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STUDIA UNIV. “BABE§-BOLYAI”, MATHEMATICA, Volume XLIII, Number 1, March 1998

TORSION IN I''LATTICES

GRIGORE CALUGAREANU

Dedicated to Professor Ioan Purdea at his 60" anniversary

Abstract. After general properties of I'-lattices, a new notion of torsion is

given and some of its connections with purity are established.

1. Introduction

Let (I',-,1) be a monoid. A lattice L is called I-latice ([3]) if it is provided
with a multiplication ¢ : I' x L — L (we shall denote by va = ¢(v,a)) which satisfies
the following axioms

I':va<a

I'2:v(aVvVb)=vaV~yb

I3: (vv)a =v("a)

T'd:la=a

The source of this notion is the lattice of all the submodules of a given module
M over a commutative ring R with identity on which the monoid of the principal ideals

of R operates in a natural way: ¢(rR,A) =74 (r € R, A< M).
Remark 1.1. This monoid naturally acts also on quotient R-modules.

Moreover, this monoid has a special element : the zero ideal. In order to get
suitable definitions for purity, divisibility and torsion and to recover some of the standard
results one must consider a zero element in the monoid I'. This is called a [o-lattice if it
satisfies the axiom

I'0 : for each a € L, 0.a = 0 holds.

We say that ' has no zero-divisors if v # 0,8 # 0 imply -6 # 0.

A subset C C'L is called a system of generators for L if each element of L is

a union of elements from C. A system of generators is called closed if ' - C C C.

This research was completed in the Universita degli Studi of Padova under a Nato-CNR fellowship.



GRIGORE CALUGAREANU

As in (2] we use the quotient sublattice notation b/a = {c € Llja < ¢ < b}. An
element ¢ € L is called cycle if ¢/0 is a noetherian and distributive sublattice. Clearly,
using I'l, for any cycle ¢ and any 7 € T, yc is a cycle too. '

In a I'p-lattice an element d € L is called divisible f VO # vy €T : vd = d.

In a I'-lattice L an element p is called pure (see [1}) if yp=pA~y1,Vy€T.

2. Elementary results

In what follows I' will denote a (non-necessary commutative) monoid. For the
proofs of the following simple results see [1].
Lemma 2.1. In aeny I'-lattice, 7.0 =0,Vy €T,

Consequence 2.1. 0 is divisible in each I'g-lattice.

- One can consider, for a fixed v € T', the upper semi-morphism (according to

I'2) ¢, : L = L,p,(a) = va,Va € L. Hence
Lemma 2.2. ¢, is an order-preserving morphism.
Hence

Lemma 2.3. (i) a < b= va < vb. Moreover,
(i) y(a A b) < va Avbd.

A subset B of a I'-lattice L is called a I'-stable if Vy € I',vB C B.
Clearly (using I'l) the sublattices a/0 are I'-stable and in general not every
sublattice 1/a (or b/a) is I'-stable.

Proposition 2.1. A sublattice b/a is I'-stable iff a is divisible.
Lemma 2.4. Each divisible element is also pure.

Reconsidering 1.1 we consider on quotient sublattices b/a the following I-lattice
structure:

VyeT,Veebla:v+c=(yc)Va

enlarging in this way the notion of I'-sublattice (I-stable sublattices).

Obviously, if a is divisible this is the natural I'-lattice structure on b/a obtained
by restriction.
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3. Torsion and purity in I'y-lattices

In this section we give some properties of a new notion of torsion in a I'g-lattice
L connected with purity (continuing [1]). In this context special new conditions on
I'p-lattices seem to be necessary.

Observe that the inequality \/ {ya]ya < b} < b A 71 holds for each b € L and
eachy € T.

Clearly, if b = vz for a suitable z € L this is an equality: indeed, both members
are equal to b. Generally, if b ¢ I - L this could be no eqﬁa.lity.

In the sequel we shall call a I'-lattice dense if for each v € I" and each b € L the
equality V/ {yalya < b} = b A 1 holds.

We use bounded elements in a I'g-lattice, i.e. elements b € L such that there is
an 0 # «v € T" with vb = 0. We shall denote by B the set of all the bounded elements of
L.

For a I'g-lattice L the torsion part ¢(L) is defined as the union of all the bounded
(compact) elements. Then L is called a torsion lattice if ¢(L) = 1 resp. ¢ € L is called
a torsion element if ¢ = ¢(¢/0). The lattice L is called torsion-free if ¢(L) = O resp.
u € L is called a torsion-free element if {(u/0) = 0.

A closed system of generators C C L is called good if C N (¢(L)/0) C B, i.e.,
the generators ¢ € C such that ¢ < t(L) are bounded (as concrete examples one could
consider the compact elements in algebraic H-noetherian lattices or the cycles in cyclic
generated lattices).

We first record in a I'p-lattice L the following simple properties:

(a) If a < b and b is bounded then a is also bounded. In particular, by I'l, if b
is bounded, «b is bounded too, for each vy € I.

(b) Each atom is bounded or divisible.

(c) If C is a system of generators for L then any bounded element b is an union
of bounded generators {c;}icr € C. Moreover, if for 0 # ~ we have vb = 0 then
Viel:~yc;=0.

Consequently, if the I'g-lattice L has no divisible atoms

(d) The socle s(L) < t(L).

(e) If u is a torsion-free element then u/0 has no atoms.

IfT has no zero-divisors
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(f) For each 0 # v € T, b is bounded iff vb is bounded.
Indeed, if b is bounded there is 0 # § € T : § (vb) = (év) b = 0. I having no

zero-divisors, 6y # 0 and so b.is bounded. The rest is (a).

Proposition 3.1. IfI" has no zero-divisors the "radical” property:

t(1/4(L)) = ¢(L),

holds in a Ty-lattice L with a good system of generators C.

Proof. By definitions: 1/t(L) is a torsion-free sublattice <>

Vbel/t(L),0#veT:yxb=t(L)=>b=1t(L) &

W#yel:vb<tL) <b=b=1t(L). The lattice L having a (good) system of
generators C, the inequality b < (L) can be verified as follows: Vc € C,c < b= ¢ < t(L).

Indeed, if ¢ < b, by 2.3 v¢ < b < t(L). C being a good system of generators yc

is also a generator and it is bounded. Hence by (f) ¢ is bounded too and ¢ < #(L).0

Consequence 3.1. If ' has no zero-divisors, L is cycle generated I'g-lattice and the

cycles in t(L)/0 are bounded then L has the "radical” property.0

Consequence 3.2. If I' has na zero-divisors end L is an algebraic and H-noetherian

T'o-lattice then L has the ”radical” property.0l

Another condition we need in the propositions that follows is:

for each 0 # v € T',ya < vb = a < b for elements in torsion-free p-lattices ().

Proposition 3.2. If for an element p in a dense T'g-lattice L the sublattice 1/p is torsion-
free then p is pure. Conversely, if p is pure in a torsion-free L'g-lattice L' with (x) then

1/p is also torsion-free.

Proof. Indeed, 1/p is torsion-free if 0 # vy €T : yu < p < u = u = p. Using
the density of L we prove the inequality pAvy1 < 7p as follows: ya < pAyl = y(aVp) =
eV <pAYI<p=>aVp=p=>a<p=>va<p

Conversely, for 0 # vy € I' : yu < p < u and vp = p A 71 we have to prove that
u=p.

First, observe that yu < p,yu <yl =>qyu<pAql=qpand p<Lu=>vyp<yu
8o that yu = yp. One has finally to use (x).0

Proposition 3.3. IfT" has no zero-divisors, in a dense I'y-lattice L with a good system
of generators, t(L) is pure.

4
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Proof. This is an immediate consequence of 3.1 and 3.2.0

Proposition 3.4. In a dense torsion-free To-lattice L with (x), an intersection of pure

elements is pure.

Proof. Let {p;};c; be a family of pure elements of L and let = /\ pi. The
lattice being dense it suffices to verify that for each 0 #~vy € I': ya <P /\t;fgll implies
ve < 7P

Indeed, ya < PAYL = (\p:) Avl = A\ (i A1) = )\ (7p;) implies va < p;
for each 7 € I. Now the conditiox:e(l*) implies ateglpi for each iteel I and so a < P. Hence

va < vp by 2.3.0
Final remark. Although with a promising start, I'-lattices require too much

special conditions in order to obtain important results.
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ON THE REMAINDER TERM IN MULTIVARIATE APPROXIMATION

GH. COMAN AND IOANA PURDEA

Dedicated to Professor Ioan Purdea at his 60** anniversary

1. Introduction An efficient procedure to construct multivariate approxima-
tion operators is to extend the known results from the univariate case. An algebraic
approach of this technique has been developed in [4]. It was shown that any collection
of commuting projectors generates a distributive lattice, each of whose elements provide
an approximation for a given function. The maximal element of the lattice, which is the
"Boolean sum” of the lattice generator operators was identified as ”algebrically maximal”
approximation operator and the minimal element, which is the ”product” of the lattice
generators as the ”algebrically minimal” approximation operator of the lattice.

Next, in 1], the algebrically maximal and the algebrically minimal operators were
characterized by there approximation order: the Boolean sum operator has the maximum
approximation order while the product operator has the minimum approximation order
among the all elements of the lattice. The proof of these extremally properties is based
on the representation of the corresponding remainder operators: the remainder operator
corresponding to the Boolean sum of the lattice generators is the product of the remainder
operators corresponding to the generator operators and the remainder corresponding
to the product of the generators is the Boolean sum of the corresponding remainder
operators.

The problem which appears here is to find the remainder operator corresponding
to an arbitrary element of the lattice, which is the purpose of this paper.

Also, for the characterization of an interpolation operators will be used the degree

of exactness (dex).

1991 Mathematics Subject Classification. 41A35,41A65.
Key words and phrases. operator approximation, multivariate approximation, remainder.
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2. Let X be a real linear space and P;, P, projectors defined on X. One denotes
by PP, the product and by P, & P> (P, ® P, = P, + P, — P, P;) the Boolean sum of
the projectors P, and P;. If PP, = P,P; then P, and P, are commuting projectors.

Let Py,..., P, be commuting projectors defined on X. The algebraic operations
of product and Boolean sum yield now projectors. '

Let us remind some useful properties of the commuting projectors: if Py, P, P3

are commuting projectors then:

@)) P, P, and P, ® P, are projectors
2) PoP,=PoP

® PoPoP)=(PLoR)oP;
(4) P\(PyP;) = (PLP)P3

) PP, @ P;) = (AF;) @ (BFy)
(6) P @ (P, Ps) = (P ® P2)(Py @ Ps3)

One denoted by P the set of all projectors generated from the projectors Pi,..., P, by
the operations of product and Boolean sum. P,,..., P, € P, are said to be generator (or
primaly) projectors of P. With respect to the order relation” <”: P < Q iff PQ =P,
for P,Q € P, P is a lattice, i.e. inf{P,Q} = PQ and sup{P,Q} = P®Q for all P,Q € P.
More than that, P is a distributive lattice (properties (5) and (6)).

3. Mutivariate approximation

Let D C R" be a rectangular domain, say D = X[, [a;, b;], and F,, a set of real
functions defined on D.

One considers as generator projectors, the interpolation operators P;, P; : Fp, =
G;, that interpolate a function f € F,, with respect to the variable z;, fori = 1,...,n. So,
G;, i =1,...,n, are sets of functions of n — 1 variables. One reminds that P,,..., P, are
commuting projectors. Let P, be the lattice generated by Py,...,P,. S=P ®---® P,
and P = P, ... P, are the maximal respectively the minimal element of P,,. As, P;f can
be considered an approximation of f, one denotes by R; f the remainder term, where It;
is the remainder operator: R; = I — P;, with I the identity operator, for alli =1,...,n.

8



ON THE REMAINDER TERM IN MULTIVARIATE APPROXIMATION

The arising problem is: for a given Q € P,, which is the corresponding remainder
operator, say Rg.
It was already mentioned that Rs = R;...R, and Rp = R, ®---® R,,. Hence,

we have the following decompositions of the identity operator:

(7 I=S5+Rg
and
(8) I=P+Rp

The proof of these identities are based on the mathematical induction principle.

So, for n = 2, (7) becomes
9) I=P,®P,+ R R,

Taking into account that R; =I — P;, i = 1,2, (9) is easy to verify.
Using the associativity property of the Boolean sum and product operations, the
relation (7) follows for any n > 2. In the same way can be justified the identity (8).

Each decomposition of the identity operator
I=P+R
generates an approximation formula
f=Pf+Rf.

Now, let @ be an arbitrary element of P,. The problem is to determine the

remainder operator R, i.e.
Q+Rg =1
Theorem. If @ € P,, is of the form

Q= (Pl-°--Pi1)6‘(-Pi1+1'--Pi2)®"'®(Rn_1+l -~-Pi..)
then

(10) RQ = (Rl €B'..®Ri1)(Ril+1 @"’ ®Ri2)"‘(Rin_\+l @"'@Ri")-

Proof. From (7) it follows that

RQ = RP]...P,‘I RP{1+1...I’;2 oo R}’;n_1+1...}:’;" .
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But, from (8), we have

‘Isz..P.'1 = Rl D---D Rﬁ

RP""_1+1---F’|',. = Ri,._1+1 @ IEEN¢S) Ri"

and (10) is proved.

It follows the rule: the remainder operator Rg corresponding to the interpolating
operator @ is obtained by changing in Q each generator operator P; by the corresponding
remainder operator R; and the product operation by Boolean sum and the Boolean sum
by product.

Some simple examples are:

(11) Qi1 =P(P®P;), Rg, =R @ (R:Rs)

(12) Q2 =P, ® (PPs), Rq,=IRi(R2 @ Rs)

(13) Qs = (PP) ® (PsPy), Rq, = (B1® Rp)(Hs ® Ry)

(14) Qi=(P®P)(Ps@®Py), Rq,=(RiRz)® (RsR)-

Homogeneous approximation forrnulas
Let f € F, be given and Q € P,,. The decomposition of the identity operator

I = @ + R generates the approximation formula for the function f:

f=0Qf +Rqf,

with Rg f, the remainder term. For example, the two extremal elements of P,, S and P

generate the so called algebrical maximal respectively algebrical minimal formulas, i.e.
f=Sf+Rsf

and
f=Pf+Rpf.
Definition 1. Let @ € P,, be given. The number r € N, with the property that
Qf = f for all f € P} (the set of all polynomials in n variables of the total degree at
most ) and there exists a polynomial g € P?,, such that Qg # g, is called the degree
of exactness of the operator @, i.e. dex(Q) =r.

10



ON THE REMAINDER TERM IN MULTIVARIATE APPROXIMATION

Remark 1. The conditions Qf = f for all f € P} and there exists g € P},
such that Qg # g are equivalente with Qe;; = e;; for all i, € N, i + j < r and there
exists p,g € N with p+ ¢ = r + 1 such that Qe,, # epq, Where e;;(z,y) = ziy’.

It is known that the approximation order of the operators S and P are given by:
ord(8) = ord(P,) + - - - + ord(Py)

respectively
ord(P) = min{ord(P,),...,ord(P,)}.

We also have:

Theorem 2. dex(S) = dex(P;)+- - -+dex(FP,), dex(P) = min{dex(P,),...,dex(P,)}
and dex(P) < dex(Q) < dex(S) for all Q € Py,.

Following the Remark 1, the proof is reduced to a direct verification.

So, the Boolean sum operator S has the maximum degree of exactness while the
product P has the minimum degree of exactness, among all elements of P,.

But, Sf approximates the function f in terms of functions of n — 1,...,1 vari-
ables, while Pf is a scalar approximation of f.

Remark 2. P € P, is the only element of P,, with the property that Pf is a
scalar approximation of f. For any Q € P,,, @ # P, Qf has at least one free variable of
f. For example,

Q1f = (PP + P P;s—- P PRP;)f

with @, from (11), contains two free variables: 3 in the term P, P, f and z2 in P, P f.

Starting with an approximation formula

f=Qf +Rof, Q€Pn, Q#P,

in order to obtain a scalar approximation formula, we can use next approximation levels.
If @, = P}(P} & P}) (example from (11)), where the upper index marks the approxi-
mation level number, then the corresponding approximation formula is generated by the
identity
I=(PP; +PlP; — PP P;) + (R} + IRy — Ri Ry Ry).
If, in a second level of approximation, it is used the operators P? and P} with

R} =1- P} and R} = I — P2, one obtains

I=(P!P;P} + PIP}P; —~ Pl P} P}) + (R} + B3Ry — RIRy Ry + P{ P B + P P R3),
11
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which generates a scalar approximation formula: (P}P}PZ + P!PZP} — PlP}P})f is
a scalar approximation of f and (R} + RAR} — RIRR} + PP} R} + P! P} R3)f is the
corresponding remainder term.

It is obviously to see that the remainder operator Rq for Q # S and Q # P;,
i =1,...,n, is the sum of many terms. The approximation order of the interpolation
operator ) must be taken with respect to each term of Rg. In the above example the
number of the terms is five: R}, RIR}, RIR.R}, P! P}P? and P! P}R3. The degree
of exactness corresponding to these terms are dex(P}), dex(P}) + dex(Py), dex(P}) +
dex(P}) + dex(P}), dex(P#) respectively dex(PZ).

Let Q € P, @ # Sand Q # P, i = 1,...,n and Rq the corresponding
remainder operator.

Definition 2. If the degree of exactness corresponding to each term of the re-
mainder operator RRq is the same then @ is called a homogeneous approximation operator

and
f=Qf+Rqf
a homogeneous approximation formula.

In the considered example
Q=P PP} +PP}P; - PP, P;
and
Rq = R} + RLR} — RIRLR} + PP}R? + PP} + RZ,
(Q is a homogeneous approximation operator if
dex(PL) = dex(P}) + dex(P}) = dex(PL) + dex(P}) -+ dex(P}) = dex(PZ) = dex(P?)

that has the only solution dex(P}) = dex(P}) = dex(P}) = dex(PZ) = dex(P§) = 0.

But the remainder operator Rg can be changed in a convenable way. One of them is
Rq = R} + ByRy(P! + R}) - R{R}R} + P! PR} + PLPiR; (Pl +Ri=1)
or
Rq =R} + Pl R R} + P/ P, P} + P} P} R}.
It follows that the formula
(15) f=Qf+Rof

12



ON THE REMAINDER TERM IN MULUTIVARIATE APPROXIMATION ‘
with
Q=P PP} + PIP;P; - P[P} P;

is a scalar homogeneous interpolation formula, if
(16) dex(P}) = dex(P}) + dex(P}) = dex(P2?) = dex(P2).

For example, such a formula is obtained for: P} := H%,..,, P} = H},,,
Py := L%, P :=H}, ., and P} := HZ_ ,,, where L! and HY are Lagrange respectively
Hermite interpolation operator of the degree n, which interpolate a function f with
respect to the variable v. The degree of exactness of the obtained operator is 2m + 1.

So, starting with the formula given by the operators @; and Rg, from (11), we
can obtain scalar interpolation operators (scalar interpolation formulas) of any degree of
exactness.

A second example, we are looking for, is given by the operator of example (12).

Initial formula is
f=(Pr+ P,P; - PLP,P;)f + (RiR2 + R1Rs — R1RaRs)f,

that is not a homogeneous one. In order to get a homogeneous formula the remainder

operator can be change as follows:
RiRy+ Ry R3—R1 R R3 = Ry Ry (Ps +R3)+R1 R3—~RyR;R3 = P3Ry R+ Ry R (P3 +R3 =1I).
This way, one obtains

(17 f=(P1+ P,P; — PP, P;)f + (PsR1 Ry + R R3){.

Obviously, if dex(R;) = dex(Rs) then (17) is a homogeneous approximation
formula. But, it is not a scalar formula, as can be seen, Py + P P; — P, P,P; is not a

scalar approximation operator.
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A GENERALIZATION OF SOME OF ORE’S THEOREMS

RODICA COVACI

Dedicated to Professor Ioan Purdea at his 60°* anniversary

Abstract. The paper completes the results from [2] with new properties of
finite w-solvable primitive groups, where = is an arbitrary set of primes. Thus
we obtain a generalization for w-solvable groups of some of ORE’s theorems
“from [5] given for solvable groups and being of special interest in the formation

theory.

1. Preliminaries

All groups considered in the paper are finite. We shall denote by m an arbitrary
get of primes and by #/ the complement to 7 in the set of all primes.

Definition 1.1. a) Let G be a group, M and N two norma; subgroups of G such that
N C M. The factor M/N is called a chief factor of G if M/N is a minimal normal
subgroup of G/N.

b) A group G is said to be w-solvable if every chief factor of G is either a solvable
m-group or a w/-group. Particularly, for = the set of all primes we obtain the notion of
solvable group.

Definition 1.2. a) Let G be a group and W a subgroup of G. We define

coregW =n{W9/g € G},

where W9 = g7 1Wg.
b) W is a stabilizer of G if W is a maximal subgroup of G and coregW = 1.
c) A group G is primitive if there is a stabilizer W of G.
The following results will be used to prove the main theorems of this paper.

Theorem 1.3. ([1]) Any solvable minimal normal subgroup of a finite group is abelian.

1991 Mathematics Subject Classification. 20D10.
Key words and phrases. solvable groups, primitive groups.
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Theorem 1.4 (Schur-Zassenhaus) ([3], p.16) Let G be a finite group and H a normali
abelian subgroup of G such that |G : H| and |H| are relatively prime. Then: !

(a) H has a complement K in G, i.e. HK =G and HNK = 1;

(b) all complements of H in G are conjugate under H. l
Theorem 1.5. ([4], p.18) If G is a group and M, M; are two normal subgroups of G‘
such that MNM; =1, then M and M; commute elementwise, i.e. mm; = m;m for any%
m € M and m; € M. !
Theorem 1.6. (Dedekind identity) ([4], p.8) If G is a group and A, B,C are subgroups
of G such that A C C C AB, then

C=(AB)nC = A(BNC).

Theorem 1.7. ([2]) Let G be a primitive group and W a stabilizer of G. Then:
(i) for any normal subgroup K # 1 of G we have KW = G;
(i) for any minimal normal subgroup M of G we have MW = G;
(iii) there is not a normal subgroup K # 1 of G such that K CW.

2. Frattini argument for n-solvable groups

In [4], p.35, 7.8. the following well-known theorem called the ”Frattini argument”
is given: Let G be a group, N a normal subgroup of G and P a Sylow p-subgroup of N.
Then G = NNg(P).

Our later considerations need a new form of the Frattini argument which we give
below.

We remind that a subgroup H of a group G is called a Hall w-subgroup of G if
|H| is a m-number and |G : H|is a mr-number. We also remind the Hall-Cunihin theorem:
Theorem 2.1. (Hall-Cunihin, [4], p.660) If G is a ©-solvable group, then:

(a) G has Hall w-subgroups and Hall wr-subgroups;

(b) all Hall w-subgroups of G are conjugate in G; all Hall w1-subgroups of G are
conjugate in G.

