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STUDIA UNIV. “BABES-BOLYAI", MATHEMATICA, Volume XLIII, Number 3, September 1998

PROFESSOR PAVEL ENGHIS§ AT HIS SEVENTIETH
ANNIVERSARY

DORIN ANDRICA

The academic teaching and the mathematical research in Geometry at ” Babeg-
Bolyai” University of Cluj-Napoca in the last decades were influenced in a significant
way by the life and scientifical work of Professor Pavel Enghig, who was just celebrated
his 70t# birthday.

The main purpose of this short presentation is to give some biographical dates
concerning his life as well as to point out some important moments of his scientifical
work.

Professor Pavel Enghig is born on September 28, 1928, in Letca, a Transylva-
nian nice village situated on the river Someg. He attended the High School in Gherla
and the Faculty of Mathematics and Physics at the ” Victor Babeg” University of Cluj.
In October 1951 he was promoted on a assistant position at the Chair of Geomtry,
which was directed by Professor Tiberiu Mihailescu. In 1957 he obtained a lecturer
professor position in the same Faculty. The two universities of Cluj, the romanian
one ”Victor Babeg” and thg hungarian one ”Janos Bolyai”, were unified in 1959 in
the present ”Babeg-Bolyai” University. Professor Pavel Enghig’ activity is connected
more than 45 years on this University. He was appointed as associated professor at
the Chair of Geometry in 1990 and as full professor at the same Chair in 1991. He
was the Chief of Chair of Geometry until 1995 when he was retired.

During his activity at ”Babeg-Bolyai” University, Professor Pavel Enghis has
teached many mathematical courses. Let us mention here: Special Mathematics,
Geometry, Linear Algebra, Differential Geometry, Basic Geometry, Arithmetic and
Foundations of Geometry, General Mathematics (for students in Phylosophy, Chem-

istry and Geology). His lectures were always very rigurous and straightful, being very
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appreciated by the students. Several of his lectures were published for didactical goals.
We mention here the courses in Differential Geometry (1969) (with E. Fratila), (1985)
(with M. Tarind) as well as the Lectures on General Mathematics for Geologists I, II
(1982) (with M. Baldsz, G. Goldner, Gr. Siligean).

The scientifical work of Professor Pavel Enghis is related to the field of Ge-
ometry, mainly to Differential Geometry of Riemannian and affinely connected man-
ifolds. Since now, he published more than 89 notes and papers in different volumes
or mathematical journals, the most of them concerne the following topics:

1. The class of Riemannian spaces
. The group of motion of | Riemannian or Presudo-Riemannian spaces
. The holomony groups of the affinely connected manifolds
. The equivalence of the affinely connected manifolds
. Affine connected spaces with recurrent tensors

. Special classes of affine connections. Enghig connections

N OO s WN

. The Geometry of Finsler Spaces
Now, when Professor Pavel Enghig is 70 years old, he is an active presence in
the teaching staff of our Faculty. All the colleagues and students take this opportunity

to bring him a profound homage and to wish him full health and successes.
The table of publications of Professor Pavel Enghisg
1. Lectures

1. Geometrie diferentiald, Cluj, 1969 (cu E. Fritila)

2. Culcgere de probleme de matematica pentru studentii din anul pregititor,
Cluj-Napoca, 1977 (in colaborare)

3. Matematica I, II, Cluj-Napoca, 1982 (cu M. Balasz, G. Goldner, Gr.
Saligean)

4. Curs de geometrie diferentiald, Cluj-Napoca, 1985 (cu M. Tarini)

II. Scientifical papers
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. Grupul de migcdri al matricii lui Schwartzschild, Studia Univ. Babey-

Bolyai Cluj, seria I, fasc.I (1961), 107-110, in colaborare cu P. Sandovici
gi M. Tarina.

. Asupra clasei spatiilor riemanniene V3 cu grup de migcdr: netranzitiv, S-

tudia Univ. Babeg-Bolyai Cluj, ser. Math.-Phys., fasc.I (1963), 25-32.

. Delimitdri in problema spatitlor Vy cu grup de migcdri G4 netranzitiv,

Studia Univ. Babeg-Bolyai Cluj, ser. Math.-Phys., fasc.2(1964), 23-30.

. Grupul de migcdri al spatiilor Riemann V4 cu doud campuri de vectori muli

paraleli, Studia Univ. Babeg-Bolyai Cluj, ser. Math.-Phys., fasc.2(1966),

51-57, in colaborare cu P. Sandovici gi M. Tarina.

. Asupra clasei spatiilor Riemann Vy cu grup de migcdri tranzitiv, Lucrari

gtiintifice Nr.1, Oradea (1967), 145-148.

. Asupra grupului de migcdri al unor spafit Van care admit campuri de

vectori nuli paraleli, Studia Univ. Babeg-Bolyai Cluj, ser. Math.-Phys.,
fasc.1(1967), 7-13, in colaborare cu P. Sandovici gi M. Tarin3.

. Asupra conicelor si cubicelor osculatoare ale unei curbe plane, Lucrari

stiintifice 2 Oradea (1968), 15-22.

. Spatii V,, de curburd proiectivd recurentd, Studia Univ. Babeg-Bolyai Cluj,

ser. Math.-Phys., fasc.1(1969), 17-22, in colaborare cu P. Sandovici gi M.

Tarina.

. Asupra cuadricelor osculatoare ale unei curbe in spafiu, Lucrari stiintifice,

Oradea (1969) ser.A, 17-27, in colaborarea cu F. Rado.

Asupra clasificdrii spafiilor Py cu coneriune proiectivd fard torsiune dupd
grupurile lor de olonomie, Lucrari gtiintifice Oradea (1969), 29-37, in co-
laborare cu M. Tarin3, C. Artin gi F. Rado.

Sur les espaces & connerion affine A4 avec torsion, Studia Univ. Babeg
Bolyai Cluj, ser. Math.-Mec. fasc1(1970), 15-21.

Asupra echivalenfe: unor spafii A}, Lucrari gtiintifice Oradea (1971), ser.

Math. fiz. chim., 31-37.
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Spatii cu conexiune simplecticd gi grupurile de olonomzie, Lucrari gtiintifice
Oradea (1971) ser. Mat fiz. chim., 7-15, in colaborare cu P. Sandovici gi
M. Tarina.

Asupra unor spafti cu coneriune afind A4, Lucriri gtiintifice Oradea (1971)
ser. Mat fiz. chim. (1971), 51-54.

Sur les espaces V, récurrents et Ricci-récurrents, Studia Univ. Babeg
Bolyai Cluj, ser. Math.-Mec. fasc.1(1972), 3-6.

Sur les espaces A, a connezion affine, Studia Univ. Babeg-Bolyai Cluj,
ser. Math.-Mec. fasc.2(1972), 47-55.

Sur les espaces a connerion affine avec torsion récurrent, Studia Univ.
Babeg-Bolyai Cluj, ser. Math.-Mec. fasc.1(1973), 13-16.

Sur la classe des espaces K, Studia Univ. Babeg-Bolyai Cluj, ser. Math.~
Mec. fasc.2(1973), 7-12.

Hipersurface dans un espace riemannian récurrent, Studia Univ. Babeg-
Bolyai Cluj, ser. Math.-Mec. fasc.1(1974), 23-31.

Contributii la studiul spafiilor simetrice §i recurente, Tezd de doctorat,
1974.

Espaces Ag-récurrents, Mathematica Tom 16(39) 2, 1974, 299-303, in co-
laborare cu P. Sandovici gi M. Tarini.

Quelques remarques sur les espaces symétriques et récurrents, Mathemat-
ica Tom 17(40), 1, 1975, 67-69.

Grupul de migcdr: al spatiilor K3, Studia Univ. Babeg-Bolyai Cluj, ser.
Math. (1975), 16-20.

Asupra metrizabilitdtii spatiilor A, T-recurente, Studia Univ. Babeg-
Bolyai Cluj, ser. Math. (1976), 11-14.

Sur les espaces K, de Walker, Studia Univ. Babeg-Bolyai Cluj, ser. Math.
(1)(1977), 14-186.

Subspatii intr-un spafiu K, (I). Subspatii intr-un spatiu K, recurent,

Studia Univ. Babeg-Bolyai Cluj, ser. Math. (2), 1977, 16-22.
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Subspatii intr-un spatiu K, (II). Subspafii total ombilicale intr-un spafiu
K}, recurent, Studia Univ. Babeg-Bolyai Cluyj, ser. Math. (1), 1978, 11-15.
Subspatii intr-un spatiu K, (I11). Subspatii intr-un spativ K}, simetric
Cartan, Studia Univ. Babeg-Bolyai Cluj, ser. Math. (2), 1978, 3-6.
Asupra spatitlor conform recurente, Studia Univ. Babeg-Bolyai Cluj, ser.
Math. (2), 1978, 33-40, in colaborare cu A. Nantia.

Spalii conform recurente, Proceedings of the colloquium on Geometry and
Topology Cluj-Napoca sept. 1978, 17-19.

Problematicd in spatii cu tensori-recurenti, Proceedings of the colloquium
on Geometry and Topology Cluj-Napoca, sept. 1978, 46-63. °

Relations entre des espaces riemanniens a tenseur récurrents, Studia Univ.
Babeg-Bolyai Cluj, ser. Math. 1, 1980, 67-72.

Quelques remarques sur la métrisabilité des espaces Ap-récurrents et T-
récurrents, Studia Univ. Babeg-Bolyai Cluj, ser. Math. 3, 1980, 50-52.
Sur la récurrence de la métrique de Schwartzschild, Studia Univ. Babeg-
Bolyai Cluj, ser. Math. 3, 1980, 48-49.

Proprietdti de recuren{d ale unor metrici relativiste, Lucrarile Colocviu-
lui National de geometrie gi topologie Gh. Vranceanu 1980, 159-163, in
colaborare cu P. Sandovici gi M. Tarina.

Conexrxiuni afine recurente, Lucririle Colocviului National de geometrie si
topologie Gh. Vranceanu, 1980, 151-158.

Asupra T'-recurentei unor spatit Az i A4 cu conexiune afind, Studia Univ.
Babeg-Bolyai Cluj, ser. Math. XXVI 3, 1981, 66-72.

Propriété de récurrence de certaines métriques relativistes, Mathematica
Tom 23(46), Nr.2, 197-203.

E-conexiuni semi-simetrice, Lucrdrile Colocviului National de Geometrie
si Topologie, Busteni, 27-30 iunie 1981, 113-118, in colaborare cu P. San-
dovici gi M. Tarina.

Les espaces Riemanniens D — H récurrents, Proceedins of the Coll. on

Geom. and Top. Cluj-Napoca, 1982, 52-53.
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HIGHER. ORDER EINSTEIN-SCHRODINGER SPACES

ATANASIU GHEORGHE

Dedicated to Professor Pavel Enghis at his 70'® anniversary

Abstract. In 1945 A.Einstein [6] and E.Schrodinger [10] started form a
generalized Riemann space, thas is, a space M associated with a nonsym-
metric tensor G;;(z) and desired to find the set of all linear connections
I (z) compatible with such a metric : G;;/x = 0 (see also [1] and [2]).The
geometry of this space (M.Gj;) is called the Einsten - Schrédinger’s
geometry [3], [4]. ‘

The purpose of this paper is to discuss a nonsymmetric tensor field
Gii(z, vy, ..., q(")),where (z, ¥V, ..., y*)) is a point of the k-osculator bun-
dle (Osc* M, w, M) and to obtain the results for the Einstein - Schrédinger’s
geometry of the higher order in a natural case.

The fundamental notions and notations concerning the osculator
bundle of the higher order are given in the papers [8] [9] and in the recent
Miron’s book [7] and we suppose them to be known.

For a nonsymmetric tensor field Gyj(z, y, y(")) on Oscf M ,we have a
symmetric tensor field g;;(z, ¥y, ..., y®) and a skew-symmetric one aij(z, ¥y, ..., y*))

from the spliting

1) Gij = gij + aij,

where we suppose that

(2) det || gij (2, ¥, ., ¥ - llaij(z, o, ... y®) || #£0
and dim M = n = 2n’.

1991 Mathematics Subject Classification. 53C60, 53B50, 53C80.

Key words and phrases. osculator bundle, Einstein-Schrédinger geometry, higher order Lagrange spaces.
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We denote

"g".i (1!, y(l)) () y(k))"—l = ”gij(z, y(l)v eey y(k))”1

lais (2,5, oo I = Nl (2,40, .y

(a)
We have from Gijx =0, Gij | ,.=0 (a=1,..,k)
the following equations :
a) a) _
(3) g,'j|k =0 y g,'j | k= 0 y a,-j|k =0 y a,-,- | k= 0 (a: 1,...,k) ;
which is equivalent to

(@) (@)

(4) gi{k =0, gij l k:O ) ai{k =0, a¥ | k=0 (a= 1,,k)

We investigate the set of all N-linear connections DT(N) = (L* ko C"j k)

(@)
(e =1,...,k) for which we have (3) in the form

o
o
L'y =L +As%, Cy = C +Bj (a=1,..k),
(@) (@)

o
-]
where D T (N) = (L‘jk, C"jk ) (@ = 1,...,k) is a fixed N-linear connection on
(o)

Osc*M and A;k , B;'. . are arbitrary tensor fields of type (1,2).
()

We obtain for A and for B the equations
(@)

)

(5) Aikgri + A§kyir = g.’ji’k y Ajgarj + A;kair = aij"'k

12
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(@)

o
By 9ri+ Bj 9ir=9ij &>
(6) ) (a) (a)
(g)

By, arj+ Bj, air=aij |, (@=1,...,k)

| @ ()

We do not know the general solution of the equation system (5) and (6)

We give a solution for these equations in the following special case.

Definition 1. An assymmetric metric (1) is called natural if we have

(™ Arkaly = apkAl
where
1 1
(8) A?jh = 5(,5!‘5?*'.%'1'!]“) ) ‘I’fjh = 5(5:‘6;‘ —a;;akh).

Theorem 1. An assymmetric metric Gyj(z, ¥, ...,y¥)) on Osc* M is natural if and

only if there ezxist a function p(z, ¥, ...,y(")) on Osc®* M such that
9) 9irgjsa” = pgij.

Examples.
1. Let f;(z, ¥y, ...,y(*¥)) be a tensor field of type (1,1) which gives an almost

complex d-structure on Osc* M : f2 = —§. If we put:

(10) aij = fi grj,
then a;;(z, 31, ..., y*¥)) is alternating and Gi; = gij + a;j is an asymmetric metric on
Osc* M. In this case y = —1.

2. Let q; (z,yV, ..., y*¥)) be a tensor field of type (1,1) which gives an almost
product d-structure on Osck M : ¢® = +4. If we put:

(11) @ij = q; 9rj

then a;;(z, ¥y, ..., y¥)) is alternate and Gij = gij + a;j is an asymmetric metric on
Osc* M. In this case u = +1.
13
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Theorem 2. If there exist a N-linear connection on Osc* M compatible with a natural

asymmetric metric G;j(z, ), ...,y(")), then the function p is constant.

Definition 2. A natural asymmetric metric (1) is called elliptic if p = —c® and

hyperbolic if 4 = ¢%, where c is a positive constant.
The converse of Theorem 2 holds as follows:

Theorem 3. If a natural asymmetric metric (1) is elliptic or hyperbolic, then there

exist N-linear connections DT(N) = (L', C';, ) compatible with Gi;(z, ¥, ..,y
(@)

o

o
Let D f’ (N) = (L} ko C‘j « ) be a given N-linear connection, then in the elliptic case

(a) ’
we have
4
. o . .
i =t legitg o L T
Ly L' +3{g yrj,k—l-a arj|k+f’f:‘|’k}
(12) |
° @ @ (€
Cijk = Cijk +%{-‘1"9rj | & +a'"ar; | +fi f; | &}
| (@ (o)

(e =1,...,k), and in the hyperbolic case we have

)
.. ° . . .
Dy = Lp+ild"s g, +a"a o —aid', )

13) <

° @ (@) @
Cu = Oy +1l9795 |y +e7ay |4 —giar |4}
| (@ ()
(a=1,..,k)



HIGHER ORDER EINSTEIN-SCHRODINGER SPACES

Theorem 4. The set of all N-linear connections DT (N) = (Lj-k, Cix )} compati-

(@)
ble with a natural asymmetric metric (1) on Osc* M is given by
*
* . ~ .
(1) Du=Dut ML, ¢, = &, +ALe 2,
(@) (@) (a)

where DI'(N) is the N-linear connection in Theorem 8 and Yj"k , ZJ‘: e (@=1,.k)
(@)

are arbitrary tensor fields on Osck M.

c
c

If we put D T (N) =D T (N) = (L, Cii ) (@ = 1,..,k) for
()
gij(z, ¥, ..., y(¥)), that is:
r F — 1. _is Jgj: 09gsk _Jgjk
Lji= 29 oz + dzi bz )’
c
(15) ﬁ ci — 1 _is Jgj: + Jyak _ Jgjk
ik — 29\ dy(k T Gy(e)i  Fyla)s )
| @

the generalized Christoffel symbols we have:

Theorem 5. The canonical N-linear conneclion compatible with a natural asymmet-
ric metric Gij(z, ¥y, ..., y*)) is given in the éllipt.ic case by:

( c

Ly =L, +%{ai’arjfk + f;f:fk}

(16) \ c @ @

Ciu =Chu+ildmay | (45 1) @=1,..k)
L @

15



ATANASIU GHEORGHE

and in the hyperbolic case by

( c
i, = 1. +l{aira e —q'q }
ik JRTAR Do M0

mi{ e
C'jk = C'jk +%{azra,.j |k—q;q; I}, (@=1,..,k)

(@) (@)

\

Now, the Einstein equations, electromagnetic tensors, Maxwell equations for
the higher order Einstein-Schrodinger geometry can be studied using these canonical
N-linear connections.
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ON BIRECURRENT WEYL SPACES

ELIF OZKARA CANFES AND ABDULKADIR OZDEGER

Dedicated to Professor Pavel Enghig at his 70** anniversary

Abstract. In this paper, birecurrent Weyl spaces are defined and it is
proved that the birecurrence tensor of a birecurrent Weyl space is sym-
metric if and only if the space is Riemannian. Moreover, some results
concerning birecurrent hypersurfaces of a birecurrent Weyl space are ob-

tained.

1. Introduction.

An n-dimensional manifold W, is said to be a Weyl space if it has a conformal
metric tensor g;; and a symmetric connection V satisfying the compatibility condition
given by the equation

Vigij — 2Tkgi; =0 (1.1)

where T denotes a covariant vector field and Vig;; denotes the usual covariant de-

rivative.
Under a renormalization of the fundamental tensor of the form
§ij = Mgij (1.2)
the complementary vector T is transformed by the law
T =T + Ok ln X (1.3)
where X is a function defined on W,,.

A quantity A is called a satellite with weight {p} of the tensor g;;, if it admits
a transformation of the form

A=)XA (1.4)

17
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under the renormalization (1.2) of the metric tensor g;; ([1], [2]).

The prolonged covariant derivative of a satellite A of the tensor g;; with
weight {p} is defined by ([1], [2])

Vid = Vi A — pTi A. (1.5)

We note that the prolonged covariant derivative preserves the weight.

According to Norden [3], we have
‘”?z‘jk - 3:',‘]' = R?jkz‘,’, (1.6)
where R:'j & is the curvature tensor of the Weyl space defined by

8 i
Riji = 55Ttk — 5 Ti + T — DLy (L.7),

The first and the second Bianchi identities for Weyl spaces are, by [4],
v"R;"kh + ka}hr + VhR;‘rk =0. (1.9)

2. Birecurrent Weyl Spaces

A Weyl space Wp(gij, Tk) is called recurrent,[4], if the curvature tensor

satisfies the following condition for some non-zero covariant vector field ¢, (# T}):

Vs Rl = ¢0Ra"‘jl' (2.1)

We call a non-flat Weyl space Wy, (gij, Tk) birecurrent if the curvature tensor

satisfies the condition
V- ViRl = ¢ur Rl (2:2)
for some non-zero covariant tensor field ¢,,. Transvecting (2.2) by gn and remember-

ing that the prolonged covariant differentiation preserves the metric, we obtain the

equivalent form of (2.2) as

Ve Vs Riijk = bsrRiiji , Riijk = gnRly. (2.2)
18



ON BIRECURRENT WEYL SPACES

It is easy to see that a recurrent Weyl space is birecurrent. In fact, by taking the

prolonged covariant derivative of (2.1) with respect to u”, we get
Ve VR = (6o,r + 626r) Rl (2.3)

with ¢sr = @ r + ¢s¢r.

We examine Weyl spaces which satisfy (2.2), but not (2.1).

We remark that the definition of a birecurrent Weyl space agrees with that of a
birecurrent Riemannian space if we take the complementary vector field of W, (g:;, Tk)

as Zero.

Theorem 2.1. The birecurrency tensor of a birecurrent Weyl space with a non-

vanishing scalar curvature is sg'/mmetric if and only if the space is locally Riemannian.

Proof. Assume ¢,, is a symmetric tensor. Transvecting (2.2)' by g*/¢** and remem-
bering that the Ricci tensor R;; and the scalar curvature R of the Weyl space are

respectively defined by R;; = R,f',‘j, R = R;jg", we get
V,VsR = ¢, R. (2.4)

Changing the order of the indices r and s in (2.4) and subtracting the expression so

obtained from (2.4), we have
V[,-V,]R = PR

where the bracket indicates antisymmetrization.

Since, by assumption, ¢,, is a symmef.ric tensor, we get
ViVgR =0. (2.4)

Expanding V[,V,]R and remembering that R is a satellite of g;; with weight {—2},
we find that

VirVaR = V[V, )R + 2V T R = 0 with V;VgR = 0.

Since R # 0, we have
VisTrp=0
19
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which means that W,, is locally Riemannian.
The sufficiency of the condition is a well-known fact from the Riemannian

Geometry [5]. a
Corollary 2.1. If V,V,R,-jk;. = 0, then the Weyl space is locally Riemannian.
Corollary 2.2. If V[,V,]R.-jkh =0, then the Weyl space is locally Riemannian.

