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A BIVARIATE EXTENSION OF THE BERNSTEIN POLYNOMIALS

OCTAVIAN AGRATINI

Abstract. In this paper it is given an extension to two variables of the Bern-
stuin B, . f operators and there are investigated their approximation proper-

ties.

1. In the paper [2] is introduced and studied a new sequence of Bernstein type

polynomials. Namely, for any function f € C"[0, 1] is defined the associated polynomial:

PAPTRID o) ST e N PR

k=0i=0

It has been proved the estimation:

If = (B £l =0 (v~ 5w (£1);07217) ),

where ||g]| = sup{lg(z)|: = € [0,1]} for g € C[0,1] and w is the modulus of continuity of

the function f, defined as usually:

w(f;s) = sup{lf(z) = F)l - 2,y €[0,1], |o— 3] < s).

The aim of this paper is to give an extension to two variables of the B, , f and to
investigate their approximation properties. It should be mentioned that there are many
extensions to two variables of the linear operators of approximation (see, e.g. (3], [4],
[5)).

2. Let E =[0,1] x [0,1] and f : E — R differentiable of order r on E. The
Taylor polynomial of degree r associated to the function f, in a point (a,d) € E, is
defined by:

T A)obie0) = floh + 35 (- )3 + v =2 ) flabps

r

1 d 8\’
+5 ((z—a)aﬂy—b)%) f(a,b)+---+;li((m—a)%+(y——b)(%) f(a,b).
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The corresponding Taylor approximation formula is
f(z,y) = (T, )(a, 4 2,y) + (R f)(a,b;z,9). @

We introduce the notations:

d a\* &flab) i

D* f)(a,b; z,y) = —a)—+(y—-0=—) f(a,b — 7 (z—a)" " (y-b).

(Dot = (- a)ge + =z ) flab) = ;()w L
Then the formula (2) becomes:

f@) = flah)+ 3 (D 1)(@,:2,) + (R f)(a,b;2,).

=1 |
.  Definition. A generalized Bernstein polynomial of two variables of order (n,m;r)

for a differentiable function f of order r on E is a polynomial having the form:

B0 =300 (5 L) (1) (T)a - er—reta -,

k=0 1=0

where

It is evident that forr = 0

(Tof) (E.—l-;z,y) f <§.%)

and consequently B,(.?;,), f becomes the ciassical polynomial of Bernstein of two variables.

3. We intend to evaluute the quantity:

(ESLN =, 9) = 1f(z,9) — (B f)(=,9)l.

We need to use the identity:

ZZ( )(7) -2yt -yt =1

k=0 I=0

By multiplying it by f(z,y) we can write successively:

(EL)f) (=, y><ZZ( )( )

k=0 1=0
(55
r n);'n_)t)y

fz,9) - (T.f) (—,i,z y) £+ (1—z)*y (1g)™ =

(1 - z)" Ry (1 — g™t (3)
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hood of (£

It is known that if f has continuous partial derivatives of order r in a neighbour-
_l_ -
n 'm )

), then the remainder can be expressed under the form

(R (5 7ie

2.3) = 715(8.4) @ s, 1) (@)

4)
where S(&,L) is a continuous in (X, L) and vanishes in this point. Also, we notice that:

-

spr

m

In the next stage we shall consider that the remainder of Taylor’s formula ex-
pressed by (4) fulfills the following condition: exist the real constants A, B and the
numbers p > 2, ¢ > 2 s0 as

kP 19
bay@nsal-il +8l- 2 @ues. )
Because (z,y) and (%, L) belong to E, we can deduce:
p(x,1)(2,y) < 25 (6)
From (4), (5) and (6) we get:
! 25, k|? !
n (£, Lizo)| < 2 (ale - 2 + 8l
m r! m

The following inequalities are well-known

)2 (o2 6-2)
g z -nz)’-'(:) (’;’)zk(l-z)n-* :
and

y
gg(l — my)? (:) (T) zF(1 - z)"Fy

y(1-
They lead to the next result

1_ m—l<2
(1-y) <3

vt <

inequality:

Theorem. Let f : E — R with all partial derivatives of order r continuous
on E. If the remainder of Taylor’s formula fulfills the condition (5) then we obtain the

. 25 (A B
) = BNl < 15 (54 2)).

Corollary. Under the hypothesis of this theorem we can further write

— Bir) -~
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where || - || = m’?xl - !

4. We mention that in [1] we have introduced a class of linear polynomi
approximating operators {Lns)n>1, 7 = 0,1,2,... for the functions f € Cr[o,1).
order to construct them we used the Taylor polynomial of degree r and a class of lin
positive operators generated by a probabillistic method. Also, we studied the ord
of approximation using the moduli of continuity of first and second order, (L, [l
including as a special case the generalized Bernstein polynomials defined in [2].
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A GLOBAL BIFURCATION THEOREM FOR PROPER FREDHOLM
MAPS OF INDEX ZERO

SIMINA BODEA

Abstract. This paper presents a global bifurcation theorem for the nonlinear
eigenvalue problem fi(z) = (I—AL)z—G(), z) = 0 under the assumption that
for all A € R, the map f\ is a proper C" Fredholm map of index zero, r > 2.
This is a generalization of the global bifurcation theorem of Rabinowitz (1971),

which has been proved under the assumption that L and G are compact.

0.Introduction

In many parts of mathematical physics, in particular in fluid dynamics and in
the elasticity theory, there are problems which solving leads to a nonlinear eigenvalue

problem of the form:
fhz)=(I~-AL)z-G(A,z)=0. (%)

Thus the nature of the structure of the set of its solutions is an important question.
Under the assumption that the operators L and G are compact, Rabinowitz (1971) has
proved a global bifurcation theorem for (*), being a global extension of Krasnoselski’s
theorem. The phenomenon of interest is bifurcation which is studied by means of the
Leray-Schauder theory. A detailed description of the Leray-Schauder degree and index
.and there properties can be found e.g. in [Ni].

This paper is structured in three sections and references containing 14 titles, as
follows: in Section 1 we present the bifurcation theorems of Krasnoselski ({Kr]) and Ra-
binowitz ([Ra]). Section 2 consists of a review of the definition of the Brouwer degree for
proper C" Fredholm maps of index zero and its properties; for more details, see [El,Tr1]
and [El,Tr2]. The main result is presented in Section 3 and consists in a generalization
of Rabinowitz’s theorem. The idea of the generalization of Rabinowitz’s theorem derives

from both the facts that because L and G are compact, f is a Fredholm map of index

Received by the editors: March 12, 1996,

Key words and phrases. global bifurcation, Brouwer degree, proper Fredholn map of index zero.
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zero and that Elworthy and Tromba (1970) have generalized the Leray-Schauder degr
(which will be denoted in the sequel by deg, defining the Brouwer degree of proper (
Fredholm maps of index zero, r > 2 (denoted by dg. The present paper tries to op
a direction of research such as to obtain the result even if the hypothesis (6) from i

Section 3 appear in a weaker form.

1. The bifurcation theorems of Krasnoselski and Rabinowitz

Suppose X is a real Banach space with the norm ||| and R x X hos the produc

topology. By a nonlinear eigenvalue problem we mean an equation of the form

z=F(\z) (11

where \€ R, £ € X and F : R x X = X. A solution of (1.1) is a pair (A\,z) € RxX
and a trivial solution of (1.1) is a pair (A,0) € R x X. Of course this equation is tos
general to stuay without imposing more conditions on F. Rabinowitz ([Ra]) proved the
global bifurcation theorem fon: nonlinear eigenvalue problem under the hypotheses:

(1) F is compact and
F(\z) = Az +G(\ z), (1)

(2) L: X = X is a compact linear map and
(3) G: R x X = X is a compact nonlinear map and G(), ) = 0(||z||) near z = 0 (this
means G(A, ) — 0 as |jz]| = 0) uniformly on bounded X intervals.

Next we suppose (1)-(3) satisfied. With the above assumptions, the equation

(1.1) possesses the line of trivial solutions

{(»,0); X € R}.

Definition 1.1. (i) We call (1,0) a bifurcation point of (1.1) with respect to the line of
trivial solutions if every neighbourhood of (y,0) contains nontrivial solutions of (1.1).
(ii) Let X be a topological space. A subcontinuum of X is a closed connected

subset of X and a component of X is maximal (with respect to the inclusion) subcontin-

uum.

Let r(L) denotes the set of a real characteristic values of L. It is well known

that a necessary condition for (g,0) to be a bifurcation point for (1.1) with respect to
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the line of trivial solutions is that u € r(L). This follows since pu & (L), then I — AL is

invertible for all A near p. Hence for A near g, (1.1) is equivalent to
z=(I-A)"'G(\x). (1.3)

Since the right hand side of (1.3) is 0(]|z|[) for z near 0 while the left hand side not, (X,0)
is an isolated solution of (1.1) ir {A} x X uniformly in A, for A neat u. Consequently
(1,0) cannot be a bifurcation point.

The above necessary condition is not sufficient as simple examples show. E.G.

let X = R?, z:=(z,y) and
(2) - A(:) + (_j) (1.4)

Multiplying the first equation by y, the second by z and substracting, shows that (1,(0,0))
is not a bifurcation point. i

in Chapter 4 of his book [Kr], Krasnoselski has given a general sufficient condition
for a point to be a bifurcation point of (1.1) with respect to the line of trivial solution -
within the category of compact operators. Though we shall ;;resent a more general result

later, we first present this result. The proof can be also find in [Ni].

Theorem 1.2. (Kmsnose?ski 1964). If u € r(L) is of odd multiplicity, (u,0) is a bifurca-

tion point of (1.1). (The m'ultiplicity of a characteristic value p is: n, = dim .UN ker(I -

pLy). -
Rabinowitz proved that bifurcation in this situation is a global, rather than a

local phenomenon.

"Theorem 1.3. (Rabinowitz 1971). If p € r(L) is of odd multiplicity n,,, S possesses a
component C containing (i, 0). Moreover either

(a) C is unbounded or

(b) C contains (j1,0) where ji € (L) and i # p.

The original proof of this theorem can be found in ([Ra)]), but there is also

another proof of this theorem in ([Ni]), using a very nice lemma of Ize ([Iz] or [Ni]).

2. Degree theory for proper Fredholm maps of index zero

We shall be discussing an extension of the Leray-Schauder degree theory using

some simple techniques of differential topology. This part follows the ideas of Elworthy
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and Tromba ([El, Trl), [E}, Tr2]) and it is presented on infinite dimensional real Ban

spaces. Unless the contrary is explicitly stated, X and Y are real Banach spaces.

Definition 2.1. The linear operator A : X = Y is a Fredholm operator iff:
(a) A is a continuous operator,
(b) the kernel of A, kerA, has finite dimension and
(c) the range of A, imA, has finite codimension. It is well known (see e.g. G

that imA is a closed subspace of Y and then the codimension of imA is defined,
codim imA = dim(Y/imA).
With each Fredholm operator, we can associate an integer - its Fredholm inder:

indA = dim kerA — codim imA.
A linear operator is bounded iff it is continuous ([Ze]). The set L(X,Y)o

bounded (continuous) linear operators from X to Y together with the norm
Al = sup{l}A=]|; {l=}| < 1}

forms an infinite dimensional real Banach space.
The basic results about Fredholm operators can be found in [Pa).

In his paper [Sm], Smale introduced the definition of the Fredholm map between

Banach manifolds.

Definition 2.2. If D C X is a domain of X (i.e. an open conunected subset of X),
then a C'-map f : D — Y is a Fredholm map iff for each z € D, the differential of f,
Df: : X = Y is a Fredholm operator. The index of f, indf, is defined to be indDf,
for some z. In [Gk,Ke] is proved that the set ¢(X,Y) of Fredholm operators from X
to Y is open in the space L(X,Y) of all bounded (continuous) operators in the nom

topology and the index is continuous in ¢(X,Y). So, since f is C! and D is connected,

the definition does not depend on z.

Finally, in this section we shall present some notations and definitions which wil
be useful in the sequel.

Spaces of the form L(X,X) will be denoted by L(X). Let ¢,(X,Y) be the
set of Fredholm operators of index n; L.(X,Y) the set of all T € L(X,Y) which are
compact operators; Ly(X,Y) the set of all T € L(X,Y) with finite dimensional rank
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(rankT = dim imT). Then L;(X,Y) C Lc(X, Y) and those two sets are linear subspaces
of L(X,Y). For any T € L(X,Y) we define

T - Ly(X,Y)={T-Ce€LXY); C€LiXY)}

and

T - L(X,Y)={T-CeL(X,Y); Ce L(X,Y)).

In [La] it is shown that L (X,Y) is closed in L(X,Y) and if T € ¢u(X,Y),
then T — L(X,Y) C ¢a(X,Y) and, of course, T — L;(X,Y) C ¢,(X,Y). Because the
identity map I : Y = Y belongs to ¢o(Y'), we obtain a very important class of Fredholm
operators of index zero which are the maps of the set I — L.(Y). Let GL(X,Y) be the
subgroup of L(X,Y) of all invertible maps and

GL(X) - (I - L(X)) nGL(X),

GLy(X) = (I - L;(X)) N GL(X).

It is well known (see e.g. [Sv]) that GL;(X) and GL.(X) have two path-
components each, which are GL}'(X ) and GL} (X) and respectively GL} (X) and GL7 (X).

i
§

Definition 2.3. If D C X is a domain of X and f : D = Y is a C*-map (k < o)
such that Df, : X = Y is in some subset ¢ of L(X,Y) for all z € X, then f is called a
C* — o-map. The C* — ¢,,(X,Y)-maps are also called C* — ¢,,-maps.

Definition 2.4. A ¢(/)-map is a map f : X — X with property that Df, € I — L.(X)
forallz € X.

Definition 2.5. Let f : X — Y be a continuous map between Banach spaces X and Y;
[ is proper iff for each compact subset K C Y, f~!(K) is compact in X.

Theorem 2.6. If f: X =Y is continuous and proper, then it is closed.

Proof. Let A C X be a closed subset of X. We have to show that if any sequence f(ay,)
converges in Y to y with a, € A, then y € f(A). The set consisting of y and of the
flaa) is compact, so its preimage by f is a compact set which contains (an). The (a,)
have a subsequence converging to some = which must be in A, because A is closed. By

continuity, f(x) =y, hence y € f(A). a
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Definition 2.7. A Banach space X is said to admit a C-structure modeled on a Banad
space Y iff there is a collection of charts {(U;, %)} covering X, v : Ui = %(Ui) CY,
such that

D(yi 0 7171).,’.(,,) €GL(Y) Vze X.

The following theorem shows that C"™ — @o-maps are often C™ — ¢(I)-maps.

Theorem 2.8. (Pull back theorem) Let f : X =Y be a C" — ¢o-map. Then X admils
an unique C-structure as a manifold modeled on Y with respect to which f become ¢

C™ — ¢(I)-map.

Proof. Let a € X be fixed. Then Df, : X = Y is a linear Fredholm operator of index

zero and we can consider the following splits:

X =kerDf, ® X3

and

where X, and Y} are corresponding complements of ker Df, and imDf, in X and Y
respectively. Then every x € X is a pair of two elements (z,, z2) with z, € ker Df, and
22 € X2 and we have the same form for every y € Y, y = (y1,¥2) with y; € Y and
y2 €imDf,. Then

dimker Df, =dimY; < 00

and we can find @ : ker Df, — Y, like a fixed isomorphism between ker Df, and Y;. Let

m :Y =Y and 73 : Y = imDf, be the canonical projections. We define
0: XY O(z1, 23) = (0(x1), 7o f(z1,22)).

Thus DO, is a linear isomorphism. Then it follows from the Local Inverse Mapping

Theorem that there is U C X an open neighbourhood of a such that
y=Oly: U2 V-0U)CY
has an inverse y~! : V — U. Hence, for every ¥ = (¥1,¥2) € V we can compute:
Foxy ™My, we) = (mofoy Yy, ), m2 ofov Yy, ) =

(mofoy ), moyoy  (y, 1)) = (m ofoy Y (w,y2),42) =

= (y1,¥2) — (11 — m o fovy Yy, 12),0).
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Thus we can write

foy l=I-hel-LyV)Y)

where

h:V=Y  h(y,v) =@ —mofoy (un,u),0)

has a finite dimensional range. Clearly, D(f oy™!)y(z) € I — Lc(Y) forallz € U.
For each a € X we obtain such a chart (U,5). Thus this collection will define
a C-structure with respect to which f become a C" — ¢(I)-map if we can show that for

every Uy, Us such that Uy NU2 # @, we have
D(m o ’7;1)‘7:(2) €GL(Y) VzeUinU;.
Let (U1, 1), (U2,72) be such charts. Hence

D(f ° 72—1)'1:(::) = D(f °'h_l)'n(c) oD(m o ’7';1)1:(1')

and since \
D(f o4 i) € 1 = Le(Y)
and
| D 095 Ystey € T = Le(Y)
we have

D(m 0%3 Vyy(z) € I = Le(Y).
Because v; and 42 are invertible maps on U; N Uy, we obtain
D(71 093 )va(z) € GL(Y).

This also proved the uniqueness and completes the proof. 0

Definition 2.9. A Banach manifold with C-structure modeled on the Banach space Y
is orientable with respect to the C-structure iff there is a collection R of charts contained

in the C-structure such that if (U, v:), (Uj,v;) € R and U; N U; # @, then
D(% ©7; )yy(e) € GLE(Y) Yz e UinU;.

We shall take R to be maximal and we shall call it an orientation. We say that the
Banach space X is completely orientable like a Banach manifold on the Banach space Y,

if it is orientable with respect to every C-structure it admits.
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Definition 2.10. Let D C X be ap open subset of X and f : D = Y be a C'-map
point z € D is called a regular point of f iff the linear map Df; : X —+Y is bijective,
it is called critical or singular iff is not regular. The images of the critical points unde
are called the critical values and their complement on Y, the regular values. Note!

if y € Y is a regular value, then f~!(y) is either empty or consists of regular pointso

We recall here, without proof (see [Sm]), an extension Sard-Smale’s theor

which is an extension of the well-known Sard’s theorem.

Theorem 2.11. (Sard-Smale 1964). Suppose f € ¢n(X,Y) is C™ with » > max(n,
Then the set of critical values has measure zero on Y. Moreover, if y €Y 1is a re
value, then f~1(y) is a subspace of X whose dimension is equal to n, the Fredholm in

of f, or is empty.

Justified by the motivation presented in [El, Tr1] and [Sm], we shall define
Brouwer degree for proper C" — ¢o-maps with r > 2. It follows from Sard-Smale
theorem that for y € Y a regular value of f, f~!(y) is either empty or a closed subspa
of X of dimension equal to zero. Since f is proper, it follows that f~!(y) C D is eithe

empty or consists of a finite number of regular points. Thus we have the following tw

definitions:

Definition 2.12. Let X be completely orientable like a Banach manifold modeled on
Y,f: X =Y beaC"—¢p-map and £ € X be a regular point. We consider X with the
C-structure modeled on Y defined on Theorem 2.8. Then we define signDf, = 1 iff for
some chart (U, y) of 2, D(foy™!)y(z) € GL}(X) and signDf, = —1 iff D(foyt)ys€
GL (X). Clearly, signDf, is independent of the chart selected.

