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ON A FUNCTIONAL EQUATION

OOTAVIAN AGRATINI

Abatraet. This is a survey paper devoted to the following functional equation
Ephu(t -k)mu(z), z€R,
T
which is in connection with the notlon of wavelets. If v(k) vanirhes for k € Z
and if py m 0 for k < 0 and k > m + 1, then, for £ = n, the above equation
leacls us to the well-known general m'-orcer linear recurrence relation. For
v(r) = u(2r), £ € R, we present how this equation appears as a necensity
in the field of mathematics. We also indicate three properties which must
be fulfilled by the function and the sequence so that these equations admit
solutions. When the sequence (px)rgz has a compact support other properties
are revealed and the 'tcchnique to obtain solutions in deacribed.

1. Introduection

Starting from the general m*h-order linear recurrence relation

m
Y Putin-r =0, m22 po#0, pm #0, (1)
hm0
we consider a non-homogencous equation as follows
m
thu(m -k)=v(z), z€R. (2)
hm0

For 2 = n and v(Z) = {0} we reobtain (1).
What happens if the left side of relation (2) contains an infinity of terms? In

this paper we would like to study an equation of the following form

f: puti(z — k) =v(2), z€R. (3)

k=m—-00
This equation raises new challanges such as: in which space of functions must

we search the solutions and what kind of conditions must the sequence (py)rez fulfil
Received by the editors: June 12, 1097,
1991 AMathematice Subject Classification. 42C13, 11B37.
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OCTAVIAN AGRATINI

to be compatible. Is such a research artificial or already necessary in the mathematical
landscape? In the next section we will detail upon how such an equation can appear
and the importance it takes. For this, we take a trip in the world of wavelets which
represents a happy marriage between the results of the signal proccesing and the results
in multiresolution analysis. Further on, we will list and prove some. properties both of
the function and the sequence which are involved in (3). In the last section we will relate

the annonunced study under the assumption that the sequence has a finite support.

2. A sea of wavelets without water

We try to present the notion of wavelets. The standard references for this topic
are Chui [1], Daubechies [2], Meyer [4] and the literature cited here. If we denote hy
L2(R) the space of square integrable functions defined on R, we will refer to a function
f € La(R) as being a signal with finite energy given by its norm ||f]| = (f, f)!/* We
recall that the inner product of this space is defined by (f,¢) = / f(x)g(x)de. s
well-known [3] that the Fourier transform of a function f € L2(R) ingiven by

ry _ 1 —iéx g,
o) = = /R e~ f(x)dz

and the inverse Fourier transform is

=L [ e
16 = = /R Fleyde.

For a given function f we will use throughout the paper the notation f; () :=

2/2f(Px — k). For any j,k € Z we can write

| o
1@ - k)l = { [ - k)l’dz} = 23y

This implies |{f; x| = lIfIl, j. k € Z.

A multiresolntion analysis (MRA) of La(R) is defined as a sequence of closed
subspaces Vj, j € Z, of Ly(RR) which enjoy the following properties

---cvacvacvic...,

(i) | J V; is dense in Ly(R) and [} V; = {0},

Ji€Z jez
(ively & vi-+1) €V,

veEV; & v(2)€ Vi, j éZ,

{iv) a function ¢ € V, exists such as the set {@ox : k € Z} is a Riesz basis of
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In accordance with this definition, if the subspace V4 is generated by a single
function ¢ € La(R). that is Vo = closurep ,(ry(dox = k € Z). then all the subspaces V;

are also gen-rated by the same ¢ namely Vj = closure; gy (o 0 & € 7Z) o fact, the set
f iunctions {¢j 1 1 € Z} ia s Riesz basis of Vj. We will name ¢ “the scaling function”
o1 more suggestively "the father function”. It is said that ¢ generates an MRA {V}} of
La(R). Since ¢ € V5 C Vi and {1k : k € Z} is a Riesz basis of V), consequently there

exists a unique [*-sequence (71 )xez which describes ¢ that is ¢(r) = Z ey i(r). In

k€Z
other words, the father function satisfies the dilation equation
(o)
$(@)= Y mé(2z-k), reR. (4)
k=—-co

This also called a ”two-scale relation” of the function ¢. The sequence (pi)rez

is not zero. By integrating the relation (4) over R, we can write

a9

(s ¢} l V. .
/qu(.r)d.r = Z pk‘/l;:ﬁ(‘z.r - k)da = 2 L ,,’k~ " d()dy.

k=—co k= -
This leads us to the following identity
(o]
Z Pk = 2 ('r))
k=—o00
At this point, we introduce Wj, the orthogonal complement space of Vi V.

so that Vigy = V; @ V. We deduce that Wj, j € Z, are mutually orthogonal and

Assuming that integer translates of ¢ generate an orthogonal basis (o.n.b.) for
Lo, there exists a fur ction ¥ € Wy such as {yx : k € Z} forms an onh. for Wy, At
this moment the ”mother wavelet” is born. Like the father & generated an o.nb. for Vj,
the mother i generates an o.n.b. for the orthomn‘lp[maﬂts%‘ 4\[,.\4 @ 7Z. It results
that S(ﬁh: (j.k) € Z x Z} is an o.n.b. for L4(R)s Inﬁot ¥ can be camstructed as

follows:
pio= 3 (14 dex- ) 6

k=-—00

- .
wd«&gﬁuc-rnl process to build wavelets hases
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3. Other features of a fath ~r function

Applying the Fourier transform to (4), the dilation equation gives

¢(£ Z [’k\/‘z—[ ¢ —k -'zfdit_ —_ Z pk2 1 "'l‘f/2/ ¢ '/ w(/ dy

k=-—o00 k——oo

] 00
If we set H(z) := 3 z prz*, we obtain the following relation

k=—o00
$(26) = H{e*)B(€). ™
By repeating n times the relation (7) we ot

2k—l

8(26) = T #ie¢/* " die/2»M).

k=1
Since $ is a continuous function on R and assuming that $(0) = 1, we easily

deduce that
(&) - T Heer™),

k=1
pointwise.

Proposition 1. If ¢ defines an o.n.b. in Vy the one has
I + [h(e + m)|* = 1, (8)

where h(€) = H(e %¢).

Proof. We can write successively:

don = (60,0, 0.0) = /Rd’(r)@(r - n)dr = Ae‘i"5|$(5)|2(l£,

where we have used the Parseval identity. On the other hand,

k41w 27
[RaaCGRE )3 / SR TG ‘{ 2 I¢<’+?*">l‘}

R=-c0 k=~r0

2
Because oy / e~ e = ., the above relations lead us to the following
n

identity

o0

- 1
9L 12 —
k_E_mw(& + 2km))* = o

We choose £ := 2€ and according to (7), we have

o= Z|4,25+2ur = L]Il ek)ige 4 kn= Y+ Y =

k=-—0ro k=00 keven gy odd



= |H (e ) D 1B(E + 2km)| + |H (e E+ | 3 166 + (2k + V)m)|* =

kez keZ
1 2 2
= 5 (1RO + [A{E + m)[%).
We have used the fact that & is 2m-periodic.
Taking into. account (5) we get h(0) = H(1) = 1. By using (8), it results

I ) = H(-1) = 0, in other words Z (—1)*px = 0. We are now able to state another
k=—oc0
property in connection with equation (4).

Proposition 2. If ¢ defines an o.n.b. in Vg then the following tdentitss

'ZP% = ZP:H: =1

kez keZ
hold.
Proposition 3. If ¢ is normalized, that is / &(z)dz = 1, then the following
R
identities
Do ble—k) =) b(k)=1
k€Z k€Z
hold.
Proof. If we put s(z) = Z #(z — k), by using the dilation equation, we can
kezZ
write

5(2) = i {an¢(2z—2k—n)}= i { D }=

k=-00 \neZ k=-0c0 {neven . 4dd

=), {Z P2m®(22 — 2(k +m)) + D pams16(2z — 2(k +m) — 1)} =

k=—c0o \meZ meZ

= ) ¢(20-20) (Z p2,,.)+ Z é(2x -21—1) (Z pgm+1) = Z ¢(22-1) = s(2z).
l=—0o0 meZ I=-00 meZ {=--00

We have used Proposition 2. In this way, we have obtained s(¢) = s(2x) which
implies () = 25(2¢). This represents a dilation equation with po = 2 and all other

coefficients are zero. The non trivial solution is s = §, the Dirac delta function ([3], Lecon

n°® 31). We deduce that s is a constant. Taking Z ¢(z — k) = a and integrating over
k=—o00
[0,1] we have

Z / ¢(z — k)dz = Z /l k¢(y)dv—/ dly)dy = 1.

k=—o00 k=-o00

(e 4]
For # =0, it holds 1 = Z o(—k) = Z o(k) which completes the proof.
k=—co keZ
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4. Particular approach

We are going to study a two-scale relation which is described by finite sums. We

suppose that the integers N’ < N’ exist, such as
(i) pn'#0, pNv #£0 (i{) pr=0fork < N' and k > N”, 9

We will only be concerned with scaling functions which are continuous every-
where. Because ¢ € L;(R) N ('(R) we are looking for the solutions ¢ with bounded
support. Firstly, we specify that a general method for constructing the scale function ¢
is by using iterates and which does not involve ¢. In fact, ¢ solves (4) if T(¢) = ¢ where

T(¢) = Zpkqﬁ(Qz — k). We try to find this fixed point as usual: find a suitable ¢,
keZ
define @,, = T" g, and prove that ¢, has a limit. In this way, ¢(z) = lim ¢,(z). Asa
n—+00

consequence of this recursive scheme we can expose
Proposition 4. If the relation (9) is fulfilled then

14 N —N" 1—-N'4+N"
2 ' .2

supp¢ C [N, N"} and suppy C [

hold, where ¢ and  satisfy the equations ({) respectively (6).
Proof. We use the recursive scheme and choose ¢¢ with compact support. Lei’s

take suppén = [N§, NJ]. Successive applications of T' define

Nll
$is1(2) = (T;)(x) = D prdj(22 — k). (10)
k=N"'
N/ NI NII N/I
We have suppé; = 0;— , =2 ; ] and denoting suppg; = [N}, N/| it

results NI, = (N} + N')/2, NI\, = (N{' + N")/2. By computations, it follows

1

Ny (11 1 N (1,1 3
po N (L L WY a2 N (L L e
Ni=% <2+22+ *2:‘>N' “1‘2J‘+<2+22+ +21)N'

and consequently  lim N){ = N’ hn NJ{' = N”. This proves that suppé ¢ [N/, N
Jroo 100

ln order to obtain the second inclusion, in (9) we notice that py_x is only nouzero fo.
0o . N+ kN

kell-N" 1-NIJNZ. On the other hand, we have suppe(2- k) C 5|

=)

relation (6) allows us to obtain the desired result.
Investigating () we :~mark that by a change of index in pg, the relation (1)

be written as follows

.
o(r) =Y pead(2x — k). popn # 0. (1)
k=0
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Of course, the scaling function ¢ must also be shifted accordingly.

Of the previous theorem, supp¢ C [0, N] and knowing that ¢ € C(R) we deduce
#(0) = ¢(N) = 0. Firstly, we need to determine ¢(k), 1 < k < N — 1. Substituting
z=k, 1<k<N-1,into (11) leads to N — I linear equations with the N — 1 unknowns

¢(k). In matrix notation we have
v = Pv, (12)

where v is the column vector (¢(1),$(2),...,6(N —1))T and P the (N — 1) x (N — 1)

matrix

P = (p2j_k)1<ih<N-1 (13)

with j being the row index and k the column index. Recalling that ¢ generates a partition

of unity (see Proposition 3) we can determine the values of ¢(k), k € Z, by finding the
N-1

eigenvector v corresponding to the eigenvalue 1 and imposing Z o(k) = 1. Define ¢q
k=1
to he the piecewise linear function which takes exactly the values ¢(k) at the integers,

that is
$o(z) = B(z)(k+1—2) + ok + 1)z — k), =€ [kk+1].
We compute ¢;, by using (10) and it follows that ¢; are piecewise linear with
nodes at k/27 € [0, N), k € Z.
Let’s make some examples. For N = 3, it is known the quadratic cardinal

B-spline N3 whose two-scale equation is
1 3 3 1 )
Nj(r) = ZN:;(?J’) + ZN;;(?J,‘ -1)+ ZN;;(?:? -2)+ ZN;;(?.:: -3).

However, there is another alternative [2], namely Daubechies’scaling function ¢

governed by

1 + V3 3+ 3- \/' o 1 =VB o
P (2) = V34020 1 ‘[4)"(2 D+ 223090 )4 74" (20 - 3).
In the following, we choose py = st and p; = —— where p = (1 + vff;) /2. In
. M

concordance with Proposition 2, we must take p3 = p and pa = 1 — p. Thus the matrix

P defined, gy (13) becomes

P=

1[1-v5 1+VE
2 146 1=vE

~1
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"

The solution of (12) s v = a ( Pl ) and the normalization condition implies
a=1/2. One obtaing ¢(1) = ¢(2) == 1/2.

Using the golden ratio in the componence of the matrix 17 we get a niee seale
function which is defined on Z as follows
172, ke {1,2}
0, keZ\{1,2).

¢(k) =

Haviug the values of ¢(k) it is now enay to compute ¢(k/2), (k,j) € Z x 2. In
fact, the Interpolatory Graphical Display Algorithm can be applied, see [1], page 93.

Roforences

1] CLK. Chui, An Introduction to Wavelets. Doston: Academic Press, 1992,

2] 1. Daubecliien. Ten Lecture on Wavelels, Philadelphia: SIAM, 1902,
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ON A CLASS OF FUNCTIONS OF TYPE n AND ORDER. /4 IN THE
UNIT DISK

M.K. AOUF AND .1, RALAGEAN

Abstract. A representation formmla, a distortion theorems and the rading of
convexity are determined for the clars Sy(ev, 3) of analytic functions whose

power reries are f(5) = 2 +ugpr29 ... and matisfy the condition
sf'(5) 1
By I DO

forwome v (D<o <), BOCA<S) andlorall sinl! = {z: |+ <1} A

auflicient condition for a function Lo helong (o S, (v, ) har also heen obtained,

1. Inmtroduction

Let f(z) = 24 ) a,:" be analytic in the unit dine U7 = {2 : |z| < 1}. The

e

1
[

o, . "
condition

Re {—7!%(-)-)}>0 (L1)

for z € I/ is a necessary and sufficient condition for f(z) to he univalent and starlike in
U. Robertron [7] was the first. to introduce the notion of order for the class of starlike
functions in {7, A function f(z) is said to be starlike of order v in U if

()] . ‘
Re {—7—(-;)—} > (1.2)

for |z| < 1, for a given a, 0 < v < 1.
Padmanabham [6] has introduced the “concept”™ of "order™ of starlikeness in a

00
different manner. Thus, according to him, a function f(z) = = + Za,.:" analytic in U

n=2

Received by the editars: November 10, 1996
1991 Mathematics Subject Classsfication. 30045

Key worde and phrases. analytic starlike, distorrion theoremn
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and satisfying for all z in I/ the condition

L)
L) Ee (13)

for a given o (0 < « < 1) is said to be starlike of "order” a in [7. We denote the class
of all such functions by S(«) and we say that S(a) is the class of starlike functions of
type a. For the class S(«) Padmanabhan [6} has obtained a representation formula, a
distortion theorem and the radins of convexity. Also Mogra [3] obtained a coefficient

estimates and a suflicient condition for a function to belong to S(«).
o
In [4] Mogra consideréd the functions f(z) = z+Z gtk 29 forg e {1,2,3,.. 4

which are analytic in U and which are starlike of typekzl. The class of such functions
are denoted by S,(a). For the class S;(a) Mogra {4] obtained a representation formula,
distortion theorems and radins of convexity.

In this paper we consider the functions f(z) = z 4 Za,hq, 9% which are
analytic in I7. We say that f(:) belongs to S,(«, ). the ('Iassk:-);' starlike functions of
order 3 and type « if the condition

Gy

1(z)

—JE&)  lea, (1.4)
%lﬂ—?ﬂ%

is satisfied for some o, 7 (0 < v, <1, 0I5 < 1) and for all z € U.

We note that by giving specific valies for «. 3 and q, we obtain the following
important subclasses:

(1) Sy(er,0) = S(av),

(i) Sy(ex, 0} = Sy (ev),

(iii) Tn [2] Juneja and Mezra introduced the class Sy (o, 3) = S* («, #) of starlike
functions of order 3 (0 < 4 < 1) and type o (0 < o < 1) and made a preliminary study
of its properties.