Theorem 2.2. The birecurency tensor ¢;5 of a birecurrent Weyl space is the solution

of the equation
¢is(Rp — Riy +6,R) =0
where R, = Riyug'% , R\, = Reng™ and R = Rjrg’* .
Proof. By taking the prolonged covariant derivative of (1.9) with respect to u*, we
get
VeV Ripn+ VoViRi, + V, ViR =0 (2.5)
from which, by (2.2), it follows that
$rs Rikh + Oks Rinr + dho Ry = 0. (2.6)

Contracting (2.6) with respect to ¢ and r and remembering that

R;j = R}; and RY, = —Rl,
we get
is Rin — Sks Rjn + éns Rj = 0. (2.7)
or,
¢is(Rikn — 8% Rjn + 4 Rjx) = 0. (2.8)

Transvection of (2.8) by g% yields

¢is(Rlp — Ry +6,R) =0
where R’ , = tend’ Ry = Reng™® and R = Rjeg’® . O
Corollary 2.3. IfdetA} # 0, then W, is Riemannian, where A, = R , — R', + 6} R.

20



ON BIRECURRENT WEYL SPACES
3. Hypersurfaces of Birecurrent Weyl Spaces.

Let Wi (gij, Tk) be a hypersurface, with coordinates u’(i = 1,2,---,n) of a
Weyl space Wy4+1(9gab, Tc) with coordinates z%(a = 1,2,---,n + 1). The metrics of

Whn and W, 41 are connected by the relations
9ij = gap2izl (4,7 =1,2,--,n;e,b=1,2,--- ,;n+1) (3.1)
where z{ denotes the covariant derivative of z® with respect to u'.

It is easy to see that the prolonged covariant derivative of a satellite A, relative

to Wy, and Wy, are related by
VkA=2z{V A (k=1,2,---,n; c=1,2,--- ,n+1) (3.2)

Let n® be the contravariant components of the vector field of W, normal

to Wy, which is normalized by the condition
gabn®n® = 1. (3.3)

The moving frame {z¥,n,} in Wj,, reciprocal to the moving frame {z¢,n%}

is defined by the relations [3]
n,zf =0 nzh =0 28zl =4, (3.4)

Remembering that the weight of z is {0}, the prolonged covariant derivative

of ¢ with respect to u* is found as
Vizl = Vizd = wiyn® (3.5)

where wj, 1s the second fundamental form. It can be shown that w;; is a satellite of
gij with weight {1}.
The generalized Gauss and Mainardi-Codazzi equations are obtained in [4],
respectively as
Rp,'j.k = Qp,'jk + _Rdbcex:zf.’c;zi (3.6)
ka;j - vjwik + Rdbcezfzsznd =0, 3.7)
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where Rgpce is the covariant curvature temsor of Wy,4; and Qpijk is the Sylvesterian
of w;; defined by Qpjr = wpjwik — Wpkwij-

In the following we will use the notation
Bab Cd -'B g .'l:k1:¢ (3.8)
the same as in [6].

Theorem 3.1. For a hypersurface of a birecurrent Weyl space Wy, 41 with birecurence

tensor ¢o; we have the identity

Vo VeRijki—brsRijit = Ve VaQijki — breQijit+ Sijui(sr) + Dijkiwar + Ravea Ve Vs BEE!
(3.9)

where
Sljkl.ﬂ' = V RabcderrBukx ) tjkl B:‘,blf;ineveﬁabcd and ¢, = ¢eJB:§f

and the paranthesis () denotes symmetrization.

Proof. By taking the prolonged covariant derivative of Gauss equation with respect

to u® and u" successively, we have

vrvs Rijkl = Vr'v.sQijkl + (vaeﬁabcd)sz]:ﬁerl + (VcRabcd)(Vr &b:ﬂe
+ (vj}_zabcd)zz V,-V,B?jb,ff + -R-abchaB&Pl:[d-
If Wp 41 is birecurrent Weyl, then by the definition V;VeRabed = @es Rabea

so that we have

ViViBi = VeViQijut + bes Rabea Byt + (VeRaved) (Vr Bijety
+ (V4 Rabed) 2LV, V, B + RaveaVs B
By using the Gauss equation (3.6), the above equation can be brought into the form
VeVoRijki = GorRijht + VoVejht — brQuijit + VeRaveaVr B
::foRabch,Bf]",f;‘ + RabchrV,B‘;l;fld

where ¢, = ¢y BE/. Hence, by (3.5), the result follows. O
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ON BIRECURRENT WEYL SPACES
Theorem 3.2. If a hypersurface of a Birecurrent Weyl space is birecurrrent then
Ve VeQiiki — besQijit + Sijki(sr) + War Dijrr + ﬁabcdvrvaB?jbkcld =0. (3.10)
or, equivalently,
Vir Vit — $rs]Qjkt + Ravea Vi Vi BEFE = 0. (3.11)
Proof. 1t is clear from (2.2) and Theorem 3.1. O

A hypersurface of a Weyl space is called totally geodesic if w;; = 0.

Theorem 3.3. Every tlotally geodesic hypersurface of a birecurrent Weyl space is

birecurrent.

Proof. Since the hypersurface is totally geodesic, by putting w;; = 0 in (3.9) we get
the result. O
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ON SEMI-DECOMPOSABLE PSEUDO-SYMMETRIC WEYL SPACES

GULGIN CIVI, HAKAN DEMIRBUKER, AND ABDULKADIR OZDEGER
Dedicated to Professor Pavel Enghig at his 70'™ anniversary
Abstract. In this paper, we first prove that, if a semi-decomposable Weyl
, space W, can be written as the product of two Weyl spaces W, and W,_,
, then W, has homothetic metrics. Next, after having given the definitions
of symmetric and pseudo-symmetric Weyl spaces, we have shown that the
symmetric Wey!l space W,, can be written as the product of the symmetric
subspaces W, and W,:_;, if and only if the complementary vector field of
W, is the gradient of In/a. Finally, we prove two theorems concerning

semi-decomposable pseudo-symmetric Weyl spaces.

1. Introduction

An n-dimensional manifold W, is said to be a Wey!l space if it has a con-
formal metric tensor g;; and a symmetric connection V satisfying the compatibility

condition given by the equation
Vigij — 2Tkgi; =0, (1.1)
where T denotes a covariant vector field [1].
Under a renormalization of the fundamental tensor of the form
% = Ngi; (12)
the complementary vector field T is transformed by the law

T =T;+8In\, (1.3)

where ) is a scalar function defined on W,,.

1991 Mathematics Subject Classification. 53A30.
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The coefficients I}, of the Weyl connection V are given by
; i )
L= w [ 9" (9mk Tt + gmi Tk — giTin) - (1.4)

A quantity A is called a satellite with weight {p} of the tensor g;;, if it admits

a transformation of the form
A=W4
under the renormalization (1.2) of the metric tensor g;;[2].

The prolonged covariant derivative of a satellite A of the tensor g;; with

weight {p} is defined by [2]
ViA=ViA-pTi A . (1.5)

2. SEmi-decomposable Weyl spaces

As in the Riemannian case [3], we will say that an n-dimensional Wey! space
Wy (n>2) is a semi-decomposable space if its metric can be given in some coordinate
system by
ds? = g;j dz*dz? = Gop dz°dz® + 0 g5 dz®dz® (2.1)
(%44,k...=1,2,...n; a,be,...=1,2,...,q; a,8,7,...=¢+ 1,9+ 2,..,n)
where
9ab =Jab (2°) , Jap = 0Gop (27) (2.1

and o is a function of z!,z?,...,z7 with weight {0}. The two parts of (2.1) are the
metrics of the two Weyl spaces W, and W

n—g Which are called the complementary

spaces of W,.

Throughout this paper, objects denoted by a bar or a star will respectively
assumed to be formed by ga» and g3 5 while v, .7, V' indicate prolonged covariant
differentiation in W, , W, and W, _, tespectively. If, in particular o = 1, then W,
reduces to a decomposable space.

Suppose that f,‘,‘é,l_{abcd, T, denote, respectively the connection coefficients,
the curvature tensor and the complementary vector field of Wq and let T' ;,‘,"7, R; gv6r La
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refer to the subspace W,_, of a semi-decomposable Weyl space with non-constant
function o. We then have
- — 1
Jab = Gap » galg = g‘g;p , gab :._ga.b , gaﬁ — ; ga-aﬂ , Jaa = 0 , gaa =0. (2.2)
From the compatibility condition (1.1) we get
To=T,, Tua=Tas (2.3)
and consequently the connection coefficients are related by

Li=IL2, g, =T2 (2.4)

_ — I,
T3, = —0§® U, , I =08, Tha=—8 T3, T8 = — 0 g™ T; (25)

where

o _ 1 —
U’aza?, UG=%U’G—T¢. .

On the other hand, using the expression [4]

F) 9 . .
Rijri=gin Rl , Ry = 3oF rh - 22 Th +Tp T — TR TS,

for the covariant curvature tensor R;jxi, we show that the curvature tensors of W, ,
W, and W, _, are related by
D 1 * e xaf 7
Rapeda = Rabed + ‘o_‘ Ta Tﬁ g Agbed
Ropys =0 Rops + 02 WU T Agps

Raabp = —Raaps = —Raabp = —0 gap Aab — ab Bap » (2.6)

where we have put

Xabcd =96d9bc — Jac Jbd > ‘Zlab = vbﬂa + UaTs B;ﬂ = —vﬁ‘T; + Y:TE : (27)
These relations are the Weyl versions of the relations obtained in [5] for a

Riemannian semi-decomposable space. After some calculations and simplifications we
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find that

Rapys = 080 (95, T — 955 T3) » Raays = 08a(9os Ty — ary T7)
Ropas = 0Us (954 TE - 91;6 T3) s Rapya =07 (957 T - 9;‘1 E)
Rabed = Tg (Gbe Bd — Toa Be) » Raaca = Tg (FaaBe — Tac Ua)
Rabad = Tg (Gaa U6 — JpaTa)  Ravea = Tg (Toc Ba — ac Ub)

aTz 0Ty T, a:f",,)

Rabaﬁ = .iab (5-::—ﬂ - Y ) , Raﬁab = a'g:ﬂ (5-2—‘; - 5-3_" (28)

If the Weyl space W, is Riemannian, then all the quantities in (2.8) become
zero which explain a well-known result for a semi-decomposable Riemannian space
[5]-

We first prove the following theorem concerning semi-decomposable Weyl

spaces.

Theorem 2.1. A semi-decomposable Weyl space which can be written as the product

of two Weyl spaces has homothetic metrics.
Proof. For the conformal change of the metric tensors g5, , §,, and gap we have
T =20, Tuw=X Tu ;Zp =2 g%y
where
A=Azl 2%, .,2%) , A= X(2h, 22,...,29) , AT = At (20t 2912 2). (2.9)
Then, using (2.2) and (2.9) we obtain
A==\

which states that A , X, A* are equal to the same constant c. But this means that
W, has a homothetic metric.

For a Weyl space with a homothetic metric tensor, the complementary vector
field T; is invariant under the transformation (1.2). So, such a Weyl space will be

Riemannian if and only if the complementary vector field Tj is identically zero. [
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Remark 1. It can be easily seen that a Weyl space W,, can not be written as the

product of a Weyl space and a Riemannian space, unless W,, is Riemannian.

3. Pseudo-symmetric Weyl spaces
The Weyl space W,, whose curvature tensor Ry;;x satisfies the condition
ViRaijk = 2\ Rhuijk + A Riijk + i Rutjk + Aj Ruitk + M Rniji (3.1)
will be called a pseudo-symmetric space and will be denote by PSW,,, A; being a
covariant vector field with weight {0} .
Since the weight of Ry;jx is {2}, by (1.5) we get
le.hijk = Vi Rpijk — 2T} Rhijk (3.2)
so that (3.1) becomes
ViRpijk = 2(Ti + M) Raijk + A Riijk + Ai Rujke + Aj Rpite + Mk Rniji . (3.3)
If Tt = 0, W, becomes a Riemannian space and (3.3) reduces to

ViRhijk = 2\ Ruijk + An Riijk + Ai Ruje + Aj Ruie + A Raiji (3.4)

which is the definition of a pseudo-symmetric Riemannian space [6].

We will say that a Weyl space is symmetric if the condition
ViRhijk =0 (3.5)

is satisfied. This definition reduces to the definition of a symmetric Riemannian space
if we take Tj = 0 in (3.5).
It can be shown that a symmetric Weyl space with A # const. is Riemannian

since, in this case, the complementary vector field becomes locally a gradient [7].

Theorem 3.1. A semi-decomposable, symmetric elliptic Weyl space W, (n > 2) with
o # const. can be written as the product of two symmetric Weyl spaces W, and Wa_g
if and only if T, = (M) .

dxa
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Proof. Remembering that
ViRpijk = O Rpijk — Ui Rmijk — T Ramjk — T3l Ruimk — Tkl Rhijm

and using (1.5) , (2.4) , (2.5) , (2.6) , (2.7) and (2.8), after some calculations and

simplifications we obtain

. — — 1 R — — _ — _
Ve Rabea = Ve Rabcd"“; .q*ap T; Tp [Aebcd Ua+Agecd Up+Aabed Ut Agbce Ud+2Asbed Ue ]

(3.6)
Vi Rapys = 0V Ropys+02 T Ta T [Ar 55 Tat-Angys To+Anpns To+Aupyy To +2A55,5 T
3.7)

First, suppose that Wq and W, _, are symmetric. By the definition we get
nv—e}'—zabcd =0, V,; R;p.yd =0.
Qn the other hand, since W,, is symmetric we have
Ve Rabea =0, Vy Rapys =0.
Under these symmetry conditions, (3.6) and (3.7) reduce, respectively to
g Ty Tj [Acbed Ba + AaccaTo + Aabed e + Aabee Ba + 2AabeaTe ] =0 (3.8)

T Ty [Appys T + Anyys To + Avpns Tt + Aoy To + 2405, Tn 1 =0 (3.9)

Since the space W, is assumed to be elliptic, i.e. the metric is positive definite
and W, _, is not Riemannian the factor g T T3 in (3.8) can not be zero. On the
other hand, if in (3.9) §% T Ty = 0, it follows that T, = 0, ie. Tq = (25¥% ) and

oz

consequently (3.8) and (3.9) are automatically satisfied.

Suppose now that
FPTLT; #0, 3%0 T #£0.
In this case (3.8) and (3.9) are reduced to
[AcocaBa + Aaccd T + Aabed Ue + Aabee Ud + 2AabcaBe] = 0 (3.8)

[Appys Tt + Aenys Tp + Apns Tt + Avpyn Ts + 240575 T2 1= 0. (3.9)
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Now, transvecting (3.8)' by §°¢ and g* and (3.9)' by ¢"*7 and g"*%, we get

respectively

(-1 (g+2)=0. (3.10)

(n—g+2)(n—g-1)T; =0 (3.11)

from which it follows that, since n > 2 and T}y # 0, the latter case can not happen.
This proves the necessity of the condition. 4
Conversely, suppose that T, = ﬂ%l;\e/i_) , 1.e. 4 = 0 . From (3.6) and (3.7)

we conclude that
ve':ﬁabcd =0, Vq.R;p'y& =0.
showing that the two subspaces Wy and W;;_, are symmetric . O

Theorem 3.2. For a semi-decomposable PSW, (n > 2) , we have
Aa = —TUg , Ao =T,
unless Ty and T are gradients.

Proof. For a PSW,, we have from (3.1) that

VaRaﬂ'yJ + VaRﬂa‘yé = 2/\a (Raﬁ‘76 + Rﬂa‘75) (312)

voxRabcct + voszacd = 2’\01 (Rabcd + Rbacd) . (3~13)

By using the relations (1.5), (2.5), (2.6) , (2.8), the left hand sides of (3.12)
and (3.13) may be put into the form '
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VaBapys + VaRgays = —20Ta (Rapys + Rpors) (3.14)
VaRabed + VaRoaca = 2T (Raved + Roaca) - (3-15)
If the relation [7]
Rijri + Rjixt = 29i (Tiey ~ Ti k) (3.16)
is taken into account, from (3.12),(3.13),(3.14),(3.15), we finally get
029 (T = Ty (Bat D) = 0 (3.17)

Jab (Tc,d - Td.c )(T; —Aa ) =0. (3-18)

Since the complementary vector fields T, and T are not gradients, from
(3.17) and (3.18) it follows that

ﬁa+Aa=O,T¢:-Aa=O (3.19)
which completes the proof. 0

Theorem 3.3. For a semi-decomposable PSW,, the subspaces V_Vq and W,:_q are also

pseudo-symmetric unless T, and T are gradients.

Proof. Using (2.6) , (3.1) , (3.6) , (3.7) and (3.19), after some calculations we obtain

veﬁabcd = -2u, Rﬂde —Ug Rebcd - Up Raecd — U }_Iabed — Uy Rake (3-20)

.

V:I R;ﬂ'ré =2T; R;ﬁ'vé + T R;lﬁ‘75 +T5 R;rfr’ﬂs + 13 R;ﬁw +T5 Rapoy (3.21)

stating that W, and W,_, are pseudo-symmetric. |

Corollary 3.4. For a semi-decomposable PSW, with o # const., the condition
= a . - . ) .
T.= oy (In /o) implies that W, is symmetric and that W, _, is pseudo-symmetric
provided that T} is not a gradient.

Proof. The truth of this assertion is clear from (2.6) , (3.7) , (3.17) and (3.20) if we
take 1, = 0. |
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A NOTE ON MINIMAX RESULTS FOR CONTINUOUS
FUNCTIONALS

ALEXANDRU KRISTALY AND CSABA VARGA

Dedicated to Professor Pavel Enghis at his 70°® anniversary

Abstract. In this paper we extend the Willem deformation lemma for
continuous functionals and we traite also the equivariant case. With the
aid of this results we extend the min-max results of Ghoussoub [21]. As ap-
plication we give an another proof of some multiplicity results of Corvellec
[5] and we give some multiplicity results for continuous functionals which
contains a large class of multiplicity results for differentiable and locally
Lipschitz functionals.

1. Imntroduction.

In many papers is studied the critical point theory for continuous functionals,
see [3], [4], [5], [2], [?] and [8]. In this paper using some results from the paper of J.-N.
Corvellec, M. Degiovanni and M. Marzocchi [4] we prove the Willem deformation lem-
ma for continuous functionals. We traite also the equivariant case. With the aid of
this results we give a simplified proof and generalize some min-max results of Ghous-
soub [21], Fang (6], and Ribarska-Tsachev-Krastanov [9]. Using this result we give
some multiplicity results of Ghoussoub [21], which represent an another proof of some
multiplicity results of Corvellec [5]. As applications for different topological index we
give some minmax and multiplicity results for continuous functionals, which repre-
sent generalizations for well known results, see Fadell [19], Santos [33], Chang [16],
*Marzocchi [28], Goeleven-Motreanu-Panagiotoulos [23], Mironescu-Radulescu [32] and

another results.
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First we recall some definitions and result from the paper of M. Degiovanni
and M. Marzocchi, see [3].

Definition 1.1. Let (X, d) be a complete metric space and let f : X — R be a
continuous function and u € X a fixed element. We denote by |df|(u) the supremum

of the o € [0, 00[ such that there exist § > 0 and a continuous map
H : B(u,8) x [0,6] > R

such that Vv € B(u,6) for all t € [0,68] we have

a) d(H(v,t),v) <t

b) f(H(v,1)) < f(v) — ot

The extended real number |df|(u) is called the weak slope of f at u.

Definition 1.2. Let f : X — RU{oo} be a lower semicontinuous function. We define

the function
Gy :epi(f) = R
putting
epi(f) = {(u,§) € X x R : f(u) <€} and Gy(u,§) =¢.

In the following epi(f) will be endowed with the metric
dep((,€), (v, 1)) = (d(u,0)? + (€ — w)*)3.

Of course epi(f) is closed in X xR and G is Lipschitz continuous of constant

1. Consequently |dG;|(u,€) < 1 for every (u,&) € epi(f).

Proposition 1.3. Let f : X — R be a continuous function and let (u,§) € epi(f).

Then
Grl(u, &) = ;; + J €and |df|(u) < o0

1 if f(u) < €or |dfi(u) = .
We recall a basic result from [4].
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Theorem 1.4. ( Theorem 2.11, [4]) Let (X,d) be a complete metric space and let
f: X — R be a continuous function, C a closed subset of X and 8,0 > 0 such that

d(u,C) < 8 = |df|(u) > 0.

Then there exists a continuous map 1: X x [0,6] = X such that
1. d(n(u,t),u)) <t,

2. f(n(u,1)) < f(u),
3. d(u,C) > 6 = n(u,t) = u,
4. v€ C=> f(n(u,)) < f(u) - ot.

In the following, for every ¢ € R we use the next notations:
Kc(f) = {z €X: |dfl(-’l7) =0 and f(a:) = c};
ff={zeX: f(z)<c}:
fe={zeX: f(z) >c}.

2. Willem deformation lemma

In this section we extend the Willem deformation lemma. for continuous func-

tionals.

Theorem 2.1. Let (X,d) be a complete metric space, f : X — R a continuous
function, C a closed subset of X and ¢ € R a real number. Let € and § > 0 two

number such that we have:
V ue fl([c—-26,c+2])NCas: we have |dff(u) > ¢. (2.1)

Then there exists two real numbers ¢’ € (0,¢) and X > 0 and a continuous map
n:X x[0,1] = X such that:
a) d(n(u,t),u) < AL,
b) F(n(w,0) < f(u),
c) ifud f~(c—2e,c+2])NCos : p(u,t) =u, V t€]0,1]
d) a(f* nC,1)c foe,
e) Vt€l0,1] andV u € f°NC we have f(n(t,u)) < c.
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Proof. First, we suppose that the function f : X — R is Lipschitz continuous with

constant 1. We consider the set:
C*={ueX|c—t1 < f(u) <c+11,d(u,C) <26 -1}, (2.2)

where 8, +t, < 2¢,8; < 28 and &,,1; > 0, for example §; := min{e,d} and t; = %
Obvious the set C* is a closed subset of X. We observe that from the relation
d(u,C*) < 8; we get:

u € f1([c — 26, ¢+ 2¢) N Cas. (2.3)
Indeed, because |f(v) — f(u)| < 1-d(u,v) for Vu,v € X we obtain
—d(u,v) < f(u) — f(v) < d(u,v), YveC".
Using this relation and the fact d(u, C*) < 6; we get
c—(t1+48 < flu) <c+(t +461).

