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STUDIA UNIV. “BABES- -BOLYAI", MATHEMATICA, Volume XLII, Number 1, March 1937

ON THE D.D. STANCU METHOD OF PARAMETERS

DUMITRU ACU

Dedicated to Professor D.D. Stancu on his 70" birthday

Abstract. In the paper cne uses the parameters’ method of D.D. Stancu for the
construction of the quadrature formulae with a high algebraic accuracy degree and

for the deduction of the Hildebrand's V -method.

1. Introduction.

39 years ago prof. D.D. Stancu [7] used for constructing a n-point quadrature
formula of Gaussian-type called by us [2] ”the D.D. Stancu method of parameters”.
Further D.D. Stancu has applied this method to constructing of the quadrature formulae
with the high algebraic degree of exactness (sce [8], [9]).

We have used the D.D. Stancu method of parameters to the extension of Hildebrand’s
V-method ([1]).

In the section 2 of the paper we consider ”the D.D. Stancu method of parameters”
applied in order to construct quadrature formulae with simnple knots and high algebraic
degree of exactness, presenting some different proofs given by D.D. Stancu.

In the section 3, we study the Hildebrand’s V- method.

2. The D.D. Stancu method of parameters.

Let w : (a,b) = (0,00) be a weight function so that its moments are ¢; =
b
/ 2lw(z)dz, j =0,1,2,.... The interval (a,bd) is finite or infinite.
a
We suppose to construct the quadrature formulae with simple knots x, .. .z, all

placed in [a, b], with algebraic degree of exactness n+k - 1, k natural number, | < k <n,
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by the forin

b n
/ w(:c)f(x)d:r:ZAif(z',')-{-R(f) . (1)
a i=1
For this aim we use "the D.D. Stancu method of parameters”.
Corresponding to the method of parameters, we consider the parameters a, ..., ax
placed in the interval (a,d) and different from z,,...,z,. We use the notation:

n

k
wz)=[[z-2) , @) =[[-a,
i=1

=1

ui(z) = wu_(_xa):'_ si=1n vj(:)=z—aj

Now we write the Lagrange’s interpolation formula for the function f and the knots

z;, i=1,n, and aj,j = 1, k. We have
f(:c) = Ln+k-l(xl’ e ,xn;a‘l, e »an;flx) + r(av x) (2)
where

Losk-1(21,. .. Zajan,...,0x; flz) = (3)

P zi ~ u(a;) vj(ay)

2L oui(z)  u(z) x u(z) wvji(z)
= : . f(x;) + et Sl AR A \nd S TP
Z»“i(zi) v( ) ( ) JZI f( .1)
is the Lagrange's interpolation polynomial and

r(f,z) = u(z)v(z)[z, z1,. .. , 20, 01,... ,ax; f] (4)

is the remainder of the interpofation formula. In (4) the symbol of the square brackets
represents divided difference of f on the knots zy,...,zn, a1,...,Qk.

Multiplying (2) with w(z) and then, integrating from a to b, we obtain

b n k
[ wl@)f@)ds = Y- Acs(z) + 3 Bif(e)) + Rupecs() (5)
a i=1 =1
with
) e@) e ‘
A; _/a w(t)u;(z;)' v(z,-)dz , i=1,n, (6)

b
L= wz-;_..___vj(z) i=1k
B = [ wl oy A yde o i=TF @
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and

b
Rypk-1(f) = / w(z)u(z)v(z)[z,z1,... , 20,01, ..,k fldz . (8)

Now we select the knots z,, ..., z, such that the quadrature formula (5) is of type (1).

Then we have
Bi=0 , j=1k. (9)
Taking into account (7), the conditions (9) are equivalent with
/b w(z)u(z)v;(z)dz =0 , j= 1,k
a .

From here we obtain that the conditions (9) are equivalent with

/b w(z)u(z)eldz |, j =Lk-1. (10)

Theorem 1. If the knots of the quadrature formula (1) are selected such that u(z) sat-
isfies the relations (10), then coefficients A;, i = 1,n, are independent of the purameters

ay,...,ax and they can be calculated with the formula

b
o ui(z) e
A _/a w(z)u‘(z‘)dz , i=1n. (11)
Proof 1*. From (6) we have

Ai= / bw(z) u(z) 14 %) —1] dz =

ui(z;)(z — z;) v(z;)

= /b w(z) __uls) dr + /b w(z) wz) vz) - v(zi)dz

ui(zi)(z - 22 ui(zo(zi) ==
Because (v(z) — v(2i))/(z — z;) is a polynomial of the k — 1 degree, using the conditions

(10), it follows that the last integral is equal to 0. Hence

pi= [(o0 2y it

from where we conclude that the coefficients A;, i = 1, n, are independent of the param-
eters oy, ..., Q.
Proof 2"¢. First we prove that the coefficients A;, i = 1,1, don‘t depend on the

aA;
parameters aj, j = 1, 1, k. In this order we calculate the partial derivatives Bos i=1,n,
(YJ
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and
85I, c o .
o oa. s~ (—-‘J)l'l"‘(:l,‘l,,,, ixﬂ) ' t=hLn
601(’02 . .00[;

where we find

Therefore

b
I,':’U(:L',‘)/ w(z)ui(z)de , i=1,n

and using (6) we obtain

QE.D.