Further, let D C X be a bounded domainof X and f : D - Y a proper C" - ¢y
map, r > 2. We may define an integer dg(f, D, y) by looking at the inverse image of the
regular point y of f lying in the component of y in Y \ f(8D). This is possible since

f(0D) will be closed because a proper map is a closed map (see Theorem 2.6).

Definition 2.13. (Definition of the Brouwer degree for regular values) Let y € Y\ £(3D)

be a regular value of f. The degree of f at y relative to D, dg(f, D,y), is defined to be
zero if f~Y(yyND =0 or

dg(f,D,y) = 2 signDf, .

zef~1(y)nD
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Remark. (i) This Brouwer degree is constant for all regular values of f which
are in the same component of Y \ f(01) (see [El, Tr1]).

(i) In their paper [El,Tr1], Elworthy and Tromba show that if f : D X
belongs to the I — L.(X) and is smooth of class C?, the Leray-Schauder degree and the

Brouwer degree defined in this section are equals,

deg(f, D,y) = dg(f, D, y).

In fact, we consider X with the C-structure {(U;, )} modeled on Y. Thus we
can define locally the Brouwer degree dg(f,U;,y) to be the Leray-Schauder degree of
foq; Y, thatis

dg(f,U —i,y) = deg(f o ", %(U5), )
when y € Y \ {F(8U:) U f o 471 (9% (Ui))}-

Definition 2.14. (Definition of the Brouwer degree for critical values) Let 2 € Y'\ f(3D)
be a critical value of f. By Sard-Sinale’s theorem, in any neighbourhood of z we can find

y €Y \ f(0D) a regular value of f. By Remark (i), we may define:
dg(f,D,z) = dg(f,D,y).

This "oriented” degree has all the natural properties of a degree, so dg(I, D, y) =
1ify € D; if dg(f,D,y) # 0 than 3z € D such that f(z) = y;‘ decomposition of
domain property; excision property; (see [El,Tr1}, [El,Tr2]). But the homotopy invariance
property appear in a weaker form. Hence, it is not an invariant of proper homotopy
through ¢o-maps, a sign changé may appeax. In [El,Tr2] is given the following example.
Suppose E is an infinite dimensional Hilbert space, T € GLZ(E), D C E a bounded
domain of E and y € £\ T(8D). Then dg(T', D,y) = —1, although GL(E) is connected
aqd» so T is homotopic in GL(E) to the identity map which has degree +1. To get a
prope;‘ homotopy invariant through ¢o-maps one has to take the absolute value of the
degree. It is homotopic invariant only through ¢(/)-maps, so only if we consider properly

admissible homotopy, as follows:

Definition 2.15. If f and g are proper ¢o-maps, f is properly ¢, homotopic to g iff
“there is a C™ proper map F : [0,1} x D —= Y such that F; € ¢o(D,Y) for all t € [0,1]
and Fy = f, Fy = g. A proper ¢o-homotopy F : [0, 1Jx D =Y between f and g is said

to be admissible with respect to a C-structure on X iff for each t € [0,1], F; becomes
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a ¢(I)-map with respect to the same C-structure on X. In [EL,Tx1] it is shown the way
we may obtain from X both the statement that [0, 1) x D is a manifold with C-structure

and it is orientable.

This definition of course implies that if f and g are properly admissible homo-
topic, they are ¢(I)-maps with respect to the same C-structure on X.

Combining the homotopy invariance property with decomposition of domain
property and the excision property, we obtain also two more general forms of the homo-

topy invariance. Because they are useful in the sequel, we recall them here.

Theorem 2.16. Suppose D. is a bounded domain of [0,1]x X and f : D, = X isa
proper C™ — ¢g-map, r > 2. Let f; denote the map z — f(t,z) and let

D={z€X; (t,z) € D.} C X.

Suppose that y & f.(0D;) for allt € [0,1].

(i) Then |dg(f:, D¢, y)| is independent of t € [0, 1].

(ii) Suppose that Wt € (0,1], fe becomes ¢(I)-map with respect to the same C-
structure on X. Then dg(fe, D¢, y) is indeper;dent oft €0,1).

3. A generalization of Rabinowitz’s theorem

Let X be a real Banach space with the norm || . || and R x X has the product
topology. Suppose that the map f : Rx X — X defined by f(),z) = (I-AL)x—-G(\ 2)
satisfies the following assumptions:

(1) L: X = X is a linear map,

(2) G: Rx X = X is a nonlinear map and G(), z) = 0({|z||) near z = 0 (this
means G(\, x) = 0 as ||z]| = 0) uniformly on bounded )\ intervals.

(3) VA€ R, the map fi: X = X, z+ f()\, z) is a proper C" — do-map, r > 2.

Under the assumptions (1)-(3) we want to study the nonlinear eigenvalue problem
fQz)=(I-AL)zc -G\ z)=0 (3.1
which possesses the line of the trivial solutions
{(A,0); A€ R}.

In order to present the generalization of Rabinowitz’s theorem (Theorem 3.3),

some terminology and two technical lemmas are needed first. Let S denote the closure of



A GLOBAL BIFURCATION THEOREM FOR PROPER FREDHOLM MAPS OF INDEX ZERO

the set of nontrivial solution of (3.1). Thus the only trivial solutions in S are bifurcation
point. By a §-neighbourhood of a set A we mean the set of points within a distance é of

A. B, denotes the closed ball in X of radius p centered at the origin.

Lemma 3.1. If A and B are disjoint closed subsets of a compact set K such that no
component of K intersects both .\ and B, there erists a separation K = K, U K, where

K, and E, are disjoint compact sets containing A and B respectively.
For proof, see [Wh).

Lemma 3.2. Let u € r(L) be isolated and let C denote the component of SU{(¢,0)} to
which (p,0) belongs. Suppose that ‘

(a) C is compact and .

(b) does not contain (i1,0) for any per(L), p# p.
Then there exists a bounded open set M C R x X such that:

e CCM,

e SNOM =0 and

o the only trivial solutions contained in M consist of the segment

{(2,0); A= pl<e}
for some € < o, where €¢ is the distance from p to r(L) \ {u}.

Proof. Let Us be a §-neighbourhood of C , where § < €9. Therefore s NC = 0. Because
of the only trivial solutions in S are bifurcation point and A ¢ r(L), the triviél solution
{A,0) cannot be a bifurcation point and so it will be contained in a neighbourhooa disjoint
from 5 and a fortiori C. With the aid of this observation together with (b) we can assu;ne

that the only trivial solutions Us contains are
{(2,0); |A— puf < 8).

Let K =Us;NS. Then K is a compact metric space under the induced topology
from R x X. Since Us NC = @, be Lemma 3.1 there exist disjoint compact subsets K,
and K3 of K such that: !

Ki2C, K;2(0Us)nS and K =K, UK,.
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Thus if M is an e-neighbourhood (in R x X) of K;, where ¢ < é and less then
the distance from K, to K, (which is a positive nonzero number), then M satisfies all

requirements. g

Let
M,={zeX; (\z)e M}
and ]
(M) ={z € X; (A z) € IM}.

We make the following hypotheses:

(4) p € r(L) is isolated such that (4,0) is a bifurcation point of (3.1) and after
we change f, with respect to the C-structure specified in (6), # becomes a characteristic
value of odd multiplicity n, for the differential of A (by A we mean the operator with
finite rank appeared in the new form of f,).

(5) Each M, is completely orientable like a Banach manifold on X.

(6) For ¢ sufficiently small, X has a C-structure (modeled on X) such that for
A€ (p~e€,p+e), every fr becomes a ¢(I)-map with respect to this C-structure.

Theorem 3.3. Under the assumptions (1)-(6), S possesses a component C containing
(1,0). Moreover either .

(a) C is not compact or

(b) C contains (j1,0) where u # € r(L).

Proof. If (p,0) is a bifurcation point of (3.1), then (4, 0) e S and S possesses a component
C containing (p,0).

We suppose no alternatives of the theorem can appear. Then there exists a
bounded open set M and 6 > € > 0 as in Lemma 3.2. Foe 0 < |A — | < §, (),0) is an
isolated solution of (3.4.1) in {A x X. Therefore there exists p(A) > 0 such that (,0) is
the only solution of (3.1) in {A} x B,(,. Define

pA)=p(u+8) for A>pu+4é
and
pA)=p(p—-46) for A<pu-34.

By choosing p(p  6) small enough, it follows from the properties of M that

BP(A)ﬂ(aM))‘ =0 if l)\-—[,tl 26
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Since for A # p there are no solution of (3.1) on {A} x 8{Mx \ B,(»)),
dg(fo, Mx \ B,(»),0)
is defined. We shall prove that
dg(fr, Ma\ By(r),0) = 0 for A# p (3.2)

and then show that (3.2) is incompatible with the odd multiplici‘ty assumption for u.
Let A > u and A* > ) be chosen so that A* — p is greater than the diameter of
M. Then M,. = 0. Defining

p = inf{p(8); 8 € [A,A"]},
it follows from remarks made earlier that p > 0. Let
U=M\{[MX]xB,}

Then U is » bounded open set in [A, A*] x X and by construction f(¢,z) # 0
for all ((,z) € 8U, where QU refers to the boundary of U in [A,A*] x X. Since for all
¢ € [\ X*), dg(fc, M¢ \ B,,0) is defined and M. \ B, = B, we have

dg(fas, Mx+ \ B,,0) = 0.
Since f,\o and fy are properly ¢o-homotopic, it follows from Theorem 2.16 that
|dg(f¢, M\ B,,0)| = constant V { € [\, A*]
and hence
dg(fx, Ma \ B,,0) = 0. (3.3)

_ LetintB,, denote.the interior of the closed ball By(»). Since fy has no zeros
in {A} x (intB,,(,\)) \ B,,

dg(fx, (intB,x)) \ B,,0) = 0. (3.4)
By decomposition of domain property we have
dg(fz\v MX \ BP’ 0) = dg(fkv MA \ Bp(/\)y 0) + dg(fz\v (111th(,\)) \ BP' 0) (35)

and then relation (3.2) follows from relations (3.3)-(3.5) for A > p. The argument for
A < pis the same.
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Let € > 0 be sufficiently small such that we have the hypothesis (6) satisfied:
For |\ — p| < &, dg(fr, Mx,0) is defined. Select A, X so that

p—e<A<p<A<ppte.

By (6). f» and f5 are properly admissible homotopic and it follows from Theorem
2.16 that

dg(f_l_r Mzk_) 0) = d.q(f:\'r MT’ 0) (36)

By decomposition of domain property and the fact that for A & r(L), (A,0)is

an isolated solution of (3.1) in {A} x X, we have

dg(fa, My, 0) = dg(fa, My \ By(a),0) + dg(fa, Bo(a), 0) (37
and

do(f5, M5, 0) = do(fz, M5 \ By5,0) + da(f5, By,0). 6

Combining (3.2), (3.6)-(3.8) we obtain

dg(fa, Bp(n),0) = dg(f5, B,x), 0)- (39)

For € > 0 sufficiently small A and X sufficiently close to #), we can choose the
same chart (V, v) from the C-structure of X to compute the degrees of f) and f5. Thus,

in relation (3.9) we can use the Leray-Schauder degree:
deg(fa 0771, ¥(Bo(a), 0) = deg(fx o1, %(B,x),0)
and so the Leray-Schauder index
ind(fy 0o y~1,0) = ind(fz 0o v1,0). (3.10)

Since p is a characteristic value of odd multiplicity n, for the differential of h

(fu ©v~1 = I — h), by index jump property of the Leray-Schauder degree, we obtain
ind(fy0y71,0) = (=1)™ ind(fzoy~*,0). (3.11)

Thus (3.10) and (3.11) are contradictory and the result follows. a



Conclusion. At first sight, the hypothesis (6) is a little bit too restrictive, but I
think it can occur in a weaker form under some natural conditions. A further work may
be devoted to prove this. Some examples ana applications in mathematical physics will

be interesting to be found.
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THE STABILITY OF THE RITZ AFPROXIMATE SOLUTION FOR A
HYDRODYNAMICAL PROBLEM

PETRE BRADEANU AND DIANA FILIP

Abstract. In this paper we have performed a functional study for an opera-
torial differential equation obtained in [1] by using the Kantorovich variational
method to a hydrodinamical problem (the flow of an potential incompressible
fluid between two solid walls). By analyzing the properties of trigonometric
functions (1.10) used in {1] as trial functions for the Ritz approximate solu-
tion, we prove the stability and boundedness of the conditioniné number for
the Ritz algorithm and we find the constants of the method which justify the

numerical results obtained in [1).

1. Introduction

Problem formulation: An incompressible fluid in a two-dimensional, potential
and stationary motion between two solid walls, DA and CB (y = 0, u = y,(z)), fig.1 is

considered. In the paper [1] it is shown that the determination of the stream function ¥,

given by ¢ = 5% ~ v(z,y), where ¢ (=const.) is the flow-rate in the Ox direction, is
: (A
reduced to solving the following Dirichlet problem ("= d?/dz?)
v 0% _ .
w‘f'b-y—z' =qy(yp1("~'))u on (1.1)
v(z,0) = v(z, yp(z)) = v(tao,y) = 0 (1.2)

where
- 0= {(z,9) —a0 <z <a, 0<Y< pla))
(¥3,4 = ¥(Fao, y) = gy,  (Fao)y). (1.2)
By using the Kantoro;rich variational method with the first approximate solution

v = a)(z)[y — yp()]y and considering that C'B is plane (¥ = p(t) = aoaot + fo) the
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1991 Mathematics Subject Classification. 49D15.
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has the Ritz solution (the n-order approximate solution)
n
un(z’y) =zck¢k(zvy)y Ck GRI (18)
1
which has been determined by solving the Ritz systern

> Kjkex =b;, j=1n, (1.9)
k=1

where Kji = (¢j,0k)a, b = 5g03a3(p, i)La(-1,1)-
With trigonometric trial functions @ € Ha (here i € D(A))

ort) = —sinknt, t€[-1,1] (1.10)
‘ k=
the following results have been obtained in the n = 3 case (a0 =1, ap = —1/4, fo =

3/4, ¢= 1, u=ay) [1]

() =Y eenl) $(z9) = (5() ~ ar()ly - v (=)
1

¢y = —0,01899506749, c3 = 0,00546525160, c3 = —0,00271135686

and in the n = 4 case

61 = —0,01899477457, c¢p = 0,00543857854,

c3 = —0,00242113158, c4 = 0,00189391796.

A good concordance has been obtained between the approximate stream lines
W,y‘) =k (const.), 0 < k'< 1,... and the exact ones y = %(3 — z). For example, in
the n = 3 case, on the stream line ¥ = 3/4 for ¢ = 1/2 the corresponding values of y
coordinate are y = 0,46903 (approximation value) and y. = 0,46875 (exact value) with
the error € = |y — y.| = 0,00028 (< 3-1074).

The aim of this paper is to complete and justify results in order to conclude that
the Ritz procedure may continue for higher approximation order by using trigonometric
trial functions of the form (1.10). For this purpose the differentiability, completeness,

basic functions are studied on the energetic space of the operator A.
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9. The functional study of the operatorial equation (1.3). The properties

the operator A and the test functions ¢, on the energetic space Hy, (1§

Let us consider the auxiliary operator B defined by the value Bu and its domai
D(B):

Bu=-d"(t), t€(-1,1), D(B)= D(A) (21
having the energetic space Hp and energetic norm || - ||p given by

1
Hp = H)(-1,1), |jujl} = / w’dz, ueHp (norm Dirichlet). (24
-1

a) Properties of operators A and B. It is known that B is a linear, sy
metrical and positive definite operator, [4], on Hg and also, with a discrete spectru

(result; of the Rellich theorem, A-positive definite).

remark 2.1. In this case the Rellich theorem which prove that Hp is compact imbeddedi
in Ly(—1,1), can be easily justified. Indeed, let M be a set of functions from Hy,
bounded in Hp i.e. |lulls < C (const), ¥ u € M. Taking into account that

llullp = Hu'lleo-11) < C, VueM (@

and since all functions from Hj(—1, 1) are absolutely continuous, there exists the integrdﬁ

representation
¢ 1

u(t) =/_lu(s)ds or u(t) =/;lvk(s,t)u (s)ds (MJ

if

k(s,1) I, -1<s<t
s,t) =
0» t<3SI

It is known that Fredholm’s integral operator Kv = u(t) = / k(s,t)v(s)ds, v

Ly(—1,1) is compact on La(—1,1) (it transforms any bounded set from La(~1,1) m:)l
‘a compact set in Ly(—1,1)). So, if we put v(t) = u'(f) (which is possible since u ¢
Hg(-1,1) implies v’ € Ly(-1,1)) it follows from () and (&) that the functions s

u € M bounded in the norm || - ||g will be compact in the norm Il -

NLac-1,0) (th
imbeding of Hp onto Ly(-1,1) is compact).

It follows that there exists an eigenvalue A, > 0 (strictly positive, the lowest one)

for the positive definite operator B which, according to the lowest eigenvalue theoren,
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is given by the equality:

2 .
n= e e (B g > o, weHs 09)
u€Hp (u1u)L2 ”u"L,

On the other hand, the eigenvalues can be determined by solving the problem
—u” = Au, u € D(B) with a solution u(z) # 0; here we find A\, = 7?/4.

Hp and H 4 can be identified with H}(—1, 1) (since these spaces are formed with

the same functions).
The operator A is linear, symmetrical and positive definite operator and semi-
analogous one with B, A having a discrete spectrum. First, for the quadratic functional

(Au, u) we have

(Au, ), > Bllellp, 93 = min p*(8) =°(1). (24)

Hence, with (2.3), we obtain the inequality:

(4w, )z, > o®(w,w)z,, w€D(A) (CLo-1,1), a=TLZ (2.5)

which proves that A is positive definite operator on D(A) with the constant a® > 0.
Since D(A) is everywhere dense in H,, the inequalities (2.5)-(2.4) can be ex-
tended to H,4 in the form:-

llulla 2 vollulle, llulla > oflulies-1,1); v € Ha. (2.6)

Second, since the function u from D(A) C H4 = H}(~1,1) is absolutely con-

tinuous (the functions from Hg(—1,1) are absolutely continuous) we are able to write

that:
1 1 1/2
u€ Hy(-1,1) = u(t)= / u'(s)ds < Vi +1 (/ u'zdt) =
-1 -1
1 v
= / uldt < 2/ u'dt = 2||u||%. (2.6)
-1 -1
Then, by dominating procedure, we obtain, for || - ||, the least upper bound:
lNulll < K3llull, k3= SP3X, [p°(2) + 20a3p°(1)}. (2.7)
Plus, the following energetic norm equivalence holds:
killulle < llulla < kallulls, we Ha (= Hi(-1,1)) (2.8)
where

k== ()Vp(D), ko =p(-1)y/p(-1) ) + 20a2). (2.9)
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Having H4 = Hp = H}(—1,1) and the norm equivalence (2.8) we conclude tha
A and B are semianalogous operators.
At last, A has a discrete spectrum. To justify this, the same procedure can be

used as for the operator B, replacing (&) by
lully > PP (DN, (=1,1)-

b) Choice of test functions ¢; from H, and their properties (standard
basis). As test functions of the Ritz method the eigenfunctions of the operator 4 ar
usually chosen. These :nctions can not be easily found (and they are not with ¢ from
(1.10)). But, for i one can use the eigenfunctions of the operator B (with a discrete
spectrum): for B there exist eigenvalues: 0 < A\ < A2 < <A <oy An 20l
which corresponds the system of eigenfunctions {;}7°, linear independent, orthogonal
and cc;mplete in the energetic space Hp (orthonormal and complete in H = Ly(-1,1)).
The eigenvalues A and the eigenfunctions ¥, can be determined by solving the two-point
boundary value problem —4"(t) = M(t), P(—1) = ¥(1) = 0 (the case A < 0 is excluded
according to the boundary conditions).