One can easily show that: flz) € Sy(ev, ) if and only if there is a fur: tion
fi(z) € S,(a) such that

(1-5)
-—-] L 0<p<. (1.5)

10



ON A CLASS OF FUNCTIONS OF TYPE a AND ORDER A IN THE UNIT DISK
2. iepresentation formula for the class S, («, 3)

Let B, (0 < a < 1) denote the class of functions y(z) which are analytic in U
and satisfy |{(z)| < afor all z € U.
Lemma 1. Let H(z)=14h,294.. .. Then H(z) ts analytic and satisfies the condition

1-H(2)

— . <a<1
=25+ () <a (0<a<land0<pP<])

Jor |2] < 1 if and only if there exists a function ¥(z) € By such that

o 1= (1=2p3)z%9(z)
H(z) = 1 4 z79(z) ’

The proof of Lemma 1 follows exactly on the same lines as those of Padmanabhan

(6, Lemma 1] and Mogra [4, Lemma 1]; so we omit the proof.

s .
Theorem 1. Let f(z) =z + Zaq+k:q+k be analytic in the unit disc U. Then f(z) €

k=1
Si(«, B) if and only if

P Tlg() }
z) = zexp§ ~2(1 — — 2.1
1) =zep{-20-p) [ L4 (21)

Jor some i(z) € Bag.
Proof. Let f(z) € Sy(a, B), it is easily seen that %—}Z satisfies the hypothesis of Lemma
1. Hlence there exists ¥(z) € B, such that

/() _ 1= (1-20)=%4(:)

f(z) 1+ 29¢(z)

Thus, we have

Fe) 1 =2(1= B yge)
f) " T T Twew) (22

Integration give (2.1) easily. Conversely, if f(z) has the representation (2.1) for some

¥(z) € B, then, it follows that

2(2) _ 1= (1-20):94(:)
1) T+ 299(2)

Hence Lemma 1 gives that f(z) € S,(o, 8) and the theorem s proved.
Remark. There is another proof of Theorem 1 which is an immediate consequence of
(1.5) and the integral representation for fi(z) € S;(a) given by Mogra {4, Theorem 1].
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3. Distortion theorem for the class S;(«, 3)

[e 8]
Theorem 2. Let f(z) = z -+ Zaq+kz"+" be analytic tn the unit dise U1 and suppose

k=1
J(z) € Sq(a, B). Then we have, for z € U,

(=) < ———H . 3.1)
(1 - alzle) 5

iz| .

|f(z)] > “(1+a| ey (32)

The estimates are sharp.

Proof. Since f(z) € Sy(«v, f), we have, by (2.1)
z2f'(z) _ 1-=(1-20)299(z)

fz) T T+ 29(2) (3.3)
for some ¢'(z) € B,.. We can write (3.3) as
Fz) 121 -p) () (3.4)

flz) = 1+ 299(z)

Since () € Ba, (3.4) gives
) = Re (log (%))) -

log(
fls) 1 =2(1 = A)s7" y(s)
= Re / [[(s) s]ds_R / l+s‘lc/’ o ds <

1 2(1 — B)lyi(te®) oo 1 ate-! w-p)
F < 2(1 - M= —log(l --a|z|") "<
< ./0 [T+ 196794 (te?)] dt < 2(1 ﬂ)/o 1= atd ¢ log (1 - or]z[%)

f(z)

4

Thus

1
< (1 -
" (1= afzl9) "

which gives (3.1). To prove (3.2), we observe that the condition (1.4) coupled with an

»
<

|f(z)

application of Schwarz’s Lemuna [5] implies that, for |z| < 1, !(’LT asswmes vahues lymg

9
a(l-28): "“d T4t -2y

in the open disc U7 on the line segment. joining the pomh — l+"l e o]

as diameter. Hence we have

1— ol —28)|z) {zf’(:)} 1+ afl —29))=)¢
1+ azl? < Re f(z) s 1+ o]z ’

(3.5)

Let |z| = r, then (3.5) gives

. ] (=) _ z2f'(2) 1 - 20(1 - At
e {5 (e P2) = e {2 A0




Thus we ha ve

—2a(1 — f)s1=! .
log f( )l = Re { fG )} __/ —~——————2n§|+ "/‘); —ds = —log(l + ar?) ("-i'ﬂ‘
0
Hence
|z
lf(:)lz (1 —beta) °
(14 afz]e) 5=

Equality in (3.1) and (3.2) holds for the function
z

AT

4. A sufficient condition for a function to belong to 5, («, /1)

o0
Theorem 3. Let f(z) =z + Z""”"z(”k be analytic m the unit dise U If for some o

k=1
D<a<)and B O< A< 1),

DA+ a)g+ k) +a(l = 28) — Dlagu] < 201 = B)a, (4.1)
k=1

then J(z) € Sy(ev, B).
Proof. We employ the tovhnique used by Clunie and Keogh [1]. 'Thus suppose that (4.1)

holds and that f(z) =z + Zaqﬂz‘” then in |z| < 1,

l2f'(z) = J()N = ol f'(2) + (1= 28) S (=) =

(44

= [Do(a+ k= Dagpuzatt

—

0
200 = )z + Y (q+k+ 1 20)a,4, 29>
k=1

< Z(q + k- l)|a,,+k|r"+k L {2(] — P)r — Z(q +kt 1 2/1)|aq+k|r"+"} <
k=1

k=1

<

Ma

[ (¢4 k- Dlagpr] —2(1 - Ao + En(q +k+1 28)|a, gk |] r=
k=1 k=1

= [Z((! +a)(q+ k) +all = 20) ~ Y a )~ 200 /i)n] r <0

k=1
2 : 1 _l - . g -
,—rJL-éJ—! { ’+l"ﬁ| < «v, therefore f(z) € S (v, 7). This compictes the

Henee gt follows that

proof. We note that

2(1 — P abk

f&) === +a)(g+ k) +a(l =20 -1}

)
il

~




is an extremal function of the theorem since =a,forz= 1,0 <<,

'I('; +1-20
0<pB<land bk =1,2.... We also observe that the converse of the above theorem

may not be true. For example, consider the functions f(z),

- 2f'(z) 14 (1-2R)az?
flz) — - @z '
It is easily seen that f(z) € S,(nv. 3) but
o~ {1+ )(g + k) +a(l - 28)} _
,‘2;‘1 20(1 — f3) lagsl =

:\Z’: (4 a)g+ k) +a(-20)—1) 2" -p)

2 2a(1 = B) @+ k—1)
__oo alg+k+1-28) [y
_Z{l+ T }a(v)>l

k=1

forsome o, (0 <a<L0<@<1),zel.

5. The radius of convexity for functions in the class Sy (o, /)

Let D denote the class of analytic functions w(z) in |z| < 1 which satisfy the
conditions (i) {w(z)] < 1 for |z| < 1. For obtaining the radius of convexity for functions
in the class f(z) € S,(«, B}, we require the following lemmas.

Lemma 2 [8]. Ifw(z) € D, then for |z| < 1,

|21 — lw(2)|?

fzw’(z) —w(z)| < I“RE (5.1)
Lemma 3. iorw(z) € D, we have
m{ “f(2) + (g = D9 w(z) }
L+ ez (@) - o1 - 28) 297 Tw(2)]
=8 pe fapizy - =20 ] rap(z) + (1= 28 = |1 - p(5)
St ["’(") B B I P e [ ]

(5.2)

~ “",,
where p(s) = L=SQEHE 2G) pe s 0<a<land0< A< L.

Proof. An application of (5.1) gives (5.2) easily.

14
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Remark. The transformation p(z) = '"i—-%-'—m maps the circle Ju(z)| < r onto

{4z~

the circle

14+ a(1 —-28)r%

2ce(1 = B)r9
.P(:) _ LY (1 - pg)r

I —adrie ’

< (5.3)

Theorem 4. Lot f(2) € Sy(n, ), 0< @ <1, 0K A< L, then for |z]=r, 0<r < 1,

1-2a(g+1 1
- iﬂm'H% Jor Ry < Ry,

'z )} sy | Vel = B) + -1 (1 = 79 & 1 = o
fiz) 1T =aq(1 =28)r=T 4 ag(1 = 23)re¥T — 31 - 25)%r%9

~(14a%(1- 2/3)1'“] ~ &% for Ry > R,

Re{1+

(5.4)

where
1+n’(] - 23)r¥9 d= 2a(1 = A)r9
1—adrde ' 77 |~

o = {1 — ag(1 = 28)r9=" 4 aq(1 = 20)r9* ~ o2(1 = 28)2r20 ) }
" al2(1=8) + q)r7=1(1 = #2) + | — o229 :

1~ ol =23)r9

Ri=a—-d=
1=a 14 ar?

Proof. Since f(z) € Sq(a, B), by (2.1) we have

z2f'(2) - 1—-(1-20):%(2)
f(z) 14 294(z)

where ¢i(z) € B,. Thus we can write z¢(2) = aw(z), where w(z) € D.

Consequently
2f'(2) _1~a(l-28):9""w(z)
f(z) 7 l4aztlg(z)
Differentiating (5.56) logarithmically we have

L ) a1 = 28)e ()
F(2) 14 az9-tw(z) -

(6.5)

WD) ) (5.6)

~20(1 - ) { [T+ az9=Tw(z)][T - (1 = 23)29-Tw(z)]

An application of Lemma 3 to the above equation gives

e {' e )} 2 'm(ll— 1) [Re {"[m = i) = S } -

f'(z) p(z)
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ramH (1= r?)ip(z)]

By setting p(z) = a+ €+ in, R?2 = (a + £)? + 1, where a = SR L L) LA

I—ard

_r8ap(z) + a1 = 28)2 — |1 - p(z)|2].

denoting the expression of the right-hand side of (5.6) by E(£,n), we get

1 . ;
E( n) = m[alz(l =B +al(a+&) —a(l—20)gla + )R - 2 vpy-
1—a?r? . _ ]
~rea oy @ R (5.7)
where '
4 20— py
= s
Differentiating (5.7) partially w.r.t. n, we get
OF . 1 4
R Y K F(&n), (5.8)
where
— (d? - €2 - p*)(1 - o?r?9) R Rt L
Fgm) = 2001 = 2)afa +8) + S ST Ry e

It is easily seen that F(€,7) >0 foralln, 0 <a <1,0< A < %. g > 1 and s
(5.8) gives that the minimum of E(£, ) inside the circle €2 + n% < d? is atiained on the

diameter n = 0. Uence putting y = 0 in (5.7), we get

1

M(R) = E(€.0) = 50— [0[2(1 B) + ql(a + €) — (1 — 28)q(a + €)1t 2~

1— a?r¥

—2(‘7/7(] — ——rq_l(l — 1'2) (d2 . fZ)R 1] =

1
= :Zm [n[?(l ~B)+ql(a+€) —a(l - 28)qR7" - 20

1 2,.2q

T “f—a)?m-'] -

) i 91 11— a2r®e i
T {"” SO T >} ¥

+{1—4 (1 = 28771 4 g1 = ) — s =2
r1=1(1 — r?) J

1= «v' ria Aq
—2a- — ,
ra-L() - r?) 1-4

16



ON A CLASS OF FUNCTIONS OF TYPE « AND ORDER g IN ‘i HE UNIT DISK

where R=a+§ and a —d < R < a+d. Thus the absolute miniin of M (R) in (0,00) is
attained at
R = [ 1= 091 = 28)r"" " + aq(1 — 2/)r®+! — (1 — 2)r™ d
T af2(1 = B) + qr9=' (1 — r?) + 1 —a?r?e

(5.9)

and equals

M(Ro) = T ﬂ)ml—l(l 7 [VaR =5+ ar=T(1 =72 + T = a2

V1= aq(l = 23)r1-1 4+ aq(l - 28)ret!t — a2(1 — 23)2r29 — (1 + o 3(1 - 2ﬂ)r2")] - %
(5.10)
It is easily seen that Ry < a 4 d, but Rp is not always greater than ¢ — d. In
such a case when Ry ¢ [a — d, a + d] the minimum of Af(K) on the segment [e —d, a + d]

is attained at Ry = a — d and equals

- - 7 4+ a?(1 — 23)%?

The two minima given by (5.10) and (5.11) coincides when Ry = R;. The
inequality (5.4) follows from (5.10) and (5.11).

The inequality signs in (5.4) are attained for the following functions:

f(Z) = _z—i———- (=g for Ru S 1{]

(1+az9)" =
and
2f'/(z) _1=[1—a(1-28)z9""]bz - a(l - 28):9*!
f(z) - 1—-(14az9-1)bz 4 az9t!
where b is determined from
1-[1—afl - 28)r1=1br — a(1 ~ 28)r9+!
1— (14 art=br + ardt! =

for Ro Z Rl
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APPROXIMATION OF THE SOLUTION OF A STOCHASTIC
EVOLUTION EQUATION

HANNELORE BREOKNER

Ahatract. The aim of this paper is the study of a certain stochastic evolution
equation, for which one proves the existence and the (almost surely) unique-
ness of the solution. One takes into consideration the nequence of the solutions
of some simpler equations and one proves that the respectiv sequience in con-
vergent almoat murely to the solution of the equation in study, The hypothenis
for the operatora involved in equations are more general that those used o far

in the literature.

1. Introduction

Evolution equations perturbed by white noise have important practical applica-
tions in physics, biology and engineering. Concrete problems leading to such equations
occur, for example, in statistical hydromechanics [8], in genetics and neurophysiology [1],
[4], in the study of random vibrations and heat conductivity with random disturbance
[6].

The purpose of this paper is to investigate an abstract stochastic evolution equa-
tion (in the sense of Tto), involving a strong monotone, hemicontinuous operator and
locally Lipschitz continuous nonlinearities, which satisfy a growth condition. The as-
sumptions imposed here are more general than those in [2] and give us the possibility of
approximating the solutions of a larger class of stochastic differential equations.

It is proved that the considered equation possesses a solution which is unique
with probability 1. The existence of this solution is shown by constructing a sequence of

stochastic processes that approximate the solution almost surely.

Received by the editors: April 1, 1997,
1991 Mathematics Subject Classification. 60H10, 60H15.
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2. Formulation of the problem

Let [0,T] C R, and let (V, H,V*) be an evolution triple with (V, (-, )v) anc
(H,(-,")) separable Hilbert spacea. All linear spaces that occur in our paper are consid
ered over the field of real numbers.

In what follows we investigate the following problem which we call problem (P)

acek a solution of the evolution equation
dr(w,t) = —Ax(w, t)dt + F(t, 2(w,t))dt + C(t, 2(w, t))dw(t) (1
(for all £ € [0, T) and a.e. w € Q) with-the initial condition
2(w,0) = 7o(w) me.wER, @

where:
(i) (22, F, P) in a probability space, {F; | t € [0, T}} is a filtration (contained in

F) with respect to a given real Wiener process (w(t))telo T];

(ii) A : V 2 V" is a strong monotone, hemicontinous.operator satisfying the

following growth condition: there exists a constant ¢4 > 0 such that

HA@)Ie < ca(l+1IvlI})
forallv e V;

(iii) F.G :[0,T) x H & H are functions satisfying the following conditions:

(a) there exista a conatant o > 0 and a sequence (Gy) of positive conatants such
that, (or all natural numbers N, all #;,¢3 € [0,T] and all vy,v3 € H with ||v]| < N,
||ra]l < N, the inequalities

IR (1, v1) = F(ti, 011 < alty = taf? + Bn|lvy = val|?,

NGt v) = Gt wa)li® < alty ~ ta}? + Bnllvr = va?

hold;
(b) there exiats a constant ¥ > 0 such that for all ¢t € [0,7] and all v € H the
inequalities
NE@ o)l <1+ lol?), G o)l < (1 + lell)
hold;

(iv) x¢ € L%(S2) is Fo-neasurable.



APPROXIMATION OF THB 8OLUTION OF A 8TOCHASTIC BVOLUWTPION RQUATION

IT (S, || +]|s) in a Banach space, then we denote by £3(2 x [0,77) the linear apace

of all functions v : Q x [0, T] ~ S which are F x B[lo gy-measurable and for which

T
B w013 < oo
0

Further we denote by £3(Q) the linear space of all functions v : @ = S which are F-
measurable and for which E|jv(w, )|} < co. As usual, the valies of & function v €
L3(9 x [0,7]) or v € LL() will not be denoted by v(w,t) and v(w), but simply by v(¢)
ami v, reapectively.

An adapted process (d(t))'e[o.T] from the space ‘C}(Q X [0,"1‘]) is maid to be a

solution of problem (P) if it aatisfies equation (1) and condition (2) in the following sense:

¢ ¢ ¢
(2(t) - 7, v) = - ﬁAm(a).v)da + /iF(a.z(a)), v)ds + /(G(n,z(a)),v)dw(a)
0 0 0

for n.e. w € Q and for all v € V, 2 € [0, T]. Here (-, -) denotes the duality between V and
Ve

3. Main Result

For each natural number N we define the functions Fx,Gn : [0,T] x H = H by

F(t,z) , llell< N
Ft,04%) . ll=ll> N,
G(t,z) , |l=sll<N
G i) o ll=ll> N

By using hypothesis (iii) and the properties of a norni in a Hilbert space, it can be proved

FN(‘!”) = {

GN(tlm)= {

that Fy and (7 are Lipachitz continuous, i.e., they satisfy
|Fn(tr,v1) = Fr(t, va)l? < alts = ta]? + By llvs = valf?,

HGw(ti v1) = Gu(t, va)ll? < alts — ta|* + Bn|lvy — valf?
for all vy, v2 € H and all t;,t; € [0,T).
The basic idea which will be used in our investigations is to approximate problem
(P) by a sequence of problems (Py) (N € {1,2,...}). The problem (Py) requires to

21
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find an adapted process (mN(t))'elo - from the space £F (92 x [0, T]) that sntisfies the

evolution equation

(en(t) = 20,0 /(A.rﬂa) yds + /(FN(a an(8)) v)ds v

+ .o/(GN(a,a:N(U)).")d“’(’)

forallve V, t €0, 7] and ne. we€ Q.

Concerning problem (Py) the following theorern was established in (2], p. 133.

