]). If f(z) is univalent in U, a a compler number and |a| < &, then

the function
Gae) = [ 1 (6" 2t M
s univalent in U.

Theorem B ([3]). If the function g € S and a is a complex number, |a| < L, then
the function defined by

Gon (2)= [ ' ()" du )
1s univalent in U for all positive integer n.

1991 Mathematics Subject Classification: 30C55.
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2. Preliminaries
For proving our main result we will need the following theorem and lemma.

Theorem C ([1]). If the function fis regular in the unit disc U, f(z) = z+a22%+. ..

and

2f"(2)
(1 - |z|2) 7(z)

for all z € U, then the function f is univalent in U.

<1 3)

Lema Schwarz ([2]). If the function g is regular in U, g(0) = 0 and [g(z)| < 1 for
all z € U, then the following inequalities hold

lg(H <Ml (4)

Jorall z € U, and |¢'(0)| < 1, the equalities (in inequality (4) for z # 0) hold only in

the case g(2) = ez, where || = 1.

3. Main result

Theorem 1. Let vy be a complez number and the function g € A, g(z) = z+az2%+. ...
If

') 1
Iy’(Z) =a ©
forall z€ U and
1
WM< —F (6)

n_\?_2_
n42 n+2

then the function

maa=[mwmwu ()

is univalent in U for alln € N* — {1}.

Proof. Let us consider the function

fm=[wwww- ®)
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The function

1)

vy Fi(2)’

where the constant v satisfies the inequality (6) is regular in U.
From (9) and (8) it follows that

i __7_ nz"_lg”(z")
H =g | 7 | (10)

h(z) = (9)

Using (10) and (5) we have

lh(z)] <1, (11)
for all z € U. From (10) we obtain A(0) = 0 and applying Schwarz-Lemma we have
1| f"(2)

mlFE| < 2"~ < el (12)
for all z € U, and hence, we obtain
z2f"(z
(1-1eP) [*FE < bl = 1)l (13)

Let us consider the function Q:[0,1] = R, Q(z) = (1 — z%) z"; = = |2],z € U, which
has a maximum at a point £ =, /-2, and hence

n

Q(:c)<< “ )3 2 (14)

n+2 n+2

for all € (0, 1). Using this result and (13) we have

2f"(z) $ 9
a-1:P|FE < hi(5) 5 (15)
From (15) and (6) we obtain
(-1 |2 < (16)

for all z € U. From (16) and (8) and Theorem C it follows that G ,, is in the class
S. a

Remark. For n = 2, we obtain |y| < 4 and the function G 3 is in the class S.
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STUDIA UNIV. “BABE§-BOLYAI”, MATHEMATICA, Volume XLIV, Number 1, March 1999

A GENERALIZATION OF BECKER’S UNIVALENCE CRITERION

IRINEL RADOMIR

Abstract. In the paper there is presented a sufficient univalence con-
ditions for functions of a complex variable f, verifying the conditions
f(0) =0, f'(0) = 1. Our condition is a generalization of Becker’s uni-

valence criterion.

1. Introduction
Let A be the class of functions f, which are analytic in the unit disk
U={z€C,|z| <1}, with f(0) =0 and f'(0) = 1.
Theorem 1.1. ([2]). Let f € A. Ifforall z €U
"
1— |22 zf"(2) <1 1
(-1 < (1)

then the function f is univalent in U.
In order to prove the main results we shall need the theory of Loewner chains.

2. Preliminaries

We denote by U, the disk of z—plane, U, = { z € C : |z|] < r }, where
r€ (0,1] and I = [0, 00).
Definition. A function L(z,t) : U x I = C is called a Loewner chain if
L(z,t) = e’z 4 as(t) 2% + ... l2] < 1,
is analytic and univalent in U for eacht € I and if L(z,s) < L(z,t), 0 < s <t < o0,
where by < we denote the relation of subordination.

1991 Mathematics Subject Classification: 30C55.
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Theorem 2.1. (3). Let r be a real number, r € (0,1]. Let L(z,t) = a1(t)z+az(t)z*+
.., a1(t) # 0 be analytic in U, for allt € I, locally absolutely continuous in I and
locally uniform with respect to U,. For almost allt € I suppose

OL(z,t) _ 0L(z,t)
5, = p(z,t)——é—t— forall z€ U, ,

where p(z,t) is analytic in U such that Re p(z,t) > 0 forz € U, t € I.

z

If |a1(t)] = oo for t — oo and {L(z,t)/a;(t)} forms a normal family in U,,
then L(z,t) has, for each t € I, an analytic and univalent extension to the whole disk

U.

3. Main results
Theorem 3.1. Let f(z) = z+ a2z2 + ... and g(z) = z + baz? + ... be analytic
functions inU. If forall z € U

() | e (2)
O I®

<1, and 2

2(S(2) ~9(2) )"
om R N

then the function g(z) + 2( f(z) — g(2) )’ is univalent in U.

Proof. We consider the function L : U x I — C defined from

-1

L(z,t) = (e'z) f'(e*2) - /Oe ’

Because the functions f and g are analytic in U it results that the function L(z,t) is

ug’ (u)du @)

analytic in U for all ¢ € I. From (4) we obtain
L(z,t) = 'z +ax(t)z? + ...

In order to prove that { L(z,t)/e’ } forms a normal family in U, it is sufficient to

observe that there exist positive numbers k;, ks such that

PO <k and | [ u@du] < ko,
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for all z € Uy, r € (0,1]. Therefore we have | L(z,t)/e! | < ki + ky for all z € U,
and t € I.
We consider the function p : U, x I — C defined by

OL(z,t) , 8L(z,t)
0z / ot ()

In order to prove that the function p(z,t) has an analytic extension with positive real

p(z,t) ==z

part in U, for all t € I it is sufficient to show that the function

p(z,t) —1
p(z,t)+1

can be continued analytically in U and that

w(z,t) = z€U,, (6)

lw(z,t)| <1 (V)zeU, t>0.

From (4), (5) and (6) we obtain

e f7(e7'2) s g"(e7'2)

Tl T e g
From (3) it results that f’(z) # 0 for all z € U and hence the function w(z,t) is
analytic in U for allt € I. We have

w(z,t) =e

2(f(z) —9(2) )"
w(z,0) =
( ) f/(z)
and from (3) it results that |w(z,0)] < 1 for all z € U. Also we have w(0,t) =0 < 1.

Ifz €U, z# 0andt > 0, we observe taht the function w(z, ) is analytic in U,because
le~*z| < e~t < 1for all z € U. Using the maximum principle, for all z € U and t > 0,

we have
|w(z,t) | < Iréll:)lclw(C,tN = |w(e',t)|, (8)
where @ = 6(t) is a real number. Let us denote u = e~*¢*’. Then |u| = et and from

(7) we obtain

_ ufll(u)
§'(u)
Since |u| < 1, from (2), (8) and (9) it results that |w(z,t)] < 1forall z € U, t > 0.

ug” (u)

g/
) ®)

w(e?, 1)

= luf®

It follows that L(z,t) is a Loewner chain and hence the function L(z,0) = g(z) + z -
(f(2) — g(2))’ is univalent in U.
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Remark. If g(z) = f(z) , from Theorem 3.1 we obtain Theorem 1.1.
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ON CERTAIN CLASSES OF GENERALIZED CONVEX FUNCTIONS
WITH APPLICATIONS, I.

J. SANDOR

Abstract. The aim of this series of papers is to introduce certain new
concepts of generalized convex functions with applications. The first part
contains results related to the n-invex functions first introduced by the
author in 1988. Here are studied also n-cvazi-invexity and generalized
n-pseudo-invexity with connections to well known classes of functions as
subadditive or Jensen-convex functions. The second part treats the so-
called A-convex functions, due to the author. Finally the part 111, on A-
invex functions, leads to a generalization of the Banach-Steinhaus theorem

of condenzation of singularities.