We obtain:

M = (km)2,  Yu(t) =sinknt; k=1,2,...; 2.10)

"1/)1,"%, =1inH= Lz(—l, l)

i.e., {¢»} is orthonormal in the space H = Ly(—1,1).- Then, from By = A we can
write that (Byx, k)L, = Ae(¥k, h)L,, for any h from Hp and then, taking into account

the definition (energetic scalar product) (Y&, h)s = (B¥x, k), V h € Hg, we conclude
that ¢4 and Ax verify the identity:

('pkrh)B-_"\k('pk’h)) VheHB;

i.e. ¥, and A are generalized eigenfunctions and generalized eigenvalues respectively.

With h = ¢ (element from Hp) we have (¥x,%k)s = ||¥xll3 = Mi; so {tx} it is not
orthonormal in Hpg, [6).

Proposition 2.1. The system of functions ¥y (t):

_ We(t) _ 1

t) = = —sj -
el l¥xlls o nkt, te[-11], (211

26




THE STABILITY OF THE RITZ APPROXIMATE SOLUTION FOR A HYDRODYNAMICAL PROBLEM

linear independent, complete and orthonormal in Hp (and orthogonal in H 4 ), is uniform

linearly independent basis in the energetic space Hy i.e. for any linear combination’
n .

(including the Ritz combination E ckPk)
1

va(t) = zn:akgok(t), Va=(a,...,an) €R" (2.12)
1

with
2
llallz =) _af #0
1
the following inequalities hold
k{lallz < lienll < K3llall3 (2.13)
with the constants ky and kz, independent of n, given by (1.9).

Proof Let us calculate, according to the norm definition in the space Lj(—1,1), the

following norms:

dv,.

/ Ea.a,cosmtcos;ntdt Za = |jall};

i,i=1 i=1

Ifvall?, < 2llall3  (calculus like in (2.6"); v, € H3(~1,1)).

Now, let evaluate the energetic norm ||v,|{4 generated by the operator A given

in (0.4), in which p(1) < p(t) < p(-1), t € [-1,1]

1 1
ol = [ wnasndt > %) [ snciy = (0013
-1 -1

1 1
lonlle == [ ondp*s,) + 1003 [ pPe2dt < p(-1157(-1) + 203l
- : -1
Hence, the basis {¢x}7, given in (2.11), has the property (2.13) (stability). O

remark 2.2. The standard basis {44} (orthonormal and complete in Hp and orthogonal

in H,) considered in (2.11), which satisfies (2.13) is called uniform linearly independent
basis, [3].

27
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3. The stability of the Ritz approximate solution u,(t) in the energetic space
Ha
We will show that the {i).} basis, (2.11), verifies a stability criterion of the Rits

solution u,, in the space H ;.

Let assume that in the Ritz system (1.9) written in a matrix form:
T
KaAA®™ = BBn, Ko =[Kijlaxn, AA® = (,..,c) ", BBa= (b,

the matrices K, BB, have been numerically calculated; their elements, K;; and b; have
been approximated by decimal numbers (with calculus and quadrature errors). Hence,

in reality, we have to solve, effectively, an inaccurate Ritz system (perturbated)
(K, + AK,)AA™ = BB, + ABB, 39

such that if AA™) and AA*(") are exact solutions for the exact Ritz system and pertur-

bated respectively, we have the equalities:

(1) KnAA®™ = BB,;

@ (Kn + AK,)AA™™ = BB, + ABB,; AA*™ = AA™ + AAA™ (39

to which correspond the exact Ritz solutions u, and u}:

n n
= Ve, un=Y ;"M (33)
k=1 k=1
with

n
Au, =u;, —u, = ZAci")gok
k=1
where § indicates small perturbations and Auy, is the error (called ”hereditary”) owed to

the approximate construction of the Ritz system (3.1), and the modification with AK,
and A BB, respectively.

We analyze the stability of u,, with respect to AK, and ABB,,. If we use the
property of linearly independence of {}?, i.e. (2.13), we obtain the following results
(properties):

P1. The perturbated matrix AK,, verifies the condition:

. 1/2
HAK|)2 = (Z (AK;J-)2) <co, ¢o(const) >0,¥VneN (34)

iJ=1

28
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P2. The perturbated system (Z) has an unique solution (¥ & 8n). First, we

notice that K, is a positive definite matrix since we have:

n 1/2
(V a=(ai,...,an) ER", Jla|l2 = (Z a?) #0, a — vector of (2.12))
T )

n n n
al - Kpa= (Kna,a)2 = Z a;a; (i, pi)a = (Z am,zaj%') = (Vn,)a >0
=1 A

ig=1 i=1

(3.5)

remark 3.1. According to the extremal properties of the eigenvalues of symmetrical ma-
trix M, we have: (Ma,a); < plla||3, ¥V a € R® (with p = max{\,..., s} where
); are eigenvalues of the symmetrical matrix M) and the norm (Schmidt) ||AK,||; =
(AKR)| (= max{|Xi], 1 <i<n}).

Hence

(AKna,a)2 > —[|AKa l2llall - (35"

The matrix K, + AK, of the perturbated system (2) is also positive definite

since we have (taking into account the left member of (2.13) and (3.5")):

aT - (Ko +6Ku)a = a - Kna+aT - (AK,)a = (vn,v)a + a7 - (AK,)a >

> killall} — A Kallllal} > (#°(1) — A Kall2)llall? > BllallZ > 0 (3.6)
if we choose |JAK,||2 < o so that co < p®(1) and we put
B=p*(1) —co; (B> 0) (3.6")

The matrix K, + AK, being positive definite, the system (2.2) — (2) has an

unique solution.

Property 3.. The following estimation holds: there erist the positive constants ¢)1 and

¢, independent of n, so that:

HAunlla < cilldKallz + c2llABB,|l2; (3.7)

and furthermore, the constants ¢, and ¢, have the values:

ks 1 1
o= gaplinciy o= (1 + %’) : (38)
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where ky and ko are given in (2.9), a = yo(7/2) = \/P5(1)(n/2), f is given in (2.6") and
¢o is defined by means of the property PI,

Proof. Let us return to (2.2). Replacing c* in (2) by its expression and taking into account
(1) we obtain (after the scalar multiplication by AAAMT, T denoting the transpos

matrix):
AAAMT K AAA™ = AAA™T . (—AK,AA*™ + ABB,); (P,=P;) (39

Let us estimate both members (denoted by P, and Py) of (3.9) by using (3.2).
If we choose

a=Ac™M =™ M)y, = Xn:AC;‘n)SDk = Auy, (39)
1
with (3.5) we obtain
P, = (Aup, Aug)a = |Aua)l4 > ®||Aually;  (owing to (1.6)).
Now, let us consider the right member P;. Using (3.2) we can write:
1Pl < (I8Kall2l A + 1|AB B ;) (644, =

Au,
= N (441 A4, < N (e, 1kl (59)

p*(1)
(113) = POUAAE < lunll3)

Using (2.9°) and (3.9”), from (3.9) it follows that

alldunlla < lléualla <

1 .(n
= (laare,). (3.10)

We calculate the Euclidean norm of the vector A4A*(n) which verifies the per-

turbated (2). According to (2.6) (K, + AK,, is a positive definite matrix) we obtain:
BIIAA* ™IS < AT (K, + AK,)AA*™ = AA*™) . (BB, + ABB,) =

=" BBp+c ™. Aby = (f,up)n + AA*™ABB, < ||fllalluillm +lic*™|lABB.,

(AA“")BB,, =Y ™ =Y (fp)nel™ = (f, u;),,) .
i=1

i=1

We have, after (2.13), the inequalities

. 1o .
lunlla < Sllunlla < (k2/a)[AA* M),






The eigenvalues )i(Ky,) of the matrix K, are n (positive) real numbers of
Therefore, we denote \i(K,) = A,(-") (> 0) and consider that AR = '\(1”) <
A - /\ﬁ';). It is known that for n — oo, ,\ﬁ") does not increase and A does 1
decrease; so u(K,) does not decrease and if z\(l") - 0and A\ 5 (with n 5 o
then p(Kn) — oo. For p(Kn) to rest bounded it is necessary and sufficient that, |
all n, to have Ao < )«i")(K,,) < Ao where the bounds Ag and Aq are positive consta

independent of n.

remark §.1. In this case we can say that the system of trial functions {yi}7, wh
defines the Gram matrix K,, is almost orthonormal in the energetic space H, (ai
particularly strong minimal in H4).

Hence, we must have u(K,) < Ag/X¢. Let us evaluate the limits Ag and A,.
do thi’é_, we consider {yx}T given in (2.11) and Gram matrix (in H4 and Hg) K,
[(pi, pj)a) and kP = [(wi, i) B] = [6i;] having n x n dimension and the correspond
eigenvalues A < ... < A and pp = 1 (k = T,n) with AP = AP =1 (since {ps)!
orthonormal in Hg). Let a = (ay,...,a,) be an arbitrary vector in R” with the Euclide
norm jla}|d = Y 7 a2 #0 and let Y [ axpx (S va € H ,4.) be an arbitrary element fr
H4. From (3.6) and (3.2) we obtain:

n 2
2 Akpx 2
/\(1") = min M = mi ! : 4 = min ||v,.||; > kf
o€R" (a,a);  a€R* |la|] aek~ |la]l ~
K
AS‘") = max M < kg'

o€R™ (a: 0)2 -

Hence it results that {4 }T, (2.11), is a strong minima; system in H 4 (it assu
the stability) and that for the conditioning number y#(K,) we obtain the estimation (le
upper bound; u(K-) > 1):

ok pA(=1)[p*(=1) + 20a3
VaeN, p(kn)< é: 05 ol. (4

if we use (2.9).

So, the solution of the Ritz system is stable: in the studied problem and appr
imatively solved with the trial functions {ipx} given by (2.11), the algebraic (exact) B
n-order systern can be replaced by the approached algebraic system.

32



Conclusions

It is known that in the practical application of the Ritz method there appear
two main difficulties: the choice of trial functions and the assurance of the stability of
the method. Both these aspects have been theoretically studied in this paper in order
to justify some good numerical results obtained in [1] by applying the Kantorovich-Ritz
variational method to a hydrodinamical problem. Qur paper shows that the system of
trial functions (1.10) assures the convergence and stability of the Ritz method:

1. - a stability criterion of the Ritz solution is tested

2. - the least upper bound of the conditioning number of the Ritz matrix is
evaluated

3. - the constants which appear in the inequalities for stability and for bound-
edness of the conditioning number are numerically (effectively) determined.

In conclusion, the Ritz variational method, used in [1], can be applied with
trial functions (1.10) to a more general problem, as the flow of an ideal fluid between
curvilinear walls.
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normal distribution N (0,vZ), £ > 0, E(X,) = 0, D}(X,) = z,n € N and ¥,
any n € N* are independent random variables having the same normal distribu
N(0,\F), y > 0, E(Ya) = 0, D*(Yn) = z, n € N*. Then, the arithmetic mean

the first n components X7, & Z X2, have a Pearson chi? distribution with n degree
k=1

freedom and also % f: Y;2 have a Pearson chi? distribution with n degrees of freed
k=1 .

Also we consider that, for any n € N* the components X, and Y,, are independent.

If f is a real function bounded on (0, +00) x (0, +00), such that the mean vah

the random variable f (1 > xz2L z Yk> exists, for any n € N*, then (1.1) beco
k=1

)

2. Approximation properties of the operator

In this section we investigate the approximation properties of the operator (

Theorem 2.1. If f is a bounded uniforin continuous function on (0,a) x (0,a), a

then the sequence {Ln(f;%,y)}nen+ convergence to f(z,y) uniformly on (0,a) x (0
Proof. In accordance with the Bohmann-Korovkin-Volkov theorem of twc variable
[6], it is sufficient that

La(lz,y) =1; La(uiz,y) —— z; La(v;z,y)n —— y
n -~ 00

Nn—00

2, 2, . . 2, 2
Lo(u;z,y) —— 2 L,(uv;z,y) -;:;)xy, L.(v*;z,y) -n—_;)y

or, in accordance with Stancu [4] to have for the variances of the components:

1 o \ 1
2 _ 2 {21 2 ) _ : 2 _ 2 2 -
Jim, ony = fim D (Z* =0 lim, (vn.z—D (;k}:n =

But,
L.(1;z,y) = ! T -u/(2z) * L a-1 ~v(2y)
nll;2,y) = (dsy)/? (P(%))z A u3i™h du/(; viTle dy =
2 2 nf2 00 00
= (22)"%(29) le"dz/ t%"le“dtzl,
(4zy)"/2 (1 (3))" Jo Jo .
r(3) r(3)
1 ® 1 b
Lo(u;z,y) = —-———-*-/ ude~w/(2) _y / 3-1.-v/(29) =
" (4o (0 (3) o n Tty T

P ()
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_2&n _
Th2 ™™
s o] {v o] -
Lo(viz,y) = 1 - / ug-—le—-u/(h')du/ vn/ze—u/(zy)l'dv dv = 2_3’% =y,
egpP(@(3)h T m T m
(22)"/37(3) (29) T LIr(241)
La(u?;z,y) = 1 /°° iug"'le'“/(h)du/m v3-le /(W dy =
(4zy)™/2 (1 (3))" Jo_1° )
H(2)3+7r(3+42) (2v)r(3)

22
=32+%——)32 (n = 00),

_ @R (3+1r(3)

n2

L 2. — a2 2y2 2
n(v 7£»y)-y +T_')y (n——)oo),

1 1 6] 0o .
Lo(uv;z,y) = 5 —5/ u%e'“/(z’)du/ vie V(W dy =
(4zy)*/2 (T ('—‘)) n Jo 0
_ (22)3HT (3 4+1) (2) l+1r(" +1)  dzy(2)’

(29)/2 (T (3))" n o
So that, "ILHJO La(f(u,v);2,y) = f(z,y) uniformly on (0,a) x (0,a), a > 0, whenever

= zy.

f(u,v) is one of the functions 1,u,v,u? uv,v?. In probabilistic form, the conditions

(2.1) means (2.2), where

l n
=D (; sz) _
k=1

00
v x)’ 2-1,-u/(22) gy, / w3 =1e=v/(29) gy =
)]

: 1 oo
(4xy)"/2( (3 ))2/0 ("
— 2-1_-u/(2x) _
uw?r G )y (o) e
o0
= u%+1e"“/(2’)du—2x/ u3e~u/(25)g
(2z>"/2r(%) U o O

o0
+:c2/ u!ﬁl"e’“/»(‘”)du] =
0

-4 () L )= T o 1o

n? n

and similarly

2 2 [ 1C 1 o
om2=D"|=-) V2| = / ud~lemu/(22) gy
n (4:cy)"/2 (F (%)2) 0

© Y 2 2
./0 <__y) v%‘le"’/(zy)dv=2i—-)oo, n — oo.

n
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We conclude that ango La(f;z,y) = f(z,y) uniformly on (0,a) x (0,a),a >
n
for any function f uniform continuous on (0,a) x (0,a), a > 0. {
3. Estimate of the order of approximation

We shall now proceed to estimate the order of approximation of the function

by the operator (1.1).

It is convenient to make use of the modulus of continuity, defined as follows:

w(f;d1,82) = sup{lf(z",y") = f(2",¥)}; |2" = 2| <1, v = ¥/| < 8}

where (z/,y’) and (2", y’) are points from (0,a) x (0,a), @ > 0 such that |z” — 2’| <
and |y — ¢/| < &2, 81,8, being positive numbers.

Theorem 3.1. If f is a bounded and uniform continuous function on (0,a) x (0,a

a > 0 then:

. 11
f(2,9) = La(f;2,9) < (1+20v2) w (f, I ﬁ) _
Proof. Using the following properties to the modulus of continuity

|f(=",y") = (=", ¢')l Sw(f;lz” - 2/, [y - ¥)

and
w(f;Alél,Azaz) < (1 + A\ +A2)w(f;51,51), A1>0, 2> 0,
we have .
1
") = 1 S o (£ e = 21 bl = 1) <
4 &
< (l+—1—|z"—:c’|+-l-|y”-'!/| w(f;81,6).
S 61 62 »¥01,02).
Now
e = Ltz < [ [ |50 = 1 (% 2) | ontuviz, shdudy
- o 0 ) vrn n y Uy iy
-where
0, u<0,v<0
Pn(uyv;try) = 1 a_] _l(l+¥)
g P TeTIEN), 620,020,250, y>0

We may therefore write:

19629 = Lozl < (14 50 (fo = 2 20) 4 8o (o= 22 ).

20 R —
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In accordance with the Cauchy-Schwarz inequality we have:

1/2 2
u "7 (2= %) pu(esv: o= (2
-t < ([ (-2 mmsnapiea) <= ()

00 (0O 2 /2
o-2fies) s (77 (3 mtsmeiun) " <o

Jo
So,

1/2

L (
L (

i
N
[
5|8

N
SN’

2

-~

~

1f(2,9) = La(f; 2, 9)| < (1 + % + 5—"{},-,) w(f;61,62).

For §; =8, = = and sup zv2=av2, sup yV2 = av/2, we obtain
VAT e ve(0,a)

es9) = EnlFi2, 901 < (14 20v8) w (£ 7202

4. Asymptotic estimate of the remainder
We next turn to the task of establishing an asymptotic of the remainder’
f(z)y) - Ln(fszvy) = Rn(f,l,y).

which corresponds to a result of Voronovskaya.

Theorem 4.1. If f is a function defined and bounded on (0, +00) x (0, +00) and at an
interior point (z,y) of (0,+00) x (0,400) the second differential d?f(x,y) exists, then

we have the asymptotic formula:
Jim n(f(z,9) = La(fi2,9)] = -2 fo(2,9) — v* fio (2, y).

Proof. Let (u,v) € (0,+oo} x (0,400). Under the hypothesis of the theorem, exists a

function g(u,v) defined on (_O,-!-oo) x (0, +00), such that when (u,v) = (z,y), we have
9(u,v) = 0 and

f() =ten+(E-2) e+ (-9) ren+5 (5 -2) e+
H0) (-9 e (- (-2 (9o (22).