Because d; +¢; < 2¢ we obtain u € f~!([c — 2¢,c + 2¢]). It is easy to verify that
d(u,C*) < é; implies u € Cys.

Because € > 715_:2- from the relation (2.3) we obtain |df|(u) > 7164-_62

Now we can apply Proposition 2.4, for C*,4; £

— and we get a continuous
function 7' : X x [0,d] — R which satisfied the conditions 1)-4) from Theorem 2.4.
Without loss of generality, we assume that A = 1, and define the function 7 : X x
[0,1] — R by n(u,t) = 7'(u, At). The properties a) and b) are obvious. Let u ¢
F~1([e — 2¢, ¢ + 2¢]) N Cas since f is a Lipschitz function with constant 1, we have
d(u,C*) > 6, and using Proposition 2.4, a) we get n(u,t) = u.

For the proof of d) let ¢’ = min{¢;, 71‘:_—6;} and we distinguish two cases:

2.4) fu € fo+' N C and f(u) > ¢ — ¢ it follows that u € C*, hence we have

<ct+e-—

f(’l(“»l))ﬁf(")‘—l\/%e—f \/%_52_

2.5) If u € f*¢' N C and f(u) < c— ¢, then from b) we get

f(n(w,1)) < fu) <c—¢'.
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The part €) of the theorem is proved in same way as d).

Now we consider the general case. For this let C** = {(u,§) € epi(f)| u € C}.
The set epi(f) is closed in X x R and it follow that epi(f) is a complete metric space.
In the next we prove that for every (u,§) € epi(f) with (u,€) € (}f'l([c— 2e,¢c+2e])N
C53, we have |dGy|(u, &) > —\/—1—{'—7
We distinguish two cases:
I) Let f(u) =£. In this case we have two subcases.
a) |df|(u) < oo. If (u, f(w)) € Q'f'l([c— 2¢, ¢+ 2¢]) N C33, then we get u € f~1([c -
2e, ¢+ 2¢]) and dgp((u, f(u)), C**) < 28. Because d(u,C) < dep((u, f(u)),C**) < 26
we get u € f~1([c — 2¢,¢ + 2€]) N Cas and using the hypothesis of theorem follow
|df|(u) > e.
Because |df|(u) < oo from Proposition 1.3 we have |G¢|(u, f(u)) = VIJ%%P(LU) and

using the fact that the function z — 71‘:_—3:2 is increasing we have |dG;|(u, f(u)) >

£

;1 +e2
b) If |df|(u) = co using Proposition 1.3 we get |dG,|(u, f(u)) =1 > —=5—.
) If |df|(u) g Prop get |dGy|(u, f(u)) VTé’s
IT) If f(u) < &, then from Proposition 1.3 we have |dGs|(u, f(u)) =1 > .
) If fu) <€ P ve [dGy|(u, f(u)) Jire

From these we get that for every (u,§) € g;l ([e—2¢, c+2€])NC3; implies |[dGy |(u, &) >
3

;71+5"

The set A := G;*([c — 2¢,c+ 2¢]) N C33 Nepi(f) # B, because if u € C, then
(u, f(u)) € A. We apply the previous step for X := epi(f), f := Gy and C := C**.
Then there exists two positive numbers ¢/, A > 0 and a continuous mapping 7 :=
(71, 72) : epi(f) x [0, 1] — epi(f) such that the following holds:
2.6) dep((M(u,8),1), (v,€)) <AL, Y (u,€) € epi(f),V t€[0,1];
2.7) G5(0(w,€),8) =M((w,€),8) <& =Gy (u,§), for all(u,§) € epi(f), and
vV tel0,1];
2.8) 7((u,£),t) = (u, &) for every (u,§) € epi(f) with(u,§) ¢ G}'l([c—2e, e+2e])NCs5;
2.9) WG NG, 1) C G
2.10) f(@((v,€),t) < c for every t €]0,1] and V (u,£) € G; NC**.
We define the function 7 : X x [0,1] — X by
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2'11) ﬂ(“»t) = ﬁl((“’ f(u)), t)‘

Because 7 takes its values in epi(f), we have

2.12) f(T((u, f(w)),t) < Fal(w, £(:5),1)
From 2.6) we have:

d(n(u,t),u) = d((7; (u, f(u),1),u) <
< [((T (u, £(u)), ), u) + (TFa((u, F(w)), 1) — F(u))?]5 =

= dep(((u, F(w)), 1), (u, () < .

From the relations 2.7) and 2.12) we get

F(n(u,8)) = F(1(u, £(u),8) < Ta((w, £(v)), ) < F(w).

If ué f~1([c — 2¢,c+ 2€]) N Cas then
2.13) (u, f(u)) & (}j‘l([c —2¢,c+2])NC5;5.
Now we assume that (u, f(u)) € G;'([c — 2¢, ¢ + 2¢]) N C3;. From this follow that
2.14) f(u) € [c — 2¢, ¢+ 2¢]
and (u, f(u)) € C3;, which is equivalent with d.p((u, f(u)), C**) < 25. But we have
d(u, C) = inf{d(u, Vv € C} < inf{dep(u, £()), (1,8)) | (5,€) € C**} = dup((u, F(w)), C)
From this and from 2.14) we get u € f~([c — 2¢, ¢ + 2¢]) N Cas which is a contra-
diction with assumption. If u & f~1([c — 2¢,c + 2¢]) N Cys, then from 2.8) we get
7(u,2) = 7y (6, £ (), ) = .

If f(u) < c+ ¢’ then from 2.9) and 2.12) we get

fn(w, 1)) = f(m(u, f(w), 1) <T((w, f(u)),1) <c— €.

From 2.10) and 2.12) we get the relation e).

In the following we use the next form of Willem deformation theorem.

40




A NOTE ON MINIMAX RESULTS FOR CONTINUOUS FUNCTIONALS

Corollary 2.2. Let (X,d) be a complet metric space, f : X = R a continuous func-
tion, C a closed subset of X and ¢ € R a real number. Let € > 0 be a number such:
V z€ f(c—2,c+2])NCo : we have |df|(z) > e.

Then there exists two real numbers ¢’ € (0,€) and A > 0 and a continuous map
n:X x[0,1] = X such that:

a’) d(n(u,t),u) < At, for everyt € [0,1].

b’) f(n(u,t)) < f(u), for everyt€[0,1] and z € X.

c’)ifr g f(le—2¢,c+2))NCoe : (z,t) =2, V t€0,1)].

d’) p(fetre' nC,1) C fo withe’ = —£

2V/1+e?
e’) Yt €]0,1] and V z € f¢NC we have f(n(t,z)) <c.

Proof. In the proof of Willem deformation lemma we take § := ¢, ¢, = % and
€

/
T ite

3. A minmax result

Definition 3.1. Let B a closed subset of M. We shall say that the class F of subsets _

of M is homotopy stable with boundary B if:

(a) Every set in F contains B;

(b) For any set A € F and any continuous function 5 € C([0,1] x M, M) verifying
n(t,z) = z for all (t,z) € ({0} x M) U ([0,1] x B) we have (1, A) € F.

Definition 3.2. We say that a set F is dual F if F verifies the following conditions:
1°) dist(F, B) > 0;
2°) FNA#0 forallAcF.

Denote by F* a family of subsets which are dual to F and we say that F* is
dual family to F. We have the following relation

= sup inf f(z) < mf sup f(z) =:c
FeF v€F

Examples:
3.1) Let K be a compact metric space, Ko C K a closed set, X a Banach space,
X € C(K,X). Then the set F = { A = g(K)|g € C(K, X) with g(Ko) = x(Ko)} is a
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homotopy stable family wits boundary B = x(Ko).
3.2) For each n € N the families

Fn={A|AC Xwithcatx(A) >n}

is a homotopy stable family, where catx (A) denote the Ljusternik-Schnirelmann cat-

egory.
3.3) For each n € N the families

Fn={A|Y C Aandcat(x,y)(4) > n}

is a homotopy stable family with boundary Y, where cat(x y)(A) denote the relative
category, see [25].

3.4) We recall the definition of the P-ideal valued cohomological index. Let E be a
paracompact space and (X, A) € £g whwre &g is the category of paracompact pair
(X, A) ion E for a fixed closed subset A of E. Let H*(,) be the Alexander-Spanier
cohomology theory with a field coefficient K, see [34]. The cup product defines a
multiplication on H*(X, A) as fllows:

H*(X,A)® H*(E) ' H*(X,A)® H*(X) — H*(X, A),

where 1 is the identity on H*(X, A) and i is the inclusion map X S E. Therefore ,
H*(X,A) is an H*(E) module. In particular, H*(A) is also an H*(FE)-module. We
introduce the following notation: A = A*(E). For an H*(E)-submodule P of H*(A)
the P-ideal value cohomological index of (X, A) over K is an ideal denoted by

P —Indezp(X,A)={ €A|u-A=0,Yue M*(X,A)},

where M9(X,A) = §9(P) for ¢ > -1, M°(X,A) = £(K), 6* is the coboundary
operator for the pair (X, A) and £ is the augmentation. In the next we consider A
and B two disjoint closed subsets of X. We say that A is P-ideal linking to B if and
only if

P — Indexg(E \ B,A) D P — Indezg(E, A).
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Let E be a connected paracompact space. We suppose that the following conditions
holds:

1’) There are two disjoint sets A and B such that A is P-ideal linking to B, P C
H*(4);

2’) There exists a closed set X O A in E such that X \ A is precompact and

P — Indexg(X,A) = P — Indezg(E, A).

We denote by @ = P — Indezg(E, A) and B = P — Indezg(F \ B, A). Since A is
P-Ideal linking to B, we have § D a and 8 # a. We define the set

Za = {(X,A) egE :P-—Inde:cE(X,A) = a},

where £ is the class of all paracompact pair (X, A) inE. Note that £, # 0 s-
ince ()?,'A) € Xg. ~We prove that X, is homotopy stable with boundary A. Let
(X, A) € X, be a paracompact pair and 5 € C([0, 1] x E, E) a deformation such that
n(t,z) = z for all (¢,2) € ({0} x E) U ([0,1] x A). From the invariance property of
the P-ideal valued index we get 7(1, X) € X,. Since A is P-Ideal linking to B, then
for every X € L, we have X N B # 0.

In the next we prove the main result of this section which generalize the main

results from [21], [6] and [9].

Theorem 3.3. Let (X,d) be a complete metric space and let f : X — R be a contin-
uous function. Consider a homotopy stable family F of subsets of X with boundary
B and a dual family F* of F. Let F € F* be a fized, element which verifies the

following condition
inf f(z) 2 ¢, (3.1)

where ¢ := sup f(z).

“:gfj‘erA
Let € € (0, Mfll) and § > 0 be arbitrarly fired numbers. Then for any A € F
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which verifies the relation

sup f(z)<c+ i

TEANFy 21 +52’

then there exists z. € X such that the following holds:

(3.2)

(i) c—2< f(ze) < e+ 2
(i) |dfl(ze) <e;
(i) dist(z., F) < 2¢;
(iv) dist(z,, A) < 2e.

Proof. From the definition of the number ¢, there exists a subset A C X such that

€
sup f(z) < ¢+ ———=
zEA 21 +¢2

relation:

. From this we get that for every § > 0 we have the following

sup f(z) <ec+ S —
zEANF; 2v1+¢e?

Using the fact that dist(z,A) = dist(z,A), the assertions i)-iv) from theorem is

equivalent with:
exists an =, € 7 ([c — 2¢,¢ + 2€]) N F2. N Aze such that |df|(z.) <e.
We suppose the contrary, i.e.
V z€ f Y e—26¢c+2))NFa NAz. we have |df|(z) > e. (3.3)

We consider the set C := ANF then we have C3c = (FNA)3 C (_F_OZ)ze C

Foe ﬂjge. Frc;m the relation (3.3) we have the following implication;
if £€ f'([c—2¢,c+2))NCe then |df|(z) >e.

From Corollary 2.2 we have a continuous function 7 : X x [0,1] = X and A > 0 which
satisfies the assertions a’)-e’) with A < min{e, d}, see the proof of Theorem 2.1. Let
A; = n(A,1). If ¢ € CxCy, where CxCy. denote the complementary of the set Ca,
in X, then from the propertie c’) we have )(z,t) = z for every t € [0, 1]. Using the fact
that dist(F, B) > 2¢, we get B C CxC2., thus we have B = (B, 1). Because F is
a homotopy stable family with boundary B, result that B = (B, 1) C 5(4,1) = A,
thus A; € F. We have the following relation 9(4,1) N F C (AN Fy, 1).
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Indeed, if z € n(A, 1) N F, then there exists an y € A such that z = n(y,1) € F.
But d(y,n(y,1)) < A, thus y € F5. From the relation y € AN F) it follows that
z =1(y,1) € n(AN Fy,1). From (3.2) we have

€

2\/1+52‘

Indeed, since A < &, we have ANF, C ANF;s. But sup f(z) < c+ ¢ we get

ANF, C f°+°l, with ¢ =

, € ANFs
ANF, C f°t* . From the properties d’) we have
AN Fy, 1) Cn(f7 5 1) € fT A (3:5)

From the relations (3.4) and (3.5) we get Ay N F C f VAT | which is equivalent to
r)<c— £ for every z € A; N F. From this relation we get
flz) < ire y 1 g

[

Inf f2) < iof flz)<e— ire

€
————— which is a contradic-
2v1+¢e?

In the following we give a simplified proof for Theorem 1.5 from [6] without using the

From the relation (3.1) we have ¢ < 12}'" f(z) <c—
z

tion.

Ekeland’s variational principle.

Corollary 3.4. (Theorem 1.10,[6]) Let f : X — R be a continuous functional on a
complete metric space (X, d). We consider a homotopy stable family F of compact
subsets of X with closed boundary B and a dual family F* of F. Assume that

S, L@ = ol merf(e) =
and suppose that the number c is finite.
Let € > 0 and F a subset of X dual to the family F and satisfying the relation

. €
> —.
a}lelg'f(z) 2¢€ 3V1+e2
Suppose that 0 < e < dist(B, F , the for any set A € F satisfying
€
sup f(z) < c+ ———,
zegf( )< 2vV1+¢€?
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then there exists an x. € X such that:
i) c— 2 < f(z:) <c+2e

i) |df|(zc) <e;

wi) dist(ze, F) < 2¢;

iv) dist(ze, A) < 2e.

Proof. From the assumption of theorem we see that

Peb. 0= M e =

and exists A € F and F € F* such that:

€
sup f(z) < ¢+ ——,
z€A (=) 21+ €2
inf f(z) >c— —c
zeF - 3 /1 + g2 ’
The proof is same to proof of Theorem 3.1, if we choose C' := AN F. We have that C
is closed, because A is compact set and A; = (A4, 1) is compact, because the function

z —> 7(z, 1) is continuous. Therefore we have A; € F.

Remark 8.5 If we choose different homotopy stable family we give different min-max
results. For example if we choose the homotopy stable family F = { A = g(K)|g €
C(K, X) with g(Ko) = x(Ko) }, where K is a compact metric space and Ko C K we

obtain a generalization for continuous functionals of the Theorem 4.3, see [26].

4. Equivariant version of min-max result

In this section we give a generalization of some min-max and multiplicity
results of Ghoussoub [21] for continuous functionals which represent an another proof
of some min-max and multiplicity results of some results of Corvellec [5]. First we
recall some definition and results from [3] and [5].

In this section (X, d) will denote a metric space and G a group of isometries of X, i.e.

G={g9: X — X| d(g9(z),9(y)) =d(z,y), forall z,ye X and g € G}.
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As usual, we say that
A C X is G-invariant if g(A) = A for allg € G;

h:X — R is G-invariant if hog=~h for all g € Gj

h:X — X is G-equivariant if hog=goh for allg € G.

Definition 4.1. Let (X, d) be a complete G- metric space and let f :— R be a
continuous, G-ivariant function and u € X a fixed element. We denote by |df|g(u)

the supremum of the o € [0, 0of such that there exist § > 0 and a continuous map
# : B(Gu,8) x [0,6] = R

such that Vv € B(Guy,d) fo7; all t €[0,4] we have
a) 7(.,t) is G-invariant for each ¢ € [0, 4]

b) d(#H(v,t),v) <t

Q) FH(0,) < f(v) — ot

The extended real number |df|z(u) is called the G-weak slope of f at u.
The epigraph function G; is Lipschitz continuous of constant 1 and is G-

invariant, because the function f is G-invariant.

Proposition 4.2. Let f : X — R be a continuous function, G-inariant and let
(u, &) € epi(f). Then

Grla(w, &) ={ VI et 7 1) =€and |dfla(w) < oo,
f1G\4, =

1 if f(u) < €or Idflc(u) = 00.

We recall a result from Corvellec [5].

Proposition 4.3. Let (X,d) be a complete G- metric space and let f : X — R be
a continuous G-invariant function, C a closed G-invariant subset of X and §,0 > 0

such that
d(u,C) < 6§ = |df|g(u) > 0.
Then there ezists a continuous G-equivariant map n: X x [0,8] & X such that
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1) d(n(u,t),u)) < t,

2) f(n(u,1)) < f(u),

3) d(u,C) > § => n(u,t) = u,

4) v € C = f(n(u,t)) < f(u) — at.

We have the following equivariant version of Willem deformation lemma.

Theorem 4.4. Let (X,d) be a complet G-metric space, f : X = R a continuous

G-invariant function, C a closed G-invariant subset of X and c € R a real number.
Let € > 0 number such:
V z€ f([c—2ec,c+ 2]) N Ca : we have [df|g(z) > €.

Then there ezists two real numbers ' € (0,€) and A > 0 and a continuous G-

equivariant map 1 : X x [0,1] = X such that:

a’) d(n(u,t),u) < At, for every t € [0,1].
b)) f(n(u,t)) < f(u), for everyt€[0,1] and z € X.
) ifeg [T([c—2e,c+2))NCos:n(z,t) =2, V t€]0,1].

&) n(f+r' nC,1) C f with e = — .
) u(f )cf ws m
e’) Vt€l0,1] and V z € f°NC we have f(n(t,z)) <c.

Definition 4.5. Let X be a paracompact space on wich act a compact Lie G. We de-

note by Pg(X) = { A C X | A closed invariant subset of X }. A topological index

Indg associated to a compact Lie group G is a function Indg : Pe(X) — N U {oo}

verifying the following properties:

(I1) Indg(A) = 0if and only if A = 0;

(I2) If f : A; — A, is a G-equivariant continuous map the Indg(A;) < Indg(A2);

(I3) If K is a compact invariant, then there exists a closed invariant neighborhood U
of K, such that Indg(U) = Indg(K).

(14) Indg(A1 U Az) < Indg(Ay) + Indg(A2)

(15) If K is compact invariant set with K N I(G) = @, then K contains at least n
orbits provided indg(K) > n, where I(G) = {z € X |3g € G\ {e} withgz = z}.
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(I6) If K is a compact invariant set with K N I(G) =0 , then Indg(K) < +oo.

Definition 4.6. Let X be a G-paracompact space. We introduce the following no-

tation:
Pe(X) = {(A,B)| BC A C X and A, Bare closed and invariant}.

A relative index is a function Indg(,) ;P NU {400} such that we have:

(R1) Indg(,0) verifies the properties (I1)-(I6) of the index and will be denoted
Indg().

(R2) If f : (A1, B) — (A2, B) is equivariant and fip is a homeomrphism, then
Indg(Ai, B) < Indg(A2, B).

(R3) Indg(A1 U Az) < Indg(A1, B) + Indg(A2).

Examples:
4.1) If we consider the catg-category introduced by [19], [14], [27] or.A- category or
relative .A-category or the A-genus, see [14], [15],[12] we get another class of G-index
and relative index.
4.2) The relative cohomological index introduced by Fadell and Husseini see [20], the
eqivariant cup-length see [13] and the ideal valued index see [33], is another relative

index.

Definition 4.7. Let B a closed subset of M. We shall say that the class F of subsets

of M is G-homotopy stable with boundary B if:

(a) Every set in F is G-invariant;

(b) Every set in F contains B;

(c) For any set A € F and any G-equivariant € C([0,1]x M, M) verifying n(t,z) = z
for all (t,z) € ({0} x M) U ([0,1] x B) we have 5(1, A) € F.

Examples:
4.3) If we consider the Catg-category or A- category or relative A-category

or the A-genus, see [14], [15],[12] we get another class of G-homotpy stable family.
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4.4) In general, if we consider an index or a relative index we get different G-homotopy
stable families.
In the next we generalize the result of Ghoussoub in the equivariant case see

[21], for continuous and G-ivariant functionals.

Theorem 4.8. Let (X,d) be a complete G-metric space and let f : X — R be a
continuous G-invariant function. Consider a G-homotopy stable family F of subsets
of X with boundary B and a dual family F* of F. Let F € F* be a fized which

element which verifies the following condition
Inf f(z) 2 ¢, (4.1)

where ¢ := inf su ).
AE-‘F::GE f( )

Let € € (0, Mzﬁ'fl) and § > 0 be arbitrarly fired numbers. Then for any A € F

which verifies the relation

sup f(z) <e+

€
TEANF; 29/1+¢e2

then there exists z. € X such that the following holds:

(4.2)

(i) c—2¢ < f(ze) < c+2¢
(i) 1dfla(es) <é;
(iii) dist(z., F) < 2;
(iv) dist(z,, A) < 2e.

With the aid of Theorem 4.8 it is easy to prove a result which is very useful

in state differant multiplicity results. For this we need the following definition.

