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ON THE MAXIMUM PRINCIPLE FOR BERNSTEIN-TYPE OPERATORS
Our basic assumption will be the following:

z€S. :=|JS(uf), forallzeX, (4)
i€l
where A denotes the closure of A in the metric topology of X and S(s7) stands for the

support of i#f, which is defined by
S(f) =€ C X : Cis closed and 4§ (C) = 1}.

Since X is separable, it is clear that S(u?) is the least closed subset of X accumu-
lating the whole mass of u¥. This property may not hold if the separability assumption
on X is dropped (see, for instance [12)).

With these notations and assumptions, we give the following:

Lemma 1. The subsets C of X such- that

c=J S

zeCiel
are the closed sets of a topology on X which will be called the L-topology. A closed set in
- this topology will be called an L-closed set.

Proof. Tt follows easily from elementary properties of the closure operation, as well as

from assumption (4). a

Remark 1. Condition (4) is fulfilled if L is a net of operators having the form (2) and

approxima}.ing every real continuous bounded function defined on X, that is,
li.mL.'f(:c) = f(r), z€ X, feCB(X),
or, equivalently (cf. [12]),
w— Ii'm/t‘f =4, z€EX,
where "w — lim” stands for weak limit and 4, is the unit mass at z. Actually, since S
i8 closed in the metric topology of X, we have (cf. [12])

1 =limsupyi(S;) <9:(S:), ze€X,

which implies (4). On the other hand, in the context of this paper, no generality is lost

if it is assumed that the identity operator is an element of L, and this also guarantees

that (4) is satisfied.



In what follows, M; will denote the set of all points of X on which f € C(X) attains|

maximum value. Note that Mj is a (possibly empty) closed set in the metric topolo

of X.

Theorem 1. Let f € C(X) satisfying (3). If
MyclyeX: Lif(y) 2 fly), i€},

then My is an L-closed set.

Proof. By hypothesis, we have
[ - @i =0, e, zin,
X .

which implies

pi(My)=1, i€l, z€M;

and, therefore,

U Uss) cM;.

zEM; i€l

Finally, the converse inclusion follows immediately from (4).

Corollary 1. Let X be a compact metric space. If f € C(X) satisfies
Lt'f Z fv i€ I) .

then M; is (nonempty) L-closed set.

Remark 2. Recall that, from the Riesz representation theorem, if X is a compact me
space, then every positive linear operator acting on C(X) and preserving the const:

has the form (2).

3. Bernstein-Schnabl operators

In this section, we describe the L-topology generated by the Bernstein-Schi
operators associated to an Altomare projection.

Let X be a metrizable compact convex subset of a locally convex Hausdorff
space. Let T : C(X) - H C C(X) be an Altomare projection (cf. [9,10]). This m
that: o

(i) T is a linear positive projection on H.

(ii) H contains all the affine continuous functions on X.



ON THE MAXIMUM PRINCIPLE FOR BERNSTEIN-TYPE OPERATORS

(iii) For all h € X, z € X, a € [0,1], the functions z — h(az + (1 — a)z) belongs

to H. ;
For z € X, let v, be the Borel probability measure on X such that

710 = [ fave, fe00)
Let P, : X™ = X be given by
Pa(z1,--yz0) = (214 -+ za)/n.
The associated Bernstein-Schnabl operators By, are defined (see [2,9,10]) by
B} f(x) :=A”foPndu§=Lfdb:, teX, n=12,...,

where 1 denotes the product measure v, ® - - - ® vy, with n factors, and pZ := P o P!,

For A C X, denote by co(A) the convex hull of A, and set

m(A) := U P.(A").

n>1

Lemma 2. We have:
(a) For each z € X \

m(S(v;)) = co(S(v;)).
(b) Fcr each z € X
m(S(w:)) = | Stus).

n>1

(c) For each C C X

¢ c |J m(s.)).
z€C

Proof. Part (a) has been shown in [2, Lemma 6.1.16) and [10, Lemma 2.1). Part (b) is a

consequence of the following equality
S(n) = Pa((S(wn))"), n>1.
Finally, (c) follows from (a) since z is the barycenter of ;. 0

The following theorem gives a characterization of the B*-topology associated to

the sequence B* .= (B,‘,),,Zl.



Theorem 2. A set C C X is B*-closed if and only if the two following conditions ¢
satisfied: .
(a) C is closed in the meiric topology.

(6) U co(S(v:)) C C.
z€C

Prcof. By Lemma 2(b), C C X is B*-closed if and only if
C = |J m(S(v:))
z€C

Thus, the conclusion follows from Lemma 2(a.c).

Theorem 3 below characterizes the Choquet boundary of X with respect tc
denoted by Ch(H), in terms of the B*-topology. Firstly, from a result shown by Altom
[cf. [2; (3.3.4)], we have

z € Ch(H) & Tf(z) = f(z) for all f € C(X) & S(vs) = {z}.

We also have, by {2; (6.1.8)],

|

\
{J S(v:) c Ch(H).
reX

These facts, together with Theorem 2, immediately yield the following

Theorem 3. (a) Ch(H) is B*-closed.
(b) The set {z} is B*-closed if and only if z € Ch(H).
(c) Ch(H) is the smallest subset of X which has nonempty intersection u

every nonempty B*-closed set.

Combining Corollary 1, Theorem 2 and Theorem 3, we obtain the follow

known result.
Corollary 2. ([2; Sec.6.1 ], [10]) If f € C(X) satisfies
| B.f2f n2>}
then:
(a) f is constant on | co(S(v;)).

xGM,
(b) f achieves its marimum on Ch(H).
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Remark 3. Let X be a metrizable Bauer simplex and let T be the canonical Altomare
projection associated with X (cf. [9,10]). For each z € X, let F, be the closed face of
X generated by . Then co(S(vr)) = Fz. We conclude that C C X is B*-closed if and
only if it is closed in the metric topology and F; C C for all z € C.

In particular, if X is the standard m-simplex A,,, B* is just the sequence B :=
(Bn ),.21 of the Bernstein operators mentioned in the introduction. Then, the B-closed

sets are the unions of k-dimensional faces of A, (k=0,1,.. ,m) and Corollary 2(b) is
\
an extension of Theorem B. :

The last result in this section is an improvement of Corollary 2(b).
Corollary 3. If f € C(X) satisfies B f > f, then f achieves its marimum on Ch(H).

Proof. Let M := max{f(z): z € Ch(H)}, and set g := f — M. Then g > 0 on Ch(H).
Using (5), we conclude that Tg <0 on X. On the other hand,

Tg=Tf-M=Bjf-M>f-m=g.
Thus, g < Tg < 0 on X, which implies f < M. O

4. Other classical Bernstein-type operators

The Baskakov operator K;, (t > 0), has the form (2), with X = [0, 00) and u?

< [RY _ [t+k-1 z*
P {7}-—( k )mm. k—0,1,2,...

Hence, if K = (K¢)t¢r, where I is any unbounded set of positive real numbers,

given by

the only K-closed sets are §, X and {0}.
As an example of bivariate (Baskakov-type) operator, distinct from a tensor

product, we shall mention the following (cf. [1]): Let X = [0,00) x [0, 00) and let L, be
defined by

, - k R\ ft+k+h-1\[t+h-1 zkyh
Lif(z,y)= ) f(?’?)( k )( h >(1+I+y)t+k+h,

k., h=0

where t > 0, (z,y) € X and f € C(X) is bounded. If L = (L¢)ter, where I is any
unbounded set. of positive real numbers, then any proper L-closed set is a union of the

following sets: the two semi-axes and the origin.



In the same way, Theorem 1 applies to many other univariate (such as Szasz,
Cheney and Sharma, Bleimann-Butzer-Hahn, etc.) and multivarniate approximation op-

erators. Details are omitted.
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APPROXIMATION OF FUNCTIONS OF SEVERAL VARIABLES BY OPERATORS OF PROBABILISTIC TYPE

3. Estimate of the order of approximation

We shall now proceed to cstimate the order of approximation of the function f

by the operator (1.3). It is convenient to make use of the modulus of continuity, defined

as follows:

w(f;61,02,...,4,) =
=sup{|f(zy,z5,...,20) = f(z}, 25, ..., z))|; |z — x| < &,... |2} — )| < 4,)

where (2{,z9,...,27) and (x},25,...,2}) are point of (0,a) x --- x (0,a), a > 0.

Theorem 3.1. If f is a bounded und uniform continuous function on (0,a) x --- x

(0,a), a >0, then
1 1
{f(z1,2a2,...,2,) = (Caf)(z1,22,...,2,)| < (l +sa\/§)w [ ﬁ....,ﬁ .
Proof. Using the following properties to the modulus of continuity:

1f(=1. 25,0 28) = f(e1,2%, L m)l <w(fife) - 7). |20 — 2}))

and
Wi A1, As8,) < (T4 M+ -+ X )w(f, 61, 42,...,4,)
where
A1>0,...,0, >0,
we have

1 1
If(zY, 25, ....20) = f(zh, 2h, .. 2 < w (f; 3—l-|z'l’—:c’,|6|,...,6—|;::' -—zﬁlJ,) .
s

Now,
'f(rl‘zﬁ"--'tg)-(Cnf)(x],.l’g,...,x.')s
< Oo... mf(z z z,)-f b t .
A A 1, L2, .., 2, ;—;,....Z plty.. . tzy .. .2,)de, .. . td,

where

Pn(tl,tm- ..,t,;.rl,zz,...,z,) =

1
_ ) ern vtz )3
~ t; <0.

We may therefore write:

%>0,2,>0,i=1,5

If(xlyz’.l.u-,-"/',)— ((.7,.f)(z.,a:2,.....c,)| <



t

< [l +E (J—I‘C'n ( Ty — ";:L ;-‘L‘l,....-’l«',))] U(f§51,---165)-
v=1 v

In accordance with the Cauchy-Schwa.rz inequality, we have:

C,.(:c

AN

1/2
(/ / ( —-7%) pn(tl,...,t,;a:l,...,z,)dtl...dt.) =
cone=(22)"
n,v n

1f(z1. 22, ..., %) — (Cnf)(z1,22,...,2,)| < (l + Z

t

v
o ST P I
n

v

So:
zv\/_

) “"’(f) le 6 )
* For 8, = 1//n, v =1, and sup{z,v?2] z, € (0,a)} = av/2, we obtain:

|f(z1,22,....2,) = (Caf)(z1,22,...,2,)| < (l+sa\/§)w(f; 1/vn,...,1//n).

4. Asymptotic estimate of the remainder

We next turn to the task of establishing an asymptotic estimate of the remainder
Ruo(fiz1,22,...,2,) = f(x1,%2,...,2,) — (Co f)(21,22,...,2,)

which corresponds to a result of Voronovskaja about Bernstein polynomials.

Theorem 4.1. If f is a function defined and bounded on (0, +00) x - - - x (0, +00) and at
an interior point (z1,z3,...,z,) of , the second differential d*f(z,,z3,...,z,) exisls,

then we have the asymptotic formula:
”lir&n[]f(zl,zg,...,z,)—— (Cof)(z1,22,...,3,)|] = z;.r’ alzr, ..., z,).
o=
Proof. Let (ty,13,...,t,) € (0,-+00) x --- x (0,40c) be. Under the hypothesis of the
theorem, exists a function g(ty,12,...,t,) defined on (0, +00) x --- x (0,+400) such that

when (t1,2s,...,1,) = (21,22,...,2,) we have g(t1,t2,...,¢,) = 0 and
i t,
f e =f(~"-‘1,22.--,-'€.)+z; ——:c., Lo (@, z,)+

12
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ALGORITHM FOR THE CALCULUS OF THE CONVEX FUNCTION
OF BEST UNIFORM APPROXIMATION

ZOLTAN FINTA

Abstract. The present article deals with an algorithm for the calculus of the

convex function of best uniform approximation using divided difference.

1. Introduction

Let I = [a, ] be a compact real interval and C(I) be the Banach space of all con-
- tinuous real functions f on I equiped with the uniform norm || f|| = sup {|f(z)|{: z € I}.
We denote by Conv(I) the set of all c;)ntinuous and convex functions on I.

Given an f in C(I), we define its greatest convex minorant f to be the largest

convex function which does not exceed f at any point in [ :
f(z) =sup{ g(z) : g € Conv(I), g(z) < f(z) forall z€l}, z€l.

The problem of convex applloximat.ion on I (see [1]) implies that the practically deter-
mination of the convex function of best uniform approximation is equivalent with an

algorithm for the calculus of f.
2. Main results

By the help of the following lemma we can formulate the desired algorithm.

Furthemore, we shall prove the convergence of the algorithm for every f € C([).

Lemma. Let a = 2z < 21 < - < 2.1 < 2 < % < < Zme1 < Zm = b and
9 € Conv(I) a linear function on every interval [zi_y, 5], i=1T,m.

If M < g(z) then there ezist g, € Conv(I) and J(z,M) C {0,1,2,...,m}
such that g. < g on I (ie. g.(z) < g(z) forallz € I), g.(z) = M, g, is linear
on every interval [zj_1,z;] (j =1,1=1), [zi-1,2], [2,2), [2j,2j41) G=T,m=1) and
9:(z) = g(=i) for everyi € J(z, M), where J(z,M) is marimal with this property.

1991 Mathematics Subject Classification. 41A50.

Key words and phrases. best approximation,konvex functions.
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Under the notations of Lemma we have the following algorithm:
(i) Let po(x) = f(a)+[a,b; f]-(x—a) for z €1 and Ao = {a,b} ([a,b; f] represenis
the divided difference of the function f on the indicated nodes );

(ii) Set n =0;

(iii) Given the points @ = 29 < Z1--- < Tpn_1 < T2n = b, i =a + %(b— a), i=
0,27, we choose y = %(zo + ). If f(1n) < @n(wn1), then using Lemma for
m=2" g=¢,, M= f(y1) and z=y we obtain the function gy, such that
Iy, < @n- I f(41) > @nlsn) thenlet g, = pn.

Let y2 = (21 + z2). If f(y2) < gy,(y2) then we use the Lemma for the
nodes a=zg <y <21 <2< - < ZTan-1_3 <Zn=b, andfor g=g,,, M=
f(y2) and z = y2. So we obtain the function gy, such that g,, < g,,. If
f(y2) > 9y, (y2) then let gy, = gy,.

- Finally, let yan = %(:c-_p-_l + z3n). If f(yan) < gy,n_,(y2~) then there
exists the function g,,. such that g,,. < gy,._,, by Lemma. In this case we
apply the Lemma for the nodes a =z <1 <) <pp < T3 < -+ < Tan1 <
zn =b, andfor g =gy.n_,, M = f(y2~) and z=yan. If f(y2n) > gy,a_, (¥20)
then let gy, = gy,n_,;

(iv) Let @n41 = gy,» and we define the following set: Ap41 = AqU{y1,¥2,...,¥20}.
Let =xo,7y,-:-,Zgs+1 denote the elements of A,4), where a =29 <2y < z3<
s K Lanting < Tonpr = b

(v) Set n=n+1;

(vi) Go to (iii).

The execution of the algorithm stops when the function obtained at the nth
iteration satisfies some demands.

The method (i) - (vi) generates a sequence of function {pn},>, for which we

have the following result:

’_I‘heorem. We have the following statements:
a) the sequence {pn}, -, converges uniformly to f on I;

b) flen — fll < llgnll, for all n > 0, where g, : I — R,

pn(z) — f(z), ifpa(2)> f()
0, fealz) < fla).

gn(z) =

16



3. Proofs

Proof of the lemma. Define the function h: I — R as follows:

glzioy) + Mo8Bim) (2~ 5 y), iz € [2i-1,2)

Z=2i=)
h(z) = Mo e
M+ 8M (o) ifze(zm),

Let us suppose that 2 < i < m—1and [zi-1,z;:h] > [zi-2, zi=15 B), [2, 25, 8] < [2i, zig15 B).
Then g;(z) = h(z) forall zel.
If i =1 and [z, z1; ] < [21, 22; ] then g.(z) = h(z) forallze€l
Ifi=m and [zm-1,2; k] > [zZm-2, Zm-1; h] then g:(z) = h(z) forall z €I
In the opposite case we may assume that [z;_1,z;h} < [zi_2,zi-1;h]. Let k =

min{ j:1<j<i-1, [zj,2;h}<[2j-1,2j; k] }. Then

h(z), ifz € [a,2k-1)
h(ze1) + MACR=1) (o g 1), if 2 € [20-1, 2],

2=2k-1

9:(z) =

For [z,2;;h] > [2i, zig1;h) let I=max{ j:i<j<n-1,. [z,2;; h] > [2,2j41;h] }. We

define the function g, as follows:

M+l (o g), ifzelsa0)

9:(2) =
h(:l!), ifze [ZH.] ’ b]

If 2 € (a,2) then g.(z) = g(a) + Mﬂ(z —a) for z € [a,2], and we apply

Z1—a

the above construction on [z, ).

If 2 € (zm-1,0) then g.(z) =M + ﬂ?_%ni(z —z) for z € [z,b], and we apply

the above construction on [a, z]. a

Proof of the theorem. a@). The reader can readily verify that ¢, € Conv(I) and ¢, >
¢n41 on I for all n > 0. On the other hand, ¢, > f on I for all n > 0.

Indeed, it is clear that po > f on I. If p, > f on I and , # pp41 then there
exists y € I such that ©n(y) > @ns1(y) = f(y) > f(y). Because f € Conv(I) and
@n 2 f on I, we have Pnt1 > f on I by the construction of Pntl-

So, there exists ¢(z) = limy_c0 ¢n(z) for all 2z € I. Because ¢, € Conv(I) we
have ¢ € Conv(I). But ¢, > f for all n > 0, therfore ¢ > f. If we prove that f > pon
I, then p = f.