Multiplying by p,(u,v;z,y) and then integrating with respect to u and v, with
u> 0, v> 0, we have

1222 12y?
=Ralfi2,9) = 5= fial@,9) + 5 2 5, (2,3) + an(z,v),



where

an(z,y) = //[—-—x (-——y)] (- -)p,,(uvzy)dudv

Since ¢ %,%) — 0as & = rand & — y, it follows that for every posit
€ > 0 there exist the positive numbers §; and §2, such that |g (%, %)] < €, whene
| - z| < 4, and |- y| < 8. In view of the fact that

lon(z,y)| = /:0 /ooo [(-Z— —z)2+ (% - )2] g (-:— ;) Pn(u,v; z, y)dudy,

we may proceed further in the same way as in the case of one variable [2] and reach
conclusion that

an(z,y) = €a(2,9)/n,
where g‘,,(z,y) — 0, when n — oo.
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STUDIA UNIV. “BABES-BOLYAI", MATHEMATICA, Volume XLII, Number 2, June 1997

ON THE APPROXIMATION BY KANTOROVICH VARIANT OF A
FAVARD-SZASZ TYPE OPERATOR

ALEXANDRA CIUPA

Abstract. In this paper one studies the order of approximatioﬁ of a function
by means of Kantorovich variant of Jakimovski-Leviatan operators. By mak-
ing use of k functional and Steklov’s function one obtains estimates expressed

with the second order modulus of continuity.

1. Introduction

In 1969, A. Jakimovski and D. Leviatan [4] have introduced a generalized Favard-
Szasz operator, obtained by means of Appell polynomials. Let us remind it. One con-

(o
siders g(z) = ) a,:" an analytic function in the disk |z2] < R, R > 1 and suppose
n=0

g(1) # 0. One defines the Appell polynomials pi(z), & > 0, by
00
g(u)e** = Zpk(:c)u". (1)
k=0
One denotes by £ the class of real functions of exponential order,

€={f:[0,00) = R for which there are A, B € R such that |f(z)| < BeA*, ¥V z > 0}.

A. Jakimovski and D. Leviatan have considered the operator P, : £ = C[0, c0),

~-nz © k
(Ba1)e) = Sy et (5). n>o @

The authors have studied the approximation properties of this operator. They also have

cons_idergd the Kantorovich variant of this operator. One considers

& = {f :[0,00) & R, f € C[0,0) with the property that 3 A € R such that

¢
Fit) = /0 flu)du = O(eAt), (¢ — oo)}.
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The Kantorovich variant of the operator P, is Kn : & — C[0, 00) defined by
(Knf)(z) —n Zpk(nz) / f(t)dt. (3

This operator is positive if and only if 5‘%’1‘5 >0, n=0.1,... [6].
In our paper [2) we have studied some properties of the operator K. The imag

of the test functions are given by

Lemma 1.1. For all z > 0, we have

S

(Kneo)(z) =1

(Kner)(z) =z + +

\_/

S|

_)
9(1)
g'(

1
2
=751+ 40 5 (20 )

where e;(z) = 2*, i € {0,1,2}.

2.The aim of this paper is to study the order of approximation of the function f |

means of the operator K,. In order to establish the main results we need the following

Definition 1. For t > 0, the second order modulus of continuity of f € Cg[0, 00) is
wa(f;t) = sup f (o +2h) — 2f(o + h) + f(o)llce,

where Cg[0, 00) is the class of real valued functions defined on [0, co) which are bound

and uniformly continuous with the norm ||fllc; = SUP_¢(0,00) | £(2)]-
Definition 2. [1) The K-functional of function f € Cp is defined by
K(fit)= inf, {1/ - sllea +tlsllcy }
where C§ = {f € Cs| f', f" € Cg} with the norm
WAllcz = lIflies +1Ifllcs + I llcs-
It is known that
K(£0) < A{ws (£ V) + min(L, )l fllc, } (

for all ¢ € [0, c0). The constant A is independent of ¢ and f.






2h 3 ) a
= ZIfll + Fwalfih) (3+3)-

Theorem 2.3. For every function f € C3[0,00), we have
(Kae)~ S < & (24 LD D ey, 2 e f0,00)
Proof. Applying the Taylor expansion for f € C3[0, 00), we can write:
(Knf)(&) = F(z) = £/(2)(Knlt = 2))(2) + 55" @)(Kn(t = 2)7)(2)

where £ € (t, z). By making use of Lemma 2.1 we obtain:

Uae) - 1@ < 5 (54 28 e

w32+ 5 (KD Dirie, <

L1, a0 W) +20'(1) , 1Y oo
55( oy ) W llea + ( + )uf llca <
1)+2g 1) ,
( —m ) (17lcs +1"llcs) <
<3 (24 CELT0 L DY il

Theorem 2.4. For f € Cg[0,0), we have

(Enf)(z) - F(2)] < 24 {w2(f; ) + An(2)|flics }

_ 1 ¢"(1)+2¢°(1) 1
”‘\/27(”“"7(1)—*5)’

A being a constant independent of f and h, and

/\n(z)=min(l;§%(\z+g—”(1%('—i)29—,(ll+%)).

Proof. We will use the K-functional, the relation (4) and the previous theorem.

f € C[0,00) and z € CE[0, 00), we have

where

[(&Knf)(2) = f(@) < [(Kaf)(z) = (Knz)()| + [(Knz)(2) — 2(2)] + |2(2) — f(2)| <

<2l iy + 5 (=4 LD 4 Yy,
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=2z~ fley + g (=4 LU 3) lellcy |-

Because the left side of this inequality does not depends of the function z € C}, it results
1 g"(1)+24'(1) l))
¢ - [ g7 v 7 - <
|(Knf)(z) ~ f(2)] < 2K (f, o (z+ .o t3))<
1 g"(1) + 2¢'(1) 1)
52/4{“2 (f,\/% ($+ 90 +3 +

+ min (1,2—17;(x+ﬂ-(%—?g-—(1—) )) ||f”cp}

Thus we have obtained the desired result. a

that
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REMARKS ON THE CONVERGENCE OF SOME ITERATIVE
METHODS OF THE TRAUB TYIE

ADRIAN DIACONU

Abstract. One studies the convergence of an iterative method for finding a

solution of a nolinear operational equation in a normed space.

Let us consider X and Y two normed linear spaces and f : X — Y a nonlinear

mapping. In relation with the above elements the equality:

flz) =6y (1)

is called an operational nonlinear equz-ttion. In this equality fy represents the null element
of the space Y. Solving the operational equation (1) is resumed to the determination of
an element F € X so that for z = T the equality (1) is true; the element Z is thus called
solution of the equation (1).

In order to determine such a solution T we will consider the so-called iterative
methods. An iterative method consists in building a sequence (zp)nen C X, starting
from an initial element xy € X. This is the well-known iterative method of the type

Newton-Kantorovich where the sequence (z,)nen verifies the relation:
f'(en)(@nt1 = zn) + f(2n) = by, (2)

for any n € N. llere f'(x) € (X,Y)" represents the Fréchet derivative of the mapping

f in point x, derivative the existence of which is considered on a set D C X. We noted

(X,Y)* the set of linear and continuous mappings defined on X with values in Y.
Supposing that for any n € N the mapping [f'(zs)]~! from (Y, X)* exists,

relation (2) is equivalent with:
Tngr = zn — [f'(20)) 71 f(20) A3)

which is the well-known form of the Newton-Kantorovich method.
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We can consider a modification of method (2) in order to accelerate the conv
gence by using an operator Q@ : X — X first applied upon the approximation z,. Int

way the following relation of recurrence for the sequence (z,)nen is obtained:

f(zn)(@na1 — Qzn)) + f(Q(zn)) = by,

with n € N, or, considering that the mapping [f/(z,)]™! exists for any n € N,!

relation (4) will be written in the following way:

Zns1 = Q(zn) = [f'(2a)] 7' £(Q(2n))-

Regardless of the form of the relation of recurrence, any of the above mentiol
methods are resumed to the determination of the mapping [f'(z,)]~! for every n €
that is the solving an operational linear equation for every n € N. In the same way
in papers (1], (2], [3] we will eliminate this difficulty by using a supplementary seque
(An)nen C (Y, X)* in order to approximate simultaneously the solution Z of the equat
(1) and the mapping [f'(z)]}.

In this way, using as initial elements zo € X and the mapping A € (Y,.
we will build the sequences (zn)nen C X and (An)nen C (Y, X)* using the relatio

recurrence:

Zat1 = Q(ea) = An 3 (Iy = f'(za)An)* (Qen))

q
An+l = A, kz: (IY - f,(zn+lAn)k- :
=0

In the relation (6), r and ¢ € N are given, and !y is the identical mapping
the space Y.

We should mention that if we have a given mapping 4 € (X, Y)* and there ex
Ao € (X,Y)” so that

Iy — AAo|l < 1,

then A7! € (Y, X)* exists; this mapping will be called the inversion to the right of
mapping A and it verifies the equality A - A;’ = Iy. The mapping A;l will be obtai

as a limit of the sequence (An)nen formed through the relation of recurrence:

P
Ant1=An) (Iy —AA)*, peN.
k=0
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If the inequality
A7 = Aall S J1AZY - IlIy — A4o||®*V", neN, (8)

takes place, we observe that the order of approximation is p+ 1. For this reason we can

define the mapping:
Sp41: (X, Y) x (Y, X)" = (Y, X)*

which for A € (X,Y)* and Ao € (Y, X)" is given through

P
Sp+1(4, Ao) = AY_(Iy — AAo)*.
k=0

According to the relation (8), we will have:
147" = Spe1 (A, Al S IAT" - IlTy = AAG|I®P*D", neN. (9

Because of the above reasons the mapping Sp41(A, Ao) is called p+1 approximant
of the mapping A;].

We mention the following result: If a mapping f admits a Fréchet derivative on
the open and convex set D C X, derivative that verifies Lipschitz’s condition for this set,

that is the existence of L > 0 so that for any z,y € D we have the inequality:

IS (=) = £/ (o)l < Lliz ~ yll, (10)

then for any z,y € D we also have the relation:
L
If(z) = fy) - FW)= -l <55 [2).03): (11)

In what the existence of the solution Z of the equation (1) and the convergence

of the s« quences (£,)nen and (An)nen generated by method (6) are concerned we have

the following theorem:

Theorem 1. If X isa Banach space, the open and convez set D C X exists so that:
a) the mapping f : X = Y admits the Fréchet derivative in every point ¢ € D
and the mapping f' : D — (X,Y)* verifies Lipschitz’s condition, that is L > 0 exists so
that for every x,y € D the inequality (10) is true,
b)pe N, p>1, L,M > 0 exists so that for every z € D we have:

WA QI < Kllf(=)IIP



and
Q(=z) — zll < Milf (=),
c) the initial element zo € D and the initial mapping Ag € (Y, X)* verify th
conditions:

d= max{bl—l"f(-"-'o)“, 'Cl.;”IY - f’(zo)Aoll} <6

where 0 €]0, 1[ is the solution of the equation:

2 -z - (T+1)z+1=0

where _
T: =1L
TER
with
_ﬁ— 2
(VB2 + da + b) || (zo)) I’
1_Cl‘+l
a=LKC} 2 b=LMC,, s=min(2p,r+p+1,p+1,¢+1);

1-C;
and C, and C, are the solution in ]0, 1] of the system:

2 2 _cr+y2
Kool 1 kop [o3 + (14 )5S0 < @
- r q+1
[1+2C + Kooy lxcc:l] <C
VB ¥da+b< m:rn;
d) the inclusion S(z0,6) = {z € X| ||z — 20]| <8} C D where:

11+CZII'—C£+1 d
LM 1-C; | 1-4d*-1?

§> [2Mcl + KCP™

takes place;
then:
Jj) the sequences (zn)nen and (An)nen C (Y, X)* are convergent;
1) the equation (1) admits the solution T € S(z¢,d) where T = lim z,,
#ij) there exists the mapping A = [f’(i)];1 € (Y, X)*, whic;;_’:presents
nverse to the right of the mapping f'(%),

jv) the following inequalities are true:

ch—l(l - C£+l)] do"

) n - n < MC
zn+1 — zall < [ 1+ IM(1=C)

KCY™'(1 - C3tY d"
LM(1-C;) |1=arG-1’

“E— zn” S [MCl +






Let us now suppose that these properties are true for n < k and demons
that they are true for n =k + 1. i
i) Let j € {0,1,...,k}. We have:

lzjer — 250l < UQ(zi) — zill + WSes1 (F(=5), A - HAQ (M-
As from z; € S(xo,d) we have:

1Q(z5) - 231l < MIIf(=z;)ll < MCrd*’;

USr1 (£ (25), AN < N4 D Iy = £/(=5) A5 <

1=0
r e r . 1-— C;+l
< B;(Czd ) < Bgcz = B—i—_—CT,
where:
d

B= “[f’(zo)]_l”(l + 02)exP (1 - d)(l - da—l)’

we deduce that:

! .
lles 41 — 251l < (Mcl + KCrde=1» BIT%—) o
— L2

In this way:

k
lonss = 2oll € 3 llssan - 25l < (2MC + KBCY

j=0

1-c3t! d
1-C; ) T <%

from where it follows that 2441 € S(z0,9).

ii) Evidently we have the inequality:
W (24Dl < f (k1) = F(Q(zx)) = F(Q(zr)Hzk41 — Qi) +
HIF(Q(zx)) + £(Q(zk))(zr4+1 — QLz)]-

From the remark mentioned before, using Lipschitz’s condition for the n
1 X = (X,Y)" for S(z0,8) C D C X and the fact that zx41, Q(zx) € S(z0,6)

have:

If(zea) - £(@(@) - £/ (@) (k1 = QI € Zllzes = Qen)l”.

Because of the fact that:

r

s = Q@e)ll < IAI - NAQ(e )N Y Iy = f(2i) Aell <

j=0



REMARKS ON THE CONVERGENCE OF SOME ITERATIVE METHODS OF THE TRAUB TYPE

< B(1+ K| f (=)l Y My = £ (ex) Al

j=0

from (14) we will deduce:

2
1f (@11 — £(@(z0)) = F( @) zass — Qe € ZB(1 + Ca) K7 (Z éi) :
j=0
(15)
Nevertheless:
1£(Q(zx)) + f(Q(ze)) (k41 — Q=) < (16)

<y = £ (@) (S (F (@) A - A Q)N <
Ny = £ (ze)Se (f' (z&), AR+ WS (@) = f @)l - WS (f (za), A - (@)
As 2, Q(zx) € S(z0,8), we have the following:
1 (Q(=zx)) — F (@)l < LIQ(=zx) — 2kl < LM\ f(zi)ll;

then:
WS- (f' (), A < NARND_ Ny = f/{xi) AclP < B(1+C2) Y 6]

j=0 j=o0
and

Iy = f' (k) Se (F' (2), AL < Wy = f/(ze) ARl < 654

In this way, from (16) we will deduce:

1£(Q(zk)) + f'(zx) (k41 = Qzk)) < K [52“ + LMB(1 + Ca)px Zr:JiJ A (1)

=0

then from (13), (15) and (17) we can deduce:

j=0

: 2
1 . _ . LA
Prsr < 532(1 +Ca)* K gl (ZO Ji) + K} [JZH + LM B(1 + Ca)px Z‘si] - (18)
]:

We also note that:
Wy = f'(zk41)Aksill = Wy = £ (@e41)Sq(f (zh41), A < N — f(@rer) A"t <

Sy = f@) Al + HAl - 1 (@x41) = £ (=) <

<y = f/(zx) Akl + LB(1 + Ca)llzk 41 — zi|l)?.
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From the hvpothesis of the induction we have px < Cld’h and & < ng’k and
in this way from (20) we will deduce:

( r

Z
5 , : yigh

3=0
r .,
J +KCPae [C;“d('“)’* + 480t ) C%d”“] , (21)
j=0

q+1
k41 < [Czd'* + _Hc? Cid” + KLIJ;??E crar" - ngj'k]

\ j=0

As s = min(2p,p+ r+ 1,p+ 1,¢ + 1) we deduce that d?? < d*, dP+"+! < d*,
dPt! < d°, d9t! < d?, and keeping in mind that C; and C; are the solution of the system

from the enunciation of the theorem, from (21) we deduce that:
6k+1 _<_ Clds_k+l and 6k+1 S Czd’k“,

which proves that the properties ii) are true forn = k4 1.

iii) We evidently have:

NQ(zk+1) — Zoll < N1Q(2x41) = Zrsall + |2k 41 — Zoll < M| F(zr41)]| + ll2r41 — 20|l <

. _ il
< MCyd*** +[MC’1+B(1+Cz)KCf1 G ] d

1-C, 1—d-1°

Asd®t' <d< ﬁrf we deduce that:

<$é

1Q(exsn) = ol < (2m63 + B + Coyxep oG ) 4
Y1-G ) 1-d1

80 Q(Zr+1) € S(z0,9).
iv) The hypothesis of the induction certifies the existence of the mapping f'(zx)]™!.

!“rom Tk, Zk4+1 € S(z0,d) we have:

W @S () = £ e SN @M NP (o) = Flanadl € (22)

1-C,
1-C;

< I @) - Hewes — 2ull < BC (Mcl +KCIB ) & = (aB? + bB)d"" .

S da— . "
From0 < B< R= ¥t 2:" 2 as R is the positive root of the equation az? +

bz —1=0 and a > 0 we deduce that aB2 4+ bB < 1. As also d < 1 we have therefore:

NIF ()}~ (F (=) = F(rpr))l] < 1.



ADRIAN DIACONU
According to the remark that precedes the enunciation of the theorem we dedu
that the mapping:
Hi = Ix = [f ()] 71 (f/(2x) = £ (2x41)) € (X, X)*
is inversable. So H ! € (X, X)* exists and:

1 1
(B +6B)d" ~1-d*

AN <

From the expression of Hy we deduce that:

Hy = [f'(ze)) 7 f(2r41) or  f(2k41) = f'(zi) Hi.

In this way from the inversion of the mappings f'(zx) and Hx we deduce:
inversability of the mapping f/(zx)Hx, so the inversability of the mapping f'(z)4:1)
well and:

[f' (247" = Helf ()] ™!
and

I G ) < 0 ey < AR (

The relations similar to (23) are true if instead of the number k we use

natural number smaller or equal to k, so step by step we have:

NF (o)) i (
(1-d)(1-d*)(1 —d*?)...(1-d**)

ILf (era)) Ml <

Using the inequality of means, the fact that d < 1, so d*' <dforanyi<ka

Ed. l_da 1 _ Jo-1"

1=0

we deduce:

k 1 k+1 { k d'i k+1

H *'—[k+lz d"] =[l+k+1;1_dﬂ] N

k41
dl

B, B [P N P
= k+11-d k+10-d(i-a0] <"Pa-gu-a

So from (24) we deduce:

! - ! - d
07 )11 < WS Geol) M exp ey gy (




REMARKS ON THE CONVERGENCE OF SOME ITERATIVE METHODS OF THE TRAUB TYPE

v) In the same way as for Ag € (Y, X)* we have:

Akl = NF @eae)) ™" + [F @ea)]HF (mra1) Argr — [F (zr42)] 7 <

<N @xan)] A+ Uy = F(@an) Arsll) < N r)] 7M1+ Cod?) <

<7 (el I+ Ca) exp =t

As shown above all the properties i)-v) are true for n = & + 1, so, according to

the principle of mathematical induction these are true for any n € N.

The space X is a Banach space; from here we deduce that (Y, X)* is also a

Banach space, so in these spaces we will be able to demonstrate the convergence of the

sequences using their characteristic of being Cauchy sequences.