Theorem 3.1, For each natural number N there exists an almoat surely unique process

( (¢ )) ) which is a solution of problem (Px) and which haa continuoua trajectories
in I,

Let a be a positive mumber, fixed for the moment. To this number we assign
the following problem (P%): find an adapted process (zN(t))‘em - from the space
L3 (2 x [0.T)) that satisfies o

(e=en(t) — =0, v) = /("" (4 +aJ)(zn(s)),v)ds + (3)

t

t
+ (e Fn(s,zn(s)),v)ds + [(e™"Gn(s,zn(5)), v)du(s),
/ /

forae weQandforallveV,t€[0,T)(J:V = V* is the duality map between V
and V*).

Using the Tto formula, it can be shown that (mN(()) - is a solution of proh-

telo,
lem (Py) if and only if it is a solution of problem (P%/). The advantage of problem (P%)
is the possibility of a favorable choice of @ and so, as it will be revealed in the sequel,

some useful properties can be obtained.
Lemma 3.2. There exists a constant ¢; > 0 such that for all natural numbers N the
fellowing inequality holds:

E swp lew(OIF + B [ llen@litde <,
0<e<T .

where (a‘N(I)) 0,11 is the solution of problem (Py).
refo.r

22
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Proof. Since the process (J‘N(t)) 01 is also a solution of (P4), we can apply the Ito
tefo,
formula to (3) and obtain

t
e llzn (1> = ||zoll® — 2 f e ((A+aJ)(zn(s)), xn(s))ds + (4)
0

t
+ 2 6—2“(FN(3,J?N(S))»-’I’N(S))ds+/6_2‘""("N(5vrN(s))|l2ds+
0

+ 2] e 2 (Gn(s zn(s5)), zn(5))du(s).

/
!

By the monotonicity of A and elementary computations we obtain

t t
2 / e (A + aJ) (2w (s))., on(s))ds > (a— 1) / e~ |l (1)|[3-ds — T A3
0 0

Consequently (4) implies

t

sup e (@) + (a - 1) / =2 len ()l ds < ky + (5)
8

- = 0

¢ t
+ /e"‘“’ (||F'N(s,:lw(*’))||2 + ||GN(s,a:N(3))||2)ds + /6_2“”1’N(s)”2d"’ +
o 0

+ 2 sup [e‘za'((?,v(r.rN(r)),;rN(r))dtlv(r),
05»5&0

where k; is a positive constant, which does not depend on N. By applying hypothesis

(iii) and the mathematical expectation to (5) we get

¢
I sup e~22||lzn(s))I? + (a — I)E/e“z“"”z',v(s)]ﬁ, ds < ky + (6)
1<s<t
= e

0<

t s

o (1+ 2‘)’)]’3/('2“'||1‘N(ﬁ)||2ds + 2F sup /("""‘"((:'N(n.rN(r)).J:_V{r))clw(r).
b 0<s<t J
0 -
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Now Burkliolder’s inequality (see [3]) yields

s

2 sup / =2 (G (r,zn(r)), 23 (r)) duo(r) <

0<s<t
0

¢

GE(/e""”(G’N(s,:tN(s)),:c;;,(s))zds)% <

]

IA

t
1 .
< 3F sup e llen(a)IP +18vE [e (1 + llaw(o)P)ds.
0<s<t 4

Using these inequalities and choosing a > 2, it follows from (6) that

¢ ¢
E sup e""'"||:nN(s)||2 + E/e—z"""zN(s)"%;ds <ks+ kaE/ sup 6_2“"".’21\/(1')"2(11"
0<a<t : 5 0§r$u

where ka and k3 are -positive constants which do not depend on N. By applying Gron-
wall’s Lemma (see [7], Lemma 3, p. 311) we get

t
E sp e flan(0)IP + B [ len (o) ds < kaehoT M
0<s<t
-7 0

for all ¢ € [0, T). In particular, if we take t = T, then we obtain

T
E( sup_lew @I+ [len(o)f ds) < kaelhrt2o. ®
0<s<T
0
Next we set ¢, = kae(#3+20)T and hence the conclusion of the lemma holds. a

For each natural number N we define the function 7y : Q@ — IR, called stopping

time, by
¢
Tn(w) = sup {t €0, 71| sup |lzn(s)|* + /||:cN(s)||%,ds < N2} for ae.w e
0<s<t
== 0

Lemma 3.3. Let M and N be two natural numbers such that M > N. For alle >0

the following relation holds:

T~
P{”;us% New (t) — za (DI + 0/IIarN(t) —zp ()} dt > f} =0. (9)
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Proof. For all t € {0, Ty] we have

t
sup llew(o) + [llen (o)l ds < 2 (10)
0<a<t
0
and for all 5 € [0,1]
FN(S,J‘N(S)) FM(S,.’L'N(S)), GN(s,zN(s)):(r'M(s,:l?N(s)). (n
Since (TN(f))le[O,T] and (xM(f)):e[o,T] are the solutions of (P}) and (Pyy), respectively,

we can apply the Ito formula (with ||-|{?) to the difference of this two processes and obtain
¢
e ||z (t) — zm ()] = /e_z‘"“(}'N(s,'zN(u)) —~ Gu(s,zar(8))||Pds ~ (12)
0
¢
~ / =29 (A + a)(zn(8)) — (A+ a)(@ar(5)), 25 (8) — 2 s (s))ds +
0
¢
+ 2 [ (Fnlo,en (o) ~ Fa(s, 20 (s)), 20 (5) = 21 (s)) s +

+ 2 [e 2 (Gn(s,xn(s)) — Grr(s,zar(s)), zn () — zar(s))duw(s),

o\“ =

for all t € [0.T) and a.e. w € Q.
Let t € [0, Tn] be arbitrarily choosen. In virtue of (10), (11), hypothesis (iii) and

the monotonicity of 4 we obtain from (12) that

b2
™2 ||z n (1) — zar (I + 2a/||m~(s) ~zu(s)llvds < (13)
0

t

< 2/8_20'(GN(5'3N(3)) —Gu(s,zp(s)). zn(s) — xar(s))dw(s) +
0

+ (20m +1) jfe_za’”;t/v(s) - TM(S)”?(LS'
0
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for all t € [0, Tn]. Therefore

tATN
E sup e **||zn(s) — rar(5)||® + 2aE ] e 2|z n(s) — zpr(s)l|}ds < (14)
0<o<tnTn 2

< 4E sup /e"‘"(GN(r,::N(r)) —Gum(riam(r)), zn(r) —zp(r))dw(r) +
0<s<tATw

tATN

+ 202Bu + E / 22w (s) — 2 (5))[ds.

0

Now Burkholder's inequality yields

2E  sup /6'2“' (Gn(r,zn(r)) — Gum(r,2m(r)). 2N (r) - za(r))du(r) <

0<s<tATN 5
tATN N
< 68( [ e (Guloan(6) - Gulriza(r)) an(r) = 2m () ds) " <
0
1 tATN
< =E sup e *®|zn(s) —zm(s)||* + 188ME / e~ 2%z (8) — zar(s)]|*ds.
2 o<a<tATN J
Consequently (14) implies
tATN
E sup e 2%||zn(8) — zar(s)|)® + 4aE / e 2|z (s) — zar(s)|[Z dt <
0<s<tATN

¢
< 2kafar + I)E/ sup 8_2""3[\](1') - zM(r)"zds,
0<r<sATN
p 0SS
where k3 is a positive constant which does not depend on M and N. By Gronwall’s

Lemma it foliows that

E sup e 2%||zn(s) — zp(s)||* + 4aE/ e~ 29|z (8) — zar(8)||3 ds = 0.
0<s<TN

Since e=2% > ¢~24T for all 5 € [0, T], we conclude that

E sup |[+n(8) — zas(s)|)® +4aE/||zN(a —zp(8)||} ds =
0<s<Tw

Hence by Markov’s inequality it follows that (9) holds. o
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Lemuna 3.4. There exists an adapted process (m(t)) 0.1 satisfying
telfo,

T
lim ( sup |lzn(t) —z()]|® + /||1:N(t) - :t(t)||€,dt) =0 forae. wen
N—oo 0<t<T !

and which has continuous trajectories in H.

Proof. Let N be any natural number. By the definition of Ty we have
T
PTw <) = P{ mp llen(@l+ [ lew(libae > N*}.
0gt<T 2

Furthermore, from Markov’s inequality and from Lemma 3,2 we get

P{ sup ||1'N ||2 /||:LN llvdl> N2}<

1
< ( sup, lew (0 +/|l:cN Ol dt) < 5.
Consequently we conclude that
C1

Next we notice that

T
P{Og"lp llzn(t) = zner (I + /IIzN(t) = zn 41 ()1} dt > f} <P{Tn<T}+
0

+P{ sup |lzn(t) — 2y (D + f“mN(t) — N1 ()|} at > ‘}
0<t<TN 2

for any € > 0. By applying Lemma 3.3 and (15) it follows that

o<t

T
P{ sup_llew(@) = 2w @IF+ [llen() - 2wn (O} de > €} < 3.
0

Hene, by Borel-Cantelli’s Lemma, there exists an adapted process (:v(t))‘e(0 - such

it

sup Nea(t) = 2 + /||:cN(t) —z)Edt +0  forae weQ.
arLr
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has continuous trajectories in H and the sequence (xp) of processes

Since <;r N (!))

te[0,T)
converges uniformly to x in the norm of H, we conclude that (.r(!)) has also
tefu,T)
continuous trajectories in H. a

Lemma 3.5. For allt € [0,T}, allv € V and a.e. w € 2 the following convergence
holds:
t ¢
(/ Axp(s)ds,v) // Ax(s)ds, v).
0 0
Proof. We define A : £3,[0,7] = (C’;',-[O,T])‘ by

T

(fl(u)) (v) = /(Au(s),v(s))ds‘

0
Since A is a monotone and hemicontinuous operator, it is maximal monotone (see [10],
p. 474). It can be proved that A is also maximal monotone.

From Lemina 3.4 it follows that there exists an ' C Q wjth (') = 1 such that

—300

T
lim ( sup_|len(t) - 2()I° + /||1:N(t) - x(t)u%,dt) =0 forallwe .
N 0<t<T ;

Let w € ' be arbitrarily choosen. The sequence (.’tN (w)) .converges to r(w) in
the norm of the space £%[0,T] and A satisfies the growth condition given in (ii). Con-
sequently (fixN(w)) is a bounded sequence in £%.[0,T]. By applying properties of the
weak convergence (see [9], Theorem 21.D, p. 255) we conclude that there exist a func-
tion B(w) € (ﬂ’;’ [O.T])‘ and a subsequence (./ix;v:(w)) of (AmN(w)) which converges
weakly to B(w) in the space ([% [o, T]). From the maximal monotonicity of A it follows

that Az(w) = B(w) (see [10], Proposition 31.6, p. 821). Hence
Azni(w) = Az(w) in (c%,[o,fr])'.

On the other hand, the maximal monotonicity of A implies that each weakly convergent
subsequence of (A:rN(w)) has the same limit Az(w). Consequently the whole sequence
(/i.l‘N(uj)) must converge weakly to iz(w) (see [9], Proposition 21.23, p. 268). This

ineans that
T

/(A:rN(w,s) — Az(w, 8}, v(s))ds = 0
0
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for all v € £3.[0.T] and all w € @', and hence
¢
(/ (.A.rN(s) — A:r(s)) ds,v) 40 forallt€[0,T}, veV, ae we. ]
0

Lemma 3.6. For allt € [0, T] the following convergences hold:

t t
/FN(s.rN(s))ds—+/F(s.:r(s))ds ae. weQ,
0 0

/G’N(s.r{v(s))dw(s) f')/G'(s.:t'(.'s))dw(s).
0 0

Proof. From Lemma 3.4 it follows that there exists an Q' C Q with P(’) = 1 such that

N—aco

T
lim ( sup |lzn(t) — z(t))f* + /||1:N(t) - z(t)"?rdt) =0 forallwe Q'
0<1<T J .

Let w € 2 he arbitrarily choosen. Since (r(f)) 01 has continnous trajectories
telo,

in I1, it follows that there exists a constant c2(w) > 0 such that
ll£(w,O|* < ea(w)  forall te[0,T].

The sequence (ry(w)) of processes converges uniformly (with respect to t) to z(w) (see

Lemma 3.4) and hence there exists an index Ny(w) such that Ny(w) > e2(w) and
e v (w, )|? < No(w) forall t€[0,7] andall N > Ny(w).
Hence for all t € [0,T] and all N > Ng(w) we have
Fy(t.an(w. ) = F(t,an(w. 1)),  Gn(tizn(w,t)) =Gt an(w. 1)),

and
Fn(t, z(w,t)) = F(t, 2 (w,1)), Gn(t, o(w, 1) = G(t. z(w,t)).

Since the functions F, (7 are locally Lipschitz continuous, we conclude by Lemma 3.4 that

for all { € [0, T] and all w € Q' we have
Fn(t,zn(w. t)) = F(t, x(w, 1)), Grn(t, rn(w.t)) = G(t, r(w, 1))

and
¢

¢
/FN(s,rN(w,s))ds-—-)/F(s.r(w.s))ds,
0

0
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¢
/IlGN(s,mN(w.s)) — G(8,z(w, 8))||?ds = 0.
1

From the definition of the stochastic integral (see [5]} it follows that

¢ t
/G’N(s,rN(s))dw(S) 5 /(v'(s,:r(s))dw(s). o.
0 0

Now we can state the main result of this paper.

Theorem 3.7. The following assertions are true:
1° Problem (P) admits a solution.
2° Any solution of (P) has conlinuous trajectories in H.

3° The solution of problem (P) is unique with probability 1.

Proof. 1° Since (mN(t))te[o,T] is a solution of problem (Py) we have
¢ ¢ ’
(zn(t) — 20,v) = — /(A:rN(s),v)d.s + /(FN(s.:cN(s)),v)ds +
0 0
¢
+ fentozn(e), vdu(s)
0

for a.e. w € 2 and for all v € V|t € [0,T]. Passing to the limit, when N — oo, and
applying the Lemmas 3.5 and 3.6 (the convergence in probability implies the convergence
a.e. for a subsequence) we obtain

[}

(x(t) — zo,v) = - /(A.r(n), v)ds + /(F(s, r(s)), v)ds + /(G'(s, z(5)), v)dw(s)
0

0 0

for a.e. w € Q and for all v € V,t € [0,T]. Thus (:l:(t))te[0 - i8 a solution of problem
(P).
2° In 1° we showed that the process (a:(t)) has a stochastic differential

t€(0,T)
over the evolution triplet (V, H,V*). Then it follows from the Ito formula for || - |’

that there exists a continnous madification (in H) of (:c(t)) . Subsequently we can

tef0,7

identify the solution (.L(l)) 1) of (P) with a process which has continuous trajeclories
tefe,T

in H (see [2], Theorem 3.4, p. 42).

30
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. ' . .
3° T.et ("'('))ce[n.'r] and ("J(’))IE[O,'I‘] be two solutions of problem (P). By

applying the 1to formula (with || - ||) to the difference of this two processes we obtain

ller(t) = wa(®)))* = /”G(a. w1 (8)) — (1(8, ug(8))||*ds ~ (16)
‘ 0
- ‘2/(41131(41) ~ Aua(s), u)(a8) — ua(s))ds +
ot
+ 2/ (F(s,u1(8)) — F(s,u3(a)), uy(8) —~ ug(8))ds +
0

+ 2] (G(s,u1(8)) — G(s, u3(s)), u1(8) - u,'(a))dw(a)

o\n

for all1 € [0,T] and a.e. w € Q.
Let 7:Q = IR be defined by

T(w) = wup {! €0, 7] | sup |[ui(8)|* <N? and  sup |luz(s)))? < N’}.
0< et 0<s<t
For nlt & € [0, T] we have
E (8, u1(#)) = F (8, ua(a)I* < Bnllui(s) = ua(a)il?,

G (s, u1(8)) = G(a, ua())|I* < Bn |l (8) = ua(s)f*.

By using the monotonicity of A and the inequalities from ahove, it follows from (16) that

tAT

llwi(t AT) - ua(t AT)I* < (288 + 1) / l|wi(s) ~ ua(a)l|*ds +
0
taT
+ 2/(("(0»"1(5))‘*("'(5."2(8)),"1(8)-“z(”)dﬂ’(#)
0

for all ¢ € [0, 7. Since 7 is a stopping time, we have
T
1.3 / (€3, uy(8)) - ((a,ug(8)), u1(8) - ua(a))dw(a) =0 forall t€0,7)
0

Therefore
¢
Ellun(t AT) —ua(t AT € (26N + 1) / Elli(s AT) — w2 () ds.
0
11
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By applying Gronwall’s Lennna we obtain
Efii(t AT) = us(t ATHP =0 forall ¢ €[0.T].

Hence
Elfus(t) —u2()|> =0 forall te[0,7).

We notice that
Plui(t) # wa(t)) < P{ sup |lm(s)i2 > N?} + P{ sup |lua(s)|> > N?}. (v
n<a<T 0<s<T

- being solutions of (P), they have continuous tr

But (“I(t))te[n.'r] and (u'_'(!))'e[",

jectories in H and hence they are a.e. bounded. Consequently
lim P{ su (P > N2 =0, lim P{ sup |[us(s)]|* > N?} =0,
Jim PLosup I 2 N1} =0, fim P{ s (o 2 V)
Therefore (17) implies that.
Plug(t) = uz ()} =1 for all t€[0,T].