17



ZOLTAN FINTA

Indeed, if there exists zo € I — {a,b} such that f(zo) < @(zo) then there
is a neighbourhood V of ro such that f(z) < ¢(x) for all 2 € I NV, because f
and ¢ are continuous functions. But U_,,-Z_;,T,.- = I, therefore there exists no € N and
i€ {0,1,...,2"} such that z; € (An, — Ane-1) NV and f(z;) < ¢(z;). The inequality
@n > @ on I (n > 0) implies that @n,—1(2;) > ¢(2i). So png-1(2i) > f(z:). Using the
lemma for the points of An,—1,9 = Pno-1, M = f(z;) and z = z;, we have pny < Pno-1
and @n, (£:) = f(zi). But ¢, > ¢ on [ for all n > 0, so in particular p,, > ¢ on I. Then
F(zi) = Pno(xi) > @(xi) > f(xi), contradiction.

Using Dini’s theorem ( [3], p.136 ), it follows that the sequence {90}1120 converges
uniformly to f on I.
b). Let J C I be a closed interval and g € C(I). Then we employ the usual norm notation:
liglls =sup {|g(z)| : ¢ € J}. It is clear that

flen — fll = 2%, en — flloi = llen = fllag s

where J; = [zi—1,2i}, i=1,2" and ive M ={ ke {1,2,...,2"}': llen — Fll =
llen — Fflla} -
If f(z) > f(a) + [a,b; f}- (z—a), z€ I, then g, =0 and ¢, = f for all n > 0.
If there exists o € I — {a,b} such that f(zo) < f(a) + [a,d; f] - (z0 — @) then
[Zig=1:Zig; Pn) = [ig—1, Zio: f] or there exists z € J;, such that f(z) = f(z).
Indeed, in the opposite case we have f(z) > f(z) for all z € J;,, therefore f is

linear on J;,. Hence

llen = flls;, = max {pn(zio—1) = F(Zio=1) » @n(2i0) — F(2io)} -

We may assume that |l<p,,—f||,,io = pn(Tio)—f(2i,), because [2i,—1, Zio; Pn] # [Tio-1, 2i; f).
On the other hand, there exists ¢ > 0 such that f is iinear on [z, zi, + €] and
[Zios 2io + € f] = [2ig—1,Zio; f]. Because ¢, € Conv(I), we have [z;,,z;, + € ¥n] >
[Zio-1, Zig; wu]. Hence pn(zi, +€) — f(2iy +€) > @n(zi,) — f(xi,), cotradiction with the
.choice of the interval J;,.

I (2401, 2igi ] = [Tigo1, 2i0i /] then, by f(a) = f(a) and f(8) = F(b), there
exist k € M — {io} and = € Ji such that |l — f)| = |l — flls, and f(z) = (=),
respectively.

Assume that |Jpn — fll = |l¢n — flls,, and there exists x € J;, such that f(z) =
f(x). The functions ¢, and f are continuous on Jio, 80 there exists 1 € J;, such that
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llen = flla., = enlz1) — f(x1). If f(z1) # F(x1) then there exists ¢ > 0 such that f is
lincar on Ji, N[r1 — €, 21 + €] and [x) — €, 21 + & f) = [Tig—1, Zio: Pn)-

Let My, = {y € Ji, : f(¥) < f(¥)} - Because f(z) = f(z) it follows that f(z2) =
f(x2) or f(z3) = f(xa), where £2 = sup M, and z3 = inf M, (if they there exist).

At the same time f remains linear on [z3, x2]NJ;,, therefore either f(z2) = f(z1)
or f(-‘!?a) = f_(zl)- Hence ||¢n'-f".l.~,, = ‘Pn(32)—f—('t2) = pn(z2)—f(z2) or |lpn "‘f"l.—o =
pa(z3) — f(z3) = pu(za) ~ f(23).

Let My = {y € Ji; : ¢n(v) 2 f(3)} - Then pa(y) > f(y) 2 f(y) for all y € M,
and 2y € My, 72 € My or z3 € M,. Therefore |lon — flls,, > llgnlls, > en(z2) —
f(z2)(resp.gn(23) — f(z3)). Hence llpn — flis, = llgalls,, < llgnll- o

Remark. a). We can choose another points instead of the points z; (i = 1,2%) in our
algorithm, but we must have the condition m = 1.
Indeed, without this condition, we can choose the sets 4,, (n > 0) such that ¢,
does not converge uniformly to f on I. Qur example is the following:
let £:[0,5] o R,
z+1, ifz€l0,1)
S@)=9-z4+38, ifze[1,3)

z-3, ifzel35].

Then f:[0,5] - R,
_ 241, ifzel0,3)
f@y=4 °
z-3, ifzel3,5).

Define the function ¢ by ¢ : [0,5] = R,

1, ifze€(0,4)
plz) =
z—3, ifzel[3,s).

The sequence {A,h}, ., is the following:

Ao = {0,5}, A) = {0,2,5}

1
A2 = {0,-"'],1'2,23,2,4"‘ 5’4"‘ %)27’5}



and generally

: 1 1
An - {01 L1y T2y--y z2"“—l)‘2v 1+ ;v 4+ n— l) Tan-143,
1 : 1
4+ o 2, .’L’gu—l+4, Zzn—l+5, 32""‘-’-61 4+ m, ey 4+ -i,
Ton_gn-24]1, Tan_2n-242,---, T2n-1, 5}

With the aid of the set A, it is possible to define the function ¢, as follows:
vn 1 [0,5] = R,
1, ifz€[0,2)
en(z) =4 57 +22), ifze(2,4+1)
z-3, ifzel4+},5)

It is clear that ||pn — ]| = ¢a(4) — ¢(4) = 5,—:“;1- — 0 (n» — 00), 80 p, converges
uniformly to ¢ on [0,5] (n — o0), but ¢ # f on [0,5].
b). Let A= {z€I:f(z)=f(z) and there exists r. >0 such that f(y) > f(y)
forall ye(z—rs,z)NI or f(y)> f(y) forall ye€ (z,z+r;)NI}. Then the set
A is closed and the cardinality of A is arbitrary.

Because f and f are continuous functicus on I, we obtain that A is closed set. By
some examples we show the cardinality of the set A can be arbitrary. Let us distinguish

the following cases:

1. if f € Conv(I) then the cardinality of A is zero;
2. ifn€ N*and f:[0,2n] 9 R, f(z+2) = f(z), for all z€[0,2n—2] and

-z+1, ifzel0,1)
flz) =
z-1, ifze€l,2],

then A= {1,3,...,2n — 1}. So the cardinality of A is n;

3. let
fa) 0, ifz=1 neN*, nisodd
)=
%, if-’l::%, n€N*, niseven ;

nti'n
A= {#_1- :n€N ‘} . Therefore the cardinality of A is the the cardinality
of N;

let f(0) = 0 and let f be linear in each interval [ L l] , n € N*. Then
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4. let us define a continuous mapping of [0,1] onto [0,1] that assumes every
value an uncountable number of times. So, let g : [0,00) =+ R, g(z+2) =
g(z), forall z>0 and

0, ifzef0,})

3z—-1, ifze [3,3

9(z) = | 1, ifze(2 %)

-3z +5, ifze€ [3,3

0, ifzef2]
Then the function f : [0,1] = [0, 1],

flz) = g(z)+2‘, 0(3%) + 55 - 9(3*x) + ..

has the wanted properties ( see [2], p.134, 9.).
In the same time, {z € [0,1]: f(z) = 0} C A, because there not exists
an interval [a, 8] such that [o, 5]N[0,1) C {z € [0,1] : f(z) = 0}.
Indeed, there exist m,n € N* such that $* € (a,f) forallm, 1<
m < 3" — 1. Let I € N* such that 3' < m < 3’“, where 0 < I < n—1.
Then we can choose m in such a way that let k = n — 1~ 1 be even and for
that k we have: 3"~! < m-3* < 5-3"~1. Therefore § < 3k. =< %. Hence
g(3- 3"%) #£0,80 f (3'%) # 0. This implies the cardinality of A is equal with
the ;ardinality of R.
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COMMON FACTORS AND DISJOINTNESS OF EXTENSIONS OF
MINIMAL TOPOLOGICAL TRANSFORMATIONS SEMIGROUPS

A.l. GERKO

Abstract. There are given some results concerning the common factors and
disjointness of finite families of extensions of minimal topological transforma-

._tion semigroups.

1. Introduction

We shall develop the theory-of disjointness of minimal sets and their exten-
sions. The notion of disjointness of sets (extensions) was introduced and first studied by
Furstenberg [1] (Shapiro [2]). The books by Bronstein L.U. (3] and by van der Woude,
J.C.S.P. [4] contains many results about disjointness theory in case of the topological
transformation groups.

Here we give some results concerning the common factors and disjointness of
finite families of extensions. of minimal topological transformation semigroups.

In our research we will use some algebraic technique and the r-topology [5,6].
Developing them [6] we will follow the idea of the article [5]. But the way of realization
of this idea will not be the same. The constructions in [5] are based on Stone-Cech
compactification of phase (discrete) group. We are starting from the Ellis enveloping
semigroup of universal minimal topological transformation semigroup of the class of
minimal topological transformation semigroups with the compact Hausdorff phase space
and fixed phase semigroup.

) We use terminology and denotations generally accepted at present in theory of
topological transformations groups. We give only necessary, in our view, definitions of

concepts and facts; for more detailed discussions the reader is referred to (1-8].
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2. Basic definitions and notes

A topological transformation semigroup (abbreviation: TTS) is a triple (X, S, ),
where X is a nonempty compact Hausdorff topological space with unique uniformity ¥(X]
(phase space), S is a topological semigroup with unit element ¢ (phase semigroup) and
7 : X x § = X is a continuous mapping satisfying the following conditions:

1)VzeX (z,e)r==z;

QVzeXVsteSs ((z,s)mt)r=(z,st)r.

We shall refer to the TT'S(Y, S) rather than (X, S, 7).

Let (X,S,7) be a TTS, s € S, AC X. Usually we shall write #* for the map
X = X defined by zn* = (z,s)w (z € X); zs=zn* and S = {zs| s € S} (z € X). A
is called minimal if A # @ apd 75 = A for every z € A. A TTS(X,S) is called minimal
if the set X is minimal. If for z € X we have £S5 is minimal than z is called an almost
periodic point. The class of minimal TT'Ss with fixed phase semigroup S will be denoted
by K(S).

An extension (a homomorphisin) ¢ : (X, S,#7) = (Y, S, p) of TTSs is a continu-
ous surjection ¢ : X = Y such that for Vz € X Vs € S zn’p = rpp’.

Let n € N be a natural number, (X;, S),(Y,S) € K(S), ¢i : (Xi,S) = (V,9)
be an extension (i = 1,...,n). The family {;}} of extensions ¢; is called the n-fan
of (Y, S) (or n-fan). The class of all n-fans of (Y, S) will be denoted by K"(Y,S). Let
{pi}? € R"(Y,S). We denote:

R, . on = {{(z1,-..,2n)| z;i € X; (i =1...,0Azp == Zapn):
R,,.. 4. J the set all almost periodic points from Ry, .. 0.
Let ¢ : (X,S) = (Y,S) € K}(Y,S). Then define:

A(X) = {(z,2)lz € X}; R, = Ryy;

P(Ry)= (] |U{=.v)l (=,9) € Ry A(2s,ys) € a};
a€U[X]+€S

QR = [ U9l (z.9) € Ry A(zs,15) € a);

a€li[X])s€S

Q*(R,,) the smallest closed invariant equivalence relation containing Q(R,).

An extension ¢ is called distal (regionally distal), if P(R,) = A(X) (Q(R,) =
A(X)).
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COMMON FACTORS AND DISJOINTNESS

An extension g is called B-extension, if R, = R,J.

An extension ¢ is called RIC-extension, if R,y i3 a minimal set for each proximal
extension ¥ € K1(Y,5).

An extension ¢ is call>d distal in the point z € X, if P(R,) = {z}.

An extension ¢ is called stable in the fiber ¢=!(y) (v € Y), if

VaellX]IBeUX] (v~ (¥) x¢ ' () NA)S Ca.

An extension o is called homogeneous, if for the each point (z,,z2) € Ry, there
exists an automorphism ¥ of the TTS(X, S) such that ,¢ = z,.

There exists a universal minimal TTS(U, S,a) for K(S). Let E be the Ellis
enveloping semigroup of (U,S,a), I be a fixed minimal right ideal of E, u € I be a
fixed idempotent. It is known, that ([, S) € K(S). For (X,S) € K(S) there exists a

commutative diagram

(U,S) «£— (E.,S)

o ol
(X,5) R (E(X,S5),S),
=0
where E(X,S) is the Ellis enveloping semigroup of (X, S), phi is a homomorphism from
definition of universality of (U, S}, © is a homomorphism induced by ®, pp., = zop (p €
E(X,S)), zo € X is a fixed point, T is a.map defined analogously with p.,. E acts
naturally on X : «p=z(pO) (r € X, p€ E).

Let (X, S, m) € K(S) and 2% be the collection of nonempty closed subsets of X
endowed with the Vietoris topology. Then (2%, 5, 7*), defined by (A, s)r* = Ar*, also
TTS (A € 2X, s € S) and F acts on 2X too. If p € E and lime?®* = p for any net
{si}CS, A€ 2x-then we define AG p = li‘on"" = lim{ac*'| a‘E A}, where the limit
it is understood in th Vietoris topology. If A C X is 'not necessarily closed nonempty
subset of X, we define A®p=A® p. For A =0 we define A op=90.

The operation ¢ : ¢(4) = A® un Xu (A C Xu) defines a closure operator on
Xu. We call the topology associated with closure operator ¢ the r-topology.

Let £ = Iu. Then (£,7) is a Ty compact semitopological group (with 1dentity

element u).
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A.l. GERKO

Let T be a r-c]osed subset of £, u € T; N(T) be the neighbourhoods filter for

the T-topology on T at u, H(T) = () cls;V. We now define inductively for all
VeEN(T)

transfinite numbers o the set H*(T): 1) HY(T) = T; 2) let H*(T) be defined for every
ordinal @, o < B3; if 8 = a + 1, then we consider HP(T) = H(H*(T)); if B is a limit
ordinal, then we consider H?(T) = (| H*(T).

If T is a T-closed subgroup :f< Z' , then H*(T') is a r-closed normal subgroup of £
for every transfinite number a.

For (X, S) € K(S) and z¢ € Xu we define the Ellis group of (X, S) : G(X,zo)z
G(X) = {p| p € € Azop = 20}. G(X) is a T-closed subgroup of £.

o Let {pi: (Xi,8) = (Y, 5)}F € K™(Y,S), 20 € Xiu, ° =z)pi; Ai = G(X;,z!
and T = G(Y,y°) are the Ellis groupé of TTS(X;,S) and TTS(Y, S) respectively (i =
1,...,n), [A1...., Ap] the smallest T-closed subgroup of T' containing A; for every i
1,...,n. For (X,S) € K(S) and z € X let J; be the set all idempotents v from I witl
zv==z.

An extension ¢ : (X, .S') - (Y, S) is called common factor of {;}7, if it is a facto
for every extension ¢; (i = 1,2,...), i.e., forall i = 1,2...,n exists a homomorphisn
¥i of (.Xi, S) onto (X, .S) such that ¢; = ¢; o p. A common factor ¢ of {;}7] is called :
D-factor (RD-factor, P-factor, B-factor), if it is a distal (regionally distal, proximal, B-
extension. A n-fan is called a Dn-fan (RDn-fan, Pn-fan, Bn-fan), if every its commo
factor is a D-factor (RD-factor, P-factor, B-factor). A n-fan is called prime (D-prime
RD-prime, P-prime, B-prime), if every common factor (D-factor, RD-factor, P-factor
B-factor) of its is trivial, i.e., isomorphism. A n-fan {¢;}} is called disjoint, if R,, ,
is minimal.

Let 6 be some ordinal and {pa| & < 0} = {pa : (Xa,S) = (Y,S)] a <0} b
a transfinite sequence of extensions of TTSs, 23 € X,u, y° = 220, (o < 0), {¢?

(X5,5) 2 (Xa,S)| @ < B < 0} be a family of extensions of T'T'Ss with

Tpva = Ta, Phova=pp. Phopt =k,

P is the identity map (a < <y < ¥). (1

Now let 2§ € [] Xa with Prx, = 3 (a < ). There are the subTTS(z0S, S) ¢
a<lé

direct product ( no Xa, S) of TTSs(Xa,S) (a < 0) and the extension ¢y : (E.S—’, S) -
a<g
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COMMON FACTORS AND DISJOINTNESS
(Y, S) defined by r3pps = y°p (p € T). We denote:
(x9S, 5) = lim((Xa, S). #8)0, o = lim(pa, £2)5-
— —

Let st be an ordinal and {pq : (Xa,S) =+ (¥, S)| a < p} C K(Y,S) be a family
of extensions of TT'Ss and {¢?] o < # < p} be a family of their morphisms satisfying

condition (1). Assume also that for each limit ordinal 8, § < s, we have
Yo = l‘iln(‘Pm ‘/’g)g’ (Xs,5) = l‘iin((Xa,S), Sog)g

Then the system {pa, ¥?}5 is called a projective system of extensions.

An extension ¢ is called a PRD-extension, if there exists a projective system
{¢a : (Xa,S) = (Y, S), ¥2:(Xp,S) = (X4, S))o, such that:

1) Xo=Y;

2) pu = po ¢ for some proximal homomorphism p : (X,,5) — (X,S) €
K'(X,S);

3) p2t! is a composition proximal extension and regionally distal extens.on
(a < p).

Let o be a transfinite number. A n-fan {¢}} is called a-pseudostable if H*(T) C
[A1,...,An). A n-fan is called pseudostable, if it is 1-pseudostable.

Remark 1. 1) A n-fan conf.aining some extension with a stable fibre is pseudostable.
2) PRD-extension is a «-pseudostable for some ordinal a.

3) A n-fan containing some PRD-extension is a-pseudostable for some ordinal

4) An a-psendostable for some transfinite number « and a RD-prime Bn-fan is

prime.

Proof. 1) The proof is similar that of the proposition:
For an extension ¢ : (X,S) — (Y, 5) € K!(Y, S) with a stable fibre there exists

the commutative diagram
(X,8) «2— (x*,9)
‘| “|
(¥,5) «21— (Y+,5),
where ©* is a regionally distal minimal extension (hence H(G(Y*)) C G(X*)) and the

extensions p and ¢ are proximal.

27



2) This follows from definition of the P RD-extension by the principle of trans-

finite induction.