Definition 4.9. We say that the continuous and G-invariant function f : M - R
verifies the G- Palais-Smale condition at the level ¢ and around the set F' (shortly
G — (PS)F,c) along the sequence (An), C F if any sequence (zn), C M verifying
f(zn) = ¢, ||df|c(zs) — 0, dist(zn, F) — 0 and dist(z,, An) — 0 has a convergent
subsequence.
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We shall denote by A = {z € M| nli’ngo dist(z, A,) = 0}. Under the hy-
pothesis of Theorem 4.8 and assuming that f : M — R verifies (PS)p. along a
minimaxing sequence (Ap )y, the set F'N K. N Ay is non empty.

We have the following two general multiplicity results of Ghoussoub [21] for

continuous G-invariant functions. Because the proof it is same way we omit.

Theorem 4.10. (Ghoussoub-Corvellec) Let G ,M and c¢ as in Theorem 4.8 and
f : M — R a G-invariant continuous function veryfying the condition G-(PS).
Let (f'j)f':’l be an decreasing sequence of G-homotopy stable family with boundaries
(Bj)f’=1 and verifying the following excision property with respect to an indez Indg:
(E) For every1 < j < j+p < N any A € Fj4p and any U open and invariant
such that U N B; =@ and Indg(U) > p we have A\ U € F;.
Let F be a closed invariant set such that for each 1 < j < N, F verifies (F1) and
sup f(B) < inf f(F) with respect to F;. Set c; = }g}j ::g f(z), d= i.nf F(F) and let
M = sup{k : cx =d} V0.Then we have:

(a) Indg(K.), NF N Ax) > M for every minimazing sequence (Ap)n in Far.

(b) For every M < i < j+p < N such that c; = cj4p we have Indg(K:;NAx > p+1
for every minimazing sequence (An)n in Fjip. In particular if (G) C (M \ F)N
(f < d) then:

(c) f has at least N distinct critical orbits.

(d) If N - oo then f has an unbounded crz"tical value.

If in the Theorem 4.8 we take Indg = catg and F = M we get the following
multiplicity result.

Corollary 4.11. Let f : M — R a G-invariant continuous function, which satisfied
the G-(PS) condition and is bounded below, then f has at least catg(M) distinct

critical orbit.

This corollary is a generalization for continuous G-invariant function of the

Fadell multiplicity result for catg, see [19].

/;‘:7('5‘; N
< CLUJ-NAPOUA
™~ 08 patens\®
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As a consequence of Corollary 4.11 is the main result from [32] and the main result

from section 1 of [23] and Theorem 4.12 see [26].

Corollary 4.12. Let G be a discrete subgroup of the Banach space X and f : X - R
a G-invariant continuous function wich satisfied the G-(PS) condition and is bounded
below. If the dimension n of the space generated by G 1is finit, then f has at least n+1

distinct critical orbit.

Proof. Using Corollary 4.11 we get. f has at least catg(X) distinct critical orbit. But
catg(X) > cat(X/G) = caty»(T™) = n + 1, where T™ is the n-dimensional torus.
Now we consider the group Lie G = (S')¥orG = (Z,)*, k > 1 and let X
be an infinite dimensional ortogonal reprsentation of the group G. Using Corollary 3
from [12] we get catg(SX) = oo if X = 0 and catg(SX) = 2 if X¢ # 0, where SX-
denote the unit sphere in X and X€ the fixed point set of the group action G on X.

Corollary 4.13. Let G, X be as above, and f : X — R a G-invariant continuous
function. We suppose that the function f is bounded from belov on SX and f satisfies
the G-(PS) condition on SX. If X¢ = 0 then f has an infinitely many distinct

critical orbits on SX.

The Corollary 4.13 is a generalization of the main result from section 3 of

[23], where the authors are considered Z/p-action.

Corollary 4.14. (Li-Santos) Let E be a complete metric space and f : X > R a
continuous functional. We suppose that the following conditions holds:

[ satisfied the (PS) conditions;

There are teo disjoint sets A and B such that A is P-ideal linking to B;
sup f(z) < inf f(z);

T o~

There exists a closed subset X O A in E such that X \ A is precompact

and
P — Indezg(X,A) = P — Indezg(E, A).

Then f possesses at least one critical value ¢ > infz¢p f(z).
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Proof. We denote by @ = P — Indezg(E, A) and 8 = P — Indezg(E \ B, A). Since
A is P-ideal linking to B, we have 8 D a and @ # a. We define the set

La={(X,A) €€ : P—Indezp(X,A)=a },

where g is the class of all paracompact pair (X, A) in E. Note that £, # 0 s
ince (X, A) € £, and is homotopy stable with boundary A. Thus the conditions of
Theorem 4.10 are satisfied and the conclusion of this corollary is true.

If we consider the relative index we have the following result of Ghoussoub

for G-invariant continuous functions.

Theorem 4.15. (Ghoussoub) Let G and M as in Theorem 4.8 and let f : M — R
be a continuous G-invariant function satifying the G-(PS) condition. Let B and F be

two disjoint closed and invariant subset of M such that:

(1) k = Indg(M \ F) < Indg(X, B) = n.

(2) sup £(B) < inf £(F)

(3) I(G) C B.

Then f has at least n — k distinct critical orbits. Moreover, if Indg(X, B) = oo, then

f has an unbounded sequence of critical values.

Remark 4.16 If in the Theorem 4.15 we take for relative index the relativ cohomolog-
ical index we get a generalization of Theorem 5.6 see [19]. If we take different relative

index we obtain different multiplicity results for continuous G-invariant function.
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MAXWELL EQUATIONS FOR A GENERALIZED LAGRANGE
SPACE OF ORDER 2 IN INVARIANT FRAMES

MARIUS PAUN

Dedicated to Professor Pavel Enghig at his 70" anniversary
Abstract. The study of higher order Lagrange spaces founded on the
notion of bundle of velocities of order k has been given by Radu Miron
and Gheorghe Atanasiu in [2]. The bundle of accelerations correspond
in this study to k=2. The notion of invariant geometry of order 2 was

introduced by the author in [4]. In this paper we shall give the Maxwell

equations of a generalized Lagrange space of order 2 in invariant frames.

1. General Invariant Frames

Let us consider the bundle £ = Osc?M, a nonlinear connection N with the

coefficients | N%; , N’; | and theduals | M*; , M

(1) (2) (1) (2
The invariant frames adapted to the direct decomposition
T.(Osc®M ) = No(u) ® Ni(u) @ Va(u) Vu€E (1)

willbe R = (@', e e@¥ ) and the dual ®* = ( fO%, s gy,

The duality conditions are

< P> = g (4B=0,12) @

1991 Mathematics Subject Classification. 53C0.
Key words and phrases. 2-osculator bundle, invariant frames, Maxwell equations .
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In this frame the adapted basis has the representation

6 _ (O)C! 6 6 _ (l)a 6 6 _ (2)0 5
P £ 3sa gy — £ ssMea 5y — £ Js@a 3)
and the cobasis
Szt = e(?)"gs(o)a : éy(l)i — e(z)iés(l)a : Jy(z)a — e(i)ias(z)a (4)
and we have the relations
é
<m, JS(B)ﬁ> = ég JE (A,B = 0,1,2) (5)

This representation lead us to an invariant frames transformation group with

the analitycal expressions

A B
. i —a —=(B
B = CB (z,y ), y@), M pBe T FP (6)

isomorphic with the multiplicative nonsingular matrix group

g [+
Cg 0 0
0 Cg 0
0 0 Cg

A N-linear connection D has in the frame R the coefficients

0A Je(‘;)m () (A)j
AN o toeldies L] (4=0,1,2) @

ds(0)a

BA lAaIm o
Clo = FA b+ Bl cop (A=0,1,2; B=1,2) (8)

(8)

JS(B)or
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Definition 1.1. If the vector field X € x (E) has the invariant components X (A)a
(A=0,1,2) and we denote by ‘)‘,‘)3 the h— and vg, B=1,2 the covariant invariant
derivative operators then

S X (A)a
és(0)8

sXA)e
8s(B)8

A 0A
x4 = + L%y XA 9)

) BA .
Xy + Chy X

The definition of the Lie bracket conduces us to the introduction of the non-

holonomy coeflicients of Vranceanu

0 1 2
5 5 - 5 s
[JS(A)a ) 53((3)/3] = Wasgon t W gon T Wa gm0
(4B) (4B) (48)

(A,B=0,1,2; A<B).

2. Torsion and Curvature d-tensor Fields

The torsion tensor of the N-linear connection D on E
T(X,Y) = DxY — DyX — [X,Y] VX, Y € x(E) (11)

in the invariant frame R , has a number of horizontal and vertical components corre-

sponding to D* | D1 | Dv»

Theorem 2.1. The torsion tensor of a N-linear connection D in the invariant frame

R is characterized by the d-tensor fields with local components

(
T, (00) (00) ©
(0) - Lo = Llap — Wi,
00
< @0 (12)
o (4)
Pa = W'Ya
(04)
\ (00)
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K‘Y
fa
(1)
P”I
$ pa
(11)
P’Y
Ba
L (12)
K‘Y
Ba
(2)
P“I
$ pe
(21)
P‘1
Pa
L (22)
Q‘Y
Ba
(11) -
2
Q’Y
B T
(21)
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RIUS
PAU
N

_ (10)
—cm,
o
(1)
.o
pa T

(2)
W’Y
Ba
(01)

(20)

(11)
mﬂa ) (12)
(1) C-y“ﬁ
(2) ;
W"I

(11)

a

©
w
(rn)a
()
W,
(13)

(01)

(0)
W'1
a
(02)
(1)
w
Ba
(01)
: (14)
W‘Y
a

(02)

(1)

Ba
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(

o (21) W
pa  _ _
ay Cba W
(2) (12)
(16)
- 1) @
Ba —
o e Wi
L (12) (12)
- (22) (22) (2)
(‘za = Cha = Co — Wi (a7

(2) (2) (22)

Theorem 2.2. The components given by Theorem 2.1 are the invariant components

of the d-tensor fields of torsion of the N-linear connection D

The curvature tensor field R of the N-linear connection D on Osc?(M) has

the expression

R(X,Y) = [Dx , Dy 1Z — Dixy\Z (18)

‘Theorem 2.3. The curvature tensor field R of a N-linear connection D in the in-

variant frame R is characterized by the following d-tensor fields on Osc*(M):

(00) (00) (00) (00) (00) (00)
SL* SL¥,
Rfse =i ~ 50 + L L = Lalns =
(0),,, (‘2,9) (1; (10) (2')p (20) (19)
—Wﬂa L'nb + Wﬂa C,f,ﬁ + Wpa C’:’WI’
(00) (00) (1) (00) (2)
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(10)
& CYy o o
P"‘Pﬁa _ (1) 6&: . (03) (onn) ;
W = T —5ms T C‘vﬁ LYo - L3, C,,p -
(1) (1)
(0)¢ (0 ul (10) @ (20
Wi L5 + W5, C5, + Wi, CY,
(01) (01) (1) (01) (2)
(20)
§ CY » o
P%., _ @ 552 ENCORICD
P —mort Cly Lia—Ll, Cry —
(2) (2)
(0)¢ (00) (13) (10) (2) (20)
@
_-L&ﬁﬁa l;7¢ + L‘Cﬁa (7$b + D‘C;; (Zsk
(02) (02) (1) (02) (2)
(10) (01)
] C,‘:ﬁ é C“fa (10) o) (10) 10
S _ @ (1) )
an o TTmwr G O - e O
(1) (1) 1) (1)
1) (10) (2) (20)
- P v _ P
Wﬂa C"NJ Wa Cﬁqu;
1y Q) iy (@)
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(20) (10)
5§ C¥ 5 C¥
. " "“ (20 (10) (10)  (20)
5.%a ) ) ) .
(21) = mws Tmew t G G - Gy G -
@ o @ (23)
® o @ 0
J— J—
Wea Cly Wia C5y
a @ (@
(20) (20)
s C¥ § C¥ .
. i @) @ @) (o)
5,950 @ @ \ "
=mwe —mHwrot O G, — O, G —
(22) (24)
@ @ @ @
@ (@
- W/;pa C'f'ﬁ
@ @

Theorem 2.4. The components given by Theorem 2.3 are the invariant components

of the d-tensor fields of curvature of the N-linear connection D

Theorem 2.5. In the frame R the essential components of the curvature tensor field

R are those given by Theorem 2.3.

3. Fundamental Identities, ‘Maxwell Equations

Begining from Jacoby identities we obtain
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Theorem 3.1. The non-holonomy coefficients W given by satisfy the following fun-

damental identities called Vranceanu identities:

' @
W’l
2 nW o
(00)
cicl W ‘2,,7 W"ao + W > = 0 (25)
(a8 7) (00) (orn)
\ J
(1,J=0,1,2; summation also by I)
@ @ ]
n W Wor n W Wes
< Y " (0K) 1 o " 1 (00) L —0 (26
(a,8) 4 B w ao + Js(o)a + 5 af W oy + 5 JS(K)'Y - ( )
(0K) (or) (00) (IK)
\ 7
( 3
) )
WQYO' Wﬂﬂ'v
1)) ) & (C))]
=< . " (0K) 1 o 1 (KK)
By Wiha Wiy + st Why Whe Y5500 y =0 (27)
(0K) (or) (KK) (KI)
\ J

(1,J=0,1,2; K=1,2; -< meaning permutation of indexes and subtraction of results)

(1) (0) (2) (0) (0) (0)
(731 Wﬂaa + Wap-y W"ao + W({ya Wnap -
(12) (o1) (12) (02) (02) (o1)
64



MAXWELL EQUATIONS FOR A GENERALIZED LAGRANGE SPACE OF ORDER 2 IN INVARIANT FRAMES

(0)

Wﬂﬁ'v
(0) (0)
(12)
- aaﬁ Wﬂa‘y +EW =0 (28)
(01) (02)

(1)
Wﬂﬂ'v
(n (1) (¢)) (1) (1) (1) (12)
Gy W + Wy Why — Wo W, +Z—ge— =0 (29)

(12) (or) (02) (1) (01) , (I12)

(2)

Wﬂﬂ'r
) (2) 0)] (2) 09} (2) (12)
”ﬁ,, wm, + W‘i,a W'f,p - W"aﬂ W",,, +EW =0 (30)
(12) (or) (02) (I11) (o1) 12)

(I=0,1,2; summation by I; ¥ meaning sumation on simultaneous cycle on pairs (0, a); (1, 8); (2,7)
Denoting by
1 M5

R I UL ROE (31)
®

then in the considerated invariant frame the Liouville vector fields are:

L (a,(1)ip2p_9
T = qWeeQ Y s
2 ) é
— (Va (2)a
= ¢"me + 297 5a6 (32)

Let us consider the generalized Lagrange space GL(?") = (M, g;;(z,yV), y?)) with
¢ij symmetric and nondegenerated, the canonical metrical linear N-connection LT'(N)
and the case when the three frames adapted to the three distributions are the same.

Then

O = oM = @ =} (33)
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and simillar for the duals.

In this frames the canonical metrical linear N-connection has the coefficients:

(00) 1 ©
i ki
o =2 W + fepes Li
B
(00)
(11) (1)
1 i« C%
Co = 3 W + fepey (1)-7
(1) (11)
(22) (2)
1 . C%
G =5 W +Iee (2’;” (34)
(2) (22)

We shall consider now the tensor fields
p#a _ e 4Bl _ (a)a ] 35
a = 9 g =4 (35)
(A,B=1,2)

Theorem 3.2.. The tensor fields defined above represent the invariant conponents of

the deflection tensor of the canonical metrical N-linear connection.

We define the invariant electromagnetic tensor field by:

sy _ 1[5 5
af T 9] 65008  §s(0)a

A
4B _ 1 ﬂ — ﬁ_ (36)
o = 3\ 5P 5Bl
(A,B=1,2)
Theorem 3.3.. The electromagnetic tensor fields have the expressions

@ _ Y@ @
F) = - (0% -0%)

(aB)y _ 1 (aB) yaB)
faﬂ - i(daﬂ —dpa) (37)
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and represent the invariant components of the electromagnetic tensor fields of the

cononical metrical N-linear connection.
Using Ricci identities with respect to CT(N) we prove

Theorem 3.4. The electromagnetic tensor fields F (:p) and f(:f ) of the generalized
Lagrange space GL(?™) satisfy the following Mazwell generalized equations:

EF(:/; =3 q(A)q Rnpa—y z d(AB) Rﬂa-y

(0B)

A AB
BF( ) I‘Y +Ef(aﬁlzr =X q(A)q( Prpay = Prpya )-
(B) (B)

(AB)
Zd Pﬂﬁa'v — Pypya )

B (B)

24D =5 { g4 s, —Zd““’)( R,

(4) (BC)

(D)
Ef(AB) | _z q(A)n Pp z:d(AB) ,’ _

(BC) (BC)
~dGB( cn. - cn,) B#C (38)

(B) (B)
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Theorem 3.5. If the canonical metrical N-linear connection is torsionless then F(:g

and f(:;) ) satisfy the folowing generalized Mazwell equations:

(4)  _
LF afly — 0

(B)
Y 1, +5f4 =0

(o]
%2 =0 (39)
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THE ASSOCIATED LOCUS OF SOME HYPERSURFACES IN R"+!

CORNEL PINTEA

Dedicated to Professor Pavel Enghig at his 70°* anniversary

Abstract. For a smooth hypersurface of the space R™*! project orthog-
onally the origin of R™¥! on its tangent hyperplanes and call the set of all
projections the associated locus of the given hypersurface. In this paper
we are going to find the equation of the associated locus for some given
hypersurfaces and to show that it is a smooth hypersurface diffeomorphic
with the initial one. We will also show that in one particular case both
of them, the hypersurface and its associated locus, are diffeomorphic with

the n-dimensional sphere.

1. Introduction

In this section we recall a simple fact concerning homogeneous functions which

will be very useful for all over this paper.

Definition 1.1. A function f : R**!1\{0} — R is called homogeneous of ordera € R
if f(tz) = t*f(z) for all t > 0 and all z € R*+1\{0}.

Lemma 1.2. If f : R**!\{0} — R is a smooth homogeneous function of order
a € R* and ¢ € R*, then f~'(c) is either the empty set, or f~1(c) is a smooth
hypersurface of R*+1.

Example 1.3. Let a be a natural number, 8 € {1,...,n+1}anda = (a1,...,8n41) €
R"™*! be such that a; #0 Vi € {1,...,n+ 1}. Then the set

2a 2a 2a 2a
| z To+1 Thil

HE':{-’L’:(zl,--- s Zat1) € RPN\ {0} pa"""“";g;—;z%—“'-a—g}: 1}
1 B+1 n41

is a hypersurface of R*+1,
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Observe that Hp can be also represented as Hg = F1(1), where

2a z2a m2a
+1
f:R*\{0} 2 R, f(xr, . Tny1) = + -~ ___.aga ..... -a;:l .
ﬂ L+1 n+1

2. The associated locus of the hypersurface Hg

Let £ = (21,...,ZTn41) € R*! and @ € R be such that z{ exist for all
i€ {1,...,n+1}. Denote by z* the vector (¢, ... ,z%,,) and observe that z* = ||z||?
for all z € R™*! and that (tz)* = ¢*z® for all £ > 0. Also, if there exist the vectors
z°? and (z*)?, for the real numbers a, B, then z*# = (z)#. Using this notation the

equation of Hg can be rewritten as follows:

Hf : p(a™?*, 2% =1 (1)
where ¢ : R**! x R?+! 5 R is the nondegenerate biliniar symmetric form given by'
(T, y) =z1y1 + -+ TpYs — TE41YB+1 — *** — Tnt1Yn+1

forallz = (z1,...,Zn41),¥ = (Y1,--- ,Yn41) € R*F1.

Theorem 2.1. The associated locus LG of HF 1is the set

{z e rR**1\{0} | llel|=27 = p(aziT, z385) ).
Proof. Denote by Aj the set
{z e RH\(0} | llzll™2r = p(amr, 2%5T) )

and consider p° = (p},...,p}41) € HE. The tangent hyperplane Tpo(Hg) of Hf at

p° has the following equation:

n+1
Tpo (Hﬂ) Z 67(130)(1'; ) = 0, or, equivalently
i+1
0)20—1 n+l 0)2a—1
po(I{a) Z(p ) i — Z ( )20___1:'_1 (2)
41 ’ i=f+1 a;
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The parametric equations of the straight line passing through 0 € R™*! which is
orthogonal on the tangent hyperplane T,o(Hg) are:

0\3a—1

;=1 ,1€{1,...,8}
@)

0)2a—1

z; =—t , t€{f+1,...,n+1}.

To find the orthogonal projections of 0 € R**! on the tangent hyperplane Tpo(H g),
replace the z;, i € {1,...,n+ 1} from equations (3) in the equation (2) and we get:

n+tl 0)4a— 1
¢ 1 thatis,t=
Z; ’ ’ (a—-4a,(p0)4a 2)

where (-,-) is the usual scalar product on R®*!. Hence, the orthogonal projection
e Lgof0 € R™*! on the tangent hyperplane Tpo(H 5 ) has the following coordinates

0y32a—1

T; = (a-u.’(;o)q,,,_,) (P.‘z?a , 1€{1,...,5}

(4)
I_T_GUF_’T_?-Z::— 1€{,3+1, ,n+l}.
Therefore, on the one hand, we have
+1 +1 -
1P =3 52 = ey 3 S = =
part (a-4a (p0)4a— )2 o a?u <a—4a, (p0)4a—2)
and on the other hand
(P2t .
a,z‘.:z;:q#Fa—_—’y(%:‘) , 36{1,...,,3}

()

Q Za—i
a;x; = '—(4-40,(;0) p— (%'L) , te€{B+1,...,n+1}.

From relations (5) it follows

n+l
¢(a2a-l ) 0) 2«— ) Z(a‘x‘) 'Jar—l —_— Z (a,w,) 20—1 =
i=1 i=f+1

BT sa [ 0yZay _ 1 AT
= (gores) e 0= (o)
namely
llg°l177 = p(a%2=T, (¢°) 757),
71



CORNEL PINTEA

that is ¢° € AjF and we just showed that £5 C A7. To prove the other inclusion,

consider 2° = (z{,...,20,,) € A3, that is,
l12°1|7% = p(am7, (2%)7%7).