By applying again the continuity of the two considered processes we get

l'{ sup Jlu (8) — ua(s))|? = 0} =1.
0<asLT

This means that the solution of problem (P) is unique with probability 1. 0O

Remark. From Lemma 3.4 and Theorem 3.7 we conclude that the process (xN(I)) 01

tefo,
approximates (almost surely) the solution of problem (P). Thus the results of this pape
represent also a constructive method for proving the existence of the solution of th

considered probiem.
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FREE CONVECTION IN AN INCLINED SQUARE ENCLOSVIRE
FILLED WITH A HEAT-GENERATING POROUS MEDIUM

1. CHIOREAN AND 1. POP

Abatract. The numerical solution of a steady state problem of free convection
in an inclined enclosure bounded by four rigid walis of constant temperature,
filled with porous medium, is studied. The multigrid iterative method is used.

Several graphics showing the solution and the heat-transfer are given.

Introduction

Free convection in an enclosure filled with a fluid-saturated porous medium has
occupied the center stage in many fundamental heat transfer analysis. A great deal of
research both theoretical and experimental has been accumulated on this topic during
the last two decades, see the recent monograph by Nield and Bejan [1]. However, there is
relatively little work published on free convection in enclosures filled with heat-generating
porous medium. To the authors’ knowledge, studies reported for this case are only those
by Vasseur and al. [2] and Prasad [3]. Thus, Vasseur and al. [2] have presented numerical
solutions for the problem of free convection in a porous layer bounded by two horizontal
concentric cylinders with uniformly distributed energy sources. Prasad [3], on the other
hand, has studied numerically the steady free convection in a vertical rectangular cavity
filled with a heat generating saturate porous medium where the vertical walls of the
cavity are isothermally cooled and the horizontal walls are adiabatic.

The purpose of the present paper is to analyze the steady two dimensional free
convection in an inclined square enclosure bounded by four rigid walls of constant tem-
perature and containing a heat-generating fluid-saturated porous medium. The problem
is studied numerically using the finite difference scheme and a multigrid method for a
wide range of the Rayleigh numbers, Ra, and inclination and ¢. Solutions for the flow

and temperature fields are presented in the form of streamlines and isotherms.
Received hy the editora: Octoher 24, 1998,

1991 AMathematics Subject Classification. 78508,
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du 8v _ gfK (8T . ar
Ey——?’;——;’——(ﬁgﬂlll(ﬁ—%(‘OS(ﬁ) (2)

ua_T.|.va_T—a(a_22+yl)+_.§_ (3)
ar ' "By \0r? ' ay? (pe)s

where (u,v) are the velocity components along (z,y)-axes, T is the temperature and
S in the rate of volumetric heat generation. Equations (2) and (3) are subject to the

boundary conditions
u=v=0,T=Tponz=0,landy=0,1. (4)
Next, we introduce the non-dimensional variables deﬁnfd as
X=z/l, Y=y/l, U=(/a)u, V=(]a)y, 0= (k/SPNT -To).

Equations (1) to (3) then become

00 an
2 i — g« - —
V¢ = Ra (3}’ sin ¢ X cos ¢) (5)
8y 90 Oy 86
2 _ Uy OV Uy 00
Vie+l= Y 8X 6X oY (©6)

subject to the boundary conditions
Yy=¢=0for X=0,1and Y =0, 1. )

Here V? is the two-dimensional Laplacian and ¢ is the stream function defined

in th usual way

= e V:+a—¢ (8)

U=y X

Also, Ra is the modified Rayleigh number for a porous mediuny defined as

Ra = bAK (sl*/k)l/av. (9)
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B - thermal expansion coefficient
¢ - dimensionless stream function
¢ - angular coordinate
Superscripts

n - number of iterations

Subscripts 0 - value at reference temperature and density
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A NEW PROOF FOR A BASIC THEOREM CONCERNING ITERATIVE
METHODS WITH N STEPS

BELA FINTA

Abhstract. In this paper one gives a new proof of a theorem concerning the
iterative methods with n steps, by using the Banach fixed point principle
Other proofs can be found in [1] and [3].

Let (X, p) he a metric space, and B C X, B # 0 a sphere. Lek's consderthe
equation @(x) = z, where ¢ : B — X is a given function. We can obsérve thak thi
solutions of this equation are fixed points for . To solve this equation a poteibiliky is to
build a new function F : B® = X, where n > 1 is a fixed natural number, so that the
restriction of F on the diagonal set B® coincides with ¢, i.e. F(z,=,... ,m.): m))iot
every r € B.

Now we consider the sequence {z*}4en given by the following iterative methed
with n stepa:

" = F(z"! 2", ... 2}, 20)
and

zh+n = F(z""'""l,z""'""'z, .. .,:vk+l,:l:")

forevery k=1,2,... and 2%, 2!,...,2"? 2"~! € B. The following well known theorem
gives us some necessary conditions which assure us the existence and the convergenceaf,

the sequence {z*},¢n to the fixed point of ¢.

Theorem 1. Let (X,p) be a complete metric space and B C X, B # 0 a closed sphere.
and we suppose that the function F satisfies the following conditions:

i) transforma the set B® into B;

ii) verifies the equality F(z,,...,z) = p(z) for cvery z € B;

iii) satisfies the Lipachitz condition: for every y' y2,.. .y, 2!, 22, 2 eB
we have p(F(y',y?,...,y"), F(2},23,...,2") < Y0, 0iply', 2%), whereaby > 0.4 =

Received by the editors: December 10,1996.
1991 AMathemnatics Subject Classification. 44-00, 65-00.

Key words and phrases. iterative methods, Banach fixed point principie
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T'n are real numbers so that 3. a; < 1. It results that the sequence {z*}.en i
well defined, it is convergent for every z°,z},...,2""! € B and if we denote by z* =
limyooz™, then o is the unique fired point of the ¢ in B.

This theorem has several known different proofs like in {1], [2]. The reason of

this work i» to give a new short proof which is based on the Banach fixed point theorem.
Proof. We build the following function ® : B* — B™ given by formulae
¢(y”ry"—lv . -,Uz,yl) = (un’un-—l’ .- -lunrul)’

where u! = F(p", 9"~ 1,... ") and o = F(u'~1,... ul,y",...,1f) for every i = T,n.
We can observe that the function ® is well defined using condition i). On the space X"

we consider the distance function p : X x X" — [0, +00),

Pro ((ylv y,’ ce ™ (zl’ ’72' vy zn)) = max {p(y‘,z‘)}.
1<ign
It is not difficult exetcise to show that p,, is & metric on the space X", and because
(X, p) is a complete metric space results that (X", poo) is & complete metric space, too.
Now, as B is a closed sphere in X, we obtain that B” is a closed set in X", s0 (/" po,) i

a complete metric space, too. [t remains to show that @ is a contraction on B". Indeed:

Pro (Q(y".y"‘l,....ya,yl), ¢(Zn‘zn-l,_”'zﬂ'zl)) -

1

= pro ((u™,u"1,. R TLIR T W (T Vit B .,v’,vl)) = max {/:(1:‘,1)')}.
1<i<n

We use the Lipachitz condition:

plu',v!) = p(F(y".y" Y, 2 ), F(2™, 2", 2%, 2Y) <

n n
< Z“" -p(y“_"H,Z"‘Hjl) < ;ai . lrg‘asxn{p(yn—‘-0-1':n--a+|” -

i=1

= (Z a.-) max (ol ) = ke max (p(s, 29),
i=1

1<i<n 1<i<n
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-

where we denote by ky = Y0 oy < 1.

plut ?) = p (F(ud g g7~ ) P02 2 %) <

n
<m _p(ul’vl) + Zai 'p(y"""“, zn—i+2) <

=2

n .
N N [ | . (R AN}
ay -k 1'2.'"5",.{”(”’:)}'*;"' Junx {n(v', 2} <

n
. (a]kl ¥ Zai) 0 e 20 = k- max (66, £9),

=22

where we denote by kg = ayky + Y L < + Z?:'z"" =k; < 1.

By induction we show that for i = 3,n we have

plut, v') < k- ll}(l:l)\ ', 2},

where k; < k. Indeed:

pluf, ) = p(F('=Y, . ut ", ), PO, 0t 2, 2 <

i-1
<Zal p(ut=9,vi=9) +Za cp(yt I i) <
j=1 je=s

i-1
< E avjki_j- max {p(y )} + E @ max {p(yn i+ n—ith)) <
i<
i=1 j=i 3Y

. . n-;i-H n-j+1
<Z°1 i max{ﬂ(y Z)} + JX_:‘GJ ig;asxn{p(y 'z )} <

i-1 n
S\ ikimi+ 205 ) - max (o(y', 2)),
j=i ==

j=1

where we denote by k; = Zj =1 akioj + 200 ;. We obtain immediately that

i—1
k,’<’§:aj-1+zn:ﬁ] =k
j=1 j=f



shechuse ki < ki < 1 for j=T7 y:
?~<¢(:/".'y"“'.....1 5 )é{)’ Cz';i"l,....zn,z')} =
Junx {p(u v')) < [max ih..} max {p(y’ zj)]}

i (k) max w ) = ki max (0, #)) =

1<i<n

il

k1 - poo ((y",y"“,-.~.u Y ).‘z".Z"",---,z 2Y),

where ki = maxi<i<n {ki} < 1 i8 the constant of contraction.

Now we choose arbitrary z°,z!,...,2"~! € B. The Banach fixed point theorem
assures us the existence and uniqueness of the fixed point of ¢ : (2},,...,2}) € B" such
that the sequence {(xFn+n—1 phnin=2 .'t:'""”,.'t:'"‘)}heN generated by

(wlm-o-n-l zlm+n-2 zhn+l zlm) —
' 1y 1] -
= (l(h-x)wn-l, glh=1yn4n=3  o(k=1)n+1 z(k-n).n)
for k € N* = N\ {0} converges to this point. This implies for components that
hn4i~1

lim 2

=z
k—=+00

for every i = 1,n. If we choose as initial points
(z",z""',...,2!) € B",
(e"*',z",...,2%) e B",..., and
(z:m-:z'xun-a' . "zn-l) € B",

respectively and we generate the corres;.onding sequence by @, then the first ters giv.

us the following limita: lim z#"+" = lim g*"+"+! = ... = lim g*"+*"~' = 27 1.
k—+o0 . h=oo k=00
the sequence {x¥}ien is convergent and exists the hlim ¢ =z = z* € B. Using i
—$00

fact that for the subsequences limg_,oz*"+=! = z* for every i = T, n we obtain tha:
z} =23 = - =z, = z". The Lipschitz condition for F implies the continuity of I so we
can take the limit in the recurrence relation z#*" = F (gh+n=1 ghtn-2 pht! k)
Consequently x* = F(x*, 2%, ., z* 2*) = p(z*) using ii). So we obtained that »r7 is
a fixed point for . If we suppose that y* is another fixed point of @ then the tol
lowing relations: p(z*,y*) = p((,o(r‘),gé(y‘)) =p(F(z*,z*,....2") . Fly",v".....y")) ~
<Y aip(et.y”) imply that 1 < 37 ay, which means a contradiction with the as
sumption i) q.e.d. tl

A6
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A similar proof appears in [3] for the case of the space X x X, which was the starting
point for this proof un Lhe space X". If we work on the whole space X" instead of ()

sat B, then we obtain the shown thecrem without condition i),
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result to the set of arbitrary 2 x 2 matrices under some weaker assumption. Naine s
follov g theorem is troe:

a b e
Theorem 1. Let X = , Y = / and 7 = pog be a given

¢ d g h u v
matrices such that one of X.Y,7; say X satisfies X* # I for every positive milcgo
k, wheve v #£ 0 and I 1s identity matrix. If the equationi(l) is salisﬁ('(l by the matrices
X.Y,Z then ;’

a—d e—h p—vw
det b f q =0. (2)

c g u

Moreover, we prove the following:

a b
Theorem 2. If the matrir X = # 0 has eigenvalues «, 3 such that o £ g
c d

and 5 is not a root of unity then for every positive integer k we have X* £ v1.

It is easy to see that if X, Y, Z are integral matrices then Theorem 1 and Theorem

a b

2 imiplies our Theoremn 1 of {3]. Moreover we observe that if the matrix X = ,
0 «a

where a 7 0, b # 0 then by induction follows that for every natural number k we have

, k
k a b a*  ka*~'b
X" = = # 41
0 a 0 a*

But the matrix X has etgenvalues a = # = a, so the converse is not true in
general case. Hence, the result coutained in the Theorem 1 is stronger than corresponding
result in [3]. Further we establish some conn -ctions between the solutions of (1) in the
set. of matrices and the solutions of this equation in the set of special functions of one

variables satisfying the condition:

af(z) +b
f(x) +d'

where w #£ 0 and 4, b, c.d are the elements of a fixed number field K.

flr +w) =

Such type functions when K = R has been considered by A.W. Kuzel in [5}.

2. Proof of the Theorem 1

In the vroofl of the Theorem | owe ase Che following
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e d

n
X" = a b _ Fy(a) bW, )
' e d ey Fy(d) )’ - v

| ) i
where Fy(a) = Fy(a,b,e,d), I\(d) = Fy(d,a,b,c) and Wy = W, (a,b.c,d) ure polynomiala

such that

a :
Lemma, Let X = ( ) be a groen matvie, Then for every natural nunber o » 2

Fi(a) = Fi(d) = (a - d)@,. “)

The proof of this Lemmma follows by induction and is similar to the prool of the
corresponding Lemma of [1].
Now, suppone that (1) is satisfled by the matrices X, Y, Z for some n > 2. Then

by Lemma it follows that

Fi(a) b9, + Fy(e) f¥s - Fa(p) qV¥s - %)
(‘Wl F](d) gWg Fz(h) UW:; ﬂq(t))

From (5) we obtain

F\(a) + Fa(e) = Fy(p)
Fi(d) + Fa(h) = Fy(v)
bW + f¥3 = q¥y
eWy 4 gy = uly

(6)

By (4) of Letnma follows

Fi(a) - Fi(d) = (a— d)¥,y Fy(e) = Fy(h) = (e~ h)2, Bs(p) - BV = {p -
a

From the first two equations of (G)Weobh;m

Fi(a) - Fi(d) + Ble) - BOWEFHP) - Bl (3

______

T

Sabstiiuting (7) to (§) we got / ‘a

(o ¥y # (e~ h)‘i’,‘-(p:w)\gi R
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Henee, by (9) and (6) it follows that the system of the following equations

(a=d)¥; +(e=h)¥s—(p—v)¥)3 =0
bWy + f¥y —q¥3 =0 (10)
W) +g¥y3—u¥3=0
has a solution with respect to ¥y, Wq, W3.
By the assumption of the Theorem 1 follows that one of ¥,, ¥y, V; ia different

from zero. Really, suppose that for examplé ¥, = 0. Then using Lemma for the matrix

X" = Fl(ﬂ) 6\[’1 _ Fl(d) 0
' R ) \ o Fd)
and Fy(a) - Fy(d) = (a — d)¥, = 0. Hence Fi(a) = Fi(d) = v # 0 and X" = 9/, 8o

contrary to the assumption of the theorem. Therefore we have W, 3 0 and the system

X we obtain

of homogeneous equations (10) has non-trivial solution with respect to ¥, ¥3, ¥3. Thus

by well-known result about such systems we obtain that

a—-d e-h p-v
det b I q =0.

c g ("

The proof of the Theorem 1 is complete.

3. Proof of Theorem 2

We prove the Theorem 2 by contraposition. Suppose that for some posilive

x (a b)k

Let o, 3 be the eigenvalues of the matrix X. Then it is well-known that the

integer k

matrix X* has the eigenvalues o™, % such that
TrX* =a* 4+ ", det X¥ =a'g*. (12)
From (V1) and (12) we obtain

Iy = o 4 g5, = ok, (13)
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It is easy to see that (13) implies o* = 3* = 0,80 a = f or % is & root of unity
of degree k. The proof is complete.
4. Connections with the set of special functions

Denote by ®(xz, w) the set of all functions f satisfying the condition (*). In this

set we introduce the following operation:
. z+w) = f(z+w)* f(z+w) = f(z+ 2w). (14)

By ensy caleulation from (14) and (*) follows that

@ f(z) + b

2 [ Q400 S A—
fletw =G+ (19)
where a’ = a® + be, V' = bla+ d), ¢’ = c(a+d), d = d* + be.
By induction we obtain
nJ A\ bn
frle )= fla+ o) = 2HEE2 (16)

From (16) follows that for every natural number n we have f" (2 +w) € ®(z, w).

Now suppose that f,g € ®(x,w) and let

f(w+w)=§§(1:))13, g(w+w)=§—g-((—:)l+i§. (17)
Then we define the addition operation as follows
frtw) dge4uy= G+ IE@ +b+e df+o) ()46

(c+t)(f+a)@) +d+u  3(f +g)(x)+d
ansidef the set ®(z, w) with the operations ” »”,” @” defined by (14) and (18).
Moreover let Af3(K) denote the set of all 2 x 2 matrices with entries belonging to K.