3) and 4) are obvious. 0

3. Results

a) n-fans of extensions

Tacorem 1. If for some k =1,2,...,n we have

Tx---xT= H Ai | Ax, (2)
n—1 '=Iiﬁl‘"~|"

then R,,. ,. contains a unique minimal subset. If Ry, ., contains a unique minimal

subset, then for every k =1,2,...,n we have (2).

Proof. The proof is similar to that of the proposition

Roypid = ({23 x -+ x 22T)] = (29T x {29} x 23T x - - x 2°T) [ = --. =

(23T x 23T x -~ x 23 ;T x {zq_,} x 20Ty = (23T x 23T x --- x zp_, T x {zp})1.
(3)
0O

Theorem 2. 1) If for some k = 1,2,...,n and for every x € X we have

[T ¢eteey=] II et@en)] ()
i=1,2,....n $=1,2,...,n
ik 2k
then Ry, oo J = Ry, .on- If Rpy..0nd = Rypy..0n, then for all k = 1,2,...,n and for

V z € Xi we have (4).

2) If for some k = 1,2,...,n and for every z € X, there exists a point v € J;,
such that

IT ¢'ee)=] I ¢'ee)v| o, ()
i=1,2,..n i=1,2,..n
itk £k
then Ry, . J = Ry, .. If Ry, o J = Ry, .¢., then for every k = 1,2,... 0, for
every z € Xy and for every v € J, we have (5).
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Proof. This follows from (3). O

Corollary 1. If{pi}} contains n—1 distal extensions (RI C'-eztensioné); then Ry, . J =

RW!»-JP-(RWL«M:AJ = Rllev’n'

Corollary 2. 1) If Ry, .p.J = Ry, 0., then {pi}1 is Dn-fan.

2) If Ry, ond = Royy..p., then {p;i}] is Bn-fan.

3) If T = [Aq,..., An] (specifically Ry, ,, contains a unigue minimal subset),
then {¢i}} is Pn-fan.

4) If {pi}} satisfies the conditions of item 2) and 3) of our corollary, then it 1s
prime.

5) If {p:}} is disjoint, then {p;}}] is prime.

Let (V,S) = (Y,S) € K}(Y,S) be a universal distal (regionally distal) extension and
Dy (D) is the Ellis group of (V,S). It is known, that D, = Dy H(T).

Theorem 3. 1) For every n-fan {p;}} there exist its mazimal D-factor (RD-factor)
e (X,9) = (V,95) and G(X) = [Ay, ..., A )D1(G(X) = [AL, ..., Ap]D2). Consequently
{¢i}} is D-prime (RD-prime) iff T = [Ay,..., A Dy (T = [Av, ..., Au]D2).

2) Let ¢ : (X,S) — (Y.S) be a mazimal RD-factor of {¢}?. If Ry, ,.J =

Rv,'l”_%, then G(X) = [Ay,..., A JH(T). Consequently {p;}} s @ RD-prime ff T =
[41, ..., Ap)H(T).

Proof. The assertion 1) is obvious. Let R,, ,.J = Ry, o, and let M = (z9,...,29)I

be the minimal subset of R,, ... We define a relation p in M as follows: ¥ p,q € I
(=3, za)pe(al, .. 2h)g &

. Nl q(pu)™! € [Af,..., A JH(T) A (2p,...,2%_,p,20q) € Ry, . 0.

Since p is a closed invariant equivalence relation, then there are defined a
TTS5(M/p,5) and an extension 7 : (M/p. S) = (Y, S) where ((z},...,20)p)pn = y"p (p €
I). n is a maximal RD-factor of {p;}} and G(M/p, (z},...,2%)p) = [A),..., AL H(T).

O

Theorem 4. ) For a pseudostable n-fan {pi}] there exist a mazimal RD-factor ¢ of
{¢}} and a B-prime n-fan {¥}1, such that p; = ¥; 0 p for everyi=1,2,... n.
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3) If {p)} is pseudostable and Ry, o.J = Ry,..0., then there ezist mazimal
RD-factor ¢ of {pi}t and prime n-fan {}7, such that p; = i oy for every i =
1,2,...,n.

Proof. This follows from Theorem 3 and Corollary 2. g

Corollary 3. A n-fan {p}] is disjoint, iff Ry, o,J = Ry, 4. and for some k =
1,2,...,n

Tx---xT= ” A; | Ag.
N s’ .
n—1 |=1i,?2£,,;..,n

Theorem 5. Let p;}? contains n—1 pseudostable RIC-extensions and ¢ be a mazimal

RD-factor of p; (i =1,2,...,n). If {¢Q}} is disjoint, then {p;}} is disjoint.

Proof. Let 1, ..., pn_1 be pseudostable RIC-extensions and ¢? : (X?,S5) = (Y, S) bea
maximal RD-factor of ¢ (i = 1, eeey n). Then wa...w.‘r-] =Ry, .p,and Dy C A; = G(X%
fori=1,...,n—1and G(X%) = A, D,. If {¢?}} is disjoint, then

Tx- xT= (A1 X X An_1)AnDs C (A1 D2 X -+~ X An_1Da)A, =
N e’

n-1

=(A1 XX Ap)An CTx---xT,
n-1
hence T x ---x = (A; % --- X Ap_1)An. Therefore {p;}} is disjoint by Corollary 3. O
e

n-1
b) Pairs of extensions
We shall study hereafter of the pairs (¢, 1) of extensions ¢ : (X, S) = (Y, S), ¢:
(2,5) = (¥,5) € KMV, S). Let 20 € Xu, z0 € Zu, yo = zop = 20%; A = G(X,zo),
B = G(Z,z0) and T = G(Y,yo) are the Ellis groups of TTS (X, S),(Z,S) and (v,9)
-respectively; [A, B] the smallest r-closed subgroup of T containing AU B; ¢y : (X0, S) =
(Y,5) (#5 : (X0,5) = (Y, 5)) and o : (Z0,5) = (Y,S) (% : (25,5) = (Y,S)) bea
maximal RD-factor (D-factor) of ¢ and ¢ respectively. If (¢1, p2) € K2(Y, S) is disjoint,
then we denote 1 L ;. If (Y,S) is trivial, then we shall refer to the (X,S) L (Z,5)
rather than ¢ L ¢.

Corollary 4. ¢ L ¢ if T = AB and R,y = R,y J.

Corollary 5. Of the semigroup S is commutative, then (X,S) L (Z,S) iff £ = AB.
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Corollary 6. Any of the following conditions implies ¢ L :
1) ¢ or 4 is RIC-extension and T = AB;
2) ¢ is stable in some fibre and ¢ is RD-prime RIC-cxtension;
3)  is distal (regionally distal) and ¢ is D-prime (RD-prime).

Theorem 6. If AB is group and R,y = RypyJ (in particular, ¢ or ¢ is homogeneous
(group extension). then (p,¢) is D-prime iff ¢ L 9.

Proof. Let (g, ¢) be a D-prime. Since AB is group, then by Theorem 10 from (7] there
exists a D-factor n : (W, S) = (Y,95) of (¢, ¥) with G = AB. Because 7 is trivial, then
F = AB. By Corollary 4 we have ¢ L 9. a

Corollary 7. Let the semigroup S be a o-compact and Ss C sS (s € S) or S be a group.
If AB is group and R,y = R,yJ, then o L o & (p,¥) is RD-prime & (p,¢) is
D-prime & (p,¥) is prime & ¢ L ¢.

Corollary 8. Let AB be a group and ¢ or ¥ be a pseudostable RIC-extension. Then
(p,¥) is D-prime iff ¢ L 9.

Theorem 7. Let AB be a group, R,y = R,yJ and for any D-prime (RD-prime) ez-
tension § € K'(Y,S) the set R,s or Rys contains a unique minimal subset. Then the
Jollowing statements are mutually equivalent:

1) (¢, 9¥) is D-prime (RD-prime),

2) w0 L ¥5 (po L vo);

3) oL

4) (p,¥) is prime.

Proof. We prove the theorem in the distal case. Let 1) be true. Then T = ABD,
and T = (AD;)(BD,), hence by Corollary 4 ¢ L ¢}, i.e., 2) is true. Let 2) be true.
Then T = (AD,)(BD1) = ABD,. Since AB is T-closed subgroup of T, then there are
the minimal extension 4 : (A x B,S) — (Y,S), where A+ B = {(AB) ® p| p € I},
((AB) ®p)0 = yop (p € I) and if w = (AB) ® u, then GA » B,w) = AB (see Proposition
3 from [8]). Therefore from T = ABD, implies, that 6 prime. Because Rye or Ry
contains a unique minimal subset, then T' = A(AB) = AB or T = B(AB) = AB, i.e.,
T = AB. By Corollary 4 ¢ L ¢, i.e., 3) is true. The implications 3) = 4) = 1) are

obvious. 0
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Theorem 8. Let ABH(T) be a group, Ry = RyyJ and H(T) C AB for some trans-
finite number a. Then the following statements are mutually equivalent:

1) (¢, %) is RD-prime;

2) wo L ¥o;

3)p L

4) (p,¥) is prime.

Proof. Let 1) be true. Then T = ABH(T) and T = ABH(T) = ABD; = (AD:)(BDr) =
G(X0)G(Zo), i-e., T = G(X0)G(Zo). By Corollary 4 po L o, i.e., 2) is true. Let 2) be
true. Then T = G(X0)G(Zo) = (AD2)(BD;) = ABD; = [A, B]D», ie., T = [A, B|D,.
At this point the pair (p,4) is RD-prime. Than T = [A, B]H(T) = [A,B,H(T)) =
ABH(T) = ABH*(T) = AB, i.e,, T = AB and by Corollary 4 we get ¢ 1 %. Thus 2)
implies 3). The implications 3) = 4) = 1) are obvious. O

Theorem 9. Let:

1) ¢ or ¥ be a composition prozimal ertension and B-extension;

2) H*(T) C AB for some transfinite number a;

3) vo L 0.

Then R,y contains a unique minimal subset. If, in addition, R,y = RyyJ, ther
p Ly

Proof. Since G(Xo) = AH(T) and |mcG(Zp) = BD, or G(Xo) = AD» and G(2) =
BH(T), then 9o L 4o implies T = AH(T)BD, or T' = AD;BH(T). Because D; C
AH(T) and Dy C BH(T), then T = ABH(T). Therefore T = ABH*(T) = AB, ie.

T = AB, hence R,y contains a unique minimal subset. C

Corollary 9. Ifp or ) is RIC-extension and H*(T) C AB for some transfinite numbe:
«, then g L tpg itmplies p L .

Corollary 10. Let the semigroup S be a commutative, (Xo,S)((Zo,S)) be a marima

RD-factor of (X,8)((Z,5)). If H*(£) C AB for some transfinite number a, ther
(X0, S) L (2o, S) implies (X,S) L (Z,S).

Lemma 1. Let ¢ or ¢ be a composition prorimal ertension and B-eztension, ABD, b
a group. If (W,S) — (Y, S) is a mavimal RD-factor of the pair (p,), then G(W) =
ABH(T).
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Proof. Since G(Xo) = AD, and G(Zo) = BDa, then [6(Xq),G(Z0)} = ABD,. Because
(W, S) = (Y, S) is maximal RD-factor of the pair (o, %o), then G(W) = [Q(Xo),g(Zo)]H(T) =
ABD:H(T), ie., G(W) = ABD,H(T). Since ¢ or ¢ is a composition proximal exten-
sion and B-extension, then G(Xo) = AH(T) or G(Zo) = BH(T). Because @ and ¢y are
regionally distal, then D2 C G(Xo) and Dy C G(Zo), hence D, C ABH (T). Therefore
G(W) = ABD-II(T) implies G(W = ABH(T). a

Theorem 10. Let ABD, be a group, H*(T) C AB for some transfinite number a and ¢
or i be a composition proximal extension and B-extension. Then the following statements
are mutually equivalent:

1) (p,¥) is RD-prime;

2) vo L o;

3) R,y contains a unique mintmal subset;

4) (¢, %) is P-pair;

5) (¢, ¢) is prime.

Proof. Let 1) be true. Then T = ABH(T) by Lemma 1. Since D, C G(Xo) = AH(T) or
D: C G(Z) = BH(T), then T = ABH(T) impliesT = AH(T)BD, or T = AD,BH(T).
By Corollary 4 po L o, i.e., 2) is true. The implications 2) = 3) = 4) = 5) = 1)

are obvious. O

Lemma 2. If the semigroup S is commutative and the TTS(X,S) is pseudostable, then

A is invariant subgroup of £.

Proof. There exists a proximal extension (X, S) — (W, S) with a regionally distal TT'S(W, S).
Then G(W) = A. Since (W, S) is homogeneous, then G(W) is invariant subgroup of £. [

Lemma 3. Let the semigroup S be a commutative. If (W, S) is marimal RD-factor of

the_pair ((.X,S),(Z,S)), then G(W) = ABH(E). Consequently the pair ((X, S), (2,9))
18 RD-prime if ABH(E) = €.

Proof. The proof is obvious. a

Theorem 11. Let the semigroup S be a commutative and the pair ((X,S),(2,5)) be
a a-pseudostable for some transfinite number a; (Xo,5)((Z0,S)) be a marimal RD-
factor of (X,S)((2,5)). Then ((X,S),(Z,S)) is RD-prime < (X0,5) L (20,8) &
((X,9),(2,85)) is prime.
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Proof. The proof is obvious. {

Theorem 12. Let the semigroup S be a ‘commutative and H*(£ C AB for some tran:
finite number «, (Xo,S)((Zo,S)) be a marimal RD-factor of (X,5)((2,S5)). The
(X, S),(2,5)) is RD-prime & (X0.5) L (20,5) ¢ (X.,5) L(2,5) & ((X,5),(2;

is prime.
Proof. The proof is obvious.

Consider the commutative diagram

x,s) 5 ws) (2,5)

Ny dn Y/ (

(Y,5)
And let wy = z¢d, D = G(W,wp) the Ellis group of TTS(W, S).

Theorem 13. Let in (6):
1) & be a prorimal;
2) R,y contains a unique minimal subset;
3) Rpy. = W'
Then ¢ L 4.

Proof. Since 1) = A =D and 2) = T = BD, then T = AB. By Corollary
ply.

Corollary 11. Let in (6):
1) & be a prozimal and 1 be a distal (regionally dist;xl);
2) (n.¢) be a D-prime (RD-prime);
3) AB be a group and R,y = RyyJ.
Then ¢ L 9.

Proof. Tt follows from Theorem 6 and 13.

Corollary 12. Let the semigroup S be a commutative, the TTS(W, S) be a distal and
extension § : (X, S) — (W, S) be a prozimal. If AB is group and the pair (X, S),(Z,.
is D-prime, then (X,S) 1 (Z,S).
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Corollary 13. If the semigroup S is commutative, the extension § : (X, 5) — (W, S) 1s
prorimal and (W, S) L (Z,S), then (X,S) L (Z,5).

Theorem 14. Let in (6):
1) § be a proximul;
2) ¢ be a RD-prime RIC-extension;
3) n be a pseudostable (stable in the some fibre).
Then ¢ L 1.

Proof. Since 1) and 3) = H(T) C Aand 2) = T = BH(T), then T = AB. Also 2)
= Ryy = RyyJ. By Corollary 4 o L 9. a

Corollary 14. Let the semigroup S be a commutative, the extension § : (X, S) = (W, S)
be a prozimal and TTS(W,S) be a pseudostable. If TTS(Z,S) is RD-prime, then
(X,9) L (2,9).

Corollary 15. Let in (6):
1) ¢ or i be a pseudostable;
2) ¢ or i be a RIC-extension;
3) n be a marimal RD-factor of o;

{)nL.
Then @ L .

Theorem 15. Let in (6):
1) @ or i be a pseudostable;
2) ¢ or  be a RIC-extension;
3) AH(D) = D;
4) Ryy contains a unique minimal subset.

Then ¢ 1 9.

Proof. Since 1) = H(T) C AB and4) = T = DB, then T = DB = AH(T)B C
ABC T, hence T = AB. At this point ¢ L v by Corollary 4. 0

Corollary 16. Let the semigroup S be a commutative, (X, S) or (Z, S) be a pseudostable
and the extension & : (X,S) = (W, S) such that AH(D) = D. If (W, S) L (Z,S), then
(X,S)L(Z,5).



Theorem 16. Let in (6):

1) ¢ be a distal (regionally distal);

2) n be a mazimal D-factor (RD-factor) of p;
I)nly.

Then o L 9.

Proof. Since conditions 2) —3) = T = AD; and T = DB, then T = AD;B (i = 1,2).
Because 1) = D; C B (i = 1,2), then at this point T'= AB and ¢ L ¢ by Corollary

4.

a

Theorem 17. Let in (6):

1) Ryy contains a unique minimal subset;

2) ¢ or ¢ be a B-extension or Ryy = RyyJ;

3) H*(D) C [A, B} for some transfinite number a;
4) Rs C Q*(Ry).

Then pair (p, V) is prime.

Proof. Since condition 1) = T = BD, then by Proposition 7 [6] we have

H(T) C BH(D). (7
Conditions 1), 2) and 4) implies

T = (A, BH(T). (8)
Conditions (7) and (8) implies

T = [A, BJH(D). 9)

By transfinite induction from (8) and (9) we prove T = [A, BJH*(D), hence

T = [A, B] by condition 3). At this point {p, ) is prime. O

Corollary 17. Let in (6):
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1) @ or ¢ be a composition prorimal extension and B-extension;
2) Rs C Q*(Rs);

3) Ryy contains a unique minimal subset;

4) H*(D) C AB for some transfinite number a;

5) Ry = R—w7~

Then o Lo iff n L 9.



Definition 1. An extension ¢ : (X,S5) — (Y, S) is called almost distal (almost auto-

morphic), if the set of points, where extension ¢ is distal (one to one), IS dense in X.

Remark ‘2. If the extension  is distal (one to one) in the point z € X and ¢~} (zps) =

¢~ (zp)s (s € S), then it is almost distal (almost automorphic).