Theorem 2.2. (The Frattini argument for n-solvable groups) Let G be a w-solvable
group, N a normal subgroup of G and P a Hall w-subgroup (or a Hall ni-subgroup) of
N. Then G = NNg(P).

16
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Proof. Clearly NNg(P) C G. Let now g € G. Then P? C N9 = N, hence PY is also a
Hall w-subgroup (or a Hall n/-subgroup) of N. But N, as a subgroup of the m-solvable
group G, is a m-solvable group too. Thus, applying 2.1, P and P? are conjugate in N.
It follows that P9 = P", where n € N. This implies gn~! € Ng(P). Then

g = (gn"")n € Ng(P)N = NNg(P).

This proves that G C NNg(P), hence G = NNg(P). O

3. A generalization of some of ORE’s theorems

Given in [5] for solvable groups, the so-called ORE’s theorems are of special
interest in the formation theory. Here we establish a generalization for m-solvable groups
of some of ORE’s theorems, where 7 is an arbitrary set of primes. Particularly, for 7 the
set of all primes, we obtain ORE’s theorems.

In {2] we proved the following results similar to some of ORE’s:
Theorem 3.1. Let G be a primitive w-solvable group. If G has a mintmal normal
subgroup which is a solvable w-group, then G has one and only one minimal normal
subgroup.
Corollary 3.2. If G is a primitive w-solvable group, then G has at most one minimal
normal subgroup which is a solvable w-group.
Corollary 3.3. If a primitive w-solvable group G has a minimal normal subgroup which
is a solvable m-group, then G has no minimal normal subgroups which are wi-groups.
Theorem 3.4. If G is a primitive w-solvable group and N is a minimal normal subgroup
of G which is a solvable w-group, then Cg(N) = N.

The first result of this paper examines the converse of 3.4:
Theorem 3.5. Let G be a w-solvable group such that:

(i) there is a minimal subgroup M of G which is a solvable w-group and Cq(M) =
M;

(i) there is a minimal normal subgroup L/M of G/M such that L/M is a -
group. Then G is primitive.

Proof. Suppose M = G. Then G/M =1, hence L/M = 1 giving a contradiction. Thus
M # G. Furtber, by 1.3 M is abelian.
17
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By (ii) |L/M| is a n7-number and by (I) |M| is a m-number. It follows that;
(|L/M|,|M]) = 1. Applying now theorem 1.4, we conclude that M has a complement Ly
in L,iie. MLo=Land MNLy=1.

Put W = Ng(Lo). We shall prove that W is a stabilizer of G, i.e. W is a
maximal subgroup of G and coregW = 1.

Indeed, W # G, for otherwise Ng(Lg) = G and hence Ly <1« G. So M and Ly are
two normal subgroups of G such that MNLg = 1. By 1.5 M and Lo commute elementwise.
Hence Ly C Cg(M) =M. Thus L = MLy = M and L/M = 1 contradicting (ii).

We note that MW = G and M N W = 1. Indeed, applying 2.2 to the n-solvable
group G, L 4 G and Lo a Hall n/-subgroup of L (since Ly ~ Lo/1 = Lo/M N Ly =~
MLy/M = L/M is a wr-group and |L : Lo| = |[MLg : Ly| = |M : M N Lo| = |M] is a

w-number), we obtain:
G = LNG(Lo) = MLONG(LO) = MNG(L()) = MW.

To prove that M NW = 1, let us first show that MNW < G. Let g€ G = MW,
g=mw, withm; e M,weW andlet m € MNW. Then

97 'mg = (myw) " 'm(myw) = v (m ' mmy )w,
where m; Ymm, € MNW since M NW is normal in the abelian group M, and
w(m mm))w e MNW

since MNW is normal in W. Hence g~'mg € MNW. Now from MNW < G, MNW C M
and M minimal normal subgroup of G it follows that MNW =1lor M NW = M. The
last condition is impossible because it implies that M C W and hence the contradiction
G=MW=W.SoMnW=1.

To prove that W is a maximal subgroup of G, we remind that W # G and
let us show that W < W* < G imply W = W*. Suppose that W < W*. Let w* €
W*\W C G = MW. It follows that w* = mw, with m € M and w € W. Hence
m=wwleMnNW*'". Bt G = MW C MW* C G imply G = MW*. Hence
M NW* =1 (proof like the above MNW =1). Thusm =1and w* =w € W, a
contradiction. Then W = W*.

Finally, we prove that coregW = 1. Since M NcoregW <1 G, MNcorecW C M,
MncoregW # M (for otherwise M C coregW and so the contradiction G = MW = W)
18
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and M being a minimal normal subgroup of G we have M NcoregW = 1. By 1.5 M and
coregW commute elementwise. It follows that coregW C Cg(M) = M which implies
coregW = M NcoregW =1. O

The following two theorems generalize some of ORE’s theorems.

Theorem 3.6. If G is a w-solvable group satisfying (i) and (i) from 3.5, then ant two
stabilizers Wy and W, of G are conjugate in G.

Proof. By 3.5 G is primitive. Like in the proof of theorem 3.5 we note that M # G and
M is abelian. By 3.1 M is the only minimal normal subgroup of G.

Let W = Ng(Lop) be the stabilizer of G given in the proof of theorem 3.5. Hence
MLy=L and M N Ly =1. We also know that MW =Gand M NW = 1.

We shall prove that W and W, are conjugate in G, and that W and W, are
conjugate in G. It follows that W; and W, are conjugate in G. It is enough to prove for
W and W;, the proof for W and W; being similar.

Put L, = WiNL. Let us show that Ly = WNL. First we note that Lo C MLy =
L, Ly € Ng(Lo) = W hence Ly C W N L. Conversely, if £ € WN L = Ng(Lp) N L then
z € Ng(Lo) and £ € L = MLy = LyM which imply LE = Lo, where z = lgm, ly € Lo,
miM. So (L})™ = Lo which means that m € Ng(Lo) = W. Thenm € M NW =1
hence m = 1 and z = ly € Ly. This proves that W N L C Ly.

We know that Lo is a complement of M in L. L, is also a complement of
M in L. Indeed, ML, = M(W, N L) and by 1.6 MWy NL) = (MW;)NL. So
ML, = (MW;) N L. But MW; = G for otherwise we have W; C MW; C G which
implies Wy = MW, since W) is maxim in G and so M C Wi, in contradiction with

1.7.(iii). Thus ML; = GN L = L. Further, M N L; =1 since
MNLi=Mn(WiNL)=(MnW;)NL

and M N W; = 1 as we shall see below. First note that M N Wy < G. Indeed, if
1€G =MW, z=mw withm; € M, w; € W), and m € M NW; then, using that
M is abelian and that M N W; 4 W;, we have:

zlmz = (mywy) tmimaw;) = wiimT immaw; = wimmT ' mywy = wilmw, € MNW.

Now from MNW; <« G, MNW; C M, MNW; # M (for otherwise M C W,
contradicting 1.7.(iii)) and M minimal norma subgroup of G we obtain M NW; = 1.
19
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By 1.4.(b) Lo and L; are conjugate under M, i.e. Lo = L for some m € M
Further, Ly C W N W™ since Ly = Ng(Lo) N Lo = WNLy C W and L,0 = LP*
(WinL)™ C W™. Moreover, from Ly <t Ng(Lo) = W and Ly = L = (W;NL)™ < W]
it follows Lo < WW;™. '

»  We shall prove that W = W™, which means that W and W are conjugate in G
Let us suppose that W # W™. From W < WW/™ < G and W # WW™ (W = WW]
is impossible because it implies W™ C W hence W), C W* C G and W, = W¥, where
k =m™!, since W} is maximal in G; but this leads to the contradiction W = WJ™) since
W is maximal in G it can be inferred that WW® = G. Thus Ly <« WW/™ = G so that
W = Ng(Lo) = G, a contradiction. It follows that W = W{™. O |
Theorem 3.7. If G is a primitive w-solvable group, V < G such that there is a minimal
normal subgroup M of G which is a solvable w-group and MV =G, then V is a stabilizer!
of G. ,
Proof. M NV is a normal subgroup of G. Indeed, let g€ G =MV =VM, g=vm for}
somev €V, me Mandletz € MNV. Since MNV <« V and since by 1.3 M is abelian

we have:

g7 'zg = (vm)z(vm) = m (v lzv)m = m~Im(v 2v) = (v lzv e M NV. |
3
Now MNV = 1since M is a minimal normal subgroup of G and since MNV <4 G, b
MNV C M, MNV # M (supposing MNV = M it follows M CVandsoG =MV =V, ‘
in contradiction with V < G).
Let us verify that V is a stabilizer of G. s
First, V is a maximal subgroup of G. Indeed, V # G and we shall prove that ‘
V < V* <Gimply V = V* Suppose V < V* and let v* € V*\V C G = MV.
Then v* = mv for some miM, v € V, Hence m = v*v™! € M NV*. We prove that
MNV*=1. From G = MV C MV* C G it follows MV* = G. Hence M NV* 4G (as
the above proof for M NV <« G). Since M is a minimal normal subgroup of G and since
MNV*aG, MNV*C M, MNV* # M (supposing M NV* = M we have M C V*,
hence G = MV* = V*, a contradiction) it follows M NV* = 1. Thus m = 1 and so
v* = v € V, a contradiction.
Finally, coregV = 1. Indeed, suppose coregV # 1. By 3.1 M is the only
minimal normal subgroup of G. Thus since coregV < G we have M C coregV. But
coregV CV andso M CV. Then G =MV =V, a contradiction. O
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Dedicated to Professor Ioan Purdea at his 60" anniversary

Abstract. In this paper are established some results concerning a class of
modules, denoted by M, consisting of all non-zero R-modules with the prop-
erty that every non-zero endomorphism of A is a monomorphism. If A € M,
then A is indecomposable,'Enda(A) is a domain and Anngra = AnngrA for
every 0 # a € A. If R is commutative and A € M, it is shown that AnngA is
a prime ideal of R, A is a torsion-free R/AnngA-module and if A is uniform

then A is isomorphic to a submodule of Anng(r/anna)(ANnRA).

1. Introduction

In this paper we denote by R an associative ring with non-zero identity and all
R-modules are left unital R-modules. The ring R will be considered as a left module
over itself. By an homomorphism we understand an R-homomorphism.

Let A be an R-module. Then we denote by E(A) an injective envelope of A
and by Endg(A) the ring of endomorphisms of A. f 0 # B C Aand 0 # 1 C R, we
denote AnngB = {r € R|rb=0,Vb€ B} and Annsl = {a € A|ra=0,Vr € I}.
If0#a € A, Anng{a} is denoted by Annga. An R-module A is said to be faithful if
AnngA =0.

‘ A submodule B of an R-module A is said to be essential in A if BN Ra #0
for every 0 # a € A ([2], Chapter 1, Definition 2.12.1). By B < A we shall denote that
B is a submodule of the R-module 4 and if A is an essential extension of B, this will
be denoted by B <l A. A non-zero R-module A is said to be uniform in case each of its

non-zero submodules is essential in A ([1], p.294).

1991 Mathematica Subject Classification. 16D80.
Key words and phrases. endomorphism ring, uniform module, annihilator, quasi-injective module.
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Let R be a domain and let A be an R-module. Then A is called divisible if
rA = A for every 0 # r € R and A is called torsion-free if ra # 0 for every 0 #7 € R
and 0 # a € A ([4], p.32 and p.34).

An R-module A is said to be quasi-injective if for every B < A each homo-

morphism f : B — A extends to an endomorphism of A ([3], p.333).

Throughout this paper we denote by M a class of non-zero R-modules which
has the following property: a non-zero R-module A belongs to M if and only if every
non-zero endomorphism f € Endg(A) is a monomorphism.

Remarks. a) For example, every simple R-module is contained in the class -
M.

b) If A and B are two R-modules such that A € M and B = A, then B € M.

2. Main results

Theorem 1. Let A € M. Then:
(i) A is indecomposable ;
(i) Endg(A) is a domain ;
(i) A is a left torsion-free Endg(A)-module.

Proof. (i) Suppose that A is not indecomposable. Then there exist non-zero
R-modules B and C such that A = B ® C. Define the homomorphisms f : A —+ B by
f(b,c) =band g: B — A by g(b) = (b,0) for every b € B and c € C. It follows that
0 # gf € Endr(A) and gf is not a monomorphism, hence A ¢ M, which represents a
contradiction.

(it). Let f,g € Endgr(A) non-zero endomorphisms. Then f and g are
monomorphisms. Suppose that fg = 0. Then f(g(a)) = O for every a € A. Since f
is a monomorphism, we have g(a) = 0 for every a € A, i.e. g = 0. This provides a
contradiction.

(i43). It is well-known that A is an Endgr(A)-module if we define fa = f(a)
for every a € A and f € Endgr(A). Let 0 # f € Endr(A) and 0 # a € A. Then
fa = f(a) # 0, because f is a monomorphism. Hence A is a left torsion-free Endg(A)-

module.

Lemma 2. Let A € M be a quasi-injective R-module and let 0 # B < A. Then B € M.
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Proof. Denote by i : B = A the inclusion monomorphism and let 0 # f €
Endg(B). Since A is quasi-injective, there exists h € Endg(A) such that hi = if. It
follows that h # 0 and thus h is a monomorphism. Therefore f is a monomorphism.

Hence B € M.

In the sequel, we shall suppose that the ring R is commutative.

Theorem 3. Let A € M. Then:
(i) Annga = AnngA for every non-zero elementa € A ;
(i) AnngA is a prime ideal of R ;
(4ii) A is a torsion-free R/ AnngA-module ;
(iv) If A is uniform, then A is isomorphic to a submodule of the module

Annp(Rr/Anng a)(AnngA).

Proof. (i) Let r € R such that r ¢ AnngA and let 0 # a € A. Then exists
b € A such that rb # 0. We define the endomorphism g : A —+ A by g(z) = rz for every
z € A. Since g(b) = rb # 0, it follows that g is a monomorphism. Therefore g(a) = ra #
0,ie. r ¢ AnngA. Hence Annpa C AnngA. Obviously we have AnngrA C Annpga.
Therefore AnnrA = Ann,a.

(i1). Let r,8 € R such that rs € AnnpA and let 0 # a € A. Then we have
AnnpA = Annga. Suppose that s ¢ AnngA. It follows that sa # 0. But rs € AnngA,
hence rsa = 0. Therefore r € Anng(sa) = AnnpA. Hence AnngA is a prime ideal of R.

(#%%). Since AnngA is a prime ideal of R, R/AnngA is an integral domain.
Denote 7 = r + AnngA for every r € R. Then A becomes an R/AnngA-module if we
define 7a = ra for every r € Randa € A. Let 0 # a € A and 0 # 7 € R/AnngA.
Suppose that fa = 0. Then ra = 0, hence r € Annga = Anngd, i.e. ¥ = 0. This
provides a contradiction. Therefore 7a # 0. Thus A is a torsion-free R/AnngA-module.

(iv). We have A < E(A). Denote p = AnngA = Annga for every a € A.
Then Ra = R/p for every a € A. Since A is uniform, it follows that E(A) = E(Ra) =
=~ E(R/p) ([4], Chapter 2, Proposition 2.28). Hence A is isomorphic to a submodule of

Annp(r/anng a)(AnnpA).

Corollary 4. Let A € M be a faithful R-module. Then:
(i) R is an integral domain ;
(i) A is a torsion-free R-module ;
25
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(#4i) If A is uniform, then A is isomorphic to a submodule of E(R).

Proof. By Theorem 3, AnnrA = 0 is a prime ideal of R, hence R is an

integral domain.

Theorem 5. Let A be a non-zero R-module. Then the following statements are equive-
lent:

(i) A is uniform and Ae M ;

(i) A= B, where 0 # B J Anng(r/p)p for a prime ideal p of R.

Proof. (i)=> (1). Assume (i). Let p = AnngA, which is a prime ideal of R.
Now the result follows by Theorem 3.

(#%) = (4). Assume (ii). For every 0 # a € E(R/p) we have Annga C p!
([4], Lemma 2.31). Hence Annga = p for every 0 # a € Anngry,p- Therefore we
havé AnngB = Annga = p for every 0 # a € B. Since E(R/p) is an indecomposablei
injective R-module, it follows that B is uniform ([4], Chapter 2, Proposition 2.28). Let{f
0 # f € Endgr(B). Then there exists 0 # a € B such that f(a) # 0. Suppose;
that f is not a monomorphism. Then there exists 0 # b € B such that f(b) = 0. ;
Since B is uniform, there exist r,s € R such that 0 # ra = sb € Ran Rb. Hence |
rf(a) = f(ra) = f(sb) = sf(b) =0, i.e. 7 € Anngf(a) = p. Therefore ra = 0, which is
a contradiction. Thus f is a monomorphism. It follows that B € M, which means that .
A is uniform and 4 € M. ‘

Corollary 8. For every prime ideal p of R, R/p € M. !
Corollary 7. Let A€ M. Then Ra € M for every 0 # a € A.

Theorem 8. Let A € M be a faithful R-module which is not injective. Then there exists
0 # f € Endgr(A) which is not an isomorphism.

Proof. Suppose that every non-zero f € Endg(A) is an isomorphism. By
Corollary 4, R is an integral domain and A is a torsion-free R-module. It follows that
R is isomorphic to a subring of the ring Endgr(A), hence rA = A for every non-zero
element r € R, i.e. A is divisible. Then A is injective ([4], Chapter 2, Proposition 2.7).
This provides a contradiction. Thus there exists 0 # f € Endgr(A) which is not an
isomorphism.
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Example 9. Let R be an integral domain. Then R {s uniform and the ideal
Anng(E(R)) = 0 is a prime ideal of R. If A is a non-zero submodule of E(R), then
Ae M. Hence E(R) € M. Since E(R) is an indecomposable injective R-module, every
non-zero endomorphism f € Endg(E(R)) is an isomorphism ([4], Chapter 3, Lemma
3.10). If A is a non-zero proper submodule of E(R), then A is not injective because
E(R) is indecomposable. By Theorem 8, there exists 0 # f € Endr(A) which is not an

isomorphism.

Theorem 10. Let A € M be an injective R-module and denote p = AnngA. Then
A= E(R/p) and Endgr(A) is a division ring.

Proof. Let 0 #a € A. By Theorem 3, p = AnngA = Annpga is a prime ideal
of R. But aR = R/Annga = R/p, hence E(R/p) = E(aR) < A. By Theorem 1, A is
indecomposable, hence A ¢ E(R/p). Let 0 # f € Endgr(A). Then f is a monomorphism.
Since A is an indecomposable injective R-module, it follows that f is an isomorphism

(4], Chapter 3, Lemma 3.10). Therefore Endg(A) is a division ring.

Example 11. Let R = Z be the ring of integers and Q the additive group of rational
numbers. Then Q € M, Q = E(Z) and Endz(Q) =2 Q i3 a field.

Theorem 12. Let A € M be a quasi-injective R-module and denote p = AnngA. If
A<BX< AnnE(A)p, then B € M.

Proof. We have Annga = p for every 0 # a € Anngq)p. Let 0 # f €
Endp(B). Then there exists 0 # b € B such that f(b) # 0. Since A J B, there exists
7 € R such that 0 # rb € AN Rb. Therefore r ¢ p and f(rb) =7f(b) #0, ie. fla #0.
But f extends to a ¢ € Endgr(F(A)). Since A is quasi-injective, we have g(A4) C A,
hence f(A4) C A ([2], p-252). Let h € Endr(A) be defined by h(a) = f(a) for every
a € A. Since h(b) = f(b) # 0, it follows that k is a monomorphism. Suppose now that
f is not a monomorphism. Then there exists 0 # ¢ € B such that f(c) = 0. Also there
exists s € R such that 0 # sc € AN Re. We have h(sc) = f(sc) = sf(c) =0, which is a

contradiction. Therefore f i3 a monomorphism.
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REMODELLING GIVEN BEZIER SPLINE CURVES AND SURFACES
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Abstract. Rational Bézier splines offer many possibilities to control the shapes
of curves and surfaces, but their relative complex equations lead at rather com-
plicated formulas for derivatives and, consequently, smoothness conditions. In
this paper we present a manner of partial or total remodelling given polyno-
mial Bézier spline curve (part 2) and surface (part 4), preserving their class of
continuity. The method consists in performing degree elevations that depend
by real parameters. The curvatures of Bézier spline curve in the initial, final
and joint points are also studied in part 3. The theory is illustred by some

figures with initial (as witnesses) and remodeled spline curves and surfaces,

respectively.

1. Introduction

1.1. Let g be a given C"[ug,ur] polynomial Bézier spline curve of degree m,

corresponding to the control points b; € R3,i = 0,mL, with the breakpoints b,r,I =

I,L —1 and the breakvalues of the parameter u,ug,k = 1,L,up < #3 < ... < uL.

This spline curve is represented over an interval [ur,ur41],I = 0,L — 1 by the following

equation

m

u-—ur

g(u) = ZBm,k (—————) bmI+k, u € [ur, urs1),
b=0 Ur+1 —Ur

where B x(t) = () (1 — t)™*t*, k = 0,m, are the Bernstein polynomials.

The C™ conditions of g, on the jonction points uy,I = 1,L — 1, are

(A i: (z)(—l)i"‘bml_i+k = (Ay,)’ i (i)(-l)i*b,,.”k

k=0 k=o0

i =0,r, where AY = uryy —uy, [2], p.92.

1991 Mathematics Subject Classification. 41A185.
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1.2. Consider a polynomial Bézier spline surface G of degrees m and n rel-:’

ative to the parameters u and v respectively, over the two-dimensional interval D =

[uo,uL]x[vo, vMm], having the control points b;j,i = 0,mL,j = 0,nM, with breakpoints
buins,d = ,0=1,J = TM—-1andur and v, k = 1,L—-1, | = 1,M—1 the

breakvalues of the parameters.

On Dyj = [us, ur41)x[vy, vi41] the surface G has the equation &
u uy v—vy
G(u,v B (2=
o) = kz—;uX; mk(”l—!—l—uI) o (vJ+1—'vJ) mI+k,nd+1 |
';

Two patches of G corresponding to the domains D;_,,; and Dy, y are r times!
continuously differentiable across their common curve G(u;,v),v € [vy,vy41] if the fol-

lowing conditions

)Z( ) D bt = (A1) Z( )N F otk @

E=0 =0
are fulfiled [2], p.272, for any i = 0,7, and | = 0, n.
Analogous, two patches of G, corresponding to the domains Dy j_; and Dy 4

are s times continuously differentiable, across their common curve
G(u,vs),u € [ur,vry1)

if are fulfiled conditions
) Ny .
@3y Yy (SRR IND 3] () [C o ST
1=0 1=0
for any j = 0,5 and k =0, m.
The Bézier spline surface G is C™*(D) if the conditions (4) and (5) are fulfiled
forevery I=0,0— 1 and J =0,M — 1.