Then we observe that the mapping @ : ®(z, w) = M2(K) defined by‘

c

®(f(x +w)) = ( ¢ 3 ) = AiMy(K) (19)

is an isomorphism. Therelore as consequence we obtain the following:
Corollary 1. Formal's equation (1) in the set of Ma2(K) is equivalent to the following
equations:
S w)d g™ (@ +w) = 0" (4 w)
nothe sot bl ).
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Now we ean observe that if for some natural nnmber ks satislied the coudition

\ k
Ab = o w7 v =]
¢ d 0 v
where ¥ # 0 then the function f* € ®(z,w) is a periodic function.
0
Renlly, the condition A¥ = 7 v ¥ # 0 by isomorphism (19) is equivalent
0 7

to

af(@) + b _ 2f(2)+0 _ 1f(x)
A ¥ T Of@ Ty

Henee the function f’f(;r + 1) = f(x + kw) = f(x) i8 a periodic function.

P (& 4 w0) =

= f(x). (20)

Finally we observe that if ®g(z,w) denote the set of all functions f € &(x, w)
with at least three distinct zeros then the function f* € €y(z, w) is a periodic il and
v

y
periodic. then A% = 41, v # 0. Using (20) and denoting by y = f(r) we obtain

only if A% = =1, 7 # 0. Indeed it suffices to show that if f* € ®(x, w) ina

ey’ + (dx ~ ap)y = by = 0. (21)

The condition that the function f has at least three distinct zeros implies that
in (21) all coefficients must be equal to zero. Hence, ¢4 = dy - ay = by = 0 and by

iscmorphism we obtain

Al = an b = v 0 y y=ay=dy 0.
R 0 «
From these considerations follows the fol'owing:
Corollary 2. The functions f* ¢" h* € ®(z,w) if and only if there erists o, 3, 0
afy # 0 such that A* = al, B" = I, C* = 1.
Iu this case the Fermat’s equation f*"(x 4+ w) @ ¢"™ (¢ + w) = h™(« + w) is
equivalent to the equation A*" 4+ B™ = (" and by Corollary 2 the last equation is

equivalent to " o " = 4",
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LAGRANGE-JACOBI AND SUNDMAN RELATIONS FOR A SUM OF
HOMOGENEOUS POTENTIALS

VASILE MIOC AND CRISTINA STOICA

Abstract. One considers the n-body problem in an attractive field defined
by a sume of homogeneous force functions. Starting from the equations of
motion and the prime integrals, one obtains a relation between the momen-
tum of inertia, the potential and the encrgy constant, the analogous of the
Lagrange-Jacobi rclation from the Newtonian case. One also oblains two
relations between the momentum of inertia, the potential and the angular

momentum, corresponding to the Sundman relations for the Newtonian case.

1. Introduction

Cousider a system of n interacting particles of masses m; > 0, i = I,n, in
the Euclidean space R2 let r; = (zi,vi,zi) € R3 be their position vertors, and let
r = (ri,ra,...,7,) € R3 be the configuration of the system. Let the force field be
defined by the superposition of a number N (finite or infinite) of homogeneous potential

functions
U:R™\A[0,00), U(r)=Eellk(r), Us(r)=E"Agijr ™, (1)

where oy > 0, r;; = |r; — 7| is the Euclidean distance between i-th and j-th particles,
A stands for the collision set
A= U {rlri=r;)
1<i<j<n

Ak ij : R? 5 [0, o0) are symmetric positive functions of masses

Apij = Ag(mi,mj) = Ax(injom) = Ag s

Rececived by the editors: November 26, 1996
1991 Mathernatice Subjec Classificatson. 70F05
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and we use (throughout this paper) the abbreviating notation
Y - N — n oL I w
Le =y, Li=ZXL,, X =2YXi<imicn

To be retained that the index k refers to the potential in the sum (1), while the
indices i and j r~fer to particles.

Such sums of potentials (‘onsl'itutho a natural extension of homogeneous (N = 1)
and quasiliomogeneous (N = 2) potentials. The homogeneous models (from o) = I, the
Newtonian case, up to oy = 6 or 8, the Van der Waals case) are well known in physics,
and their study by the methods of mechanics led to many interesting results (see [2,
5, 10]). The attraction described by central potentials with N > 1 also models various
situations. For N = 2, a; = 1, @z = 2, we have Manefl’s field [3, 4, 6, 8, 9] or Mauefl-type
fields [1). For N =2, a; = 1, aa = 3, we recover Schwarzaclild’s field. Fock's field (e.g.
[7]) is recovered for N = 4, o = k. The case aa,41 # 0, az, = 0 models the motions in
the equatorial plane.of a body which generates a field featured by zonal harmonics; awd
so forth.

In this paper we shall extend some results (known for tiu; homogencous case; see
[2, 11]) concerning the n-body problem to such sums of potentials. We shall establish
a relation analogous to that of Lagrange-Jacobi, and an inequality (in two variants)

corresponding to Sundman’s one.

2. Equations of motion and first integrals

The equations of motion have the form

mf; = QU JOr; = =% (r; ~ 7'j)2k('kAk’ij7'.'_j(“—2 (2)

Standard results of the theory of differential equations ensure, for given initial
conditions (r, #)(0), the existence and uniqueness of an analytic solution of equations (2),
defined on an interval (t7,t1), = < 0 < t*. Equations (2) being time-reversible. we
may confine our study to [0,¢%). The solution can be analytically extended to a maximal
interval [0,1*), 0,¢%* < {* < o0; it is regular for t* = o0, and encounters a singularity s

1t is enny to establish that equations (2) admit ten first integrais. those !

masy centre, those of angular momentum, and that of energy, respectively

. . . o
Yot =a, N)imprg—tNomir = b, al ¢ B
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Timir; x 7; = C = constant, C € R?; (4)

T—U =h=constant, heR, (5)
where the kinetic energy of the system, T : R3® — [0, o0), has the expression
T(r) = Zim;r? /2. (6)

(We used the notation u? = |u|?, u € R3.) Fixing the origin of the coordinates in the

mass centre, equations (2), (4), (5) keep their form, but (3) become
Pimir; =0, Xymr;=0. (7
3. Lagrange-Jacobi relation
Let J : R3" — [0, 00), defined by
2J(r) = Zimyr?, (8)

be the moment of inertia. We can state

Proposition 1. For potentials of the form (1) the following equality holds:

J = Zk(2 — ar) Uy + 2h. (9)

Proof. Differentiating (8) twice with respect to time, we get successively

j = E,-m.-r,- . ’l".', (10)

J = Simi (7 + 1 - 7). (11)
By (1), it is easy to show that
1 (0U.0r;) = —Bga Uy
or, taking into account (2),
Eimir; - 7 = —XgopUy. (12)
On the other hand, (5) and (6) lead to
Timir? = 25U 4 2h. (13)

Finally, adding together (12) and (13), and replacing the resulting expression in
{ii} we obtain the relation (9). O
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This equality constitutes the analogous of the Lagrange-Jacobi relation (known

for the Newtonian potential).

4. Sundman’s inequalities

These inequalities connect the potential, the moment of inertia, and the angular
momentum. We can state

Proposition 2. For potentials of the form (1), the following inequality holds:

C? < 2J(J + Spanlly). (14)

Proof. By (4), using |Ep| < _Ellpl, we have
|C| < Timi|r; x 4}, (15)
which, using |u x v} 5 |u||v] and squaring, leads to
C? < [ (Vmilrl) (Vi)
But
(Spq)” < (Tp*)(Ze?), (16)
hence we can write
C? < (Timir])(Simyr),
which, taking into account (6) and (8), becomes
C*< 4JT. (17)
By (5) and (9), one obtains easily
9T = J + SpanUs, (18)

which, replaced in (17), leads to the inequality (14). D
This result can be refined, in the form of

Proposition 3. For potentials of the form (2), an inequality stronger than (14) holds:

C? < 2J(J + Tee ) — J2. (19)






VASILE MI1OC AND CRISTINA STOICA
[11] Wintner, A., The Analytical Foundations of Celestial Mechanics, Princeton Univ. Press,
Princeton, 1941,

ASTRONOMICAL INSTITUTE OF THE ROMANIAN ACADEMY, ASTRONOMICAL ORBSERVA-
ronry CLUI-NAPOCA, 3400 Crui-Naroca, ROMANIA

INSTITUTE FOR GRAVITATION AND SPACE SCIENCES, LABORATORY FOR GRAVITATION,
71111 Bucnanrest, RoMANIA



ABOUT AN INTEGRAL OPERATOR PRESERVING THE
UNIVALENCE

VIRGIL PESCAR

Abstract. In this work an integral operator ia studied and the author deter-

mines conditions for the univalence of this integral operator.

1. Introduction

Let A be the class of the functions f which are analytic in the unit dise U/ =
{z € C;|:] <1} and f(0) = f(0) - 1=0.

We denote by S the class of the function f € A which are analytic in U,

Many authors studied the problem of integral operators which preserve the class

S. In this sense an important result is due to J. Pfaltzgraff [4].

Theorem A. [{] If f(z) is univalent in U, a a complex number and |o| < §, then the

function

G (2) = / O de (1)

is univalent in U.

Theorem B. [§] If the function g € S and a is a complez number, |a| < $, then the
function defined by

Gan()= [ ' (4} du 2)
[
is univalent in U for all positive integer n.

2. Preliminaries

For proving our main result we will need the following theorem and lemma.

1991 Aathematics Subject Classification. 30E20.

Key words and phrases. univalence, integral operators.
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Using (10) and (5) we have
|h(z)] < 1, (11)

for all z € U. From (10) we obtain h(0) = 0 and applying Schwarz-Lemma we have

1 |f"(z) 1
— <lz|I"7' < 12
m 70 |2 |2 (12)
for all z € [7, and hence, we obtain
II
(1= P < b= e (1)

Let us consider e function Q:[0, I] —+ R Qz)= (1 — ) 2", & = ||,z € U, which has

a maximum at a point z =, /-2, and hence

n 2
Q) < (——f(n 9% ) iz (14)
for all € (0, 1). Using this result and (13) we have
2f"(z) v \3 2 ]
0-1:1 | L < bl () 2 (15)
From (15) and (6) we obtain
(-1 |28 < (16)

for all - € /. From (16) and (8) and Theorem C' it follows that (7., is in the class

S. O
Remark. For n = 2, we obtain |y| < 4 and the function (7, 3 is in the class S.
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A STABILIZED APPROACH FOR THE CHEBYSHEV-TAU METHOD

IULIU SORIN POP

Abstract. We consider a different. approach for the Chebyshev-tau.spectml
method hy a modification of the hasis for the test function space. This leads
to sparse matrices, which are better conditioned than those generated by the

usual method, as heing pointed out by some numerical examples.

1. Introduction

Spectral methods have been studied intensively in the last two decades because
of their good approximation properties. This advantage was shadowed by some diffi-
culties generated by this discretization. Thus, the matrices which arise in the spectral
discretization of differential equations are generally full and their condition number in-
creases strongly with the number of shape-functions. Therefore, it is quite difficult to
get efficient. iterative solvers, inainly for the Galerkin or the tau variant of these meth-
ods. Moreover, especially for fourth order problems, stability and numerical accuracy of
the computation can be strongly affected when a discretization using a large number of
shape-functions is applied, and the theoretical accuracy of these methods can be lost.
There are several works concerned with the problems mentioned above in any of the three
existing types of spectral methods (see, for example [4], [8] for the tan method, [7], [9],
[10], [11], [12] for the collocation variant or [15], [16] for the Galerkin approach ~ all of
these cited only in conjunction with Chebyshev polynomials).

The type of the spectral method is dictated by the application. For example,
collocation methods are suited to nonlinear problems or complicated coefficients, while
Gialerkin ones have the advantage of a more convenient analysis and optimal error es-

timates. The tan method can be appropriate in the case of complicated (nonlinear)

Received by the editors: September 3,19086.
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boundary conditions, where a Galerkin approach would be itnpossible and the colloca-
tion extremely tedious.

Our work is focused on the tau spectral method using Chehyshev polynomials.
We try to present. a slightly different approach by a modification of the test-function basis.
This leads to bet.er conditioned matrices which, in case of linear eqmﬂions having con-
stant coefficients, are also sparse (banded). These features are exemplified on some model
problems, where the applicability of the Bi-CGSTAB [17] algorithm is studied. 'The pa-
per is organized as follows: In section 2, some basic properties of Chebyshev polynomials
are provided. The following section deals with the convergence of the Chebyshev-tau
method. Next, the new approach for the tan method is presented, together with some

details regarding the discretization matrices. Finally, we give somne numerical examples.

2. Chebyshev polynomials

In the following we will denote by £2(—1,1), HX(-1,1), ’H";.o(—-], D, ¢k I

llkws |*|k.w the corresponding weighted Sobolev spaces, scalar products, norms and semi
- | ) = 1 1 ; $ i \ Plad 8 u e\ h e

norms on (—1, 1), where w(z) WAPTS] is the Chebyshev weight. Let Py he the space

of (real) polynomials of maximal order N and
Ty (x) = cos(k arccos(x)), k € N

be the k** order Chebyshev polynomial of the first kind. The following properties can

he found for example in [5] or [6]

T p1(2) = 22T (2) = T —a(x), k> 0, (2.1)
Is al 1 s o) &
L () Ty(x) = 5(7k+p + Tjx-p))s (2.2)
Te(£1) = (£, TL(£1) = (£1)Fk?, (2.3)
Ix Al s Al " .
(Inv Im)(),w = -2'cn6'l,m» (2‘)
2, ifi=0
where 4, represents the Kronecker symbol and ¢; := . The properties
1, ifi>0

above are the starling point for the development of Chebyshev spectral methods for
ditferential equationa. ‘The idea is to approximate the unknown function by a Chebyshey

O
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series and to make use of the differentiation rule which can be deduced from (2.1}, 'T'hus,
if
(=]

u(r) = Zak’ﬂ.(a‘), (2.5)

k=0
its derivative can be expressed in the form ([5])
(>8]
u'(z) = Zag)Tk(z), (2.6)
k=0
where

0
)

ag) =2 L pay,. (2.7)

k p=k41, p+k—odd
Similar relations can be deduced for other operators. After a spectral discretization is
done, one has to project the initial spaces onto finite dimensional ones. Therefore, one
would consider a truncated series up to an order N in (2.5) and (2.6) in the Galerkin or
tau case, or an interpolant of the same order for the collocative methods. Then the result

will be projected on a finite dimensional space in order to get a finite system, where the

in the collocative approach Dira« distributions can be considered as the “test functions”.

3. The Chebyshev-tau method

In this section the tau variant is described generally and the convergence of the
Chebyshev-tan method for a 4'* order Dirichlet boundary value model-problem is given.
There are several methods for proving the convergence of the Chebyshev-tau method
(see, for example [4] or [14]) L.ut we will respect the approach in [5], chapter 10.

Let us consider the f llowing examples

L= —u"(x) + Au(z) = fi(z), z € [-1,1), (3.1)
u(+1) =0,

respectively

Lou = u"V)(2) + Au(z) = fa(x), = € [~1,1], (3.2)
u(£1) = v/(£1) = 0.
Both problems can be treated in a similar manner, therefore we will consider a unified
approach. Let us denote them by (Pi), where k = 1 in th~ first case and k = 2 in the
second one. [n the following the index k appearing in any of the relation below should be

or ¢ 1 with the corresponding value for the problems above. In both case the existence
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and uniqueness of a (variational) solution can be obtainéd for any f in H=*(—1,1) (the
dual space of HY (—1,1)). For working in weighted Sobolev spaces the following bilinear

forms should be considered

1 1
ag : ME(—1,1) x 'Hf,.o(—-l, 1) — R, ay(u,v) = / u® (vw)®) dx +/ Muvw dz, k=
-1 -1
(3.3)
Then, for any f in #;*(—=1,1) the problem (Py) is equivalent to the following variational
one
ug € Hk “lv l ]
k w,()( ) (34)
Yo € ,Hf),()('— lv l)v ak(“hl v) = (fi U)O,w-
Continuity and ellipticity for a, are proven, e.g., in [6], chapter 11 (k = 1) and [3], lenma

111.1 (k = 2). Therefore, existence and uniqueness for the solution uy is assured in both

cases and one gets
Newsllew < HIN-s,0- (3.5)

The corresponding discrete problems obtained by a Chebyshev-tan discretiza-

tion, assuming f € £L2(--1,1), are

uy N € Py ﬂ?if,’o(-l, 1),

(Px.N) (35.a)
Vv € Py-ak, ar(un,v) = (f,v)ow,
or their equivalent strong form
u,N € Py,
(Pen) § (Liwg,v)ow = (f,v)ow, Yo € Pn_ax, (3.5.h)

up (1) =0, 1 =0,F - 1.