Proof. 1 the extension ¢ is distal (one to one) in the point x, then extension ¢ is distal
(one to one) in each point of zS. Since S = X, then ¢ is almost distal (almost

automorphic). O

Theorem 18. Let in (6):
1) & be a almost distal (almost automorphic);
2) Roy = RoyJ;
3) o be open or ¢ be semiopen and ¢ be open.
Then Ryy = RyyJ.

Proof. Let, for clarity, the extension § be almost distal and- V be any open nonempty
subset of R,y. There exist open subsets V) and V2 of .X and Z respectively such that
forVzeVi 3zeV, with (z,2) € V. Let x € V;, d is distal in z and z € V, witﬁ
(z,z) € V. Because (x4, z). € R,y, then by 2) (x4, 2)v = (24, z) for some idempotent
v € I. Therefore zév = zd and z2v = z. Since zvé = zdv = z§, then zv € §~!(z).
Because § is distal in z, then zv = . Therefore (z,z)v = (z,2) and (z,z) € RpyJ NV,
hence R,y = Ryyd. O

Corollary 18. Let in (6):
1) ¢ or ¢ be a composition prorimal extension and B-extension;
2) ¢ be open or i be a semiopen and ¢ be open;
3) § be a almost distal;
4) H*(D) C AB fof some transfinite number a;
5) Rs C Q*(Ry).
Then ¢ L 3 iff po L 9.

Corollary 19. Let in (6):
1) 8 be a almost distal (almost automorphic);
2) Ryy = RyyJ;
3) 4 be open or ¢ be semiopen and ¢ be open;
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4) R,y contains a unique minimal subset.

Then ¢ L 9.
Corollary 20. If ¢ is almost automorphic and ¥ is open, then ¢ L 3.

Corollary 21. If the ertension é : (X, S) — (W, S) is almost automorphic and (W, 5) L
(Z,5), then (X,S) L (Z,5).
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STUDIA \INIV. “BABES-BOLYAI", MATHEMATICA, Volume XLII, Number 3, September 1997

NECESSARY CONDITIONS FOR EXISTENCE OF SOME STOKES
FLOWS

MIRELA KOHR

Abstract. In this paper there are obtained a couple of necessary conditions
for the existence of two-dimensional Stokes flows for circular obstacles. There

are examined in details some examples.

1. Mathematical formulation

It is well known that the motion equations of an incompressible viscous flow,

which has very small Reynolds number, can be reduced to the following Stokes equations:
Ai-Vp=0
V-i=0
where by vecu and p we denote the fluid velocity and the fluid pressure, respectively.
From the continuity. equation (1.b) we deduce that there exists a stream function

¥ = ¢(r, ) such that

TR |
ur—;a—o‘ Uy = or (2)

where u,,ug are the velocity components with respect to the polar coordinates (r,8).

From (2), it results that the motion equations (1.a) and (1.b) can be written as follows:
Ay(r,0) = 0. (3)

Let o = 4ig(r, #) be the stream function of a given unbounded Stokes flow. If in
this flow we introduce a circular cylinder r = a, then the stream function ¥ of a resulting

flow satisfies the biharmonic equation (3) and also the following boundary conditions:

¥(a,0) =0

(4)
12%(a,8)=0, %(a,0)=0

Received by the editors: March 14, 1996,
1991 Mathematics Subject Classification, 35Q10.
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On the other hand, at infinity the function ¢ has the same form as 1y, so:
W ~ Py, as T~ 00. (5)
If we consider the following representation of the function ¥:
¥=to+9 (6
where y:(r,8) denotes the perturbed stream function corresponding to the presence o
the circular eylinder in the given Stokes flow, then the function 1/~v is a solution of the
next system:
A% (r,0) =0
¥(a,8) = —o(a, )
b 8
135(a,0) = —1%p(a,0)
% (a,0) = —22(a,8)
In the following, we suppose that at infinity ¥ can be written as b+ clnr

d cos20 + esin 20, where the unknowns constants b, ¢, d, e, will be determined using th

boundary conditions (7)2 — (7)4.

2. Necessary rosult for the existence of solution

Now, we consider the following problem, corresponding to a biharmonic functio

A%H(r,0) =0 in 0, (8
with the boundary conditions:

#(a.0) = £(0) o

| B0 =90

and with the asymptotic form at infinity b 4 cln r + dcos20 + esin 20, as r — oo.
Here § is the outer domain of circle r = a.

From the above asymptotic condition, we deduce that ¢ may be written unde

the form [1]:

¢(r,0) = b+ clnr 4 dcos20 + esin 26 + (10
2 A, cosnf + B, sinnf 2\ Cy cosnf + D, sinnf
n G n n sinn
+ Z rn + E pn—2 -
n=1 n=3

40



NECESSARY CONDITION. . FOR EXISTENCE OF SOME STOKES FLOWS

where A, B,,.C,. D, are some constants which will be determined using the boundary

conditions (9). From (9) we obtain:

b+clna+ dcos26 + esin 26 + (1)
2. A, cosnf + B, sinnd 2. C,cosnf + D, sinnd _
+ Z an + Z an—2 - f(0)
n=1 n=3
o0 . o0 .

¢ n(A,, cosnf + B, sinrf (r —2)(Cncosnd + D, sinnd

S T -2 =g(6).  (12)
n= n=

We suppose that the functions f and g can be written as:

o0

f(8) = 1f2-°- + nz_-;l(a,, cosné + b, sin nd) (13)
[o =]

g(8) = ‘q-2—° + Z(c,, cos nf + dy, sin nf). (14)
n=1

If we use the relations (11)-(14), then we deduce:
b+clna=fo/2, c=ago/2

Ai/a=ay, Bifa=b, -Afa’=c¢;, -Bi/a®=4d, (15)
d+ A[/a2 = as, a’e + By = a:’bg, -2A, = 0302, ~2Bs = add,

An + azcn =a"a,, B,+ a2Dn =b,
for n > 3.
-nA, = (n - 2)a?C, =a™*'¢, —nB, — (n-2)a’D, =a"td,
(16)
As a consequence of (15) it results that:
a, = —aq, bl = —lldl (17)

Hence, we obtain the necessary condition for existence of the function ¢:

2n 2n

f(0)e®df = ~a / g(8)e'* ds. (18)

0 0

Using the above arguments, we can formulate the following result:

Theorem 1. [f the function ¢(r,9) is a solution of the problem (8)-(10), then the func-

tions [ and g must satisfy the necessary condition (18).

Also, using the relations (15)-(16), we deduce:
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2 2 2 2 r 2
+;1%4-(a"’ -r3A [rzd‘o (%—ﬁ))] + 04;: / A (P2¢’o (%,0))) dp—

1 [ 2, (2
NN

Remark. From the above hypothesis it results that the added function 35 has not sin-

gularities in the prescribed motion domain r > a.

3. Two simple examples

a) Let consider a Stokes flow with the uniform velocity UG=U ;", past a cylinder

r = a. Then, the stream function ¥y is given by:
Yo(r,8) = Ursind.

On the other hand, since the next relations are satisfied:

27 . 27 81[’0 .
Yo(a,0)e’dd = Uami, -a ——(a,0)e* = —Uainr,
0 0 or
it is clear that the necessary condition (21) is not satisfied. Hence it is impossible to
obtain a solution for the above considered problem. In fact this is the well known Stokes
paradox [1].
b) Let the stream function ¥ be defined by:

Yo(r,8) = r?sin26.

Then, we obtain:

2m . 2T a'po .
¥o(a,0)e’dd = —a / ——(a,8)e*’do = 0,
o Or

0

hence, the necessary condition (21) is satisfied. It is easily to prove that ¢ is a biharmonic
function, and applying the result of Theorem 2, we deduce that the stream function ¥
has the form:

4
¥(r,0) = r¥sin 20 + 2a%sin 20 + gz— sin 26.
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4. A necessary result for existence of biharmonic functions in an outside

domain of a sphere

Let %9 = tp(r,0,¢) be a biharmonic function given in an unbounded three
dimensional domain. We denote with 1 a biharmonic function be defined in the outside

domain § of sphere r = a. This function satisfies the following equation and conditions:

A?%y(r,0,¢) =0in Q, (29)
,0,¢) =0

HaBA=0 gcocnm 0<pcom 24
% (a,8,0) =0

At infinity ¢ has the same form as 1, hence:

Y ~ ¢y, for r = oco. (25

i

If we consider the perturbed stream function ¥, given by ¥ = 41 + ¥, then thi

function is a solution of the next problem:
A%(r,0,0) =0, in Q
¥(a,0,p) = —tho(a,8,9) , 0<0<w, 0<p<2m (26,
5L(a,0,9) = —%42(a,0,¢)
Let ¢(r, 0, ¢) be a solution of the following problem:

A?2¢(r,0,90) =0in Q
¢(a,0,¢) = J(6,¢) @
32(a.0,0) = 9(0, )

then, from [1] and since any solution of the biharmonic equation can be represented ir

the spherical coordinates as:

#(r,0,9) = h(r,0,p) + r2s(r,0,p),

.where Ah(r,0, p) = As(r,0,p) = 0, it results that the function ¢ may be written undel
the form:

o0

$(r,0,0) =Y (anr™ + bar"*+?) 5,(6, ) + (28]
n=0
00
—(n —(n- c
+> (cnr ) 4 4= ”) Ta(6,0) + 5T1(0,9) + 5}
n=2
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where .
> P03 6)(Amn cosmp + Bmn sinmep),

Sn(6,9) =
m=0
n
Ta(6,9) = Z P (cos 8)(Crnn €08 M + Dy sin myp),
m=0

for alln > 1.
Also, in the above relations P* mean the Legendre’s functions, given by

Po(z) = Pale) = ayaes [ = 1)°],

m-+n

PP () = di;m (®-D"], -1<=z<],

for alln € M and m € {0, ...,n}.

Using (27) we deduce that:

2 (ana™ + baa™*?) S,(0, ) + Z (caa=(n +1) + dna==V) T (6, )+

=0
STi(0,9) + 2 = f(0,9),

] E (nana™! + (n +2)baa™*") 5,6, )~ (29)
n=0
_n§2 ((n+ Dena™ ™2 + (n — Ddna™) T (6, ) - %Tl(o, v)+

[ —58 =g(0,¢p).

On the other hand, we suppose that the functions f and g may be written as:

£(8,%) an (0,9) + fo, 9(6,9) = Zgnc (6.9) + 90 (30)
n=1
where
Fal8,9) = 3 (Fhn cosmp + [y sinmy) P (cos )
Gn(8,p) = mZ"__Zo(y,‘nn cos myp + g7, sin myp) P (cos f) @
foralln > 1. i

From (29)-(31), we obtain the following equalities:

Co C c
S tao+ boa® = fo, —a—g + 2boa = go, a—;Cw + (aza + b1a®) Ao = f1f),

2(‘1 c
a—;'Cu + (a1 + 3b1a®) A1y = fif)

—5C1o0 + (a; + 3b1a %) Ao = g19}0,

2¢
—-—iCu + (a3 + 3b1a?) A1y = g9},

SDiy 4 (ara+ b1a%) By = fif}
=2 D1y + (a1 + 3b10%) By = g193,
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(400" + baa™*?) A + (€06~ + daa™"D) G = fo fon
(400" + baa™?) Bonn + (ca™ ™V + daa™~V) Do = fu frn
(nana™? + (n + 2)baa™) Amr = (7 + 1™ + (0 = 1)dna™) Cran = gus)
(nana™ ' + (n + 2)bpa™*!) Bmn — ((n +1)caa~ "D 4 (n - l)dna'") Dimn = gng?
If we suppose that ¢ — 0, as » — oo, then we obtain the next relations:

a a a
fo=—ago, fflo= "59%091, ffh = —5919{1, fift = —5919m

which assure the necessary conditions:

T 2w ® p2x
/ f(0,¢)sin8d0dp = —a/ / 9(8, ) sin 6d6 dyp,
o Jo o Jo

T 27 LS 2n
/ (6, o) sin 20d0 dp = — 2 f / 9(8, ) sin 26d0 dyp.
0 0 2 0 0

Here, we used the orthogonality properties of Légendre’s functions

1 0, form#n
[ @@ =1 ]
-1 oy form=n>0
and also,

Po(z)=1, P(z)==z, for —1<z<1.

Now, we can formulate the following result:

Theorem 3. If ¢(r,8, ) is a solution of the problem (27 ),u with the assumption ¢
as r — 00, then the function f and g must satisfy the conditions (32) and (33).

From the above result we conclude that the biharmonic function 1 from

‘must satisfy the necessary conditions:

n 2n ) " 2% 31/)0 .
Yola,d,¢)sinfdb dp = —a ——(a, 8, p)sin0dd dp
o Jo o Jo Or

g 2n 2n
/ Yo(a, 8, o) sin 2046 = —5/ a% —--(a,6,p) in 68 dip
0 0 2 0 Q
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SUBCLASS OF MEROMORPHIC STARLIKE FUNCTIONS
S.R. KULKARNI AND £.B. JOSHI

Abstract. In the present paper we have introduced a suhcl;tss Yos(a,8,7)
of meromorphic univalent functions, and we prove coeficient inequality and
distorsion theorem. Lastly, we have obtained radii of convexity for function
f(2) belonging to J_g(a,B,v). Various results obtained in the present paper
are shown to be sharp.

1. Introduction

Let £ denote the class of flln;ttions of the form
f2)=2+) anz" (1.1)

which are regular in U* = {z: 0 < |z| < 1} with simple pole at origin and residue 1
there. Further, &* denote the subclass of T consisting of analytic and univalent functions

f(z) in U*. A function f(z) in £* is said to be meromorphically starlike of order «a if

Re {—zf'(:)/f(z)} < e, (z€U")

for some o, (0 < o < 1). We denote by £*(a), the class of meromorphically starlike

functions of order . Let ¥, denote the subclass of ¥ whose members have the form

Il

Nl»—-

Za,.z,,, an > 0. (1.2)

n=1

Definition. A function f(z) in E, is in the class I3 (a, B,9) if it satisfies the condition

2f'(z )/9(2)+1 l
zf'(z)/9(z) — (1 - 2p)

(1.3)
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S.R. KULKARNI AND S.B. JOSHI

forzel*, 0<B <1, 0<y<1andg(z) € L*(a), with g(z) of the form

1 00
9(z) = ;-{- anz", b, > 0.
n=1

The systematic study of aforementioned class has been motivated by recent work

of Aouf [1], Srivastava and Owa [3], and also by Gupta [2], Uralegaddi and Ganigi [4).

2. Coefficient Inequalities and Distortion Theorem

We state following Lemma due to Uralegaddi and Ganigi [4], which we are going

to use in our further investigations.

M8

Lemma 1. A function f(z) = §+ a,z", (ap > 0) is in *(a) if and only if

n=l

[==]

Z(n +o)a, < (1-a). (2.1)

n=1

The result is sharp.

Theorem 1. Let the function f(z) defined by (1.2) be in the class T3 (a,8,v). Then

S {4 ma, + L=2AZTL DY <50 23)
n=1

Proof. Since f € T}(a, #,7), there exists a function g(z) in the class ©*(a) such that

2f'(z) + 9(2)
2f'(2) = (1 - 2B)g(2)

It follows from (2.3) that

<7, z€U". (2.3)

[ o]
El[na»,, + bp)2" !
Re n=

< : <y, z€U". (24)
2(1-7) - Z_:l[na,, —(1-2p)b,):n+1

Choose the values of z on the real axis so that zf/(z)/g(z) is real. Thus, upon

clearing denominator in (2.4) and letting z — 1 through real values we have

D_[nan +ba] < 921 = B) = 3 (nan — (1~ 26)bn)] (25)
n=1 n=1
or equivalently
Y AL+ y)nan + (1= +287)a) < 29(1 - ). (26)
n=1
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Using Lemma 1, we have

> {(1 + ynan + 1= "’((,} s 257) } <29(1-p)- (2.7)

n=1

Corollary. Let the function f(z) defined by (1.2) be in the class T;(a, 3,7). Then
<cHnta)(1-p-(1-a)-7+ 27/3)

n < nn T o)1) n>1. (2.8)
The result (2.7) is sharp for the function
f(z) = = 4+ 22+ )l ;(n)+ a()‘ ;:L()l “1328) i n>1, (29)
with respect to
U k) Y (2.10)

(n + a)
Theorem 2. Let the function f(z) defined by (1.2) be in the class ¥} (a,3,7). Then

i—l |(1—a)(1+~/)+27(1—ﬂ)
|21 (1+a)(1+9)

|(1 a)(1+7) +24(1 - f)
e (1+a)(1+9) '
The result is sharp for the function

f(z): l+ (l_a)(1+7)+27(1"'ﬂ)z

<If(2) <

+| zeU*.

Q4a)(1+9)
with respect to
l—-a
9(z)=z+ TTa’
Proof. Since f € £3(a, 8,7), we have
1+7)Zan+(1—7+2ﬂ~/ Zb <2y(1- ). (2.11)
n=1

For g € £*(a), Lemma 1 yields

UL

4
CLUL-NAPDCA “

Og g T rich Ve
so that (2.11) reduce to \\\\f‘iTI:MAT\G

(1-a)(1+7)+2v(1 - B)
Z“”- A+a)T+n)



Hence o
1 n
FN2 =Sl 2 1 SIS a2
~ n=1 n=l
1—a)(1+7) +2-y(‘l-
(1+a)(s+7)

1£(2) |i+§:a,.|| +| 13 an <

nz=l nx=1

a)(1+ 7) +27(1 -h
(1+a)(l1+9)

1]

and

Theorem 3. Let the function f(z) defined by (1.2) be in the class T, (o, B8,7). The
f(z) is convex in the disk

0 < IZI <r= r(a,ﬂ)7)9

where

/n+1
. (1+a)(1+79) }1 .
—infl , >l
o8 =it ) "2
The result is sharp.