It easy to verify that z° is the orthogonal projection of the origin 0 € R™*! on the
tangent hyperplane Tpo (Hg), where p° = (p?,...,pj 1) and its components are given
by:
o = (@) () = i (L., )
(6)
9 = —(a) % (i) ™ € {1, mk 1),
and the theorem is completely proved.Ol
Let us mention that the associated locus of an ellipsoid appears in [Ca, pp.-

90,91] as an exercise.
Theorem 2.2. The associated locus L of H g 15 a smooth hypersurface of Rt

Proof. According to theorem 2.1 we have succesively
£ = {z e R™\{0} ||}zl 7% = p(am%r,2%%7) } =

2a 13
a%a-1 Fp3a-1 )

= = 1} =¢71(1),

||=]|7==

= {z e r™\{0} | e

where
(073‘:—1 3532—1)
g :R™\{0} 5 R, g(z) = B 777

4a

||=]|7>==

For ¢t > 0 and z € R**!\ {0} we have:

_ p(a%,(tz)%ﬁ'—x) 3 w(aaz—‘:.,tﬁ% .z%’_'-l) B

tz
9(tz) |[ez]|7a2T 7T ||z ||7=T
tﬁn'%f(p(afﬁ_l,z%) 2 ()O(a’;_:‘,.’l)i‘_:—:—l) 20
= t24al”z“°1al :tl_—%: ‘ ”z”ﬁ‘al :tl—ﬂa ‘g(t).
o — o — ox—

Therefore g is a smooth homogeneous function of order 12%=. Because (a1,0,...,0) €
g71(1), it follows that g=!(1) # @, that is, according to lemma 1.2, £ = g~!(1) is a
smooth hypersurface of R**+1.0
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The hypersurface Hy,; and its associated locus £y, ; will be simply denoted

by H® and L* respectively. The equation of H® is
H*:(a™*,z?*) = 1.
Corollary 2.3. The associated locus of H* is given by
£2 = {z € RPI\(0} |[]o]| 21 = (a7, 278%1) }
and it is a smooth hypersurface of R"*1,

3. The diffeomorphism between H g and L5

Theorem 3.1. The mappings x : Hg - L3, x1: L5 — HF given by

L (g T gt e .
—-_ LR LR — L —-—
X(:L') = (a~%a g%a-7) ( df"’ ) ) a;‘," ) "p+1 y ) a':l'l )1 = (2:], oo 7$n+1) € Hp
( ) aﬁa—l xﬁal-—l aia-l .3201—1 __aza—l zﬁa-l . 23:1 . xza—l
X1\z) = Tz_ai_; 1 1 1---8g 8 p+1 " Zpy1 v TOng1 " Tagy
forallz = (z1,...,2n41) € L§, are well defined and they are inverse to each other.

Proof. Indeed on the one hand, for z = (z1,...,2a41) € HE, we have:

1 nt+l 4a-2  _2a

lIx(@)|1%2 = (lIx(=)[1) ™= = > za‘“‘ )

(a—te, glo-2ymsT \ &

_ 1
—-4a pda-—
(a=%, z

-4a i 2)2°_1 = 1
(a—%a, plo=2)7a%

el ,

and on the other hand,

2 _2e_ 1 2o de3 o
G (a-4a,z4a—2)£’_—x¢(a“—l e a) =

—_ 1 -2a 2a\ __ 1
O = pla™, %) = (a4, pla-2ymsT

Therefore
”}’(("3)”7‘%T = 90(0’:_:‘,)((17)53'3-7) for all z € Hg,

that is x(z) € £§ for all z € Hg, which means that the mapping x is well defined.
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Analogously, for z = (21, ... ,Za+1) € L§, We get:
1
(p(a—2°”xl(z)3°) = i “ — ‘P( _2°‘+2a-1 , £3a-1 )—- ” ” (p(azu—l zaa-l) =1,
||3x-1

that is x1(z) € Hg for all z = (z1,...,2n41) € L, and the mapping x; is well
defined.

For z = (z1,... ,Zn41) € L§ we also have:

(x o x1)(z) = x(x1(2)) =

1 2:- 1 Dal— l 2a-1 Oa- X Qa: 2«1— 2:— 2«‘— 1 —
=X(l|zlla—°-f (al ! et Thegm T e Egtt s —agi el ) ) =
=z
_ 1 1 i
= e ) Pt fer) = 2= e ()
llz)|3a=T

On the other hand, for z = (21,...,%n41) € Hg, we have

2a~1 2a-1 2a-1 2a-1

1 z s _Tp+1 ZTnt1
(o) (@) = x1(x(@) = x(—m—mzam (B =T
P e A L S P
1 1
= I =z =1idya(z2).0
(n§+l: i ) <G—4a gie=2)5a=1 (@1, s Zn41) = 2 = idpg (2)
Jo-l
(a~do zm-z)}"z— ~ ;loz

Corollary 3.2. The mappings x and x1 are diffeomorphisms between Hg and L3.
The next theorem can be proved in a completely analogous way.

Theorem 3.3. The mapping h : H* — S™, h(z) = “%“ is a diffeomorphism and
h_l :S™ > H is given by h—l(-'ﬂ) = (a—_z%m.
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V-COHOMOLOGY OF COMPLEX FINSLER MANIFOLDS

GHEORGHE PITIS, GHEORGHE MUNTEANU

Dedicated to Professor Pavel Enghig at his 70'® anniversary

Abstract. Starting from a natural decomposition of the exterior differ-
ential of a complex Finsler manifold, we define new cohomology groups

and a Dolbeault type theorem is also proved.

1. The holomorphic tangent bundle.

Let us consider a complex manifold M,dim¢ M = n , (U, (z')) the complex
coordinates in a local chart. The complexification Tc M of the tangent bundle TM is
decomposed in each point z after the (1,0) vector fields and their conjugates of (0, 1)
type, TcM =T'M & T"M. As it is well-known ([1],[2],[8]..), 7'M is also a complex
manifold of dimension dimg 7'M = 2n and the natural projection 7y : T'M — M
defines on V(T'M) = {£ € T'(T"M) [ wr.(€) = 0} a structure of holomorphic vector
bundle of rank n over 7'M. We denote by V(T' M) the module of its sections, called
vector fields of v—type.

A given supplementary subbundle H(T"M) of V(T'M) in T'M, i.e.

T/(T'M) = H(T'M) & V(I" M) (1)

defines a nonlinear complex connection, and we denote by H(7T' M) the mod-
ule of its sections, called vector fields of h—type.
Considering also their conjugates V(TVM) and H(T'M), we obtain the fol-

lowing decomposition of the complexification T¢(T'M) of the real tangent bundle

1991 Math tics Subject Classificati 53C60, 55N30, 53A12.

Key words and phrases. complex Finsler manifold, complex Rund connection, v-cohomology groups.
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T(T' M),

To(T'M) = H{IT'M) @ V(T'M) & H{I'M) & V(T'M) @)

The elements of the conjugates are called vector fields of —type, and h—type,
respectively.

If (U,(z*, 7)) are the complex local coordinates on T'M and if N (z,1) are
the coefficients of the complex nonlinear connection, which are changed at local change
of the local chartafter the rule,

1k 1" 2,0
A, B (3
then the following set of complex vector fields

0 0 N9y 2y (L2 %,y L .
{3';.'—37'{ Ngaﬂj}’{aﬂ‘}’{ﬁ—é)’i" N'aﬁ"}'{aﬁ"} (4)

are called the local adapted bases of H(T'M),V(T'M), H(T'M) and V(T' M), respec-
tively. The dual adapted bases are denoted by

{d'}, {87 = dn + Nid3}, {dF}, (o7 = df + N;d7’} (5)
2. Complex valued forms

Let us consider the set F(T'M) of the complex valued differential forms on
T'M given by the direct sum,
FIT'M)=  Fram(T'M) (6)

p,q,r =01
where FP:9™*(T'M) [or FP4"*(U) for the open set U of T'M , or simply FP¢"*
when there is no confusion danger] is the set of (p + ¢ + r + s)—forms which can
be non zero only when these act on p vector fields of h—type, on ¢ vector fields of
v—type, on r vector fields of h—type, and on 5 vector fields of T—type. The elements
of FP.2"*(J) are called (p, q,r, s}—formson U.
In the adapted dual bases we have the following local expression of (p, g, r, s)

—forms w,
W= E Wiy ipfr..dqhy..hrky..ky - B2 A A dZ'PA
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PN .. AP AdEM A L dZP A ST A LT (7)

where the sum is after the indices 4 < ... < 4y ; j1 < ... < Jjg; h1 < ... < by ;
ki< ..<k,.
Now, let us consider f a complex valued differentiable function defined on

T'M. In [2] the following operators are considered:

dhf = 2dd = (3L — N} gL)de 5 dvf = ghon

az* l' 811) (8)
dl/hf: %d? = (-g‘_’é _ﬁfa%_%)d? s df = 8%%671’

and they give a natural decomposition of the exterior differential df of f.
We shall generalize these operators for any differential form. For this pur-
pose we compute the exterior differential dw of a (p,g,r, s)—form given by (7). A

straightforward calculus, taking into account (5) and the properties of d, gives

dw € Fp+1)9)r)‘5 (43} FP.‘H'L"»’ 5} Fpnq)r"'l,’ [<>) FP.Q.T.-”H @ FP+2.¢1—1""0®

Fp+1,q—1,r+1,s ® Fp+1,q-—1,r,:+1 @Fp+1,q,r+1,o—1 @ Fp,q+1,r+1,:—1 @ Fp,q,r+2,a-—-1 (9)

Particularly, by using (8) we have

dF0,0,0,0 C Fl,0,0,0 D IpO,l,0,0 ® F0'0'1'0$ F0,0,0,I (10)

where F%9.9:0 denotes the set of complex valued differentiable functions on 7M. We

also obtain

dFl,O,O,O C F2,0,0,0® F1’1’0’0$ F1’0'1’0® FI,O,O,I (11)

dF90L0 - F1,0,10 o FO0,1,1,0 ¢ (0,020 gy £0,0,1,1 (12)

Now, we assume that M is a complex Finsler manifold with Finsler metric F ([2],
definition 3.1) and we consider that N is the complex Rund connection on M (idem,

definition 3.3). Then it is well-known that, [11]

SNj _ ONj
820 T 8z
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and taking account the local expression (7) of the (p, g, 7, s)—forms, the formulas (5)

and the properties of the exterior differential, we give

dFO10.0 - FL100 g 0,200 & £0,1,1,0 ¢ 50.1,0,1 gy [11,0,1,0 gy 1,0,0,1 (13)

dF00.01  FLOOL o 101,01 & 00,11 oy £0,00,2 g £1,0,1,0 g [20,1,1,0 (14)

From (9)-(14) it result the following
Proposition 01 If M is a complez Finsler manifold endowed with the com-

plex Rund connection then we have

dFpens « pptlarns o pratlns o ppartls o pranstlg

FPtlg—lirtls o pptlg-lrst+l o pp+lar+ls—1 o ppig+lrils—1 (15).

From the above decomposition (15) it follows that we can define eight morphisms of
complex vector spaces if we consider the different components, namely
h . Mt Lt . . 1Y b ¥y
d'® . Fp.ars __)Fp+1qrs ’dlv'qurs_)qu-Hra
d”h : Fp,q,",a — vaqﬂ'"'l,C ; d”ll :FprQIrns - FP,Q.",0+1
61 :FP,q,",O — FP+1;<I"117'+1:‘ ; 82 : prq)ry" —_ FP+1:Q‘1:",3+1

O3 : FPams y Fprlartlis=1 . g5, . pp.aims _y ppgtlrtls—1

We remark that these operators and the classical operators d’ ,d” that appear in the
decomposition d = d' + d” of the differential on a complex manifold, are related by

the following relations

d=d"4+d" +0:3+404 ;d"=d""+d"™ + 0, + 0 (16)
Moreover, by equalizing the terms of the same type in the relation

d*=(d" +d" + 05+ 0s+d™ +d™ +8,+8,) =0

we obtain:

(d*)?2 =0, (@*)?>=0, (d™*)?=0, (d")?=0

(01)2=0, (82)2=0, (83)2=0, (0a)>=0

d"d" +dvd* =0, d"™d¥ +d"d" =0, d™d"* +d"hd" =0
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dP0y 4 09d™ =0, d¥04+04d" =0, d"0+0,d"™" =0

d?03+ 03d™ =0, d"0+ 0.d"" =0, d"™0y+ 04d"" =0

0102+ 0201 =0, 0,03+ 030, =0, 0204+ 0403 =0

dPd" 4 d"d'P 4 d"¥ 0y + 02d" =0, d'Vd" + d"P A" + d" 0y + 04d"’ =0
d" 03 + 03d"” + d™0y + 0ad™ =0, d"™0; + 0,d" + d"h0y + G2d"™ =0
d"h03 + 83d"" 4 0104 + 0401 =0, d"0; + 01d™ + 8382 4+ 0203 = 0
d'*d"™ 4 d"™d™ + 81d" + d"V 0y + 0204 + 040 + 03d"’ +d"03 =0

By the same argument we have
d"(wA0)=d™wAl+ (-1)%E“wAd" (17)

for any w € FPO™% @ € F? 4" and similar equalities for the other operators
defined above.

From (17) and from the linearity of d"¥ we deduce that if w € FP:9™?® is
locally given by (7) then

e — Z 0(-03‘1...1',,3'1..5'1):1...h,kl..,k.Jﬁ; Adzt A AdZi?
n

ASTPE A o ASTPT A dZP A L dZ NG A ST (18)

where the sum is after the indices iy < ... < ip ; j1 < ... < Jg; b1 < ... < by ;
ki < ...<k,.

We know ([8],proposition 1.1) that the local bases {a—""_-,»}, {%} of V(T'M),
corresponding to a change of complex coordinates {z*,7'} = {z",7/'} on T'M, are
related by

o 079 0

o - o7 o 19

The formulas (19) prove that if f is a complex valued differentiable function defined
on 7'M then the condition

—==0 ;i=12.n (20)
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is independent with respect to this change. Moreover, the of form w € FP9™0 js
d""—closed (i.e. d”*w = 0) if and only if its local components satisfy the conditions
(20). We denote by ®7-97 the sheaf of germs of these forms.

Another property of the operator d” is a Grothendieck-Dolbeault type lem-
ma, namely

Theorem 1 Let w be a " -closed (p, g, T, s)—form defined on a neighborhood
UonT'M and s > 1. Then there erists a (p,q,r,s — 1)—form 0 defined on some
neighborhood U’ C U and such that d"'0 = w on U’.

Proof. We use an argument inspired by the paper [12]. Let be h the index defined
by the condition that the form w, given by (7), does not contains dz*+!, .....,dz". We
shall prove the assertion by using the induction on h.

For h = 0 we have

W = Wiyipgydgky. ke G20 A A2 A S A LA ST A ST A LT

and then
d"w = d"w (modulo the therms containing d7, ....,dz").
But d"w = 0 and if we consider 71, ...., 7" like parameters, then the Grothendieck-

Dolbeault lemma can be applied and therefore there exists a (p,¢,0,s — 1)—form 6
with the property
w=d"0 (modulo dz',....,d7")

on some neighborhood U’ C U. Hence we have

w=d"0+ Y AAdE (21)
i=ln
where \; are (p,q,0,s — 1)—forms. Now because w € FP%%*  from (21) we obtain
w = d""0 and the assertion is proved for h = 0.
We assume the result valid for the indices hg < h — 1 and we prove it for k,
i.e. for (p, g, r, s)—forms which do not contain dz**!, ..., dz". Such a form is expressed

as follows

w=dz" Aa+f (22)
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where o € FP97=1s B e FPams and do not contain dz*,dz**!, ..., dz". Therefore
by using (17) we have

d"w=—dz" Nd"a+d"f =0
hence
dllva:O ’ d”uﬁ=0

and by applying the induction hypothesis it follows that on some neighborhood U’ C
U there are two forms a* € FP9r—1s-1 g* ¢ Fpaim3=1 gych that

a’ = dllva* : ﬁ — dllvﬂt (23)
Now, from (22),(23) and taking into account (17) we obtain

w=d"(—dz" Aa* + §*)

Q.E.D.
Let FP97* be the sheaf of germs of (p,q,r,s)—forms and we denote by i :
&P 97 — FPa"0 the natural inclusion. The sheaves FP:9™*are fine and taking into

account the Theorem 1. it follows that the sequence of sheaves

. v 1"
0 = ®Par by Fpar0 &Y ppart 4N rpars I pparett

is a fine resolution of ®”%" and we denote by H*(M, ®P4") the cohomology groups
of M with coefficients in the sheaf ®?97 | called v—cohomology groups of M. then we
obtain a de Rham type theorem, namely

Theorem 2. The v—cohomology groups of the complex Finsler manifold M

are given by

H’ (M’ QP:Q:") ~~ ZPIerr" / d””Fprerys-l(T’M)

where ZP:9"* is the space of d"V— closed (p,q,r, s)—forms globally defined on T'M.
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CONFORMAL STRUCTURES IN THE LAGRANGE GEOMEETRY
OF SECOND ORDER

MONICA PURCARU -

Dedicated to Professor Pavel Enghis at his 70" anniversary

Abstract. In the present paper we introduce two d-structures on E =
Osc®M: the conformal metrical d-structure and the almost symplectic d-

structure and we study the properties of this two d-structures.

1. Introduction

The literature on the higher order Lagrange spaces geometry highlights the
theoretical and practical importance of these spaces.

Motivated by concrete problems in variational calculation, higher order La-
grange geometry has witnessed a wide acknowledgment due to the papers [7 — 11]
published by Acad.dr.R.Miron and Prof.dr.Gh.Atanasiu.

The study of higher order Lagrange spaces is grounded on the k-osculator
bundle notion. The bundle space of accelerations (or 2-osculator bundle) corresponds
in this study to & = 2, [1],{7].

Very little research has been carried out with respect to the study of the
important structures in the 2-osculator bundle.

In the present paper we define the conformal metrical d-structure notion, g, in
the Lagrange geometry of second order and we study the properties of this structure
(§2). We also introduce the conformal almost symplectic d-structure notion, &, in the

Lagrange geometry of second order and we study the properties of this structure (§3).

1991 Math tics Subject Classificati 53C05.
Key words and phrases. osculator bundle, conformal metrical structure, conformal almost symplectic

structure.
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As to the terminology as notations we use those from [12], which are essentially based

on M.Matsumoto’s book [6].

2. The conformal metrical d-structure in the Lagrange geometry of second

order.
~

Let M be a real n-dimensional C*-manifold, (Osc? M, w, M) its 2-osculator
bundle, or the bundle of accelerations. The local coordinates on £ = Osc?M are de-
noted by (zf, y(1)f, y(2)%),

If N is a nonlinear connection on E, with the coefficients N(l)ij (=F, y(1%, y( 2y,
N(2)ij (z, 1) y(2)¥), then let DT'(N) = (L;,,, C(l);.k, C(Z);‘k) be an N- linear connec-
tion, D on E.

Let L()" = (M, L) be the second order Lagrange space, where L : E — R
is a C* differentiable regular Lagrangian of second order, whose fundamental metric
d-tensor field, g;;, has a constant signature on E = {(z,yM,y?)) € Osc*M, rank
st = 1} :

%L

1
1) @) =
gii (=, 4, y®) = 3 5y oy @i

(2.1)

gi; is a differentiable d-tensor field on E, symmetric, covariant of order two. Let (¢*)

be the inverse matrix of (gi;):
gik(z, ¥, yP)g* (z, 5V, y®) = o], (22)

Observation 2.1. We can consider on E as g;; any d-tensor field of type (0,2) on

E symmetric and nondegenerate.
We associate to this d-structure Obata’s operators:
Qir — 1 J'.J" ir *ir __ 1 6:’51‘ ir
Y 'é( 505 — 9559 ): Qsj - 5( 39; + 9559 )) (23)

Obata’s operators have the same properties as the ones associated with a Finsler space
[12].
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Let S3(E) be the set of all symmetric d-tensor fields of the type (0,2) on E.
As is easily shown, the relation for a;;, b;; € S2(E) defined by:

ai; ~ bi; < 3p(z, ¥V, y?) € F(E) | aij = €*byj, (24)
is an equivalent relation on S2(E).

Definition 2.1. The equivalence class G of S2(E)/~, to which the metric d-structure

gij belongs, is called: conformal metrical d-structure on E.
Every yﬁj € § is a positive definite, symmetric d-tensor field, expressed by
9i; = €°°9ij. (2.5)

We shall find the condition that in a differentiable manifold E, a given g{; €

S2(E) belongs to a conformal metrical d-structure.

Lemma 2.1. A given positive definite g;; € S2(E) is a fundamental tensor field if
and only if it holds:

0gi; 1
gy =0 (2.6)

Theorem 2.1. A given positive definite g!; € S2(E) belongs to a conformal metrical
d-structure if and only if there ezists a function p(z,y(V),y()) € F(E) satisfying:

0Ogl; ) Fi)
3 (2)7 — (4 (2)1
61/(2)" y - 26y(2)" ys ’ (27)

where y§2)/ = géjy@)j .
Proof. Let gj; belongs to a conformal metrical d-structure. Since gj; satisfies (2.5),
we obtain (2.7) from Lemma 2.1. Conversly, if there exists a function p satisfying

(2.7), then g;; = e~2g/; satisfies (2.6). O
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Obata’s operators are defined for g}; € § by putting (¢"/) = (g;)~". Since
equation (2.5) is equivalent to
g =gl (2.8)

We have:

Proposition 2.1. Obata’s operators depend on the conformal metrical d-structure §,

and do not depend on its representative g;; € §.

3. The conformal almost symplectic d-structure in the Lagrange geometry

of second order.

Let M be a real n-dimensional C*-manifold, (Osc*M, x, M) its 2-osculator
bundle, or the bundle of accelerations. The local coordinates on the total space
E = Osc®M are denoted by (zf, y(V)i, y(2)%),

If N is a nonlinear connection on E with the coeﬂicien‘ts N(1)i (e, Y1 (),
N(z)‘j(z‘, y(1¢ y(2)%) then let DT(N) = (L}k, C(l);.k, C(2);.k) be an N- linear connec-
tion, D, on E.