Theorem 3.1. Forany f € ,C:‘:,(—l, 1), the problem (Pi n) has a unique sol. 'ion uy n €
Py ONHEE (=1, 1) which converges to the solution ;. of the problem (Py) as N tends to

w,0

infinity. Moreover, if ux, € H2(—1,1) with a > 2k, then the error is bounded by
e ~ wr wlfanw < CN* 7 |ulla,w- (3.6)

Proof. This result is obtained for (P} in [5], chapter 10. A similar approach can be
considered for (P2). The continuous “inf-sup” condition ([1], theorem 5.2.1) is fulfilled for
L3 because of the ellipticity and boundedness of ay. In the discrete case, for any uy € Py,

u(,:l') € "Ny _4 can be taken as test function. Notice that, if uy € Py OHZ,_O(-~I. 1} and
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"(1\5 )= = 0, then uy = 0, hence in this case the condition is trivially satisfied. Therefore

we obtain

sup (Laun,v)ow _ (Laun, “f-:v))o,w _ |“N|3,w +\? f_ll("Nw)"“,I(I
v#ovePy o Hollow - ”"%V)"o’w |unlaw -
lunli., + CXlanlaw
Z Z |"N|4,w~
IuN|4,w

Now, applying Poincaré’s inequality (Appendix of [5]) successively, we gei

lunlaw > Cliun||aw

and by theorem 6.2.1 in [1] the first part of the proof is shown. In order to get the error

estimate we have to remind that the discrete stability condition yields

Ny — u <(C inf u— . 3.7
oz —vasllaw SC_ il el (37)

Theorem 4.1 in [13] provides the existence of an operator Ilf:(,)v FHE(~1,NHE o(—1,1) —
Py NHZ (-1,1) such that for any u € H2(—1,1) NH2 ((—1,1) the following holds
VB, 0< B <4, flu—MgRullpw <ONP~|fulla,w- (3.8)

The last two relations with # = 4 in (3.8) leads to the desired estimate. 0

4. A different approach

As pointed out in the introduction, we will suggest. a different approach for the
tan method. The basic idea is to preserve the spaces in which this method was formulated
originally, while considering a diflerent basis for the projection space (test functions). We
will restrict. ourselves to ordinary differential equations, but these ideas can be applied

also in the multidimensional case. Let us define the functions (k € M)

(o) o= T () = O (2)

o"(x) = 2Tie), @) eSS

&, ,i> 0 (4.1)

and

$U-D G-V
#0(0) 1= (o), 8 (0= SRR Sl o

. 1, ifk=0.N-3
where ¢ was given in (2.4), dx := dy(N,0) = and f stands
0, oltherwise

for the order of the differential operator. The following lemma justifies the choiee of

{‘bu k=0N— /i} as test function basis for the Clhichyshev-tan method.



f.emma 4.1, For any i € 11 the following relations hold

W)y, =0 VE> N - p

b) span { B0, k =0 N =3} = Pu_p.

Proof. 'The case i = 0 is obvious. Then, both a) and b) can be proven by mathematical

induction after . 0

Remark {.1. If the Chebyshev-tau disrreti.znt.ion matrices have already heen constructed,
then Lesting with the functions described above is similar to an algebraic transformation
of the resulting system. This transformiation can be described in an iterative way and it
refers only to the part of the system ('.orrespon(ling to the differential operator. Let us
assume that we have written .first, the equations for the boundary conditions, and then
those resulting forin the test with Ty, k = 0, N — . At step j§, 1 < j <4, one has (o
subtract the equation number k 4+ 44 2 from k + 8 and divide the result with 2(k + j).
When & +2 > N ~ /4 only the division should be performed. The resulting system
will be identical to the one which arises when {<I>m_.,k =0,NZ /3} are considered as
test functions, However, this does not take advantage of the “spr\rﬂll.y potential” of this

approach and the reasons will be seen below.

Lemma 4.2, Letu(x) = Y oo, axTi(x). Then the following relations are satisfied (Vk €
N)

(1,8 )ow = char, (S, 0w = ZI?%)' [exar ~ ak 2], (4.3)
(2) Crak ar42 Ok +4 .
w = A3
(1w, ®%a)o SAET )R+ 2+ )k+3) TAkT kT 9 (1.3b)
@\ _ Cxay Sakgr e
(w0 radow = gDk + 20+ %) "8+ (4 DT (4:4)
3ag4a kg
YRR Tk + ) (ET5) Bk FNh L NE B
(." d)“‘) ) — CrQy 4(lk+'
Pt = IR 2k + 3)(k+4)  16(k+ 1)k 3)(k + )k 15) "
{1.3d)
Bak1a L. \
lb(L + 2k +3)(k+5)(k46) 16054 D& Ak + B)(kt )
ag48

o S
16(k + 4)(k + 5)(k 4 “)( +7)
Proof. The above relations can be abtained by a direct compntation using the definition

of (D(')

O =0 i
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Remark 4.2, The relations in (4.3a-d) also hold if {(i'f_':‘,k =0,V - ;?} are considered

as test functions. In this case one has to replace agy, by diy joy ;o but only when j > 0

Lemma 4.3. Let u(x) = Y, axTi(e). Then, for anyi > 0. k ¢ H
(' ) Vo = (w, @ N (4.4)

Proc We use again the mathematical induction after i. ‘I'he case i = 0 can be obtained
directly from the relations in (2.5) - (2.7) and (4.1). Assuming that (4.4) holds for
7=0,i—1, (4.1) gives us
’ s -1
(v, ki-x)()w = 2“ 9 [ L pi- 1)0 w o (u .A¢L+.+)|)u w] . (4.5)
Now, because of the assumption we have made, we gel.
-1 (i-1)
( k+1~l)"W = (“ ¢k+,_|)0wy (“ q)l..'.,‘.“)(),w = (u, q’}”” |)(l W (46)

and by (4.1)

; ol ~ ol
-1 — "*‘. _‘__ 5_“_.* ' 7
k4i—-1 (k + l) (4 ‘)
Putting together the relations in (4.5) — (4.7) we get the desired result. Li

Remark 4.3, Lemma 4.2 remams true also tn the case defined in (0.2),

Remark §.4. Lemmas 4.1 and 4.2 give an iterative way to boild the differentiation ma
trices for the desired differential operator. Lemina 4.2 also suggests that, in the case
of a differential operator of order 3, a reasonable choice for the test functions would be
{(bf';),, k= (),—ij—i} This reduces all the differentiation matrices 1o banded ones. The

numerical examples are performed in this manner.

Rewark 4.5. Shilar differentiation matrices are obtained in the integral formmbaion of
the Chebyshev-tau method ([4], [8]). The differcnce could appear in the case of voneon.
stant coellicient problems or nonlinear ones. Bui Lhe approach proposed abayve has adso o
stabihization effect, in the sense that the dizcretization mateices have elewienls witd e
duced order of magmtude. More, in comparison to the chassical approach, the ccanplexaty
ol the computations involved in this discretization w decreased. The follownig lerman
which <00 be useful in the case of nonlinear problews (e g Bureger’s or the Navier Stokes

equattons) sustains the former statenent
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(PP R &»4- Mu(t’ :Zf“nku(;) andg(F) = zrao"" Ti(r). Then, for any ‘1& PR
we have

. n 4 - . . .
(o2 o= ey Awao + ,\‘:‘. [20k + 1+ )bicr—ji + 2(k + 1+ )birja] a
(4.84)
::-i—.l,p-o-ld paoa, ‘*‘223?—.0“1‘“1“- if k=0,
. 1
(“,“1 ‘b;:,:l)ﬂ,w YT EETY ﬁ (48b)
4k +1) | ) .
(k+1) apay + f:’;zl 20k +1=j)ajanyr-j+

+2(k 4 1) E;’?__l 144, otherwise,

3y + Z;o:a p+k—odd pbp, if k=0,

by, otherwise

where Ay =

FProof. Both relations can be obtained from (2.2), (2.6) and (4.1), but the caleviug is

quite tedious and therefore it is skipped. Li

Remark 4.6. Similar features are obtained for other hases defined in (4.1) or (1.2).

It is worth to complete the approach with a treatment of the algebraic equations corre.
spouding to the boundary conditions. By the inethod described above, the elemenis of
the part of the discretization matrix corresponding to the differential operator are scaled
to O(1) (in fact the order of magnitude for the coefficients of the equation); this results
from the discretization of the highest order derivative. Therefore, it is natural to wodify
the equations arising from the boundary conditions similarity. The simplest way is o
divide any of the equations mentioned above by a number of order O(N?*), where k :s
the highest order of the derivatives appearing in the corresponding boundary condition.
Although it scems trivial, using this trick a sensible improvement of the condition numl -r

of the discretizntion matrix can be obtained.

5. Numerical examples

In this pert some results obtained with the Chebyshev-tau method in both ap-
proaches are given. All the computation are performed in double precision on an 1BM-
H5/5000  anprader, o0 D NAG rontines are used to conipute the necessary eigenvalues
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At first, we compare the condition numbers of the resulting Chebyshey tau discretiza-
tion matrices for the problems in (3.1) and (3.2) in the classical respectively the modified
approach. This number plays a determinant role in the convergence behavior of iter-
ative methods and represents an important source of roundofl errors. 'I'ie results are
presented in tables 5.1a and b for the problein in (3.1) and in tables 5.2a and b for
the one in (3.2). For the first problem, the condition number is of order O(N?) in the
classical tan method, while in the modified variant decreases to O(N). Sumilar ieatures
are obtained for the second problem. In this case, the matrices generated by the classical
method have a condition number proportional to O(N8), while in the modified approach
the same characteristic has been reduced to O(N3).

The increased stability of the modified approach is shown through the results
obtained for the examples mentioned before. Here f was taken such that u(r) = sin® nz
is the exact solution. The Jiscrete problems are solved using the (unpreconditioned)
Bi-CGSTAB algorithm [17]. The stopping criterion is set to [[r®)]}./|[b]l2 < ¢, where
¢ = 107 for the problem in (3.1) and ¢ = 107¢ for the one in (3.2) (r® stands for
the residual of the k-th iterate of the linear problem Aw = b; LI N Au(")), From
Tables 5.3a and b, a gain in accuracy can be observed in the modified version. We had
uo problems in achieving the stopping criterion in a moderate number of iterations, even
in the cases when the classical tau method failed. In the tables ™' indicates divergence,
or non-convergence in 250 steps. ‘The failire of the method in the classical approach is
due ta roundoll errors, the algorithm being tinite. lu the modified approach, the namber
of ileraidons tends Lo remain stable wilh vespect to the diseretization order, while a
significant increasal with N can be seen e the classical method. ‘Therefore, we can
allirm that the proposed variant is more robust.

Couacluding remarks. We have proposed a different. approach for the Chebyshev
tau method, which removes partially some of the inconvenients of the classical one. Maore
sparsity and better conditioned matrices are provided, aad therelore an improved sta-
bility and converging properties are obtained. ‘{lie modification s eany to impletnent..
However, a good preconditioner for this method is stifi to e foml.
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Table 5.1a Problem (3.1), classical Table 5.1b The same, modificd-tau
N A cond cond- N N A cond cond- N
8 0.0 575.17 0.876E-01 8 0.0 7.64 0.849
10.0 310.21 0.472E-01 10.0 36.40 4.045
32 0.0 0.115E406 0.971E-01 32 00 2470 0.748
10.0 0.630F+405 0.531E-01 10.0 73.77 2.235
128 0.0 0.273E408 0.987E-01 128 0.0 92.62 0.717
10.0 0.149E-+08 0.540E-01 10.0 148.32 1.149
256 0.0 0.432E+()_9 0.990E-01 256 0.0 183.13 0.712
10.0 0.236E+4+09 0.542E-01 10.0 209.82 0.816
512 0.0 0.686E+10 0.991E-01 512 0.0 364.15 0.709
10.0 0.376E+10 0.542E-01 10.0 296.80 0.578
Table 5.2a Problem (3.2), classical-tau Table 5.2b The same, modified-tan
N A cond cond- N~® N A cond cond- N7
8 0.0 0.625E+05 0.145E-02 8 0.0 105.68 ().dl A4
10.0 - 0.564E4+05 0.131E-02 10.0 31.96 0.43%1-01
32 0.0 0.326E+10 0.232E-02 32 0.0 0.465E403 0. l;"_
10.0 0.295E+10 0.209E-02 10.0 0.423E403  0.456E-01
128 0.0 0.186E+15 0.242E-02 128 0.0 0.261E4+06 0.121
10.0 0.16RE+15 0.219E-02 10.0 09708405 04511 01
256 0.0 0.464E+17 0.244E-02 256 0.0 0.204E407 0.11¢ -
10.0 0.420E+4+17 0.220E-02 10.0 0.764E+406  0.450F 1
512 0.0 0.117E+20 0.244E-02 512 0.0 0.161F408 0.119 N

10.0 0.106E+20 0.221E-02 10.0 0.607E+07 0.

=

44950




Table 5.3a :

Number of iterations and absolute errcr for (3.1)

classical-tau

modified-tau

A A
N 0.0 10.0 100.0 0.0 10.0 100.0
8  9(0.381-107") 14(0.329-10"") 18(0.200-10"') 5(0.381-167') 10(0.32¢-107') 12(0.200-10"")
16 20(0.347-10"%  32(0.320-107%) 100(0.761-107%) 5(0.347 107%) 1:1{0.322-107%) 28(0.195-107°%)
32 63 -i06-107%) 51(0.172-107%) * (*) 5(0.999 - 107'%) 11(0.166-10"7) 51(0.164-107%)
64 196 (0.409-1077) 225 (0.451 - 107%) * (%) 21652070 11{0.237-1077, 44(0.131-107%)
128 * (¥ *{4) * (= 50222 167Ny 11(0.301-1077) A2(0.74¢ - 1.7Y)
2385 2 {e} * ;%) « () 5(0.999-10~'%} 11(0.308-10"7) 44(0.727-107%)
512 * () * (= ¥ (¢} 5(0.878 -107'%) :1(0.333-1077) 46(0.296-107%)
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HILBERT NUMBER OF AN ALGEBRAIC SURFACE

PINGXING SHENG

Abstract. In this article, we find ¢ he maximum number of sheets for an
n
algebraic equation of degree n in space is bounded above by Z 2 —n+ 1

=1 ‘
Some impossibility of specific configurations is discassed. It solves the first

part of Hilbert’s 16th problem.

What is the maximum number of sheets for an algebraic equation of degree n in
space? What is the rnaximum number of the connected components of the complement
of an algebraic hypersurface of degree n? How do self-intersection curves of an algebraic
hypersurface hehave? Can one classify all sheets of an algebraic hypersurface? What are
the possible configurations of sheets? It turns ont that above questions are interesting
and very classic in algebraic geometry.

We consider the following algebraic equation P(x,y,z) = 0 with deg(P) = n.
In first part of Hilbert’s 16th problem, one discusses the maximum number of sheets
for above equation. The definition and classification of sheets are important in order
to understand the problem. Usually a sheet means a piece of regular surface of the
algebraic surface P(z,y,z) = 0. The maximum number of connected components of the
complement of an algebraic hypersurface has been discussed often to avoid the confusion
in definition. A lot of beautiful results have been obtained by different mathematicians.
I apologize first for not going to summarize all different results in this direction. Along
this line, some results have been obtained by Gudkov, Rassias and-others. One may
consult the references for literature. In [6], Rassias discussed same problem for planar
algebraic curves, and made a progress for first part of Hilbert’s 16th problem.

For a given algebraic hypersurface P(z,y,z) = 0, there are sometimes many
isolated surfaces. We are first interested in considering some very specific isolated surfaces

which are submanifolds of R? with only infinity as boundary or without boundary. For

Received by the editors: October 15, 1906,
1991 Alathematice Subject Classification. 14A10, 58F22.
Key words and phrases. Hilbert 16th problem, algebraic anrface.
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example, (£ 4+ y? + 2% — 1)(z + y + = — 100) = 0 consists of a unit sphere and a plane.
The unit sphere 22 4 y? + 22 = 1 and the plane £ 4 y + z = 100 are two isolated surfaces
of the algebraic equation (2% + y* + 22 — 1)(z + y + z — 100) = 0. These two surfaces
do not intersect each other, so they are called isolated surface. The following results is
trivial according to the factorization of polynomials and the fact that each surface of a
given algebraic hypersurface has at least degree one in its algebraic representation.
Proposition 1. The marimum number qf tsolated sheets (suvface) for an algebraic
equation of degree n is bounded above by n,

If considering regular sheets, oue is interested in knowing configurations of sheets
when the maximum number reaches. Even in the plane, another still open problem is to
find all possible configurations of closed branches of a plane curve of degree n with the
maximum number 1+ 1"—"%";22 Since many configurations can occur as the maximum
number reaches, a special interest is to know if two extreme can happen, namely if no
closed branch of curves can sit in interior of another and if each closed branch sits in
interior of another closed branch (namely they are all nested).

In [6}, Rassias considered the maximum number of connected regions of that
possible straight lines can induce. From statement of Hilbert’s 16th problem, "as to the
curves of G6th order, via a complicated process, it is true that of eleven branches which
they can have according to Harnack, by no means all can lie external to one another”, it
seems that the first ekvt.reme case will not happen for any algebraic plane curve of degree
6. However, a proof does not occur for any degree n. 1 For the second extreme case, it
seems not difficult to prove.

For algebraic hypersurface, such question is much difficult because too many
cases (too many configurations) can oceur when the maximum number of sheets of an
algebraic hypersurface reaches. The most difficulty is to know what character of a poly-
nomial determines the configurations of sheets. It seems that the degree of a given
polynomial determines the maximum number of sheets. Then, what is the maximum
number of sheets for a given algebraic hypersurface of degree n? The following questions
may be helpful in solving or answering such open problem. For any curve on the alge-
braic hypersurface P{z,y, z} = 0, how many sheets can have this curve as their comnion

boundary? Furthermore, for any point on the surface, how many common boundaries

LPetrovakii <howed that the number of ovals of a curve of degree 2n not containing each other 1o lean than

or equal to %u(n - 1) 4t

Ry
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(self-intersection curves) of sheets can have this point as their common vertex. These two
questions play a central role in proving main theorems. It seems that we can only have
parallel n isolated sheets for configurations when maximum number of isolated sheets
rcaches. It makes us conjecture that the maximum number of sheets for an algebraic
equation of degree n.is less than or equal to the maximum number of sheets for the al-
gebraic equation of degree n, PPy ... P, = 0, with degree one for all P;. Now we expect
to know the maximum number of sheets of P,P;... P, = 0.