2. Remodelling a Given C™ Bézier Spline Curve

Consider the polynomial Bézier spline curve g defined in part 1. We will remodel

this curve by making a degree elevation corresponding to the following variable points,

determined by a set of real parameters ag) €(0,1),k=1,m, I=0,L -1,

bm]a lf k = 0,
Oomivrer =3 (1= abmrsn—s +aPbmrys, if k=T,m, (6)
bm(I-H)’ ifk=m+1.
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One observes that if

a([)_m-l-l—k
E m+1

?

then b‘('m 1) I+k? k =0,m + 1, are the known Bézier points, which are used in the classical
degree elevation, [2], p.52.
The Bézier spline curve g* corresponding to the points (6), over the interval

[u1,ur41], has the equation

m+1
u-—uy P —
* B ’ I=0,L-1. 7
g (u) ; m+1,k (ul+l — uI) b(m+1)I+k) u € ['ll«[, ul+1]v O’ ( )

The spline curve g* will be C"[ug, uy] if, similar to (2), are fulfiled the conditions

iy i,
i 4 i—kp#* i 2 i—k %
MDY () O minyrosnn = AL Y (1) O s ®
k=0 k=0 g
forany i =0,rand I =1,L — 1.
From here, taking into account by (6) and that the conditions (2) hold, results
that g* is C"[ug,ur], r < [m/2]if and only if,

o =1-pali D p=Tr,I=T,L—-1

9
o, =poD,p=Z7,1=0,L=2
The other parameters a(o), p=1m-r, ag“ 1), p=r+1m, Ol;(al), p =

r¥L,m—r,I = T,L—2 and o$f), I = 0,L =2, from the open interval (0,1), are

arbitrary. Therefore, the Bézier spline curve g* € C"[ug,u;] has the following control

points
[ b, ifk=0
(1 - b1 + Vb4, fk=T,m—-r
by = ¢ [1 —(m+1- k)a“”] by + ‘ (10)
(m+1—-k)aQb, fk=m—r+1Lm
| bm, ifk=m+1
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(

b, ifk=0
kas,{_l)bm1+k_1+
+(1 = ka$s ™ NVbomrrk, if k=T,7
Biminyee = (1= bmrsnor +0Pbmrrr, Ek=rFLm—r (11)
[1- (m+1- 0l barre-s+
+(m+1-k)aDbmrrs, fk=m-r+Lm
[ Om(r+1), fk=m+1

forany I =1,L -2, and

(

b(L—l)m) ifk=0
kaly —2)b(L—l)m+k—1+
b syen = | +((2:;)ka£,f“2))b(L—l)m+k, ifk=Tr (12)
(1 =ay " )bL-1ymtr—1+
" Vb, _1ymaks fk=r+1,m
L errt; ifk=m+1

Example. Consider the quadratic spline Bézier curve of C'[0,4] corresponding

to the following points (m = 2, L = 5):

bO(lo) lﬁ)v bl (7) 21)a b2(3, 9), b3(0, 0)7 b4("47 0)7 b5(—8) 0)’
bG(-G’ 3), b7(_4> 6)) bs (2a 2)y b9(87 —2)’ blO(lo) 3))

with the breakpoints ba;,I = 1,4 and breakvalues of the parameter u, deduced with
the chord length parametrization method: up = 0,u; = 1,uy = 7/4,us = 5/2,u4 =
13/4,us = 4. The dotted curves are Bézier spline g, as witness curves.

The parameter values corresponding to these figures are:
Fig.1: o =2/3, 09 =1/20, o} =1/3, a2 = 1/3, a3 = 1/3, ad = 1/10;
Fig.2: o =1/10, of = 1/10; o} = 1/3, a? = 1/3, a3 = 1/100, o4 = 1/5.

We remark that if o' ™), I = T,L =1, decreases, then the Bézier spline curve

one extends in the vicinity of joint point b(m+1)r-

3. Curvature of Bézier Spline Curve g*

Let K (u) and K*(u) be the curvatures of the curves g and g* respectively, with
r > 2. Next we will deduce the dependence of K*(u) by K(u) and the introduced
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FIGURE 1 FIGURE 2

parameters, on 4 = uy, I =0, L. One knows that the formulas of K (u;) and K*(us) are

m-1 "Abm1+1 A Abm]n

oy Al , for I=0,L—1,
K(ur) = (13)
m-—1 "Abml,_g A Ame_;[”
, forI=L,
m ”Ame—llls

and

m_ A1y A Byl

for I=0,L -1,

mrl Ao
K*(ur) = (14)
m (OB, A DBl
=L
m+i |AGLE for I'=L,

where ”A” denotes the vector product.
By direct calculus, taking into account by (10), (11), (12), and (13), the formula

(14) becomes

2 (0)

K*(uo) = ;T—_—l(ai:m-)qx(uo),
m? 1 _ 20V —

K*(uy) = ] (1 ~ a;,{—l) K (ur),I =1,L -1, (15)
m?2 1- a(L_I?

K*(uy) = ml _—K(ug).

m?2—1 (l _ ag,—l))

In figure 3, the variation of K*(uj), with respect to e M0 < o <« 1/2,
I=1,L =1, is shown.

Remarks: a) From (15) results that we have the possibility to control the
curvature on any breakpoint uy, I =0, L.
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FIGURE 3

b) For any positive integer m,4 < m < 0o, and 0 < oz(lr 2 <1/2,I =1,L -1,

we have
1= 92o4-D I-1)
2220 gy < K < S 1220 p(,), 1 =T LT
1 2
(1 (1 1)) 5 ( a(!—l))
m

1
) o<ali™< 7 then K*(u) > K(ur),

. 1 - 1
if < as,{l D< 5» then K*(ur) < K(un),
if alf ™V = =T results K*(ur) = K(uy),
forany I =1,L — 1, and any posmve integer m,4 < m < oo.
d) If o = —% o = ——1-, then K*(uo) = K (uo),
-y _ _ 2 all-1) = 1 (o) —
and for o, T o results K*(ur) = K(uy,).

4. Remodelling a Given C™? Bézier Spline Surface

4.1. First we consider the particular Bézier spline surface which results from §1,
part 1.2, for M = 1. Over any domain Dy = [ur, ur41]x[ve, v}, I =0,L — 1, the Bézier
spline surface denoted Gy, has the equation

m n
u—uy v~ vp
G1(u,v) =YY Bmx (m) B (vl — vo) btk (16)

k=0 I=0

Assuming that G (u,v) is C"[ug,ur] with respect to variable u (G is evidently
indefinite differentiable with respect to variable v) then the conditions (4), in the partic-
ular case I = 0, are fulfiled, for any I = 0, n.
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We will remodel the above surface, preserving its class of smoothness, performing

a degree elevation relative to the variable u, with the aid of following control points

bt 1, ifk=0
bm 1)1kt = (1 - aﬁf,’ ) bmttk-1,0 + af,f,’ brirs, Hk=1m (17)
brn(1+1),05 fk=m+1,

where the parameters afs,) €01, I=0L-1,1= 0 n. We again remark that if
g,) ﬁ-}-—l&’ 1=0,n, I =0,L —1, then (17) are the prints of the degree elevation

with respect to variable u.
Bézier spline surface corrésponding to these points over domain Dy, 1 =0,L — 1,

has the equation

m+l n
. uU—u v — .
Hu,v) = §)§:Bm+u( . )B,.,, (—-—vl_;)%ﬂmk,z- (18)

k=0 1=0 Wr1 — W

This surface will be C™ across the curve G;(ur,v), v € [vo, v1] if, similar to (4)

for I = 0, the following conditions are fulfiled

i d i t—kpx : : 1 .
(Aan'y. (k) (=1 *bm g1y srrs = (B Y (k)(“l)’ Mo(ma1) 4 kits

k=0 k=0

forany i = 0,7 and | =0, n.
From here, taking into account by (17) and (4), with J = 0, one obtains, similar

to (9) that

a;{l)zl (l 1)1 p=ﬁ:1: 7E—11

m
(19)
1 —
Sn)—p+1,¢ pain’u p=2,r,1=0,L-
The parameters a,(,?,) ,p=Tm-raly ), p=r+Lmal), p=r+L,m—r,I=

1,L - 2, and af,{?,, I = 0,L - 2 take arbitrary values from the interval (0,1), for any
4.2. Now we consider the remodelling, in this manner, of a Bézier spline surface
G(u,v), given in part 1.2, preserving its class of C™*(D). As in previous case, we make a
degree elevation using the following control points, depending by two sets of parameters
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bm(l+-;,-':'n),n(1+ =)’

if (k,!) € {0,m + 1}x{0,n + 1},

(MA1)T+k,(n+1) T+ ) (dJ 1,J) a,J
[1 ag, ) ascl )] [1 'Bl(cl ) ﬁ( )] ’ :
i k=T1,m,l=1,n,
i
L I=0,L—1,J=0,M"1) E

where A is the matrix
bnltk—-1,nJ+-1  OmItk—1,nJ41
A=
binI+knt+i-1  DmItkni+t
The Bézier spline surface G* corresponding to these control points has, on the

domain Dy, the equation

G*(u,v) =

m+1 n+1 u—uy v—vy *
k=0 £J1=0 By, (u1+1 —ul) Bniig (vJ+1 —v.r) b(m+1)l+’€.("+1)-]+l

(21):

By direct calculus one deduces that G* is C™*(D), in hypothesis that G is
C™*(D), if and only if

I1,J-1 1,J _ s
all ) =a 1=0L=1,J =T M -2,k=0,m,j=T5,

BU) =B I =TT =2,0 =0 M —1Li=0mi=Tr

and, similar to (19),

ol =pall)) =l p=27, I=0,L=2, J=0,M -1
:’{l‘,):l— g,ll,J)’p:r;y I=1’L"1, J=0,M—1

(22)

'BIE:{;lJ—)q :qﬂl(c{;;’) zﬂi(ll‘J)vq:z—s—’ I=07L—1’ J=01M_2

ﬂi(a{;,) =1- q:BIE,IT’lJ_l) = ﬁﬁlI,J)vq =-1,_§1 I= OvL— 17 J= I,M_ L

The other parameters, from the interval (0, 1),

o p=Tm=—r;e{" p=7F,m—r;

N S e Gal, " p=m=r,m
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and

B0 q=Tn=580",¢q=5FL,n—s;

AN I=0L=1,0 =0, =281V, g =757,
are arbitrary.

Example. We consider the following Bézier control points:

=0 I=1 =2 I=3
k=0| (0,0,3) (0,1,2) (0,31) (0,4,3)
brosks k=1] (1,0,1) (1,14) (1,3,2) (14,4
k=2 | (2,0,25) (2,1,3) (231) (24,3)
k=0 | (20,25) (21,3) (231) (243)
baarks k=1| (304) (312) (330) (342)
k=2 | (4,0,25) (4,1,3) (4,3,1) (4,4,2.5)
k=0 | (4,0,25) (4,1,3) (4,3,1) (4,4,2.5)
brosks k=1] (50,1) (5,14) (53.2) (54,3)
k=2 (6,0,3) (6,100 (6,3,1) (64,2)

For ag,) = £, 1=10.2 k=0,2, 1 =0,3 one obtains the Bézier spline surface
from Figure 4, corresponding to the usual degree elevation. The parameter values are:
v € [0,3] and v € [0,1]; in Figure 5 the parameter values are: af ; = 1/2, of ; = 1/500,
o, = 1/1000, o2, = 4/5; 1 = ;3. |

FIGURE 4. Surface 1
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FIGURE 5. Surface 2
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DISTRIBUTIVE NONCOMMUTATIVE LATTICES OF TYPE (S)

G. LASLO AND GH.FARCAS

Dedicated to Professor Ioan Purdea at his 60** anniversary

Abstract. The noncommutative lattices of type (S) were first defined in [1].
In this paper on introduces the notion of distributive noncomutative lattice
of type (S) and one studies their properties as compared to those known from

the classical lattices theory.

1. The triplet (L,A,V), where L is a nonvoid set, A and V are two binary

operations defined in L, is named noncommutative lattice of type (S), if, for all a, b,¢ € L:

(anb)Ac=aA(bACc)
(avb)Ve=aV (bVe)

(B) aAN(aVd)=a
. aV(aAb)=a
9) aN(bVc)=aA(cVDd)

aV(bAc)=aV (cAb).

We observe that this system of laws is selfdual, so in (L, A, V) holds the duality
principle.

This special class of noncommutative lattices was first defined in [1]. Then, in
(1) and [2] are presented a few properties of this class of noncommutative lattices. From

these properties, we mention the following:
(1.1). If (L, A, V) is a noncommutative lattice of type (S), then for all

a,b,c€ L :

1991 Mathematics Subject Classification. 08D99.
Key words and phrases. lattice,distributivity,commutativity.
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(1).{ ahNa=a (2).{ aAb=(aAb)V(bAa)
aVa=a avVb=(aVb)A(bVa)
3 aA(bVa)=a y aA(bAc)=aA(cADb)

’ aV(bAa)=a ‘ av(bve)=aV(cVb)

{ aANbAa=aAb
(3).
avVbVa=aVb.

2. In this paper we introduce the notion of distributive noncommutative lattice
of type (S) and we study its properties in analogy with the well known ones from the
classical theory of lattices.

Let (L, A, V) a noncommutative lattice of type (S). If the identities below hold
for all a,b,c € L, let us accept the following notations:

(DAY). (avb)Ac=(anc)V(bAc)

(DYM). (eAd)Ve=(aVvVe)A(bVe)

(D). aA(dbVve)=(aAd)V(aAc)

(DY™). aV(bAc)=(@aVbA(aVe)

(Sr)- aAc=bAc and aVe=bVc=>a=bh
(Sr)- aAc=bAc and cVa=cVb=>a=0b
(Sir)- cAa=cAb and av‘c=ch=>a=b
(St). cAa=cAb and cVa=cVb=>a=b

The noncommutative lattice of type (S), is named distributive if, for all a,b,c €
L, it verifies (D) = {(DAY), (DYA), (D), (DYM)}.
' We obtain an example of distributive noncommutative lattice of type (S), if we
define in the cartesian product P(M) x P(M) = {(A,B) | A C M, B C M}, the

operations ”A” and ”V” thus:

(41,B1) A (42,B5) = (41,81 () Ba)

(A1, B1) V (A2, Bz) = (A1, B UBz)

We observe that these operations are not commutative.

The noncommutative lattice of type (S) is named with simplifications if for any
a,b,c € L, it verifies the system of laws: (S) = {(Sy), (Sr1), (Sir), (S1)}-
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All the theorems below refer to the noncommutative lattices of type (S). We will
prove a few properties of distributive noncommutative lattices of type (S).

(2.0). DM)NDM) = (DYY)  and  (DYNNDYN) = (DMY)

Proof. If for all a,b,c € L hold (D2V) and (D;\V), then, using the properties

from theorem (1.1) we obtain:

(avb)A(aVe) [aA(aVve)VbA(aVe)]=aV]A(aVe)]=

= aV[(bAa)V(bAc]=[aVv(bAa)]V(bAc))=aV(bAc),

So (Dy") is true, namely (DMV) (DY) = (DYM).

The other implication from (2.1) is the dual of this first.

The following sentence is a result of the theorem (2.1).

(2.2). The noncommutative lattice of type (S) is distributive if and only if, it
verifies the system of laws {(DAV), (DY), (D{*V)} or the system {(DAV), (DY), (DyY™)}.

(2:3). (DM)N(DY) & (DYN) (DY) ’

Proof. If for all a,b,c € L, the rules (DY) and (D}\V) are true, then, using the

definiton of noncommutative lattices of type (S) and the properties from (1.1) we obtain:

(ave)A(dbVe) = [aA(dVe]VeAVe)]=[an(dbVe)Ve=
= [(@aAb)V(aAc)]Ve=(aAb)V[laAc)Vc]=

= (aAb)V[eV(aeAc)]=(aAb) Ve,

and respective

(avd)A(aVe) [aA(@ave)vbAa(ave)]=aV[bA(aVe)]=

= aV[bAa)V(bAc)=[aV(bAa)]V(bAc)=

= aV(bAo),

So, the equalities (DY") and (D)") are true, namely (DAV) (DY) = (DY) (D).
The inverse one is the dual of the first.

An immediate result of this theorem is the following sentence:

(2.4). The noncommutative lattice of type (S) is distributive if and only if, it
verifies the system of laws {(D2V), (D{V)} or the system {(DY"),(DY")}.

(2.5). (DRY) = (Dy")  and (DY) = (D{Y)
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Proof. Obviously, it will be enough to prove the first implication, because the
second is the dual of the first. _
If for all a,b,c € L, (D}V) is true, then, using the definition of noncommutative

lattices of type (S) and the theorem (1.1), we obtain:

(avd)A(aVe)

[aA(@ave)]VbA(aVve)]=
= aVpA(ave)]=
= aV[lavVe)Ab =
= aV[aAb)V(cAd =
= [aV(aAb)]V(cAb)=
= aV(cAb) =
= aV(bAo),
So, the rule (D}'") is true. The second implication is the dual of the first.
An immediate result of this theorem is the following;:
(2.6). The noncommutative lattice of type (S), is distributive, if and only if, it

verifies the system of laws {(D2V), (DYM)}.
We observe that theorem (2.1) can be considered a result of the theorem (2.5).

(2'7)' (D) = (Sr) n(srl) n(Slr)

Proof. We suppose that, for every a, b,z € L, the equalities: a Az =
=bAz,aVz=>bVz are true. Using the distributivity laws, we obtain:

a = aAN(aVz)=aA(bVz)=(aAb)V(aAz)=

= (@A) V(AZ)=(aAb)V(zAb)=(aVZ)Ab=(bVZ)Ab=

(BAb)V (TAB)=bV (zAb) =b,

8o (Sy) is true, namely (D) = (S,).
Then, if we suppose that for z,a,b € L the equalitiesaAz =bAz,zVa=zVb
are true, then, using the distributivity laws, we obtain
¢ = aA(zVvVa)=aA(zVb)=(aAz)V(aAb)=(bAzZ)V(aAd) =
= [bV(aAb]AzV(aAb)]=bA[zV(aAb)]=bA[(zVa)A(zVD])]=

= bA[(zVO)A(zVDE)]=bA(zVb) =0,
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80 (Sy1) is true, namely (D) = (Sp).
The implication (D) = (S;,) is the dual of (D) = (Sy).
(2.8). (St) = (Sr) N(Sr) N(Sir)
‘ Proof. We suppose that, for z,a,b € L, the equalities a Az = b A z and
aVz =>bVz are true.
Using the laws wich define the noncommutative lattices of type (S), and the
property (5) of theorem (1.1) we obtain:

tAa=zAaANT=zANbAT=2xADb

zVa=§:VaVa:=a:Vsz=a:Vb,

Applying (S;) we obtain that @ = b, namely (S;) = (S;).

If for a,b,z € L, the equalities a Az = bAz, £V a = z Vb are true, then,
tAha=zAaAxz=zAbAz==zAb, and, by aplying (S;) we have that a = b, namely
(S) = (Sri)-

The implication (S;) = (Si,) is the dual of (S;) = (Sn)

(2.9). (5:)U(Sir) = (S7) |

Proof. If for a,b,z € L, the equalitiesaAz =bAz and aV z = bV z are true,
then, zVa =zVaVz =zVbVz = zVb, so, aplying (S,;) we obtain @ = b. The
implication (S;-) = (S;) is the dual of the first.

(2.10). If in the noncommutative lattice of type (S), the rule (S;) is true, then
the two binary operations are commutative, namely (L, A, V) becomes lattice.

Proof. We suppose that in (L, A, V), the rule (S;) is true. Then, using (3) and
(4) from theorem (1.1), we obtain that for every z,a,b € L:

zA(aAb)=zA(bAa) and zV(aAd)=2zV (bAa).

By applying (S;), we obtain a Ab= b A a for all a,b € L, namely the operation
"A” is commutative. The commutativity of ”V” results analogously.

From this theorem results that in a distributive noncommutative lattice of type
(S), the rules (S,) are not necessarily true.

(2.10) also shows that any noncommutative lattice of type (S) with left simpli-
fying is lattice.

We observe that the theorem (2.8) can be considered a result of theorem (2.10).
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The main results from this paper can be represented by the following diagram:

Sy

It is known that, if (L, AV) is a lattice, then the following equivalences are true:
(D) & (DNY) & (DY) & (DY) & (DY)

(S) & (Sa) & (Sn) & (Sir) © (Ss)

(D) & (9).

These equivalences are not true if (L, AV) is a noncommutative lattice of type

(S), without being a lattice.

References

[1] Gh. Fircag, Treillis non-commutatifs de type (S), Studia Univ. Babeg-Bolyai, Mathematica,
t. XXXII, 2 (1987), 44-48.

[2] Gh. Fircas, Sur les treillis non-commutatifs de type (S), Studia Univ. Babes-Bolyai, Math-
ematica, t. XXXIII, 2 (1988), 24-27.

[3] G. Laslo and Gh. Fircas, Distributive noncommutative lattices of type (G), Mathematica,
Vol 38 (61), 1996.

TARGU-MURE§ TECHNICAL UNIVERSITY, 4300 TARGU-MURES, ROMANIA

44




STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume XLIII, Number 1, March 1998

INDUCTION OF GRADED INTERIOR ALGEBRAS

ANDREI MARCUS

Dedicated to Professor Ioan Purdea at his 60°* anniversary

Abstract. We introduce interior O®H-algebras graded by a finite group I’
and generalized induction for these algebras. This situation occurs in the
study 6f source algebras of blocks of normal subgroups and our construction
unifies various constructions introduced by Lluis Puig.

1. Introduction

Induction for interior G-algebras was introduced by L. Puig [P1], this being the
fundamental construction linking an interior G-algebra with its source algebra. Given a
subgroup H of G and an interidr H-algebra, H over a complete discrete valuation ring
0O, the induced interior G-algebra is OG Qo B Qo OG, with multiplication inspired
by that of the endomorphism algebra Endog(OG ®on M), where M is an OH-module.

Later some generalizations were needed in order to deal with more involved prob-
lems. Algebras interior for a twisted group algebra were considered in [P2]; dealing with
blocks of normal subgroups in [KP] imposed the construction of of G-algebra extensions;
finally, noninjective induction was introduced in [P3] and [P4] in order to study bimodules
inducing equivalences between interior algebras.

The aim of this note is to unify these constructions. We shall consider O-algebras
A graded by a group I', endowed with a grade preserving (O-algebra map O°H — A,
where O*H is the twisted group algebra defined by the cocycle a € Z2%(H,O*), and
H has a a normal subgroup N such that G = H/N is a subgroup of I'. This degree
of generality is needed; this situation occurs for instance when one considers the source
algebra of a G-invariant block of O*N. We have in mind later applications to Clifford

theory, and recall that similar contexts have been considered in recent work of E. Dade.