Theorem 2. If the relations (10) are true, then fork = n—1 and k = n, the coefficients
A; can be calculated with the formula

A,-:/abw(a,-)<“"(””))2dz , i=Tn. (14)

ui(z;)

Proof. Using (11) we have:
b
o _u;(:c) _
A = /a w(z)u;(x,-)dm =

- /.,b"’(”) ::((Z)) dz [ui((x)) L 1] do =

wi(zs)  ui(xy)

- [ [E] e- [wogiE

n.

=1,

Using (10) it follows that the last integral is null and we obtain (14).

Now we conclude that it holds:

Theorem 3. The quadrature formula (1) has the algebraic degree of exactness n+k —1,
1 < k < n, if and only if the polynomial u(z) of the knots zy,. ., x, satisfies the relations

(10).

Remark 1. For k = n from Theorem 3 we obtain the classicul result relating to Gaussian

quadrature formulas.

w
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3. The Hildebrand’s V-method.

Using Hildebrand’s V-method (see [1]) we can give another form for the

tions (10).

Theorem 4. The conditions (/0) are true if and only if there e.ists a polynomic
of degree n, wnth n distinct and real zeros on the interval (a,b), such that to erist |

of polynomials (Vj);f=o defined as it follows:

Vo(z) = w{z)u(z)

Vi(z) = [T Vioa(t)dt , j=T.F
with

Vi(a)=0 and V;(})=0 ,j=T1,F.

Proof. Let's suppose the conditions (10) to be valid. Then we consider

polynomials (V,-)_';=0 defined by (15). Taking into account (10) we have:

Vi) =0 , j=TF

and
Vi(d) = / ' w(z)u(z)dz = 0
b b b
Va(b) = / Vi(z)dz = zv,(z)L— / w(z)u(z)zdz = 0
etc.

Viceversa, if we chose the polynomial u(x) such that to exist the set of polynomi
(Vj);fﬂ,, given by (15) and (16), then u(z) verifies the conditions (10).
Really, from V;(b) it results

b
/ w(2)u(z)dz =0

From Va(a) = 0 and V,(b) = 0, using the integration by parts, we find:
b b b
0= Vy(b) = / Vi(z)dz = V](.’B)I —/ w(z)u(z)edr ,

[}

where

-b
/ w(r)u(r)zde =0 etc. Q.E.D.
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If the quadrature formula (1) has the algebraic degree of exactness n+k — 1, | <k <n,
then it is an interpolating quadrature iormula on the nodes a;, ¢ = 1, n, and its remainder

admits the represeatation (see [3]):

b
Rasr1(f) =/ w(z)u(z)z, 1, 22, ..., &p; flde . (17)

From (17), with the help of the polynomials V;, j = 0, k, integrating by parts, we can

write

b dk
Rotk-1(f) = / g;;[:c,zl,:cg,... & f]Vi(z)dz . (18)

which is Hildebrand’s representation (see [4]) for the remainder of the formula (1).
The forin (18) for the remainder of the quadrature formula (1) has used by F.
Locher ([5), [6]) for the constructing of the V-optimal quadrature formulas (see [1], [2]).
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ON MODIFIED BETA OPERATORS

OCTAVIAN AGRATINI

Dedicated to Professor D.D. Stancu on his 70" birthday

Abstract. In the present paper, we deal with an integral operator of beta-type
L,y depending on a positive real parameter y. We give an estimation of the order
of approximation by using the first order modulus of continuity. Also, we prove an
asymptotic formula of Voronovskaja type and we show that the operator preserves

the Lipschitz constants.

1. Introduction

In time, several integral operators which z‘n‘e associated with beta-type proba-
bility distributions have been discussed and interesting properties have been proved. In
this respect, we mention the papers [1}, [2], [5], [6], [7]-

Let us denote by Lg[0, 00) the linear space of real bounded functions defined on
[0, 00) and Lebesgue measurable. In [8] D.D. Stancu introduced a new beta second-kind

approximating operator defined on Lg[0, c0) as:

(En &) = En(70,) = gt [ SO et 250, ()
and (Lm f)(0) = £(0), B(,-) being the beta function.
This is an integral linear positive operator of Feller type which reproduces the lin-
ear
functions. Starting from L,, defined by (1), we introduce and invesiigate a sequence of
linear positive operators depending on a parameter ¥ > 0. These modified beta operators

are defined as follows:

1 0o tmy—l
Loy f)(@) = ——— | flt4+2)—————dt, 2>0 2
( Y )( ’ B(my,m + 1) 0 ( )(1 + t)my+m+1 ’ Z Y ( )
where f € Lg[0, c0).
Received by the editors: December 6, 1096,
1991 Mathematics Subject Classification. 41A36.
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It is clear that for any £ > 0 we have:

(Lm,z £)(0) = (L f)(2).

This type of construction was used in the papers [3] and [4] for an integra

modification of Szdsz operators.
The next section provides the main results of this paper. All the proofs and th

necessary supporting results are provided in section three.

2. Main results
Theorem 1. Let @ > 0 and f € C[0,00) such that Lmy(|f],z) < co. For any m > 1

and y € [0, a] we have the following inequality:

(s )e) = fla+ )l < (14 Valar D)o (1, o= ), ®)

where w(f,-) represents the modulus of continuity of the function f.

Corollary 1. Let 0 < a < . If f € Lp[0,00) N C[0, 24}, then, for any fired y € [0, a),

we have:

Jim (L, £)(2) = f(z + ), {4)
untformly in [0, a].
Theorem 2. Let a > 0 and f € Lg[0,00) differentiable in some neighborhood of a point

x +y € [0,a] such that at this point f" exists. Then we have:

Jim m((z +) = (Em g £)(2)) = ~LEL (2 ), )

Theorem 3. Let a > 0 and f € Lp[0,00). Then f € Lipy 4(A,p) if and only if
imyf € Lipg q)(A, p), where A >0 and p € (0,1].