For the sequence (zx)nen from X we have:

ntm-—1 :ondm-—1 Cr+1
3
levim =2l S 3 llsss—mill <5 (M + wepl =% ) i <

MC, +

KCP™'(1-city "
LM(1-C;) | 1=—drC-10

and for the sequence (A,.),.GN from (Y, X)* we have:

lAj41 = Al < |45 ||Z||IY — f'(zir) Al <

i=1

, q
< B +C2) Y lllly = F(z5)Aill+ 1 (z5) = £/ (zia)ll - IASIT <
i=1

M(1-C)

q p—1 4l J .
<B(1+Cy)Y. [Cz-f- (LMCl +KG (-G )) B(1 +C,)] ' <

=1

s MXQ; (aa”)’ < L2 G ad” ~ (aa)™

- LMClj LMC[ l—ad‘j ’
then:
n+m-—1 n+m-—1 .
14+ C, i\ ¢
An _An < A —A < s’
Ansm — Al < ; 14541 = 451l < T3722 Z Z (ad”’)’ <

1+C ¢ Z (ad*"(e= D))’

<
= LMC, 4 —dsn(e=1)i"
As:
" oJ (ad’"("'))i
nl-l-tnt;lo 1 — d2~(s~1) = n]LI&Z 1 — dsn(e=1)s =0
§=

(26)

(27)



we deduce that (z,)nen is a fundamental sequence in X, and (An)nen is a fundamen
sequence in (Y, X)* and from their characteristic of being Banach spaces results
convergence of these sequences, 50 T € X; T = nli'ngo tnoand A€ (Y, X)), A= nli'n;o ‘

exists.

If we make m — oo in the inequalities (26) and (27) we obtain the inequalit
of evaluation from the conclusions of the theorem.

From the inequality ||f(zn)|]] < C1d*", true for any n € N, using d < 1,
deduce lim Cyd*" = 0so lim ||f(za)|| = 0 and using the continuity of f and the nc

n—00 n—00 , ]
we deduce ||f(Z)|| = 0 so f(Z) = fy; in this way the existence of the solution of
equation f(z) = @y is proved.

From the inequality which limits ||Z — z,||, for n = 0 we deduce:

KCP™'(1 - Cith) d__
LM(1-C,;) |[1-d-1=

|1Z — =)l < |MCy +

so T € S(zo,9). _

From the inequality ||Iy — f'(zn)An]] < Ca2d®” and d < 1, we deduce t
lim ||Iy — f'(z,)Anll = O or ||Iy — f/(%)A]| = 0 from where we deduce that [f'(Z)];" -
n-$00
exists.

The theorem is thus demonstrated.

Remark. Out of the numbers r,p,q, the number p has a fixed value and thus we
obtain the maximum value of the number s, which represents the order of convergenc

the method we have studied; choosing » = 0, ¢ = p, this maximum value will be s = p
This affirmation is immediate from the relation:
s=min(2p,r+p+1,p+1,9+1).

In this case the relation of recurrence for the sequences (zn)nen and (Ay),
will be:

Znt1 = Q(zn) — An f(Q(2n))
p
An+l = A, E)(IY - fl(3n+l)An); neN.
i=

From theorem 1, we deduce for the iterative method (28) the following coroll

Corollary 2. If X is a Banach space; the open and conver set D C X extsts so tha

[ 4~)



REMARKS ON THE CONVERGENCE OF SOME ITERATIVE METHODS OF THE TRAUB TYPE

a) the mapping f : X = Y admits a Frechet derivative in every point z € D and
the mapping f' : D = (X,Y)* verifies Lipschitz's condition, that is L > 0 exists so that’

for every z,y € D the inequality (10) is true,
b)pEN, p>1, L>0, M >0 exists, so that for any z € D we have:

IF (@GN < Kllf(2)IP

and
lR(=) - =l < M|{f(=)II",
c) the initial element 2o € D and the initial mapping Ao € (Y, X)* verify the
condition:
1 1 :
a = max{ el gl = £ ool | <0,
C, C,
where 0 €0, 1{ is the root of the equation:
A -2P-(T+D)z+1=0, T= .._i,
R-1
= _ 2
(VB2 +4a +b) |{[f*(20)) )

and (Cy, C3) are the solution from 10, 1{ of the system:

Kbl + KO (1 +2C,) <G
KcPo(14c,) 19!
[1 +2C + ——"%Mi—’-l]

a=LKC, b=LMC,

Cs

Cr/L(LM? + 4KCP™%) + LMC, < TP
d) the inclusion S(z0,6) = {z € X| ||z - zo}| < 6} C D where:
KCP™'(1+ Cz)] d

§> 12
2 [ MG+ ——37 - &
then the conclusions j)-jjj) of theorem 1 and the Jollowing evaluations are true:

KCP! .
[£n41 — zall < (MC; + -_LCIT) dP+1)"

= Kce! de+1)
-zl < 1
IIZ - zn]] < (M01 + M ) Tt

1+ C; ad®+D)”™ _ (ad(r+)™)PH!

iAnt1 = Anll <
“ nl n" = LMC, 1 — ad(rp+1)" '
5 140 & (adr@+)")’
A- A, <
I all < LMC, Z 1— dinlp+D)~’

i=1



where:

14 KcP!
= LM —— ]
a=0C+ IMC, ( Ci + M

In this case the speed of convergence of the method is p+ 1.
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Using the Ciaplighin variable [1]

y-1v:_ V2
2 V02_ Vr%ax

where 7 is the adiabatic constant, then we obtain:
p=p(1—-7)°, p=po(1-7)"*, C*=C3(1-7).

We shall consider the system of cylindrical coordinates (Ox,Or), z = z +
where Oz is the radial axis, which in the case of plane motions is the Oy axis. Then

motion equation are given by the following equations:

Bu_Dv_O
o T bz T

{ 2 (prku) + £(pr*v) = 0
where the first equation is the continuity equation and the secondly equation is
irotationality equation (rot V = 0). Here V = (u,v).
For k = 1 the motion is axially symmetric and for k = 0 the motion is plane

By (5) we introduce the velocity potential »(z, r) and we obtain the next syst

dp 0¥ Oy oY kP

9z Poar T o T Par PET LU

In this case the complex potential is given by f(z) = ¢(z,r) + i(z,r) and
complex velocity by w = u + iv, respectively.

Using the hodographic plane (V, ), where u = V cos8, v = Vsin8, with V =

and 0 = arg(u + iv), or the plane (7,6), where V2 = 2ar, then by (3) and (6), we ki

the following system:

or _2r 8¢
8y p Oy
ar 2r(1-7 k. 1-7 .8ind® [2r
B r CT=(2841)r 2 o«

- _ 80
= TI=(28¥)r &
Here f=(a—1)"'and p= r"-,ﬁ-.
This is the Ciaplighin fundamental system for the axially-symmetric case on |
domain Dy (7, 8).

When the motion has the free surface (p°,p° 7o), by considering p! = ¢,

obtain the following relation:

p~l= 1 l1-7 b
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AN APPLICATION OF (P, Q)-ANALYTIC FUNCTIONS

The fundamental system for the plane case corresponding to k = 0 is given by

the following equations [1]:

or _,,_6_1# dp _ 1-(28+1)r 08¢ (8)

3= -07%0 T T mao e B
If the fluid is incompressible (C' — oo, # — 0), then from (7), we obtain:
or 2r 89 Or L0 k(21 .
—=— =, wT—=- a7 — <\/ —sinf. 9
oy~ rk Op’ By 2rr g rV a sin ©)

For the plane problems it is well known the hodographic method due to Ciaplighin-
lacob-Falkovici (C-J-F) [1].

Because the system (7) is very complicated it is applied the theory of generalized
functions or (P, Q)-analytic functions.

For this aim we consider the canonic domain D; = ¢ + in and we transform
conformally the domains D;, Dy, D,, :on D..

This canonic domain may be an semicircle or halfplane. We prefer the halfplane
¢ =¢&+1n, n > 0 and we introduce the Jukowski function w given by the following
relation:

{g=1nl(,n+io=t+ia, W= Vet )
W = Vpel©)

Definition 1. [6] The complex function f(z) = U(z,y) +iV(z,y), z = = + iy, is called
(P, Q)-analytic iz a domain D, if it satisfies the Beltramy system:

-QU:+PUy+ V=0
where P(z,y), Q(z,y), P > 0 and U,V satisfy the regularity conditions.
Here
ou
Uz -_— a—z etC.
When Q =0, f is called P-analytic function in D, if [7]:
PU, =V,, PU,=-V,. (12)

The system (6) has the form (12). When the system (12) has the elliptical form,

then it is equivalent with the following equation:

Wr= AW, + BWz+C (13)



where

. , ow ow
W(z)=PV+i(V-QU), W,= 52 W = 55

In this case, the one-to-one maps between D, and Dy, which are defined byt
(P, Q)-analytic functions, are called the quasiconform transformations [6).

Let the quasiconformal system be defined by
—y + @119z + G120y + aop +bop = h
¥z + 6216z + a2y + cop + dop = ¢

where a;;, 8o, bo, co, do, h, i are measurable and bounded furctions by (z,y, 9, 9).
Then the function f = ¢ + i3, which is a solution of this system and al
an homeomorphism between (z,y) and (¢, %), is a quasiconformal transformation

g-quasiconformal if it verifies the following differential condition {7):

1
P+l + I+ YL < (q+;) (P=¥y — Py¥s) (

fetmfe+pafr=F, (

where the coeflicients and F are measurable and analytic functions with respect

z,%, f, f. Then the g-quasiconformality condition (15) becomes:
g-—1
7| < ——|f:|-
11 < 510
Let the function f(z) = ¢ + i3, where z = = + ir, be defined on a domain [

Definition 2. [6] The P-derivation operator of f has the following form

dpf(z) _ Ppr+ 1ty .Yz — Py
dz ) +: 2 . (

The (P, Q)-derivation operator of f has the following form:

dip@)f(2) _ P —or + 9, 4= Qv — Py,
dz - 2 2 ’ (

We are presenting four immediate results obtained by using the analytic ge
alized functions.

Using (6) and (12), we observe that the complex potential f is a P-anal

function.



Theorem 1. [§] The velocity W(z) is an analytic generalized function of z and W ver-
ifies the conditions (11) or (13), which are written on the following forms:

W _ 1 dW 1 dW e
dz = 2P d:z 2P dz’ Tt

(19)

The solution of these equations realizes the quasi-conformal transformation be-

tween D, and D,,.

Theorem 2. [{] The function w(f) defined by (10) is an analytic generalized on Dy and
verifies the following equation which is the type (11) or (13):

wy — qwy — Qo = F (20)
where
P4 D-1 - PD
n=—a =5 N=(P+1}(P-D+1)
pok b o
=re YTV -V

Theorem 3. [{] If there erists a conformally transformation between Dy and D¢, then
the function which map the domain D, on D¢ (z = 2(()) is a (P, Q’)-analytic of ¢ and

satisfies the equation:

we = giwg — ¢ = F*, (21)
where
. _ (pe +ipg)(P2+D-1)
ql— « ]
(ve — ipn)
._DP .
%= x5 N =(P+1)(P+D),
. 1-M
D= ——m
268+1
= kr .¢2+99f,
VIN* o —ipy,
D=1-D",

and M is Mach’s number.

Remark. For solving the equations (19), (20) and (21) are applied the numerical
or functional methods. We will approximate the equation (21) by the plane case we=0

and other formulas are exactly.






AN APPLICATION OF (P, Q)-ANALYTIC FUNCTIONS
We transform conformally the haif-plane Dy from the motion domain
{0<¥<Q, —00 < p < +oo}

in the half-plane D¢, where ¢ = £ + i1, £ € (--00,00), 7.2 0.
Hence, it will be determined the analytical function f = f(¢) on D¢, with the

following correspondence:

T (dq)
ALO \1’:0 ?—o;t ‘f:IQ :b \f;Q 647
~wo -9 —ri t-0 IO ‘i O=TU 4o §

f;D(—-)C,

0, on (~o0,~1), (Ao, Co)
Yh=o=4{ Q@ on(~L,1), (C, B) (22)
| @ on(1,+0), (B, A)
The solution of this Dirichlet’s problem for the half-plane will be directly deter-
mined by following the Cissotti’s formula [1]:

70 = -Z1og(c + 1) + 0. (23)
We remark that for n — 0 we have

6¢__Q 1 op
%= "7 £x1 9n "

We map the motion domain from D,, one-to-one onto the domain D; and from

(24)

Theorem 4 we obtain that w = w({) is a generalized analytic function in D¢.
In-this way with
w:lnYVE+i0=t+i0
we will know the values of w = w(¢) on the boundary, as follows:

AgCo: =Imw=0
BC : t=Rew=0 (25)
AB : Imw=60=n



By using the function

S =~
we have
Re S =0 on (—o0, 1) (Ag,Co), n=0
ReS:Oon(—l 1) (B,C), n=0 (¢
This is a Dirichlet’s problem.

Hence, by following the Cissotti’s formula we deduce

w(Q) = V= / q_%_o

By solving this integral equation we deduce that

-1
w(¢) = log (C_+_Zz\/_—?-1) . (

From the following transformation formula
W-Vel, W=Voev®

we obtain:

w(¢) = ,—C:, <

Hence, we have the correspondence between D, and D;.

So, using the formulas (21) and (24) we obtain the mapping z = z({) be defi

in the next:

or ! (
€=V pr f R

{%‘% 28 - ¢
In this way from (27) and (28) the conditions of Theorem 1 are satisfied, so
get the correspondences between D,, and D,, and also, between Dy and D,, respectiv
The distribution for speeds, pressures and densities on the boundary of
motion domain d¢, n = 0, are deduce using the formulas (4) and (27).

On ACo: —0<€<—1,7=0, u=Vof1(€), v=0

p=po 1=/, p=po(1-nf?)’?,

where
1

fl(f)z —\/fz—T?E



AN APPLICATION OF (P.Q)-ANALYTIC FUNCTIONS

On BC: -1<€£<1,9=0, u=Vycosfz, v=Vpsin f,

=p° =po(1 - m)**, p=p"=po(l - ),

where
f2(€) = m — arccos§.
On AB: 1<£< 400, =0, u=Vof3(£),
p=po(l- "’o.f"’)p+ , p=po(1—70f3 )
where

1
f3(€) = YW

Also, it is easy to see that
V(B)=-Vo=v, V(A)= lim(Vafs(£)) =0
WB)=0, wB)=i(=1)=-
V(o) = lim Vhi(€)=0

V(Co) = V(£ =-1) = Vo = v(C).

So, these formulas are satisfied and they are used to obtain the velocity on some
important points of our configuration.

Using the above distribution for speed and density we can obtain the equations

of the boundaries by integrating the equations (28).
On BC (vhich is the free surface) we obtain:

or  Q sinfy 1 Po

B~ Vork(€) £+1 0

2
where p® = po(l = 1p)? and 7, = V‘;L, hence by integrating, we have the following

relations:
rkt1

k+1

4
=28 [ |

1+£]

.
_[n Q1D g
r(f)—{r3+l WLl o / f(f)[1+£] }

So, we deduce that:

az(f)_ cos fy po Q
0¢ Vo 1+€ 6)'

on
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Hence, we obtain the following relation:

__Q po [Ceosfl) L]
0= p°/1 *(£) [1+£ d-
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INTEGRAL OPERATOR OF SINGH AND HARDY CLASSES
GHEORGHE MICLAUS

Abstract. In this paper one obtains the jiardy classes for integral operator
(4) and in particular one obtains the Hardy classes for Libera and Bernardi
operators determined in [2] and Hardy classes for the class of bounded Mocanu

variation functions determined in [5].

1. Introduction

Let A denote the set of functions f(z) = z+a32z2+... which are analytic in the
unit disk U = {z : |z] < 1}. In [2] sharp results concerning the boundary behaviour of
L(f) when f belongs to the Hardy space H?, 0 < p < 0o, were obtained, where L(f) is
the integral operator (Bernardi) defined by

L{f)(z) = %/f(t)t"“dt, v €C, Rey>0. (1)
0

P.T. Mocanu, investigating in [4] a more general integral operator, defines the second

order infegral operator A by

z t
1
A(f)(z) = z_‘Y/ t""ﬂ"l/f(s)sﬂ'lds dt. (2)
0 0
In fact, A is defined by 4 = C o B where
)tP-1 1 -1
B(f)(z) = ——/ft dt and C(f)(2) =—7/ 1)7-1ds. 3)
- . 0
In 1973 R. Singh [5] showed that if
1
B+v [ 8
0@ = |22 [poe-tal ceu 4)
0
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and if B,y = 1,2,3... then I(S*) C S*, where S* denote subsets of starlike functio
In this paper we obtain the Hardy classes for integral operator (4) and in particular
obtain the Hardy classes for Libera and Bernardi operators determined in {2] and Har
classes for the class of bounded Mocanu variation functions determined in [5]. We def
the n-order integral operator for (4) and we determine the Hardy classes.

2. Preliminaries

For f analytic and z = re*® | z € U we denote
1

L ireiyP do ) P
M(r, f) = (ﬂ'{'((re )| d0) , for 0<p<oo

sup |f(re“)|, for p=oo.
0<0<2x

A function is said to be of Hardy class HP(0 < p< o0) if M(r,f) <ocoasr 1", 1is

class of bounded analytic functions in the unit disk. We shall need the following lemn
Lemma 1. If ff € H?, 0<p< 1, then f€ HT . If f' € H?, p> 1, then f € H®
Lemma 2. If f < H? and g € H? thenf-gGH#?.

Lemma 3. If f € H? and F(z) = [; f(t)dt then F € HT*5, for0<p<1and F ¢,
Jorp> 1.

These lemmas are well known [1].

3. Results for the integral operator 1

Theorem 1. If I is an integral operator defined by (4) then I = J# oKoGolJg vl
s == [12]",

G(f)(z)= / FO)e =24
0

K(f) = D12 5(2)

Proof. A straightforward computation shows that has this decomposition.

Theorem 2. If f € HP then J,(f) € H%.



Proof.

1 2nr f(z) -4 1 /21( ” f"(r('w) 4
- — LN = 4 . . 0 =
Mp(rv f) 27 Jo z [ z d0 2" re racifa d
1 1 2% ap
= op T | |f(re®)|*"do
and we have lir{) M(r,Jo) < 0o if Jo(f) € HE. O
r—1-

Theorem 3. If f € A then
(i) f € H?, 0 < p< 1 implies G(f) € H™S,
(ii) f € HP, 1 < p < oo implies G(f) € H™.

Proof. If f is analytic in U then G(f) exists and is an analytic function in U and
G'(f)(z) = f(2)z°*7=2 and we obtain G'(f) € H?. From Lemma 1 we obtain G(f) €
H™5 for0<p<1and G(f) € H® for p > 1. O

Theorem 4. If f € HP then K(f) € HP.
Proof. Immediate. 0

Theorem 5. If f € A, f € HP, B € R} then
(i) if B> p then I(f)er_’;,.
(ii) ifﬂ<pthen I(f) € H™.

Proof. (i) If f € A and f € HP then Jg(f) € H#%, from Theorem 2. Applying
Theorem 3 we have G(Jp(f)) € HP, ¢ = l—f-g = g%, B > p. From Theorem 4
K(G(Js(f))) € H#%. Applying Theorem 2 again, we have JL(K(G(Js(f) €
H?S.