1991 Math tics Subject Classificati 16W50.
Key words and phrases. interior algebras,blocks.
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Most of our conventions and notations will follow those of [P2], [T] and [NV],
except that we use the notation of [K] for twisted group algebras. The needed definitions
will be given in each section, but some standard facts from t‘hese sources will be used
without comments. In Section 2 we discuss graded algebras and their exomorphisms; I'-
graded interior O* H-algebras are introduced in Section 3. Injective induction for these
algebras is defined and studied in Section 4, while in the last section we introduce the

generalized induction.

2. Twisted group algebras, interior algebras and group extensions

2.1. We fix a p-modular system (K,0, k), where O is a complete discrete valuation
ring, K is the quotient field of O and k = O/J(O) is the residue field of O. The case
k = O = K is not excluded.

2.2. Let A = ,cc Ay be a G-graded O algebra, where G is a finite group and the
additive subgroups A4,, g € G are O-free of finite rank.

We shall be interested in some particular cases. Recall that A is strongly graded
if AgAp = Agp, for all g,h € G, and A is a crossed product if A;NU(A) # 0. In this case,
denoting

hU(4) = | (4, NU(4)),
9€G
we have the group extension

€(d): 1-U(A) = hUMA) G-l

If ¢(A) splits, then A is a skew group algebra. We shall also discuss twisted group algebras

later.

2.3. B = P, By is another G-graded O-algebra, then a homomorphism f: A— B
of O-algebras (not necessarily unital) is called G-graded (grade preserving) if f(A, C By
for all g € G.

More generally, let ¢: G — H be a group homomorphism, B = @, Bx a H-
graded O-algebra, and denote by Resy(B) the G-graded algebra Ress(B) = @, By()-
Then a homomorphism f: A —+ B of O-algebras is called graded if f(A;) C By for all
g € G, that is, f induces a grade preserving map, still denoted f: A — Resy(B).

If ¢ is just the inclusion G C H, then we shall simply denote Bg = (D, By-
Observe that construction of By is functorial, that is, if f: B — B’ is a homomorphism
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of H-graded algebras, then f induces in an obvious way a homomorphism of G-graded
algebras fg : B¢ — Bg. In this situation, the G-graded algebra A can be trivially
regarded as an H-graded algebra by defining A, =0 for h € H\ G.

Another important situation which will occur in Section 5 is when ¢: G - H
is surjective. Then the G-graded algebra A can be made into a H-graded algebra by
defining Ap = P ep-1(n) 4g-

Returning to the case when both A and B are G-graded, remark further that
f: A= B induces a group homomorphism f*: U(4) - U(B) by f*(a) = f(a—1)+1.
We also have that

@) = f(@)" ),
where a®” = (a*)'aa*. Moreover, if f is unital, and A and B are crossed products, then

f induces a homomorphism of group extensions

1 U(A;) — hU(A) -G -1
* f* ¢
1 U(B,) — hU(B) - H -1

2.4. The group hU(A) acts on A; as O-algebra automorphisms, and on U(A,) as group
automorphisms. Moreover, hlU(Az(g)) = deg~'(Z(G)) acts on A as grade-preserving

automorphisms, and on hU(A) as automorphisms of group extensions.

2.5. Let A and B be two G-graded O-algebras. Then A®p B is naturally G x G-graded,
and if §(G) denotes the diagonal subgroup of G x G, then (A ®0 B)sc) = D,cc(4s ®o
B,) is again a G-graded algebra. We shall denote A(4, B°?) = (A ®¢ B)4c, this being
coherent with the notation of [M]. The G-grading of B is given by B3P = B,-1, and by
this convention, A(A4, B) = (A ®0 B)s(c). Moreover, if A and B are strongly graded
(crossed products), then A @ » B and A(A, B) are strongly graded (crossed products).

2.6. Definition. Let A and B be G-graded algebras. A graded ezomorphism f: A > B
is the set obtained by composing the grade-preserving homomorpfism f: A — B with
the inner automorphisms of A and B given by conjugation with elements of of A; and
B, respectively. Denote by Img,(A,B) the set of graded exomorphisms f: A — B.
To obtain £ it suffices to compose f only with the above inner automorphisms
of B. This implies that graded exomorphisms can be composed.
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The exomorphism f is called an embedding if Kerf = 0 and Imf = f(1)Bf(1).
Clearly, f is an embedding if and only if f;: A; — B, is an embedding of @-algebras,
where f1: Ay = By, fi(a) = f(a).

Let f € Hom,, (4, B), § € Hom,,(B,C) and ki = §o f. It follows by this remark
and [P2, Lemma 3.4] that: if § is an embedding then f is uniquely determined by h, and

f is an embedding if and only if h is an embedding.

2.7. We end this section with by discussing an important example. Let a: H x H = O*
a 2-cocycle (where O* = U(0)), and consider the twisted group algebra O*H = {aZ |
z € H, a € O} with multiplication Zj = a(z,y)zy for all z,y € H. Clearly, O*H is
a particular case of an H-graded crossed product, and if 8 is another 2-cocycle, then
O%*H ~ OPH as H-graded algebras if and only if a8~ € B*(H,0*). If N is a subgroup
of H, we shall stili denote O*N = Ore*N® N, where resila € Z2(NO*).

We shall be interested in other gradings, too. If N is a normal subgroup of H,
and G = H/N, then O*H is naturally graded by G.

We recall from [K] some properties of twisted group algebras.
(1.7.1) O°H ®p OY H' ~ 0*** (H x H') via (R @ }') & (h, 1.
(1.7.2) (O*H)°P ~ ©0°'H via h ¢ h-1.
(1.7.3) ¥ a,B € Z2(H,O*) then O H ~ (O*H ®0 OP H)s(ry via h > h®o h. (Notice
that we have taken here the diagonal with respect to the H-grading.)

3. Graded interior algebras

We shall now describe our main object of study.

3.1. Definition. Let H and I' be finite groups, u: H — T a group homomorphism, N =
Kery, and G = Impu. We also denote by u the induced injective homomorphism G — I'.
Let a € Z?(H,0*) and A a I'-graded O-algebra endowed with a graded homomorphism
¥: O°H — A (that is, ¢(h) € Ay for all k € H). Then (4, s, %) (or simply A is called
a I'-graded interior O® H-algebra, and u,1) are the structural maps of A.

3.2. Examples. a) Clearly, if N is a normal subgroup of H and G = H/N, then O°H
is a G-graded interior O* H-algebra.

'b) If e € Z(O“N) is a G-invariant idempotent, then eO*H is a G-graded interior
O*H-algebra with structural map ah — eah, foralla € O, h € H.
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c) Let U be an O*N-module and M = O°H ®pay U = IndQ. XU with the
usual G-grading. The O-algebra A = Endop(M)°P has a G-grading given by A, = {f €
A| f(M;) C M, for all £ € G}. Now define 1: O°H — A by ¢(h)(A' ® u) = A ® u.
One can easily verify that A becomes a G-graded interior O* H-algebra.

3.3. Let (A, p1,9) be a I'-graded interior O* H-algebra and A, y',%)’) a y-graded interior
OB H-algebra. We have the group extension N x N - H x H =+ G x G, and denote by
0c(H) = {(z,y) € H x H|zN = yN} the “diagonal” of H x H w.r.t. G. Then AQo B
is a T x I'-graded interior O**#(H x H)-algebra, and A(A, B°P) is a §(T')-graded interior
dc(H)-algebra (and also a §(H)-algebra by restriction).

3.4. Observe that A, ) is a u(G)-graded crossed product and p,% induce the homo-

morphism
1 —— U(O*N) — hU(O*H) - G 1
u
1 U(A1) — hU(Ayc)) — #(G) 1

of group extensions. Although H may not be a subgroup of hU(O*H), it still acts on A;
by conjugation. Actually, A,(c) is determined by A;, the group extension N = H — G,
and the action of H on A,. Indeed, the homomorphism O°H — A,g) of G-graded
algebras (identifying G with u(G)) determines a structure of a G-graded O* H-bimodule

on A,¢ and also a map
(O%H ®0 (O*H)P)ar(0-m)A1 = (A®0 AP) ®a(4) A1
of G-graded (O*H, O* H)-bimodules (where A(A) = (A®0 A°P)s(c), see [M, Section 2]).
Since the 1-component of this map is just the identity map of A;, it follows that
(O°H ®0 (O*H)P)ar(0emyd1 =+ A (EQF)®ar ray ™’

is an isomorphism of G-graded O H-bimodules.
3.5. Definition. A homomorphism f: A — A’ of I'-graded interior O H-algebras is a
graded O-algebra map satisfying fZ-a-§) = Z- f(a) -d for all z,y € H and a € A. We
still denote by Homg, (A, A’) the set of these homomorphisms.

The ezomorphism f: A — A’ is the orbit of f under the action of U(AJ) x

U4y on Hom,, (4, A).
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Since this orbit coincides with the orbit under the action of U (A’IH ), it follows \

that the exomorphisms of I'-graded interior O®H-algebras can be composed, and we

denote by Homgr(A, A’) the set of exomorphisms iAo A .

3.6. Let p be a homomorphism
1 > N]_ > H1 > G1 > 1

1 - N ~ H - -G -1
of group extensions such that G; — G is injective (otherwise we replace N; with the
kernel of the composition H; - H — G). Then Res, A is, by definition, the I'-graded |
interior O%t Hy-algebra (A, u o p,9 o p), where a; = res,a € Z*(H;,0*).

Moreover, a homomorphism f : A — B of I'-graded interior O“H algebras
induces obviously the homomorphism Res,(f) : Res,A — Res,B of I'-graded interior
O™ H, -algebras.

4. Injective induction for graded interior algebras

4.1. Consider the group extension N -+ H — G and the subgroups K of H, NN K of
N and K/KNN ~ KN/N of G, and let [H/K] be a complete set of representatives for
the left cosets of K in H. Denote by p all these inclusion maps and, for a € Z2(H,0*),
we also denote by « the element Resha € Z2(K,O*). Let finally #: G — T an injective

group homomorphism.

4.2. Let B be a I'graded interior O®K-algebra with structural maps p' = pop:
KN/N - T and ¥': O*K — B. Consider the (O*H,O*H)-bimodule A = O°H ®pak
B ®pag O*H, and define the O-bilinear multiplication
ERbHEF SV ®F) = % itys e K
T®b-gz -V @y, ifyr’ € K
and the map
v:0°H— A, zw Y Zjelpeji .

vE[H/K]

4.3. Proposition. A is a I'-graded interior O® H-algebra with structural maps p and
.
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Proof. It can be easily verified that the multiplication is well defined and associative,
and that A is an O-algebra with unit element 14 = Z”E[ /K I®1BOF . Algo, ¢ is a
well defined O-algebra map.

The grading of A is defined as follows. If g € I', z,y € H and b € By, then
Z® b ® j is a homogeneous element of degree u(zN)gu(yN) € I'. It follows that for
g=zN € G we have

Ag= ) Zj®0ek Bi®oax § .
yE[H/K]

In particular, 4; = Zye[ K J® B, ® §~! is a subalgebra of A. It also follows that the

structural map 9 is grade-preserving.

4.4. Definition. We shall say that the I'-graded interior O* H-algebra A is tnduced
from B, and we denote A = Ind,(B) = Ind9. 5 (B).

The construction is functorial, since if f: B — B’ is a homomorphism of I'-
graded interior O K-algebras, then Ind,(f) = id® f ® id: Ind,(B) = Ind,(B') is a
homomorphism of I'-graded interior O* H-algebras.

4.5. Since the subalgebra Ag is a G-graded crossed product, it can be constructed from

B, in an alternative way. Indeed, we have that
Ag = (0°H®o (0°H)?)®p=kgo(0=K)» Ba
~ (O%H ®0 (0°H)) ®vakgo(0=k)» (0°K ®0 (0°K)?) ®ar(o=k) B1)
~ (O%H ®o (0°H)?) ®a(0=n) (Ar(O°H) ®a,(0-k) B1)
where we have also denoted Ar(O°K) = Ak knn(O°K). Then, for g =zH € G,
Ay ~ (2 ®0 1) @ar(0=) (Ar(O°H) ®a(0=k) B1),
and A, is the Ap(O*H)-module Ar(O*H) ®a,(0=k) B:1.

4.8. Proposition. Let M be an O*(K N N)-module and B = Endo(Indg(#nn)M).
Then

Ind: ¥ (B) = Endo (Ind8-{inn, (M) CLUHNAPOCA

N2 e
Proof. By construction, B is a K N/N-graded crossed product, which can be trivially
regarded as a I'-graded interior O®K-algebra, since KN/N < G < T. Denote A =
51
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Endo(Ind@afknn)(M)). Since IndZafinny(M)) =~ IndZaf (IndGePicnny (M), A is a
G-graded crossed product by Example 2.2.c).

First, we define an O-linear action of Ind9. % (B) on Indgz(’fm,v)(M )- Let fe€
B,,ve Indngfym,v)(M)) and z,y,z € H, and define

TR f(f'zv), ifylzeK
o fey(zev) =
0, otherwise.

If f is homogeneous of degree g € G and v is homogeneous of degree h € K N/N, then z2®v
is homogeneous of degree zNgy~'zNh. By [T, (6.4)], this action induces an isomorphism

of interior O H-algebras, and by the above remarks, it is also grade-preserving.

4.7. Proposition. Let L < K < H and C o I'-graded interior O* L-algebra. Then there

s an isomorphism of I'-graded interior O“H -algebras

IndZ. % (IndZe ¥ C) ~ mdZ.§ (C).

Proof. Using [T, Proposition 16.3], one can check that the map
v: IndGe B (10d92%C) - mdF.2(C), 20 ([®c®F)®F » IjR®c®FT

is an isomorphism of of interior O H-algebras. By Definition 2.1 it also follows that +is

grade-preserving,.

4.8. Proposition. Let K < H, A a I'-graded interior O* H-algebra and B a I'-graded
interior OP K-algebra, where a, 8 € Z2(H,©*). Then there is an isomorphism

8: Ar(A ®0 nd3e 2 (B)) - IndGee (Ar (ResGe A @0 B))
of I'-graded interior O*# H-algebras.
Proof. Define § by
a@(ERbRF) =i ((E ' -a-710H)®F,

where a € Ay and b € B,. Then § is an isomorphism of I'-graded interior O H-algebras,

having inverse §~! defined by

iQ@Rb)RjE a jOERIDY.
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4.9. Let B be a I-graded interior O% K-algebra, and consider the homomorphism of
I'-graded interior O* K-algebras

dS-E:B -+ ResQ.EmdS.EB, b 10001
This map determines the canonical embedding

O"K(B) B — ReSouKIndoaKB b~ 100 1.

4.10. Proposition. Let §: B — Resg;ﬁA be an embedding of I'-graded interior O“K -
algebras, and assume that 1 € Tr(g(1)), (g(1) - g(1)® = 0 for all z € H/K, and that
9(1) centralizes A;.

Then there is a unique ezomorphism f: Indoa K(B) — A such that § = ResZ (f fo
dgak (B)-

Proof. If f exists, we may take f(Z®b® §) = & - g(b) - § for any z,y € H, b € B.
Conversely, let f: Ind9.1(B) — A be defined by this formula; as in [T, Proposition
16.6], we obtain that f is an isomorphism of interior O* H-algebras, and since g is grade-
preserving, f is grade-preserving too. Moreover, f does not depend on the choice of g in
g, since if b € (BK)*, then Trl (g(0)) € (A¥)* and (Z - g(b) - §)™* @®) =z - g(b) - y for
alz,y € H and b€ B.

5. Generalized induction

We are now going to define the induction of graded interior algebras through an

arbitrary group homomorphism ¢: H — H'.

5.1. Consider the commutative diagram of groups

KNN v K —F A
L 1
N =Keru H r
¢ ¢ ¢
']

N =Kery) —H' —¥ .1

R
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where K = Ker(¢: H - H') and A =Ker(¢: T - I"). Let G = H/N ~ p(H) <T and
G'=H'IN'~ y/(H') <T'. Then K/KNN ~ KN/N is isomorphic to a subgroup of A,
and H/KN ~ (H/N)/(KN/N) is isomorphic to a subgroup of I'/ A, so to a subgroup of
r.

Let further o/ € Z%(H',0*) and o = resg(a) € Z%(H,0*). It follows that
resfla = 1 and O*K = OK, and ¢ induces a homomorphism ¢: O*H — O% H' of
O-algebras with image ¢(O°H) ~ O% (H/K).

We can regard O°H and O% H as H/KN-graded algebras in the usual way,
and also as I"-graded algebras (where the components of degree g’ not belonging to the
image of H are trivial). Similarly, O* H’ can be regarded as a H' /N'-graded algebra, and
also as a I"-graded algebra. Then ¢: O*H — O H' is a homomorphism of I'-graded

algebras.

5.2. Let (A, u, %) be a I'-graded interior O* H-algebra, and as above, regard A as a I'/A-
graded algebra, and also as a I'-graded algebra. Then the structural map ¢¥: O°H — 4
is a homomorphism of I-graded algebras.

By [P4, 3.2], (O ®ok A)X is an O-algebra with multiplication (1®a)(1®b) =
1® ab. Also, 9 factorizes through O% (H/K), so (O ®ok A)X becomes an interior
0% (H/K)-algebra.

If g € T, define the grade of a ®ok a € O ®ok A)¥ to be ¢(g) € I'. This is
clearly well-defined, and (O ®ox A)¥ is a ['-graded interior O% (H/K)-algebra.

5.3. Now, by definition, let
Indg(A) = Ind{ 51y ((O ®ok A)¥) = O H' ® et (y1/x) (O ®0K A)X ® gut g1y OF H'-

By the preceding section, Indg(A) is a I'-graded interior O* H'-algebra with multipli-
cation

T 1 -zZ-b ‘l’ if 8y =
Folones)Feleyed) - o CoFNel =9

0 otherwise,

where z is a suitable element of H. The structural maps are p' : H' — I'" and ¢’ :
O H' — Ind¢(A) (preserving I'-gradings) defined by

Y(E) =5 T,(1e(1e1)e1) =Trn1e181)®q) 7.
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5.4. For 0 € Aut(K), denote, as in [P4, 2.3], N:(K) ={a€A|a-Z=o0(z)-a}, and let

Na(K)= )Y Ni(K).
ocAut(K)

Then, recalling that O*K = OK and ¢(K) = 1, it follows immediately that Na(K)
inherits from A a structure of a I''-graded interior O H-algebra. Moreover, the map

dy(A): No(K) = Resy(Indy(4)), e 1@ (a®a)®1

is a homomorphism of I''-graded interior O H-algebra, and by [P4, 3.4.4], if O®ok A is
a projective OK-module, it induces an embedding N4 (K)/Ker(ds(A)) — Resy(Indg(A))
of I"-graded interior O% H-algebras.

Further, if f: A - B is a homomorphism of I'-graded interior O® H-algebras,
then f induces a grade-preserving map f: Na(K) — Np(K) and Indy(f): Indg(A4) —

Indy(B) such that we have the following commutative diagram.

Indg(4) Indy(F)

Indy(B)

ds(A4) dy(B)

Na(K) —I—+ Ny

It is not hard to see that Propositions 4.6, 4.7 and 4.8 can be generalized to this
situation. In essence, one has to check that the maps defined in [P4, 3.7, 3.13 and 3.17]
are grade-preserving. We shall only give here a common generalization of Proposition

4.6 and [P4, Proposition 3.7]

5.5. Let M be a G/N-graded O* H-algebra, that is, there is an O® H-module M; such
that M = O°H ®@an My.We can regard M as a H/ K N-graded O* H-module, and also
as a I"-graded O®H-module. Then Indy(M) = O H' ®cay M is a I'-graded O~ H'-
module, where for h' € H', ¢’ € |gamma’ and m € My, the element i’ ® m has, by

definition, degree u'(h')g’.
5.6. Proposition. If M is O-free, then there is an isomorphism of I''-graded interior
0% H'-algebras

ind.,;, m:Indy (Endo (M )) — Endo (Ind¢ M ))
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Proof. By [P4, 3.7), for 2’,s' € H' and 1® f € (|CO ®ox Endo(M))X, indy m(Z® (1®
f)®3') is, by definition, the O-linear endomorphism of Inds(M) mapping §’' ® m to zero

or to ' ® f(Z - m), whenever there is z € H such that s'y’ = ¢(2). It is straightforward

to check that indy,m is grade-preserving.
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SUFFICIENT CONDITIONS FOR STARLIKENESS

PETRU T. MOCANU AND GHEORGHE OROS

Dedicated to Professor Ioan Purdea at his 60°" anniversary

Abstract. In this paper we will study a differential subordination of the form:

e '(2) | #f'(2)
@ T e M)

where h(z) is an univalent function in the unit disc U and we will obtain

sufficient conditions of starlikeness for a function f(2) = z+a22%+... analytic
in U.

We will obtain our results by using the differential subordination

method developed in [1], [2] and [3].

1. Introduction and preliminaries

Let A denote the class of analytic functions in the unit disc U={z, |z| < 1}

and normalized by f(0) = f'(0)—1 = 0.

!
Also, let S* = {f €A, Re%%? >0, z€ U} be the class of starlike functions

in U.

In [7] the authors considered the class of functions f € A which satisfy the

condition:

22f"(2) | z2f'(2)
Re{a @) + 0] } >0, z €U,

for a>0 where ‘—f—(zf-)-yéo,zGU.

In [4] and [7) different types of starlike functions were investigated.

In [5] condition (2) was replaced by:

0?f'(z) | 2f'(2)

@ i T
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!L:-l;éo,zeU, where a > 0 and A > 0.

In this paper we will consider a more general differential subordination of the
form (1),where h is an univalent function in U.

We will need the following notions and lemmas to prove our main results.

If f and F are analytic functions in Ujthen we say that f is subordinate to F,
written f < F, or f(z) < F(z), if there is a function w analytic in U with w(0) = 0 and
lw(z)] < 1for z € U and if f(2) = F(w(z)), 2 € U. If F is univalent then f < F if and
only if f(0) = F(0) and f(U) C F(U). '
Lemma A.([1], [2], [3]) Let q be univalent in U with ¢'(¢) #0, |¢| =1, ¢(0) = a and ki
p(z) =a+piz+... be analytic in U, p(z) Z a. If p £ q then there exist zy € U, {p € O
and m > 1 such that:

(#) p(20) = q(¢o)

(%) 209’ (20) = mGoq’ (Go)-

The function L(z,t), z € U, t > 0 is a subordination chain if L(z,t) = a;(t)z +
az(t)z%+a3(t)2%+. .. is analytic and univalent in Ufor any ¢ > 0 and if L(z,¢1) < L(z,t,)
when 0 < ¢, < t.