It is appropriate to remark here that g € Lipg 4)(A, p) if for any z and y belong-

ing to [0, a] we have:

ly(x) — g(y)] < Az —y|*. (6)
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3. Proofs

Before we proceed with the proofs, we recall some useful relations:

(Emyeo)(#) = (Emes)) =1, 0
(Enyer)@) =2+, ®
Ln((t —2)%2) = 222D, (9

where ex(t) =¢, t >0, k=0,1.
Proof of Theorem 1. We have

I(Lm.yf)(w) ~ fle+yl < |
tmy—l

|7t +2) - fly+ ac)l———————(1 Tyt

= B(my,m +1) /
It is verified that for any § > 0

(f+2) = s+l < (14 3= ) wl19)

From the above relations, by making use of the Cauchy inequality and of the

relations (7), (8), (9) we car write successively:
(Lmy£)(e) - F& + )] <
< (14 f oy L Wit 0(0) <
in)) (£, = (+és ”f}j“’) )

But y < a and if we take § = 1/4/m — 1, we arrive at inequality (3). 0O

. 1
< (14 32 -

Proof of Theorem 2. Because f has a finite second order derivative at a point z+y € [0, a)
then f can be expanded by Taylor’s formula:
_ o / (t_:’:.-y)2 1" 2
O =fa+y)+Et-—z-9)fE+y)+———— "z +y) + -2z -y)°r,(1),
where 4, is a real valued function having the property: r3 ,(t) — 0 ast — z +y. Using
(7) and (8), we get:

(Lmyf)(2) — flz +y) = ;’((—,’i:—lll)f”(z +9) + Ry y(x),

11
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where Ry, is given by:

tmy- 1

1 0 \
Rg,y((l)) = —BT"‘IE'I—R—IT)/O (t - y) Tg,y(t + x)zl—“)mdt

Taking into account that ry ¢(¢ + z) tends to zero when ¢ tends to y, it follows
that for every € > 0 there exists an § > 0 so that for every t for which |t — y| < 4, we
have |r2y(t + )| < €. Since 1y is bounded on [0, a], for every ¢ for which |t — y| > §,

we deduce:
Irzy(t +2)| <M < ME2(t ~y)°.

Consequently, the inequality .
Iray(t +2)| < &+ ME2(t —y)°
holds. By choosing € = ;‘;, after few calculations, we obtain

lim mR; 4 (z) =0

n—4 00

which leads us to the desired result. Further, the convergence from (5) is uniform if f*

is continuous on [0, a]. ]

Proof of Theorem 3. Let f € Lp[0,00) N Lip(g 4)(A, #) and z1, 22 G [0, a) such that z, +
y < a, £z +y < a. Considering (2), (6) and (7) it results

|(Ln,y f)(z1) ~ (Lim,y F)(=2)] <

1 oo tmy—l d A ,
SW[) Pt + 1) = ft + 2l e dt < Aler = 2l

Thus, Ly f preserves Lipschitz constants.

Now, we assume Ly, f € Lipp q)(A,p). For any integer m > 1 and i +y €

[0,a], (i =0,1), we can write:

(@1 +y) - f(z2 + 9)| = [(Lng F)(21) = flzr +9)| = 1 fz2 + y) -

= (Lmy NN@2)] < |(Lmy £)(21) = (Lm,y ) (22)] < Alzy — 22]".

With the help of relation (4), we obtain easily that f € Lipyg 4(A, ). This

completes the proof of Theorem 3. 4

12
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APPROXIMATION OF FRACTALS WITH NEURAL NETWORKS

PETER ANDRAS

Dedicated to Professor D.D. Stancu on his 70** birthday

Abstract. The fractals could be find in many cases of chaotic behavior of natural
processes. The approximation of fractal forms plays an important role in cilaotic
control or chaotic classification. The artificial neural networks can be used for the
approximation of the fractal shapes. A new type of neural network Ia. introduced
in this paper, which has a generalized tree-like structure, and can approximate with
good results the fractal shapes. This network functions relatively fast with many

neurons.

1. Introduction

The fractals are very nature-like geometrical forms, which are used in many fields
for nature-like modeling. They could be find in many cases of chaotic behavior of natural
processes.

An interesting property of the fractal forms is that they are some limits of ba-
sically iterative transformations of some simple shapes. The approximations of fractal
forms play an important role in chaotic control or chaotic classification. Because of the
formally simple but technically very difficult description of the fractal shapes it is hard
to generate good approximations of them with classical tools.

The artificial neural networks can be used for the approximation of the fractal
shapes. The reduced Coulomb potential networks ([5]), the self-organizing maps ([6]),
or the modified Coulomb potential networks ([5]) can approximate the fractal shapes to
some degree. One common problem of them is that the good approximation by them

needs too many data and requires too complex networks that work very slow.

Received by the editora: January 3, 1997.
1991 Mathematics Subject Classification. 88F13.

Key words and phrases. fractals, neural networks, approximation.
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of type T are in the list A, and the output connections to other neurons of type non-T
are in the list B.

Step 1. Ifr € S(c,r) then go to Step 2. else go to Step .