Invex functions

A. A differentiable function f : R® — R is called invex, if there exists a

vector function 7(z,u) € R" such that
7(z) = F(u) > (n(a, w)) Y (u). ()

This concept has been introduced by Hanson [1], who proved that, if in place
of the usual convexity conditions the functions involved in a nonlinear optimization
problem, all satisfy condition (1) for the same function 7, then there hold true weak
duality results, and that the sufficiency of the Kuhn-Tucker conditions are true. Han-
son’s paper was the source of inspiration for many later researches. Craven [3] has
introduced the name of ”invex” functions, and obtained duality theorems for frac-
tional programming. Mond and Hanson [2] have extended the concept of invexity

to polyhedral cones, Craven and Glover [5] proved that the class of invex functions

1991 Mathematics Subject Classification: 26A51.
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is equivalent with the class of functions having all stationary points as global mini-

mum points. Martin [7] has defined the Kuhn-Tucker invexity, while Jeyakumar [6]

introduced weak and strong invexity.

Ezamples. 1) Let f : R = R, f(z) = 3. This function is not invex, as the critical

point £ = 0 is not a global minimum point. But, as it is well known, f is cvazi-convex.
2) Let f : R2 5 R, f(z,y) = 23— 10y® + =z — y. It is easy to see that f is

invex, but it is not cvazi-convex.

In the same way, f is called cvazi-invex, if

fy) — f(2) <0 = (n(z,y))'Vf(z) <0 (2

and pseudo-invex, if

(n(z,9))'V£(z) 20 = f(y) - f(=) 2 0. )

Clearly, in example 1) f is cvazi-invex; and that by a theorem of Craven
and Glover [5] we have that there is no difference between the class of invex and

pseudo-invex functions.
Definition 1. Let S C R™, open, and f : S — R a differentiable function. If relation
(1) is valid for all z,u € S, we will say that f is invex related to n on S.

The following propositions give certain connextions between functions invex

related to 7 and other classes of functions.

Proposition 1. Let S C R” be open, convex and f invex related to 7 on S. Let us

assume that the following condition is true:

f(2) < fly) = (£-9)'Vf(y) Z (n(2,9)'Vf(y) forall z,y € S. (4)

Then f is pseudo-convex (strictly pseudo-convex).

Proof. Let z,y € S and f(z) < f(y). Then, in view of (1) we can write
(- y)'VF) =z —y) = (=, YI' V) + (n(z,9))' V() <

<(z—y—n@ ) V) + f(z) - fv) <[z~ y) - (=, v V) <0.
Ifz,y€ S and f(z) < f(y), then from

(- y)'Vi@) = (2 —y—n(z,v) Vi) + 0(=z,y) Vi) <
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<(z—y—n(@,v))' Vi) + f(z) - fy) < (= -y =a(z,y) V() <0,
so we have strict pseudo-convexity if there is strict inequality in (4).
Proposition 2. Let f be invex related to 1) on the open, conver set S. If the impli-

cation

(z-9)'Vi) >0 = (n(z,))'VI(y) > (- v)'Vi@) (z,y€S) (5)

is true, then f is cvazi-conver (and thus, cvazi-invez, too).

Proof. We can write successively
f(=) = f(¥) > (n(z,9))'VF(y) = (n(z,y) = (= = ) V) + (z — y)' VF(y) >

> (n(z,y) - (= — y))'Vf(y) > 0,

thus (z — y)!Vf(y) >0 = f(z) = f(y) > 0, implying the cvazi-convexity of f, in
case of differentiable function f.

The following proposition gives a simple method of construction of new invex
functions.
Proposition 3. Let g : R — R be a differentiable, increasing and convez function.
Let f : R® — R be invez related to ). Then go f : R® — R is inver related to 5, too.
Proof. 1t is known that g(z +t) > g(z) + ¢'(2)t for all z,7 € R. Thus we have

9(f(z)) > 9f(v) + (n(=, ) V(%)) > gl W)] + &' (f () VIn(z,v) f(v)] =
=g[f )] + (n(z,v))* V(g 0 f)(v),

which means that g o f is invex related to 7.
Definition 2. ([8]) Let f : R® — R, and 5 : R x R® — R™ be a given function.

We say that f is n-invex (incave) if the following inequality is true:
Fly+Mi(z,9)) S M) + (1= N (), for allz,y € R”, all A€ [0,1].  (6)

Proposition 4. If f is differentiable and n-invez, then f is inver related to 5 (on
R").

Proof. Relation (6) can be rewritten in the form

f(y+An(z,v)) — f(y) < Alf(z) - f(y)]
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Let A > 0, so by division with A and by taking A — 0+, in case of differentiable

f, one easily obtains
(n(z, ) V£(y) < f(z) - F(v)

what means that f is invex related to 7.

Clearly, the converse of this property is not generally true, but there exist
conditions when this converse is valid, too.

We obtain first certain connections to the class of subadditive functions.
Proposition 5. Let f : Ry — R be an n-incave function, and let us suppose that
f(0) > 0 and n(0,z) = —z for all z € R. Then the function f is subadditive.

Proof. From the n-incavity of f (see Definition 2) and f(0) > 0 we have

f(v+2n(0,0)) 2 AF(0) + (1 = A f(v) > (1 = W) f(v).

Let v :=z+4+yand A := m—i—; € [0,1] in this relation. From the equality
z=z4+y+ ;%—1;1)(0, z +y) we immediately get f(z) > - _T_ yf(:L' + ). Replacing z

by y we get f(y) > Py yf(:c + y), so by addition it results f(z) + f(y) > f(z + y),
i.e. the subadditivity of f.
Proposition 6. Let f : (0,00) & R be a subadditive function which is n-invez, and

satisfies the condition

fw<f (z +y+ ’2”(”’”’ + y)) for all z,y € (0,00). (7)

Let g : (0,00) — R be defined by g(z) = f(—::)— Then the function g is a

decreasing function.
Proof. In f(v+An(u,v)) < Af(u)+(1—A)f(v) let us put (with z < y, z,y € (0, 00))
z
A==, ui=z, vi=z+y.
Y Y

We can obtain the relation

f(z+y+§-7)(z,x+y)) < §f(z)+ (1-§)f(z+y)s

<Zf(e) + (1 - 5) )+ 1] = 12) + 1(6) = 2100
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From condition (7) we can deduce the inequality

f(y) f( )

) < fl2) + flv) - f(y) or 2 for < y.

Thus g(y) < g(z) for z < y.

Remark. For n(a,b) = a — b (when f is convex), relation (7) becomes f(y) < f(v),
which is always true.

B. In Definition 2 we have introduced the notion of 7-invexity on the entire
space R"”. In many circumsctances, it will be important to consider such functions
on a subset S C R". Then the necessity of generalization of convex sets arises.
Definition 3. ([8]) Let S C R™ and n: R” x R® —+ R" be given. We say that the

set S is 7-invex, if the implication
z,y€S, A€[0,1] = y+I(z,y) €S (8)

is true.
Remarks. Clearly, all subset S is 7-invex to 7 = 0. The definition essentially says
that there exists a curve in S beginning from y. It is not required that z is one of the
final points of this curve for all z, y.
Ezamples. 1) Let n; : R x R — R given by 5,(z,y) =z —y for z,y > 0, z — y for
£<0,y<0;-T—yforz >0,y<0;2—yforz <0,y >0. Let S; = [-7,—-2]U[2, 10].
Then S is n;-invex; as an easy verification applies.

2) Let 51 C R be #3-invex and S; C R be 7s-invex, and define S = Sy x Sa C
R™. Let : R? x R? — R? defined by

n(z,y) = (m(z), n2(y)),

where z = (z1,¥2), ¥y = (22, y2).

Then S is 7-invex. This follows immediately.
Definition 4. Let S C R" be 7-invex set, where 7 is given. We say that f is n-invex
on S (f : S — R) if relation (6) is valid for all z,y € S.

If S is open, and f is differentiable, we can state the following proposition,

similar to Proposition 4.
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Proposition 7. If S C R™ is open, inver, and f : S — R is differentiable, and
n-invez, then f is invex related to 7.

Remark. The converse of this proposition is not true. Let f : R = R, f(z) = 22
Since all critical points are global minima, Craven and Glover’s theorem implies that
[ is invex related to 5(z,y) = 2y (y#0); 0 (y=0).