Proof. We try to show that

sf'(=)/f(z) +2
2f"(2)/ ()

<1, 0<|z]<r(a,B,7)

Noting that

)/ f() 2| |t Dane™

2f'(z)/f'(z) | 9_ f n(n = 1)an 20+

n=1

<

00
L n(n + 1a|z[**!
< o= . (2.1
2- Y n(n - 1)agy|z|"+!

n=

The expression (2.12) is bounded above by 1 whenever

[ =]
Z nla, |zt < 1. (2.1:

n=1

In view of Theorem 1, we have

na (L4+a)1+7)
1;1 n s 1~-a)(1+7)+29(1-5) (214
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With the aid of (2.14}. (2.13) is true if

n (I1+o)(1+7)
n™ S T T B AR (2.15)

Hence we have the desired result as

/n+1
: (1+a)(1+7) }‘
= , > 1.
r{a, 3,7) "'}f{n(l-a)(l+7)+27(1—ﬂ) n
The result is sharp for the function
f(Z) — (1 —0’)(1+7)+2')’(1 _ﬂ) "
z (I+a)(1+7)

, n>1.

O
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STUDIA UNIV. “BABE§-BOLYAI”, MATHEMATICA, Volume XLII, Number 3, September 1997

LAGRANGE-JACOBI RELATION FOR PARTICLE SYSTEMS WITH
QUASIHOMOGENEOUS POTENTIALS

VASILE MIOC

Abstract. One considers the n-body problem in the case 6f quasihomoge-
neous force fields. One obtains a relation between the moment of inertia, the
force function and the energy constant, the analogous of the Lagrange-Jacobi
relation in the Newtonian case. The relation obtained is particularized for
diffrent force fields.

1. Basic formulae

Consider n interacting particles of masses m; > 0 (i = 1,n) in the Euclidean
space R3, having tle coordinates ¢; = (zi, 3, z) in an absolute referencé frame. Let
¢ = (91,92,---,9n) € R be the configuration of the system of particles, and let the
force field be defined by the quasihomogeneous potential function W = U + V, where

(cf.[3])

U:R*™\A=Ry, Ul@= Y. A(mmjg;°, (1)
1<i<j<n

V:R*™\ AR, V)= Y. Bimimjg, (2)
1<i<j<n

are homogeneous functions of degree —a and — g, respectively (1 < a < f), i = lgi—g;|
is the Euclidean distance between particles i and j, A stands for the collision set
A= U {al ¢ = q;},

1<i<j<n

while A and B are symmetric positive functions of masses, that is, A(m;, m;) = A(mj,m;) >
0 and likewise for B.
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The equations of motion read
mij; = 6W(g), i=T1,n,

(where ;W is the i-th gradient of W), or

i
b

m;¥; = oW/dx;, m;ij; = W/8y;, mii; = 3“’/02,', 1

It is known that along a solution we have

T(9)-W(g) =h,

which represents the integral of energy, where T : R3 — [0, o0},
n . n
T(§) =Y milgil*/2=)_ mi(z? + 3} + :})/2,
i=1 i=1
is the kinetic energy of the system, while A € R is the constant of energy.
We also define the moment of inertia: J : R3" — [0, 00),
n n R
J@) =Y milgil*/2 =Y mi(=? + of + 7)/2.
i=1 i=1

2. Lagrange-Jacobi relation

Differentiating twice (6) with respect to time, we get successively

J@) = )_ mulziti + vith + z5:),

i=1

n
J(@) =D mi(a? + ziti + 7 + yidi + 27 + 55).

=1
Now, using (1) and (2), it is easy to verify that
= ow ow aw
Tis—+Yin—+zi5— ) =—al(q) -
> (s + 0y + 5 ) = ~aUla) = V(o)

or, taking intto account (3),
D mi(zidi + widh + z:5) = —aU(q) — BV (q).
i=1

By (4) and (5) it results

D mi(a? + 4 + i?) = 2U(q) + 2V (q) + 2h.

i=1
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Finally, adding_together (8) and (9), and replacing the resulting expression in

(7), we get
J@) = (2-a)U(q) + (2= AV(a) +2h. (10)
This constitutes the analogous of the Lagrange-Jacobi relation for the case of

quasihomogeneous potentials.

3. Particular cases
Suppose that
a=f0=1, A(m.-,mj) = B(m.-,m_,-) = Gm;mj/Z,

where G denotes the Newtonian gravitational constant. In this case W is just the New-

tonian pot@nt.ial function, and (10) becomes the classical Lagrange-Jacobi relation
Jlg) =W(q) +2h.
Suppose now that
a=p>1 A(mi,m;)=B(mi,m;)=GCGmm;/2.
This is the generalized Newtonian attraction law (see [2]), for which (10) becomes
J(@) = (2~ a)W(a) + 2h.

(The interesting properties of the case a = 2 were pointed out in [2].)
Lastly, consider that

a=1, f=1, A(m;m;)=_CGmm;,

B(mq,m;) = 3G mimj(m; + m + 5)/(2¢?),
where ¢ is the speed of light. This is Maneff’s field (see e.g. [1,4]), for which (10) acquires
the form

J(q) = U(q) + 2h.

Observe that in Maneff’s field case the Lagrange-Jacobi relation has exactly the
same form as in the classical Newtonian field. The expression of the energy constant h

is however different (cf. e.g. [5]).
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STUDIA UNIV. “BABES-BOLYAI", MATHEMATICA, Volume XLII, Number 3, September 1997

THE CONVERGENCE OF NUMERICAL DIFFERENTIATION FOR
JACOBI ULTRASPHERICAL EVEN NODES

A.lI. MITREA

Abstract. A theoremn which states the convergence of numerical differentia-
tion formulas (1) of interpolatory type, having the zeros of Jacobi ultraspheri-
cal polynomials P,(:) as nodes, for all real continuously differentiable function
defined on the interval [-1,1] and for each a > —1, is established.

1. Preliminaries

Denote by P,ﬁa), n € N, a > -1, the Jacobi ultraspherical polynomials P,ﬁa'a),

namely
(@) = U 1 _ 2)-ap(] — g2)e+ni)
Pn (z) - v 2,."! (l z ) [(1 z ) ] ) le < 1

and let y%¥ = cos0X, 1 < k< n, 0< 6Bl <62 <.-.<O" < m, be the zeros of the °
polynomial P{*), n > 1 '

Suppose that the strictly increasing sequence of natural numbers ( j,.),,zl, the
"nodes” zf, with —~1 < zl < 22 < --- < z{* < 1 and the real "coefficients” a¥, n > 1,

1 < k < jp, are given and let’s consider the following numerical differentiation formulas:
£/(0)=Daf + Ruf, n21, (1)

associated to the space Cy of all real functions f which are continuous together with

their first derivatives on the interval [-1,1], where

jn
Daf=) akf(zk), n>1 (2)
k=1

In what follows, we suppose that the formulas defined by (1) are of interpolatory

type, that is the equality f/(0) = D, f holds for each polynomial whose degree doesn’t
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THE COUVERGENCB OF NUMERICAL DIFFERENTIATION FOR JACOBI ULTRASPHERICAL EVEN NODES
or
n
|IDaf - f(0)] <2 (Z IO,'I“‘I) IIfF =P+ =P, (6)
k=1

where ||g|| denotes the uniform norm of a continuous function g : [-1,1] = R.

3. Estimates for the coefficients al¥*, 1< k<n

In what. follows, given the sequences of real numbers (un) and (t,), we shall write

u, ~ i, if two real numbers A and B which don’t depend on n exist so that ¢, # ( and

0<AL (| < B, foralln>1.
By (3), with w,(x) = Pz(:)(:c), we obtain:
(0‘) 0)
aptk = - n { , 1<k<n. 7
o “

Since
I(2n+a+1)I(n+1)

(0‘) n
n (0) = (-1) F(n+a+ 1)(2n)l/x

and

|(PLP)) (con )] ~ k™2n+? for 0 < 64 < 7,

see [4],.[5]. we deduce, using also the relation I'(n + a + 1) ~ nln®, & > —1:

1P (0)] ~ 7 (8)
and
o na+2
IP2Y @) ~ ey 1Sk S (©)
By (7), (8) and (9) we derive:
N 1 (n—k+1\"" V/am—k+1
. lap* | ~ = :+k)'2( - ) ( — ), 1<k<n. (10)

4. Estimates f(_)r the roots z%t* 1<k<n

Since 6%, = &% 4 —.I,(;z, 1 <k < 2n, see [4], [5], it follows that a real A > 0 which

doesn’t depend on n exists so that 65, = w'i'il where [uf| <A, 1<k < 20,n>1.
This gives:
k—1—un—k+ k+th
21:-0-[: - n —al n
n €08 —————=——n =sin o™ 1< k<n, (11)
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Remark. It is easy to see that k +t¥ < (A + 2)k for all k > 1, so that we get:

n il 2 n—k+1 at3/2 4
A > M, i ( ) = > Msn,
kgl I 12 ,,5;1 (k +tk)? n n

which leads. together with (15), to the estimate

n
Y laztH ~n.
k=1

6. The convergence of the numerical differentiation formulas (1)

Now, we can prove the following statement:

Theorem. The numerical differentiaiion formulas (1) of interpolatory type, having the
zeros of Jacobs ultraspherical polynomials Pé: ) as nodes, are convergent on the space C,

for each a > —1 fired, that is the equality l_i_’m D, f = f'(0) holds for all f in C,.
n—o00

Proof. Let E,(f) b~ the degree of approximation of a continuous function f : [-1,1] - R

by algebraic polynomials of degree at most n. The inequality (6) implies:

n
IDuf-roOl<2(y la:“‘l) Esi(f) + Esm_of'), fE€OCh.
=1
Taking into account the estimate (15), the last inequality hecomes:

[Dnf = f'(O)] < MgnEgn_1(f) + E2n-2(f'), fE€C. (16)

Denote by w(f;-) the modulus of continuity of a real continuous function f

defined on the interval [-1,1]. It is known that:

Eo(f) < Mn~lu (f'; -'l; and a7
En(f) < Maw (f'55), feln,
see [2], [5].
Now, from (16) and (17) we obtain:
1
1Daf = 7100 < Moo (1:1).
which completes the proof. ]

Remark. An equivalent proof can be hased on Theorem 1 of (3.
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REAL STAR-CONVEX FUNCTIONS

PETRU T. MOCANU, IOAN SERB, AND GHEORGHE TOADER

Abstract. This paper contains a survey of the properties of a class of real
functions, which is intermediate between the class of convex functions and the
class of starshaped functions. We present some known as well as new results

or new proofs and examples.

1. Introduction

Let R be the real axis and let I C R be an interval (closed or not, bounded or

not). A function f:I— R is said to be convez on I if

fQz + (1= X)) < Af(2) + (1= A f(y), (1)

for all z,y € I and all X € [0, 1).
The function f is called starshaped on I if

10x2) < M), @

for all z € I and all A € [0,1]. For A =0 we get f(0) <0, which also implies 0 € I.
The aim of this survey paper is to analyse an intermediate concept, which con-
nects the property of convexity with that of starshapedness by means of a parameter
a € [0,1]. This concept was introduced in [9] and it was inspired by the notion of
a-convexity defined for complex functions in [3]. We shall present here some resuits

obtained in [1], [4], (7], [9] and [10] as well as some new results or new proofs.

2. a-Star-convex functions

We begin with the definition and some general properties of a-star-convex func-

tions.
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Definition 1. [9] Given « € [0,1], the function f: T — R is said to be a-star-conver

on I if
fOz + (1= Neay) < Af(z) + (1 - Aaf(y), 3)

for all z,y € I and all A €[0,1].

Remark 1. If o = 1, then (3) :-duces to (1), i.e. an 1-star-convex function is convex.
If o = 0, then (3) reduces to (2), i.e. a 0-star-convex function is starshaped. As in this

last case, in [10] it was shown that it is natural to put the conditions
0el and f(0)<0. 4

In fact, taking = y = 0 from (3) we get the second part of (4) but only for o # 1.
Remark that y € I implies ay € 1 and so for a € (0,1) we have (0,y] C I. This gives
Lemma 1. If f is a-star-conver on I, 0 € I, then f is starshaped on I.

Proof. For any z € I and X € [0,1] we have
F2) = fz + (1 = Nar-0) € M(z) + (1 = Naf(0) < A(#).0

Theorem 1. If f is a-star-conver on I, 0 € I and 0 < f < a, then f is also
B-star-conver.

Proof. If z,y € I and X € [0, 1], then by using Lemma 1 we deduce

fO= + (1= N8y) = fOz + (1 - NalY) <

< M) + (1= Nas(Cy) <aste) + (1 - Nasw) o

R mark 2. A.W. Roberts and D.E. Varberg [6] defined the class of functions f:I — R

that satisfy the condition
f(sz +ty) < sf(x) +f(y)

for all z,y € I and all (s,t) in a given set M. Note that for example Jensen convexity
corresponds to M = {(1/2,1/2)}, subadditivity corresponds to M = {(1,1)} and a-
star-convexity is also of this type, with M given by the segment joining the points
A(1,0) and B(0,a).

Remark 3. The concept of a-star-convexity has the following geometric interpretation.
If y € I is fixed and if we consider the point M = M(ay,af(y)), then for all z € I

the graph T, of the function f on the interval [z,ay) or [ay, z] lies under the segment

ar












4. The Lipschitz continuity of a-star-convex functions

It is easy to observe that a function f :[a,b] = R, with 0 € [a, b} is starshaped

on [a.b] if and only if f can be written in the form

zg_,_(x), if z€ (O,b];
flz) = f(0), if z=0;
zg_(z), if =z € [a,0),

where f(0) <0, g4 :(0,8] = R and g_ : [¢,0) = R are increasing functions on (0,}]
and [a,0) respectively. From this representation it immediately follows that f has at
most a countable number of discontinuity of the first kind. Moreover, the point z =0
can be a discontinuity point of the second kind. We shall show that if a is strictly
positive an a-star-convex function is Lipschitz on certain interval.

Theorem 4. Let a € (0,1] and let a < b with 0 € [a,b]. If the function
f:[a,5] 2 R, is a-star-convez on [a,}), then f is Lipschitz continuous on each compact
interval K = [a),a2) C (aa,o;b), where a; < as3. |

Proof. Since K C (oa,ab), there exists A > 0 such that K, = [a; — ah,a2 + ah] C
(aa, ab), and hence K} = [a;/a — h,az2/a + h] C (a,b). Let m; be the greatest lower
bound of f on K and let M, be the least upper bound of f on I\,‘, From the definition
of the least upper bound there is a sequence (€n)n>1, With €, \, 0 and a corresponding

sequence (z,)p>1, *n € K}, such that M, — e, = f(z,). Since az, € K) we have
My - en = f(zn) = f(laz,,) > lj‘(‘a':n ) > lm,.
a Sl

hence oM, > my.
Let denote by T(zo+0). T(zo—O), f'(zo+0), and J'(zo—0) the upper—rigilt,
upper-left, lower-right and lower-left Dini derivatives at zq € K respectively. If in (3)

we let z =29, y=zo/a +h and devide by (1 — A)ah, we deduce
Af(ro + (1 = Nah) - f(zo) <

(1-A)ah =
< af(xo/a +h) = f(zo + (1 = N)arh) < aMy —my
= ah = ah '’
and by letting A 1 we obtain
- M, —
Flo+0) < TR v e k.

ah
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Analogously, if in (3) we let z = zo and y = zo/a -- h we deduce

—aM,

ah
Ifin (3) we let ¢ = zg — (1 — N)ah, y = zo/a+ Ah and devide by (1 — A)ah, then we

flzo-0)> 2 Yz € K.

get
’\f(-"v'o) — f(zo — (1 = Aah) <
(1—-Aah =
af(zo/a+ Ah) — f(zo) = aMy—m,
< < ,
= ah - ah
and by letting A 7 1, we deduce
T(zo—-0)< —————“M’;; Tk Yz € K.

Analogously, if in (3) we let z = 2o+ (1 — A)ah and y = zo/a — Ah, we obtain

- aMy

fllro+0)> Tk — 2= Vo€ K.

Therefore we deduce that f satisfies the Lipschitz condition with the constant
(aMp — mp)/(ah) on K C (aa,abd).0

Corollary 1 [7). If f : [a,b]) = R, with a < b, 0 € [a,}], is «a-star-convez,
where o € (0,1}, then f 1is continuous on (aa,ab). In particular, if f : R =+ R s
a-star-conver then f is continuous on R, and Lipschitz continuous on each compact

interval of R.

5. Other characterizations of a-star-convex functions

Suppose now that the function f has a right-hand derivative f'(z + 0) and a
left-hand derivative f'(z — 0) at each point z € I. If we let u = Az + (1 — A)ay, then

from (1) we obtain
f(w) = f(z) < (1 = Naf(y) - f(=)).
Ifu>z ie ay>z, then we have

fW) - £(z) _ af () - £(z)

u—z =~ oay—z '

and if we let A 1 we deduce

-z

f’(£+0) < af(y) —f(:l?)
- ay ¥

hence

102 824 parow-2), vy 2
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In a similar way we obtain

f(z) P, _z ‘ z
f@) 2 ——+fz-0-7) Yy< .
The above results have the following geometric interpretation [4): Take a paint F
P(z, f(z)) € Ty and consider the point Q on the ray OP such that OP/0Q =1

(sce Figure 1). Then the graph I'y lies above the reunion of the half lines
_f(=) o _z z
v={%4 peroer-3) x> 2,

and -
f:B Y] 4 x
Y=T+f(z—0)(X—;), X<;

(see Figure 2.)

From the geometric interpretation mentioned in Remark 3 we deduce the foll
ing ch;tracterization of an a-star-convex function [9)].
Theorem 5. The function f: I — R, with condition (%) is a-star-convez on I if

only if for all y € I the function @y : I\ {ay} =R defined by
f(z) ~af(y)

py(z) = T —ay

is increasing on each interval {z € 1:z < ay) and {z€1:z > ay).
If we suppose that the function f is differentiable on I, then from Theore
and (7) we deduce that f is a-star-convex on I if and only if for each z,y € I

following inequality holds

f(@)( — ay) - [f(z) - af(s)] > 0

or
2f'(z) - f(z) - alyf'(z) - F(y)] > 0.

Since an a-star-convex function is necessarily starshaped we have z f(a
J(z) > 0. If yf'(x) — f(y) < O then (8) holds for all positive a. If we suppose |
yf'(z) — f(y) > 0, then from (8) we deduce
zf'(z) - f(=)
al —=L " L=
= uf'(z) - f(y)

From this inequality we obtain in (5) of Definition 2 the fbllowing formula [4):

®(z,y).

o[f) = ing( 21D = S(2)

vf'(z) - f(y) :yf'(2) ~ f(y) >0, z,y € I}.