Step 2. If the list B is not empty, then let b be the number of the neuron in the
list B for which d(z,cy) < d(z,cx) for each neuron k from the list B, the input data (z)
is transmitted to neuron b, otherwise go to Step 4. '

Step 3. If the list A is not empti/, then let a be the number of the neuron in the
list A for which d(z,c,) < d(z,ct) for each neuron k from the list A, the input data (z)
i transmitted to neuron a, otherwise go to Step 5. '

Step 4. Transmit to the output neuron the type T stop signal. Step 5. Transmit
to the output neuron the type not-T stop signal.

The training algorithm of the network is the follow'ng:

Algonthm 2. (The Thnnmg Algorithm of the Gcnemhzed Tree-structured Neu-
ral Network) The incoming data is x.

Step 1. The incoming data enters the root neuron.

Step 2. The incoming data is processed by the neurons of the network still one
of the neurons send the stop signal to the output neuron.

Step 3. The output neurons output is 1 if the recesved stop signal is a Member
- stop signal and 0 otherwise.

Step 4. If the resulted output is incorrect then a new neuron is added to the
network. The new neuron has as its center the point x, its type is set to be the type of
point z (Member if x is in the goal set, non-Member otherwise), and the radius of the
new neuron is so, that the hypersphere of the new neuron is tangent to hyperaphere of
the last activated neuron of the network tree.

Observation: The hypersphere of the new neuron could be internally or exter-
nally tangent to the hypersphere of the last activated neuron. If there is created a neuron
with the same type as of the last activated neurons, then the hypersphere of the new neu-
ron will externally tangent, otherwise it will be internally tangent to the hypersphere of
the last activated neuron.

Now we can state the functioning algorithm of the network, which is practically

the same as the first three steps of the training algorithm.

18
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Algorithm 3. (The Functioning Algorithm of the Generalized Tree-structured
Neural Network)

The incoming data is .

Step 1. The incoming data enters the root neuron.

Step 2. The incoming data is processed by the neurons of the network still one
of the neurons send the stop signal to the output neuron.

Step 3. The output neurons output is 1 if the received stop signal is a Member
- stop signal and 0 otherwise. '

The network is trained with probabillistic data, which means that the input data
is selected randomly from the s;;ace region which contains the goal set. The training is
supervised training, so for each training point is necessary to know if it is in the goal
set or not. The result after the training is a network which represents a mixture of
hyperspheres belonging to the types Member and npn-Membef.

The advantages of this network compared to other neural networks (self- orga-
nizing maps, Coulomb potential networks) are that it has a tree structure, which permits
a fast functioning, it represents multilevel combination of different parts belonging to
different classes, and it reduces considerably the number of the neurons needed for the
representation of the classes.

Because of its multilevel combination property (this is realized by the internal
structuring of the interior of the hyperspheres represented by the neurons, using other
neurons which represents other hyperspheres belonging the other class, and which are
inside of the neurons hypersphere) these networks could be used for very detailed delim-
itation of very complex shapes, which is the case of the fractals too.

The proposed network can be more generalized in order to represent not only

two sets (goal set and outer space of the goal set), but many different sets.

4. The Performance of the Generalized Tree-structured Neural Networks

The basic approximation properties of the tree-structured network are shown
in [1). There it is proven that the tree-structured neurai networks have the universal
approximation property, and they realize practically what ;s predicted theoretically based
on their theoretical approximation property.

19
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D — Noyk = D = (N — (U1 Sn+4))-
So it results that
D —~ N, CD — Npys,
which means that
MCP, < MCPpi4.

So we have shown that the value of M P is not decreased by this group, and the value of
MCP is increased by it.

The similar case is when all of the internal links of the group are i-links .and all
of the external links are e-links. In this case we have that M P is increased by the added
group and MCP is not decrea'a,sed The performance of the network is resulted from M P

and MCP through the following formula:
h=pMP +p,MCF,

where p; and p; are the percentages of the goal set and of the complementary of the
goal set. So in both cases results that the performance of the network will be increased,
because of MP or MCP is increased. It is easy to realize that the all neural tree is
formed by such groups, so its performance is increased by adding these groups. So it
results that the performance of the network will increase through the training procedure.

This result is in concordance with the results in [1].

5. Application

As was mentioned before, the Mandelbrot set is used here to test the performance
of the proposed neural network. For comparison, in [3] can be found the results of the
self-organizing maps and of the reduced Coulomb potential networks for the same test,
with similar training data.

Ten thousand points were used for the training, which were randomly selected
with uniform distribution. The result was a network with 451 neurons. The pérformance

of the network was the following:
e all correct classification: 96.9%
e correct classification of the member points: 97.6%

The graphical approximatiin of the Mandelbrot, set, realized by this network is
presented in the Figure 5.
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ON A BLENDING OPERATOR OF BERNSTEIN-STANCU TYPE

DAN BARBOSU

Dedicated to Professor D.D. Stancu on his 70*P birthday

Abstract. Considering the generuslized univariate operator Bernetein-Stancu type
(1.1) we construct the blending operator (2.1) and we establish some properties of

this operator.

1. Introduction

D.D.Stancu has constructed in [10] the positive linear operator
BS*P9> . C0,1) = C[0,1],

defined for any f € C[0,1) and any z € [0, 1] by

BEP (f)(2) = 3 wma(za) f (12

k=0 m+q

wherea=a(m) > 0,0<p<qand

[k,=a)(1 — p)[m—Fk,—a]
m\ =z 1-=2
wm;"(z’a) = (k) ’ (I(m.—zj ’

(1.2)

In (1.2), x[*~] ig the factorial power of x with the exponent k and the increment

-a, i.c.

e = z(z +a)...(z+ (k- 1)a).