Theorem 1. For the algebraic equation P\Py... P, = 0, where deg(P;) = 1 for all i,

the marimum number of sheets is bounded above by

n

Ei’—n+l.

i=1

Proof. We are going to show by induction on n. When n = 1, P; = 0 represents a plane
in space which is a sheet. Hence the result is trivial. Now we assume that if n = k — 1,

it is true that Py P, ... Px_; = 0 has no more than

k-1

Yot —k+2

i=1
sheets. For n = k, consider the system P\P;... P,y =0, P, = 0. If the plane P, = 0
intersects with all other planes P, = 0, P, = 0,..., P,_y = 0, we want to know how
many extra sheets can be created after the plane P, = 0 intersects with others. It
is easy to sce that any two planes in space can intersect with each other once, thus
the plane P, = 0 can intersect with other planes totally no more than k — 1 times.
Look at each intersection, to find how many extra sheets can be created. Let L be
an intersection straight line of two planes, parametrized by z = at + b, y = ¢t + d,
z=-et+ f. Since PP;...Pc(at +b,ct 4+ d,et + f) = 0 cam only have k isolated roots
int, .it indicates that surface PP, . 'A'P" = 0 can have no more than k + 1 pieces on the
straight line L. Therefore, each intersection can -not create more than & + 1 sheets. So
extra (k— 1)(k 4+ 1) = k% — 1 sheets can be created after the plane Py = 0 intersects with

others. It has
k-1 k

Y2kt 2+k -1=) i’ —k$d.

i=1 i=1
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By induction assumption, we have proved that the maximnm nmimder of -
for Py Py ... P, = 0is hounded above by

k

Zi"’—k+l.

i

Nevt, we want to show that the maximum number of sheets for an arbitrary algebraic

equation of degree n is also bounded above by

n

Zi"’—n{-l

=)
and want to know if the maximum number reaches only if P(z,y, z) can be decomposed
into PPy ... P,. Does it imply that if P is irreducible, the maximum number of sheets
can be reduced?
Theorem 2. The marimum number of sheets for an algebraic equation of degree n i

bounded above by

n
Zig—n-i-l.
i=1

Proof. We try to fulfill a proof via the following two lemmas and the theorem Vo First we
have to show that the maximum number of sheets of P(r,y, z) = 0 having a curve as a
common boundary is less than or equal to the maximum number of sheets of Py 1Y, P, =
0 having a straight line as a common boundary. Second, one needs to show that (he
maximum number of paths ¢ P(r,y, z) = 0 having a point as a common veriex « less
than or equal to the maximum number of half rays on P, Py ... P, = 0 having a point as
a common vertex. Then by the theorem 1, proposition 1 and the fact that each sieet has
a curve as a boundary or a poini as a common vertex (nonisolated sheet only), a proof
of the theorem ca1 be obtained.

We may first fix some terminology that a comimon boundary of sheets is a seil:
intersection curve of aigebraic hypersurface P(x,y.z) = 0. A common vertex is an
intersectton point of common boundaries of sheets.

Lemuma L. The marimum number of sheets having a curve as a common boundury o
less { an or equal io 2n, wiucn s @ martmum number of shects having a strawght lose s
a common houndary.

14
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Proof. Consider any curve L on the hypersurface P = 0, and assume there are a sheets
having this curve as their common boundary. If L is a straight line, o« < 2n trivially
because maximum n planes can occur and each plane turns out to be two sheets via
the separation line L and because any surface other than plane containing such line has
at least degree two and induces less sheets via the line L. If L is not a straight line,
then each algebraic sheet with partial boundary L has at least degree 2, thus o < 2n
too. It implies that the maximum number of sheets having a curve L as their common
boundary for an algebraic equation of degree n is less than or equal to the maximum
number of sheets having a straight line as their common boundary for the algebraic

equation P\ P... P, = 0 with Je_q(P,-) =1 for all i. 0

Lemma 2. The marimum number of paths (boundaries of sheets) on P(z,y,z) = 0
having a point as a common verter is less than or equal to the. marimum number of half

rays (boundaries of sheets) on PPy ... P, =0 having a point as a common verter,
Proof. It is trivial. a

Since a common vertex is an intersection point of common boundaries of sheets and can
be thought a special point on some curve which is a boundary of sheets, via the lemma 1,
that the maximum number of half rays (boundaries of sheets) on Py Pa...P, = 0 having

a point. as common vertex is equal to 2n implies the .leﬁ}ma 2. 0

Let us re;view Bezout’s theorem here for later use.

Beront 8 Theorem. Let f,, fa,..., fm be hypersurface of K P™ which only intersect in
a ﬁmte set {m;} of points and let d; be the degree of f;. There may then be assigned
multiplicities to the m; independent of the coordinate system such that counted with these
multiplicities the number of intersections is d = dyd: .. .d,,. .

Generalized Bezout’s Tht_aorem. If two algebraic manifolds intersect normally and
have orders m and n respectively, then their intersection is an algebraic manifold of order
mn.

We first. cdnsider some open problem for plane algebraic curve. Harnack showed
that for a plane algebraic equation of degree n, the maximum number of closed branches
is bounded above by 14 (ﬂ)i("—_:’l. It seems that this number is somehow related to the
number of double points. The following theorem is classic aigebraic geometry indicates

that.
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Theorem. An irreducible curve C™ cannot have niore than 1—"——11}"—-—2—) double points.

It is nataral to ask what intrinsic property of the algebraic equation P(z,y) = ¢
determines the configurations of closed branches when the maximum number reaclies.
Especially, two extreme cases are that all branches lie external to one another and all
branches are nested. As to the curves of the 6th order, Hilbert found that the first case
cannot occur. [t is easy to have the following proposition for second case. When n = 2,
it is trivial.

Proposition 2. For n > 3, when the maxif;mm number of closed branches reaches, all

closed branches cannot be nested.

Proof. This is very trivial if one considers a straight line intersecting with each closed
branch twice and Bezout’s theorem on the maximum number of intersection points of
a curve of order n and a straight line of order 1, bhecause 2 (1 _'_11—-_1)5("_-1)) >nif
n> 3. O

It seems much difficult to show the first case in general. However, above classic theoremn
and Harnack’s theorem can be used to carry out a proof.
Proposition 3. For an irreducible algebraic curve of degree n (n > 5), all closed branches

cannot lie erternal to one another, when the marimum number of closed branches 1 +

- p— 1
u)éﬁ—“) reaches.

Proof. We mainly classify some nodes and conclude the impossibility of above configu-
rations, by using some induction on the number of nodes (double points, multi-nodes)

and the degree n. Some closed branch is an oval without any node, for example,

O ~— oval

Without discussion on the possibility of such oval for an irreducible algebrai
curve, an intuitive argument leads to the fact that each oval has at least degree two in
its algebraic representation. We assume that among 1+ M)i(ﬂ closed branches, only
one oval and all others induced by some nodes. By the assumption, we have (11;1,]}"_—3’)
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doubie points, and one oval with at least degree two. It implies that an irreducible
algebraic curve of degree n — 2 has Lﬂ:l_)}"_—_’l double points. It contradicts to above
classic theorem. Similarly if we have k ovals without double points (k > [!’2-]) and other
closed branches induced by simple double points, then an irreducible algebraic curve of

degree n — 2k can have 1 — k + ‘"—_l)i("—'—zl double points. It also contradicts to the above

theorem because 1 — k + {2=1Mn=2) 5 (n=2k=1n-3k-3) ¢ 4, 5 3 <k<[3] Ifa

node induces more than one closed branches, for examples, two or three closed branches,

<O

(@) h)

then we here call such node a multi-nodes (different from usual definition of
multi-nodes) and use similar argument for each compound closed branches induced by
one multi-nodes. As a simple fact, the degree of each compound closed branches induced
by one multiple point is at least the number of closed branches, namely (a) has at least
degree two and (D) has at least degree three, etc. In general, if a multi-nodes induces k
closed branches, then the algebraic curve generating that compound closed branches has
at least. degree k. Here we have to clarify two different questions on closed branches of an
irreducible algebraic curve and on connected regions induced by an irreducible algebraic
curve. The following example are not the situations that each closed branch lie external

to one another.

However, the connected regions induced by an irreducible algebraic curve on
ahove cases are nine and eleven. The closed branches of an irreduncible algebraic curve
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are four and five although they do not. lie external to one another. Therefore, such canes
are not included in our assumption, otherwise, there is nothing to prove hecause we
already know when the maximum nnmber reaches, all closed branches do not lie external
to one another. Now if k closed branches among 1 + M)i("_"ll circuits ig induced by a
multi-nodes, then algebraic curve of degree n —k has 1 —k + M}fﬂ closed branches,
each with one double point. According to above classic theorem, an irreducible algebraic

—k— k- . .
curve of n — k cannot have more than (1———1121"——"—3) double points. Since

(n—k-1)n-k-2) (n-1n-2) k(n-2 kn-1) + k2

2 .2 P) 2 2

_(n=D)(n=2) k@n-3) K _(n=1)n-2) 5k K
= ; = . bl = Uk 5=kt o

If =1+ % = kn+ B2 <0, then (=Un=2) _ gy g 5 (aZkolfnobed) gy

contradiction. Now we are going to show —1 + i'-,!'-—kn+ 4 <O0forn>56and k <n.
Infact, —14+ % —kn+ & =k (E-n+%) 1= 502y coir5—2m+ k<0,

namely 9—'5—'5 < n. Clearly n > 5'—*215 if n > 5 and & < n. For any combinations of
ovals without nodes, multi-nodes inducing several closed branches and each double point
having only one closed branch, it is similar. A contradiction follows. Therefore, the prool

is completed. Ol

As we mentioned before, for an irreducihlenalgel)raic surface of degree n, is it possible to

reach to the maximum number of sheets, Z i2—n+17 In order to answer such question,

one needs some classification of nocdes ani1=ilntersort.ion curves of algebraic hypersurface.

It seems that the possibility of such positive answer is rare excepl for n = 1. How

to determine the degree of intersection curve is a key point. We clain that for an

irreducible algebraic hypersurface of degree n (n > 2), it is impossible to reach the
n

maximum number of sheets, E i —n + 1. However, a lower upper bound for such case

cannot be provided here. It i'sz.;t.ill open. For configurations of sheets as the maxin -m
number reaches, it- seems much difficult to discuss. We may discuss the configuratious
of connected components of the complement of an algebraic hypersurface instead. Two
extreme cases that all connected (*ompoﬁents are disjoint and all connected compounenis
are nested are Live most interesting. Tt may easily provide an exact answer for sach two

situations.
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As the problem mentioned in [8], the extension of Hilbert's 16th problem to
arbitrary dimensional algebraic hypersurface is certainly an interesting question, espe-
ially for 4-dimensional case P(zy,x3,23,x4) = 0. Discussion of sheets of such algebraic
hypersurface may lead to some idea for classification of submanifolds of R*. This is a
very popular question in differential topology, differential manifolds, geometric topology,
and so on. Poincaré’s conjecture for S? in differential topology is very elegant problem
which is still open at this moment. It leads to the impossibility of the classification of
compact 3-manifolds in 4. We hope to see some progress along this line s;nd some new

discussion on 4-dimensional hypersurface.
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THE MANEFF-TYPE TWO-BODY PROBLEM IN VELOCITY PLANE

CRIBRTINA S8TOICA AND VASILE MIOC

Abstract. One studies the qualitative evolution of the relative motion in the
two-body problem for Maneff-type potentials. Using the prime integrals of the
angular momentum and energy, one gets the trajectories in the plane of the
polar components of the velocities in the case of nonradial motions for all the
combinationa of the parameters (A, B) of the field, the angular ymomentum

(C) and energy constant (h), corresponding to the real motion.

1. Introduction

Consider a central force field of centre M characterized by a quasihcmogeneous
potential function of the form 4/r+ B/r?, where r = |r| (r = position vector of a particle
with respect to M), and A, B = constants. We have called it (e.g. [13]) Maneff-type
field, because such a potential function generalizes that proposed by G. Maneff [6-9] and
reconsidered recently in a series of studies having as departure point F.N. Diacu’s [2]
researches.

Let a particle of unit mass be moving in a Maneff-type field. Its relative motion

with respect to A will be planar and described by the equation
F=—Ar/r® - 2Br/r! (1)

where dots mark time-differentiation.

Concrete expressions assigned to the parameters A and B can model various
physical situations (for example, see [13]) belonging to (celestial) mechanics [3, 4, 11-13],
theoretical physics [6-9], relativity (cf. [10]), astrophysics [16]. atomic physics [2], and so
forth.

Received by the editore: November 7, 1996.
1891 AMathematice Subject Classification. 70F05.
Key words and phrases. Maneft field, two-body problem. velocity piine
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The Manefi-type two-body problem was tackled by us in some previous papers
(see [13]) from different standpoints. The same problem will be approached here through
the study of the trajectories in velocity plane.

As proved in [5], to complete a well-known result (e.g. [15]), the Keplerian
trajectories of the Newtonian two-body problem are represented by circles (or arcs of
circles) in the plane defined by the polar components of the relative velocity. In [14] we
have generalized this result, showing that in the same velocity plane the trajectories of
the Maneff two-body problem are mainly ell'ipﬂoa (or arcs of ellipses). In this paper we
shall prove that the corresponding trajectories for the Maneff-type two-body problem
ar"e conic sections (degenerate or not) or portions of them. These trajectories will be
identified for every situation belonging to the allowed interplay among field parameters,
angular momentum and total energy. For each such situation, the qualitative behaviour

of the particle will be pointed out.

2. quiations of motion and first integrals

Using polar coordinates (r, u), equation (1) transform into

#—ru? = ~A/r? - 2B/»?, (2)

ri4 2ru=0, (3)
system to which we attach the initial conditions
(r, u, 7, 4)(to) = (ro, 10, fo = Vo cos a, tg = Vo sin av/r), 4)

where Vo = V (1), V = |#| = velocity, a = angle between initial radius vector and initial
velocity.
The field being central, the angular momentum is conserved, and (3) providey

the first integral
r?u=C, ("
where C = ryVy sin  is the constant angular momemtum. The first integral of «. gy
can also be easily obtained by the usual technique
V2=42 4% =24/r 4+ 2B/r* + h, (6)
where h = V2 — 2.1/ry — 2B/r% is the constant of energy.

92



THR MANRFF.TYPE TWO.RBODY PRORLRM IN VBLOCITY PLANR
3. Trajectories in velocity plane

It i clear that the conservation of the angular momemtum restricts the velocity
space to a plane. So, let V; = #, V,, = ru be the polar components of the velocity. By
(5) we have rV, = (7, and replacing this in (6) we get

C?-2B A

2 — —
(:’12 Vu 2 (Jv

Vo + V2= h. ()

Observe that we have tacitly that C # 0. Indeed, for C = 0 (radial motion) we
have V,, = 0 and the study of the trajectories in velocity plane becomes meaningless. It
goes without saying that in such a case it is natural to resort to the phase plane (r, ).
Actually such a study was already performed [13] for both zero and nonzero C; however
our present. study is not useless because the curves in the (Vy, V,.) plane are conic sections
and Lhis makes easier the investigation of the qualitative behaviour of the particle.

Indeed, putting # = Vi, y = Vi, ayy = (C? = 2B)/C?, aza = 1, a13 = —-A/C,

azgz = —h, aj2 = asg = 0, (7) reads
a112? + 2a1220y + asy® + 24137 + 2a23y + az3 = 0,
namely the equation of a conic section. The sign of the expression
8 = ajja — a3, = (C? = 2B)/C?
gives the kind of the conic section, while the nature of this one is given by the sign of

a;y a2 a3
h(2B - C?) - A?
c? '

A=]ay; azxp a3 |=
@13 a3 as3
Observe that there exists a critical value b, = A*/(2B — (*) for which the conic
sections are degenerate (A = 0).
Now, if '? < 2B we have § < 0, and (7) represents a family of hyperbolas of the

form
(Vu —w)/a® = V2B =1, (8)
with:
- centre: P(w,0) = (—AC/(2B - C?),0);

semiaxes: a = /CHA? = h(2B - C?)]/(2B - (),
b= JAZJ2B - (?) —
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- foci: ([-.4(*. + \/2B[AT~ h(2B - cz)]]‘ /(2B - C?),0);
- asymptotes: V; = + (V2B = C?/C?) [V, + AC/(2B - C?));
- intersections with V,, axis: (C [—A + /A - h(2B - (:,'2)]' /(2B - C’),O).

It is clear that for the family of hyperbolas with the above characteristics we

must have h < b, (A < 0). If h = h¢, (7) represents the asymptotes of the family (8). If
h > he (A > 0), (7) represents the family of conjugate hyperholas with respect to (8).
If C? = 2B then § = 0, and (7) represents a family of parabolas of the forin

Vr2 =2p(Vu — 9q), (9

with p = A/C, ¢ = ~hC/(24), focus ((A? - hC?)/(24C),0), and intersection with V,
axis (—hC/(24),0). The parabolas are nondegenerate for A 3 0. For A = 0 we have
A =0, and any parabola reduces to a couple of straight lines (distinct or not) parallel
to V, axis.