(i) If f € HP then J,(f) € H?, and from Theorem 3 G(Js(f)) € H® and I(f) € H®.

O

Theorem 6. If f € H?, 0 < B < 1 then
(i) I'(f) € H&t= ifB<p;
(i) '(fye HE if <porB=1.

Proof.

B+~

r'(f) = El(f)+ LU @PUNN? = My f) + My(f).



() K 3> p then I(f) € H?>5 and

Mi(f) € HPS  [f(2)P, [IF)) P € HF5' ™7 and  My(f) € H,

535 '_l—ﬁ Bp

A= - = ;

where %+ pzy 5 =G th=p

(ii) B < p implies I(f) € H* and M\ (f) € H=. [I(H}~P € H™® and My(f) € H

implies I'(f) € H?.

4. The n-order integral operator of Singh

Let be f € A. We define the n-order integral operator of Singh I":
I"fy=Iyolpy_y0---0l,

where

: 5
0= (822 [(poesa)”, pwec ic. .
' 0
Theorem 7. If f € H?,3; € R}, then
(i) if By > p and

Bifa2...0ip
BrBz...0i—p(B2bBs.. . Bi+PBs-..Bi+ -+ PPz .fiu1)

i€{1,2,3,...,n~1}, then I"(f) € H*, where

A= ﬁlﬂ2-~-ﬂnp
BriBz...0n—p(B2P3...0i+P1B3...0i + -+ BiP2...Pai1)

(i) if i <por(I)ie{1,2,...,n— 1} such that

Bigyr >

Bin < BiPa2 ... Bip
B1B2...0i —p(B2Pa...0+ PiBs..Bi+ -+ BiP2...Bizy)

then I"(f) € H*™.

Proof. (i) From Theorem 5, we have that if ; > p then I;(f) € HF%L-LP. We suppo

that I"~1(f) € H* where

\ = B Ba-1p

B1Ba...Bn-t —p(P2P3...0ncr + ﬂlﬂa o Bit -+ PP Pna)
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then I™(f) = I,(I"~'(f)) € H*, where

3 /811@2 .. -,Bn—lp o
P gy o — P> Pt t -+ PiPa. Paz)

A= Bif2 ..Pu-1p
bn ~ B1Ba.. . Ba-1—p(B2fs.. . Bnor+ -+ 5P Pn-2)
P B2 ... .Bap

= BB Pn—p(BaBs - Bu+BiBs- But -+ PiBr Bac1)
(i) If B1 < 1 then, from Theorem 4, Ih(f) € H® and I3(I1(f)) € H® etc. If (3i) ¢ €
{1,2,...,n-1},

BBz ... Bip ,
BBz B — P_(ﬂzﬂa B+ BB B+ + PLBefia

ﬂi+1 =

then I"(f) € H™.

Remark. For By = 3, = -.. = §, = B we obtain:

(1) if B > np then I"(f) € HFE%F;
(1) if B < np then I"(f) € H*™.

5. Some particular cases

1) For B = 1,y = 0 the integral operator I becomes I(f) = f; L(‘Q-dt, and we obtain
Alexander’s operator. If pL then I"(f) € H™% and ifp > L then I*(f) € H™.
2) For # =1,y = 1 the integral operator I becomes I(f) = 2 fo t)dt, and we obtain
Libera’s operator. If p < & then ["(f) € HT™% and 1fp > L then I"(f) € H™.
3) For B = @, v = 0 we obtain the operator I(f) = [o f; f"(t)t'ldt]i. In 1974 S.S.
Miller, P.T. Mocanu, and M.O. Reade showed that I(S*) C S*.. We obtain Hardy
. ¢lasses for that operator.-If p < & then I"(f) € H32% andifp > & then I™(f) € H™.
4) If S denotes a subset of A consisting of univalent functions and if $*, K, M., Ug, Vx
and MV/[a, k] denote subsets of A consisting of starlike, convex, a-convex, bounded
argument rotation, bounded boundary rotation and bounded Mocanu variation func-
tions respectively, then it’s easy to determine Hardy classes for I1(S), I(S*), I(K),
Uk}, (VK) and I(MV[a, k}).
5) For # = 2, = 0 we obtain the operator I(f) = (u f5 fae! it) . This is the

integral representation for functions with bounded Mocanu variation for feu, If
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B > p we have £ > ;% then 2% < 1. . From Theorem 5

F(z)=1(f) e B* A= 2—=

. 2
fp Rz — 2
B-p 5

From Theorem 6 we have

=
K
~

Bp _ —
Brip T iptigh FHA-w

If B < p then I(f) € H™ implies 2% > 1 then F € H®. From Theorem 6 I'()

Fl(z)=TI(f)e H*, p=

H%. Hence F' € H¥™5. . These results were obtained in [5].
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ORBITAL PERIOD VARIATONS IN THE GRAVITOMAGNETIC FIELD
OF A ROTATING MASS

VASILE MIOC AND MAGDALENA STAVINSCHI

Abstract. A test particle moving in the gravitomagnetic field generated by a
rotating central body is subject to a relativistic (Lense-Thirring)acceleration.
The influence of this acceleration on the nodal period of the test particle is
determined is studied in the framework of perturbation theory. The first order
variation of the nodal period is determined analitically up to the third order

in excentricity.

1. Introduction

Consider a test particle orbiting a rotating central body. As it is known since
the second decade of our century (J. Lense and H. Thirring have shown that in 1918),
the rotation of the central mass produces a gravitomagnetic field, implying the ”inertial
frame dragging” effect. In other words (e.g. [5, 8]), the spacetime in the neighbourhood
of the rotating central mass is influenced by this one as if it were immersed in a viscous
fluid which transfers a part of its rotational energy to the surrounding medium by means
of drag forces.

Of course, under the action of this inertial frame dragging, the test particle will
undergo a relativistic acceleration. This effect, due to the influence of the gravitomagnetic
field, is usually called Lense-Thirring acceleration. In terms of changes in Keplerian
orbital parameters of the test particle, the Lense-Thirring effect entails periodic variations
for the majority of these elements and secular changes only for longitude of ascending
node (orbit precession) and argument of pericentre (apsidal motion).

These results of first order were obtained by applying a perturbative treatment
to the motion of the test partiéle in the gravitomagnetic field generated by the rotating

central ma- .. In other words, the Lense-Thirring acceleration was considered to be a
Received by the editors: March 10, 1996.
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perturbing acceleration altering the Keplerian motion in the Newtonian field of the bo.
(in the point mass approximation),

Since, as our knowledge goes, the variation of the orbital period due to t
Lense-Thirring effect was not tackled yet (the existing analytic results being confined t
Keplerian orbital elements), we shall do that in the sequel. The nodal period will b
analyzed, because this one allows the study of very low eccentric (even circular) orbits
too (for such orbits the anomalistic period is not well defined or even undefined). Th
same above mentioned perturbative way will be followed. The analytic results (to fir
order in the small parameter featuring the Lense-Thirring acceleration) will be give

with a third order accuracy in the orbital eccentricity.

2. Basic equations of the method

Treating the problem in a perturbative manner, and recalling that it is th
nodal period to be studied, we naturally start from Newton-Euler equations writte

with respect to u (argument of latitude) in the form (e.g.[6])

dp/du = 2(Z/pu)r®T,
dg/du = (z/p){r*k BCW/(pD) + r*T[r(¢ + A)/p + A] + r*BS},
dk/du = (Z/p){-r3¢BCW/(pD) + r*T[r(k + B)/p + B) - r?AS},
dQ/du = (Z/p)r*BW/(pD),
dif/du = (Z/p)r3AW/p,
dt/du = Zr*/./ip,

where Z = [1 - r2C(dQ/dt)/\/up)~"/2, u = gravitational parameter of the central mas
r = radius vector of the test particle, p = semilatus rectum, ¢ = ecosw, k = esin
(e = eccentricity, w = argument of pericentre), Q = longitude of ascending node, i :
inclination, A = cosu, B =sinu, C =cosi, D =sini, S,T\W = radial, transverse, an
binormal components of the perturbing acceleration, respectively.

The changes of the orbital elements y € {P,q,k,9,i} between the initial (w

and current (u) positions aré given by

Ay = /u:(dy/du)du, (:



ORBITAL PERIOD VARIATONS IN THE GRAVITOMAGNETIC FIELD OF A ROTATING MASS

with the integrands provided by the first five equations (1). The integrals (2) are es-
timated by successive approximations, with Z = 1, limiting the process to first order
approximation.

The nodal period, defined as

To = 02'(& Jdu)du, (3)
is determined starting from the last equation (1), by means of a method proposed by I.D.
Zhongolovich [9], and extended in [3]. The principles of this method have already been
exposed elsewhere (see e.g. [3]) and will not be repeated here. It provides the difference
ATy between the real (perturbed) nodal period T and the corresponding Keplerian
period Tp. To first order in a small parameter ¢ which features the perturbing factor,

- this difference reads
Th- ATa=h+ L+ 1L+ 14, (4)

with

L = (3/2)v/pofB J2" (1 + goA + ko B)~2Ap du,
Iy = =2po\/po/p JT (1 + goA + koB) "3 AAq du,
Iy = —2Pov’1->o/—ﬂf02*(l + goA + ko B)"3BAk du,

Iy = [;"{9[r*C(dQ/dt)/ (up)/Oc}odu,

(5)

and Ay, y € {p,q, k}, are the first order (in o) perturbations provided by (2). Subscript

"0” ‘added to a quantity means the value of the respective quantity for u = ug.

3. Equations of motion in the gravitomagnetic field

So far (Section 2) the nature of the perturbation remained unspecified, formulae
(1)-(5) being valid for any pérturbing factor. Now we shall write the equations of motion
for our problem, namely for the motion‘ in the gravitomagnetic field generated by the
rotating central mass.

The Lense-Thirring acceleration components read (e.g. (8])

S = KhC/r4,
T = —KhCesinv/(prd), (6)
W = KhD(2B + Aresinv/p)/rt,



VASILE MIOC AND MAGDALENA STAVIUSCHI

where v is the true anomaly and h = ,/fip. The factor K has the expression (cf. [8])
K = 2(y + 1)uwR?/(5¢%), )

with 4 = space curvature parameter, w (constant) = rotational angular velocity of the
field-generating body, R = radius of this body, ¢ = speed of light.
Taking into consideration.the relation 4 = w + v and the definition of ¢ and &,

expressions (6) become

S = KhC/rd,
T = -K(h/p)C(Bq - Ak)/7?, 8
W = KhD[2B + r(ABq — A%k)/p)/r*.

: Substituting expressions (8) in equations (1), then using the orbit equation in

polar coordinates r = p/(1 + e cos v) under the form
r=p/(1+ Aq + Bk) (9)
to replace r in the resulting expression, the equations of motion acquire the form

dp/du = -2ZzbpC(Bq — Ak),
dy/du = ZzbC[B + (2 + 2B*)k — Bq® + (2A + 3AB?)qk + 3B%k?),
dk/du = —ZzbC[A+ (2+ 2B?)g + (A + 3AB?)q% + (B + 2B3)qk ~ Ak?),

10
dQ/du = Zzb[2B% + 3AB%*q + (2B - 3AzB)k], (19}
di/du = ZzbD[2AB + 3A%Bq + (24 - 3A3)k],
dt/du = (Z/b)(1 + Aq + Bk)~2,
where we introduced the notation
z = K/p=2(y + 1)wR?/(5¢%), (11)
b=h/p" = Vu/p/p. (12)

4. Results

As shown in Section 2, equations (10) are solved by successive approximations,

with Z = 1, limiting the process to first order approximation. So, the first order variations

80
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of the elements p, ¢, k,Q,i in the interval [ug, u, written in a compact form, are
Ap = —2zbopoCo(lo190 — T1oko),

Aq = zboCollor + 2(Too + Toz)ko — Jo: a3 + (2110 + 3112)goko + 3103k3],
Ak = —zboColl1o + 2(Ioo + Io2)90 + (10 + 3112)q3+

(13)
+(Jox + 3Jo3)goko — Iok3],
AQ = zbo[2loz + 311290 + (3103 — Tor)ko),
Ai = 2bo Do[2111 + 3(Tor — Jo3)go + (3112 — Tro)ko},
where we did not explicit yet the quantities I,,,, functions of u
Imn = / A™ B*du. (14)
Yo

Let us now perform the first three integrals (5). For this purpose we expand
the first factor of each integrand to third order in go, ko (that is, in eccentricity). Then
we explicit the first three expressions (13) with respect to u, and introduce them in the
respective integrands. Lastly, petforming the resulting integrals and taking into account

notation (12), we get to third order go, ko

I, = —372Co(2A0g0 + 2Boko + 2g3 — 2qoko + 2k2+
+3A0g3 + 3Bogdko + 3AogokZ + 3Bok3),
I = 72Co{2 + 6 Aogo + 742 + 6{A0Bo + 3(r — uo)]goko — 3k2+
+9A0q3 — 6Bo(B3 + 2)g2ko — 3(2A43 — 114, — 16)gok2},
Is = x2Co{2 — 1290 + 6Boko + 17q2 — 6{AoBo + 3(7 — uo))goko + Tk~
=243 + 3Bo(2B2 + T)q3ko + 6(A3 — 340 — 8)qok? + 9Bok3}.

(15)

As to the fourth integral (5):“vile consider z to be the small parameter o. Using

$

the fourth and the last equations (1},"’as well a3 the expansion of (9), and taking again

into account notation (12), we get after integration
Iy = 2nzCo(1 + k2). (16)
Finally, introducing expressions (15)-(16) in (4), one obtains

ATq = 672Co(1 — g + 3¢5 + qoko ~ 4¢3 + Aagok?). (17)



5. Councluding remarks and comments

Formula (17) gives, with an accuracy of third order in eccentricity, the first orde
(in z) perturbation of the nodal period (that is, the difference between the real noda
period and the corresponding Keplerian one) due to the Lense-Thirring acceleratior
undé;gone iby the test particle moving ir: the gravitomagnetic field generated by the
uniformly rotating central mass. Since the nodal period was chosen, the consideration o
very low eccentric {even circular) orbits is aliowed; for the anomalistic period such orbit
must be_ :.;woided. It is true that in our case equatorial orbits may not be considered
but this i\’s‘.a smaller shortcoming. Lastly, the third order accuracy in eccentricity make
expressioh (17) be a good approximation for orbits eccentric enough, up to e = 0.
roughly.

. Expression (17) emphasizes some connections between ATy and the initial orbi
of the test particle. So, for initially polar orbits (Co = 0) the nodal period is not affecte
by the Lense-Thirring effect. The closer to equator an orbit is (but not so close
make the nodes not well defined), the stronger the Lense-Thirring effect on the noda
period will be. Also observe that up to eg = 0.05 roughly the sign of ATq depends onl;
on the inclinatior (through Cy). More precisely, if the test particle has direct motio
(Co > 0), then T > Tg, hence the Lense-Thirring effects acts to decelerate the motion
for retrograde orbits the motion will be accelerated. Finally observe that to second orde
in eccentricity AT does not depend on the initial position of the test particle ug (throug)
Aop); such a dependence appears only for an accuracy of third order in e.

By (17), and observing from (11) that z does not depend on the initial orbit
one can formulate a surprising conclusion. The first order (in z) perturbation of th
nodal period depends on the shape and orientation of the initial orbit (through eg,wq,i
contained in go, ko, Cp) and on the initial position of the test particle (through A, =
cos ug), but not on the orbit diniensions (through a linear element py, say). This mean
that a gravitomagnetic field geuerating source will produce the same difference AT;
for all homothetic orbits in the field. We must emphasize that this independence o
the linear element (on distance for circular orbits) vanishes at the second order (in z
perturbation of the nodal period. As a matter of fact, V. Mioc and E. Radu (4] obtainec
a similar result while studying the first order effect of the Lorentz force on the noda

period of a charged artificial satellite moving in the dipolic geomagnetic field (cf. [1,7)

R?



Another surprising conclusion arises from formulae (17) and (11). The first order
(in z) perturbation of the nodal period does not depend on the mass o{ the body which
generates the gravitomagnetic field. Such a dependence does appear only at the second

order approximation.

The fact that, in our first order approximation, the nodal period variation does
not depend on either mass of the tield source or initial orbit dimensions is more surprising
if we observe that, in the same approximation, the variations (13) of the orbital elements
depend on these factors (through by given by formula (12)).

To push the analytic calculations to the second order (in z) approximation could
present only a theoretical interest from the above standpoint; this is useless from a
practical point of view. To perform some numerical estimates, we referred to the solar
system (see also [7]). With the known value of ¢, and with v & 1, we assigned to R and w
values corresponding to Sun and ma.j.or planets. We obtained that for circumsolar orbits
ATy is of order 10~4s; for circumplanetar orbits the order is 10~*s (Jupiter, Saturn),
10-%s (Earth), 10~“s (Mercury, Venus), and so forth. This enables us to give up a second
order perturbation [3] and to consider (17) a good approximation for the perturbation
of the nodal period of a test particle moving in the gravitomagnetic field generated by a

rotating central mass.
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ON THE NUMERICAL SOLUTION OF A SYSTEM OF THIRD ORDER
DIFFERENTIAL EQUATIONS BY SPLINE FUNCTIONS

Z. RAMADAN

Abstract. The purpose of this paper is to construct Spline function approx-
imations for solving the system of differential equations:
V' = filz,u v, 22), 2= hEeynz) with yP(xo) =y

and z()(zo) = zc(,‘) where ¢ = 0(1)2. The approximating functions used in
the method are polynomial splines. It is shown that the method is a one-
step method O(h°*7) in y)(x), z!)(x), ¢ = 0(1)2 and O(h®**"+*~7) in
v'?(z), 2'9(x) where ¢ = 3(1)r + 3, assuming f, f2 € C"([0,1)) x R'), r €
T+, 0 <a < 1. It is also shown that the method is stable.

1. Assumptions and procedures

Consider the system of differential equations:

y,” = f] (l', v, y,» 2, zl)v y(i)(x()) = y(()‘) (11)
M= foz, .9, 2,2'), 2 (zo) = :(()‘) (1.2)

where fy, fo € C"([0,1]) x R?), i = 0(1)2.
Let A be the partition:

A:0=2p< 1< <zZp <1 < < zp=1

where £y — 2z =h <1l and k = 0(1)n - 1.
Let Ly and Ly be the Lipschitz constants satisfied by the functions f,("), fé")

respectively, i.e.,

(@)
157 w2 2) = £9(2y2, 0, 22, )] < Ly — v + |y — yal+
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for all z,y1,%,21,21), (2,92,95, 22,23) in the domain of definition of the functions
9. £9 where ¢ = 0(1)r.