(1.3)

Clearly, if « = 0,p# 0, or ¢ # 0,p = ¢ = 0 the operator (1.1) reduces to others

operators of Bernstein-Stancu type [8], [9).
Let us denote 1 = [0,1], I =[0,1] x [0,1],R" = {f | f : I? = R).

Received by the editors: November 11, 1996.
1991 AMathematice Subject Classification. 41-00 , 41A10, 41A25, 41A35.

Key words and phrases. Bernstein - Stancu operatora, B- continuous tunction, parametric extennion, boolean

sum operator, mixed modulus of continuity, degree of aproximation.
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If f,g: I >R a=am >00<p<qgf=p8n>00<s<t we
denote by BS®P9>, BP#t> the operators defined for any f € R/, g € R’ by (1.1) and
respectively by

BsP 2 > (g)(y an c(y.ﬁ)y( ) vel. (14)
P +t
We suppose that f € R!” and we denote by +BS* P 9> BSP. ¢8> the parametric

extensions of BS* P 9> B<A: 3. t> defined respectively by

B PP () (09) = 3o wmale, o) S (AR (15)
k=0
JBSP (1) (2,) = an .0)f (e, 222, (1)

Using these extensions we shall construct a sequence {Um,n},, n)eN; 8o that U, o (f) =
f, uniformly on I? for any function f , B-continuous on I3.

We recall that f is namely B-continuous at (z,y) € I? if and only if

lim Doylf 2,91 =0 (1.7)

(= y')=+(= v)

vhere

Apylfiz ] = £ ¥) - fz.o) — £ 9) + flz,9) (1.8)

If (1.7) holds for any point of 12, we say that f is B-continuous on I? and we denote by
Cb(7?) the set of B-continuous functions on I2.

An important result for the approximation of B-continuous functions is the fol-

lowing Korovkin type criterion.

Theorem 1.1. [I] Let {Lpy n}mnena be a sequence of positive linear operators trans-
forming functions of R!” into functions of RI’ so that for all (2,y) € I? one has
(i) Lovnle)(z,y) =1
(1) Lmnn(9)(2,y) = 2+ uma(z,y)
(111) Linn($)(z,y) =y + tmn(7.9)
(1) Lunn(p® +¢*)(2,y) = 2° + ¥ + Wma(2,9)
where wm n(2,Y), Vm n (2, Y), Wmn (2, ¥) cdnverge to zero uniform on I? as m, n tend to

infinity. If f(-, %) € Co(I*) and (x,y) € I?, we put

Um,n-(f)(";» y) = Lm.ﬂ(f('r y) + f(zr *) - f('v‘);zv )]
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Under these conditions, for every f € Cy(12) the sequence {Um o(f))} converges to f

uniformly on I3.

To estimate the error in the approximation of f € R’ : by Um »(f), the mixed
modulus of continuity Wmized i8 used. This modulus is the function wmizea : Ry X Ry,

defined by

Wmiged(61,02) = sup{Az',y’[f;xv Yl lr =yl <&, 1y —yl < 62}, (1.9)
for a;ny 81,82 € Ry = (0, +00).
The most important properties of wpizeq are contained in
Theorem 1.2. [2]The mized modulus of continuity has the properties:
(1) Wmized(61,82) < Wmized(d},83), for any 8,,82,81,485 € Ry with 6, < 8%, 8, < 83.
(1) wmized(A161,A282) < (14 M1)(1 + A2)wmized(61,82) . for any 81,82, A1, A2 € Ry,
2. Main results.

Lemma 2.1. Let be f € R'’. The parametric extensions (1.4) and (1.5) of the general-
ized Bernstein-Stancu operator (1.1) comute. Their product is the linear positive operator

Ling : R 5 RY, defined for any f € R by

Ll f)e) = 32D sl huns0ASEEE 8 2
Proof. The conclusions of the lemma 2.1 are verified by simply computation. ]
Lemma 2.2. The operator B5%A 924> : Cy(I?) = Co(1?),

Bl P> (f)(2,9) = Lmalf () + f(z, %) = F(-, )i (2, 9)] (2:2)

where f(-,*) € Cy(I?), is a well-defined linear operator on Cy(I?).

Proof. If (z,3) € I? is fixed, the B-continuity of f implies ti.. of the function F(., ) =
JC.y) + f(=,%) — f(,w) This is a consequence of the fact that for all (u,v),(s,t) € I?
one has Ay o[F; 8,t] = —Ay u[f; 5, 1] independently of (x,y) ¢ 17 Hence BS%A P04 |s
a well-defined linear operator on Cy(1?). O

Remark 2.1. By the linearity of L, ,, it results that
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<o,B,p,q,8,t> <o > <P, p 9> — <a, p, ¢> ' Py
BRoPpaat> = BLow b q @anﬂpq =, BS® P 9 +B,ff”’q>—Lm‘,.,

1.e. B,f,f’;;ﬁ""q"'” is the boolean sum of the parametric extensions ; BS* P 9> and , B<9: 7. 9>,

Remark 2.2. The operator BS%PP9%t> associates to the function f € Cy(I?), the
pseudo-polynomial B,f,f:;p P038>( ) defined by

Bt (f)(a ) = 303 wma @Yni(y, A St E 1)
k=01=0 q (23)
e, 2 - (EEE 1A,

If p=¢ =5 =1 =0, one obtains the Bernstein-Stancu blending operator
B%P> studied in the paper [1] and also in our paper [3],[4].
Ifp=g=s=t =0and @ = 8 = 0, one obtains the classical Bernstein operator -

Bum », which was considered in {7].