2y
On the other hand, inequality (6) is transformed into (we omit the simple

algebraic manipulations) A?(z* — 2z%y? + y*) < 0, which is valid only if A = 0 or
z =y =0. Thus f is not 7-invex.

Proposition 8. Let 1) be given, and let S C R™ be n-inver. Let X D S be an open set
and f : X — R inver related to 7, and differentiable. Let us suppose that 1 satisfies ‘

the following conditions

n(z,z + An(y, 2)) = —An(y, z),
n(y,z + Mn(y,z)) = (L= Mn(y,z) (z,y € R*; A€0,1]).

Then f is n-tnvez on S.

Proof. Let y,x € S. Let 0 < A < 1 be given and consider z = z + An(y, z). Clearly
z € S. From the invexity of f related to n we have

f) — £(z) > (n(y, 2))'V f(2). (10)
In the same manner,

f(@) = £(2) 2 (n(=z,2))'V (). (1)
From (10) and (11) we can derive
M) + (1= Nf(=) = f(z) > [A(n(y, 2))" + (1 = V) (n(=z, 2)) ]V f(2).
But from the given condition (9) we have
Mn(y, 2)) + (1= X (n(z, 2))" = [M1 = A) = A(1 = V)](n(y, 2))* =0

and the theorem is proved.

Remark. Condition (9) is not trivial. Let S = [-7,-2] U [2, 10], given in example 1)
from A. Then the n-function given there verifies (9). Thus n(z,y) # z — y.
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Definition 5. Let 7 be given and S C R™ an 7-invex set. We say that f is n-cvazi-

invex, if

f(y + Mn(z,y)) < max{f(z),f(y)}, =,y€S Ae(0,1] (12)

is true.

Theorem 1. A function f : S = R is n-cvazi-invez iff all level sets S(f,a) of f are
7n-inver sets.

Proof. Let f be n-cvazi-invex on S, and let z,y € S(f,a) = {z: f(z) <a},a €R.
We have

fy + An(z,v)) < max{f(z), f(y)} = f(y), if f(z) < ()

Supposing y € S(f,a), we get f(y) < a, so f(z) < a (thus z € S(f, @)), it
results that f(y+An(z,y)) < a, yielding y+ An(z,y) € S(f, @). Thus the sets S(f, @)
are 7-invex.

Let us now assume that these level sets are 7-invex for all @ € R, and put
o = max{f(z), f(y)}. Then z € S(f, ), y € S(f,a). By invexity of S(f,a) we have
z+ An(g,z) € S(f, @), thus flz + An(y, z)] < @ = max{f(z), f(y)}, which means the
n-cvazi-invexity of f.

Theorem 2. Let S C R"™ be n-invez, and let f : S — R be n-cvazi-inver function.
Let us suppose that the function 1 has the following property:

e£y = n(z,y) #0. - (1)

Then all strict-local minimum point of f is a strict global minim point of f.
Proof. Let y be a strict local minim point, which is not global, then there exists * € S
with f(z*) < f(y). But f being n-cvazi-invex, we have f(y+An(z*,y)) < f(y), where
y+ An(z*,y) € S. This gives a contradiction with the assumption on y.
We now introduce a new class of functions, namely the class of n-pseudo-invex
functions.
Definition 6. ([9]) Let S C R™ be an -invex set. We say that the function f : S 5> R
si n-pseudo-invex if for all z,y € S with f(y) < f(z) there exists ¢ > 0 and o € (0, 1]
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such that for all @ € (0, a) we have the inequality

f(@ + an(y,2)) < £(z) - ac. (14)

Proposition 9. If f is n-invex, then it is r';-pseudo-invez', too.

Proof. Indeed, one has

f(z + My, z)) <Af(y) + (1 - A f(=z) = f(=z) - Alf(z) - fy)]-

Let now ¢ := f(z) — f(y) > 0 and put « := 1. Then inequality (14) is valid.

We can consider functions f : M — R with M C R" a nonvoid set, and
S C M. We say that z° € S is a local-minim point of f relatively to S if there
exists a vecinity V € V(z°) such that for all z € SNV we have f(z°) < f(z).
Theorem 3. Let f : M — R, (S C M defined as above) an 7)-pseudo-invez function
on the invez set S. If 2% € S is a local-minim point of f relatively to S, then z° is a
global-minim point of f relatively to S. .
Proof. There exists V € V(z°) such that for all z € SNV we have f(z°) < f(z). Let
B(z°,r) be a ball inscribed in V, with r > 0. Thus for all z € SN B(z°, ) we have

f(z°) < f(=)- (15)

Let us suppose now, on the contrary, that there exists y € S with f(y) <
f(z°). The function f being n-pseudo-invex, there exists ¢ > 0 and a € (0,1] such
that for all a € (0, a) we have

F(2° + an(y, z°) < (=) (16)
where y # z°. Let ag be selected such that

0<ag<

,
lIn(y, =)l

(which is possible since n(y, %) # 0 for y # z°). Put z := 2° + aon(y, z°). From (11)
we get f(z) < f(z°). On the other hand, we have

llz = Il = aolln(y, )| <,
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thus z € B(z%r). Clearly z € S (which is n-invex), so via (15) we obtain that
f(zo) < f(z), a contradiction to f(z) < f(z°). This contradiction finishes the proof
of the theorem.

C. We now introduce the Jensen-invex sets and functions.
Definition 7. The set U C R™ will be called 7-Jensen-invex (where, as usual,
n:R" x R® — R" is given) if for all z,y € U we have y+%n(m,y) ev.

If U is n-Jensen-invex set, then the function f : U — R will be called 7-

Jensen-invex function (or 7-J-invex) if

f(=z) + f(v)
2

1
f <y+ E"(x’ y)) < for all z,y € U. (17)

Remark. The 7-J-invex sets (or functions) could also be named ‘l — 7-invex, as we

1 .
have selected from A € [0, 1] the set A € {5} The J-convex functions are J-invex for
Nz, y) =z —y.
Proposition 10. Let f : R® — R be inver related to 1 and let us suppose that 7

satisfies the functional equation

n (r, w;y) +17 (y, i?) =0 (z,y€R"). (18)

Then f is J-conver function.

ot 1(2)+ 10 21 (L) = [1 - 1 (222)] + [r0 - 1 (222)) 2

(222 1 (5524 (522 o1 (252) -

on base of (1) and (18). Thus we can deduce that

z+y\ _ flz)+ f(y)
<
f(20) < Fee s
i.e. the J-convexity of f.
The following proposition can be proved in the same manner, and we omit

its proof.
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Proposition 11. Let f be as in Proposition 10, and let us assume that 1 satisfies

the functional equdtion

U] (z + %n(mﬂ) +7 (y + %n(z,y)) =0 (z,y€R"). (19)

Then the function f is n-J—z’nve:é.
The J-invexity and the continuity of functions of a variable is contained in
the following: .
Proposition 12. Let f : R — R be 5-J-invezr, where 7 : R x R — R satisfies the
following conditions:
e, z,) /0 ifz, Sz,
and

n(z,z,) (O ifz, T (n—> 00).

Let us suppose that there exist two sequences (zn), (yn), where , /' z,

Yn \y Zo (n = ©), o € R such that
. 1
nll,ngo f [I'n + 577(1771;'.’/11)] = f(zo).

If there exist the (lateral) limits f(zo—) and f(zo+), then f is continuous at
Zo. )

Proof. In the inequality
(o4 potey) < 1230

put T := &, ¥ := y,. From the given conditions we obtain

f(zo) < f(l‘o—) + f(30+)

: . (20)

Let now z := zq, y := &, in relation (17). From zo + %n(:co, z,) /T we get
zo) + flzo—
fleomy < Tzt Seom)
or

f(zo—) < f(20)- (21)
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Let now y := y,,  := 2o in (17). As above, we can deduce:
f(zo+) < f(zo)- (22)

From (20), (21), (22) we can deduce f(zo) = f(zo—) = f(zo+), yielding the
continuity of f at z¢.