Finally, C? '> 2B leads to § > 0, and (7) represents a family of ellipses of ihe

form
(Vu —w)/a? + V2B =1, (10)

with:

centre: P(w,0) = (AC/(C? - 2B),0);
semiaxes: a'= /C?[A2 + h(C? - 2B)]/(C? - 2B),
b= /ATJ(CT—2B) + F;
intersection with V, axis: (C [—A + /A3 + h(C? - 2B)] /(C? - 2B), O);
- intersection with V,. axis: (0, +,/A?/(C? - 2B) + h);
foci: ([AC + \/2BAT+ K{C? - 23)]] /(C? - 2B), o) for B > 0,
(AC/(C2 - 9B),+\/=2B[A% + h(C? ~ 2B)]/(C? - 23)) for B < 0;
(for b = 0, (10) reduces to a family of circles centered in P{A/C,0) of
radii \/AZ/C? + h).

Observe that for the family of ellipses with the above characteristics we must

have h > h, (A < 0). If h = h, the whole family reduces to the point P. If /i < h,
(A > 0), (7) represents a family of imaginary ellipses.

Till now we did not use the somewhat natural condition ' nonnegative. 'Together
with C' # 0, this leads immediately to V,, > 0, hence the motion in velocity plane is

yossible only in the halfplane V,, > 0 (at limits V, = 0 when r = oc, and conversely).
I y 1 Y
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As a consequence, more restrictive conditions will be imposed to h. Examining (7) and
taking also into account the features of the above conic sections, we find that the motion
is not. possible for:

{C?* = 2B, A <0, h < 0}: parabolas lying wholly in the forbidden plane V,, < 0;

{C?* =2B, A =0, h <0}: imaginary parallel straight lines;

{C? > 2B, A <0, h < 0}: real ellipses lying wholly in the forbidden plane
Vu L0;

{C? > 2B, A>0, h < h.}: imaginary ellipses.

4. Interpretation of motion in velocity plane

We have shown that in the velocity plane (V,,, V) the trajectories are only conic
sections (degenerate or not). The motion on these curves may only the following char-
acteristics (see also Figures 1-3 below):

- monotonic increase/decrease of V,,, tending to 00/0, or to an equilibrium;

- monotonic increase/decrease of V, up to a maxtmum/minimum value, then
monotonic decrease/increase, tending to 0/o0’

- oscillation of V,, between two finite and positive limit values;

- constancy of V.

Let us now interprel these scenarios in terms of real motion. To do this, remind
that V,, = C/r, so increase/decrease of V,, means decrease /increase of r; V,, = oo (r = 0)
means collision (if V;. < 0) or ejection (if V, > 0); Vi, = 0 (r = 00) means escape.

Also observe that, since ©t > 0 (see (5)) during the whole motion, to every seg-
ment of monotonic increase/decrease of V,, on the curves in velocity plane corresponds a
spiral motion of the particle (performed inwards/outwards). A(-con(lil.ngly. the oscillation
of Vi, between two finite and positive limit values means that the particle moves on a
noncollisional bounded trajectory, quasiperiodic or periodic (i.e. filling densely or not
the annulus determined by the two limits of r corresponding to those of V,,; see also [1]).
Lastly, the constancy of V, means circular motion of the particle.

With this interpretation, the qualitative behaviour of the particle for the whole
slowed interplay among field parameters, angular momentum and total energy can be
described by the following

Theorem. Consider the two-body problem in a Maneff-type field. The only

sievsiile soinavios for the velative motion with non-ero anguiar momentum are:
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Sy : spiral motion snwards ending in collision;
Sa: spiral motion outwards up to a finite martmum distance, then spival motion
inwards ending in collision;

Sa: spiral motion outwards tending asymptotically to the equilibrium circular

orbit;

S4: periodic (rosette) or quasiperiodic motion, starting inwards;

Ss: circular motion;

Se: periodic (rosette) or quasiperioéﬁr motion, starting ontwards;

Sy: spiral motion inwards tending asymptotically to the equilibrium circular or-
6it;

Sa: spival motion inwards up to a nonzero minimum distance, then spiral motion
outeards leading to escape;

Sp: spiral motion outwards leading to escape.

The qualitative characteristics of these motions (maximum and minimum ex-
tenses, radius of equilibrium circular orbit) can be easily found from the qualitative
features of the conic sections pointed out in Section 3.

In the next sections we shall examine in detail those trajectories in the velocity
plane which represent real motion, pointing out. the corresponding scenarios case by case.

The initial conditions for the velocity plane motion will be denoted by (V. V}%).

5. Hyperbolas in velocity plane

The condition for such trajectories is C2 < 2B. The motion of these curves is
represented in Figure 1, where the V, axis changes its position according to the considered
case (remind that the allowed halfplane for real motion is V,, > 0). The corresponding

curves (or arcs of curves) for each allowed combination {A, B, CC, h} are easy to identify.
Fig.1

5.1. Case 4 < 0. In this case 1w > 0. If h < 0 we have
V<0285, VP>0=>5,
If 0 < h < h, we have
V,:) <w: V,f’ < 0= Sg, V,.O > 0= So;

Visw: V<0285, VP>0=>5,
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If h = h. we have
Vic<w: V2<0=87, V?>0= S,
Vi=w: (V,?=0)=> S5 (unstable orbhit);
Visw: V208, V'>0=8,.
If h > h. we have
VP05, V'>0=358,.
5.2. Case A=0. Inthiscase h =0 and w=0. ITh <0 we have
V2<0=2S, Vi>0=25,. -
If h > 0 we have
VP<0=28, VP>0= 5.
85.3. Case A > 0. In this case w < 0. If h < 0 we have
VP<0=25, V'>0=25,.
If h > 0 we have

ViP<0=S;, V2>0= S,

6. Parabolas in velocity plane

The condition for such trajectories is (2 = 2B. The motion on these curves
is represented in Figure 2(a,b,c); the V. axis also changes its position according to the
considered case.

Fig.2a
Fig.2b
Fig.2¢

6.1.- Case A < 0 (Figure 2a). Real motion is possible only for b > 0, and we

have
VP<0=Ss, VO>0=8,.

6.2. Case A = 0 (Figure 2b). Real motion is possible only for A > 0. If h = 0
every trajectory reduces to a point (V2,0) on the positive V, semiaxis; this means Sy
and the circular motion is stable.
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If h > 0 we have
Vi<0=2S, V'>0=S,.
6.3. Clase A > 0 (Figure 2c). If h < 0 we have
VP<0=8, V'>0=28,.

If h > 0 we have

V<028, V?P>0=S5,.

7. Ellipses in velocity plane

The condition for such trajectories is C2 > 2B. The motion of these curves or
arcs of curves (easy to identify for each allowed combination {A, B, C, h}) is represented
in Figure 3; the V, axis changes its position according to the considered case.

Fig.3

7.1. Case A < 0. In this case w < 0 and real motion is possible only for A > 0.

We have
Vi<0=Ss V2>0=5,.

7.2. Case A = 0. Now w = 0 and real motion is possible only for A > 0. The
same initial conditions lead to the saine scenarios as above. ’

7.3. Case A > 0. In this case w > 0 and real motion is possible only for h > h,.

If h = h. all trajectories reduce to point P; this means S5 and the circular
motion is stable.

If ho < h < 0 we have
(10 =w—a V(I <0) =5, (V2=w+a)Vv (>0} =S
If h > 0 we have

Vi< = Ss, VP>0=S,.

9%



TIHR MANRFP-TYPE TWO-RODY PRODLEM IN VRLOCITY PLANER
8. Coucluding remarks

Tackling a qualitative study of the two-body problem in Maneff-type fields we
replaced the usual phase plane (r, #) by the velocity plane (V,,, V;.). The trajectories which
represent the real motion in this plane were found to be conic sections (nondegenerate
or degenerate) or portions of them.

Compared with the use of the (r,7) plane, that of the velocity plane has both
advantages and disadvantages. The main advantage consista of the fact that the tra-
jectories in velocity plane are conic sections, and their behaviour is very well known
(providing immediately the image of the qualitative behaviour of tlie particle), while
the usual phase curves are more complicated (see [13]). This makes fairly iminediate
the proof of the theorem stated in Section 4 (theorem also stated in [13], but with a
considerably longer proof based on the study of usual trajectories). The disadvantage is
the fact that one cannot study in this way the rectilinear motion (case of zero angular
momentum).

Surveying the whole allowed interplay among field parameters, angular momen-
tum and total energy, nine possible scenarios for the real motion were found. These
scenarios illustrate four essential trends: collision path, escape path, trajectory tending
to equilibrinum, and guasiperiodic or periodic motion.

As a final remark, if our field is just Maneff’s one (see e.g. [2, 11, 14]), in
realistic astronomical situations we shall have C? > 2B (see [14]) and A > 0, finding the
ellipses discussed in subsection 7.3, and recovering in this way the results obtained in

[14]). Putting further B = 0, the circles obtained in [5] are recovered.
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ASYMPTOTIC FORMULAE CONCERNING ARITHMETICAL
FUNCTIONS DEFINED BY CROSS-CONVOLUTIONS, II. THE
DIVIZOR FUNCTION

LARZLO TOTH

Abatract. Let A be a regular convolution of Narkiewicz and let T4(n) dénote
the number of A-divisors of n., We establish an asymptotic formula for the
summatory function of r4 if A is a cross-convolution investigated In the first
part of the present paper.

1. Introduction

In the first part [T97] of this paper and in [THO6] we introduced the notion
of cross-convolution of arithmetical functions as a special case of Narkiewicz's [Nar63)
regular convolution as follows. Let M denote the set of positive integers and let A be a

regular convolution given by

(frag)n)= Y f(d)g(n/d),

deA(n)
see [Nar63], [McC86], [Sit78), [T97]. The elements of the sct A(n) are called the A-
divisors of n. We any that 4 is a cross-convolution if for every prime p we have either
A(p®) = {1.p.P% ....p%} = D(»°®) or A(p®) = {1,p°} = U(p®) for every a € N. Let
P and Q be the sets of the primea of the first and second kind of ahove, respectively,
where PUQ = IP is the set of all primes. For P = P and Q = # we have the Dirichlet
convolution D and for P = @ and Q = P we obtain the unitary convolution U7,
Furthermore, let (P) = {1}U{n € N : each prine factor of n helongs to P}, (Q) =

{1} U {n € N : each prime factor of n belongs to Q}. Kvery n € N can be written
uniquely in the form n = npnq, where np € (P),ng € (Q) and (np,ng) =1. If Ais a
cross-convolution, then A(n) = {d € N : d|n, (d,n/d) € (P)} for every n € N.

Received by the editore: Qctober 23, 1996,
1991 Mathematics Subject Claseification. 11A25, 11N37.

Key words and phrases. Narkiewica's regular convolution, divieor function, asymptotic formula.
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Let 7,4(n) denote the number of A-divisors of n. Observe that if A is a cross-
convolution, then 74(n) = r(np)r*(ng) = 7(np)2¥("9), where w(ng) represents the
number of distinct prime factors of ng.

The aim of the present paper is to establish an asymptotic formula for the sum-
matory function of 74 if A is a cross-convolution, which generalizes and unifies the
corresponding known results concerning the divisor function 7 and its unitary analogue

.

T .

Our method is elementary and it af)plies an asymptotic estimate of B. GORDON
and K. RoGERS [GR64] concerning the divisor function 7. The results of this paper are
parts of our thesis [T95].

Preliminaries

We need the following lemmas.

Lemmia 1. Let A be a cross-convolution and let h be the multiplicative funetion defined

by h(1) =1 and

h(p*) = -1, ifpeQanda=1, )

0, otherwise,

for every prime power p®. Then

ram =Y hd)r(e),

dle=n

for every n € T

Proof. Taking into account the multiplicativity of the functions 74, h and 7 it is suflicient
to verify the above identity for n = p®, a prime power. Let F(n) = 3 .., h(d)7(e).
Then for p € P we have F(p*} = h(1)7(p®) = 7(p®) = 7a(p®). and for p € Q we obtain
F(p*) = h()r(p®) + h(p)r(p*~?) = (a+ 1) ~(a=1) = 2= 7*(p®) = 74 {p*) if.a > 2 and
F(p) = h(1)1(p) = 2 = 74(p), which completes the proof. O

If Q =P, then h is the Mdbius function y¢ and we reobtain the identity given by M. V.
SUBBARAO and D. SURYANARAYANA [SSur78], page 5.

The following properties were suggested by the paper of D. SURYANARAYANA
[Sur69] and they represent generalizations of the results of that paper.
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Lemma 2. If h is the function defined in Lemma I, w € M and 5 > 1, then

Nt h(n) _ ub
Z n T (g(s)ds(ug)’

n=1
(n,u)=1

the series being absolutely convergent, where

(q(s) = Z — and  @,(n) = Zd';t(n/d).
ne(@) an

Proof. The absolute convergence of the series follows at once by |h(n)] < 1 for every

n € N and by s > 1. Note that CQ (8) =Tl eq(t — ) , where s > 1 990}97] lemma

3. The function h is mulhpllcahve hence we can use the Euler product formula:

e h(n) 1 ug
- — 1-)[Ta- =
2 o -1 =Tlo-g H‘ O
(n,u)=1 pEQ peQ

Lemma 3. If h is the function defined in Lemma 1, v € 1 and s > 1, then

2. h(n)logn uy (qls)
L T = ) O )
(n,1)=1

where Cb is the dervivative of (g and

lo
a,(u) = Z o 8P,

-1
plu

Proof. The series is uniformly convergent for s > 14+ ¢ > 1, with € > 0 and the formula
is obtained by termwise differentiation with respect to s of the series given in Lemma 2,

see [Sur69], lenma 2.5 for h = p. O

We need the following result due by B. Gorpon and K. ROGERS [GR64], lemma
3, see also [SSur78), lemina 2.

Lemma 4. If u €M, then

Z T(n) = (¢( )) *r(logx + 2C —~ 1 4 2a(u)) + O(\/rS(w)),

n<r
(n,u)=1

wh. re g = ¢y 15 the Euler totient function, C' is Fuler’s constant and

3w(d)

af{u) = ay(u) =Z:’OE’;, S(u):Z—y—(_i—.

plu dlu
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Lenmima 5. If A is a cross-convolution and the set Q is finite, then for s > 0 we have

3 = =00),

n<z

ne(Q)

> ni = 0(%),1'

n>x

ne(Q)
logn |
3 °f," = 0(22%).ii

n>c !
ne(Q)

Proof. For every p € Q define oy, € N such that p*» < z < p*»*!. Then

1 1 1 1 1
Y. S <[lu+S+m++)<J[-5
n<r n’ PeEQ P’ p ) p"p peEQ P’

ne(Q)

(i)

(i)

(i)

which proves formula (i). Furthermore, let Q = {p1,p2, ..., p}, where p; < p2 < ... < p;.

Then
1 1 1
;’- = Z (P?l...p?')" S Z 2ata|+.,.+a.) ’

n>r n:p:l...p?'>r 201+ Far>

where pgt...pft > pit¥ 4o > 90t 4o ang 9utte 5 o implies pit.pf > .

Denoting ay + ...+ a; = a € I and a(z) = logz/log2 we have

1 ! 1 1 ]
2 w S 2w 2 g @ -zt - O

n>xr 22> x a>a(x)

where [a(r)] stands for the integer part of a(x), and it follows (ii). Formula (iii) can be

proved in the same way.

2. Main results

Now we are ready to prove the following agymptotic formula.

Theorem 1. If 4 is a cross-convolution and u € M, then

((2)

2 /
Z Ta(n) = (4’(") )* ‘ot (logz + 2C — 1+ 2a(u) — 23(ug) — Z—Q—
Cq(2)

u " (g(2)d2(uq)

n<z

(n,w)=t
+O(H(z,Q)S(u)),

where

]
) = st =3 et
rlu
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and H(x,Q) = /x (Q finite), /7 logx (Q infinite).

Proof. Using Lemmas 1 and 4 we deduce

Yo ralm)= > k@)= D h(d) D 1)

n<c d’e=n<=z d</= e<x/d?
(n,u)=1 (de,u)=1 (du)=1 (e,u)=1
_ o(u)
= Y h(d)[(=2) 2 (log = +2C ~ 1 4 2a(u)) + O(S(U) 2
u ' d? d? d?
<7
(d,u)=1
_ (8w . h(d)
= (=) a(logz +2C — 1+ 2a(u)) 3 -
d<vz
(du)=1
o(u) 5 . h{(d)logd ” 1
<7 <7
(d,u)=1 de(Q)
Applying Lemmas 2 and 3 for s = 2 and the well-known estimates
1
Y5 =06"0), s>, (1)
n>x n
z‘long—n—'O(.cl ’logz), s> 1. (2)
n>r

we have

|
&
Il

1
La@prtug) T O
> h(d)logd _ > h(d)logc_l+0(z logd

d? d? d?
(::(u\)/_n (dw=1 32({3
uy Co(2) log =
—_— 0]
= o @atig) P+ L) * O

where m = 21f Q is finite, see Lemma 5 and m = 1 if Q is infinite. We also have

1 0(1), if Q is finite,

n<r O(log x), otherwise,
ne(Q)
ve Lenaaa B/(1), which completes the proof. (]
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