°
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If there exist zo,yo € I such that zof'(z¢) = f(zo) and vof'(zo) — f(wo) > 0,
then a*[f] =0.

Suppose now that zf'(z) — f(z) > 0 for all z € I'\ {0} (i.e. f is strictly
starshaped on I) and that f is twice differentiable on I. Then the system

% 0P
=" 5=
is equivalent to
f'(z) =0, fi(z)=F(v). (10)

Hence in certain cases a*[f] given by (9) can be obtained by solving the system
(10).
Ezample 2. [4]. Let f:R* — R be defined by

f(x) = z* = 52° + 922 — 5z.

If we let g(z) = f(z)/z, then ¢'(z) = S2?—102+9 > 0, hence f is strictly starshaped

on R. We also have
 f(x) =42 - 152 + 182~ 5

and
() = 6(22% — 5z + 3).
The equation f”(r) = 0 has the roots z; = 1 and x5 = 3/2. For z; = 1 equation
F'(y) = f'(z1) has the root ¥, = 7/4 and we have ®(z,,y) = 512/539 & 0.949....
For z3 = 3/2 equation f'(y) = f'(z2) has the root y, = 3/4 and we have ®(x2,y.) =
16/17 = 0.941.... Hence from (9) we deduce a*[f] =16/17.
The graph of the function f is given in Figure 1.

6. Hermite - Hadamard inequalities

It is known that if f is convex on [a,b] then the following Hermite -Hadamard

inequalities

a b a
165 <5 [ feyan< LOHO (ay

hold. A variant of (11) for a-star-convex functions was given in [1]. We give here another

one.
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Theorem 6. If the function f is a-star-convez on [a,b], a <b with o € (0, 1], then

< fla)+af(h)

1 ab
f(r) dx < ——'2——" (]2)

ab—a J,

Proof. Integrating
f(ta + a{1 - t)8) < 17(a) + a(1 — 1) f(b)

for t €[0,1] we get (12). D
Theorem 7. If the function f is a-star-convez on [a,b], a < b with o € (0,1] then

a+ab l1+a o l+a g
H(52) smpmg [ fdragpsy [ f@e 09

Proof. We have

/ (“ J;"") =t [%(a+ ot) + pafb —t)] <

fla+at) + %af(b —-1)

DN -

<
and integrating for t € [0, (b —a)/(1 + a)] we get (13). O
Note that if we take o =1 in (12) and (13) then we obtain (11).
7. Weighted arithmetic means

In [10] it was studied the problem of the conservation of a-star-convexity by a

weighted arithmetic mean of the form

Al = [ " Y050 . (14

Let us denote by K, (b) the set of a-star-convex functions on [0,b], such that
f£(0) = 0. In {10] the following results were obtained.
Theorem 8. If Ay[f] € Ko(b) for all f € Ko(b) then

g(z) = k27,
for some k#£0 and ¥ > 0. In this case

z 1
e = e = L [Compgas [ g

If we denote by M7 (b) the set of functions f with the property that A.[f] €

K, (b), then we have
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Theorem 9. If 0 < o < < 1 and v > 0 then the following inclusions
Ki() C  Kp(}) C  Ka(d) C  Ko(®)
] N N n
MYK\ (b)) € MYKg(d) C MTK.(b) C MYKo(b)
hold.

In fact an a-star-convex function can be mapped onto a f-star-convex function
with B > o, as was shown in [4] vy the following example, for v = 1.

Erample 3. Let f :R* — R be defined by
f(z) = 5z — 2023 4+ 272% — 10z
and let
1 e
F(z) = < / f(t)dt = z* — 52 + 922 - 5z,
0 -

which is the function given in Example 2. By using the system (10) we obtain a*[f] =

0.302..., while o*[F] = 16/17 = 0.941....

8. Star-convexity and Bernstein polynomials

For a function f:[0,1] = R let us denote by B,(f) the Bernstein polynomial
of order n of f defined by

n

Ba(N)e) = ). Chat -2 s (), s e o

k=0
A well known result of classical analysis (see D.D. Stancu [8] p. 264) asserts that if f is

convex in [0,1] then:

B.(f)(z) > f(z), Yz €10,1]. (15)

First we consider an example of a starshaped function not verifying the inequality (15).
Ezample 4. Let f :[0,1] = R, be given by

—z, if z€[0,1/3)

fl®) =2z, if z€(1/3,2/3

4z, if z €(2/3,1).

We have
Ba(f)(2) =22 +22® <4z = f(z), V z € (2/3,1).

But the function 2 — f(z)/z being increasing on (0,1]; f will be starshaped on [0, 1].
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In the following lemma of independent interest we give a generalization of |
equality (15) for a-star-convex functions, . € [0,1]. Particularly, for @ =1 one obta
again (15).

“emma 3. Given « € [0,1], let us denote by S5 the real function defined on [0,1] b

.

S¥(z)=a™, Vz€[0,1].
If f is a-star-conver on [0, 1] then:
Ba (S5 - f)(z) 2 f(Ba(Sy - I)(x)), Y = €[0,1],

where J is the identity mapping on [0,1].
Proof. 1f we let in the Jensen type inequality (mentioned in Remark 6)

Pk = Cr’:zk(l - z)n—k, Tk = k/”v k=0,1,..,n,

z being fixed in [0, 1] one obtains
s (2 Ch k(1 = a)rbamtin 5) <3 chata—ayrariing (£),
k=0 n k=0 "

and this yields the conclusion. O

In [2] it was proved that if the starshaped function f :[0,1] — R, verifies
properties f(0) =0, f(z) >0, Vz € [0,1] and f € C[0,1], then B,(f) is starshag
Bn(f)(0) = 0 and B,(f)(z) > 0, Vz € [0,1],n = 1,2,.... The proof in [2] can
extended with some minor changes to a little more general setting. So, if f is
arbitrary starshaped function on [0, 1} then B,(f) is also starshaped on [0, 1], for
n> 1.

Now, a natural problem is: Given an a € [0,1) and a starshaped function f
[0,1] with a*(f) = a, does it follows that o*[Ba(f)] = @, n =1,2,... ? The answe
negative.
Erample 5. Let f be defined on [0,1] with f(0) = 0 a function such that o*[f] =
[0,1). Then: B(f)(z) = f(1) -z, and so B,(f) is convex. On the other hand

By(f)(z) = 2f(.;.)z+ [f_(lﬂ _ f(ll//22) 2

and B,(f) is also a convex function on [0,1]. However, f is not a convex function.
Ezample 6. In this example the function f :[0,1] =& R is starshaped and Bs(f) is
convex. Letting

f(z) =3 - 1022 + 1122, Vz € {0, 1],
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we have that f is starshaped and because f”(0) =22 >0, f’(1) = -2 < 0 f is not
convex on [0,1]. The third Bernstein polynomial

8 20 8
B3(f)(z) = 3% + 3-:0:2 - 51:3

is starshaped but from B3(f)"'(0) = 40/9 > 0 and Bs(f)”(1) = —-8/9 < 0, it follows
the non-convexity of Ba(f).

Let f be a continuous starshaped function on [0, 1]. We will be interested to
obtain informations on the order of star-convexity of B,(f), n =1,2,..., when we know
the order of star-convexity of f. For a particular case one obtains effectively a*[B, ( Nk
A comparison of this order to a*[f] € [0, 1] will be made. The study of the asymptotic
behaviour of the sequence (a*[B,(f)])n>1 is our main purpose in the sequel.

Lemma 4 Suppose that for the continuous function f on [0,1}, a*[f] < 1. Then

”lig,loa [Ba(D] < a°[f], n=1,7,....

Proof. If a*[f] =1, then f is convex on [0,1] and from a well known result [5], B,(f)
is convex on [0,1], for all » < 1. Since a*[f] =1, it follows that there exists ng € N
such that degree(B,,(f)) > 2, Vn > ng. Then a*[B,(f)] =1, Vn > ng and in this case
Lemma is proved. Let now suppose that a*[f] < 1 and £ > 0 be given. Because f

isn’t (a*[f] + €)-star-convex this means that there exist Ao, Zo, yo € [0,1] such that

F(ozo + (1= Ao} (”[f] + £)s0) = Ao f(20) — (1 = Xo)(a*[f] + ) f(y0) = d > 0.

From the uniform convergence of (Bn(f))a>1 to f it follows that
Ba(£)(Aozo + (1 - Ao} (a[] + €)yo) -

=0Ba(f)(@0) = (1~ Jo)(a"f]+ &) Ba(f)s0) > 3 >0,
for all n > no € M. This implies that B,(f) is not (a*[f] + ¢)-star-convex, for n > n
and
T o (Ba(N] < a”[fl+¢, Ve > 0.0
Remark 7. Tn particular it follows that if a*[f] = 0 then lim,_c o*[Ba(f)] = 0.
Erample 7. Let f:[0,1] = R, be given by f(z) = ~2z3 + 522 + 6z. After some simple
computations one obtains that a*[f] = 27/28. Moreover the infimum in formula (9)

giving a*[f] is attained for z =1 and y = 2/3.
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The Bernstein polynomials By (f) are

2 — _ - N —- - .
6n? + gn 2:1: + (n 1)(2511 6) 22— 2(n 1)2(11 2) 2,
n n n

B, (fi(x) =

n=1,2,... It follows that B,(f), n=1,2,..., is starshaped and

27 (n+2)(n—2)7

Bl =7 “ain—18) ' "25

Moreover the sequence (a*[Bn(f)])n>6 is decreasing and lim, 400 a*[Ba(f)) = 27/28=
o*[f]. Also o*[B,(f)] > a*[f], Vn > 1 and the infimum in formula (9) giving o*[Bn(f)]
is attained for z = 1 and y = 2n/(3n — 6), n > 6. In this example we have that
a*[Ba(f)] > a*[f], Yn > 1. We expect that generally

lim a*[Ba(f)] 2 @°/].

Proposition i. Let a € [0,1] be fizred and let (f,)n>1 be a sequence of real functions
on [0,1]. Suppose that a*[f,] > a,Vn > 1 and that fa(z) — f(z), for any = €[0,1).
Then a*[f] > a. | ’

Proof. Indeed, for a given pair (r,y) € [0,1]> making n'— oo i the inequality

fa(Az + (1 - Nay) < Aa(z) + (1 - Nafa(y),

one obtains that o*[f] > a.D

Ezample 8. Let f, : [0,1] = R be defined by fn(z) = (4/n)z(z —1),Vz € [0,1],n=
1,2,.... Then o*[fa] =1, n=1,2,... and the sequence’ (f,)n>1 converges uniformly to
the null function go on [0,1]. But o*[ge] = oo. i

Lemma 5. a) Let f € C'[0,1] be a strictly starshaped function. If £(0) <0 then:

lim_o*[Ba(f)] > a"lf].

b) Let f € C2[0, 1] be a strictly starshaped function. If J(0) =0 and f"(0) #£0,

then:

Jlim_a*[Bn(f)] > ”[f].

Proof. a) Suppose that

lim_a*[Ba(f)] = a < a"[f].
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Let £ > 0 be small enough such that a + 2¢ < a*[f]. Then there exists a sequence of

indices (ng)r>1 such that
lim “‘[Bﬂu (f)] =a,
k—o00

and for k > ko € 1 we have

o*[Ba, (Nl € (a—¢,a+¢). (16)

This means that for k > ko, B, (f) is not (a+2¢)-star-convex. There exist the sequences

(Znu k21, (Uni a1 of reals in [0, 1] with the property
Tn, B"k (f),(a:”h) - Bﬂh (f)(xﬂk) - (17)

—(a + 2¢)(¥ns Bns (f) (2ns) — Bay (F)(n)) <0,

for all k > ko. We can suppose that the sequences (Zn,)k>1, (¥n,)k>1 are convergent.
Let £ = limkyco Zn,, ¥ = liMkoyoo Yn,. Because B, (f) = f, Ba.(f) = f', from
(16) we obtain

zf'(z) - f(z) = (a+ 2e)(uf'(z) - f(¥)) < 0. (18)
On the other hand from (16) and (17) it follows
Ynu Bau (f) (ns) = Buy (F)(¥nn) 2 0, Y 2> ko.
Then yf’(z) - f(y) > 0. But, f being a*[f}-star-convex, from (18) we have
£f'(2) = £(2) - (a + 2)(u (2) — £(3)) =0 (19
and

zf'(z) - f(z) - " [fl(vf (=) - f(v)) > 0.

From this and (19) we have:”

(=a*[f1+a+26)(uf (=) - F(3)) 2 0,

yf'(=) - f(y) = 0 and zf'(z) - f(z) =0, (20)

which contradicts f(0) < 0 or the strict starshapedness of f.
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b) Suppose now that f € C?[0,1], f{0) = 0, f“(0) # 0. One observe that
F7(0) > 0. Indeed

p $122) = 21(2) + 50) f25) _ f(z)
(0)—1\.0 £ z? z\.Oz‘[_—i’;—— z ]20'

Suppose that f”(0) = d > 0. Using the same arguments as in the case a) and supposing
that lim,_ ., @*[Bn(f)] = @ < a®[f], we have again (20) with z = limxe0 Zn, and
y = limk o Yn,-

Now, from strictly starshapedness of f it follows that (20) yields z = 0. But
F(0) = limyno f(z)/z < f(2)/2, Y2z € (0,1]. This means that y =0 and z =y = 0.
From f"(0) = d > 0 and from the continuity of f” it follows that f is strictly convex on
a neighbourhood of 0. More precisely f”(z) > d/2, Yz € [0,6] with § > C sufficiently
small. From By, (f)” = f it follows that for k > k1 € N, B,,(f)"(z) > d/4, Vz €
[0,6]. Then 'B,.,, (f), is convex on [0,8] for k > k. But for k > k2 €N, zn,, ¥, €[0,9)
and (17) will be contradicted for all k > k3 = max {k;,k2}. O
Theorem 10. If f verifies the conditions a) orb) in Lemma 5 then

Jlim a*[Ba(f)] = "]

References

[1] Dragomir, S.S., Toader, Gh., Some inequalities for m-conver functions, Studia Univ. Babeg-
Bolyai, Mathematica, 38 (1993), 1, 21-28.

[2] Lupas, L., A property of the S.N. Bernstein operator, Mathematica, 9 (32) (1967), 2, 299-
301.

{3] Mocanu, P.T., Une propriété de convezité generalisée dans la théorie de la represénta-
tion conforme, Mathematica 11 (34) (1969), 127-133.

{4]) Mocamu, P.T., Star-conver functions of one real variable, Lucrarile Seminarului Didactica
Matematicii, 11 (1995), 97-104.

[5] Popoviciu, T., Sur Uapprozimation des fonctions converes d’ordre aupéneur, Mathematica
10 (1935), 49—54

[6] Roberts, A.W., Varberg, D.E., Convez functions, Academic Press, New York, 1973.

[7} Serb, 1., The continuity of a-star-convex functions of a real variable, Lucrarile Se-
‘minarului Didactica Matematicii, 11, (1995), 105-108.

(8] Stancu, D.D., Curs gi culegere de probleme de analizd numericd, vol 1., Cluj-Napoca 1977.

[9] Toader, Gh., Some generalizations of the converity, Proceedmgs of the Colloquium on
Approxlmatlon and Optimization, Cluj-Napoca, (1984), 329-338.

[10] Toader, Gh., On a generalization of the convezity, Mathematica 30 (53),(1988), 1, 83-87.

” BABES-BoLYAI” UNIVERSITY, FACULTY OF MATHEMATICS, 3400 CLUJ-NAPOCA, Romi
" BABES-BoLYAI” UNIVERSITY, FACULTY OF MATHEMATICS, 3400 CLUJ-NAPOCA, Rowm;

TECHNICAL UNIVERSITY, DEPARTMENT OF MATHEMATICS, 3400 CLUJ-NAPOCA, RoMA|

80



CONNECTIONS IN VECTOR BUNDLES OF FINSLER TYPE

GHEORGIIE MUNTEANU AND VASILE LAZAR

Abstract. In paper [9] D. Oprig introduces the notion of Finsler vector bundle
as being the associate bundle of a vector bundle = : E —+ M. This notion
generalizes the Finsler bundle notion studied by Akbar-Zadeh (and others)
[1] and systematically by M. Matsumoto in his monography [7]. The present
paper we shall consider also the bundle structure (when there exist) on base
M of a Finsler bundle. In this case are studied the nonlinear connections. An

interesting application is that of second order tangent bundle.

1. Vector bundles of Finsler type

Let # : E — M be a vector bundle by R™ fibre and the base manifqld M,
dim M = n. Consider p: TM — M the tangent bundle of M and #*TM the pull-back
bundle TM in E,

7 TM = {(y,z) € TM x E| p(y) = n(2)}. (1.1)

We have the vector bundles morphism #! : TE — #*TM, 7!(X,) = (4, 7T (X,)).

A nonlinear connection on E is a left splitting in the exact sequence:
0— Ve -4 TE X5 n*TM —s 0. (1.2)

If E = L(M) = (L, M, nL,G(u)) is the bundle of linear frames of a manifold M,
then 7*TM is called the Finsler bundle and is denoted by F(M) ([7]).
D. Oprig in [9] names the vector bundle by Finsler type, associated to one vector

bundle 7 : E — M, the submanifold F of E x E given by:
F = {(y,z) € E x E| n(y) = n(z)}. (1.1)

F has an induced vector bundle structure m : F = #x*F — E with fibre R™.
Locally, if (U, ) isamapin z = (2;) € M and (U, ¢) is a vector chart in u = (z*, y*) from

Received by the editors: March 12, 1098,
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E,. then v = (z', 4%, z%) will be the local coordinates in E,. At the change =3

on M, there result the change of coordinates on F:
F =50, §° =My, =M, (1.3)

where (M$): UNU' = GL(m, R), i,j = InapBf=1m.

Particularly, if £ = TAM then F = a*TM and the matrix (A7$) from (1.3) is
(g—f;). This is called the Finsler tangent bundle Tr M ([2]). It E is changed by his dual
bundle E*, then u = (z*, po) and the matrix (Af§) from (1.3) is replaced with its inverse
(6]).