D. Lastly, we deal with almost-invex functions.
Definition 8. Let f: S C R® — R, where S is an 7-invex set.

We say that the function f is 7-almost invex if

fly+An(z,y) < Afly+n(z, 9]+ (1 - A)f(y) (23)

holds true for all z,y € S.

Remark. The name ”almost invex” follows from the observation that (23) may be

written also as
f(z+ An(z,y)) < Af(z) + (1= A)f(y) + Ag(z,y)

where g(z,y) = f(y + (e, y)) — f(=).
In the case of g(z,y) = 0 we obtain the classical 7-invex functions.
The convex functions are almost invex, as we shall see.
Definition 9. Let f : R® — R be a differentiable function. We say that Vf is

7-increasing function, if

(n(z,9)"(Vi(z) = Vf(y)) >0, V z,y € R". (24)

Proposition 13. If the function f : R® — R s inver related to n, and if n is an
antisymmetric function, then V f is n-increasing.
Proof. We have f() — £(3) > (n(z,4))'V£(y) and £(3) - () > (n(y,2)) V(=).
From n(y, z) = —n(z, y), and by addition we easily get 0 > (n(z,y))* [V f(y) — V f(z)],
so (24) follows.

We now prove:
Theorem 4. Let f : R® — R be differentiable, and Vf an n-increasing function.

Then f s n-almost-invex function.
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Proof. Let us introduce the function ¢ : [0,1] - R by ¢(z) = f(y + An(z,y)). If
0 <Al <A <1, put uy = y+ Ain(z,y) and ug = y + Aen(z,y). Thus (uz —

u1) = (A2 — A1)n(z,y). From the p-monotonicity of Vf we can write 0 < (uz —
u1) (Vf(u2) — VF(u1)) = (A2 = A1) (n(z, ) [V f(u2) = Vf(u1)]. On the other hand
we have ¢'(A\1) = h'V f(u1) < h*V f(uz), where b = n(z,y). Thus the application
¢' is increasing, so this function of a single variable is convex. Therefore we have
(- 1+ (1= X)0) < Ad(1) + (1 = N$(0) = A(y + n(z,3)) + (1 - V() ie. the
7-almost-invexity of f.

Remark. The application ¢(A) = f(y+ An(z,y)) introduced above has the properties
$(0) = f(y), (1) = f(y+n(z,y)). Thusifg : [0,1] = R is convex, then f is n-almost-
invex. If the application ¢ is cvaziconvex, i.e. g(z) < max{g(0),9(1)}, V z € [0,1],
we can obtain the notion of almost-cvazi-invexity. Thus f : S — R will be 13-

almost-cvazi-invex if

f(y + An(z,y)) < max{f(y), f(y +n(z,y))}

However, we do not study this class of functions here.
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ALMOST OPTIMAL NUMERICAL METHOD

SOMOGYI ILDIKO

Abstract. This paper investigates an algorithm presented by Smolyak
(1963), who studied tensor product problems.

1. Introduction

The essence of these algorithms is that it is enough to know how to solve the
tensor product problem for d = 1 efficiently. The algorithms for arbitrary d are fully
determined in terms of the algorithms for generally, arbitrary linear functionals.

The choice of function values is especially interesting, since for arbitrary linear
functionals we know how to solve multivariate problems.

The algorithms are linear. They depend linearly on the information. This
property makes their implementation easier. In fact, the weights of the algorithm for
d > 2 are given by linear combinations of the corresponding tensor product weights of
the one dimensional algorithms. Information used by the algorithms is called hyper-

bolic cross information and had been successfully applied for a number of problems.

2. Formulation of the problem

In this section a tensor product problem will be define for a class of functions
of d variables.

Ford=1,2,... consider
Sd : Xd - Yd

where X, is a separable Banach space of functions f : D* -+ R, D C R, Yy is either
a separable Hilbert space of functions, or R, and Sj; is a continuous linear operator.

1991 Mathematics Subject Classification: 65J99.

Key words and phrases: tensor product, numerical methods, optimality.
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We assume that Yj is a tensor product,
Vi=Y10Y19...0Y, (1)
and X; is a Hilbert space
Xa=X198X:%...0X)

Si=51051®...85:.

d
The tensor product f = fi ® ... ® fa = @ fr for numbers fi is just
k=1

d
the product [] fi. When fi are scalar functions, f is a function of d variables,
k=1

d
... ta) = k]—[ Je (k).
=1
The element Sy(f) is approximated by A(f) = ¢(N(f)), where the informa-
tion about f,

N(f)z[Ll(f):'-'aLn(f)L (2)

consists of n values of continuous linear functionals L;, and ¢ : R® — Gy is a linear

mapping. This results from linearity of A,

A(f) = Z v Li(f), for some y; € Yy. (3)

i=1

The error of the algorithm A is given as

e(A) = sup {||Sa(f) = ANy : lIfllxe <1} 4)
Due to linearity of Sq and A, we have
e(4) = ||Sa — All.

The cost of A does not depend on the setting and it is defined as follows. We
assume that the cost of computing L;(f) equals ¢(d) for any f € X4 and any L;. Also
assume that basic arithmetic operations on reals and multiplication and addition in
Y4 have a unit cost. Assuming that the elements y; can be precomputed, the cost of

the algorithm A, cost(A), is bounded by

cost(A) < n(c(dy+2) — 1.
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The precomputation of the elements y; is usually easy since they depend only

on the corresponding elements for d = 1.

3. Smolyak’s algorithm

As it was mentioned in the introduction, the essence of these algorithms is
that they give a general construction that leads to almost optimal approximations for
any dimension d > 1 from optimal approximation for the univariate case d = 1.

Assume, therefore, that for d = 1, we know linear algorithms (operators)
U*, i > 1, which approximate the problem {Xi, Y1, 51} such that ||S; — U’|]| — 0 as

i — 0o. Introducing the notation
Ao =Up =0, Ai =U; = Uiy, (5)
for d > 1 we approximate the tensor product problem {Xy, Y4, Sq4} by the algorithm

Ag,d) = > Ai, ®...0 A, (6)
0<i1+ig+ +ig<d
Hence f(t1,t2,...ta) = fi(t1)f2(t2) ... fa(ta) then
(Alg, ) f)(t1, 22, .. ta) = > (A f1)(81)(Ai, f2)(22) - (Biy fa)(ta)
0<ir+izt-+ia<d

where ¢ is a nonnegativ integer, and ¢ > d, because when ¢ < d one of the indices is
zero, say i; = 0, and A;; = 0 implies that A(g,d) = 0.

We use the notation |i| =i; + -+ -i4 for i € N% and i > j if i > ji for all k.
By Q(g,d) we mean

Qg d) = {i = (i1,%2,...14) : 1 <4, ]3| < ¢}

with 1= (1,1...1) and |Q(q,d)| = (9.

We have
4 d g-lil
Agd) = ) Qau= ) (@a)ed A,
1€Q(g,d) k=1 i€Q(q—1,d—1) k=1 ig=1

d—-1
Yo (R AL) @ Upyy (7

i€Q(q—1,d—1) k=1
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m
since Y A; = Uy, for any m > 1.
i=1

Observe that

d d
®(Uik - Us'k—l) = Z: (_l)lal ®Uik—ak
k=1 k=1

ag{01}4

d

& Uj, appears in A(q, d) for all indices i for which ix = jk + ax with o € {0, 1} and
k=1

d
|a| < g— 7| Thesignof @ Uj, in this case is (—1)*l.
k=1
Let

bi,dy= Y. (<1l

@€{0,1}4,]|al<i
This yield

Alg,d)= Y blg—1jld) ®Uu

i€Q(g,d)

We now compute b(7,d). Since |a| = j corresponds to (‘;) terms, we have
min{i,d}

=Y (J)ev = ("7Y),

In Iparticular, b(i,d) = 0 for ¢ > d. This yields the explicit form of A(q, d):

Lema 1.

Alg,d)= D, (—1)4-""(d_%)(Ui,@)...@U,-,) (®)

g-d+1<lil<q ¢ il

In particular, for
Ui(f) =) @i iLij(f)
ji=1

with a; ; € G1 and continuous functionals L; ; we have

apdr= X (1) Y Lute,

q—d+1<[i|]<q Jj<m;

where L; ; = ® Liy x> 9ij = ® aiy . and m; = (my,,...,mi,).