Lemma B. ([6]) The function L(z,t) = a1(t)z + a2(t)2® + ... with a1(t) # 0 for t >
0 and lim;_, |a1 (£)] = 00 is a subordination chain if and only if there are the constants
r € (0,1} end M > 0 such that:

() L(=2,1) is analytic in |z| < r for any t > 0, locally absolute continuous int >0

for every |z| < r and satisfies |L(z,t)| < Mlai(t)] for |2] <r andt > 0.

(i%) there is a function p(z,t) analytic in U for any t > 0 and measurable in
[0,00) for any z € U so that Re p(z,t) >0 for z € U, t > 0 and

OL(z,t)  OL(2,t)
o - oz

p(z,t) for |z| < r and for almost any t > 0.

2. Main results

Theorem 1.Let the function:

h(z) = 1+ (2a + )z + au?z?, (3)
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where
a>0 and 0< <1+—1- 4)
k= 2a’

If p(2) = 14 p12+ paz% + ... is analytic in U and satisfies the condition:

azp/(z) + ap®(2) + (1 - a)p(2) < h(2), (5)

then p(2) < 1 + pz and this result is sharp.
Proof. If welet g(z) = 1+uz, p > 0and 9(p(2), 2p'(2)) = azp/ (2)+ap?(z)+(1—a)p(2),
then 9(g(2), z¢'(2)) = h(2).

We will show that 9 (p(z), 2p'(2)) < h(z) implies p(2) < ¢(z) and g(2) is the best
dominant.

If we let L(z,t) = ¥(g(2), (1 + t)2¢'(2)) = 1 + (at + 2a + 1)uz + 2ap?22, then it

is easy to show that:

zaazL(z, t) !

= —[(at +2a + 1) + 20p2], |2] < 1, and
Z%L(z, ) «

(il
z2+5-L{z,t
Re—35f— gzl (=) = Rel(at + 20 + 1+ 20p2) > l(o:t +2a + 1 — 2ap)

arl(z:1) * *

Using now the condition (5) we obtain :

9 I(z,¢
azL(Z,t) o o «

22 L(z,t)
9z 7\ ;
Hence Re—g——- > 0, and by Lemma B we deduce that L(z,t) is a
a’fL(ztt)
subordination chain.
In particular, for ¢ = 0 we have L(z,0) = h(z) < L(z,t), for ¢t > 0.
If we suppose that p(z), is not subordonate to g(z), then by Lemma A there exist
2 € U, (o € OU such that p(20) = ¢(Co) with |¢o| = 1, and 20p'(20) = (1 + )$oq’ (o)
with ¢t > 0.
Therefore o = %(p(20), 208’ (20)) = ¥(a(Go), (1 + )6oa'(G0)) = L (o, 1), 0.
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Since h(z0) = L(20,0) we deduce that 1 ¢ h(U), which contradicts condition
(6). Hence p(z) < q(2) and since ¥(g(2),2¢'(2)) = h(z) we deduce that g is the best
dominant.
Corollary 1. Ifp(z) = 14+ piz+pe2® +... is analytic in U and satisfies the condition:
azp'(z) + ap?(z) + (1 — a)p(z) < 1+ Az, where A = p(2a + 1 — ap)

1
and O<u< (1 + 5) , then p(z) < 1+ pz.

Proof.  For |z| =1 from (5) we deduce |h(z) — 1} = pj2a + 1 + apz| > p(2a + 1 - ap).
If we put A = p(2a + 1 — ap) we obtain 1+ Az < h(z) and from Theorem 1 we
deduce that p(z) < 1+ pz.

-

!
If we put p= i, where f € A then Theorem 1 can be written in the

f

following equivalent form.
Theorem 2. Let h(2) =1+ (20 + L)pz + ap®2?, wherea >0, 0 < p < (14 5). Let
f €A, with ﬂzﬂ # 0, satisfy the condition:

az? f"(z)

1)

+ zﬁi‘;) < h(2).

Then

2f'(2)
—m <1+ pz

and 1 + pz is the best dominant.

Corollary 2. Let f € A, with L&) # 0, satisfy the condition:

o f(2) | 2£'(2)

<1+ Az
f(z) f(2)
where A = p(2a+1—op) and 0 < < (1+2%).
Then
zf'(z)
<1+ pa.
1) He
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3. Particular cases

LEa=1,then0<p< 3
a). If we take pp = 1 then A = 2 and from Corollary 2 we obtain:
If f € A satisfies the condition

210 (4G ) _ .
7 (g +1) - <2 e
This result was obtained in [5].

b) If we take s = 1 then A = 2 and from Corollary 2 we obtain the following

2f'(z) _
e 1} <L

condition for starlikeness. If f € A statisfies the condition

() (28"(2) 5 1
ﬂ@(ﬂ)+01k then |17y 1 <%

c) If we take 4= 5 then A = % and from Corollary 2 we deduce:
If f € A statisfies the condition

() (20"(2) '
w(rn*Q t|<g then
ILIfa=2then0< < 3§

a). If we take g = 1 then A = p(2A + 1 — \u) = 3 and from Corollary 2 we

z2f'(z) 1, 1

zf'(2) 1' <3
2

1) 2

deduce:

If f € A satisfies the condition

zf'(2) ( zf"(z) ) zf'(z) I
2 +1) -1 -1 <1
f(z) \. f'(z) f(z)

b) If 4 =  then A = £ and from Corollary 2 we deduce: If f € A, statisfies the

< 3 then

condition

0 (0 1) 1| D [FE | L
@) 2 ) +1 1| < = then f( ) -1 <4.
c) If 4= %, then A = % and from Corollary 2 we deduce:

If f € A, statisfies the condition

zf'(z) ( zf"(2) ) l 25 zf'(2) l 5

2 +1) -1 < — then -1 < -

fz) \" f'(2) 8 f(z) 4
d) If p = }, then A = 2 and from Corollary 2 we deduce:

If f € A, statisfies the condition
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1) (2070

72 [Z0) + 1) - 1. < 2 then

21'(@) _ \ 1
HOR 1| < 5"
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ON THE CONVEXITY OF SUPPORTED SETS

IOAN MUNTEAN

Dedicated to Professor Ioan Purdea at his 60** anniversary

Abstract. It is proved that if Y is a closed subset with nonvoid interior of
a real topological vector space, such that the support points are dense in its

boundary, then the set Y is convex.

1. Introduction

Given a subset Y of a real topological vector space (t.v.s. for short) X, an
element zo of Y is said to be a support point for Y, if there is z* € X*z* # 0, such
that z*(zo) = supz*(Y) or z*(zo) = inf z*(Y). As usual we denote by X* the dual
space to X. Taking —z* instead of z* it is obvious that we can always suppose that
z* attaing its supremum at zo. In Euclidean spaces this notion was first considered by
_ H. Minkowski [12]. Denoting by sptY the set of all support points of the set Y and
by bdY its boundary then sptY CbdY (see Lemma 1.1 below). By a famous result of
E. Bishop and R.R. Phelps [2], if X is a Banach space and Y C X is closed and convex,
then sptY” is dense in the boundary of Y. A kind of converse of this result will be proved
in Section 3 of this paper: if Y is closed with nonvoid interior and sptY is dense in bdY
then Y is convex. The study of necessary conditions for some optimization problems
( such as best approximation, optimal control, mathematical economics) motivates the
investigation of the opposite inclusion bdY C sptY. We say that the set Y is totally
supported provided sptY =bdY.

In the following theorem we present a list of some known supported sets.

Theorem 1.1. A subset Y of a real t.v.s. X is totally supported provided one of the
following ( not necessarily independent ) conditions i3 fulfilled:
(e) X is the Euclidean space R® and Y is convez ( see [13])

1991 Mathematica Subject Classification. 62A07.
Key words and phrases. convexity,supported sets.
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(b) X is a normed space and Y is closed convezx with nonvoid interior.

(c) X isatvs. and Y is a p-conver subset of X with nonvoid interior (see

[15]).

Recall that a subset Y of a vector space X is called p-convez, for 0 < p <1,
if pr+ (1 -p)y € Y for all z,y € Y. Remark that there exist convex sets consisting
only of support points. Namely, S. Rolewicz [18] constructed a closed convex set in a
nonseparable Hilbert space X, not contained in any closed hyperplane in X, such that
intY = @ and sptY = Y. A similar example is performed in [11] for Banach spaces
containing uncountable minimal systems.

The present note is concerned with the investigation of the converse problem: In
what conditions on the space X and on the set Y the total supportability of the set Y
guarantees its convexity ? In the following theorem we list some known results in this

direction.

Theorem 1.2. Let X be areal t.v.s. and Y a closed subset of X with nonvoid interior.
Then the implication ”Y 1is totally supported = Y 1is convex ” is valid whenever one of
the following (again not independent) conditions holds:

(a) X is the Euclidean space R™ ( see [4] for Y bounded and [13] in general).

(b) X ts a prehilbertian space ( see [13]).

(c) X 1is a general topological vector space (see [20], Th.3)

The proofs given in [5] and [20] are only sketched, so that we shall present in
Section 2 detailed proofs, preparing the proofs of some more general results given in
Section 3, namely the cases when the support points are only dense in the boundary
of Y or when the topology of X is not a vector toplogy, but merely a vectorial group
topology ( see[14]).

Infinite dimensional spaces may contain convex closed sets which are not totally
supported (a fortiori they must have empty interior). Such a set is ¥ = {z € L*[0,1] :
|z(t)| < 1,a.e.t € [0,1]} in the Hilbert space L2[0,1] (see [13, pp. 531-532]). Moreover
in [10, pp. 97-98], it is constructed a precompact closed convex set Y in an incomplete
inner product space with sptY = @, and in [3, Corollary 2] it is proved that every
normed space of countable algebraic dimension contains such a set. In the last quoted
work it is stated also the conjecture: A real normed space is incomplete if and only if
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it contains a bounded closed convex set Y with sptY = @. This conjecture is false for
non-normable t.v.8. : there exist metrizable complete locally convex spaces containing
bounded closed convex sets having no support points (see [16]). Other supportless convex
sets in separable normed spaces are constructed in [8, 9].

In Banach spaces the situation radically improves, namely, in [13, Theorem 14]
and, subsequently in [2, Theorem 1], it is proved that any closed convex set Y of a real
Hilbert space, or of a real Banach space, respectively, satisfies sptY = bdY. A subset Y
of a t.v.s. is called densely supported provided sptY = bdY. In Section 3 we shall prove

that every densely supported closed set with nonvoid interior is convex.

2. Convexity of totally suppofted sets

We start by a lemma.

Lemma 2.1. Let X be a t.v.s. over the field K of real or complez numbers. If =* :
X = K i3 a non-null continuous linear functional and Y a nonvoid open convex subset

of X then the set z*(Y) is open in K

ProofLet Ao € z*(Y) and yo € Y be such that A\g = z*(yo). Since z* # 0,
there exists z9 € X with z*(zp) = 1. As Ozp = 0 and Y — yo is a neighborhood of
0 € X, there exists a number r > 0 such that

Dyzo CY —yo (21)
where D, = {A € K: |\ <r}. If A € D, then, by (2.1), Azo €Y —yo and
do + A = z*(yo) + Az*(20) = 2" (v0) + Azo) € 2*(Y)
showing that Ao + D, C z*(Y).0
Lemma 2.2. If Y is a subset of a t.v.s. X then sptY C bdY.

Proof. Suppose there exists a point z¢ €sptY \bdY. It follows the existence of
a functional z* € X*, z* # 0, such that ¢ = z*(2p) = supz*(Y). Since zo €intY, by
Lemma 2.1, there exists € > 0 such that the interval [c—¢,c+¢] is contained in z*(Y),

yielding the contradiction
c=supz*(Y) >supz*(intY) > c+e.

Lemma is proved.O
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Lemma 2.3. Let Y be a closed subset of a real t.v.s. X and let z,y,z € Y. If there
ezist a,B,7 >0, a+ B +v =1, such that az + By + vz € sptY then z,y,z € sptY.

Proof. Supposing zp = az + By + vz € sptY it follows that there exists z* €
X*, z* #£0, such that

¢ =z"(z9) =supz*(Y).
implying
z*(z — z0) <0, z*(y — 20) <0, z*(z — 1p) < 0. (2.2)

(From the identity

(@ + 8 +7)2" (20) = az™(z) + Bz (y) + 72" (2)
one obtains

az*(z — zo) + Bz (y — To0) + 2" (2 — 7o) =0
which, by (2.2), gives

(z—20)=2*(y—20) =2"(2 —20) =0

showing that z,y,z € sptY.O

Theorem 2.4. Let X be arealt.v.s. and Y a closed subset of X with nonvoid interior.

If Y is totally supported then Y is conver.

Proof. Suppose the contrary, i.e. there exist z,y € Y and X €]0, 1] such that
u=Az+(1-ANy¢Y (2.3)
Let z € intY andlet f:[0,1] & X be defined by f(t) =tu+ (1 —1t)z,t €[0,1]. Put
to =sup{t € [0,1]: f(t) €Y} (2.4)
and let (¢,) C]0,1[ be such that f(¢,) € Y and ¢, — tp. It follows
o= f(to) = lim f(t.) €Y =Y

and 5 < 1 ( by the definition (2.3) of u).

Show now that zy ¢ intY. For if contrary, then as Y is a neighborhood of zo
it would exists € > 0 such that ¢y + € <1 and f(top +¢€) € Y, in contradiction to (2.4).
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Therefore
zg =tou + (1 — #9)z € bdY = sptY. (2.5)
By (2.5) and (2.3), zo can be written in the form
zg =to(Az + (1 — A)y) +(Q-to)z=az+By+yz (2.6)
where
a=Ay>0, B=(1-ANtg>0,andy=1~1%9>0.

Since a + B+ v = 1, by Lemma 2.3 one obtains z € sptY = bdY, in contradiction to
Z€intY. O ‘

Remark. The following examples show that the conditions ” Y is closed” and
”intY # @ are essential for the validity of Theorem 2.4.

The set

Y =[0,1] x [0,1]\ {(z1,0): 0 < z; < 1}

contained in X = R2, is totally supported without being convex.
Also, the set Y = {0,1} C R verifies sptY = bdY and is not convex.

3. The convexity of densely supported sets

Recall that a subset Y of a t.v.s. X is called densely supported if sptY = bdY.

Theorem 3.1. Let X be areal t.v.s. and Y a closed subset of X having nonvoid

interior. If Y 4s densely supported then Y is conves.

Proof. Supposing the contrary, there exist z,y € Y and \ €]0,1[ such that
u=A+(1-Ay¢Y. (3.1)

Let 2’ € intY and let V = intY. Then V is an open neghborhood of 2’ and,

reasoning like in the proof of Theorem 2.4, one can find a number ¢, €]0, 1[ such that
zH = to + (1 — tp)2' € bdY. (3.2)
It follows 2’ = p(zfy — tou), where = (1 —1p)~! > 1, so that
2 =u+ p(zy — u). (3.3)
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Since sptY is dense in bdY, z; € bdY and W = g{ + u~1(V - 2') is a neigh-
borhood of zj, there exists zo € W NsptY, implying

zo—xh € pN(V - 2'). (3.4)
Let
z=u+ p(zy —u) (3.5)
By (3.3),(3.4) and (3.2) we get
z2—2 =p(mo—x35) EV - 2,
showing that z € V = intY. By (3.5) and (3.2)
az + By + vz = zg € sptY

where

a=ANp-1)/p, B=QQ-N(p-1)/pandy=1/p.

Since a, 3,7 > 0 and a+p3+7y =1, by Lemma 2.3 one obtains z € sptY C bdY,

in contradiction with z € intY, O

Corollary 3.2. Let X be arealt.v.s. and Y a closed conver subset of X with nonvoid
interior. Then the following assertions are equivalent:

(a) Y is convez;

(b) Y is totally supported;

(c) Y is densely supported.

Proof. The implication (b) = (c) is obvious. The implication (c) = (a) is
contained in Theorem 3.1 and the implication (a) => (b) is contained in assertion (c) of
Theorem 1.1. O

Remarks

1.Archimedes (see [22]) defined the convexity of a set in R® as a totally supported
set, a definition which is in concordance with Corollary 3.2.

2. A careful examination of the proofs shows that Lemma 2.3 and Theorems 2.4
and 3.1 remain valid in the case when the topology of the vector space X is not a
vectorial topology. Namely, it is sufficient to suppose that

(i) the additien (z,y) — z + y is continuous from X x X to X, and
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-~

(i) for every fixed € X the multiplication by scalars (\,z) — Az is a contin-
uous function from R to X
(see [14] for properties of such spaces called topological vector groups).
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ON THE LEVEL SETS OF (I',Q2)-QUASICONVEX FUNCTIONS

NICOLAE POPOVICI

Dedicated to Professor Ioan Purdea at his 60" anniversary

Abstract. The aim of this paper is to show that the characteristic property of
the real-valued quasiconvex functions to have convex level sets can be naturally
extended in the class of (I, 2)-quasiconvex functions, introduced by us in [5],
which in particular contains the cone-quasiconvex vector-valued functions in
the sense of Dinh The Luc [3].

1. Preliminaries

Quasiconvex functions play an important role in scalar and vector optimization,
their characteristic property to have convex level sets being succesfully explored in order
to derive optimality conditions or to study some topological properties of the efficient
sets. Some fundamental properties concerning these topics can be found for instance in
(2] or [3].

Our study here is based on the concept of (I, ?)-quasiconvexity, introduced by
us in [5] in order to describe some common properties of different classes of generalized
quasiconvex functions in a unifying way.

For this aim we only need to endoved the domain of the (T, (2)-quasiconvex
functions with an abstract convexity induced by a set-valued mapping I, and to consider
a binary relation Q in the codomain. In the sequel we consider I' : E; x E; — 2F1 and
Q: E; — 2%2 where E; and E; are two arbitrary nonempty sets.

We recall that a subset X of E, is said to be I'-convez [5] iff

'z, z?) c X, Vz',2% € X.
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Obviously, the concept of I'-convexity permits an unifying treatement of those notions of |
generalized convexity in which the line segments determined by two points are replaced
by a continuous arc or by a discret subset of the domain.

On the other hand, when the codomain E, is not endoved with linear or topolog-
ical structure, we shall need to replace the preordering induced by a pointed convex cone
by an arbitrary binary relation 2. Throughout the paper, this relation will be identified
with the set-valued mapping Q : E; — 22 defined by Qy = {y' € B | (y,¥’) € 2}, Vy €
E,. We shall also associate to §2 the following relations: O~y = {y’ € E2 | y € Qy'} and
QY =E,\ (), Vy€ E,.

Given a nonempty subset Y of E, we denote by QY = U{Qy | y € Y} the first
order section of Y in the sense of J. Riguet [7] and by [Q2]Y = N{Qy : y € Y'} the second
order section of Y, which is nowadays known as the polar set of Y.

By means of composite polarities, S. Dolecki and Ch. Malivert [1] have intro-

duced the cyrtological closure operator clg- : 262 — 2F2 defined by
co-Y =[Q]Q7]Y, VY C E,.
As we shall see, the concepts of I'-convexity and cyrtological closure are the key

tools that we need to derive the main results of this work.

2. The characterization of the (T',2)-quasiconvexity by means of dominant

level sets

Let us now recall [5] the definition of the (I', 2)-quasiconvex functions:

Definition 2.1. Let X C E; be a nonempty and I'-convex set. A function f: X — E,

is said to be (T, 2)-quasiconvez on X if
f(T(z!,2?)) C clg-{f(a"), f(z?)}, V 2*,2% € X.

This definition calls for a few comments:

i) It is easy to see that f is (T, 2)-quasiconvez on X if and only if
Vz',a’ € X, Vy € B, f({z',2%}) cQy = f(T(z',2%) C Qy. (1)

ii) The terminology used in the above definition is relative; in fact, this definition
concerns quasiconvexity as well as quasiconcavity, since we can interchange 2 with Q~.
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For instance, if E; and E; are linear spaces and C is a convex cone in E,, then
for I’ and Q defined by

I'(z!,2%) = co{z!,2?} = {tz' + (1 - £)2®| t € [0,1]}, V z!,2% € E;

and

Qy=y-C,Vyek,
the (T',2)-quasiconvexity coincides with the cone-quasiconvexity in the sense of Dinh
The Luc (3, 4].

It is known that if the euclidean space E; = R"™ is partially ordered by the
positive cone C = R} then a vector-valued function f = (f1,...,fn) : X = R* is
(T, Q)-quasiconvex if and only if their scalar components fi,..., f, are quasiconvex in
the usual sense. Obviously, if we replace C by —C then f is (T, Q)-quasiconvex if and

only if fi,..., fn are quasiconcave in the usual sense.

Definition 2.2. Let f : X — E; be a function defined on a nonempty subset X of E;.
Given y € Ey, the set

Li(y) ={z € X | f(=) € Uy} @

is called the level set of f corresponding to the level y.

The (T, Q)-quasiconvexity can be characterized by means of these level sets as

follows:

Proposition 2.1. If the function f : X = E, is defined on a nonempty and I'-convez
set X C Ey, then the following assertions are equivalent:
$) f is (T, N)-quasiconvez on X;

i) L¢(y) is a T-convez set, Vy € E,.

Proof. The implication i) = ii) follows directly from the above definitions.

To prove the converse implication, let z!,z2 € X and y € E2 be such that
f({a',2?}) C Qy. Then ', 22 € L¢(y) and by ii) we obtain I'(z',22) C Ly(y), ie.
f(T(z*,2?)) C Qy. Using the relation (1), we conclude that f is (T, {2)-quasiconvex on
X. O

In what follows we shall refine this result by taking account of the following
categories of level sets:
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Definition 2.3. Let f : X — E, be a function defined on a nonempty subset X of E;
and let y € E;. We shall say that Lg(y) given by (2) is:

i) a dominant level set, if y € Qf(X);

ii) an attainable level set, if y € f(X).

Obviously, if Q2 is reflexive then every attainable level set is a dominant one.

Remark 2.1. The above definition is motivated by the fact that real-valued quasiconvex
functions have some special properties which cannot be extended in the general case of
(T, Q)-quasiconvex functions without strong assumptions on their codomain. Indeed, a
real-valued function f : X — R is quasiconvex on a convex nonempty subset X of a
linear space if and only if all their attainable level sets are convex. As shown by Example

3.2 this property fails to be true even in the case of cone-quasiconvex vector functions.

The following result show that we can although characterize the (I', )-quasiconvexity

using only dominant level sets:

Corollary 2.1. Let X C E; be a nonempty and I'-convez set. A function f : X — E;

is (I', Q)-quasiconvez on X if and only if their dominant level sets are I'-convez.