The geometry of F bundle is nothing but that one of the vertical bundle VE of
TE. Indeed, if yy = X ‘3% +Y°3§; is'a tangent vector at T, F, then V, E is spanned by
{Y"b%} so that VE has the local cooedinates (z*,y*,0,Y?) that are locally isomor-
phically with (zf, y*,Y ) and the law of change is (1.3). On the other hand, it is known
the canonic isomorphism r : VE — E and hence result ithe study of Finsler geometry
based on the fibre bundle of Finsler type.

There exist also on F a bundle structure with base M and fibre R?>™. The

mapping ma = 7o : F — M is a surjection. If: ‘
Yve:n}(U) > UxR™ and e-1(v),z 7' (U) = U x R™

then the mapping 0y = ¢x-1(v)z © YUz OTU ;- I8 2 bijéction, but v, o 6[,,1, isn not
always compulsory linear. Therefore, generally this structure is not of the vector bundle.
When that structure is oae of the vector bundle 7y : F — M we shall denoted it by Fy.
Typical example of Fys structure are E = TM or T*M.

Taking into account that ¢~'¢ and ¢~1¢ are isomorphisms and ({z} x R™) x
({z} x R™) = {x} x R>™ is a local isomorphism there results the local ispmorphism
S:Fy+FE®E.

For the vector bundle of Finsler type F we shall consider the distributions:

1. The vertical distribution: Vy = {Xv e TvF/ 1ri£(Xv)'= 0} spanned locally
by {%;}. The reunion of this distribution defined the vertical subbundle V F.

2. Let p; : F — E be the induced mapping, pa(y,z) = z. The distribution
WE = {Xv € TvF/ p;(Xv) = 0} is called the induced vertical distribution by E. A

local base in VW E is {-5% } The reunion of this distributions define the induced vertical
subbundle VFE.
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3. The quasivertical distribution, VwQF = {Xv € TyF/ nt ontX = 0},
locally spaned by {dyn , 27'77} The reunion of these distributions defines the quasivertical
subbundle VQE.
Obviously, VQE = VF 9 VFE and the following sequence is exact:

0—VF -5 VQE — VFE — 0. (1.4)

2. Connections in vector bundles of Finsler type

Let’s m; : F — E be a vector bundle by Finsler type and TF its tangent bundle.

A nonlinear connection D in F ([5)], [8]) is a splitting on lefi in the exact sequence:
0— VF -5 TF 2 x*E — 0. (2.1)

The connection mapping DF : TF — F associated to the nonlinear connection
D has the local form for yv = X8 a:,-' + Yo 2 5 + Z"‘g%,—:

DF(;r.y. X,Y,2) = (2,9, 2 + w'(z,9,2) +w2(:r_:,y, z)X), (2.2)

where w!,w? are locally characterized by the connection coefficients: w!(z,y,z)(e;) =
T2, ¥, 2)eqs wi(z,y,2)(ep) = Ci(z,y,2)eq; a,B = T,m, {ei}, {ea} the canonic bases
in R respectively R™.
At the change (1.3) the coefficients of nonlinear connection are changed after the
rules ([9]):
. Q‘?_ M;pﬁ Cﬂ 36Mﬂ 8(;‘:? B

i Bzt
CeMf = cyMm2.

(2.3)

X=X+ Y32 € X(E) and A = A%, € Sect(F), then the covariant

derivative DE has the local expression:

y
DRA= {x (%—A; + 1") +Y° (g% + C;’) } 8. (2.4)

Let suppose that DF is a linear connection on F,
rf = F?ﬂ(z,y)zﬂ, CcP = Cg.,(z,y)z".

Through the isomorphism r to the linear connection DF corresponding a linear
connection D on VF, that admit a prolongation to TF which preserve the vertical

distribution VF and one supplementary distribution HF determined by a nonlinear
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connection N on E. Denoting by D this prolongation. If £ 6;-- = 8::' —N¢ 33‘. =4
local base in H F, then we have: Dg;da = L°;d5, where L" = l"ﬂ - C/’ NJ 0p =
Do, 0s = Cavady and Ds,8; = LE8k; Do, b = CE b (L;‘,,(‘k are notatnons).v
obtained the notion of linear d-connection with the well-known rules of change ([8]).

From (2.3) results that cvery nonlinear connection I'{'(z,y) on E induces a no
linear connection on F with coefficients: T; = I'¢¥ and Cg = = 0 If r“(z y) are tf
coefficients of a nonlinear connection on E, then the connection I‘ L};z C3=0
linear on F and is called the Berwald connection.

Now, let’s consider the Fps structure, when F is a vector bundle over M ar

R*™ fibre.

The following sequence of bundles are exact:
0— VQF -3 TF 23 n*TM — 0. (2!

A left splitting ¢ in the exact sequence (2.5) defines a nonlinear connection |

bundle Fps. Having in mind that VQF = VF @ VFE, results that ¢ = (1, p2) wher
¢ (x5, X,Y,2) > (2,9,2,0,p1(2,9,2,X,Y; 2), pa(z, 9,2, X, Y, Z)).

The condition poi = IdygF implies ¢y (2,¥,2,0,Y,2) =Y, pa(z,¥,2,0,Y,2):
Z and from linearity of ¢, and ¢, it results that ¢)(z,y,2, X, Y, Z) -Y ar
o4(2,y,2,X,Y,Z) ~ Z don’t depends of Y and respectively Z and hence:

01(2,9,2,X,Y,2) =Y + M(2,9,2)X; 2(2,1,2:X,Y,Z) = Z + N(z,y,2)X.
Then the connection mapping K¥ associated to ¢ is locally written:
KF(a,y%, 2%, X5, Y, 2%) = (2, Y™ 4+ M (2,9, 2)X*; Z° 4+ N2(z, 4, 2) XP). (3¢

At the change (1.3) the coefficients of nonlinear connection ¢ = (M, N) a

changed after the rules:

ad s _ ()Mp

M§— 57 = MgM; o —£yf (21
adx - aarB de

N oo = MENE — — (28

From (2.7) results that M(xz,y, z) has the same rule as that of nonlinear con

nection on E.
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‘We shall say that a nonlinear connection ¢ = (M, N) on Fp is a nonlin-

-ear connection of Finsler type if that provides from a nonlinear conngction on E, el

M (z,y,2) = M7 (2, ).

Proposition 2.1. The projection m; (go) of a nonlinear connection on Fypy ts a nonlinear

connection on E.

Conversely, let suppose that on E is given a nonlinear connection M (z,y).
Then the pair (M, N?), where:
0M°‘
P

determines a nonlinear connection on Fps of Finsler type. There results that:

NE = (2.9)

''Theorem 2.2. There exisis a correspondent between the nonlinear connection on F and

Finsler type connection on Fay.

The nonlinear cbnnéétion on Fp defines the following decomposition: -
TF=NF®VWF=NF®VF&®VFE. -

The subbundle A'F will called the normal subbundle of F.
The normal lift of a vector ﬁeldFX on M is a vector field 'X " on Fy so that
“'1l’_§"(X") = X. From KF(X"™) =0 we have that
. x=X'8a.+Y°‘%+Z" 4
is normal if Y*=-M@ and Z* = -N?.
The normal lift of the field 52; is:

‘aa i o« 0 0
aaz’  9r' M; By -NZ'TZG" (2.10)

with;
aa . 9z’ aa

aaft :??aazj' .
'We get the following local base: {a",} { Oy"} {5‘:—,,} respectively in Ny F,
VVF WFE.

Let’s remark that M@ = -8 apq N& = 2822 and the relations (2.7), (2.8)

aaz? aaz’

are written equivalently:

aay® 0z - 0,aay“’ 0M,3
aaii ozt ?a Ox‘

-y (2.7
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Proposition 2.4. If (M, N) is a nonlinear connection of Finsler type then wiL(D;"‘ L)

15 a derivative law on F.

The ponlinear connection (M, N) is called linear of Finsler type if M (z,y)
is linear in y and N(z,y, 2) is bilinear in (y,z), i.e. M = I'], y and N?*(z,y,2) =
05 () (=, 2).

Theorem 2.5. Every linear conuection on E induces a linear connection of Finsler type

on Fpp.
Proof. Let I'{3(z) be the coefficients of linear connection on E. Then the connection:
I(z)ys NP =TH(2)s’ (2.14)

is linear by Finsler type on Fjs. Moreover, N (z,y,2z) = N*(=,0, z). O

3. The second order tangent bundle

The second order tangent bundle T?M ([3], {4], [10],...) is the bundle locally
characterized in z € M by a 3n system of coordinates (z*, 3, 2*) with the law of trans-

formation:
i =& (2) (3.1

T Oxi

~4

27 = dz" = 1y" + 2 “.
In [3] is emphasized the subbundle structure of T2 M in bundle P : TTM — TM,
T*M = {ve TTM/ Py = p'v}.

i Here the local coordinates are (2*,3',y',z') inluced by u = (z',3*) on TM,
where x = ¢ 3% +2 3%,- is a tangent vector to TM. T2M has no vector bundle structure
over M.

Let assume that on M is given a nonlinear connection N;j (z,y) and
{% =& - N} & 331; 357 } is an adapted local base on TM.
Then



GHEORGHE MUNTEANU AND VASILE wAZAR

Because 3i, = 8” 3—— it results that a given nonlinear connection on M de-
termines on T2M a Fp vector bundle structure of Finsler type relative to the following

local coordinates:
=2 T=y¢ T=S4NY (3)) (3.2)
with the transformation rules deduced from (1.3):
-_-;.:. ~_85i i, :i
H)y F=2iyg F=0n (%) (3:3)

Let’s consider (M, N) a nonlinear connection in Fjs vector bundle T2M. From

(2.6) results that MI and N} is changed after the rules:

-, 08  ozk . 9%+
ME— = — M - ——— . .
i 0zt T 0xI 07827 "’ > ") (34)

02 0y o+, ot ONjy' 9z O(Niy')

i9s 0zt 000z 0 0r  0ad  Oym
Obviously, if (M, N) is a nonlinear connection of Finsler type then we can con-

sider M = N(z,y). The normal lift of o is: ’

aa i} i 0 5 0

aar 0w Mgy Mg

MP(35) (35)

From 5% = 8:: - ;22 we have:
=~k - - .
aaz 0% 8%zk .  aaF »
057  9z' 020z + prpper Sl B (").(,) (3.6)

According to (2.9), results that giving a nonlinear connection M{ (z,y) on M,
then the pairs (M, N7):

k

determine a nonlinear connection of Finsler type on Fjs vector bundle T*M.

3.7

The covariant derivative of L = A’ z&; + B ;2 in respect to X = X* 2 is given
by (2.12):
; [(OAT ) 6B
DxL=X‘(8 : +M’)5 —+X (-0—,-+N’) (33 (38
The vertical connection in T2 M is defined as above.
The coeflicients of a vertical connection ’H'f are changed after the rule:

,lkaxi_gg i _ 08 B(Njy')

Y v A P A \N.4) (3.9)
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Co s
The vector fields 3-:7, = 3%.- — ! 4% is changed after the rule: 357 =35 5y

It A/(;i (z.y) is a given nonlinear connection on M then:

i oMbt dMiyF)
[ ayiayl 3y‘

08 a vertical connection on T2M, where t*(z) are the components of an arbitrary vector

field on M .

(3.10)

Definition. A nonlinear connection in Fjy vector bundle T2M is a triad (M, H,N)
where (M, N) is a nonlinear connection of Finsler type and ¥ is a vertical connection in

Fy¢ vector bundle T2 M.

A nonlinear connection in Fjs vector bundle T?M determines decomposition
T(T*M) = VT?>M & HT?M & NT?M, where the distribution vertical, horizontal and

normal has respectively the local bases: {5%7}, { 3:7}, { ;‘;"?}
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INEQUALITIES RELATED TO THE ZEROS OF SOLUTIONS OF
CERTAIN SECOND ORDER DIFFERENCE EQUATION

B.G. PACHPATTE

Abstract. The aim of the present paper is to establish two new inequalities
related to the zeros of the solutions of certain second order difference equations
by using elementary analysis. An application to prove the houndedness of

oscillatory solutions of the associated difference equations is given.

1. Introduction

Consider the following second order nonlinear difference equations:
A(r(n)|Ay(n)|*~" Ay(n)) + c(n)ly(n)[P~ y(n) = 0, (A)
A(r(n)(ly(n + DI + ly(n)IMAy(n) 7~ Ay(n)+

+(n)ly(n) P9 2y(n) = 0, (B)
where n € Io, Io = {a,a+1,a42,...}. aaninteger, a > 1, 8> 1,p>1,¢2>2
are real constants and ¢ > p, the operator A is defined by Ay(n) = y(n + 1) — y(n) for
n € I, r(n), ¢(n), n € I, are real-valued functions and r(n) > 0. We shall define the
subset [ of I, by [ = {a,a+1,a+2,...,b0}, a,b = a+ m (m > 2) are integers, and

denote by I° the interior of I and assume that I° is nonempty.

The continuous analogues of the equations like (A) and (B) have been recently
dealt with in [1-7, 9-12] with various view points. The object of this paper is to derive
two new finite difference inequalities related to the zeros of the solutions of equations
(A) and (B) which can be used as handy tools in the study of qualitative behavior of
solutions of the corresponding finite difference equations. We also present some immedi-

ate applications to convey the importance of our results to the literature. The reader is
refered to papers [8, 12] for similar results.
Received by the editors: May 29, 1996,
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2. Main results

Our main results are established in thé following theorems.
Theorem 1. Let y(n), n € I be a solution of equation (A) such that y(z) = y(b) =0,
y(n) £0 for n € I°. If k be a point in I° where |y(n)| is mazimized, then

-1 @ sb1
1< apte (2 r--“/“)(s)) (Elcml) , 0

s=a s8=a

where M = max |y(n)] = |y(k)|, k € I°.

Proof. Let M = |y(k)|, k € I°. Since y(a) = y(b) = 0, it is easy to observe that

k-1 b~1
M2=2(k) =) Ay*(s) =-)_Ay’(k), kel (2)

s=k

From (2) we observe that

b-1 b—1
2M? <Y AR () < ) (lw(s + 1)l + ly(a))|Ay(s)]) =

b—-1
=3 [ D (s)(ly(s + D)) + ly(s)D] x [ (s)| Ay(s)]]. (3)

s=a
Now by applying the Holder’s inequality on the right side of (3) with indices

(o + 1)/, a + 1, the following formula of summation by parts

b—1 b—1
Z u(s)Av(s) = (w(b)v(d) — u(a)v(a)) — Zv(s + 1)Au(s), (4)

she facts that y(a) = y(b) = 0 and y(n) is a solution of equation (A) we observe that

s=a s=a

b—1 af(a+1) b—1 1/(a+t
2M? < (E r= ) s)(ly(s + 1)| + |y(s)|)<“+‘"°) X (Z r(s>|Ay(s)|"+‘)

b—1 af(a+l)
= (Z P e) ly(s + 1)] + |y<s)|)<“+'>/°) x

s=a

b1 1/(at1)
X (Z(r(s)IAy(S)I“'IAy(S))Ay(S)) =

= af(a+1)
= (Z r‘(lla)(s)ﬂy(s + 1)] + |y(s)|)(a+l)/a) y

s$=a

oo 1/(a+1)
. ( S uls + nA(r(s)uAy(sn“—‘Ay(s))) =

s=a
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= af(a+1)
= (E r‘(l/a)(s)(|y(s + 1)| + Iy(s)l)(aﬂ)/a) x ‘.

s=a

- 1/(at1)
x (Z u(s + 1)c(s)|y(s)I° "y(S)) <

s=a

n_1 af(a+1) b1 1/(a+1)
< (2M)(Af)(P+1/(atl) (Z r-“/“)(s)> X (E IC(S)I> (8)

a=a I=a
Dividing both sides of (5) by 2M? and then raising the power (a+1) to both sides
of the resulting inequality, we get the desired inequality in (1). The proof is complete. O

Theorem 2. Let y(n), n € I be a solution of equation (B) such that y(a) = y(b) = 0,
y(n) # 0 forn € I°. If k be a point in I® where |y(n)| is mazimized, then

-1 . (-1} /p_4
1<(1/2) (bZ: "_('l/(q'l))(s)) (E |0(3)|) : (6)

=0 s=a
Proof. By following the proof of Theorem 1, we have the following inequality
b-1

2M2 < Z(Iy(s + 1) + ly(s))|1Ay(s)] =

b1
=Y [ YD (s)(ly(s + 1) + ly(s)) ! ~P/D)x

x [ (s)(ly(s + 1)] + ly(s)) 9| Ay(s)]). ()
Now by aplying the Hélder’s inequality on the right side of (7) with indices

g/(g—1). q. the elementary inequality (c+d)P < 2°='(cP+dP),¢>0,d >0, p > 1 reals,
the formula (4), the facts that y(a) = y(b) = 0 and y(n) is a solution of equation (B) we

observe that

$=a

b-1 (9-1)/q
2M? < (Z r=e=D)(s)(|y(s + 1)| + |y(s)|)‘q-”‘q-“> x

b1 a/9)
X (Z r(s)(ly(s + 1)| + |y(3)|)"|Ay(3)|q) <

=a

b—1 (g-1)/q
< (Z r= @D ) (ly(s + 1))+ |y(s)|)”-”<q-‘>) x

s=a

s=a

-1 1/q
x2(p=1)/¢ (Z(r(s)(ly(s + UP +[y(s)P)|Ay(s)12 Ay(s)) x Ay(s)) =
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b-1 (q-1)/q
=207 (Z rm (/@ (s)(jy(s + 1)+ |y(s)|)<q-‘>/‘q'”) x

s=a

b—1 1/q
x (— 3 yls + DA(r(s)(lu(s + 1P + ly(s)|P)|Ay(s)|q-2«5y(s))) =

s$=a

b1 , (9-1)/q
= 9o(p-1)/q (Z == (5)(Jy(s + 1) + |y(s)|)(q—p)/(q-l)) x

= 1/q
X (z y(s + l)c(s)|y(3)|p+q—2y(s)) <

s8=a

< 2(»-l)/q(QM)(q—p)/q(M)(pﬂ)/q x

b—1 (g-1)/9 ,p_1 1/q
X <Z r'(l/(q'l))(s)) (Z Ic(s)l) =

s=a I=a

o1 (a=1)/a sy /g
— 9(a-1)/apg? <Z ,.—(1/(4-1))(3)) (z |c(9)|) (8)

s=a s=a

Dividing both sides of (8) by 2M? and then raising the power ¢ to both sides of
the resulting inequality, we get the required inequality in (6). a