Lemma 2.3. If 0 < a(m) — 0(m — 0),0 < B(n) — 0(n — 00), the operator Ly, has

the following properties:

(i) L n(e)(z,y) =

(it) Limn(p)(z,y) = x +umn(x )

(111) Linn(d)(z,y) = y+ tma(z,y)

(1) Lmn(9® +¢%)(2,2) = 2% + ¥* + wm,n(, 9)

where Um n{Z,¥), Vmn (L,Y), Wmn(2,y) converge to zero uniformly on I? as m,n tend
to infinily.
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Let be 6, > 0,8, > 0;applying the theorern 2.1 (ii) with A, = Ii:;'%'-_f‘-';—',,\g =
Jy— 2|

—E5 1t results -

(2.6) | f(z,y) = BSGPP92>(f)(z,y) <
< wmizcd(ala‘s?) ' (1 + 31; g: l"': - m+q Iwm k(z a))

(1 + ;‘;éo ly— 2% | w, z(y,ﬂ))

From the inequality of Schwarz, one has

m m Ic 2
(2.7) 2 |2~ B2 | uma(z, ) k};g( 242) wm a(2, )

n n 2
5 1y =4 Toniw8) < [ (v- 25) wnatw, )

After some transformations, from (2.6) and (2.7) it results
(2.8) | f(z,y) — BRRPP9* > (f)(2,y) <

< wmir;d(él,éz) . (1 + 317 . 'T‘-_lra\/p(p_‘_ 2m) + m{ltmaa!') .
(142 - Shry/fsls +2m) + 3

Choosing

2 1
b = ——\/p(p+ 2m) + m(]+ ma)

m+gq 4(1+a)
8y = \/s(s+2n)+ll‘—1((ll-’:"—nﬁl;)

in (2.8) and taking the supremum, we obtain (2.4).

As a consequence of the theorem 2.2, one has

Theorem 2.3. [3] If f € Cy(I%),then
(29) s 1 1(e) = B (o) 1€ () wmiees /50D a0E5HT)

Proof. Iu the theorem 2.2 weput p=¢=s=¢t=0. o

As a consequence of theorem 2.3., one obtains

Theorem 2.4. [Z]If f € (,{(1%), then (2.10) s(up) . | f(z,9) = Bno(f)(z,y) '<
z’y E

(%)Zwmixed (71,7_1; 71,-,) .
Proof. In the theorem 2.3. we put « = 3 =0. ]
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STUDIA UNIV. “BABES-BOLYAl", MATHEMATICA, Volume XLIX, Number 1, Match 1997

SHAPE PRESERVING PROPERTIES OF SOME SPLINE-TYPE
OPERATOR

PETRU P. BLAGA

Dedicated to Professor D.D. Stancu on his 70*P birthday

Abstract. In the present note there are investigated properties of conservation of
monotony and convexity of a function which is the argument. of a linear and positive

spline-type operator.

This paper is an investigation of some shapé preserving propetties of the spline
positive linear operator introduced and studied by Stancu [7, 8]. The considered positive
linear operator is a slight generalization of the Schoenberg operator [6] by using some
nodes depending on two non-negative parameters. The Schoenberg spline-type linear
positive operator was investigated in detail by Marsden and Schoenberg [5] and by Mars-
den [3, 5]. The bivariate Schoenberg spline-type operator were cousidered in [1, 2]. We

also remark the shape properties of the Schoenberg operator were pointed out in [3].

Let us consider a partition A, {(with n > 1) of the interval [0, 1] defined by

An :0=ZL‘0<$1$IQS"'S$"_|<.’E,,:l

»

and the corresponding extended partition A, x (with k > 1) given by
Bpg k= =20=0<51 <2< a1 <1 =2n = = Tnys

The knots of these partitions satisfy the condition x;_, < x;, for k < i < n, i.e. at the

most k — 1 order of the multiplicities of knots sitnated in the interval (0, 1) s allowed.

Neceived by the editora: October 15, 1998
1991 Mathematics Subject Clasasfication. 41A36, 11A15

Key words and phrases. Positive linear operator, spline function, monotonicity, convexity
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Using the extended partition A, & and the (k + 1)-th divided differences, the B-spline\‘

functions of degree k |
|

M; i (z) = [1‘4, e Tipks1; (B + 1) (t = z)i] , i= —k,.n -1, !

are defined. The normalized B-splines of degree k are given by

z. _z-
Nik (z) = ‘“;’:l 2 Mi k (2) = (Tighe1 — i) [z.-,...,z.-+,.+1;(t-z)’;]. 2

Considering two real parameters « and § satisfying the condition 0 < a < 8, the following

nodes

f?”p— Zipt+ o+ Tigk +a
BT k+8 ’

are given. These nodes satisfly the following relations

it=—-k,n-1

0<Ef, <P <<€, <1, (1)
and
~a,f _‘Bi+k—xi O A
§ =&k _—k+ﬂ , t=-kn-~-1 (2)

The generalized Schoenberg-type linear positive spline operator Sy f introduced by Stancu

is defined, for any function f : [0,1] =& R, by the following formula

(s;f;,ﬁ’f) (z) = P (f;z) = S“N,k (g;j;f’), ze0,1). (3)

1_—k

The first two derivatives of the spline function (Sz‘f f) (z) will be calculated.