Proof. Follows immediately from Proposition 2.1, because for any point y € E;\ Q™ f(X)
the corresponding level set L(y) is empty. O

3. The characterization of the (I',)-quasiconvexity by means of attainable

level sets

In order to obtain some characterizations of the (I', ?)-quasiconvex functions in

terms of attainable level sets, the following preliminary result will be usefull:

Lemma 3.1. Let f : X = E,, where X is a nonempty subset of Ey. If Q C Ey X Ey i3

transitive, then the set-valued mapping Ly : E; — 252 given by (2) is isotone, i.e.
Ls(y1) C Lg(y2), Y 41,92 € Ea, y1 € Qya.

Proof. Let yy,y2 € Eg such that y; € Qy, and let £ € Lg(y1). Then, by definition of Ly
we have f(z) € Qy; and therefore f(z) € Qy,, since 2 is transitive. O

Remark 3.1. The assumption on the transitivity of @ in Lemma 3.1 is essential. This
is illustrated by the following example:
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Example 3.1. Consider E; = E, = R?, T'(z!,22) = co{z!,2?}, Vz!,22 € R? and let
Q be given by Qy = y + C, Vy € R?, where C = R? \ (R}.)?. Obviously, C is a closed
non convex cone and therefore the induced relation € is reflexive but it is not transitive.

If f: R2 - R? is the identic function on R?, i.e. f(z) ==, V z € R?, it is easy

to see that the mapping Ly is given by
Liy) ={z€R |zeQy}=y+C, Vyec R

and it is not isotone. In fact, for y' = (0,1),y* = (1,0) and we have y' € Qy?, but
y" = (2,1) € Ly(y1) \ Ly (v2)-

Proposition 3.1. Let X be a nonempty and I'-convex subset of E; and f : X — Ep. If
) is a complete preordering in F,, i.e. (QU Q™ )(y) = Ep, YV y € E,, then the following
assertions are equivalent:

i) f is (T, Q)-quasiconvez on X ;

i) L¢(f(z)) i3 T-conver, V = € X.

Proof. The implication i) = ii) is a simple consequence of Proposition 2.1.

To prove the converse implication, suppose that ii) is true and consider some
arbitrary points y € E, and z',2® € Ls(y). Since Q is a complete relation we can
suppose, without loss of generality, that f(z!) € Qf(x2). Moreover, Q being reflexive, we
have z',22 € Ly (f(z?)) and therefore I'(z',2?) C Ly (f(2?)) according to assumption
ii).

On the other hand, we have f(z2) € Qy. Since Q is transitive, by Lemma 3.1 we
can conclude that L¢(f(z*)) C L¢(y) and consequently I'(z!, 2%) C L¢(y). The assertion

i) follows than again from Proposition 2.1. a

Remark 3.2. Without the assumption on the completeness of €2, the implication ii) =
i) in Proposition 3.1 fails to be true even in the class of cone-quasiconvex vector-valued

functions, as shown by the following example:

Example 3.2. Consider E; = R, E; = R2, I'(z',2?) = co{sz!,2?}, Vz!,z? € R and
Oy =y —C, Vy € R?, where C = R%. Remark that in this case Q is reflexive and
transitive, but it is not complete in R2.
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It is easy to see that the function f : X = [0,1] & R?, defined by
(z,1-2) if =z€]0,1]\{1/2}
f@)=< (1/2,1/2) if z=0

(0,1) if z=1/2.
satisfies the condition ii) in Proposition 3.1, since for any point = € X, L¢(f(z)) = {z}
is a convex set, but f is not (T, )-quasiconvex on X, because for y = (3/4,3/4), the
level set Lg(y) = {0} U [1/4,3/4]\ {1/2} is not convex.

Theorem 3.1. Let X C E; be a nonempty and I'-convex set and f : X — Ep. If Q isa
complete preordering in E, then the following assertions are equivalent:

3) f is (T, Q)-quasiconvez on X ;

#i) The set-valued mapping Ly o f : X — 2% is (T', D)-quasiconvez on X.

Proof. We first notice that statement ii) can be rewritten as follows:
Li(f(C(@,2Y) C Ly(f({z",a*}), Va',2? € X. 3
Indeed, by (1) the function Ly o f is (T', D)-quasiconvex on X if and only if
Val, 22 € X, VY €2X Y D L;(f({2*,2?})) = Y D Ly(f(T(z,2?))).

Suppose now that f is (T, )-quasiconvex on X and consider two arbitrary points
z',2% € X. By the completeness of £} we can suppose, without loss of generality, that
f(z') € Qf(z®) i.e. ' € Ly(f(2?)). On the other hand, since (2 is reflexive, we have also
z? € f(T(2!,2?)) € Qf(2?) and hence I'(z!,2?) C Ls(f(2?)) i.e. F(T(z*,2?)) C Qf(2?).

Using the transitivity of Q2 we obtain

Ly (f(D(z',2%)) € Ly(f(z*)) € Ls(f({=",5°})

and hence condition (3) is fulfilled.
Conversely, if Ly o f is (', D)-quasiconvex on X then using Lemma 3.1 we con-

clude that for any points y € E; and z',22 € L#(y) we have

Lf(f(zi)) c Lf(y)a Vie {112}‘

On the other hand, the reflexivity of 2 implies that I'(z!, %) C Ly (f(T'(z', z?)))
and using the assumption (3) we finally infer that I'(z*,22) C Ls(y), V y € E,, which

means that f is (T', Q)-quasiconvex on X. O
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Remark 3.3. Even if the implication ii) = i) in Theorem 3.1 is valid without the com-
pleteness assumption on (2, this assumption cannot be dropped for the converse implica-

tion, as we can see from the following example:

Example 3.3. Consider E; = R, X = [0,1] and let T' and € be given by
I(z',2?) = [min{z', 2*}, max{z!,2%}], Vz',2? € Rand Qy=y - R}, vy € B>

It is easy to see that the function f : X — R? defined by f(z) = (z,1-1z), Vz €

X is (T, Q)-quasiconvex on X because f has I'-convex level sets:

{z} if f(z) ey

L =
1) 0 if f(z)€ Q.

On the other hand, we can see that the function Ly o f is not (', D)-quasiconvex on X

because for z! = 0 and 22 = 1 we have

Li(f(T(=',2%)) = Ls(£([0,1])) = [0,1] ¢ Ls(f({=',2*})) = L;({0,1}) = {0, 1}.
References

[1] Dolecki, S., Malivert, C., Stability of Efficient Sets: Continuity of Mobile Polarities, Nonlin-
ear Analysis, Theory, Methods & Appl., 12 (1988) 12, 1461-1486.

[2] Jahn, J., Mathematical Vector Optimization in Partially Ordered Linear Spaces, Peter Lang,
Frankfurt,1986.

[3] Luc, D.T., Theory of vector optimization, Lecture Notes in Econ. and Math. Systems, vol.
319, Springer-Verlag, Berlin, 1989.

[4] Luc, D.T., On Three Concepts of Quasiconvexity in Vector Optimization, Acta Mathematica
Vietnamica, 15 (1990) 1, 3-9.

[5] Popovici, N., Contribution d l’optimisation vectorielle, Thése de doctorat, Univ. de Limoges,
1995.

[6] Popovici, N., Sur une notion abstraite de quasiconvexité, Rev. d’Anal. Numér. et de Théorie
de I’Approz., 26 (1997) 1-2, 191-196.

[7] Riguet, J., Relations binaires, fermetures, correspondances de Galois, Bulletin de la Société
Mathématique de France 76 (1948), 114-155.

"BABES-BOLYAI” UNIVERSITY, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE,

3400 CLui-NAaPoCA, ROMANIA
E-mail address: popoCmath.ubbcluj.ro

77



STUDIA UNIV. “BABES--BOLYAI”, MATHEMATICA, Volume XLIII, Number 1, March 1998

DATA DEPENDENCE OF THE FIXED POINTS SET OF WEAKLY
PICARD OPERATORS

IOAN A. RUS AND SORIN MURESAN
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Abstract. Data dependence in case of the weakly Picard operators is given.

1. Introduction.

Let X be a nonempty set and f : X = X an operator. We will use the notation

F; ={z € X | f(z) = z}, the fixed points set of f;

Of (z;n) = {z, f (=), fz(x)’ S fn(w)}
04 (z) = {z, f(z), f*(z), ..., f*(2), ...}, the orbit of z € X;

P(X)={ACX|A#0}.
For a metric space (X,d) we have
0(A) = sup{d(a,b) | a,b € A}, the diameter of A € P(X);
P, i(X) ={A € P(X)| A is bounded and closed };
H:Pyo(X)xPya(X)— Ry, H(A,B) = ma.x(s‘}g’)4 gglfa d(a, b),s;xe% ;IEIS d(a, b)),
the Hausdorff- Pompeiu distance on Py (X)) set.
H : Py(X) x Py(X) = Ry U {+oo} - the generalized
Hausdorff - Ponipeiu distance.
C(X)={f:X - X | f is continous operators }
Let ¢ : Ry = R4 be a function.

Definition 1. ¢ is a strict comparison function if ¢ satisfies the following:

i) g is continous;

1991 Mathematica Subject Classification. 47TH10; 48G.
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i) p is monotone increasing ;

i#t) " () =300, for allt > 0;

i) t — o(t) 3030;

Let (X,d) be a metric space and f : X — X an operator.

Definition 2. The operator f is called weakly Picard if the sequence (f™(z))n>1 con-
verges for all z € X to a fized point of f, which will be denote by f=(z).

For more details about the weakly Picard operators see [2], (3] [4].

Definition 3. The operator f is called a strict p— contraction if :
i) @ 13 a strict comparison function;
i) d(f(z), f(y)) < p(d(z,y)), for all 2,y € X.

About the strict ¢ - contractions we have the next

Theorem 1. Let (X,d) be a metric space, f : X — X a strict ¢ - contraction and
z € X. Then

i) d(fi(z), f1(z)) < p(6(0O¢(z;n))), for all i,j € {1,2,...,n} withi < j;

i) for each n € N ezists p € N, such that §(O¢(z;n)) = d(z, fP(z));

i11) 8(0¢(z;n)) < Ty(s,f(a)) for eachn €N,

where Ty(z,1(z)) = sup{t | t — p(t) < d(z, f(z))};

For more details and results see [1],[2].

The aim of this paper is to give an answer to the following

PROBLEM ”Let (X, d), be a metric space and f,g: X = X two weakly Picard

operators.If exists n > 0 such that d(f(z),g(z)) < n, for any z € X, estimate the

"distance’ between Fy and F,.”

2. Main results.

Lemma 2. Let (X,d) be a metric space and f,g : X = X two weakly Picard opera-
tors. Then H(Fy, F,) < max(supd(z, f*(z)), sup d(z,g*>(x)))-
zeF, zEFy
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Proof. We remark that f*°(z) € Fy and g*°(z) € F,. The proof follows from the defini-
tion of H."

Theorem 3. Let (X,d) be a complete metric space, ¢ : Ry = Ry a strict comparison
function and f,g: X = X two orbitaly continous operators. We suppose that:

i) d(f(2), *(2)) < ¢(d(=, f(2)), for any z € X and

d(g(z), 9*(z)) < p(d(z,g(x)), for any z € X;

i) there exists n > 0 such that d(f(z), g(z)) <, for any z € X.

Then:

a) f and g are weakly Picard operators;

b) H(Fy,Fy) < T, where 7, = sup{t | £ — p(t) < n}.

Proof. a) Let z € X and i, € N with ¢ < j.

We have d(f*(z), f7(z)) < p(d(f*~"(2), fi7}(z))) <

o S Az, f17(2)) < *(8(0f(x; 5 — 1)) < @' (Tagz.1(a)))-

Finaly, if we put ¢ =n, j = n + p, we obtain

d(f™(z), fMP(2)) < O™ (Ta(z,1(z)) —3 0.

Hence (f™(z))nen is a Cauchy sequence and f°°(z) will be the limit of it. Because
f is orbitaly continous then f>(z) € Fy.

In the inequality d(f™(z), f**?(z)) < ¢"™(Ta(z,1(2))) if we take ,;1320 we obtain
that d(f"(z), foo(x)) < ‘P”(Td(z,f(z)))a for anyneN.

Similarly, for any z € X, we have the convergence of (g"(z))nen and g*®°(z), the
limit of this sequence, has two properties:

goo(m) € Fy and d(gn(x)’ gco(z)) < (Pn(rd(z,g(z)))i foranyn€N.

b) From the estimation d(f"(z), f°(z)) < ¢™(Td(z,1(=))), Which is true for any
z€ X and n € N, we obtain for n = 0,that d(z, f*°(z)) < Ta(z,f(z)) (*)-

By a similar argument we have that d(z, §°(¢)) < T(z,g¢z)) (**)

From (*), (**) and ii) it follows

d(z, f*(z)) < 7y, for any z € F, and

d(z,9%°(z)) < Ty, for any z € Fy ,

we apply Lemma 2.1. }

As a consequence of the Theorem 2.2 we have
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Theorem 4. Let (X,d) be a complete metric space, ¢ : Ry — Ry a strict comparison
Junction and fp,,f : X — X,n € N orbitaly continous operators.

We suppose that:

i) d(f(2), 2(@)) < p(d(z, f(z)), for any = € X;

i) d(fa (), f2(2)) < @(d(z, fn(2)), for anyz € X andn €N

#5) (fr)nen converges uniformly to f.

Then

a) f and f,, n € N, are weakly Picard operators;

b) H(Fy,,Fy) =% 0;
Remark 1. ,If we take ¢(t) = at, with a € [0,1], from the Theorem 2.2 we have

Theorem 5. Let (X,d) be a complete metric space and f,g : X — X two orbitely
continous operators. We suppose that

i) d(f(2), £ (z)) < ad(z, f(2)), for any = € X and

d(g*(2), 9(2)) < ad(z,g(z)), for any z € X;

i) there exists 1) > 0 such that d(f(x), 9(z)) < 0, for any z € X.

Then H(Fy,Fy) < 1. ’

3. Applications.

Let K1, K2 € C([a,b] x [a,b] x R). We consider the following integral equations

with deviating argument:

z(t) = z(a) + }Kl (t,8,z(8))ds, t € [a,b] (1)

b
z(t) = z(a) + [Ka(t, 3,2(s))ds, t € [a, ] (2)
By the theorer:l 2.3 we have

Theorem 6. We suppose that:
i) K;(a,s,u) =0, for any z € [a,b], s,u € R; (i=1,2)
14) there exists n > 0 such that
| Ki(t,8,u) — Ka(t,8,u) |[<n, for allt,s € [a,b] and u € R;
iii) there exists L > 0 such that
| K@, 8,u) -~ K(t,8,v) |< L|u—v|, for all t,s € [a,b] and
wv€eER, (i=1,2)
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iw)Lb—a)<;
Let Sk, be the solutions set of the equations (i) in Cla,b] such that
z(a) € [a,0] (i=1,2).
Then
a) Sk, #9,i=1,2;
b) Hj;(Sk;,Sk,) < ﬂlb_;z%%”)ﬂ, where by H), we denote the Hausdorff -

Pompeiu metric with respect to Cebyshev norm on Cla, b].

Proof. We consider the operators f, g : Cla, b] = C|a, b] defined by
b
f(z)(t) = z(a) + [K1(t; 8,%(s))ds and

9(z)(t) = z(a) + }Kz(t, 8,x(s))ds.
It is clear that we have ’
1f(2) - (@) < L(b — a)llz — f(z)||, for all z € C[a, 3],
llg(x) — g* @)l < L(b - a)llz — g(z)||, for all z € C[a, b]
and
If(z) —g@I <B-a+(b—a)m,
we apply now the theorem 2.3. §
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ASYMPTOTYC FORMULAE CONCERNING ARITHMETICAL
FUNCTIONS DEFINED BY CROSS-CONVOLUTIONS , VIIL
DISTRIBUTION OF A-SEMI-k-FREE INTEGERS

LASzZLO TOTH

Dedicated to Professor Ioan Purdea at his 60" anniversary

Abstract. We define the A-semi-k-free integers as a common generalization
of the k-free integers (i.e. integers not divisible by the k-th power of any
prime) and of the semi-k-free integers (i.e. integers not divisible unitarily by
the k-th power of any prime) in terms of Narkiewicz’s regular A-convolutions.
We establish asymptotic formulae for the number of A-semi-k-free integers < z
with and without assuming the Riemann hypothesis if A is a cross-convolution,

investigated in our previous papers.

1. Introduction

Let A be a mapping from the set N of positive integers to the set of subsets of
N such that A(n) C D(n) for each n, D(n) denoting the set of all (positive) divisors of

n. The A-convolution of arithmetical functions f and g is given by

(1) (fragdm)= D f(d)g(n/d).
deA(n)

W.NARKIEWICZ [Nar63] defined an A-convolution to be regular if

() the set of arithmetical functions is a commutative ring with unity with respect
to ordinary addition and the A-convolution,

(B) the A-convolution of multiplicative functions is multiplicative,

() the function I, defined by I(n) = 1 for all n € N, has an inverse p4 with
respect to the A-convolution and u4(p*) € {—1,0} for every prime power p®.

1991 Mathematics Subject Classification. 11A25, 11N37.
Key words and phrases. Narkiewicz’s regular convolution, k-free integers, semi-k-free integers, Mdbius func-

tion, Riemann hypothesis, asymptotic formula.
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For example, the Dirichlet convolution D, where D(n) = {d € N : d|n}, and the
unitary convolution U, where U(n) = {d € N : d||n} = {d € N : d|n,(d,n/d) = 1}, are
regular.

It can be proved, see [Nar63], tha.f, an A-convolution is regular if and only if

(i) A(mn) = {de : d € A(m),e € A(n)} for every m,n € N, (m,n) =1,

(ii) for every prime power p® there exists a divisor ¢ = t4(p%) of a, called the type
of p* with respect to A, such that A(p®) = {1,p%,p*, ...,p%} for every i € {0,1,...,a/t}.

The elements of the set A(n) are called the A-divisors of n. For other properties
of regular convolutions see also P. J. MCCARTHY [McC86] and V. SITA RAMAIAH
[Sit78].

We say that A is a cross-convolution if for every prime p we have either £ 4 (p*) =
1, ie. A(p®) = {1,p,p%...,p*} = D(p®) for every a € N or ta(p?) = a, i.e. A(p®) =
{1,p*} = U(p®) for every a € N. Let P4 = P and Q4 = Q be the sets of the primes of
the first and second kind of above, respectively, where PUQ = P is the set of all primes.
For P =P and @ = @ we have the Dirichlet convolution D and for P=@% and Q =P we
obtain the unitary convolution U.

Furthermore, let (P) and (Q) denote the multiplicative semigroups generated by
{1} U P and {1} U Q, respectively. Every n € N can be written miqﬁely in the form
n = npng, where np € (P),nqg € (Q).

If A is a cross-convolution, then
@) A(n) = {d€ N: dn, (d,n/d) € (P)}
and (1) can be written in the form

3) (frag)n)= Y  f(dg(n/d).

din
(dn/d)e(P)

Asymptotic properties of arithmetical functions defined by cross-convolutions
were investigated by us in [T97-i], [T-ii], [T-iii], [T-vi].

In this paper we define the A-semi-k-free integers as a common generalization
of the k-free integers and of the semi-k-free integers (i.e. integers not divisible by the
k-th power of any prime and not divisible unitarily by the k-th power of any prime,
respectively) in terms of regular A-convolutions.
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In case of a cross-convolution A we establish an asymptotic formula for the
number of A-semi-k-free integers < z (Theorem 4), in fact we deduce a slightly more
general result concerning A-semi-k-S-free integers (Theorem 3), defined with the aid of an
arbitrary subset S of N, and we improve the order of the error term given by Theorem 4,
using some known estimates regarding the M&bius function, with and without assuming
the Riemann hypothesis.

Our results generalize and unify the corresponding known results concerning
k-free integers and semi-k-free integers, see [W63], [SurSi73a], [SurSi73b].

2. A-semi-k-free integers

Let A be a regular convolution and let k € N,k > 2. We say that n € N is A-
semi-k-free if there exists no prime p such that p* € A(n). The integer 1 is A-semi-k-free
for every A and for every k.

Let the canonical prime power factorization of n € Nyn > 1 be

4) n = pi'p3®..p%".

The integer n > 1 is D-semi-k-free if it is k-free, i.e. a; < k for every i €
{1,2,...,7}. Furthermore, n > 1 is U-semi-k-free if it is semi-k-free, i.e. a; # k for every
i € {1,2,...,r}, this concept was introduced by D. SURYANARAYANA [Sur71].

From (i) and (ii) it follows that n > 1 is A-semi-k-free if ¢; # k,2t; # k, ..., 8it; =
a; # k for every i € {1,2,...,7}, where t; = t4(p}*).

Let ga,x, 9D,k = qx and gy = g5 denote the characteristic functions of the sets

of A-semi-k-free integers, k-free integers and semi-k-free integers, respectively.

Remark 1. If A is a cross-convolution, then gax(n) = gr(np)gi(ng) for every n € N.
Hence if A is a cross-convolution, then n is A-semi-k-free if and only if np is k-free and

nqQ is semi-k-free.
Theorem 1. If A is a cross-convolution and k € N,k > 2, then

(5) )= Y. wpd= Y. uld)
d € A(n) d*e=n
(d,c)E(P )
holds for every n € N, where s i3 the Mobius function.
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Proof. Taking into account the multiplicativity it is sufficient to prove (5) for n = p?, a

prime power. Let F(n) = Y ¢ A(n) p(d). If pe P, then

1) =1,if k
Fy= 3w = MV =hEeS = () = Gas ().
d*|p= u(1) +plp) =0,ifa >k

Ifp €@, then

p(l)=1,ifa#k . .
Fn)= Y pd) = =g (") = qax(p").
d*|lpe p(1) + plp) =0,ifa=k
Hence F(n) = ga,x(n) for every n € N. Observe that, using (2), d* € A(n) if and only if
d*e =n and (d,e) € (P), which completes the proof. o

If S is an arbitrary subset of N, we say that n € N is semi-k-S-free if n =1 or
n > 1 and no exponent in (4) is of the form kb, where b € S.

Furthermore, in case of a cross-convolution A we say that n € N is A-semi-k — S-
free if np is k-free and ng is semi-k — S-free.

Let ga,x,s denote the characteristic function of the A-semi-k-S-free integers and

define the multiplicative function p4,s) by
-1, ifpePa=1lorpeQ,a€ S,

Kea,s) (@) =
0, otherwise,

for every prime power p°.

The proof of the following formula, is similar to the proof of Theorem 1.
Theorem 2. If A i3 a cross-convolution, k € Nk > 2 and S C N, then

(6) aarsm) = Y. pas@d= D, masd
d*€A(n) d*e=n
(d,e)e(P)

holds for every n € N.