Furthermore we consxder the case in which for d = 1 we have one of the spaces

=C"(-1,1]), renN
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with the norm

171l = maz([|flleo, -, 15 lco).

For d > 1 consider the tensor product
F; ={f:[-1,1]* = R/D"f continuous if a; < r V i}

with the norm
Il = maz{||D* flloo /@ € N§, i < 7}.

Let
)= [ f@)dz  withfe ;. (9)
[—I»I]d

We wish to find good approximation to the functional I4 on the basis of good
approximation in the univariate case, using the algorithm of Smolyak.

In the multivariate case d > 1, define

mil m.’d

Up®...0Ui, =Y ... flak, ... zi) (@, .. af)

Ji=1 Ja=1

where we assume that a sequence of quadrature formulas
mi
Us(f) = _ f(z5)d;
=1

is given with m; € N.

On the basis of Lemma 1 with given quadrature formulas U* we can write
the approximation formula A(g, d) for general d.

A(q,d) is a linear functional, and for f € FJ, A(g, d)(f) depends only through
function values at a finite number of points.

Let X* = {z},...,z}, .} C [~1,1] denote the set of points that correspond to
U'. Then U;, ®...®U;, is based on the grid X** x ...x X%, and therefore A(q,d)(f)

depends on the values of f at the union

Hgd)= |J (X" x...xX")el[-1,1]"
g-d+1<lil<q




SOMOGYI ILDIKO

If X; C Xi41, than H(q,d) C H(g+1,d) and H(q,d) = | (X' x...x X'4),
lil=¢
Therefore this kind of sets seems to be the most economical choice.

In the general case we assume that the algorithm
m;
Ui(f) =Y aiiLi ()
ji=1
use nested information N; = [L; 1, L2, . .., Lim;]. That is,

{Li1, Li2, ..., Lijm;} C{Lis11, Lig1,2,- -, Livimipn }, Vi=1,2,... (10)

Since X is now a Hilbert space, L;; =< f, fi,j > for some element f; ; of

X;. Hence, there exists a sequence {f;} in F; such that

Nif)={<fHih><ff2>...,<fifn>}1=12,...

Assume that the algorithms U; are optimal, i.e. they minimize the error

among all algorithms that use the information N;. U; is optimal if
L; = 51P;, (11)

where P is the orthogonal projection on the linear subspace span{f;,j = 1,2,...,m;} =
(kerN;)t. Then (11) implie:s optimality of the algorithm A(q,d) for any d. If we
note Ng4(f) = [Lij(f) : 1 <i,9—d+1<|i|<q,j < m;] the information used
by the algorithm A(q,d), then for nested information N; and optimal U; of (11),
A(q,d) = SqP(q,d) where P(q,d) is the orthogonal projection on the linear subspace
(ker(N(q,d))*. Thus, in particular, A(g, d) minimizes the error among all algorithms

that use the same information Ng 4.

4. The Clenshaw-Curtis method
For any cubature formula @ we have the error bound
Ha(f) = QNI < MlIa = @Il - IFl
In the univariate case d =1
A n”-inf(lly = Qall) = B (12)
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where 3, > 0 are known constants for any Vr € N, (Strauf, 1979), and Q, are
formulas which use n function value.

Novak and Ritter suggest to use the Clenshaw-Curtis method, with a suitable
choice of the sequence m;, where m; denotes the number of function value used by
U;, and assume that m; < m;4+;. In light of (12) they are interested in formulas U;

with
lim sup(mf||I, - Ui]|) < 00, Vi€ N. (13)
1= 00

and the property is true, for interpolatory formulas U;, with positive weights.

To obtain nested sets of points, they choose
m;=2""141, i>1landm; =1. (14)

Let

: mg—1 .
:c}:——co—(—_l) i=12,...,m

and z1 = 0, then U1 (j) = 2;(0).
The weights of the Clenshaw-Curtis formula

vif) =Y flai)al
j=1

are caracterized by the demand that U; is exact for all polinomials of degree less than

m;, and for ¢ > 1 they are given by

mi—3/2

; ; 2 cos(m(j — 1) 2rk(j — 1)
3 — 4 . , T — ]_ — R LA
45 = Imit1- m; — 1 m,(m, -2 2 Z 4k2 -1 noos m; — 1
forj=2,...,m;and @} =@}, = Tt

For delimitation of the error, they start from the estimate in the univariate

case

I = Uil <y 277
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From (6) we get

) R A2 L
Y (A" e...0AMe Y A%)
lil<q k=1
= ) (A" ®...0 A% @ Upi_pi).
lil<q

Then for the error we can obtain the following estimate:

Alg+1,d+1)

Ip1 —Alg+1,d+1) = (k- A(q,d) @ L+ Y A" ®...® A @ (I — Ugp1y)-
) lil<q

Furthermore

A% <N = Usll+ 10 = Usmall < 9 - 2775 (14 27).

We get
S AR Al = Ut < (1) gt ) g,
lil<q

Inductively the following theorem can be obtained.
Theorem 1. Let 8, = max{2"*!,+, - (14 2")}. The error of the cubature formula
A(q, d) satisfies the following estimates:

s = Al <70 () 2

Corollary 1. Let n = n(q,d) denote the number of knots used by A(q,d). Then

I11a = A(g, d)|| = O(n™" - (log m){4~D("=D)).

This corrolary gives the error of A(g, d) related to the number of knots from
H{(gq,d) and also gives the best error bound for Smolyak’s algorithm which holds for
arbitrary tensor product problems. On the other hand this method yields error of

(=1)(m=1) for all classes Fj, hence this methods are almost optimal up

order n"(logn)
to logarithmic factors on a whole scale of spaces of nonperiodic functions.

Property (15) is the essential requirement for the U; in the univariate case.
Relation which also holds for the Gauss formulas. These formulas yield methods
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A(g, d) with a higher degree of exactness. Still Novak and Ritter prefer the Clenshaw-
Curtis formulas because in this case the number of knots from H(g,d) is reduced.
Weights of different signs at common points are partially cancelled.

To determine the polynomial exactness they start from the fact that the
Clenshaw-Curtis formula U; is exact on V¥ = P, where m; is odd.

Theorem 2. The cubature formula A(q,d) is ezact on

Y (vihre...e V).

lil=q

The theorem can be proved by induction over d.

Remark. Theorem 2 holds for general tensor product problems if the space
Vi={f e F{/L(f) =U'(f)}

of exactness for the univariate problem is nested, Vi C Vit!,
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CONNECTING ALGORITHMICAL PROBLEMS IN SEMIGROUPS
WITH THE THEORIES OF LANGUAGES AND AUTOMATA

K.D. TARKALANOV

Abstract. This paper is a survey with new generalizations and their short
proofs of some of our results. Its purpose is connecting as pointed out in

the title.

A beginning (and end) of a word over an alphabet is called correct [4] if its
length is not smaller than the half of the word. A finite determined semigroup is
of the class K ! [4] under the following conditions: if two determining words have a
common section which is a correct beginning (a correct end) of one of them, then this
section is a beginning (an end) of the other as well. (We give a generalization in [10]).
The word E = Ry R; ... Ri over the alphabet of a semigroup of K 1 is normal [4] if
each multiplier is s subword of a determining word, the first is a correct beginning, the
last being a correct end and if each R; is a correct end of R;4, is a correct beginning.

The word problem is solvable in a semigroup of the class K 1 [4].

The inequality problem which is formulated by us in [9] is in fact the problem
of the deduction in a semi-true system. The one-direction substitutions represents a
transformation to smaller words. By a process of a symmetrization a semigroup is
obtained and the one-direction inequalities introduce an order in it. This problem is
more general than the word problem. It is solvable [10] in a class of partially ordered
semigroups which are given by determining inequalities. This class of ours contains
the class K 1. In the basis of our generalization way suggested in [9], we are not
interested in the common sections of the right determining words in the one-direction
transformations from left to right.