The functions f(q) , i=1,2 and ¢ = 1(1)r are functions of z,y,¥/, z, z’ only and
they are given from the following Algorithm:

Set £ = £,(z,v,¥,2,#') and if f{97") are defined, then

ofla~t)  grla-b afle~V FY .} ‘(1-1) ,
19 = f:% + fby v+ fby, v+ f 7+ faz' %

Then, we define the Spline functions approximating y(z) and z(z) by Sa(z) and

Sa(z) where
: Sa(z) = Sk(z) = Sk-1(zx) + Sk-1(zk)(z — zx) + Sl’c'—l(zk)(z-?%)z"'
+ 3 1% Sec00),Shso1), Tea o) s EZ2EE (4
j=0

and
Sale) = 5u(e) = Shms(er) + Shoa ez — 2a) + Sy (o) ESPL
¥ J_zof;”[u,sk TR ANCAR MERR ANEN) (L= ASEE
where %) (zo) = o, 3¢ )1( 20) = 28, i=0(1)2.
By construction, it is clear that Sa(z), Sa(z) € C?([0,1) x RY).
2. Error estimations and convergence

For all z € zx, zi41], k= 0(1)n — 1, let the exact solution of (1.1) and (1.2) be

written in the following forms:

r+2  (j)

y(z) = E yjk—'(:!: - .‘Ck)j + y(r+3)(€k)££(:_:__z))r:.3 29
3=0 ‘
and
r J) r
Hz) = %—-(x — ) + Z(r+3)(ﬂk)(2(’—::%:—a' (29)
j=0 :

where &k, mx € (T4, Tk41) and k = 0(1)n — 1.
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Before we proceed to discuss the convergence of these Spline approximants, we

state first the following notations: K
e(z) = ly(z) - Sa(=)l,
ek = lyk — Sa(z)l,
&(z) = |z(z) - Sal2),
& = — Sa(zi)l,

1) = 101k, Se-r(2x), Sj- 1 (24), Su-1(2x), Sh- s (z4)), (2.3)

f§f2= ;j)[zk’sk-l(zk)vS{-l(zk),gk—l(zk);g;g_l(zk)],

f.(J) = ffJ)[z’hykrykv Zk, zk]

and
f;,(kj) = £ 2k, vk Yo 2k, 24)
where j = Otl)r and k =0(1)n — 1.
Throughout this work, we will consider the general subinterval I, = [z, 'z;,_I],')c =
0o(1)n - 1. '
First, we estimate |y(z) — Sk(z)).
Using:(l.4), (2.1), the Lipschitz condition (1.3) and the notations (2.3) we get\:

e(2) < Iy = Sk-1(26)l + Itk — Sk (2u)llz = za] + [95-1(2x) = S_y (s )||‘-2fk| -zl |
+3 (J) lz - Tk lJ ,.+3 (r) 'z 1'k|'+3

hit3

< € +he + + (J+3) (J) (r+3) ('.)
L k Zly (J+3), +Iy () - lk'( +3), (2.4)
If we let
|y(1+3) f(J)I
then, using (1.3) and (2.3), we get:
P < Ly(ex + €, + & + ). (2.5)

Also, let
P =y - £,
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Then, using (1.3) and (2.3) we get:
P <w(y™®,h) + Li(ex + €, + 8 +7) (2.6)

where w(y"+? h) is the modulus of continuity of the function y("+3).
Using (2.5) and (2.6) and noting that

ol pis2

h
T Ayt —2
J=0(J+3)!<e <e

we can easily get:

h2
e(z) < (14 coh)ex + coh®i + (1 + co)he), + cohe, + = 50 —eh + w(y('+3) h) (2.7)

(r+3)!

where ¢o = Ly (e + (;115)-,) is a constant independent of A.
In a similar manner, using (1.5), (2.2), the Lipschitz condition (1.3) and the
notations (2.3), it can be easily shown that:
2

(r+3)
g(z) < crhex + (14 c1h)Ex + cihei + (1 + ¢1)hE + %sz" + (h %)

where w(z("+3), h) is the modulus of continuity of the function "+ and ¢; = L, (1 + -(,TSH-;)

———w(:"*9) h) (28)

is a constant independent of h.
Now, we are going to estimate |y’(z) — S}(z)| and |2’(z) — 5, (2)|.
Using (1.3)-(2.3) and noting that

we can easily get:

€'(z) < cohex + c2hEk + (1 + c2h)e), + c2he), + hejf + ——w(y("+Y, h) (2.9)

pr+2
r+or”

and

& (z) < csher + c3h® + cshe), + (1 + cah)e, + he)l + w(z3 Ry (2.10)

hrt2
(r+2)!
where ¢; = L, (e + ﬁ)-;) and c3 = L, (e + ﬁﬁ;) are constants independent of h.
We now estimate |y’(z) — S/(z)| and |z (z) - §Z(z)|
Using equations (1.3)-(2.3) and utilizing the inequality

r—1

hi
2 Gyi<e

i=0

88 R -
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we can see that:

r+l1

h . )
e"(z) < cshex + c4hTi + cihel + cahT), + e + o 1)'w(y”"’ k) (2.11)
and
hr+l
#'(z) < cshex + csh& + cshe), + cshe, + € + mw(z'*a, 1) (2.12)

where ¢4 = L; (e + FFI_W) and cs = L, (e + (r_+l_l)") are constants independent of h.
To complete the convergence proof, we introduce the following definition of the

matrix inequality:

Definition 1. Let A = [a;;], B = [b; ;] be two matrices of the same order, then we say
that A < B iff:
(i) a; ; and b; ; are non negstive,

(ii}a.-,j S b.'.j, v i,j.
In view of this definition, and if we use the matrix notations:
E(@) = (e(z) &) €(2) T(z) e"(z) ()

and
Ev=(cx & €, @ e )T, k=0(I)n—1

then, we can write the estimations (2.7)-(2.12) in the following form:

E(z) < (I + hA)E; + h™+'w(h)B (2.13)
where
co ¢ l+4+co co 1/2! 0 [ l/(r+3)! ]
€T ¢y 14¢ 0 1/2! l/(?‘+3)!
A= 2 C ¢ c2 1 0 . B= 1/(r+2)! ,

3 c3 c3 c3 0 1 1/(r +2)!
4 €4 ¢4 cq 0 1 1/(r+ 1)

[ s o5 e s 0 1| 1/(r+ 1)! J

I is the identity matrix of order 6 and
w(h) = max{w(y"+, h),w(:("+3) p)}.

Next, we give the following definition of the matrix norm.



Definition 2. Let T = [r;;] be an m x n matrix, then we define
'

n
T = ik Y Il
i=1

According to this definition, we get: ‘
IB@)l = max{e(z), &(z),¢'(2), 7 (=), " (2), €"(2)}. (214
Since (2.13) is valid for ali z € [zk,zk41]), k = 0(1)n — 1, then the following
inequalities hold true:
NE()Il < (1 + RIIAIDIERN + ™+ w(h)||BI|

(1+ BlLAIDNEN < (1 + AILAI | Bx—all + b7+ w(A)IBII(1 + ANA]l)
(U4 BN Bl < (7 + BIAD N Ex—all + 5™ w(R)IBIN(L + hllA]))?

(1+ hANFIE < (T + AILAI I Eoll + A+ w(R)I|BII(2 + Al Al)*.
Adding L.H.S. and R.H.S. of these inequalities and noting that ||Eo|| = 0, w
get:
IE(=)Il < esh"w(h)
where cg = (ellAll — 1)H§H is a constant independent of A.
Thus using (2.14), we get:
e¥)(z) < esh"w(h) = O(h>+)
#)(z) < ceh’w(h) = O(h*+") (215
where i = 0(1)2.
We are going to estimate |y(?)(z) — S,(f)(z)l where ¢ = 3(1)r + 2.
Using (1.3), (1.4), (2.1), (2.3), (2.5),(2.6) and (2.15), we get:

r—-1
G y : - j+3-q
WD(z) - 50 (2) < Y 1+ - £1) |z — 2279

iLs HEG+3-g)

. e~ r+3-¢q
U6 — [T < b = ogpers-s)

where ¢7 = 4L, ¢ (l + G +31_ q7.') + 7 +31_ 7 is a constant independent of A.
Similarly, using (1.3), (1.5), (2.2), (2.3), (2.5), (2.6) and (2.15), it can be show:

that:
|:9(2) - 37 (2)) < csh™3= % (h) = O(hotr+3-9)



where ¢ = 3(1)r + 2 and cg = 4Lace (e + (r+31_q),) + (r+31_q), is a constant independent
of h.

For the case ¢ = r + 3, we have:
W (@) - 507 = @) - £ <

< ,ym )+ | f-(r) ("I < cow(h) = (h"’).
Similarly,
2049 (2) - By 2| < crow(h) = O(h?)
where cg = 1 + 4L;cs and ¢10 = 1 + 4L2cs, are constants independent of h.

Thus, we have proved the following theorem:

Theorem 1. Let Sp(z) and §A(:c) be the approrimate solutions to problem (1.1)-(1.2)
given by the equations (1.4)-(1.5), and let fif2 € C"([zo,zn) x R?), then for all z €

[zx, Zk41], k£ =0(1)n — 1, we have:
Iv(2) - 5" (2)| < Chw(h),
1:9(z) - B (2)] < Chw(h),
I99(=) - 5 (@)l < Kh*3-Tu(h)
and
|20)(z) ~ 39(2)| < K™h7+3~3u(h)
where i = 0(1)2, j =3(1)r+ 3, C, K and K* are constanis independent of h.
3. Stability of the method

“The stability concept for a one-step method means that small perturbations in
the initial data for the numerical method will result in small changes in the numerical
vaiues, independent of the grid size h of the numerical method.

To study the stability of the method given by (1.4)-(1.5), we change Sa(z) by
Wa(z) and Sa(z) by Wa(z), where

= - ’ " (z - zk)z
Wa(z) = Wi(z) = Wi_1(zx) + Wi_y(zi)(z — z) + Wk_l(zk)T—+

Z(:)f(’){a:k,Wk 1(zx), Wi_ 1 (zk), Wi-1(zi), W, _ 1(-'“:)}%'— (3.1)



and

(= tk)’
Wal(z) = Wi(z) = Wioi(zk) + Wi (zx)(z = 2) + W, x("'k)‘—"

— [ H3
Z (’){zk,Wk_l(xk),W,:_,(zk),W,,_,(z,.).W;,_,(z,.)}l-f(j—_:":")!— @
where W)(z0) = 5o, W' (z0) = 259, i = 0(1)2.
We define the following notations:
e(z) = [Walz) - Sal@)l, ek = [Walze) - Salza}l,
F(z) = Walz) - Satz)l, Zx = [Walza) — Salzi)l, (

f,("f:-. £ 20 Wi (za)s Wi_ (@), War(74), Wiy (24))
and
FI) = 9l Wieoa(2a), Wiy (2x), Wi (2x), Wiy (2a))-

For all z € [zx, zx41), k¥ = 0(1)n — 1, by using (1.4), (3.1), we get:

[Wa(z) = Sale)l < [Wi_i(zk) = Su-r(zu)l + Wi y(28) = iy (2a)llz — zal+

" |z - m fz ==t
+Wi_i(zx) = Sk (2| —— 2| +§l (G +3) (
Now, let
If(J) ())' (

Then, from (2.3), (3.3) and the Lipschitz condition (1.3), we get:

Vi < Ly(ex + €} +8x + ). {
Thus, (3.4) gives:
h3
e(x) < (1 + doh)ex + dohei + (1 + do)he), + doh?}, + Ck (

where dy = Lje is a constant independent of A.
In a similar manner, by using (1.4), (1.5), (3.1)-(3.3) and the Lipschitz condi
(1.3), it can be shown that:

h?

€(x) < dyhex + (1 + dih)e + dyhel + (1 + dy)AE, + = 57 ko
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€'(z) < dohek + dohZk + (1 + doh)e, + dohZ), + hey, (3.8)
7. < dyhex + dihEk + dihe), + (1 4+ dyh)E, + REL,
E"(.’L‘) < dohey + dohZy + dohEL + doha‘ + E;:

and
3"(3) < dyhey + di1hE + dlhE;g + dlha‘ +EZ

where d; = Lae, is a constant independent of A.

If we put:
E(z) = (e(z) E(=) €'(z) F(z) €"(2) ()T (3.9)
and
Ex=(ex & € % ¢ &), k=01)n-1.
Then, from (3.7)-(3.9), we g;at the following inequality:
E(z) < (I +hA)E, (3.10)
where

do do 1+do do 1/20 0
d d d  1+4d, 0 1/2!
do do do do 1 0
d & dy dy 0 1
do do do do 0 0
d d d d 0 0

and I is the identity matrix of order 6.

>
it

Since (3.10) is valid for all z € [zx,zk41], ¥ = 0(1)n — 1, then the following

inequalities hold true:
E(=) < (1 + )| A Exl
(1 + RUADIEN < (1 + AIA As- |

(1+ RYAIFIE < (14 RILAJY | £l
Adding L.H.S. and R.H.S. of these inequalities, we can easily get:
IE@) < el Eoli (3.11)

where ¢, = ell4ll is a constant independent of h.



Applying definition 2, we get:
e (2) < eallEoll (3.19)

and

t9(z) < el Eoll

where || Eoll = max{lyo = v5], lh — 95’1, 16 — v8"1, 120 = 251,120 — 251, |26 — 75"} and
i=0(1)2.

We are going to estimate |W, (Q)(z) - Sg’)(z)l where ¢ = 3(1)r + 3.

Using (1.4), (3.1), (3.6) and (3.11), we get:

r Al 2 . -2 J+3_q ol B |
W) - Q@< 3 1) - fEZEE i e

R G+3-q)

where d* = 4L,ec; is a constant independent of A.

In a similar manner, using (1.5), (3.2), (3.11), it can be shown that:
W) - 52 () < T kol (3.4

where d = 4Lzec, is a constant independent of h and ¢ = 3(1)r + 3.

Thus, we have proved the following theorem:

Theorem 2. Let (Sa,Sa(z)) given by (1.4)-(1.5) be the approzimate solution to prob
lem (1.1)-(1.2) with the initial conditions y")(z¢) = y‘(f) and z0)(zo) = z((,‘), and le
(Wa(z), Wa(z)) given by (8.1)-(3.2) be the approzimate solution for the same proble:
with the initial conditions y{!)(zo) = y;(‘), 2 (zo) = z;(‘), i = 0(1)2, then the inequal:
ties
W3 (2) - S5 (2)] < 2| Eoll
and
Wi (z) - 32 (2)] < FllEol

hold true for all £ € [z, zk41), k=0(1)n — 1 and ¢ = 0(1)r + 3, r € I* where ¢,k a

constants independent of h and

HEoll = max{ly{” — y3 ™)1, 128 = )}, i =o0(1)2.
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has a unique positive solution u(z) > 0, for all z € .

We call the set {\} of real values of A, for which positive solutions of 1 exist, b
spectrum of the problem 1.

The conditions to be imposed on f will be the following

F-0: f(z,) is continuous on the N + 1 dimensional half-cylinder © x Ry;

F-1: f(z,0) = fo(z) >00n Q;

F-2: 0 < f(z,9) < f(z,¥) on Q if ¢ > ¢ > 0 (i.e. f is strictly decreasing in tl
second variable on Ry );

F-3: Exist 0 < a < 1 such that
t*f(z,tu) < f(z,u)

on Q x Ry, for every t € (0, 1).
‘ The problem 1, in a different conditions about the function f, has been studi
by various authors (see, for example, [2] and [3]). Under F-0, 1 and
F-2: f(z,9) > f(z,¥) on Qif o > ¥ >70 (i.e. f is strictly increasing in t
second variable on R );

it has been shown by Keller and Cohen in [2] that if A* > 0, where
A* =sup{\ : the problem 1 has a positive solution},

the positive solutions exist for all A € (0,A*). If in addition f is concave in the seco
variable, it was shown that A\* < oo and that the positive solutions do not exist
A = A*. Moreover it was shown that the positive solutions are unique and stable. The
results are extended by Keener and Keller in [3].

We state for future reference

Lemma 1. (Positivity Lemma in [2]). Let p(z) be positive and continuous on Q and
“p(x) be twice continuously differentiable and satisfy

{ Lo(z) — Ap(z)p(z) >0, z€Q
By(z) =0, T €0Q.
Then p(z) > 0 on Q if and only if A < py, where p, is the principal (i.e. least) eigenva
of
{ L(@) - upla)¥(z) >0, z€Q
\ Bi(z) =0, z € 0Q.
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Theorem 2. (Theorem 3.1 in [2]). Let f(zx,p) > 0 on Q if p > 0 and satisfy F-0. The

only positive X can be in the spectrum of 1.

Our result in this note is the following

Theorem 3. i) For every A > 0 the problem 1 has ezactly one positive solutions u(}, -)

on §2. Moreover

nlirtgo llun = u(A; o = 0
where ug(z) = 0 and

{ Lup(z) = AMf(z,un—1(x)) inQ
Bu,(z) =0 on 0Q.

.

i) u(A, ) is strictly increasing in A.
Proof. Let A > 0 and ug(z) = 0. Define u,, such that

Lun(z) = Af(z,up-1(z)) in
Bu,(z) =0 on 0.
Then it follows, from Positivity Lemma and F-1, that
Luy(z) = Af(z,0) inQ
Buy(z) =0 on 0f.

Hence"ul > 0 = ug. Suppose that

g < Uy <o <Ktigpog <tgpoy <Ugp_3< - < Uy,

We see from F-2 and 3 that

{ L{uzp = ugp-2) = A[f(z — uzp-1) — f(z,u2p-3)] >0 in Q

B(‘ugp - ng_':2) =0

Then, from Positivity Lemma, Ugp > Uzp_2.

{ L(ugp-y ~ Uzp) = Af(z, uzp-2) — f(z,u2-1)] >0 inQ

B(u2p~—l - u2p) =0

Then, from Positivity Lemma, Uzp_1 > Ugp.

{ L{uzp41 — ugp) = A[f(2,u2p) — f(2,u35_1)] >0 in Q

B(ugpy1 — ugp) =0

()

(4)

(5)
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We observe that 0 < &, < 1is n is odd and €, > 1 if n is even. We have

w(2) > ugp(z)=A /ﬂ Gol@, E)F(€, uzp-r(€))dE > 9)

v

€212 /n Golz,£) F(€, uzp (£))dE >
> Ep-1U2p41 >

> €2p_ 1 u‘ .

Set
A={e>0: u, >eu'}.

From 9, A is nonempty. Let £p = sup A and we claim that g0 > 1.

Suppose that 0 < g9 < 1. Then

w(z) = A /n Go(z,€) F(€, ua(€))dE <
< A /ﬂ Golz,€) f(€, ou® (€))dE <

1 . —_!_
< /n Gol=,E)1(6,w7(E)dE = (o),

which implies that u, > eJu*. Since €& > o, this contradicts the choice of £g. Thus we

have u, > u*. From this and from u, < 4* we obtain
. =u" = u(A, ).
Thus
u(h,2) = X [ Gofe. €)1, u(h ek,
It follows that u(),-) is a positive solution of 1. Note that, since u(},) is

continuous, then ”ILngo tn(£) = u(A, z) uniformly in Q (see Dini’s Theorem).