Observe that for S = {1} we reobtain the A-semi-k-free integers and pu(4,{1y) = 1
for every A. For S = {1,2,...,,r} we obtain a direct generalization of the k-skew integers
of rank r, cf. E. CoHEN [Co61]. In case S = N we have the A — k-free integers, i.e.
integers with no k-th power A-divisors > 1, introduced by us in [T-vi] and pa,N) = #4-
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3. Asymptotic formulae

In what follows all the constants implied by the O-symbols are independent of
z and u.

For a cross-convolution A let

(>

Cp(s)= ) -1;=H 1--—)- s> 1.
) er

First we prove the following formula.
Theorem 3. If A is a cross-convolution, k € NNk > 2 and S C N, then
Y aaks(n) = aansz + 0@ "),

n<z

where

1
aaks = m‘g(l -(1- )Z p’w

a€S
Proof. Adopting the method of [Co64], using (6) and the estimate
e 3 1=20% | oper ), 0<e<t,
uQ
n<lz
(n,u)€(P)
where ¢ is Euler’s function and o} (u) denotes the sum of r-th powers of the unitary

divisors of u, cf. [T97-i], Lemma 7, we have

EqA,k,s(n)= Z Ba,s)(d) = E 14,s)(d) Z

n<z d*e=n<z d<¥z e<z/d*
(d.e)e(P) (e,d)e(P)
#(dQ)z .
= 3 wao@ (B2 0 ((%) 0@
3 nantd (4 w0 () o10)
pas)(@D9lda) ( )
=z ) — 4 y =
icys  dde <z E

B(a,s)(n)d(nq) Oz 0 ole(d) )
Z wng (d>z¢:/‘dk)+ ( d<2t:/5 &

Here the series of the main term is absolutely convergent, its general term is multiplicative

in n and applying Euler’s product formula its sum is given by

¢ (r)¢(p")
[T (1+ 5 2ea@d6000) _ py (14 S5480) 1 (143 200

peP i=1 pEP peEQ i=1
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- (-%)1I (1—(1——)53?,,,) e® I1 (l—(l-—)Z,,‘k)

peEP PeEQ (1 reQ a€ES
The first and the second O-terms are both O(z!/*), using the estimates

Y. nT"=0(""), r>1 and Y *E(") =0(z'*¢), 0<e<1/kk

n>z n<lz
O
Theorem 4. If A is a cross-convolution and k € N,k > 2, then |
®) > qar(n) = aaxz + O('F),
n<lz
where
9) AAE = (k) H(l + k+l)
Proof. Apply Theorem 3 for S = {1}. O

Corollary. If A is a cross-convolution, k € Nk > 2 and S C N, then the asymptotic
densities of the A-semi-k-S-free integers and of the A-semi-k-free integers are as ks and

aa x, respectively.

Remark 2. From this result we reobtain, among others, the asymptotic densities of the

k-skew integers of rank r, see [Co61] and of the A — k-free integers, see [T-vi].

Now we improve the order of the error term of formula (8) using the method of

[SurSi73b] based on the following estimates regarding the Mobius function.

Lemma 1. ([SurSiv73], Lemma 3.5 and Lemma 5.2) Let £ > 3,u € N and € > 0. Then

(1) My(z)= ) n(n)=0(c%, (0)z(z)),0
=t

where

(1) 8(z) = exp(~A(log z)*/*(log log z) ~1/%), 1

A being a positive constant.
If the Riemann hypothesis (R.H.) is true, then
(1) My=z)= ) pn) =002, 5 ()" Pw()),2
n<z

(ﬁu):l
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where
1) w(z) = exp(A(log z)(loglog ) 1), 3

A being a positive constant.

Lemma 2. If A i3 a cross-convolution and > 3, then

) Na@) = Y u(m 202D ") = O(zb(z))4

n<z

If the R.H. is true, then

(1) Na@) = Y w259 — 0(a e s
n<z
Proof. We have
(nq) E u(d)

din
de(Q)

cf. [T-iii], Lemma 4. Therefore

Na(@) = 3 n(n) 209 ("Q’ Y u(de) 2

n<z de=n<z

de(Q)

= Y wan@tD = 3 KD 5 - ¥ Eyera),

de<z d<z e<z/d d<z
(d,e)=1 dE(Q) (e,d)=1 de(Q)
de(Q)

Now using (10) with £ < 1 we get

Naw) = Y Eoe @565

d<z
dE(Q)
— 0@ S D52y = 0t~ 3 T Fyeg Ty
(z dz ) Z: 2 Cya

where 7(m) stands for the number of divisors of m.

Since z°6(z) is monotonic increasing,
yeo(Ey < zf
(5)765) < 25(a),
and using that 7(m) = O(m*®),e > 0 we obtain N4(z) = O(zd(z)).

If the R.H. is true, then using the estimate (12) instead of (10),
7(d)

Na@ = 3 E Do, oy @) (5 = 0@ 3 Tku(2)).

d<z - d<z
d€e(Q)
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Since w(z) is monotonic increasing, we obtain that N4(z) = O(z/?w(z)). O

Lemma 3. If A is a cross-convolution, £ > 3 and s > 1, then

(1) Z ’*‘(7:1)’4:7'(ZQ) — O(zf_fz_)'G
n>z

If the R.H. is true, then

#)- otir

Proof. Using (14) and (15), these results follow by partial summation, cf. [SurSi73b],
proof of Lemma, 2.5. a

We also need the following result, cf. [SurSi73b), eq. (2.3).

Lemma 4. Ife >0 and 0 < s < 1, then
a:e(n) . 1-8
1) D= =0E"")8
n<z
Theorem 5. If A is a cross-convolution, k € Nk > 2 and z > 3, then
(1) > aas(n) = aupz +0(z1/*5(z)), 9
n<z
where asx and 8(z) are given by (9) and (11), respectively.
If the R.H. is true, then
2) 3 qak(n) = anpz + O(@'/*w(z)),0

n<z

where w(z) is defined by (13).

Proof. From (5) we have
n<z d*e<z
(d,c)_G(P )
Let z=z'/* and 0 < p = p(z) < 1, where p(z) will be chosen suitably later. If d*e < z,
then both d > pz and e > p~* cannot simultaneously hold good, therefore

Yarm= Y pw@d+ Y wd- Y wd=S+5-S,

n<z d*e<z d*e<z d<pz
d<pz e<p* e<p*
(d,e)e(P) (d,e)e(P) (d,e)e(P)

say. We consider each of these sums separately.
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By (7) we have

=Y ¥ 1= 3w (52 4 or))

d<pz eSz/d" d<pz
(e,d)€(P)

Z p(d)o(dq) +O(Z )

T dkd.
d<pz d dQ d<pz

Z Hmbng) | o ( > ﬂ(n>¢("0)) +0(ps log(p2)

n"nq n>pz
= 04,k7 + O(2d(p2)(p2)' %) + O(pzlog(p2))
= a2 +0(p' *25(p2)) + O(pzlog 2)),

by (16) and by the well-known estimate }_,_ ., 7(n) = O(zlogz). From (10) we obtain

=3, Y wd=Y D wd= Yy My(¥z/e)

e<p~* 4< ¥z /e e<p* g< ¥/zfe e<p~*
(de)e(P) (deq)=1
= 3 0(0tasele) D82
e<p~k
= Y 0(ct @S H(E) ).
e<p—k

Since &(x) is monotonic decreasing and pz < (£)'/*, we have §((Z)'/*) < 6(pz). There-

fore,

e<p—k

S = ( ké(pz) ) _lf'/i(e)) = O(p'*28(p2)),

from (18).

Ss= > Y, wd= >, Y. wd) =) Mq(p2)

“e<p—* d<pz e<p—* d<pz e<p~k
(d0)e(P) (dyeq)=1

= Y O(c%14.(q)pzd(pz)) = O(pzd(pz) Y, o*1,.(e)) = O(p' ~*26(p2)),

e<p—* e<p—k

using (10) and (18). Therefore
Z gax(n) = aaxz + 0(p' *28(pz)) + O(pzlog 2).
n<z
Choosing
p = plz) = (5(z"/)V/¥,
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and following the proof of [SurSi73b], Theorem 3.1, see also [SurSiv73], we get formula
(19).

If the R.H. is true, then applying (12) and (17) instead of (10) and (16), writing
z'?w(z) = z(z~/?w(z)), where z='/2w(z) is monotonic decreasing, and using the above

arguments with (z) replaced by z1/2w(z) we obtain

Z gak(n) = aarz + O(p' ~*2(p2) " *w(pz)) + O(pzlog z).

n<z
Choosing p = 271/ (3+1) < 1 we have p!/2-%31/2 = pz = z2/(2k+1)  Gince w(x) is
monotonic increasing, we get w(pz) < w(z) < w(z). We also have logz = O(w(z)), and
obtain the estimate (20). a

For A = D, i.e. for k-free integers and for A = U, i.e. for semi-k-free integers
the result of Theorem 5 is due to A.WALFISzZ [W63], Satz 1, p. 192 and to D. SURYA-
NARAYANA and R. SITa RAMA CHANDRA RAO [SurSi73a), Corollary 3.2.1 (n = 1),
[SurSi73b], Theorems 3.1 and 3.2.
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STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume XLIII, Number 1, March 1998

OTHER CHARACTERIZATIONS OF THE ABELIAN GROUPS WITH
THE DIRECT SUMMAND INTERSECTION PROPERTY

DUMITRU VALCAN

Dedicated to Professor Ioan Purdea at his 60** anniversary

Abstract. This work gives a series of characterizations, others than the previ-
ously known ones of the abelian groups with the direct summand intersection
property, for short D.S.I.P., that is of those groups in which the intersection of
any two direct summand is a direct summand as well. All through this paper
by group we mean abelian group in additive notation.

1. The General Case

Definition. We say that a group A has the small direct summand intersec-
tion property (for short S.D.S.LP.) if the intersection of any family of direct summands
of A is again a direct summand in A.

Obviously, if a group has S.D.S.L.P., it also has D.S.L.P.. The converse is generally
false.

Let A be a group and Sd(A4) = {X < A]X is a direct summand in A}. If A
has S.D.S.I.P., then for any T, S € Sd(A4), TN S € Sd(A) and according to [16,1.4.47.],
Sd(A) is a complete lattice.

Definition. A subgroup G of group A is called absolute direct summand (of
A), if for any subgroup H < A, H — G-highin A, A=G o H.

The absolute direct summands have been studied by Fuchs in [7]; there he demon-
strated the following theorem:

Theorem 1.1. A subgroup B of A is an absolute direct summand, in A, if and
only if: B is divisible or A/B is a torsion group, whose p-component is annihilated by

p*, whenever B/pB contains an element of order p*.

1991 Mathematica Subject Classification. 20K25.
Key words and phrases. abelian groups, direct
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Let Sda(A) = {X < A]X is an absolute direct summand in A} be the set of
absolute direct summands of A. Now we proof the following:

Theorem 1.2. If the group A has D.S.LP., then for any T, S € Sda(A), TNS €
Sda(A).

Proof. We are going to show that, together with 7' and S and T'N S satisfies
(1.1.) as well. Let by A=T T’ =S & S’". According to the hypothesis T'N S is direct
summand in §,s0 S=TnNS® S".

Case 1. If T or S are divisible, then, according to [6,20.(E).], TN S is divisible
and TN S € Sda(A).

Case 2. If T and S are not divisible groups, then, according to (1.1.), A/T and
A/S are torsion groups. So for any a € A, there is a n > 0 so that na € T and there
is am > 0 so that ma € S. Then [m,n]a € T NS ([m,n] being the smallest common
multiple of m and n). So A/(T' N S) is a torsion group. Let A/TNS = @(A/T NS,

be, the direct decomposition of A/(T' N S) in its own p-subgroups, accordipng to [6,8.4.].
We suppose that there is a z € T'N S so that p*z € p(SNT) C pSNpT. So, there is
z € S so that p*z € pS and = € T so that p*z € pT. Now from (1.1.) it follows that
p*(A/S), = S and p*(A/T), =T. Then p¥(A/TNS), = TNS too. So T'NS € Sda(A).

Now we are going to present some other two necessary and sufficient conditions
for a subgroup B of A to be a direct summand in A, if A has certain properties.

Theorem 1.3. Let A be a group of finite rank, with property that the neat
subgroups of A coincide with its direct summands. Then the following statements are
equivalent for a subgroup B of group A:

(a) B is a direct summand in A;

(b) for any prime number p, rp(A) = rp(B) + rp(A/B)i;

(c) there is a subgroup C < A, C — B-high in A so that for any prime number
p, p(A) C p(B) +C.

Proof. (a) = (b). If B is a direct summand in A, then A = B®A/B andr(A) =
r(B) +r(A/B) (see [5,2.2.5.]). Then: ro(A)+Zr,,(A) = ro(B) +er(B) +71o(A/B)+

er(A/B) But 7(A) = ro(B) + ro(4/B) ([5 2.2.(c)]). So er A) = er(B

er(A/B) For any prime number p, 7,(4) = r(4,) = T(S(Ap)) = dJmZ(,,) Alp], and
I3
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if A=B®C, then Alp] = B[p] ® C[p] (there is immediate checking). So dimz(,) A[p] =
dimp) Blp] + dim () (A/B) gl

(b) = (a). I rp(A) = rp(B) + r,(A/B), is valid for any prime number p, then
by summing up after all prime numbers and considering the relation: ro(A) = ro(B) +
ro(A/B) (which occurs for any subgroup B of A), we obtain: 7(A) = r(B) +r(A/B). So
A= B@® A/B, according to the hypothesis and to [6, p.132].

(a) = (c). If B is direct summand in A, there is C < A so that C is B-high in
A, A= B ®C, and for any prime number p, pA = pB + pC C pB +C.

(c) = (a). If (c) occurs, then, according to [5, consequence of 2.3.1.], A = B&C.

Applying (1.3.) to groups with D.S.I.P. we obtain:

Corollary 1.4. For an abelian group A, which satisfies (1).3), the following
statements are eguivalent:

(a) A has D.S.LP.;

(b) for any two direct summands T and S and for any p-prime number rp(A) =
(T NS)+1,(A/TNS);

(c) for any two direct summands T and S, there is a subgroup U < A, U-TNS-
high in A, so that for any p-prime number, pA Cp(TNS)+U.

Further on we are going to present two characterizations of the abelian groups
with D.S.I.P. using the groups of extensions.

Theorem 1.5. Being given an abelian group A, the following statements are
equivalent:

a) A has D.S.LP.;

b) for every decomposition A = B® C, and 3 : B = C an epimorphism, the
induced map B* : Ext(B,G) = Ezt(C,G) is monomorphism, for any group G.

Proof. (a) = (b) Being given A as a group with D.SIP., A=@Cand5: B =
C an epimorphism, then: (E) 0 — ker@ — B — C — 0 is an exact splitting sequence
(according to [10, Proposition 1.4.]) and represents an element from Ezt(C, ker). From

[6,51.3.] we have the following exact sequence:
0 — Hom(C,G) - Hom(B,G) - Hom(kerB,G) & Ezt(C,G) %

R Ezt(B,G) = Ext(kerp,G) — 0.
Since (E) is splitting, for any n : ker@ — G, E.(n) = nE € Ezt(C,G) is a splitting

extension according to [6, 51.1]. So ImE* = 0 = ker* and §* is a monomorphism.
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b) = a). We consider the two exact sequences above mentioned. If 8* is
monomorphism, then ker8* = 0 = ImE*, that is, for any n:kerB - G, nE isa
splitting extension. If G = ker8 and n = lgerg, we get (E) a splitting extension and
according to [10, Proposition 1.4.], A has D.S.L.P..

Theorem 1.6. (the dual of (1.5.)) Let A be an abelian group.

a) If A has D.S.I.P., then for any B,C € Sd(A) and o.: B =+ C a monomor-
phism, the induced map a. : Ext(G, B) - Ezt(G, C) is a monomorphism, for any group ‘
G.

b) If for any B < C € Sd(A) and a : B = C monomorphism, the induced map
a. : Ext(G, B) = Ext(G,C) is a monomorphism for any group G, then A has D.S.LP..

Proof. a) Being given B,C € Sd(A) and « : B - C a monomorphism then
a(B) ~ B is a direct summand in C and (E): 0 - B 3 C = C/B — 0 is an exact
splitting sequence. From [6,51.3.] we get the following exact sequence:

0 — Hom(G, B) - Hom(G,C) - Hom(G,C/B) -3

% Ext(G,B) % Ext(G,C) - Ext(G,C/B) — 0.
If n : G = C/B is some homomorphism then En = E.(n) € Ezt(G,B) is a splitting
extension, according to [6, 51.2]. So ImE, = kera, =0and a. is a mofxomorphism. (It
can be noticed that this implication is always valid; the condition that A should have
D.S.I.P. hasn’t been used anywehere).

b) We consider the two exact sequences from point a). If a. is a monomorphism,
then kera. = 0 = ImE,. So, for any n: G = C/B, En is a splitting extension of B by
G. If G = C/B and 9 = 1¢;, (E) is a splitting extension, that is B is a direct summand
in C. Now, considering, H as another direct summand in A, noting B = HNC and
a: HNC — C the inclusion map, we find that H N C € Sd(A), that is A has D.S.L.P..

We close this paragraph with the following result:

Theorem 1.7. The group A has D.S.LP., if and only if Tor(A,C) has D.S.LP.,
for any group C.

Proof. Abeing a group with D.S.L.P., and T'or(4,C) = Tor(T,C)®Tor(T',C) =
Tor(S,C)®Tor(S',C) two direct decompositions of T'or(A, C), then T'or(A, C) = Tor(T®
T,C) = Tor(S & S’,C), according to [6,62.(E).].(*) But Tor(A,C) ~ Tor(B,C) has
an exact place if A ~ B, as the map ¢ : (a,m,c) = (b,m,c) is an isomorphism be-
tween the generators of Tor(A,C) and those of T'or(B,C). This means that A &
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ToT =S®S and as A has DSIP, A TnSe®T"®T'. Then Tor(A,C) &
Tor(TNSeoT"'®T,C) = Tor(TN S,C) ®Tor(T",C) & Tor(T",C) (**). Since
Tor(T N S,C) = Tor(T,C) N Tor(S,C), from relation (**) it follows that Tor(A,C)
has D.S.L.P..

Viceversa, we suppose that T'or(4,C) has D.S.IP.andlet A=ToT' =S S’
be two direct decompositions of A. Then Tor(4,C) = Tor(T & T',C) = Tor(T,C) ®
Tor(T',C) = Tor(S® S',C) = Tor(S,C) ® Tor(S',C) = Tor(T,C) N Tor(S,C) &
Tor(U,C) = Tor(T'N S,C) ® Tor(U,C) = Tor((TNS)® U,C), where U < A. Then
A2TnNS®U, which means A has D.S.LP..

Since T'or(A, C) ~ Tor(C, A), we also have its symmetric of (1.7.).

Corollary 1.8. The group C has D.S.LP. if and only if Tor(A,C) has this
property, for any group A.

2. Torsion groups

The following proposition presents a series of elementary properties of p-

groups with D.S.LP..

Proposition 2.1. A being a p-group with D.S.L.P. the following statements
occur:

(a) A is a simply presented group;

(b) A has a nice system;

(c) A has a nice composition series;

(d) A has the projective property relative to all the balanced-exact sequence of
p-groups; !

(e) A is a direct summand of a direct sum of generalized Priifer groups;

(f) A is totally projective;

(g) A is fully transitive;

(h) For any increasing sequence of ordinals and symbols 00, u = (09, ...,0n,...),
A(u) and A/A(u) are totally projective.

Proof. If A is a p-group with A D.S.LP., either is indecomposable or A =
B, @ Cp, where B, = @ Z(p), Cp =0 or Cp = Z(p*™) (see [12, Theorem 2.]).

mp
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(a) Since Z(p™), n € N* and Z(p™) are simply presented groups, and a direct
sum of simply presented groups is again a simply presented group (see [6, §83.]), it follows
that A is a simply presented group.

(b) By [6,83.2.], every simply presented p-group has a nice system.

(c), (d), (e), (f). The statements of points (b), (c), (d), (e) and (f) are equivalent,
according to [6,81.9.] and [6,82.3.].

(g) Any totally projective p-group is fully transitive (see [11] or [6,81.4.]).

(h) Every totally projective p-group A has the enunciate property, according to |
[6,883.].

The following result makes another connection between the torsion p-groups with
D.S.L.P. and the torsion product.

Proposition 2.2. A being A a p-group with D.S.L.P., E a pure subgroup in 4
with Z(p™) C E, then Tor(E, G) is a balanced subgroup of T'or(A, G), for any group G.

Proof. According to the hypothesis and to [12, Theorem 2.], A is the direct sum
‘between a divisible group and a bounded group. Then any subgroup of A, that is for E
as well, is a nice subgroup, as the equality from [6,79.2.] is clearly demonstrated (see [6,
p.75]). If E is pure in A and Z(p*>®) C E, then pE = EnpA=En Z(p*™) = Z(p*™) and
pA+ E =Z(p>*)+ E =E. So (A/E)! =0 and according to [6,80.(G).], E is an isotype
in A. Then E becomes a balanced subgroup in A. According to [6,62.(F).,62.(D).], only
the case in which G is a p-group is of some interest (the other onés being quite ordinary).
From [6,63.2.], and from [6, p.75] we find that T'or(E, G) is a nice subgroup in T'or(4, G).
We demonstrate that T'or (E,G) is an izotype in Tor(A, G). The equality p°’Tor(E,G) =
Tor(E,G)Np°Tor(A, G) becomes, according to [6,64.2.}: Tor(p° E,p°G) = Tor(E,G)N
Tor(p® A, p°G), which is quite obvious as p° E = ENp°A. So Tor(E,G) is balanced in
Tor(A,G).

Further on we are going to determine the ring E(A) and the group AutA of the
endomorphisms, respectively of the automorphisms of a torsion group A, with D.S.LP..
For the beginning we have the following basic remark:

Remark 2.3. If A = @ A; is a direct decomposition of the group A in fully

i€l
invariant subgroups, the ring E(A) of its endomorphisms is the direct product of the
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rings of the endomorphisms of the groups A4;, 7 € I, that is:
E(4) = [[ E4).
icl
Proof. If f € EndA, then Vi € I, f(A;) C A;. Noting flA; "2 fi,i € I,
we obtain the map f — (fi)ies € HE(A,'), which is an isomorphism from E(A) to

i€l
11 E4).
i€l
Lemma 2.4. If A is a p-group with D.S.I.P., then:

E(A) = A,

or

EW =MD, (Z() @ (H zu») @ R, = (H Z(p)) ® (II zu») @ Ry,

where:
" -mp € N or my = 00;

- MY )xm (Z(p)) is the ring of the .square matrices of order m, with elements
from Z(p) and the columns of which have a finite number of non-null elements;

- R, =0 or R, = Q - the completion, in p-adic topology of Qp - the ring of
p-adic integers.