Taking into account the formulas (1) and (2) we have

M _ipr k-1 (z), for i = —k,
(@) =% Mip_:(z)= Mijrs-1(z), fori="k+1L,n=2, (4
M_i v (2), fori=n-1,
when k& > 1.
34
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If we use the formula (4), for the first derivative we have successively

(s221) @ =3 (o1 (€52) @®)

i=—k
=Mn_1 - 1($)f( .0 lk) M—k+1,k—1(l‘)f(ff';f’,k) (4)
b5 M ()~ Mive V@) f (€57) (5)
i=—k+1
=Ma-1-1(2) £ (62214) = Moksrpor (2) £ (€25,) (6)
+'§M,k1 ( ) EMI:I f(( k) (7)
i=—k+1 i=—k42
= 'i M.'_k-x(ar)f(fff;f)_ "z-:l M;'k_l(z)f(ff_’[;’k) (8)
i=—k+41 i=—k+1
= T Misarte) 7 (&) - £ (22.)) (9)
i=—k+1

S R

—k+1

In this way we have that

(s227) (o) = )y S [r(e) - 1 ()] Mot (@ (11)
i=—k+1

=__ﬁ Z |k 1 [E. 1,k ] (5)

In a similar manner, for the second derivative we have

n-1

st - E e $ meeletoan o
1= i==k+1
=% ﬂ' Z M; -2 ( ([salk f] [,_ok :a":,k; ])v (13)
iz=—k42

and therefore
(50) @ = 3 Mol (€F -€28,) [0 netaedis].
i=~k+4+2

when k > 2.
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It should be observed that if =; k41 < zj, for k < i < n, then {:’,ﬁ_, - {f‘_"? Ny =
D12 5 (), and

k+ﬂ

k1 k-1 Nix-a(2)
Mik-2(zx) = —— N 4- =5 ' —; '
k)= S Ty TR

Thus the following formula

(5225)" (@) =) (14

(k+ﬂ)‘k+ﬂ—1)
ad  pap. o ik~

x Z [54 2h'£i-—l,kv€(,h'f] —Nip-2(2) ()

i fd—u 1

i=m—k+2

is obtained.

If we use the formulas giving the first two derivatives of the spline function
("“ﬁ f) (x) we shall obtain the preserving properties of the linear positive operator
Sn,'k
Indeed, if f 1s an increasing (resp. decreasing) function on the interval [0, 1] then all
divided differences in formula (5) are positive (resp. negative). Such that the first
derivative of the spline function S:f (f) is a positive (resp. negative) function , i.e. the

operator Sf:f preserves the monotonicity of the function f.

Analogously, if f is a convex (resp. concave) function on the interval [0, 1], then all divided
differences of the second order in formula (6) are positive (resp. negative). Taking into
account that E:" f, 2k > 0 we have that the second derivative of the spline function
Sn,~ (f) is a positive (resp. negative) function, i.e. the operator S’ k preserves the

convexity of the function f.

We rernark that the convexity of the order two is not preserved. Taking the same example
as in {3], f (z) = 2%, which is a convex function of the order two, but the corresponding
spline function S:E {f) {£ > 3) is not a convex function of the order two.

U






STUDIA UNIV. “BABES-BOLYAI", MATHEMATICA, Volume XLT Number 1, March 1997

HEREDITARY PREDICATES

N. BOTH AND i. PURDEA

Dedicated to Professor D.D. Stancu on his 70t* anniversary

Abstract. A general definition of hereditary predicates (predicative formulas) is

given, as well as their relation to monotony and to elementary predicates.

The notion of heredity surpasses the frame of mathematics. As an example of
hereditary property is the notion of (linear, algebraic, relational) independence (see [1])
in the sense that if a set is independent then each of (nonempty!) subset is independent.

In this article we get a generalization of hereditary properties and some particular

cases of heredity, as the logical monotony (see 3], [2]).

1. Heredity and co-heredity

Let P be the set of bivalent propositions, =, the logical implication and (A4, »)
a relational structure, where r = (4, 4, R) is a binary relation.

The unary predicate P : A — P is called (r, =)-compatible if

(comp.) zry = (P(z) = P(y)) (see [5]).

Particularly, if (4, r) is (P(M), C) and P is an unary predicate on the Power set
P(M), then P is called hereditary predicate if

(er). XCY = (P(Y) = P(X)).

Analogously, P is co-hereditary if

(c0). XCY = (P(X) = P(Y)).

The fact that P has one of the properties (co or er) will be denoted by "co P”,
"er P” respectively.

Ezample 1. In the vector-space (K, V, +, ) with two predicates: P,Q : P(V) = P,
P(X) =" X is independent”

Received by the editors: February 25, 1997,
1991 Mathematics Subject Classification. 03B0S.

Key worde and phrases. predicates, monotony.
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Q(X) ="X generates V”,

we have er P and co Q.
Remark 1. Observe the "duality” between the predicates P and @ above.

Theorem 1. (i). coP & er P _
(ii). coP and co Q = co (PAQ)
(1i). coP and co @ = co (P V Q)'
(). erP & coP
(75)- er P and er @ = er ('P/\Q)
(i57). erP ander Q@ => er (PV Q)

Proof. For X,Y € P(M), denoteé px,py,qx, gy the propositions P(X),P(Y), @(X) and
Q(Y') respectively. We accept as a general assumption: X C Y, and so, the corresponding

properties may be formulated by:

erP: Py DPx. er Q: Py DPx

coP:PxDPy, co@:PxDPy,

where D is the propositional implication (as binary operation).