A vocabulary (a set of words over an alphabet) is called strongly regular [7]

if none of its words enters into another and no real beginning of any word is an end
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of any of them. The invariant deconding automata without overtaking [7] decode
(the coding is an overletter one) the coding word only after its full absorption at the
entrance. Until then they iet out the empty word at the exit. This sort of automata
exists if and only if [7] the coding words constitute a strongly regular vocabulary.
We prove that in a (partially ordered) semigroup with a strongly regular
vocabulary of the determining words the inequality /word problem is solvable [11].
In an analogical way to the relation from theorem 2.1.5 [8] (as well as theorem
1 [5]) we define [12] a congruence = in a semigroup II in the following way: we shall
say that the element [z] is in correlation to the element [y] in II if and only if for any
arbitrary elements [w] and [z] of II the elements [w][z][z] and [w][y][#] simultanelously
belong or do not belong to a given subset of elements of II. We prove [12] the theorem:
If the full prototype ¢~ (M) of the subset M of the semigroup II with a finite number
of generators ¥ at the natural homomorfism ¢ of the free semigroup ¥* (generated
by them) is a regular language in the latter, then the congruence ~ for M has a
finite index in II and M consists of full classes of elements which are equivalent to
it. Then the natural homomorphic image II/ ~ is a finite semigroup. (The natural
homomorphism depicts each letter from X in that element from II which contains it.)
This theorem affords a common way of obtaining finite homomorphic images
of semigroups. This can be fulfilled for the semigroups of the class K 1 and with
a strongly regular vocabulary of the determining words: thus, we shall say that an
element of a semigroup II; of the class K 1is normal if it consists of (a finite number -
according to the theorems for the solvability of the word/inequality problem) normal
words. For the subsemigroup N; of the normal elements ¢~!(N;) is a regular language
in X* [12]. The proof is effected by constructing a concrete right linear grammar [8].
We shall say that an element of a semigroup II; from the other class is vocabular
if all of its words (a finite number [11]) are products of determining words. For the

subsemigroup N, from the vocabular elements ¢~1(N3) is a regular language.
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Actually, for the strongly regular vocabulary V = {v1,v2,...,vm} of the

determining words of II; we construct the right linear grammar
Ly ={2U{ml| i=1,m}U{c}, %, Qu o}

(the designations are clear [8]). Here @2 are the following rules for deduction:

OV, t=1,Mm;
Hi — Uik, J=1,m
i > AL

It has been proved that the language generated by it coincide with the sub-
semigroup ¢~!(Nz) of all vocabulary words in *.

The already indicated theorem from [12] gives us the opportunity by a unified
method to prove
Theorem 1. Each semigroup from the two indicated classes possesses a finite homo-
graphic image with a nontrivial subsemigroup.

The part of this theorem for the class with strongly regular vocabularies of
the determining words is not published so far.

A word from a semigroup II; is called symmetric if it begins and ends in a
normal word. The symmetric elements form a subsemigroups H; in IT; [12]. The word
¥ = 71vj172;1j, .. .YtY;,Ys+1 In a semigroup vj,, s = 1,1) is called right special if 7,41
does not end in a nonempty proper beginning of a determining word. The right special
elements form a subsemigroup Hj in II; [11]. The method applied for separating
subsemigroups in the semigroups from the two classes aims each one of them to
possess the following property: if a given element of the separated subsemigroup is a
product of several of its elements then each of its words is a product of a word from
the first multiplier multiplied by a word from the second one and so on - until the
last one. This property is not fulfilled in the general case.

A definer regular algebra over an arbitrary semigroup has been introduced
in [6] analogically to Kleene’s algebra of regular events over a free semigroup. The
general method of separating subsemigroup with the indicated property is suggested
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by the author and his two results from [12] and [11] can be unified in one (not published
so far).

Theorem 2. If R and S are regular expressions in a separated subsemigroup H of
a semigroup of one of the two classes with a system of generators X then R =S &
e~ (R) = ¢7H(S). '

In this way the problem of the equality R = S is reduced to the solvable [8],
[1] identity problem in the algebra of the regular events over £*.

After everything said about the strongly regular vocabularies it is justified and
in co-ordination with it to continue the research of the decoding automata without
overtaking. We prove [13] that a homomorphic image [2] of an invariant decondin
automaton without overtaking is the same automaton as the above. The existence
of a nontrivial image is proved with the help of our theorem [14] for constructing
factor-automata. Much later and in the particular case of automata without exits
factor-automata are been studied by another author in [3]. With the help of the
correspondences from the definition for an automaton homomorphism [2] we define
an image of coding:

Let (H,, Ha, H3) be a homomorphism of the automaton U = (S, B, 4, A, B) in
the automaton U’ = (S', B’, A’, M, ') and the correspondence H3 : A = {a1,as,...,an} =
A’ = {d},a,...,al,} of the exit alphabet A in the exit alphabet A’ be reversible.
Let U’ be an invariant decondin automaton without overtaking for the conding K.
Then n < m and let us admit that Hs(a;) = a}, i = 1, n (after permutations in A or
in A’ which does not reduce the generality). We chose only one prototype v; at the
correspondence H for each coding owrd v} (i = T,n) of the coding K{},, where the
words v; from the semigroup B* have lengths, v&;hich are respectively equal to these
of the words v{. In this way we obtain many codings K{ of the alphabet A with
vocabularies V' = {v;,vs,...,v,}. Analogically we prove an unpublished theorem
which answers the interesting reverse question:

Theorem 3. If U’ is an invariant deconding automaton without overtaking for the
coding K?: then the automaton U decodes invariantly without overtaking each one of

the possible codings Ki}.
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We prove also in [13] that the consecutive connection of two invariant de-
coding automata without overtaking is the same automaton as the above. As a
consequence we point out that after a consecutive coding with the help of strongly
regular vocabularies a coding is obtained again with the help of such a vocabulary.

A considerable range of the problems considered is well-grounded from: method- -

ological and philosophical point of view in [15].
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PERIHELION ADVANCE AND MANEFF’S FIELD

VASILE URECHE

Abstract. We compute the advance of the perihelion of a planetary orbit
as predicted by the Manefl’s gravitational law and we compare the result
with the results of the general relativity theory, as well as with the obser-
vational data for Mercury and for the binary pulsar PSR 1913+16. The
effects resulting from the adoption of the Maneff’s potential are analysed
both in the classical and the relativistic case. For the relatistic analysis
we propose a new form of the metric associated to Manefl’s gravitational
potential.

The results show that in the classical case the advance of the per-
ihelion (periastron) predicted in the Maneff’s model is exactly half of the
observed one, while putting the prediction of this model in accord with the
prediction of general relativity requires a modification of the perturbating
factor in Maneff’s potential with a factor of 2.

The computation made in the relativistic case with the Maneff
potential give a result which is not in concordance with the observational
data, because in this case the advance of the perihelion is a superposi-
tion of the value due to the relativistic effect and that resulting from the
modification of the potential in the Maneff case.

1. Introduction

G. Maneff considered a post-Newtonian nonrelativistic law of gravitation,

assuming that the gravitational interaction between two masses m; and m; is given

1991 Mathematics Subject Classification: 83D05.
This work was partially supported by the Romanian National University Research Council (CNCSU)
under the grant 17.2/2101.10.

Key words and phrases: Maneff potential, perihelion advance.
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by the ”force function” ([5]):

U

Gmimy 3G(my + my)
= 1+ ,
r 2c2r

(1)

where 7 is the distance between m; and ma, G is the Newtonian gravitational constant,
and c is the speed of light. |

Recently, several theoretical approaches considered that the study of the con-
sequences of adopting Maneff’s potential, would be an ideal method to investigate the
susceptibility to generalization of the mathematical models and techniques developed
in Celestial Mechanics ([6],[1]) and Stellar Astrophysics ([9], [10]).

In this paper, we analyze the way in which the Manefl’s gravitational inter-
action responds to one of the most important observational facts that have become a
milestone in the evolution of the theory of gravitation: the advance of the planetary
perihelion.