Finally, if v is another solution of 1, we have v > 0. Thus
w=0<v=2 [ Golz,E)f(E, o)t < 1.
Continuing this process, we obtain
Uzp Sv<uk4r, p=0,1,...,

which implies u(},-) = v. Thus we have proved that for any A > 0 1 admits a unique

positive solution u(\,-) on Q and

nll{]go "un - u(’\) ')"OO = 01

1N



where ug = 0 and

Lup(z) = AMf(z,un1(z)) inQ
Bun(z) =0 on 9.
ii) By employing the uniform convergence of the iterates {u,} to the posit
solution u(}, -), it is not difficult to deduce that

Ou _
B = ()

exists, is continuous in A and satisfies the variational system

Lv=Afu(z,u)v= f(z,u) z€

Bv=20 z € 090.
Thus we have
Lv>0 zeQ
Bv=0 ze€df.
Then v(X, z) > 0 on Q. If (A, z) = 0 at some point £ € 2, we have
(?_;:-),- =0, i=1,...,N

and at which the matrix

(5225)
dz;0z; 1<i,j<N

must be positive semi-definite. We obtain

_Za'.’ a az( “) f(z)u)>0»

1,5=1
which contradicts the fact that (a;j(x))1<i j<n is positive definite. Thus v(A,z) >

Q and this ends the proof. O

References

(1) Aronzajn N. and Smith K., Characterization of positive reproducing kernals. Applicatio
Green's functions, Amer. J. Math. 79(1957), 611-622.

[2] Keller H. and Cohen D., Some Positive Problems Suggested by Nonlinear Heat Genera
J. Math. Mech 16(1967), 1361-1376.

[3] Keener J.P. and Keller H., Positive Solutions of Convez Nonlinear Elgenvalue Problen
Difl. Eq. 16(1974), 103-125.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CRAIOVA, CRAlIOVA, 1100






GH. TOADER

and
n n
T(f) = pef(ax)/ Y P
k=1 k=1
where m is a positive measure on E and px >0, zx € Efork=1,...,n.

A. Lupas has generalized in [4] Hermite-Hadamard’s inequality for isotonic linear

funciionals but we need it in a more general form given in [2].

Theorem 0. If the function f is convezr on [c,d] and the functional T is isotonic and
linear on F(E), withT(1) = 1, then for every function g : E — [c, d] we have T(g) € [c,d]

and:
f(T(9)) < T(f(9) < [(d—T(9))f(c) +(T(9) — ) f(d)}/(d - ). (1)

‘For E = [a,}] = [¢,d] and g(z) = = we get the result from [4]. In the special case
when T is the integral arithmetic mean W, defined for a continuous on [a, ] function f
by:

, Y,
Wpio )= 7= [ fe)ds
the inequality (1) becomes Hermite-Hadamard’s inequality:

f((a+8)/2) < W(f;a,b) < [f(a) + f(b)]/2. (2)

3. Means

In what follows we use some quasi-arithmetic means. If h is a positive strictly

monotone function defined on the set of positive numbers and ¢ € [0, 1], we denote:
Ane(z,y) = b7 (th(z) + (1 - t)h(y)).

If h is the identity function we get the usual weighted arithmetic mean A;, which

for t = 1/2 becomes the arithmetic mean A.

For h(z) = e.(x) = 2", r # 0, we have the power means:
Pre(z,y) = (t2" + (1= t)y")"/".

For r = 0 one takes h(z) = eo(z) = logz, getting the (weighted) geometric

mean:

Poi(z,y) = Ge(z,y) = z'y' ",
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It is easy to verify (see [3]) that:
Ane(z.y) < Age(z,y), Vz,¥>0, 0,t€[0,]] (3)

if and only if:
i) g is increasing and g(h~!) is convex, or:
ii) g is decreasing and g(h~!) is concave.
As shown by J.G. Mikusinski (see [3], p.31) if ¢ and h are twice differentiable

and ¢’, b’ are never zero, then the above conditions hold if and only if:
g"lg > /K.
In the special case of the power means we see that they are increasing, that is:
Poi(z,t) < Pyo(z,y) if r<s, te(0,1), z#vy.

We use also the family of generalized logarithmic means defined for r different

from -1 and 0 by:

Le(z,y) = [(y*" = a™)/((r + Dy~ o))"
but
Lo(=,y) = I(z,y) = (1/e)(y* /z")"/ =)
is the identical mean, and
L_y(z,y) = L(z,y) = (y — z)/(log y — log z)

the logarithmic mean. For y = z all the means have the value z. This family is also

increasing:
Le(z—y) < L,(z,y) if r<s z#y. (4)
4. Generalized convexity

Using the quasi-arithmetic means we can define a notion of convexity generalizing

the logarithmic convexity.
Definition. The positive function f € C[a, b] is called h-convex if:

f(A(z,9)) < Ane(f(2), f(¥), ¥ 2,y € [a,b].



In addition to the usual convexity (with b = e;) and the logarithmic convexit
(where h = log = eo), C. Das has considered in his Ph. D. Thesis (see [5]) the case
harmonic convexity by taking h = e_,. The notion of e,-convexity was considered in !
under the name of r-convexity.

Of course, the function f is h-convex if and only if h(f) is convex for h increasir
and concave for h decreasing. So (3) holds if and only if A~! is g-convex. Thus, the abo
definition is in concordance with that of logarithmic convexity but differs from a definitic
accepted in [3, pp.30-31].

From the above remarks we deduce that every h-convex function is also g-conv
if and only if A~! is g-convex. In the special case of the power means it follows that
r < s every e.-convex function is alsd e,-convex. This generalizes the relation betwe

logarithmic convexity and convexity.

5. A result of Seiffert
In what follows we suppose that 0 < a < b. In {8] H.-J. Seiffert proved that

f' € Cla,b] is strictly increasing and f~! is log-convex then:

W(f,a,b) < £(I(a,b)). (

We remark that if f=! is log-convex then f is also concave but (5) improves t

corresponding inequality from (2) because by (4):
I=Lo< L =A.

Also, H. Alzer proved in (1] a related result: if f € Cla, b) is strictly increasi

and 1/f~1is convex, then:
W(f;avb) Z f(L(a)b))
The result of H.-J. Seiffert is related to eo-convexity and that of H. Alzer

e—j1-concavity. In what follows we shall generalize these results.

Theorem. If the function f : [a,b] — [c,d] and h : [a,6) - R are strictly increasi

f~1 is h-convez and the functional T is isotonic and linear on F([a,b]), with T(1) =
then:

h(a) < T(h) < h(b)
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and

f(a)[h(6) = T(R)] + FO)T(h) = h(a)] ST, |
- W) (@) <T(f) < fHT(R)) (6)

Proof. In (1) we put ¢ = f(a). d = f(b), h(f~?) for f and f for g obtaining:

- h(a T(f) — f(a)]h(b

Extracting from each inequality T'(f) we get (6). a

Remark 1. 1f h~! is g-convex, (6) gives:

T(h) = h(a)
h(b) — hia)

T(g) — g(a)
9(b) — g(a)

2

and
KN T(R) < 57 (T(s)).
So if we pass from g-convexity to h-convexity the class of functions for which (6) is valid

is diminished but the evaluations are improved.

Consequence 1. If the function f € C[a,b) is strictly increasing and f~1 is log-convezr
then:
f(a)[L(a,b) — a] 4+ f(b)[b — L(a,})]

b—a

< W(f;a,b) < f(I(a,b)). o)

Proof. We have h = log and

W(log;a,b) = LioBb = eloge _

o—a
so that (6) gives (7).
We remark that (7) offers a companion inequality to Seiffert’s inequality (5). O

Consequence 2. If the function f € Cla,b] is strictly increasing and f~! is e, -conver,
withr £ 0, then: '
f(a)t” — Lr(a, b)) + f(b)[L7(a,b) — a']

br —-a’

< W(f;0,8) < f(Le(a,b)).

Remark 2. This result was proved otherwise in [9]. As we have shown there, the con-
ditions of the consequences are catisfied by twice differentiable functions f is and only
if:

:Df"(-‘t)
f'(z)

f(z)>0 and 1+ <r Vze€lab. (8)



We obtain so a class of functions which can be very interesting because |

second relation of (8) is analogous with that satisfied by complex convex functions (

(7], pp-255-256).
Also the relation (8) shows that an inequelity of J .D. Ketkic and 1.B. Lacko

(see [6], pp-367-368) can be deduced from (6).
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APPROXIMATION PROPERTIES OF A CLASS OF BIVARIATE
OPERATORS OF D.D. STANCU

GABRIELA VLAIC

Abstract. In 1984 D.D. Stancu [15] introduced and studied a two-parameters
class of linear positive operators, generalizing the Bernstein operators. They
have been investigated by probabilistic methods. In this paper we consider
a two dimensional generalization of these operators and we investigate their
approximation properties, we give a convergence theorem and we evaluate the

rest and the order of approximation.

1. In 1984 D.D. Stancu [15]) has introduced and investigated a class of positive
linear operators, useful in constructive approximation theory: (S(,‘,’r 2.), where m € N, r
being a non-negative integer parameter, such that 2r < m, while a is a non-negative
parameter which may depend on m. To each function f : [0, 1] = R, there was associated

the operator S,(.ff?-, defined by

(1) = Z”f:l"“”’{ -t == helf () + e+ ks (S27) )

(1)
where, in terms of factorial powers
YN =gy - k). (y— (- 1)h), oM .=,
we have
- [k.=alf1  p)lm—r—k,~a)]
(a) _ r\z (1-12)
"k( ) ( ) (l +a)[m_r _a] . (2)

These operators were further investigated by D.D. Stancu in the paper {17],
where he indicated a probabilistic way for their construction.
The operators corresponding to the case a = 0 have been investigated in detail

in a paper by the same author [14).
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In this paper we present a bivariate extension of these operators and investigat
how they can be used in the constructive theory of functions.

For any real-valued function, defined on the standard unit square D = {(z,4)|0-
z, y < 1}, and any given non-negative integers r (2r < m) and s (2s < n) we define th

D.D.Stancu bivariate positive linear operator S ,f’ )r s by the following formula

m-rn—s

(5,‘,‘.’,;?,’,, ) =) oA @P, J ) Fh o a(z vi 0, B), @

k=0 j=0

where o and 3 are non-negative parameters, while

Fhnsale i f) =l =+ (m=r = Bl =y+ (n— s A (7.2 +

Hi=z+(m—r-Bal+ o) (5,12 +

Hot k)t =+ (oo = )8 (525, 1) 4 e+ rapwtrr (2,222).

m n

It is easy to see that the polynomial defined at (3)-(4) is interpolatory at th
vertices of the square D.

Now we want to mention two special cases of the operators introduced above.

(i) If @ = 8 = 0, then it reduces to the two dimensional extension, given in [16
of the operator Sy, , = SS,??,, introduced and investigated in detail by D.D. Stancu i
1983 in the paper [14]. The extension Sp, 5, = S,(,?j,??,.', given in [16] is the following

m-—rn—3

(Smnrs Nz, y) = Z Zpm—r,k(x)Pn—g,j(y)F",','",,.’, (z,9), (5

k=0 j=0

where

Fhinrale) = 0= 20 =0)f (1 2) 4 (- apor (£, 222) 4

k j i
se(l-9)f (1) 4oy (27 120) .

(i) For r =0 or r = 1 and s = 1 we obtain from (3)-(4) the operator considere

in [13], representing the bivariate extension of the classical operator of D.D. Stancu Sf,‘.’)

introduced in 1968 in [11] and investigated further in [12], [9], [7), (8], [5], (4], (1), [6).
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2. By using the formulas (3)-(4) we can find at once the values of the Stancu
bivariate operator. considered above, for the test functions ¢; ;, defined for any (z,y) € D

by eij(£.y) = 2'y (0 <i+j <2). We have

St eij=eij (0<i+ji<l), (7)
while
(Sr(r(:r{’)raf’z o) = —Tl_—{:c(:r+a)+ [l + '_(S_ll] -:—(‘l—ﬂ} (8)
(51(:5)”602) { y+/3)+_[l+ﬂ’n_]l] ﬂTﬂ}
If we assuine that
0< a=a{m)—>0asm— oo, ©)
0<B=p(n)—=0asn— oo,
then we have uniformly on the square D:
lim S50 eij=e; (0<i+j<2). (10)

m,n—00

By virtue of the Bohman-Korovkin-Volkov convergence criterion we can state

Theorem 1. If the conditions (9) are satisfied, then for any function f € C(D) we have

lim $$8) g f

mmn,r.s
m,n—

uniformly on D.

3. Smce an nrs = Smn,rs are given at (5), while the operator defined at (3)-(4)
is interpolatory at the vertices of {), next we consider that « > 0, 8> 0, 0 < z < 1 and
0<y< 1.

It is easy to see that the operator defined at (3)-(4) can be represented as an

average of the operator given at (5)-(6). We can state

Theorem 2. If (z,y) € (0',41) x (0,1) and & > 0. B > 0, then we have the following

integral representation
(“57?,'1{’,)1-,: ) (z,y) =
=(:'<"'l’>(z:,y)// 50 = )R (1 - ) (Spnra f) (8 D)dtdz, (11)
D

where
o 1 - -!
b (g, =[B<£ ) yl-y
(z,y) T B 3B ,

i1



by B(a,b) denoting the beta function
1
B(a,b) = / v 11—y ldy (a,b>0).
0

For proving this theorem we can use the relation between the beta and gamn

functions:
I'(a)L'(b)

Beb = trg

where
o0
I'(c) =/ ¢ le~%dz (¢ > 0).
0
We need also to apply the well known formula

T{c+n)=clc+1)...(c+n—-1)I(c).

4. If we take into account formula (6.8) from the paper [10}, which correspon
to the extension to two variables of a Peano-Milne integral representation formula o

linear functional having a certain algebraic degree of exactness, we can state

Theorem 3. If the function f : D = R has continuous partial derivatives of sect

order on the unit square D, then the remainder of the approzimation formula
fa,v) = (Si28).f) (@.9) + (RS, 1) (2. 9)

can be expressed, for any (z,y) € D, by definite integrals as follows

1
(Rizf).f) (2.9) = / Gl (¢, 2) FO(t, y)dt+
0

1 1 1
+ / H Ny, 2) fOD(y, 2)dz - / / Gl (t, 2)HI ) (9, 2) F3I(L, 2)dt dz, |
0 0 0
where

Gel(t2) = (RELea(t) et = ()4,

HE (5,2) = (RO(2)) (), $y(2) = (W 2)s,

Rs,?), and Rs.ﬁz being the one dimensional remainder terms corresponding to the lir

positive operators Lﬁ.‘.’,’r, Lﬁ.”l introduced in the paper [15].



It is easy to see that G(a) (t,z) <0, H,(,p,)(y, z) < 0 on the unit square.

By applying the mean value theorem to the integrals in (12) we, get

(R (z.9) = 1296, 9) [ G (1, 2)dt+

1 1
+f(0'2)(3, 77)/ H.(f.)(y, Z)(.,Z - f(2'2)(£: 77)/ / GS:.),.(t, z)Hi(ll.,’l) (yv z)dt dz.
0 ! 0 JoO

But we have

! 1 r(r=17] z(1-2)
) =—=
/0 Gur(t,z)dt = 5 [l+am+ m | m(l+a)

and
[ = rome 2] 4

Consequently we can state

Theorem 4. If the function f(z,y) has continuous partial derivatives of second order

on D, then there exists a point (£,7) € D such that we have

(R1) e = [14 amoy L] =2 g )

+P+&H}“;U];ﬁlﬁﬁwmmm-

©or(r—1) s(s=1)] z(z-nyly—n) ,q, a).
-[rrom e A [ on s 2] I e,

5. The order of approximation of a function f € C(D) by means of the oper-
ator defined at (3)-(4) can be evaluated by means of the two dimensional modulus of

continuity, defined by

w(fi61,82) = sup | f(z", ") - £(=', )],

where (z',y/) and (2", y") are points from D such that: |z" —2'| < &1, |y’ ~ | < 82, &
and 4, being given positive numbers.

By using standard procedures one can prove

Theorem 5. If f € C(D) then for any point (z,y) € D we have

o) = ($8220.9) .| S0+ Ams (e 4 Ol (i iz 72) . (19



where

Aprla) = H_OI\/l+o:m+5("——l)-
/ 1

Ans(B) = W 14+ 8n+ ﬂ'—n—l

Sketch of the proof. In order to prove this theorem we have to take into account that

operator is a positive linear operator on D and that it reproduces the linear functio

On the other side we have to use the following properties of the modulus of continuit
If(z",y") = f(&" ¥)| S wlfs 2" =2 Iy = ¥/l),

w(f; A1, A282) < (1 4+ Ay + A2)w(f;61,82).
One obtains

12,9 = (K20 1) (20| <

(1+5 Eps:lrk

According to the Cauchy inequality we can write

m-—r k 2]11/2
Zp(a)rk(x I—""" [Zpsr?lr,k(z) ('t_ ;) ] =
k=0

- ()= = e oms < tnrto

where

z - _l Epf,"_’,,,-(y) |y - %|) w(f;81,82).  (

J"ﬂ

A o(a) = +r(r—l).
m

1
2\/1 oV tem

Similarly we obtain the inequality
S, 0)
> oo, i y)| .< ~=An..(B)- (
j=0 g \/—

By taking §; = 7— 8y = 7— and using (17) and (18), the estimations (16) le:
us to the T. Popoviciu type inequality (14).

In the special case & = # = 0 it reduces, for any (z,y) € D, to the following

If('t)y) mnraf)(xy ( %v rr_ %V , f’_%v;

obtained in [16].
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fn cel de al XLII-lea an (1997) STUDIA UNIVERSITATIS BABES-BOLYAI

apare in urmitoarele serii:

matematica (trimestrial)
informatici (semestrial)
fizica (semestrial)
chimie (semestrial)
geologie (semestrial)
geografie (semestrial)
biologie (semestrial)
filosofie (semestrial)
sociologie (semestrial)
politica (anual)
efemeride (anual)

studii europene (semestrial)
business (semestrial)
psihologie-pedagogie (semestrial)
stiinte economice (semestrial)
stiinte juridice (semestrial)

istorie (trei aparitii pe an)
filologie (trimestrial)

teologie ortodoxi (semestrial)
teologie catolicii (anual)

educatie fizica (anual)

In the XLII-th year of its publication (1997) STUDIA UNIVERSITATIS BABES-

BOLYAI 1s issued in the following series:

mathematics (quarterly)
computer science (semesterily)
physics (semesterily)
chemistry (semesterily)
geology (semesterily)
geography (semesterily)
biology (semesterily)
philosophy (semesterily)
sociology (semesterily)
politics (yearly)
ephemerides (yearly)

Dans sa XLII-e année (1997) STUDIA
dans les séries suivantes:

mathématiques (trimestriellement)
informatiques (semestricllement)
physique (semestriellement)
chimie (semestriellement)
géologie (semestriellement)
géographie (semestriellement)
biologie (semestricllement)
philosophie (semestriellement)
sociologie (semestriellement)
politique (annuel)

ephemerides (annuel)

european studies (semesterily)
business (semesterily)

psychology - pedagogy (semesterily)
economic sciences (semesterily)
juridical sciences (semesterily)
history (three i1ssues per year)
philology (quarterly)

orthodox theology (semesterily)
catholic theology (ycarly)

physical training (ycarly)

UNIVERSITATIS BABES-BOLYAI parait

études européennes (semestricllement)
affaires (semestriellement)

psychologic - pédagogie (semestricllement)

études économiques (semestriellement)
études juridiques (semestriellement)
histoire (trois apparitions per année)
philologic (trimestricllement)
théologie orthodoxe (semestricllement)
théologie catholique (annuel)
éducation physique (annuel)
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