We consider on E an almost symplectic d-structure, defined by a d-tensor

field of the type (0, 2), let us say a;;(z, y1), y(?), skewsymmetric
aij(2, 4, y?) = —aji(z,y"), y?), (3.1)
and nondegenerate:
detljai;(z, ¥, y)|| # 0, vy £ 0, vy?) £, (3.2)
We asociate to this d-structure Obata’s operators:
¥ = %(555; — 4,50, 8% = -21,-(5;‘5;. +a,50"), (3.3)
where (a%/) is the inverse matrix of (a;;):
a;ja* = 6¥. (34)

Obata’s operators have the same properties as ones associated with a Finsler space
[14].
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Let L(2)n = (M, L) be the second order Lagrange space, where L : E — R is
a C™-differentiable, regular Lagrangian of second order.

Let A2(E) be the set of all skewsymmetric d-tensor fields of the type (0,2)
on E. As is easily shown, the relation for a;;, b;j € A2(E) defined by

a;; ~ bij © Fp(z, 4V, y?) € F(E)|ai; = e*b; (3.5)
is an equivalent relation on A3(E).

Definition 3.1. The equivalence class, &, of A2(E)/.,, to which the d-tensor field a;;

belongs, is called conformal almost symplectic d-structure on E.

Every a:-j € a is a skewsymmetric and nondegenerate d-tensor field expressed

by:

a;j = e*a;j. (3.6)

Obata’s operators are defined for a;j € a by putting (a"j ) = (a:-j)‘l. Since

equation (2.6) is equivalent to
(a9) = e~2Pqid, (3.7)
We have:

Proposition 3.1. Obata’s operators depend on the conformal almost symplectic d-

structure @, and do not depend on its representative a;j € a.
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THEMISTOCLES M. RASSIAS

Dedicated to Professor Pavel Enghig at his 70°* anniversary

Key words and phrases: quadratic functional equation, Abelian group, semi-

group, Banach space, A-orthogonal pairs, stability of mappings

1. Introduction

To quote S.M. Ulam [22, p.63] for very general functional equations, one can
ask the following question. When it is true that the solution of an equation differing
slightly from a given one, must of necessity be close to the solution of the given equa-
tion? Similarly, if we replace a given functional equation by a functional inequality,
when can one assert that the solutions of the inequality lic near the solutions of the
strict equation?

The present paper will provide a solution of Ulam’s problem for the case of
the quadratic functional equation. .

The quadratic functional equation

flz+y)+ f(z—y) —2f(z) - 2f(y) = 0 (1)

clearly has f(z) = ca?

as a solution with ¢ an arbitrary constant when f is a real
function of a real variable. We shall be interested in functions f : E; — E3 where both
E, and E; are real vector spaces, and we need a few facts concerning the relation
between a quadratic function and a biadditive function sometimes called its polar.
This relation is explained in Proposition 1, page 166, of the book by J. Aczél and
J. Dhombres [1] for the case where E; = R, but the same proof holds for functions

f: E1 = E,. It follows then that f: E; — E5 is quadratic if and only if there exists
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a unique symmetric function B : £1 X E; — E,, additive in z for fixed y, such that
f(z) = B(z,z). The biadditive function B, the polar of f, is given by

B = (5) Ve +9) - 1z - ).

A stability theorem for the quadratic functional equation (1) was proved by
F. Skof [18] for functions f : X — E where X is a normed space and E a Banach
space. Her proof also works if X is replaced by an Abelian group G. In this form,
the theorem was demonstrated by P.W. Cholewa |2). A function f : G = E s called
d-quadratic if for a given § > 0 it satisfies the inequality

1f(z+y) + f(z — y) — 2f(z) — 2f(y)I| <. (2

The statement of the Skof-Cholewa theorem follows:

Theorem 1. If f : G — E is §-quadratic for all z and y in G, then there
erists a function q : G — E which is quadratic, i.e. g satisfies (1) for all z and y in
G and dlso is the unique quadratic function such that ||f(z) — q(z)]| < & for all z in
G. The function is given by

a(z) = lim 47" f(2"z) 3)

forallz in G.

The proof is ommited, as it is a special case of that of the next theorem 2
due to S. Czerwik [4]. Czerwik’s main result may be stated as follows.

Theorem 2. Let E, be a normed vector space, E2 a Banach space and € > 0,

p # 2 be real numbers. Suppose that the function f : E; — E5 satisfies
If(z +9) + f(z — y) - 2/() — 2f (W)l < e(ll=ll” + |lyllP).- 4)
Then there exists exactly one quadratic function g : Ey — E5 such that
llg(z) — F(@) < e+ kell<|l? (%)

for all ¢ in E,, where: whenp < 2, ¢ = _Ii_f_(30)j, k= 1-_12-; and g is given by (3)

and g(z) = nli)r{.lo 4" f(2~"z) for

with g instead of . Whenp>2,¢=0, k= 2p2_4
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all z un E;. Also, if the mappingt — f(tz) from R to E3 is continuous for each fizxed
z in Ey, then g(tz) = t?g(z) for all t in R.
Proof. Case 1. p < 2. In (4) set y = z # 0 and divide by 4. Then use the

triangle inequality to obtain
1471 £(22) = F(2)]| < 47HIF O] + 47" (2ell=]IP).- (6)

Make the induction hypothesis
47" F(272) — F@)| < IFOID_47% + 2¢]ja|fp Y _ 2k~ 1pg-* (7)
k=1 k=1

which is true for n = 1 by (6). Assuming (7) true, replace by 2z in it and divide
by 4. Now combine the result with (6) to see that (7) remains true with n replaced
by n + 1, which establishes (7) for all positive integers n and all z(# 0) in F;. By
summing the series on the right side of (7), we obtain

2Ellﬂcll

||4'"f(2"z) F@N e+ =, = e+ kellz|, (8)

. In order to prove convergence of the sequence g, (z) = 47" f(2"z),

with k =1 2

we divide inequality (8) by 4™ and also replace z by 2™z to find that

lgm+n(2) = gm(2)|| = [[4~("+™) f(2 ) z) — 4= f272)|| < 47 e+ 277 he| 2P,
9)

which shows that the limit g(z) = nlLrlgo 474" f(2"z) exists for each non-zero z in Ej,

since E3 is a Banach space. By letting n — oo in (8), we arrive at the formula (5)

2"z and 2"y, respectively, in (4) and divide by 4™ to get

To show that g is quadratic, replace £ and y by

llgn (2 + ) + gn(z — ¥) — 2gn(2) — 20 (W)I| < 277" e(|[|[P + y]IP).

Taking the limit as n — oo, we find that g satisfies (1) when z and y are
different from zero. We now define g(z) as nl_i_’r{.lo 4-"f(2"z) for all z in E,; it follows
that g(0) = 0. Thus, (1) holds for z = y = 0, when f is replaced by g in (1). When
y =0 and z # 0, we have g(z + 0) + g(z — 0) — 2¢(z) — 2¢(0) = 0. For

z#0and y#0, g(z+y)+g(z—y) —29(z)—29(y) =0,
o1
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and setting y = z, gives ys g(2z) = 4¢(z) for £ # 0, but this last equation obviously
also hods for z = 0. With y = —z # 0, we get g(0) + g(2z) — 2g(z) — 29(—z) = 0
which reduces to g(—z) = g(z), which again is clearly true for all z in F;. Finally,
for z = 0 and y # 0, we have g(0 + y) + g(0 — y) — 2¢(0) — 2g(y) = 0. Therefore,
g : E1 — Es is quadratic on F,.

Case 2. p > 2. In (4), set z = y = 0 to see that f(0) = 0. Then replace
both z and y by ; to obtain

- 3 —(p~
I£@) - 4r@ )l < () lellP - 2762, (10)
Apply the induction hypothesis:
n -n € % - -
I1f(@) = 1@ ")l < () llelP Y 27+ (1)
k=1 .

for all z in E; and all positive integers n. In (11), replace z by 27!z and multiply by

4 to get
n+l

1,y _ gn+1 g(o—(n+1) £ P —k(p—2)

l4£(2712) — 47+ f2= D)) < (3) el 2 20,
Combine the last inequality with (10) to show that (11) remains true with n
replaced by n + 1, which completes the induction proof. Summing the series on the

right side of (11), we get
If(z) - 4" F27"2)I| < kell=|l?, (12)

where now k = 55—23. Putting hn(z) = 4"f(27"z), multiplying (12) by 4" and

replacing z by 2™z, we have
l|Bm (2) = hmn ()| = [[47 F(272) — 474" f(27 (P H)g)|| < 27 De]|z|P. (13)

This shows that {h,(2)} is a Cauchy sequence and this there exists g : E; —
E, with g(z) = nl;lg.lo hy(z) for all z in F;. The proof that g is quadratic is similar
to that in Case 1, except that here we replace z and y in (4) by 2~"z and 2"y and
multiply the result by 4".

To prove the uniqueness of the quadratic function g subject to (5), let us
assume on the contrary that there is another quadratic function h : E; — Ej satisfying
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(5), and a point y in E; with a = ||g(y) — h(y)]] > 0. Every quadratic function
has a unique representation in terms of a symmetric, biadditive function. Thus,
g(z) = B(z,z), where B : E; x E; — E3 is symmetric and biadditive. It follows that
g(rz) = r?g(z) for all rational numbers r. Similarly, h(rz) = r2h(z) for rational r.

Since both g and A satisfy (5),
llg(z)—h (@)l = llg(z)— f(z)+f(z)—h{)l| < 2c+2ke|| < 2¢+2ke||z||P for all z in E;.
In particular, we have for » > 0 that
r?a = |lg(ry) — h(ry)l| < 20+ 2ker?|ly|P. (14)

In case 1, where p < 2, we have by (14) that

14
o< 26 Zelll

< 1'2 -7 for rational r > 0, so a = 0.

In case 2, where p> 2, ¢ =0. We set r = % in (14), so that .

2kellyllP
" g ( " < IIyII

Hence, a < 3’%’!_’4'-{ for all s > 0, and again we see that a = 0. The proof that
g(tz) = t2g(z) for all real t will be deferred until after the:

Corollary 3. If in theorem 2 the function f is continuous everywhere in
E,, then g is also continuous for all z # 0 in Ey. When p > 0, thos restriction is
unecessary.

Proof of Corollary. In case p < 0, we must treat z = 0 as a special
situation since the right members of inequalities (4), (5) and (9) may become infinite
as ¢ — 0. Suppose that f is continuous for all z in E; and that z¢ in E; is not
zero. Set s = ll= 0“ For z in the open ball B(zo,s) = {z € E1 : ||z — zo|| < s},
we have s < ||z|| < 3s. In inequality (9), let n — oo, so that ||f(z) — gm(2)|| <
4‘mé+2(2'P)mk5||z||p. For z in B(zo, 8), we have s? > ||z||P < (3s)? when p < 0, while
the inequalities are reversed when p > 0. Consequently, g, (z) converges uniformly to
g(z) in B(zo, 8) as m — 0o, and, since each function g, is continuous in B(zg, s), it
follows that the limit g is also continuous in B(zo, 5). Thus, the quadratic function g
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is continuous at each point z¢ # 0 in E;. Clearly, the restriction zo # 0 is not needed
when p > 0.

Proof of Theorem 2 (concluded). We have seen that g)rz) = r2g(z) when
r is a rational number. To prove that g is homogeneous of degree two for all real
numbers as well, it is sufficient to prove that the map ¢ — g(tz) is continuous in ¢ for
fixed z in E;. By hypothesis, the map t — f(tz) is continuous in ¢ for fixed z in E;.
Apply corollary 3 to the case where £; = R to show that in case £ # 0 and £, > 0
then t — g(tz) is continuous at t = to. Thus, g(tez) = t3g(z) for all ¢, # 0, = # 0.
But this equality is obvious both z = 0 and ¢ = 0. Therefore, g(tz) = t?g(z) for all
real t and z in E;.

Remark. S. Czerwik [4] proved that g(tz) = t2g(z) under the weaker as-
sumption that ¢f(tz) was Borel measurable in t for each fixed z.

The exclusion of the case p = 2 in Theorem 2 is necessary as shown by the
counterexample to be cited below, due to Czerwik [4; pp.63-64]. It is a modification
of the example of Gajda [8].

Let ¢ : R — R be defined by

2
px? forlz| <1
¢(z) =
m for |z|gel,
where g > 0, and put, for all :c in R,
foo)
fl@) =) 42 ).

n=0

Then f is bounded by 4?” on R and satisfies the condition

If(z +y) + fz —y) — 2f(2) - 2f(y)| < 32p(=* + ¢°) (4)
for all z and y in R, as it will now be shown. If 2 + y? is either 0 or > 41, then the

left side of (A) is less than 8u, so (A) is true. Now suppose that 0 < z2 4 % < i—.

Then there exists a positive integer k such that

47F 1 < 2?4y < 47F, (B)
9
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so that 45122 < 4=1 4k=1y2 < 4~ and 251z, 2%~1y, 2¥~1(z 4 y) all belong to the
interval (—1,1). Hence, for n = 0,1,...,k — 1, 2"z,2"y,2"(z £ y) all belong to this

same interval and
6(2°(z + ) + (2" (z — y)) — 26(2"z) — 26(2"y) =0 for n =0,1,...,k — 1.
From the definition of f and from the inequality (B), we have
|f(z + ) + flz —y) — 2f(=) — 2f ()|

<D A2 (= + ) + 6(27 (2 — v)) — 26(2°2) — 26(2")]

n=0

<D 6pd™ = 2u)4 7 < 32(2% + ),

n=k

thus f satisfies (A).
Suppose now that there exists a quadratic function ¢ : R — R and a constant
B > 0 such that |f(z) — g(z)| < Bz? for all z in R. Since f is bounded for all z, it
follows that g is bounded on any open interval containing the origin, so that g has the
form g(z) = nz? for z in R, where 7} os a constant (see, e.g. S. Kurepa [11]). Thus,
we have
|F()] < (B+Inl)=?, for 2 in R. ©
Let k be a positive integer with ku > f+|n|. If z € (0,2'~%), then 2"z € (0, 1)
for n < k —1, and, for z € R, we have
=) k—1
fl@) =) _47"4(2"z) > Y pd~"(2"2)? = kpa® > (B + |n))2?,

n=0 n=0

which contradicts (C). O
Remark. Theorem 2 can be generalized without difficulty to the situation
where the right side of inequality (4) is replaced by eH (|||, ||y]|), in which H : Ry x
Ry — Ry is positive homogeneous of degree p # 2, i.e. H(cs,ct) = ¢PH(s,t) when
¢,s and t are all positive. This statement is an analog for approximately quadratic
functions of a theorem of Rassias and Semrl [13] for approximately additive functions.
The relationship between a quadratic function and its biadditive polar is basic
in the methods used by F. Skof and S. Terracini [19] in their study of the stability
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of the quadratic functional equation for functions defined on restricted domains in R
with values in a Banach space E. They proved the following stability theorem for
symmetric biadditive functions based on results from Skof [17].

Theorem 3. Denote the set [0,r) x [0,7) in R? by S, where r > 0, and let
E be a Banach space. Suppose that ¢ : S = E is symmetric and §-biadditive, i.e.
é(z,y) = o(y, z) for (z,y) in E and ||¢(z,t+u)—¢(z,t)—d(z,u)|| < d forallz in [0, r)
and t,u, and t + u in [0,7) and some 8§ > 0. Then there exists at least one function
F : S = E which is symmetric, biadditive and such that ||¢(z,y) — F(z,y)|| < 98 for
(z,y) in S.

Proof. We will refer to the proof of the theorem of Skof [17]. By hypothesis,
for each y in [0, ), the function of z : ¢y(x) = ¢(z,y) is §-additive on the set T(r) =
{(z',z") € R? : ',z" €[0,r), =’ + 2" € [0,7)}. Following the proof of extension II
above, we define the function ¢; : Ry — E for fixed y by ¢} (z) = néy (%) + ¢y (1)
for z = P2—r+p, n=12...and0< < g Thus, we have for z in [0, ) that

ll¢y(2) — d3()Il < 4. (15)
This function is extended to R by putting ¢;(z) = —¢j(—z) when z < 0.
It follows that, for y € [0,7), ¢y (=) is 2 d-additive on R? and hence, by theorem 1.1
above, there is a unique additive function
» T —n % (0N
Gy(z) = ulir{.lo2 ¢y (2"z) (16)
for all z in R and y in [0, 7) such that
ll¢y(z) — Gy(2)ll <28, z€R, ye[o,r). (17)

Now define G(z,y) = Gy(z) when (z,y) € S. G(z,y) is additive in the
first variable. We will show that it is 2 §-additive in its second variable on the set
T(r) = {(y,2) € R?: y,z €[0,r), y+2z € [0,7)}. Indeed, fixz € [0,7) and y, z € [0, )
with y + z € [0,7). Put 2"z = k,.g + pn, where u, € [0, %), and k&, is a positive

integer, so that k, = (-f—) (2"z — pn). Then we have

G(z,y+72) ~ G(z,) ~ G(z,2) = lim 27(¢},,(2"2) - 6}(2"2) - $3(2"z)) =
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) e ] _ r T r
= lim 2 (¢y+z(Pn)"‘lsy(l-‘n)_‘f’z(l‘n))'l‘nlg{.‘o2 "kn (¢y+z (5) — ¢y (5) - ¢: ('2‘)) =

e @)

Hence,
IG(z,y + z) — G(z,y) — G(z, 2)|| < 2§ when z € [0,r) and y,z € T(r). (18)
Next we extend G to a function H : [0,r) x R — E. With z in [0,r) and

¥y € Ry, let y=%+ﬂ, where u € [0,%) and n=1,2,..., and define H by

H(z,y) = nG (z, %) + G(z, p) (19)
and for y < 0 put
H(z,y) = —H(z,-y)- (20)
By extension II, we find that H is 4 é-additive in the second variable and
||H(z,y) — G(z,y)|| < 26 for (z,y) in S. (21)
Also, for each R, H is additive in the first variable on the set
T(r)={z',2")€ R?: z',2" € [0,r), ' + 2" €[0,r)},

since G has this property.
For each fixed z in [0, 7), it follows by Hyers’s stability theorem [9] (see also
[12]-[16]) that the function

F(z,y) = lim 27" H(z,2"y) (22)
is additive in y and satisfies
IF(z,y) — H(z,y)l| < 46, (=,9) €[0,7) x R. (23)

F is also additive in z on T'(r) by (22) since H is. By (15), (17), (21) and
(23), we obtain the required inequality ||¢(z, y) — F(z,y)|| < 96 when (:c,. y) €S.

In order to prove the symmetry of F, observe that since ¢ is symmetric,
||F(z,y) — F(y,z)|| < 188. For y = 0, we have F(z,0) = 0 = (F(0,z) for z € [0, r).
For a given y € (0,r) set, hy(z) = F(y,z) — F(z,y), z € [0,7). Noe h,(z) is additive
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on T(r) and bounded, so it is the restriction to [0,r) of a function of z of the form
hy(z) = a(y)z. But hy(y) =0 for all y € [0,7),50 a(y) =0. O

In proving the next theorems of Skof and Terracini [19], we will make use of
the following sets: K(r) = {(z,y) € R?: 0<y<=z, z+y<r}and D(r) = {(z,9) €
R?: |lz+y|<r |z—y|<r}

Theorem 4. Let f : [0,7) > E (a Banach space) be §-quadratic on K(r) for

some 8 > 0. Then there exists a quadratic function ¢ : R — E such that

1) — a(2)ll < 22 for z € [0,7) (24)

Proof. Since f is §-quadratic on K(r),

IFO)l < 3, 1522) + FO) - 47l <4,

and thus

1£(22) — 47(=)|| < ?’2—‘5 forzefo,2). (25)

Extend the function f to the interval (—r,0) by defining the extension ¢ as
é(z) = f(z) for z € [0,7) and ¢(z) = f(—=z) for z € (—r,0). We will show that ¢ is
d-quadratic on D(r). For brevity, put u(z,y) = ||¢(z+y)+ ¢(z —y) — 26(z) — 26(y)||,
so that p(z,y) < 6 on K(r) by hypothesis. On the set K;(r) = {(z,y) € R? : 0<
<y, y+z<r}, we have u(z,y) = If(z + ) + f(~2 +3) — 20(z) - 2| < 6
since (y,z) € K(r). On Kz(r) = {(z,9y) € R?: z< 0,y >0, y—z < 1}, we
have u(z,y) = p(—z,y) < d since (—z,y) € K1(r) U K(r) and ¢ is even. Finally, if
(z,y) € D(r) with y < 0, then (z,—y) € K(r) U K1(r) U K3(r), so again pu(z,y) <4,
as was asserted.

Next, define the auxiliary function h : D(r) — E by putting 4h(z,y) = ¢(z+
y)—¢(z—y). Clearly, h(z,y) = h(y, z) for all (z,y) € D(r). When y € [0, g) , hisé-
additive with respect to z on T' (g) = {(u, v)ER?: u,ve [O, %) , ut+v € [0, —12:)},
and also in y by the interchange of £ and y. From the definition of A, it follows that

4(h(u + v,y) — h(v,y) — h(v,y)) =
98
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= [p(utv+y)+d(u—v—y)—2¢(u)—26(v+y)]—[p (u—y—v)+o(u—y+v)—2¢(u—y)—24(v)| -

—[p(u +y) + (v — y) — 2¢(u) — 26(y)] + [(v + y) + (v — y) — 2¢(v) — 2¢(y))

when (u,v + y), (v — y,v),(4,y) and (v,y) are points of the set D(r) where ¢ is
d-quadratic. Hence, [|h(u + v,y) — h(u,y) — h(v,y)|| < 4.