This phenomenon was discovered by Le Verrier in 1859 as a discrepancy be-
tween the observations and the theoretical predictions for the shift of Mercury’s per-
ihelion. Present-day measurements indicate that Mercury exhibits an excess motion
in the perihelion shift of about 43” per century. The attempts to explain this phe-
nomenon have to consider that either a hidden planet or some sort of diffuse material
should orbit in the neighborhood of the Sun - or Newton’s theory of gravity should
suffer some adjustments. All the models involving hidden mass within Newton’s the-
ory of gravitation have constantly failed, while the excellent correlation between the
observations and the theoretical predictions of Einstein’s General Relativity became
one of the great successes of this theory.

This paper analyses the problem of perihelion advance in a potential-independent
fashion, i.e. we infer the expression for the perihelion advance as a functional of the
potential expression. In section 2, we develop the Binet-like differential equation for
the orbit of a body moving in a central spherical symmetric field. The form of the
potential ®(r) is not specified, so the equation explicitly depends on ®. The potential
is then particularized to Manefl’s expression and the perihelion advance is computed
in this case. Section 3, after introducing a general relativistic metric to be associated
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with a spherical symmetric potential function ®(r), proceeds in a similar fashion to
derive the perihelion advance in the relativistic framework. The problem of periastron
advance for the binary pulsar is considered in Section 4. In section 5 we summarize
the results, compare the observational values for the Mercury’s orbit and for binary

pulsar PSR 1913416 with those theoretically predicted and drop the conclusions.

2. The classical framework

2.1. The Binet-like equation. We shall consider a massive body of mass M and a
test particle of mass m <« M in the gravitational field of M. The effects of this field
on m can be descried by the following potential ®, which is attached to U from (1)

(my =M, my =m):
a() = -SH M @

The spherical symmetry implies that the orbit is planar, so we restrict our
considerations to the two-dimensional problem, i.e. finding the equation of the orbit
in the form r = r(f) We shall start the derivation of the differential equation of the

trajectory from the laws of conservation for energy and angular momentum:

(%%)2 +r? (%%)2 +28(r)=h

3)
rz-daz— =C

After the change of unknown function to u = 1/r we obtain from (3) the

Binet-like equation:

d’u 1 do
ETZ i ™ ®

2.2. Solution for Newtonian potential. If the potential is Newtonian we find the

well-known conic solution:

GM
u= —52—[1+ecos(0—w)]. (5)

For the adequate values of h and C' this orbit will be an ellipse.
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2.3. Solution for Maneff case. For Maneff potential the equation (4) becomes:

d*u G*M?\ GM
_d02 = —-u (1 - 3—‘02‘:2 ) - ——Cz (6)
One observes that this equation has an exact analytic solution. If we use the
notation:
G2 M2
Czcz
with a < 1 for the realistic astrophysical situations (noncollisional orbits), the solution
of (6) is:

u= 02?1 ) [1+ecos(vVi-ab—w)]. )
For 0 < ¢ < 1 and a < 1 this represents approximately an allipse. If we try to

identify the perihelion advance in (7) by putting it in the form:

GM
u= m[l+ecos(0—w—-5(0))]. (8)

and if we take into account the fact that usually o « 1, we get:

1 3G M?

The perihelion advance predicted by Maneff’s field is proportional with the

value obtained by Einstein’s relativity (see below eq. (17)), i.e. Einstein’s expression

for perihelion advance is twice as big as Maneff’s. This problem can easily be solved

by scaling the ” perturbative” term in Maneff’s formula. Thus, if we took the potential
of the form:

_GM 3G2M 2

a(r) = (10)

we would obtain the exact relativistic formula for the perihelion advance within the

classical framework.
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3. The relativistic framework

3.1. The potential-dependant metric. Let z° = ct be the temporal coordinate
and ¢! = r, 22 = §, 23 = ¢ the spherical (Schwarzschild) coordinates. Then, we shall

associate to the potential ® the following general relativistic metric ([4])

29
s

2
ds? = (l + g(;) c?dt? - 1 ir —r2d#? — rZsin? 0 dy?, (11)

where ds is the elementary interval.
One should note that the metric given by eq. (11) does not satisfy Einstein’s
field equations ([8], [2]) unless the potential ® is Newtonian, i.e. it has an expression

of the form:

Therefore, any attempt to extend this approach beyond the problem of the motion in a
central field (e.g. modeling massive relativistic bodies as it is required in astrophysical
or cosmological applications) should start from defining a proper adjustment to the
field equations. Fortunately, it is not the case for the matter of perihelion advance,
since the equation of the orbit will be straigl:tly inferred from the equations of the

geodesics.

3.2. The Binet-like equation. Once the relativistic metric of the field is specified
the derivation of the Binet-like equation for the trajectory proceeds by computing
Christoffel’s symbols and then writing the equations of the geodesics. One should

refer to Tolman ([8]) for the details of this derivation for the general Schwartzschild
metric:

ds? = e¥(") d¢2 — 2" dr2 — 2 d46% — r2sin20 dep?, (12)

noting that our metric (3) is a particular case of (12).
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The system of 10 geodesic equations for the metric (12), finally reduces to

the following two equations:

2 2
r(d de - =
e (H-:-) +r? (H}-) —eYK241=0
(13)
2de _
r 'a-; =H s
where K is a dimensionless constant and H ¢ is the relativistic equivalent of C' constant
in the classical approach.

For the metric (3), eqs. (13) become:

S

1 (de)\?, 2(de)?_ k? _
F%(HE) +r (-a—) —W§+1_0
(14)
,.2%% =H,
Taking the new unknown function 4 = 1/7 we obtain the Binet-like equation:

d"u__u(l g) w?de 1 do

Pz 7)) P d T FE (15)

3.3. Newtonian potential. In the case of Newtonian potential, eq. (15) becomes:

d’u _ug OM  3GM
dez — c2H? c?

[ ]
This equation cannot be integrated in terms of elementary functions. The

u. (16)

approximate approach in solving equation (16) takes into account the fact the the
bounded (noncollisional) orbit is quasi-elliptical, so the solution can be put in the

following form ([8]):
GM

u= -62—[1+ecos(0—w—5(0)]

where () < 0.
In the first-order analysis, one obtains for §(6) the expression:

G2M? :
5(6) = 37550 (1)

Then, the Einstein’s formula for the perihelion advance for one period will be:

G*M? _ Urna?

Aw = =
w = 6m C2c? c2P2%(1 - ¢e?)

(18)
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It is well-known that equation (18) accounts for the observed orbits with an excellent
accuracy.

Taking into account the Kepler’s third law, the expression (18) can be put in
the form ([3]):

6rGM

Aw = c2a(l — e?) (19)
or in the terms of Schwarzschild radius:
2GM
Rs = = (20)
we have
_ 3 Rs
Aw = 1— 62 —a— (21)
3.4. Maneff potential. For Manefl’s potential, eq. (15) becomes:
d*u G*M? GM 3GM , 6G’M? ,
der T (1_3Hzc4> met @ vtTa v (22)

In this case, the computation of the small perihelion advance gives the fol-

lowing result:

sy = 2EM (23)

T2 0%
One observes that the value of the perihelion advance is a sum of the values given by
egs. (9) and (17). The effect of changing the potential in the relativistic framework is
a simple superposition of the relativistic effect and the effect of changing the potential.
The prediction of eq. (23) is not in agreement with the observational data
and seems not to justify the intricacies which a relativistic Maneff approach implies

(such as adjusting Einstein’s field equations).

4. Periastron advance of binary pulsar

The obtained reults can also be applied for the binary systems having the
two components of comparable masses M; and M,. In this case the product GM
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must to be changed in g = G(M; + Mz). Then, using the Kepler’s third law, from
the equation (18) we obtain the rate of the periastron advance ([11])
5/3
o=3 (%”) / W?%(Ml + Mp)?l3, (24)

The equation (21) shows that in the binary pulsars, where the semimajor
axis a is small, the periastron advance is large. For the binary pulsar PSR 1913416,
taking My = M, = 1.4My, My = M. = 1.4Mg, P = 27907 sec, the observed rate of
periastron advance will be obtained, namely w = 4.23 deg yr™1.