3. Some applications

In the following theorem we apply our inequalities given in Theorem 1 and 2 to

study the boundedness of oscillatory solutions of equations (A) and (B).,

Theorem 3. (i) If

(e o)
Y e/ (s) < o0, Z le(s)] < oo, (9)
$=a s$=a
“ion every oscillatory solution of equation (A) is bounded on I, .
(i) If

oo [e2)

Z,.-(l/(Q-l))(s) < oo, Z le(s)] < oo, (10)

I=a s=a

then every oscillatory solution of equation (B) is bounded on I,.
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Proof. Here we will prove (ii) only. The proof of (i) can be completed similarly. Suppose
y(n) is an oscillatory solution of equation (B) on I. Because of (1),. we can choose
T > a large enough so that for every t > T,
f:,--“/@-l))(s) < 21/(g=1)). ilc(s)l <l (1)
s=t s=t
Suppose to the contrary that limsup |y(n)| = oo. Indeed since y(n) is oscillatory,
there exists an interval (nj,na2) such that n; > T, y(n1) = y(n2) = 0, |y(n)| > 0
on {ny,ns) and M = max{ly(n)] : n; < n < nz}. Choose k is (n1,n2) such that
ly(k)] = M. Clearly, the inequality (6) in Theorem 2 is true on the interval (n;,n2) and
we have
na- (a-1) /p,—
1<(1/2) (Z r-<1/<v-l)>(s)) (E |e(s)] ) : (12)
s=n, s=n;

From (12) and (11) we have

co (e-1) / o
1<(1/2) (Z r'(l/(q'l))(s)) (Z |c(s)|) <1

azng s=ny
This contradiction shows that the oscillatory solution y(n) of (B) is bounded on

Io. The proof is complete. ]

Finally, we note that our results in Theorem 1-2 can be very easily extended to the

following more general equations of the forms:
A(r(n)|Ay(n)]*~ Ay(n)) + c(n)ly(n) P~ y(n) f(n, y(n)) = (13)

A(r(n)(ly(n + DI + ly(n) P)|Ay(n) "> Ay(n))+

+e(n)|y(n) P+ y(n) f(n, y(n)) =0, (14)

where a, 3, p, q,r(n), c(n) are as defined in equations (A) and (B) and the function f :
Io xR — IR satisfies the condition | f(n, y)| < w(n, |y|), where the function w : [, xR, —
B4 satisfies w(n, u) < w(n,v) for 0 < u < v. By following the proofs of Theorems 1 and
2, corresponding to the equations (13) and (14) the inequalities obtained in (1) and (6)

takes the forms

1< MP-« (Z rm (/) ) (Z le(s)]w(s, M)) (15)

3=a
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CLASS OF MEROMORPHIC CLOSE-TO-CONVEX FUNCTIONS

S.M. SARANGI AND SUGUNA B. URALEGADDI

Abstract. Some sufficient conditions for meromorphically close-to-convex func-

tions are obtained.

1. Introduction.-

The writing of this paper has been motivated by a recent paper of Cho and Kim
o«

[1). Let £ denote the class of functions of the form f(z) = L+ E amz™ that are analytic
m=0

in the punctured disk E = {z : 0 < |z|] < 1}. For any real number a, let the operator
I* operating on f € ¥ be defined by »
1 o0
@ == 4+ 2)" ¢ m.
I*f(2) . +mz=o(m +2) %amz

Clearly we have
I%(IP f(2)) = I°*P f(z)
for all real numbers « and . For any non positive integer a, the operators I* are the
differential operators studied by Uralegaddi and Somanatha {7]. Also the operators I*
are closely relafed to the multiplier transformations introduced by Flett [2).
For any real number a and 1 < A < 3/2 let C,()) denote the class of functions
f € I satisfying the condition

Re (U1

TIEy 2} >-X zeUs={z: <1}

A function

00
g(z)=ePz"1 4 Z bnz" (B, real number) (1)
n=0

which is analytic in E' with a simple pole at z = 0 is said to starlike if Re z¢'(z)/g(z) < 0,
s < 1. A function f in T is said to be close-to-convex of order @ (0 < a < 1) in
Received by the editors: May 15, 1996.
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E, denoted f € S.(«) if there exists a meromorphic starlike univalent function gz
given by (1) such that Re zf'(z)/g(z) > a for |z] < 1. 'Observe that E.(0) = X th
class of meromorphic close-to-convex functions. The concept of close to convexity
the meromorphic case was introduced by R.J. Libera and M.S. Robertson [3] and wa
extended by R.J. Libera [4]). It is known that meromorphic starlike functions are univalen
but close-to-convex functions need not be univalent.

In this paper we shall show that all functions in Cy(A) are meromorphicall
close-to-convex of order 1/(2) — 1). Further for the class C,(A) of functions in X prov
that Cy(A) C Cas1(A). Hence for o a non positive real number, all members in C,(A
are meromorphically close-to-convex.

2. We need the following lemma which is due to Miller and Mocanu [5).

Lemma. Let ¢(u,v) be a complezx valued function, ¢ : D -+ C, D C C? (C is th
compler plane) and let u = u; + 7uz, v = vy + fvy. Suppose that the function $(u,v
satisfies the following conditions

i) ¢(u, v) is continuous in D;

ii) (1,0) € D and Re {¢(1,0)} > 0

iti) Re {¢(iua,v1)} <O for all (iuz,v1) € D such that

1+ u?
v < — 2 2.

Let p(z) = 1+ p1z+ paz® + ... be analytic in U such that (p(2), zp'(z)) € D fo
all z € U. If Re {4(p(z),2p'(2)} > 0 (2 € U), then Re {p(z)} > 0 (z € U).

Theorem 1. If f(z) € Co()) then f(z) is meromorphically close-to-convez of orde
1/(2x - 1).

Proof. 1t suffices to show that Re {—z2f/(z)) > 1/(2) — 1). Define the function p(z) by

=22 f(z) =7+ (1-v)p(2) @

where y =1/(2X - 1), 1/2< v > 1.
We see that p(z) =1+ pyz + p22? + ... is analytic in U.
Differentiating (2) and simplifying we get

£(2) L (=)
Flo) T A e

-
“

a9R



Hence

., (1-19)zp'(2)
Re { f (z)+1+,\}=Re {A—l'*‘m

J'(z)
Let
A-7v

o(u,v) = A ry g

Then ¢(u, v) satisfies
i) é(u, v) is continuous in D = (C — (y/y—1)) x C;
ii) (1,0) € D and Re {¢(1,0)} = A-1>0;

iii) for all (ina, v1) € D such that v; < l—+-'11

Re {¢(iua, v))} = A= 1+ | Chuke) L7 WP S WP

¥4 (1=-7)%u] = 20y +(1-7)2uf]

(1=
22

g A=+

242 [1 + U=ty

]<A

Thus the function ¢(u,v) satisfies the conditions of the above stated lemma.

Hence Re {p(z)} > 0 (z € U). Thus
Re {-z’f'(z)} > 7

Re {—szl(z)} > o1

For A = 3/2 we get the earlier result [Corollary 3, 6]

Theorem 2. If f € Ca()) then f € Coq1(p) where

5422 —/(3-2))2 +8
= . .

Proof. Define the function p(z) by

gty v

where

_3-22—/(3-20%+38 ( 1
- 4

—ﬁg'y(l).

We see that p(z) = 1+ p1z + pz2 + ... is analytic in U. Logarithmic differenti-

ation of (3) gives

I2f(z))" (o f(2)" (1 -9 (2)
o= (@)Y v+ (1-)pz)

(4)
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From the following identity
(I f(z)) = 71 f(2) - 217 f(2)
we get
(I f()" = (17 f(2)) = 3(I*f(2)) . (

Using (5) the equation (4) reduces to

e f ) (1 —)2v/(2)
(I f(z)) 7+ (1=-7)p(2)

(12=1 F(z)Y _ i (1-7)20/(2)
R"{ T 7)Y ”2”}‘“’“’ {“7 2+(1 7)p(z)+'r+(l—’r)p(:)}>0'

Let ¢(u, v) be the function defined by

=7+ (1-7)p(z) +

é(u,v) =’\+7'2+(1‘7)“+’.;¥(_-1-z').";'ﬁ'
Then ¢(u, v) satisfies

i) ¢(u, v) is continuous in D = (C — (y/y = 1)) x C;

ii) (1,0) € D and Re {¢(1,0)} =A—1>0;

iii) for all (iua, v1) € D such that v; < --‘-"7'5‘-;,

: _ (1-vm | _ (1 - 7)(1 + )
Re {¢(iuz,11)} = Re {’\ +r-2+ v+ (1~ -y)iuz} - '\+7—2_2[‘72 +(1- 7)2%2—] .

Thus the function ¢(u, v) satisfies the conditions of above stated Lemma. Hen
Re {p(z)} >0 (z € U).

Therefors

(I2£(=))
e gy >7 (€0

- £
Re {(I"*"f_(:))‘ 2}> -
Hence Cy () C Cay1(n).

Since g4 — A < 0 we have

Corollary 1. Co41(p) C Cas1(X).

o

Corollary 2. If f(z) = -:- + Z 8, 2™ is meromorphically close-to-conver then so is

m=0

F(z) = z%/o tf(t)dt.
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RADIAL MOTION WITH ZERO INITIAL VELOCITY IN
MANEFF-TYPE FIELDS

CRISTINA STOICA AND VASILE MIOC

Abstract. The paper investigates the radial motion of the particle in the
ManefT field, by using the energy integral, for all the possible values of the
parameters of the field and of the initial radius vector. There are emphasized
collision or escape trajectories, libration motions between forbidden domains,

as well as equilibrium points.

1. Introduction

Consider a force field, whose nature is not necessarily gravitational and may
remain unspecified, characterized by a quasthomogeneous potential function of the form
Afr+b/r?, where r = distance between two particles, and A, B = constants. We shall
call it Maneff-type field (see [2-9]).

The two-body problem in such a field can be reduced to a central force problem
for a unit mass particle. The field being central, the motion will be planar and described

by the equation
F=—(A4/r +2B/rY)r, (1)

where dots mark time-differentiation.

Different expressions assigned to the parameters A and B can model various
situations. The motion in certain post-Newtonian nonrelativistic ficlds (even in Maneff’s
one; see e.g. [3, 5, 12-14]) or in certain relativistic fields (e.g. in Fock’s one [10] or in that
featured by the Reissner Nc;rdstram metric, truncating the negligible terms) are such
situations. The motion in the photogravitational field (see e.g. [11, 15, 17]) generated
by a source of constant luminosity, and the two-body problem with constant equivalent

gravitational parameter [16] also join this model. Actually, a force field of the above form

Received by the editors: July 19, 1996,
1991 Afathematics Subject Classification. TOF0S.

Key words and phrases. Manefl field, radial motion.
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has implications not only in (celestial) mechanics, but also in astrodynamics, cosmogon
astrophysics, even in atomic physics {1, 3], and so forth.

In the present paper we shall investigate the behaviour of the unit mass partic
in a Maneff-type field for ze:o initial velocity (in other words, at the initial instant th
particle is set free in the field). It is clear that the motion will be radial, because the for
field is central. The analysis will be performed for all possible values of the paramete

A and B and of the initial radius vector.

2. Equations of motion and first integrals

Using polar coordinates (r, u), equation (1) transform into

# —ri? = —(A+2B/r)/r?, (é

ri+ 2ru =0,

—
Ry

system to which we attach the initial conditions
(r,u, 7, w)(to) = (ro, w0, Vocos a, Vpsina/rg), (4

where V = |r| is the velocity, Vo = V(#;), o is the angle between the initial radius vectc
and the initial velocity.

Since the force field is central, the angular momentum is conserved, and (!

provides the first integral
r?a=C, (5

where C' = roVysin o is the constant angular momentum. The first integral of energ

can also be easily obtained, by the usual technique, as
V=424 (rd)2=2(A+ B/r)/r +h, (6
where the constant of energy h results to have the expression
h=Vi —2(A+ B/ro)ro. (7

The hypothesis of zero initial velocity (Vo = 0) leads to C = 0 and implies radia

motion. The same hypothesis makes (7) become

h= -—2(A+B/1‘0)/1‘0, (8
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s0 (6) reads
V2 =72 =2(1/r = 1/ro)[A+ B(1/r +1/r0)]- (9)

In what follows, on the basis of these formulae, we shall analyze the behaviour
of the particle for all possible values of A and B, and for different domains (with respect
to A and B) in which rp can lie. 'The domains in which the mot.ipn is possible, featured

by the condition V2 > 0, as well as the characteristics of the motion, will be pointed out.

3. Behaviour of the particle

Let us first introduce some abridging notations. If A <0 and B> 0,0orif A >0
and B < 0, denote

re = —2B/A. (10)
Also denote
ry = —B(A + B/rp), (11)

when the interplay among A, B and r, makes positive the expression in the rigﬁt-hand
side of (11). Now, recalling.that. all motions are rectilinear, we can start the analysis.
3.1. Case B > 0. We distinguish three subcases:
(i) Subcase A < 0. First observe that

ro<ref2 = h<0,rp=r/2 = h=0,ro>r./2 = h>0.

If rg < r., the particle will move inwards on a collision trajectory: r decreases,
while V increases tending to an infinite value at collision (r — 0).

If ro = re, the particle remains in ro, but the equilibrium in unstable. Any radial
perturbing force, no matter how small, makes the particle follow either a collision path
(as in the previous situation), or an escape trajectory (unbound motion outwards) on
which the velocity increases (with decreasing acceleration), tending to V = v/ (one sees
that h > 0) for r -+ co.

B i ro > re, we also have & > 0, while the particle moves outwards on an escape
trajectory, and V — vk for r — oo.
(ii) Subcase A = 0. We have h < 0. For any value of rq, the particle moves

inwards on a collision path. The velocity tends to an infnite value when r — 0.
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(iii) Snbease A > 0. The particle will behave according to the same scenaric
(h < 0, collision trajectory with V' — oo'.for r — 0).

3.2. Case B = (. We also distinguish three subcases:

(1) Subcase A < 0. The constant of energy is positive and has the expressior
h = —2A/ro. Whatever rg is, the particle follows an escape path, moving outwards. The
veiocity increases (with decreasing acceleration) and tends to Vv for r — oo.

(ii) Subcase A = 0. In this subcase h = 0. In addition, the force field vanishe:
(that is, the resultant of all radial forces composing the fi~ld is zero). Under thes
conditions, whatever rg is, the particle remain at rest in its initial position.

(111) Subcase A > 0. We have h < 0. The particle\ moves inwards on a collisiol
trajectory, for any value ro. The velocity increases (and the acceleration as well), tendin
to infinity for r — 0.

3.3. Case B < 0. The three subcases are the same:

(i) Subcase A < 0. The constant of energy is positive. Whatever ry is, th
particle will move outwards, following an escape trajectory. The velocity increases (witl
decreasing acceleration), tending to the value VA when 7 — oo.

(ii) Subcase A = 0. The constant of enersy is also positive and has the expressiol
h = —=2B/rl. The particle will behave exactly as in the previous subcase (escape patl
with V = VA& for r — o).

(iii) Subcase A > 0. First observe that

ro<rf2 = h>0, ro=r./2 = h=0,1r0>r./2 = h<O.

If ro < rc/2, the particle will follow an escape trajectory: r increases, V als

increases. When r = r., the velocity reaches a maximum value given by
Viaax = —(A +2B/r0)*/(2B), (12

then decreases, tending asymptotically to vA when r — oo.
If 7o = r./2, the particle will also move outwards, on an escape path. The radiu

vector increases, V increases, too. When r = r., the velocity reaches a maximum valu

given by
Vn21ax = —AZ/(2B)) (13]

then decreases, tending asymptotically to zero when r — oo.
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In the next situations, for which b < 0, the particle behaviour will be essentially
different. i

If r./2 < ro < r¢, the motion starts outwards (r increases). The velocity in-
creases up to a maximum value given by (12), which is reached for r = r, then decreases,
and for » = r; we have vV = 0. From r; the particle starts in.vards, with exactly the
same evolution of the velocity V = V(r) (but in the opposite seqse) up to rg, for which
V = 0. From here the scenario is repeated infinitely many times. In other words, in
this situation the particle librates in the domain [rg,r1]). It can neither go o‘utsidg the
sphere of radius ry, nor penetrate inside the sphere of radius ro (both spheres centered
in origin).

If ro = r, the particle remains in ry (as in Case 3.1, Subcase (i)), but this time
the equilibrium is stable.

Lastly suppose r9 > r.. In ;this situation one sees easily that'r; < r.. The
particle will librate exactly as for r./2 < ro < r¢, but this time the motion starts inwards
and takes place in the interval [ry,rg). The forbidden domain for the particle is now
consisting of the exterior of the sphere of radius ro and the interior of the sphere of
radius ry (both spheres centered in origin). ‘

Assume for this lasi. situation that the particle comes from such a great distance
that we may put 1/ro = 0. The motion is performed inwards, the velocity increases
up to a maximum value given by (13), which is reached for r = r,, then the motion
is decelerated and for r = r./2 we have V = 0. From here the motion is performed
outwards, with the same evolution of velocity V = V(7), but in the opposite sense. For

r — 00, the velocity tends again to zero.

4. Concluding remarks

Reviewing the results exposed in Section 3, we see that a particle with zero initial
velocity may behave in a Manefl-type field according to one of the following scenarios:

(a) Fscape trajectory (wnbound curve in the upper halfplane of the phase plane
(r, 7).

(b) Collision trajectory (unhound curve in the lower halfplane of the phase
plane).

(c) Libration (starting outwards or inwards) between two forbidden domains

(closed curve in the phase plane).
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