Thus, h satisfies the hypothesis of Theorem 3, with T

2
exists a function F : [O, -;—) X [, g) — E which is symmetric and biadditive such that

in place of r, therefore

lIh(z, 5) - F(z,u)ll < 96 when (z,5) € [0,2) x [.3) (26)
For z € [0, -72:), we have
h(z, z)—f(2)l| = 47| f(22)=F(0)—-4f (2)l| < 47 |f(22)+£(0)—4f(z)|[+47 127 (0)I| < g

so that

delta T
2 forz € [0, 5) . (27)

The function F(, z) is quadratic on K (%). According to a theorem of Skof

(2, 2) - F(2)]] <

[18], it may be extended to a function ¢ : R — E which is quadratic and such that
¢(z) = F(z,z) when z € [0, %) Thus, when z € [0, 12:)’ we have ||f(z) — F(z, z)|| <
I£(2) — h(z, 2)l| + ||h(z, 2) — F(z, z)|l, so, by (26) and (27),

1) - el < ()6 z€fof). (29)

rTr

Now for z € [%, r], i.e. ; € [Z’ 2]; taking account of (25) and (28), we have

1) - a@l < |#@) 47 (Z)] + |er (£) -4 (2)] < 52

and the theorem is proved. O
With the help of theorem 4, Skof and Terracini obtained the following
Theorem 5. Denote the set {(z,y) € R?: |z+y| <r, |z—y| <r} by D(r).
Let E be a Banach space and suppose that f : (—r,r) — E is §-quadratic on D(r) for
some § > 0. Then there ezists a function q : R — E which is quadratic and satisfies

the inequality || f(z) — q(z)|] < 823 when —r <z < r.
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Proof. Observe that for a given y € (—r, ), with (z,y) € D(r) and (z,—y) €
D(r) we have ||£(3) — f(=y)ll = 2} I(F(@ + ) + F(& — v) — 2f(2) — 26()) — (f(a -
y) + f(z +y) — 2f(z) — 2f(—y))|| < 8. Denote by fo the restriction of f to [0,r) and
apply theorem 4 to obtain || fo(z) — ¢(z)|| < k6, where k = 222 For z € (—r,0), if f
is an even function, we have

17(2) ~ 4@l < 17(2) ~ F(=2)ll + I5(=2) - a(==)l| < (L + W6 = 22

The next topic on the stability of a certain type of conditional Cauchy equa-
tion is intriguing because it turns out to be q srot of hybrid between approximately
additive and approximately quadratic mappings.

Functionals which are approximately additive on A-orthogonal vec-
tors .

Given a complex Hilbert space X, let A: X — X be a bounded selfadjoint
linear operator whose range AX has dimension > 2. A functional ¢ : X — C is said
to be additive on A-orthogonal pairs if z,y in X with (Az,y) = 0 implies that
é(z + y) = ¢(z) + ¢(y). Such functionals were studied by F. Vajzovic [23]. On page
80 of this reference, he proved the following;: '

Theorem 6. If¢ : X — C is continuous and additive on A-orthogonal pairs,

then there exists a unique scalar § and unique vectors u and v in X such that

é(z) = (z,u) + (v, z) + B(Az, ).

Here and in the remainder of this section, the inner product of the Hilbert
space X will be denoted by means of parentheses.

H. Drljevic and Z. Mavar [6] considered a stability problem for such func-
tionals as follows. Using the concept of approximate additivity of Th.M. Rassias [12],
these authors defined a functional ¢ : X — C to be approximately additive on
AQorthogonal pairs if there exist constants § > 0 and p in the interval [0, 1) such
that

16(z +3) - #(2) - 6(3)| < 8 [I(42,2)] + |(4y, )|5] (29)
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for all z,y in X for which (Az,y) = 0. Their main theorem is:

Theorem 7. Let X be a complez Hilbert space and A : X — X be a bounded
linear selfadjoint operator whose range AX has dimension > 2. Suppose that ¢ :
X — C is approzimately additive on orthogonal pairs, so that ¢ satisfies (29) for
some @ > 0 and some p in [0,1), and also that ¢(tz) is continuous in the scalar it for
each fized z and allt in C.

Then there exists a unique continuous functional ¢ : X — C which is additive

on A-orthogonal pairs and satisfies the inequality

|#(2) — ¥(2)| < e(p, 6)(Az, 2|

for all z in X, where €(p,0) is a constant.

Moreover, by Theorem 6, ¢ is of the form

¥(2) = (2,u) + (v, 2) + B(Az, 2),

where the vectors u,v and the scalar B are constants.

Proof. We decompose ¢ into its odd and even parts, putting:
G(:B) — ¢(.’L‘) -245(_""‘) and H(z) — ¢(I) +2¢(—Z) .

It is easy to see by use of (29) that both G and H are approximately additive
on A-orthogonal pairs with the same constants 6 and p as those that appear in (29).
Properties of the odd functional G

As just stated, we have
Gz +3) - G(z) - G)] < 8[I(4=,2)] + |(4y, )3 (30)

for all z,y in which satisfy (Az,y) = 0.
In the trivial case in which (Az,z) = 0 for some z in X, we have |G(2z) —
2G(z)| = 0, so that (2"’) = G(z) and it follows that, for all n € N,
G(2"z)
2
Lemma 8. Let (Az,z) # 0 for some fized z. Then there exists a y in X
such that (Ay,y) # 0 and (Az,y) = 0.

= G(z) when (Az,z) = 0. (31)

,/6%“‘3"\ FACULTI’/,
(¥ Gunapdth
N\ BF wareehl
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Proof. Suppose that, contrary to the Lemma, (Ay, y) = 0 for each y in the
hyperplane Y = {y € X : (Az,y) = 0}. Then, for each pair y,,y2 in Y, we have
(A(y1 + y2), 1 + y2) =0, so that (Ay:,y2) + (Ayz,y1) = 0. Now replace y; by iy in
the last equality to get —i(Ay1, y2)+i(Ay2, y1) = 0, that is —(Ay1, y2)+(Ayz, 1) = 0,
to see that (Ayz,y1) = 0 for each pair y;1,y2 in Y. Since (Az, z) # 0, it follows that
z does not belong to Y. Thus, every z in X may be written in the form z =Nz +y
for some complex number 4 and some y in Y. So for all 2z in X, Az = yAz + Ay
and (Az,y) = (Az,y) + (Ay,y) = 0. Therefore, Az = 4’ Az, which is contrary to the
hypothesis that dim(Az) > 2. O

Remark. Since A is selfadjoint it follows that (Az, z) and (Ay, y) are always
real. If z and y are those of Lemma 8, then, by multiplying y by an appropriate
positive real number if necessary, we may assume that (Ay, y)+(Az, z), with (Az,y) =

0.

Lemma 9. Assume that (Az,z) # 0, (Az,y) = 0 and (Ay,y) = (Az, ).
Then the limit G(z) = lim ﬂ%‘_ﬂ erists.

00
Proof. From the assumptions of the lemma, we see that (A(z+y),z—y) =0,

i.e. +y and z — y form an A-orthogonal pair. Hence, by (30),
(Ga+y+e-3)-Gla+y)~Gle—u)| < 0 [I(Az +3), 2 + W15 +1(Alz - 3), 2~ 9)I3],
that is
|G(22) - G(z +y) — G(z — y)| < 260 - 25|(Az, ) |5
From this inequality and (30), using the oddness of G, we obtain
|G(22) - 2G(2)| < |G(22) — G(z +y) — G(z - y)| + |G(z + y) — G(z) - G(y)I+
+|G(z —y) - G(=) - G(-y)| <

< 20 (25|(4z, 2)|% +1(4z,2)|% +|(4z,2)|F) = 20 (2+ 2% ) |( Az, 2) 5,

or

ngZ”) —G’(:c)l <0 (2+2%) I(Az, z)|%. (32)
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By mathematical induction, as in the proof of the theorem of Th.M. Rassias

[12], we find that

[276(2"s) - G(e)| <0 (2+2%) (42, 2)I% sz(v-l)
k=0

or by summing the series indicated,

|2-"G(2"z) — G(z)| < 0](Az, z (2 ;p %) (33)

G(”)

In order to show that {
with m > n > 0. Then

G2mz)  G(2e)
2m 2n

} is a Cauchy sequence, let m and n be integer

G(2™z)

gm-—n

=9-n — G z)|.

Use inequality (33) with  replaced by 2"z and n by m — n to find that

G(272) _ G2'2)|  go-n|(a(2a), 270) 5 221 22) (2+2%) _

2m 2n 2-—2r

2(2+2%)

— 9n(p-1) gz\zre7

2 6}(Az, z)|> ST

Since p — 1 < 0, the above sequence is a Cauchy sequence and so converges
. n
for each = in X. We put G(z) = lim G z). m]

n—ooc 27

Lemma 10. If (Az,z) # 0, (Az,y) = 0 and (Ay,y) = —(Az, z), then the
limit lim 27" G(2"z) ezists.
n—>00
Proof. From the hypothesis it follows that A(z + y,z £ y) = 0 when the +
signs are consistent. Hence, by (31),

G[2™(z +
%—y—)—l:G(ziy), neN.
In the inequality (30), replace = by 2"z, y by 2"y and divide the result by 2"

to get

GR"(=z+y)] G(2°z) _G(2"y)
n T T

In this last inequality, replace y by —y to obtain

G2Y(z —y)] _ G(2'z)  G(2")
2n 2n 27

< 20-27P=1)|(Az, z)|5.

<20 2°¢-V|(4z,2)|5,
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6+ - S - SEI <. -0z o),
and
n n
G(:c _ y) G(22 1') G(22n y) <2- 2"(”—1)0|(A1!,£)|§.

From the last two inequalities, we find that

Glz+y) +CGz—y)] _G(2"z)
2 2n

< 2-2¢P-1g|(Az, z)|5.

Hence, the limit

lim 2(2"2) _ Gz +y) +G(z-y)

n—aoo 27 2

exists. O (34)

n
From (31), and Lemmas 9 and 10, it follows that the limit G(z) = Jim G(2°2)

exists for each z in X.
Lemma 11. G is additive on A-orthogonal pairs.
Proof. Assume that z,y in X satisfy (Az,y) = 0. Using (30), we find that

Gl2*(z+y)] G(2"z) G(2"y)
2n 2n 2n

< onle-1g [|(Aw,z)|5 + |(Ay, y)l%] .

Since p < 1, the right member of this inequality approaches 0 as n — oo, so
that

Giz+y)-G(z)-Gy)=0. O
Lemma 12. The functional G : X — C satisfies G(az) = aG(z) for each

real a and each z in X.

Proof. We first demonstrate that
G(az + bz) = G(az) + G(bz) for all a,b in R and all z in X. (35)

Case 0. Note that, if, for some z, we have (Az,z) = 0, then z,z is an
orthogonal pair, so by Lemma 11 we have G(az + bz) = G(az) + G(bz).

Assume that (Az,z) # 0. Then we know by previous results that there
exists y in X such that (Ay,y) # 0 and (Az,y) = 0 and that we may assume that
(Ay,y) = £(4z, z).

Case 1. Let (Ay,y) # 0, (Az,y) = 0 and (Ay,y) = (Az,z).
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Then (A(z +y),z —y) =0, so that z +y,z — y as well as z, y are orthogonal

pairs. Hence, for real numbers a and b, we have
Gla(z +y) +b(z — y)] = Gla(z +y)] + Gb(z ~ y)] = G(az) + G(ay) + G (bz) - G(by).
Moreover,
Gla(z +y) + b(z — v)] = Gl(a + b)z + (a - b)y] = G[(a + b)z] + G[(a - b)y].
It follows that
Gl(a+ b)z] + G[(a — b)y] = G(az) + G(bz) + G(ay) — G(by). (36)
Now interchange a and b to obtain
Gl(a + b)z] — G[(a — b)y] = G(az) + G(bz) + G(by) — G(ay). (37

By adding (36) and (37) and then dividing the result by 2, we have G(az +
bz) = G(az) + G(bz) in Case 1.

Case 2. Assume that (Ay,y) # 0, (Az,y) =0 and (Ay,y) = —(Az,z).

Then, as we have seen before, (A(z + y),z+y) =0,s0 that c +y,c +y,z —

y,2 — y as well as z, y are orthogonal pairs. Thus, we have
Gla(z +y) +b(z +y)] = Gla(z +y)] + Gb(z + )] = G(az) + G(b2) + G(ay) + G (by),
Gla(z + ) + b(z + )] = Gl(a + b)z + (a + b)y] = G[(a + b)z] + G[(a + b)y],

so that
Gl(a + b)z] + Gl(a + b)y] = G(az) + G(bz) + Clay) + G(by). (38)
In (38), replace y by —y to get
Gl(a + b)z] — G[(a + b)y] = G(az) + G(bz) — G(ay) — G(by), (39)

where we have used the fact that G is odd. From (38) and (39), it follows that
G(az + bz) = G(az) + G(bz) in Case 2. Thus, this equality holds for all z € X when
a and b are real numbers.
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In order to complete the proof of Lemma 12, let a mapping ®(t) = G(tz), t
in R, be defined from R into C. By what has just been proved, we have

®,(a+b) = Pz(a) + P (b)
G(2"tz)

»

for all real a and b. Put ®,,(t) = so that

O (t) = lim @,n(t).

Each of the functions ®.,(?) is continuous in ¢ for all ¢ by a hypothesis of
Theorem 7. Hence, ®;(t) : R — C is measurable in ¢ since it is a limit of continuous
functions. Since ®(t) is both additive and measurable in ¢, it follows that ®.(a) =
a®.(1) for a in R and each z in X. That is, G(az) = aG(z) for each a in R and each
zin X. O '

As to the estimate of the difference G—G, we have shown that, when (Az,z) =
0, this difference is zero according to (31). In Case 1, where (Az,z) # 0, (Az,y) =0
and (Az,z) = (Ay, y), it follows from (33) that

|G(z) — G(z)| < €1(p, 8) for all z in X (40)
B
where €;(p, 0) = %—l

We now turn to Case 2, where (Az,z) # 0, (Az,y) = 0 and (ay,y) =
—(Az, z). In this Case, G(z) = ﬁx—ﬂt—f—"@f—yl, and, by (34) and (30), we obtain
G(2"z)

. _|Glz+y)+G(z—y) _

”ango o —G(z) _‘ Y 3 Y -G(z)| =
_|Glz+y) ~G(z) ~Gly) | Gl= --y)—G(r)—G(—y)’<
2 2 =

<27YG(z +y) - G(z) - G(y)| +271|G(z — y) - G(z) - G(-y)| <
< 0|(Az, z)|% + 6|(Az, 2)|5 = 26|(Az, z)|5.
Therefore, in all three cases, and hence for all z in X, we have
|G(z) - G(=)| < e1(p, 6)(Az, ) (41)

2+ 2%

where €1(p, 0) = 26 5o

> 26.
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Since by Lemma 12 the mapping G is homogeneous of degree one with respect
to real numbers, Drljevic and Mavar (1982) concluded that this property may be
substituted for the continuity of the functional ¢ in Vajzovic’s result cited above as
Theorem 6. Thus, they found that the odd function G, which was shown above to be

additive on orthogonal pairs, is of the form
G(z) = (z,u) + (v, 2), (42)

and hence is continuous and additive on X.

Properties of the even functional H
é(z) + ¢(—=)
—_——

Consider the even functional H(z) = By (29), it follows

immediately that when (Az,y) = 0, then
|H(z+y) - H(z) - H)| < 0 [(42,2)[% +|(4y, 1)iE] . (43)

Clearly ¢(0) = 0 implies that H(0) = 0.

Lemma 13. For each z in X, the limit H(z) = nl_i_}r{.lo 4~"H (é”z) ezists.

Proof. Case 0. Suppose that (Az,z) = 0 for some z in X. Then, as before,
in considering the functional G, we have h(2z) = 2H (z), and (Az, —z) = 0, so by (43)
with y replaced by —z it follows that A(z) = 0. Thus, H(2z) = 0 and H(42::c) =0
hold for all n € N, and we have H(z) = 0 in this case.

Suppose that (Az, z) # 0 for some z. By Lemma 8, we know that there exists
yinY = {y: (Az,y) = 0} with (Ay,y} #0.

Case 1. (Az,y) = 0, (Az,z) # 0 and (Az,z) and (Ay,y) have the same
sign. As we have seen previously, we may assume that (Az,z) = (Ay,y), so that
(A(z +y),z — y) = 0. This in turn implies that

|H(2z) - H(z +y) — H(z — y)| < 6-2'*5|(Az,2)|5. (44)

Notice that

o= (13+752) 0 (25 -0 (259

s|r (552) + 1 (552) - w (2 55Y) | <
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(e a) - () - (%)
() e () - (5 =) s
<[ (+(=52) I+ (59 =)

|H(y) - H(z)| < 2%0-27%|(Az,2)|5 = 022~ %|(Az, 2)|5. (45)

+

+

or

By using (44) and (45), we have
|H(2z) - 4H(z)| = |H(22) - H(z +y) - H(z —y) + H(z +y) + H(z —y) —4H (2)| <
<|H(2z) - H(z +y) — H(z - y)|+
+H(z+y) - H(z) - H(y) + Hz —y) - H(z) — H(-y) + 2(H(y) — H(=z))| <
<|H(2z) - H(z+y) - H(z — )|+
+H(z+y) - H(z) - H(y) + H(z — y) — H(z) — H(-y) + 2(H(y) — H())| <
< 0-2'%5|(Az, 2)|F + 40)(Az, 2)|% + 0 - 22~ 5|(Az, 2)|5.

Therefore,
|H(22) - 4H(z)| < 26 (2+ 25 +227%) |(4z, 2)|E. (46)
Let us put
up,0) =0 (14251 21-8). (47)
Divide inequality (46) by 4 and use the abbreviation (47) to obtain
HG2) _ #@)| < uto,0)(4z, ). (48)

In (48), replace z by 2z and divide the result by 4 to get

H(2%z) H(2z)
B!

42 < 2p_2l‘(p: G)I(A:L', z)l%_

Combining the last two inequalities, we have

H(2%z)

— < u(p, 0)l(Az, 2) 5 (1 + 2772).

— H(z)
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By mathematical induction, we find that

H(2"z)

n
o < u(p,9)|(Az, z)|% 22"(”’2) for all n in N.

k=0

— H(z)

By summing the series indicated, we may write

H(2"z) < 4u(p,9)|(Az, 2)|5
St —H )I LRl (49)

Using a method similar to that used above in the case of the functional G,
H(2"z)
4n

Case 2. (Az,y) = 0, while (Ay, y) and (Az, z) have opposite signs. Again

we find that the sequence { converges in Case 1.
we put Y = {y: (Az,y)} = 0. Without loss of generality, we may assume that
(Az,z) > 0 and that (Ay',y') < 0 for each y in Y. We can also find a y in Y such
that (Ay,y) = —(Az,z). Let P be a projection of the space X onto Y parallel to
the vector Az. Then Ay = a(y)Az + PAy, so that (PAy,y) = (Ay,y). We note
that the last equa.lit,y. holds if y is replaced by any ¢ in Y. Let Z = {2 : z €
Y, (PAy,z) = 0}. Id (PAz,z) = 0 for all z in Z, then since Z C Ym it follows
that (Az,z) = (PAz,z) = 0 for all z in Z. Thus, Az is perpendicular to z, so that
PAz = 3(z)PAy. Clearly, z ¢ Y. Also, from (Ay,y) = —(Az, z) # 0, it follows that
y € Z. Moreover, z and y are linearly independent. For, iff az + Sy = 0 for some
scalars a and 8, then aAz + fAy = 0 and aPAz + BPAy = 0, that is BPAy = 0.
Hence, B(PAy,y) = f(Ay,y) =0, s0 f = 0. Hence, az = 0 so a = 0, since z # 0.
Thus, ¥ € Y can be written in the form ¢ = az + By + 2z, with z in Z, and
so PAy = aPAz + fPAy+ PAz = fPAy + PAz = (B + B(z))PAy. It follows that
(PAz,z) =0 for all z in Z implies that

PAy = (B + pB(z))PAy forall y €Y.
For each u in X, we write
Au = a(u)Az + PAu (50)

Let 4 = a1z + f1y + 2. Then PAu = a; PAz + p1 PAy + PAz. As shown

above, PAz = B(z) P Ay, so that PAu = (8, + B(z))PAy for all u in X. Thus, (50)
becomes A(u) = a(u)Az + (8, + B(z)) PAy for all u in X, which is a contradiction to
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the hypothesis that the dimension of A(X) is greater than two. Therefore, there exists
a z' in Z such that (PAzZ’,2’) # 0. We may choose z in Z so that (PAz, 2) = (P Ay, y),
or (Az,z) = (Ay,y). Also, (Ay,z) = 0, for we have Ay = a(y)Az + PAy from the
definition of P, so that (Ay, z) = (a(y)Az, z) + (PAy, z). The first term of the right
side of the last equality vanishes because z € Y, and the second term vanishes by the
definition of Z.

Thus, we have an element y in X with (Ay,y) # 0 and an element z in X
satisfying (Ay,2) = 0 and (Az,2) = (Ay,y). So we can use the results of Case 1,
replacing = by y and y by z, to conclude that the sequence {_{1__(42':‘_;(/)
On the other hand, since (Ay,y) = —(Az,z) and (Az,y) = 0 implies that (A(z +
y),z £ y) = 0, it follows from Case 0 that W = 0 for n € N. For the
A-orthogonal pair z,y, we have |H(z + y) — H(z) — H(y)| < 20|(Az,z)|5. Since
2%z, 2"y is also A-orthogonal pair with (A(2"y),2"y) = —(A(2"z,2"z)), we have

converges.

‘H (2"(z+y)) H(2'z) H(2")

471 4ﬂ 411 S 20 * 2"(?—2)|(A1.’ z)l‘z",

or

H(2"z)
471

7
+ an v) l < 26 - 2"P-2)|(Az, z)|5.

Ul
Since the sequence { M
411
H(2"z)
47!
7
{M} converges for each z in X. O

4"
~ ~ 7
Lemma 14. The functional H defined by H = lim m
n—oo 47

} converges, the same is true for the sequence

. From the results of Cases 0,1 and 2, we conclude that the sequence

has the follow-
tng properties:

(1) H is additive on A-orthogonal pairs.

(2) H(z) =0 if (Az,z) = 0.