If we shall use the equation (9), only half of the observed value will be ob-
tained. This means that the Maneff gravitational field explains the periastron advance
in the binary pulsar PSR 1913416 only qualitatively but not quantitatively, as this
was considered .in a recent paper ([7]). We observe that, if the equation (7c) from
the cited paper will be used (noncollisional orbits) the same expression (9) from our
paper will be obtained.

In conclusion, if we take the Maneff gravitational field as an alternative post-
Newtonian nonrelativistic law of gravitation, the ”perturbative” term in the Manefl
potential (2) must to be scaled by the factor 2 as in the expression (10). In this way
the Manefl gravitational field will explain the perihelion advance of the planetary

orbits as well as the periastron advance for the binary pulsars.

5. Conclusions

Analyzing the Binet-like equations (6), (16), (22) and the perihelion advance

formulae (9), (17), (23), we come to the following conclusions:

e The theoretical results of Einstein’s relativity are in perfect agreement with
the observational evidence. No corrections are necessary for this theory.
It explains the planetary perihelion advance, as well as the periastron
advance of binary pulsars.

e In the classical framework, Maneff’s field can explain the phenomenon of
perihelion advance qualitatively. A scaling of the second term in Maneff’s
formula would lead to the exact relativistic result for the angular advance
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formula. The main strength of Maneff’s formalism is, in our opinion, its
simplicity that makes relativistic effects such as the perihelion advance
amenable to the analysis of Celestial Mechanics.

Within the relativistic framework, Manefl’s potential predicts a result
which is in disagreement with the observed data. It seems that there
is no need to change Einstein’s equations in a manner that would affect
Schwartzschild solution.

One should note, however, that the derivation of the formula for the per-
ihelion advance was carried out within the first-order analysis. This is
perfectly justified at the scale of the Solar System as well as for the binary

pulsars, where the components are close to the mass points.
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S Dragomir L Orn
e a, Conformal Kahler Geome-
try, Birkhauser, Boston-Basel-Berlin,
1998, 327pp.+xi, ISBN 0-1817-4020-7,
ISBN 3-7643-4020-7

The research contribution of
these two young mathematicians in
modern differential geometry are well
known. The present book represents a
succsessful synthesis of the recent in-
vestigations concerning the study of
the locally conformal Kahler (shortly
lc.K) manifolds. If (M?", J,g) is a
Hermitian manifold of complex dimen-
sion n having its complex structure J
and its Hermitian metric g, then g is
l.c.K. if it is conformal to some local
Kahlerian metric in the neighborhood
of each point of M?". A manifold en-
dowed with a l.c.K. metric is called
a l.c.K. manifold. The geometry of
l.c.K. manifolds has developed inten-

sivily since the 1970s, buth there are
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early contributions by P. Libermann
(going back to 1954.) The recent
treatment of the subject was initiated
in 11976. The book contains seven-
teen chapters dealing with the follow-
ing aspects. In the first eleven chap-
ters there are given the main achieve-
ments in the theory of l.c.K. mani-
folds. The last six chapters present the
theory of submanifolds in l.c.K. man-
ifolds, as developed by J.L. Cabrerizo
& M.F. Andres, S. lanug & K. Mat-
sumoto & L. Ornea, F. Narita a.o.
The book also contains two appendices
concerning Boothby-Wang fibrations,
respectively Riemannian submersions.

A relevant and suggestive bib-
liography containing 302 references re-
lated to the subject is included.

The importance and the actu-
ality of the subject, as well as the very
rigurous and didactic presentation of

the content, make out of this book a




valuable contribution to present math-
ematics. The book is intended first

of all for mathematicians, but it can

D HHyers, G.Isacand T. M.
R a s sias, Topics in Nonlinear
Analysis and Applications, World
Scientific, Singapore, 1997, ISBN 981-
02-02534-2

In this book the authors con-
sider several aspects of Nonlinear
Analysis. It covers subjects such as:
Complementarity problems, Metrics
on convex cones, Zero-epi operators,

Variational principles, Fixed point

Krzysztof Jarosz, Fanction
Spaces, Proceedings of the Third
Conference on Function Spaces, May
19-23, 1998, Southern Illinois Univer-
sity at Edwardsville, Editor, Contem-
porary Mathematics vol. 232, Ameri-

can Mathematical Society 1999
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be interesting also for a wide circle
of readers, including mechanicists and
physicists.

D. ANDRICA

principles, Maximal element princi-
ples.

The authors present the ma-
terial in an integrated and a self-
contained way. Most of the results
in this book are from the last thirty
years.

I recommend this very inter-
esting book to all those who wish
to undertake study and research in
the Nonlinear analysis and its appli-

cations.

I. A. RUS

These are the Proceedings
of the Third Conference on Func-
tion Spaces organized by‘ Professor
Krzysztof Jarosz at Southern Illinois
University at Edwardsville (SIUE),
from May 19 to May 23, 1998. The




Proceedings of the previous two con-
ferences, organized also by Profes-
sor Jarosz at the same University in
Spring 1990 and in Spring 1994, were
published by Marcel Dekker as vol-
umes 136'and 172 of the series 'Lecture
Notes in Pure and Applied Mathemat-
ics in 1992 and 1995, respectively.
The Third Conference was at-
tended by over 100 participants (the
list of participants included in the vol-
ume counts 114 mathematicians) from
over than 25 countries. The aim of
the Conference was to bring together
mathematicians interested in various
aspects of function spaces or in related
areas, as spaces and algebras of ana-
lytic functions (of one or several vari-
ables) and operators acting on them,
L?-spaces, spaces of continuous func-
tions, spaces of Banach-valued func-
tions, Banach and C*-algebras, geom-
etry of Banach spaces. Some lectures
were of expository nature, presenting
in an accessible way to non-experts in
the field known (to the experts) re-
- sults and open problems, establishing
links between various areas of investi-
gation and opening possibilities for fu-

ture joint work. Some of these lectures

are included in the present volume.
The papers presenting new results are
also written in a manner 'that make
them understandable by a broader au-
dience.

The volume contains 36 pa-
pers dealing with topics as: norm at-
taining operators on L;(u) (M. D.
Acosta), separating maps on spaces
of continuous functions (J. Arauzo,
K. Jarosz), extending linear isome-
tries (S. J. Dilworth), fixed point
property in L,[0,1] (P. N. Dowling),
smoothness properties of sequence
spaces (R. Gonzalo, J. A. Jaramillo)
isometries in Orlicz spaces (B. Ran-
driantonina), Banach spaces isomet-
ric to their squares (N. J. Kalton),
isometries of non-commutative LP-
spaces (K. Watanabe), Weil-spectrum
(P. Aiena), normal functions of sev-
eral complex variables (J. T. Ander-
son, J. A. Cima), composition and
Toeplitz operators on Hardy spaces (P.
Avramidou, F. Jafari, K. Stroethoff),
a survey on compact-like operators
on H* (M. D. Contreras, S. Diaz-
Madrigal), a survey on closed ideals in
familiar function algebras (P. Gorkin,

R. Mostini), conditions for a linear
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functional to be multiplicative (K.
Jarosz), Witt groups on C*-algebras
(C. Badea), the quaternionic Riemann
theorem (S. Bernstein), convolution
by means of bilinear maps (O. Blasco),
Sobolev spaces of holomorphic func-
tions (S. Krantz, M. M. Peloso), a.o.
For the Third Conference on
Function Spaces a WEB page contain-
ing the abstracts, the schedule and
the pictures of the participants, was
created by the organizers. It is still
available at the address: http://wuw.

siue.edu/MATH/conference.htm .
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Undoubtely that the present
volume, containig contibutions writ-
ten by eminent specialists all around
the world, will attract a large au-
dience, including people intersted in
functional analytic methods in anal-
ysis or in their applications to other
fields as partial differential equations,
optimization, variatonal analysis and
optimal control.

The volume is printed in ex-
cellent typographical conditions by the

American Mathematical Society.

S. Cobzag

-
4

ZTLRCA Ry g

ACUNEAN
[ GLUJ-NAROCA h
~ <

S
o

08 parempt\Gd