Proof. A being a p-group with D.S.I.P., if A is indecomposable, then there
isn € N* so that A = Z(p"). In this case E(A) = End(Z(p")) = Z(p") = A
(see [6,843]). If A is decomposable, then, according to [12, Theorem 2.], A = B, &
Cp, where B, = @Z(p), = 0or C, = Z(p™). So E(A) = Hom(A,A) =
Hom(B,,GBC,,,B,,EBC,,) = Hom/(Bp, B,,)@Hom(B,,O,)@Hmn(Cp,Bp)Q)Hom(C,,,O,) =
EndB,®Hom(B,, Cp)®EndC) (*) (according to [6,43.1., 43. 2 43.(A).(iii)]). The group

EndB, = End @ Z(p) | is isomorphic to the ring of the square matrices (a;;);
my

of the type m, X m,, where a;; € End(Z(p)) = Z(p), and for which the sum of ele-

,j=1 )mr

ments on each column exists in the finite topology of E(B,) (see [6,106.1.]). Noting the
M

myxm,(Z(P)) - ring of the square matrices of order m, X mp, having elements from

Z(p) with its columns having a finite number of non-null elements, we find that E(B,) =

MY, .. (Z(p)). Hom(B,,Cp) = 0 or Hom(B,,Cp) = Hom (GB Z(p), Z(p™)

Mp
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I] Hom(Z(p), Z(p™)) H Z(™)[p] = H Z(p) (see [6,§43]). Finally, R, = EndCp =0
or Rp = EndCp = End(Z (p°°)) =] accordmg to [6,§43]. Replacing in the relation (¥)

we obtain the first isomorphism of the statement.

The second isomorphism can be stressed out in the following way:

- EndB, = Hom(B,, B,) = Hom (@ Z(p), GBZ(P))

mp

mp, my

= [[ Hom (Z(p),@Z(p)) IIIT Hom(Z (), Z(p))“HEndZ(P)“HZ(P)

Theorem 2.5. If A is a torsion group with D.S.L.P., then.

E(4) = (H Ap)e( II MS,{ZXm,(Z(p»)e(p I1 H(ch»)ea( II R,) o

pEPy pEP\ Py €P\Po mp PEP\Po
pEPy PEP\Py \m3 pEP\P, mp PEP\Py
where:

i) P s the set of all prime numbers and Py C P;

i) Ap i3 an indecomposable p-group, for any p € Fy;

#i) M, (‘f )xm,(Z (p)) and R, have the same meaning like (2.4.), for any p € P\ F,.
Proof. According to [18,3.3.], a torsion group has D.S.I.{P., if and only if it takes

the form: A = @ Ap | @ @ A, |, where A, is an indecomposable p-group, for
pEF pPEP \ P

any p € Py, and for any p € P\ Ry, A, = B, ® Cp, with B, = (P Z(p), Cp = 0
mp

or Cp = Z(p™). Since the two direct summands of the decomposition of A are fully

invariant (because if A;, 7 € I, are fully invariant subgroups of group A, then Z A; has

ierl
the same property - see [6,§2.]), it follows that

E(A)NE(G?)A) (Q% A)

(1) o 1m0
pEP pEP\Pp
o (H A,,) ® ( II M,(,;?X,n’(Z(p))) @ ( II HZ(p)) o [[ Ro=
P 4

pEPy €P\Po €P\Po mp pEP\Py
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c_!(HA,)ea( u HZ(p))EB( 1-{ HZ(P))GB( II R,,),
PER PEP\Po m? PEP\Po mp PEP\Po

according to (2.4.).

Lemma 2.8. If A is a p-group with D.S.I.P., then there is a n, € N* so that
the group AutA 1is isomorphic to the multiplicative group U(Z(p™»), of the units of the
ring (Z(p™),+,-), or: .

AutA = U(M,(,f;)x,,,P (Z(p))) ® (H Z(p- 1)) o U(Rp) &

o (HZ(p—l)) ) (Hz(p- 1)) ® U(R,),

where:
- U(M,(,f’)xmp (Z(p))) is the multiplicative group of the units of the ring M,(,:?xm’ (Z(p));
-U(R,) =0 or U(Rp) = Z(p— 1) x Jp (J,, being the additive group of Q).
Proof. A being a p-group with D.S.I.P., if A is indecomposable, then there is
an € N*, such that A = Z(p™). In this case AutA = Aut(Z(p")) is isomorphic to the
group U(Z(p™)), presented in the statement, as an automorphism of A is an unit of E(4).
K A= B, ® Cp, with By, = @ Z(p), Cp = 0 or Cp = Z(p™), then an automorphism of

Mp
A is a inversable element of the direct product (of the direct sum) of the rings of (2.4.).

Considering that U(Z(p)) = Z(p—1) and U(Q;) = Z(p—1) x J, (according to [6,127.1.)),
we obtain the isomorphisms of the statement.

Similar to the proof of (2.5), but using (2.6.) the following result can be demon-
strated:

Theorem 2.7. If A i3 a torsion group with D.S.L.P., then:

AutA = ( II U(Z(p"r))) @ ( II U(M,(,me,(Z(p)))) ® ( II (H Z(p- 1))) ®

pEP EP\PQ EP\PO myp

e( II U(R,,)) o (H U(zoo"»») ® ( II (HZ(p—n)) ®
pEP\Py P.Epo pEP\Py \ m2

o1, (o)) (g o)

where the notations have the same meaning like in (2.6.).
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Remark 2.8. Since the groups By, p € P, are elementary p-groups of rank m,,
these are vectorial spaces over the field Z(p) (of characteristic p), and dim B, = m,,
and any automorphism of By, is a linear transformation of this space, it follows that

Mr(r{;? xm, (Z(P)) is isomorphic to the general linear group GL(my, p).

3. Torsion-free groups

In [18,4.1.] we have demonstrated that any torsion-free divisible group has
D.S.I.P.. Using this we are going to demonstrate a few interesting results.

Theorem 3.1. Let A be a torsion-free group with the property that for any
epimorphism 8 : B — C (B and C being arbitrary groups), the induced map (* :
Ezt(C, A) — Ext(B, A) is a monomorphism. Then A has D.S.LP..

Proof. If 3 : B — C is an epimorphism, then (E) 0 — kerf — B =
C — 0 is an exact sequence. From [6,51.3.], we obtain the following exact sequence:
0 —» Hom(C,A) — Hom(B,A) — Hom(kerB,A) B Ezt(C,A) %5 Ezt(B,A) -
Ext(ker8,A) — 0. Since 8* is monic, it follows that ImE* = 0,'that is for any
n : ker@ — A, E*(n) = nE is splitting. Now considering B = D - the divisible hull
of A, C = D/A, B = w4 - the canonic projection of D on D/A and 1 = 14, we find that
14E = E is a splitting extension, that is A is a direct summand in D. Then [6,20.(E).],
shows that A is divisible. Now [18,4.1.] completes the proof.

Remark 3.2. It can be easily demonstrate that the converse of (3.1.) occurs
for any divisible group.

Further on we are going to see what conditions the groups A and C have to
satisfy so that Hom(A,C) may have D.S.LP..

Proposition 3.3. 1) A and C being two abelian groups Hom(A4, C) has b.S.I.P.
in any of the following situations:

a) A is torsion-free and divisible;

b) C is torsion-free and divisible;

c) A is torsion-free indecomposable, C is divisible and A @ C has D.S.L.P,;

d) A is torsion-free with D.S.I.P. and C is torsion-free of rank 1;

e) A is torsion-free of rank 1 and C is torsion-free with D.S.L.P.;
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2) If A and C are torsion-free of rank 1, with ¢(A) < ¢(C), then for any index

set I, the group H = ) Hom(A,C) has D.S.LP.. In particular E = () EndA has

I I
D.S.I.P., for any torsion-free group A of rank 1.

Proof. 1) a) If A is torsion-free and divisible, then for any group C, Hom(4,C)
is torsion-free and divisible ([6,43.(G).]). Now we apply [18,4.1.].

b) If C is torsion-free and divif;ible, then for any group A, Hom(A, C) is torsion-
free and divisible ([6,43(D)]. We apply [18,4.1.] once again.

c) If A® C has D.S.LP., then, according to [10,3.4.1.], for any a € Hon(A4,C),
kera is a direct summand in A. Since A is indecomposable, any morphism a : A = C
is either null or injective. Let 0 # 8 € Hom(A,C) be a morphism for which nf8 = 0,
for a certain n € N*. Then for any a € A, nB(a) = B(na) = 0. So na =0, as B is
injective. Since A is torsion-free, it follows that n = 0 - contradiction with the choice
of n. So Hom(A,C) is torsion-free. Now we are going to demonstrate that Hom(4,C)
is divisible. Since the group C is divisible, it follows that for any a € Hom(A,C), with
any z € A and any n € N*, there is y € C so that a(z) = uy.

We define v : A = C by: for any = € A, v(z) = y, where y € C is the solution
of equation a(z) = ut. Then v € Hom(A,C) and a(z) = ny(z), for any z € A. So
Hom(A, C) is divisible. Now [18,4.1.] completes the proof.

d) Let A be a torsion-free group with D.S.L.P. and C torsion-free of rank 1. Then
A=D@ E, with D - divisible and E - reduced, completely decomposable homogeneous
of finite rank ([18,5.16.]). So there is an n € N so that E = @B, where B is reduced
torsion-free of rank 1. Then there will be Hom(A, C‘) =H om(DneaE, C)= Hom(D,C)®
Hom(E,C) = Hom(D,C)® | Hom | ) B,C | | = Hom(D,C) ® | @) Hom(B, C)),
according to [6.43.1., 43.2.]. The group 73’1Tom(D,C') has D.S.L.P., accorging to a). From
(6,85.4.] we find that Hom(B,C) is either 0 (if ¢(B) > ¢(C)) or a torsion-free group
of rank 1 and of the type ¢(C) : t(4), (if t(A) < t(C)). If Hom(B,C) = 0, then
Hom(A,C)as= Hom(D,C) and the proof is ready for this case. If Hom(B,C) # 0,
then @ Hom(B,C) is either torsion-free divisible or reduced homogeneous completely
decomgosable group of finite rank. In the former case Hom(A,C) will be torsion-free
divisible so it has D.S.I.P., and in the latter Hom(E, C) is reduced homogeneous com-
pletely decomposable group of finite rank having D.S.I.P., according to [12, Theorem 5.].
Now [18,5.12.] completes the proof.
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The proof from point €) will be similar to the one from point d).

2) If A and C are the same as in the statement, then Hom(4,C) is according
to [6,85.4.], torsion-free group of rank 1. Now we can .apply [10, Proposition 3.4.].

From (3.3.)b) and [6,§43.] (or 18,4.1.]) will have:

Corollary 3.4. For any abelian group A and anym € N*, the group Hom (A, @ Q

II [@ Q] has D.S.LP.. "

’I‘o(A) m
For any abelian group A, the group of characters of A is CarA = Hom(A,Q/Z).

From (3.3.a) we find that if A is torsion-free and divisible, then CarA has D.S.I.P.. The
next theorem will improve this result.

Theorem 3.5. If A is a torsion-free group with D.S.I.P., then CarA has the
same property.

Proof. Let A be a torsion-free group with D.S.LP.. According to [18,5.16.],
A= GBQ &) @C , where m,n € N or m = oo, and C is reduced, of rank 1.

m n
Then according to [6,43.1., 43.2.],

CarA = Hom(A,Q/Z) = Hom ( (@ Q) ® (QB c) P z(pw)) o
=~ Hom (@ Q.P Z(p°°)) ® Hom (@ c,Pp Z(p°°)) o
= [H I] Hom(@, Z(p°°»] ® [HH Hom(C, Z(pw))] :

According to [6,43.(G).], Hom(Q, Z(p®)) is a torsion-free and divisible group. But then

II H Hom(Q, Z(p™)) is divisible and torsion-free too (see [6,20.(E).]). Since the p-basic
n p

subgroup of C is null, according to [6,47.1]), Hom(C, Z(p®)) is divisible and torsion-free;

so the groups H H Hom(C, Z(p>)) and CarA have the same property. From [18,4.1.]

it follows that, "Ca,:A has D.S.LP.. r)

Now, we are going to study the ring E(A) = EndA and the group AutA, when
A is a torsion free group with D.S.I.P..

Theorem 3.6. If A is torsion-free with D.S.I.P., then:

o= (11(@4]) o (D[]« ( (@]
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where:

- m and n are natural numbers or m = oo;

- C 13 a reduced torsion-free group of rank 1.

Proof. Let A = D ® B be, with D = @Q (divisible) and B = @C’ - re-
duced completely decomposable homogeneous of ﬁ'r';ite rank (C being a reduce’t;l torsion-
free group of rank 1), torsion-free group with D.S.I.P., according to [10,3.3.]. Then
E(A) = Hom(A, A) = Hom(D& B, D& B) = Hom(D, D)® Hom(D, B)® Hom(B, D)®
Hom(B,B) = EndD@®Hom(B, D)®EndB, according to [6.43.1, 43.2., 43.(A).(iii).]. But

EndD = Hom 6? Q,QP Q) = ];[ Qm; Q] , (see[6,§43]), Hom(B, D) = Hom (Qn} C, ? Q) !
l;[Hom (CQP Q) & @ [61}") Q] , and EndC = Hom (@ C,GnBC) =P [q; EndC].

n

Making a demonstration analogous to (2.7.) we obtain:
Theorem 3.7. If A is a torsion-free group with D.S.L.P., then:

= ([@e])o (@ [@0])o (@ [@ne])

We’ll close this paragraph with some other two condition necessary for a torsion-
free group to have D.S.L.P..

Theorem 3.8. Let A be a torsion-free group. In any of the following cases, A
has D.S.IP..

(a) The group A has the following property: if A is an endomorphic image of a
group B, then B contains a direct summand isomorphic to A.

(b) There is a prime number p so that the p basic subgroup B of A, is an endo-
morphic image of A and A/B is divisible.

Proof. (a) If A is like in the statement, then, according to [11, Theorem 1.], A =
D& F, where D is divisible and F - free. The groups D and F from the decomposition of
Ahave D.S.IP., because of [18.4.1.] and respectively [18.2.2.]. Now [18, 5.12.] completes
the proof.

(b) Let A be a torsion-free group and B=By® B; @ --- ® B, ® ... its p-basic
subgroup (By = @®Z and B, = @Z(p"), n = 1,2,...). This leads to the conclusion
that B = @Z, so it is a free group. If f € EndA and f(A) = B, then A/kerf = B,
according to the first theorem of isomorphism. Since B is a free group, is an exactly
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splitting sequence: 0 = kerf - A — B — 0([6,144.]). So A~ kerfé B=DaoCo®B,
where D is the maximal divisible subgroup of A, and C is a reduced group. Since A/B
is a divisible group it follows that C = 0. So A = D @ B, with D divisible and C - free.

Now we are going to judge the same as at point a).

4. Mixed groups

In [18,4.4.] we have seen that a divisible group with D.S.LP. cannot be
mixed. Because of this, according to what was demonstrated in the former paragraphs
and in [6,§32,§106,§113, §127, §128], we find:

Theorem 4.1. Let A be a divisible group with D.S.LP.
(a) If A is a torsion group, then:

E(A) =1] ;.
and ’
Aut(4) = [z - 1) x J,).
(b) If A is a torsion-free group, :hen:
EA) =M, @=]] [GB Q] ,
and c

Aut(4) =2 UMT @) =[] [EB Q*] ~1I [@ (Z(z) xx z)] ,

To To T0o

where the notations are the ones presented above.

Using (2.4.)-(2.8.), (3.6.)-(3.7.), (4.1.) and [18.6.4.], the problem of the determi-
nation of EndA (AutA), for a splitting mixed group A with D.S.I.P., will be reduced to
the determination of Hom(B, Z(p")), where n € N* and B is a reduced torsion-free of
rank 1 direct summand of A.

The following results present sufficient conditions for T'(4) and A/T(A) (A being
a mixed group), to have D.S.L.P., by using the ring E(A).

Proposition 4.2. Let A be a mixed group with the property that any endo-
morphic image of A is a direct summand in A.

(a) If T(A) is bounded, then A, T'(A) and A/T(A) have D.S.I.P..

(b) If T'(A) is not bounded, it may have D.S.I.P., A/T(A) has (always) D.S.I.P,,
but A does not have this property anymore.
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Proof. Let A be a mixed group with the property presented in the statement.
From [15,3.1., 4.2., 5.3, we find that each p-component of A is an elementary or divisible
group, and A/T(A) is divisible.

(a) If T(A) is bounded, then each p-component is a elementary p-group and has
D.S.I.P., according to [18, 3.3.]. This means that T'(A) is an elementary group and has
D.S.LP. ([12, Lemma 1.]). The group A/T(A) has D.S.L.P., due to [18, 4.1.]. According to
the hypothesis A it is splitting and as T'(A4) and A/T(A) are, in this case, fully invariant,
we can apply [12, Lemma 1.].

(b) H T'(A) is not bounded, then it has a divisible direct summand. From [18,4.4.]
we find that T'(A) can have D.S.LP., if it takes the form €D Z(p*™). In this case A has

P

a mixed divisible direct summand and, according to [19, proposition 6.], doesn’t have
D.S.LP..

Proposition 4.3. Let A be a mixed group. In any of the following situations
T(A) and A/T(A) have D.S.LP.:

(a) The kernels and the images of the endomorphisms of 4 are pure subgroups
in A.

(b) The ring of the endomorphisms of A is regular.

Proof. (a) If A has the property given in the statement, according to [17,5.
Proposition 3.], T'(A) is elementary and A/T'(A) is divisible. Now [18,3.3.] and [18,4.1]
completes the proof.

(b) We suppose that E(A) is regular. If A is not reduced, then, according to
[6,112.7], A is splitting, T'(A) is elementary, and A/T'(A) is divisible. So A, T(A) and
A/T(A) has D.S.I.P.. If A is of torsion, then A = T(A) is an elementary group, so it
has D.S.I.P.. Finally, if A is reduced, then, again, T'(4) is elementary and A/T'(A) is
divisible.

Corollary 4.4. Any splitting group which satisfies the conditions from (4.3.)(a)
has D.S.I.P..

In the end we present other properties of the mixed groups with D.S.I.P..

Theorem 4.5. Let A be a splitting mized group, with D.S.I.P. with T = T(A)
and T' - the completion of T in the Z-adic topology. Then:

a) for any divisible group G, Ezt(G,T") is isomorphic to a direct summand of a
direct product of groups of the form A/p"A;
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b) T' is isomorphic to a direct summand of a direct product of groups of the form
Alp"A; ‘

¢) if C is a reduced torsion-free summand, of rank 1, from some decomposition
of A, and (Ext(Q/Z,C))o = 0, then the pure-injective hull of T' and the first subgroup
Ulm of the cotorsion hull of T, are isomorphic to (Ext(Q/Z,A)y (so (Ext(Q/Z,A), is
a reduced algebraically compact group).

Proof. a) Ig A is a splitting mixed group with D.S.L.P., according to [12, The-
orem 4], T* = 0. From [6,39.5] we find that: 0 — T — T = T/T — 0 is an exact
sequence. Now [6,53.7.] implies the exactness of the sequence: 0 = Hom(G, T) -
Hom(G,T/T) - Pext(G,T) - Pezt(G,T) = 0; the last equality occurs because 7" is
algebraically compact group ([6,39.1.]). This leads to Hom(G,T/T) = Pext(G,T) =
(Ezt(G,T))'. From [6,51.3] we get exactness of the sequence: 0 = Hom(G,T) -
Hom(G,T/T) -+ Ezt(G,T) — Ezt(G,T) — Ezt(G,T/T) = 0 (the last equality oc-
curs because of [6,39.5.]). So Ezt(G,T)/Hom(G,T/T) = Ext(G,T)/Pext(G,T) =
Ezt(G/T)/(Ezt(G,T))* = (Ezt(G,T))o = Ezt(G,T). Since A = T @ A/T, it fol-
lows that (Ezt(G, A))o = (Ezt(G, T))o @ (Ezt(G, A/T))o (see [6,37.5.]). So Ezt(G,T) is
a direct summand in (Ezt(G, A))o. According to [6,30.1.], there is a direct sum of cyclic
groups X = @(z;) and an epimorphism 5 : X — G so that kern is 5;. pure subgroup
in X, that isfeizlhere is the following pure-exact sequence: 0 — kern -+ X = G — 0.
From [6,57.1.] it follows that (Ezt(X,A))e = (Ext(G,A))o & (Ext(kern, A))o. But

(Ezt(X,A))y = (Ea:t (@(z.-),A)) = (HEmt((zg),A)) o (HA/p"A) ~

i€l i€l 0 0
11 A/9™A, according to [6,52.2,52.(D).,37.5.).
14
b) By [6,56.6.] it follows that T = (Ezt(Q/Z,T))o, which is, see [6.57.1], a

direct summand in (Ezt(Q/Z, A))o- Since Q/Z is divisible, the statement follows from
the proof of the point a) of this theorem.

c)Llet A=ToDo® @C be a splitting mixed group, with D.S.L.P., ac-
cording to [18,6.4.] (so T' is the gorsion part of A, D is a torsion-free divisible group,
and C is a torsion-free reduced group, of rank 1). From the hypothesis and from
[6,37.5.,56.6.,52.(B).] we find that (Ezt(Q/Z,A))o = (Ezt(Q/Z,T))o = T, which is a
reduced algebraically compact group (see [6,39.1]). If T' is the pure-injective hull of T,
from [6,41.9.] and [12, Theorem 4., it follows that 7' = T'.
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Corollary 4.8. Let A be a splitting mized group with D.S.LP. and B its reduced
homogeneous completely decomposable summand of finite rank, according to [18,6.4.], E
the divisible hull and G the pure-injective hull of B. If Hom(Q/Z, E/B) = Hom(Q/Z,G/B),
then (Ext(Q/Z, A))o is a reduced algebraically compact group.

Proof. From [6,52.3.] we find that Ezt(Q/Z,B) =& Hom(Q/Z,E/B). If G is
the pure-injective hull of B, then 0 -+ B - G - G/B — 0 is a pure-exact sequence.
According to [6,53.7.]: 0 = Hom(Q/Z,G) — Hom(Q/Z,G/B) — Pezt(Q/Z,B) —

- Pext(Q/Z,G) = 0 is an exact sequence; the two equalities are due to [6.43.(A).(iii).] and,
respectively to [6,41.5.]. This means that Pezt(Q/Z, B) = Hom(Q/Z,G/B). Then, ac-
cording to the hypothesis and to [6;563.3.], we get: (Ezt(Q/Z, B))o = Ext(Q/Z, B)/Pezt(Q/Z, B) :
Hom(Q/Z,E/B)/Hom(Q/Z,G/B) = 0. Now, (4.5.c) completes the proof.
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