(3) If (Az,z) = (Ay,y) # 0 and (Az,y) = 0, then H(z) = H(y), while, if
(Az,z) = —(Ay,y) and (Az,y) =0, then H(z) = —H (y).
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Proof. For (1), let z,y in X satisfy (Az,y) = 0. Then, by (43), it follows
that

1H(2”(x+ y) H@s) HE)
4n 4n

< 2729 [‘(Az,m)f + |(Ay, y)l%] :

Taking the limit as n — oo, we get H(z +y) — H(z) — H(y) = 0. For (2),
from the definition of H in terms of H, it is clear that H(0) = 0. Now let (Az,z) = 0.
Then, by the last inequality with y = —z, we have

H(0) H(2"z) H(-2"z)
4 4n 4n

<0foralln €N,

so H(0)—2H(z) = 0 and H(z) = 0. For (3), let (Az,z) = (Ay,y) # 0 and (Aa: y) =0.
+y —y

Then (A(z+y),z—y) = 0, so, using the A-orthogonal pairs z 3 and ——7- we get
z+y Y\ _ 5[ty g(T Y
i =i (St 25 ) = (57) + 4 (55Y),
while, usin zty ¥ e s 24y -
, using and = = —, weget H(y) = H (3¢ + ¥3%) = H (22)+4 ( )=

H(z), since H is even. On the other hand, suppose that (Az,z) = —(Ay,y) and
(Az,y) = 0. Then (A(z + y),z +y) = 0. Using the properties (2) and (1) above, we
have 0 = H(z + y) = H(z) + H(y), so that H(z) = —H (y) in this case. O

Lemma 15. For all z in X and all complexr numbers a we have

H(az) = |a|?H ().

Proof. From property (3) of Lemma 14, we conclude that the functional H
is a function of (Az,z). Let H(z) = I'((Az,z)). Given z in X, we can find a y in X
such that (Az,y) =0 and (Az, z) = +(Ay, ).

Case 1. (Az,z) = (Ay,y) > 0.

Since H is additive in orthogonal pairs, it follows that, for real a and b,
H(az + by) = H(az) + H(by). By the definition of the function I', putting u =
a%(Az,z) and v = b%(Az, z) =b*(Ay, y), we have

[(u+ v) =T'(u) + I'(v) for all u,v > 0. (51)
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We may extend the function to all real numbers in a well known way, so
that (51) will hold for all real u and v. Now define the mapping ¢ : R — R by
¥(a) = H(az) = I'((a(az), az)) = ['(a?(Az, z)). Then, for real numbers a, b,

#(a+b) = ['((a + b)*(Az, z)) = ['(a®(Az, z) + 2ab(Az, ) + b?(Az, ),

#(a — b) = I'((a — b)?(Az, z)) = T'(a*(Az, z) — 2ab(Az, z) + b?(Az, 7).

Using (51), we obtain
Y(a +b) + ¥(a — b) = 2¢(a) + 2¢(b). (52)

Since 1 is measurable, by a known theorem of S. Kurepa [11], it may be
written as ¥(a) = a(z)a?, or H(az) = I['(a®(Az,z)). Put a = 1 to get H(z) = a(z),
so that H(az) = a®H(z) for z in X and a in R. Now suppose that a = rexp(iw)
is a complex number (r = |a|). Then (A(az),az) = (A(rexp(w)z,rexp(iw)z) =
r?(Az, z)). Thus, H(az) = I'(A(az), az) = L(r?(Az, z)) or H(az) = |a|?H (z) for all
z in X and all complex numbers a, in Case 1.

Case 2. (Az,z) = —(Ay,y) forallyin Y.

As before, we can find a z in Y such that (Az,2) = (Ay,y) and (Ay,z) = 0.

Hence, by the result of Case 1, we have
H(ay) = |a]*A(y).

Since, by the condition of Case 2, we have H(z) = —H (y) by Lemma 14, (3),
it follows that

A(az) = — A (ay) = ~lalA () = oA (2).

Therefore, H(az) = |a|2H (z) holds for all z in X and all complex numbers

From inequality (49), it follows that

1(2) ~ H@)| < ea(p,0)| (42, 2)1F, with ex(p,0) = 22D (55)
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On the basis of the property H(az) = |a|?H(z) of H, the authors conclude

that the conclusion of Theorem 6 above holds, so that H is of the form
H(z) = (z,¢) + (d, 2) + B(Az, 2),

where the constant vectors ¢,d in. X and the complex constant § are uniquely de-
termined by the functional H. Thus, H is continuous. Also, sincé H is an even
functional, it follows that H(z) = B(Az, z).

To complete the proof of Theorem 7, we note that, by (41) and (53), we have

|6()~[G(z)+H (2)]| = |G(2)+H (2)~G(z)~H(2)| < |G(z)~C(2)|+]H (z)-H(z)| <
< &(p,0)|(Az, z)|3, where ¢(p,0) = &1(p, ) + €2(p, §).
Therefore, the required functional of Theorem 7 is by (42):
¥(@) = 6(@) + H(z) = (2,4) + (v,2) + Bz, 2).

To prove the uniqueness of ¥, suppose on the contrary that there is another
functional ¥; # v which is continuous, additive on A-orthogonal pairs and which

satisfies
¥1(z) — ¢(z)| < €'|(Az, z)|3 for some constant &’ > 0 and all z € X.

Since 9 is continuous anci additive on A-orthogonal pairs, it follows that it
is of the form ¥4 (z) = (z,¢) + (d, =) + y(Az, z), where ¢, d are constant vectors in X
and 4y € C. Then

[¥(2) = $1(2)| < (2) - 8(2)| + |6(2) — ¥1(2)| < (e(p, ) + €')(Az, 2) £,
that is, for all z in X, we have
(2,4~ ) + (v —d,2) + (B — 7)(4z,2)| < (e(p, ) +¢')(Az, 2)%.
In this last inequality, replace z with nz to obtain
|(nz,u— ¢) + (v — d,nz) + (B — 7)n’(Az, )| < (e(p,0) + €')n?|(Az, )5, (54)
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Divide (54) by n? to get
In~!z,u—¢) + n7 (v = d,2) + (B — 7)(4z, )| < (e(p,0) + £')nP~2|(Az, 2)|3,
and, letting n — oo, we obtain 8 = 4. Thus, (54) now becomes

l(nz,u—c) + (v — d,nz)| < (e(p,0) + €')nP|(Az, z)|5.
/
Divide this last inequality by n and then let n — oo to get (z,u —¢) + (v —

d,z) = 0. Now, if we first put £ = u — ¢ and second put ¢ = i(u — ¢), to obtain
llv—c||>+ (v —d,u—c) =0 and i||u — ¢||? —i(v — d,u — ¢) = 0, we find that u =¢
and v = d. The uniqueness property of the functional 1 has been proved. O

Comments

In their paper, Drljevic and Mavar [6,p.171], stated without proof the follow-
ing:

Theorem 16. Let X be a Banach space and h a functional on X such that
h(tz) is continuous in the scalar t for each fized z in X. Let 8 > 0 and p € [0,2) be

real numbers such that
Ih(z +3) + h(z — y) — 2h(c) — 2h(y)| < O(l<|’ + |[sl") for cach z,y in X.
Then there ezists a unique quadratic functional hy on X such that

|h(2) = h1(=)| <

14
el

This anticipated, in the case of functionals, one of the results of Czerwik (see
Case 1 of Theorem 2 above).

Later, Drljevic [7] proved the following:

Theorem 17. Let X be a complex Hilbert space of dimension >3, A: X —
X a bounded self-adjoint linear operator with dim AX > 2, and let the real numbers
6 > 0 and p € [0,2) be given. Suppose that h: X — C is continuous and satisfies the
inequality |h(z +y) + h(z — y) — 2h(z) — 2h(y) - 2h(y)| < 0 [|(Az, )5 + |(Ay, y)|5]
whenever (Az,y) = 0.

h(2"z)
471

hy is continuous and satisfies hy(z + y) + hi(z — y) = 2h1(z) + 2h1(y) whenever

Then the limit hy(z) = nlLr(go exists for each z € X and the functional
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(Az,y) = 0. Moreover, there ezists a real number € > 0 such that |h(z) — hi(z)| <
el(Az, z)|5.

The methods of proof of this theorem are based in part on those explained
above in the proof of Theorem 7.

Approximately homogeneous mappings

This topic has been studied by S. Czerwik [5] and by Jacek and Jozef Tabor
[21]. We begin with a presentation of Czerwik’s work. The following notations will
be used. R denotes the set of all real numbers, R, the set of non-negative reals
and Ry the set of non-zero reals. For each a in R and each p in Ry, we define
Up={a€R: aP erists in R}.

Lemma 18. Let X be a real vector space and Y a real normed space. Given

f:X—>2Y,pin Ryand h: Rx X — Ry which satisfy the inequality

I/ (az) — o® f(2)|| < h(e,2) (55)

for all (a,z) in Up x X, then the inequality

n-1

f(@"2) ~ @™ f(z)|| < D lalPh(a, o " z) (56)

s=0
holds for alln € N and (a,z) € Up x X.
Proof. We use (56) as an induction hypothesis. Note that it is true for n =
by (55). In (56), replace z by az to get

n-1

If(@™+'2) — o™ f(az)l| < D lalPh(a, a"*2).

s=0

Now multiply (55) by a™ to obtain
lla™ f(az) — "2 f(z)|| < |a|*Ph(a, ).
Combine the last two inequalities to find that

1 (@*12) —a® P 1) < 3 fof*Ph(a, a™z),

=0
which completes the induction proof. O
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Theorem 19. Let the assumptions of Lemma 18 be satisfies, and let Y be a
Banach space. Suppose that for some 3 in U, with B # 0 the series

31817 h(8, 67 z) (57)

n=1

converges for each x in X, and that

.. ~np _

liminf |87 h(a, f*z) = 0 (58)
Jor each (a, z) in U, x X. Then there erists a unique mapping g : X =Y such that

g(az) = aPg(z) for each (a,z) in U, X X and which satisfies

lg(z) - f@)I < D 187" k(8,87 ) (59)

n=1
for each z in X.

Proof. For n € N, set

gn(z) = "Pf(Pnz), zEX. (60)

From (56), we get when n € N and z € X:

lgn(z) = F@I < D 1BI7°Ph(8, 5 2). (61)

=1
In order to show that the g,(z) form a Cauchy sequence, we note that, if in

(56) we replace z by "z and n by n — m where n > m, we have
llgn (=) — 9m (@)l < 1BI7"?|| F(B8" =) — B~ f(B™ )| =
= ||BI="?||F(8"™ (8™ =) — B f(B™2))|| <

n-m-—1 n—m-1
<l 3 1BTRE. T = 3 18IS, 7 ).
s=0 s=0

This inequality may be written as ||gn (2)—gm (2)|| < k=1 |B17*7R(8, B+~ 12),
and, by hypothesis, it follows that {g,(z)} is a Cauchy sequence for each z in X. From
(60), (55) and (58), we obtain

llg(az) — aPg(z)l| = lim [|B~"7[f(aB"2) — oF f(8"2)] <

i -np —
< nllm |8 "?h(a, B z) = 0.
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Thus, g is a p-homogeneous mapping when « € Up. Also, from (61), we get
(59).
It remains to prove that g is the unique p-homogeneous mapping that satisfies

(59). Suppose that there are two such mappings, say g; and g2. Then, for m € N,

llg1(z) — g2(2)| = 1BI"™"|lg1(8™2) — 9a2(B™2)l| <
< 187" [llg: (8™ z) — F(B™ )| + llg=2(6™ ) — fF(BT )] <

<1BI7™P -2 |87 PR(B, ATy <2 ) 1BITRPA(B, B4 ).

s=1 k=m+1
Consequently, since the series (57) converges, it follows that g = g;. O
Corollary 20. Let the assumptions of the Lemma 18 be satifies with h(a, z) =
3+ |alPe for given positive numbers § and €, and let Y be a Banach space. Then there

is a unique p-homogeneous mapping g : X — X such thart

llg(z) — f(z)|| <€ forallz in X. (62)

Proof. Assume that p > 0. By Theorem 19, for every 8 =m € N, § > 2,

there exists a p-homogeneous mapping

Im(z) = nlirgo m~"Pf(m"z), z€X,

such that
[o o] o0
llgm(2) — f(2)I| < D m™"Ph(m,m" 'z) <D m™"?(6 + mPe)
n=1 n=1
or
§ + mPe
llgm (z) — f(=)]| < o1 *E€X (63)

Now we shall show that, for each pair m > 1, 7 > 1 in N, we have g,, = g,.
By (63), forn € N,

é P S+ 1P
llgm(z) — 9-(2)l| = 27"P|lgm (2" 2) — 9, (2"2)|| < 277° ( +mPe G+ e) .

mP—1 P —1
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Thus, since p > 0, if we let n — oo, we get gm = g-. We pit g(z) = g2(z),
z € X. By (63) we have ||g(z) — f(z)]| < %‘n',',"—_'f—, and now, letting m — oo, we find
that ||g(z) — f(2)l| <e.

In the case where p < 0, we can take § = % and say ¢ = —p and carry out
a similar proof. O

Example. Take f(z) = sinz for z in R. Then |sin(az)—aPsinz| < 1+|af’
for (@, z) in Up x R. This shows that not all cases under Corollary 20 are superstable.

Corollary 21. Let the assumptions of Lemma 18 be satisfied with h(a, z) =
§ + |offe, 8,6 in Ry, and let Y be a Banach space. Then, if either § or € is zero,
flaz) = a? f(z) for all (a,z) in (Up \ {0}) x X.

Proof. Suppose that § = 0. Then

|If(az) — of f(z)]| < |alPe for (a,z) in Up x X. (64)

Putting z = % with o in Up \ {0}, we get

Y
|#6) — s (£)
that p > 0. Then f(y) = limg_0a?f (%) for y in X. Therefore, for (8,z) in

P
(U \ (01) % X, we have f(62) = tima (22) =timpr (5) 1 (%) = w11c),
so the corollary is verified for § = 0 and p > 0. If p < 0, then, from (64) we get
lim off (%) = f(y), and as before we find that the corollary holds for § = 0 and

|a| 200

p<0.

, < |afPe. Assume

a

On the other hand, suppose that € = 0. Then ||a™? f(az) — f(z)|| < |a|™Pé
for (a,z) in (Up \ {0}) x X. Hence, when p > 0, f(z) = Iaﬂznw a~? f(ax), and when
p<0, f(z) = 11_% a~? f(az). As before, it is easily shown that Corollary 21 holds in
these cases as well. O

Czerwik [5] remarked that the problem remained open for p = 0 except when
X=Y=R

Jacek and Josef Tabor [21] have used a different definition of approximately
homogeneous mappings from that of S. Czerwik. Jozef Tabor [20], in connection with
his study of approximately linear mappings has already proved that every mapping
from one real normed space X to anothe Y which for a given ¢ > 0 satisfies || f(az) —
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af(z)|| < € for all real & and z in X is homogeneous (see Corollary 1 of J. Tabor
(20]).

In the seminar of R. Ger (Katowice, October 1992), K. Baron asked if the
conclusion still holds if ¢ in the above inequality is replaced by ¢|a|. In this particular
case, it turns out that these two conditions are equivalent. However, Baron’s question
led Jacek Tabor and Jozef Tabor to consider some generalizations of the inequality
|f(az) — af(z)]| < €|a|, which lead to the results given below. They began with a
very general statement:

Lemma 22. Consider a set X, a Hausdor{f topological space Y and mappings
g1: X2 X,92:Y Y and f: X = Y. Suppose that g, is continuous on Y. Then
the following two conditions are equivalent:

(i) 92(f(=)) = f(91(=)) for all z in X.

(ii) There ea:i.:sts a sequence of mappings fn : X =Y such that

Jim f.(2) = f(z) and lim ga(fu(e)) = f(0x(@)), = in X.

Proof. Observe that (i) implies (ii) because we may put f, = f for nin N.
Suppose that (ii) holds. Since g, is continuous we get f(g1(z)) = nl_i}ngo 92(fa(2)) =
g2(f(z)) for zin X. O

Definition. Given a set X and a semigroup G with unit I, we say that G
acts on X if there is a mapping ¢ : G x X — X such that ¢(8, ¢(a,z)) = ¢(Ba, z)
for o, B in G, z in X, where ¢(1,z) = z. In what follows, we shall write ¢(a, z) as a
multiplication, e.g., aoz or a * x.

Notation. R, denotes the non-negative real numbers, K denotes the field
of either real of complex numbers and 0° = 1.

Theorem 23. Given a set X, a metric space (Y,d) and a semigroup G with
identity acting on X (denoted aox) and also on'Y (denoted o xy). Assume that for
each a in G the mapping y — a x y is continuous iny for all y in Y. For a given
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mapping g : G x X — R, suppose that f : X — Y satisfies the inequality

d(f(aoz),ax* f(z)) < g(, 2). (65)

Assume also that there exists a sequence of invertible elements a,, in G such

that, for a in G and z in X, we have
n]grgo g(aan, (an)~toz) =0. (66)

Then f(aoz) =ax f(z) foralla in G and = in X.
Proof. In (65), replace a by aay, and z by (an)"!oz:

d(f(aoz),aan * (a;! o z)) < g(aan, (en) "t o z).
Hence, by (66), we have
nli}ngo aa, * f(agloz) = f(aoz). (67)
Taking a = 1 in (67), we obtain
Jlim o, * fla;toz) = f(z) for z in X. (68)

For an arbitrary a in G, put g1(z) = ao, g2(y) = a*y and fu(z) = an *
f(aztoz). By (68) and (67), f, satisfies condition (ii) of Lemma 22. By this lemma,
we get f(g1(x)) = g2(f(z)), that is f(acz)=ax f(z) forainGand zin X. D

Corollary 24. Let X be a normed space, where L(X) denotes the semigroup
of continuous linear operators on X with composition as the binary operation, and let
P1, P2 be non-negative real numbers with p; # py. Let k : X — Ry be a mapping such
that

k(Az) < ||A||P?k(z) for A in L(X), =z in X. (69)
Suppose that f : X = X satisfies the inequality
I1£(Az) — Af@)ll < I|AIPk(z) for A in L(X), = in X. (70)

Then there ezists an a in K such that f(z) = az.
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Proof. Put g(A,z) = ||A||P*k(z) for A in L(X), z in X, and 4, = a,],
where I = the identity map and

1/” if P > P2,
any =
n lfp1 < p2.

By (70), the inequality (65) is satisfied. By (69) we have for z in X
9(Ahn, AT z) = || AAn|P k(A7 2) < ||AIP || An|PIIAZ P2k (2) < JNAIP |on P72,

Thus, g(AA,,A;'z) — 0 as n = oo, so condition (66) holds. Hence, by

Theorem 23, we have
f(Az) = Af(z) for all A in L(X) and z in X. (71)

It remains to prove that f(z) = az for some & in K. In (71), put 2 = 0
and A = 27 to see that f(0) = 2f(0), so that f(0) = 0 = a0 for a in K. Suppose
that, contrary to the statement in question, there exists an :c.in X, = # 0 such that
f(z) # az for each a in K. Then z and f(z) ate linearly independent, so that
there exists an A in L{X) with Af(z) = 0 and Az = z. Hence, by (71), f(z) = 0,
a contradiction, and we conclude that for each = in X there exists an a such that
f(z) = az. Now we must show that a does not depend on z. Let z1,z2 in X satisfy
zy #£0, z2 # 0 and z; # x2, with f(z1) = a12; and f(z2) = azz,. Take an A in
L(X) such that Az; = z3. Then, by (71), a123 = 1Az = A(oqzy) = A(f(z1)) =
f(Az1) = f(z2) = azz2 and s0 a3 = ay. O

Corollary 25. Let K be the real or complex field and let p,p, and p> be
non-negative real numbers with p1 # p;. With X a vector space over K and Y a

normed vector space over K, let k: X — R, be a mapping such that
k(az) < |a]P?k(z) for all @ in K and z in X. (72)
If a mapping f : X =Y satisfies the inequality

If(az) — el f(2)|| < |afP*k(z), (73)
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then

flaz) = |afff(z), «in K,z in X. (74)

Proof. Here, K acting on X means the usual multiplication by scalars, but
K acting on Y will be defined by a xy = |a|fy for a in K and y in Y. We put
g(e,z) = |a|P k(z). Then (73) implies that (65) is satisfied. Again we take a = %
if p1 > p2 and @, = n if p; < pa. Then, by (72), we have for @ in K, z in X,
g(aan, a;lz) < |afP|an|Pr~P2k(z) = 0 as n — co. Thus, condition (66) holds. By

Theorem 23, we have
flaz) = ax* f(z) =|alPf(z) forain K and zin X. O

In a similar way, the authors proved:

Corollary 26. If k(az) < |a|P?k(z) and ||f(az) — af(z)|| < |a|Prk(z), then
faz) = af(=).

These authors also generalized these results to the case where Y is a topo-
logical vector space over K, and where the domain of f is a subset X; of X which
is closed under multiplication by scalars, with a similar substitution for Y. Their
generalization of Corollary 25 reads as follows:

Theorem 27. Let X be a vector space over K, Y a topological vector space
over K and let X; and Y, be subsets of X and Y, respectively, such that KX, C X
and KY; CY. We are given a bounded set V C Y, a mappingg : K xY, = K and

a sequence of non-zero elements a,, of K such that
nli'ngog(aa;lz) =0fora€K, z€X;.
Suppose that the mapping f : X; — Y) satisfies the condition
f(az) — |aff f(z) € g(a,z)V for alla in K and z in X,;.

Then
flaz) = |alf f(z) for all a in K and z in X;.
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Comments

It is interesting to compare the results of S. Czerwik and of J. and J. Tabor on
the subject of approximately homogeneous mappings, which were clearly arrived at
independently. Consider the case where a is a real and non-negative and where X is
a real vector space, Y a Banach space and let f : X — Y satisfy ||f(az) — of f(2)|| <
h(a,p, z). The Tabors looked at cases where h (their g) was constant (h = ¢) or where
h has a sub-homogeneity property. In both cases, superstability resulted. However, in
Corollary 20, together with the Example which follows, Czerwik showed that, if h is
the sum of a non-zero constant and a particular homogeneous function, superstability
fails. On the other hand, the Tabors succeeded in generalizing their results to more

general spaces.
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