Now, we may prove the Theorem 1 starting from the truth-table below, having
24 = 16 lines and 18 columns. The columns (7), (8), (9), (10), (11), (16), (17) and (18)
represent the properties: co P, co @, er P, er Q, co P,er P, co (PAQ@)and co (PV Q).
Moreover, for the second part of Theorem 1, on finds out that er (PA Q) and er (P V Q)
is given by (13) D (12) and {15) > (14).

Recall the significance of the columns:

HN=px (=pxdpr (13)=pyAgy
(B8)=gxDdgr (14) =pxVax
(9)=py Dpx (15)=pyVey

y (10)=gy Dgx (16) = (6) D (5)
(L) = (8) D (6) (17) = (12) 5 (13)
(12} = px ~Ayy (18) = (14) D (15).
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Col.

Lin. 1(2(314]5({6|7[8|9]10(11|12[13|14(15{16(17[18
1 ojolojofr|rjrj1j1f1f1{o0j0f0j0j1f1¢1
2 o|jojof{rfrf1y1j141{0i1j0j0j0 1111
3 0i0y1|0{1(141j0j1,111|0]0{1}0}|1]1{0
4 g{o|1j1jyjif1jyif1y1(010f1j1)1(1]1
) 0{1|0{0{110j2j1(0{1|0j0}0j0O11|1]1]1
6 0{1|0j1({1{0(|1(2|0{0}{0(0{2 |01 |1|1]|1
7 o|1fj1j0(1{0f1]|04j0l1]j0]O0jOf1|1{1l1]1
8 o(1j1y1j1j0f1{yy0f1j03011 11114111
9 11010{0j011j0J2f1]1}1]0({0]1j0{0]1]|0O
10 100101011010("11011
11 110j1({0|0f1]|0]|0f1|1{1|1{0j1f0|0]0O{0O
12 110{1110(1]|0|1j1j1(21j1i0}1({1({0]0}1
13 1irjojojofo(1f1f1j1j1]040f1f1]1f1}1
14 111|10{1|0j0j1411fO0|1|jO{21]1|1|1j1]1
15 1111110901071{0f1j1 |1 |1|0j1}|1|1({0]1
16 1{1j1j1j010¢1fyj1y1j1 141 f(1j1y1|1;1

Finally, the proof is obtained by comparing of columns in the truth-table above,
namely:

(7) and (16) for (i),

(7), (8) and (17) for (ii),

(7), (8) and (18) for (iii).

For (j), (ji), (ijj) - analogously. o

Remark 2. The converse of (ii) or (iii) is not true.

Remark 3. A ”weak-converse” of (ii), namely

(iv). co(P A Q) = co P or co Q holds.

Corollaries. 1. erP and co @ = co (P D Q).
2 coP and er Q = er (P D Q).
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2. Monotony and heredity

Let ¢(P1,...,Pm; Q1,-..,Qn) be a predicative formula over P(M), containing
the monadic predicates P;, Q; only (i = 1,m and j = 1,n).

Denote
S(6,Pe, ) =d(P1,.. ., Pe—1,2, Praty - -, Pm; @1, ..., @n).

The predicative formula ¢ is called increasing (or decreasing) monotone in P,
(see [2] and [3]) if it has the property:
(mon). ¢ D¢ = S5(4,Pr,p) D S(¢,P,¥)

or

(mon*). D¢ = S(¢,Pk,¥) D S(¢,P,9).
Theorem 2. If the formula ¢ is increasing in P;, i = 1, m and decreasing in Qj,j=1n
then:

a. coP,i=1m andeer,jo,—ﬁ = co ¢.

b.erP,i=1,mandco Q;, j=1,n = er¢.

Proof. (by induction on the construction of ¢)
(). If ¢ is an elementary formula then ¢ = Py or = @4 and the proof is trivial.

(83). If ¢ has one of the forms:

Y, viAY, $1Vie, D,

and suppose that for i, ¢, the Theorem 2 holds, then from Theorem 1 and his

Corollaries, the proof results. ]

3. Elementary predicates

Given the n-ary predicate on M, p : M™ — P (that is p € Ilp, see [4]) and
define the universal extension of p, P, : P(M) = P, P(X) =V 2; € X : p(x1,...,2.);
also define the ezistential extension of p, Py - P(M) - P, ’P;(X) =3z; € X:
p(zy, . .., xn).

Call the predicate P : P(M) — P, n-elementary {or simply elementary) if there
exists p: M" — P so that P = P,. Analogously, P is called n-coelementary (or simply
coelementary) if there exists an n-ary predicate p on M so that P = P;. Write "el P”

(or "col P} if P 1s elementary (or coelementary).
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Theorem 3. a) el P = er P.
b)cod P = coP.

Proof. Let P be a predicate on P(M) and X,Y C M, so that z C Y.
a). If el P then there is p € Ily so that P = P,. Therefore P(Y) = Pp(Y) =
VHEY :p(yr, - un) = Vyi € X :p(yr,. .., ¥n) = Pp(X) = P(X), that is er P.

b). If col P then there is p € Iy so that P = P;. Therefore P(X) = P;(X) =
3zie X:p(z1,...,2z0) = 3z €Y :p(z1,...,2n) =Py (Y) = P(Y), thatiscoP. O

Ezample 2. Let p be a ternary p}'edicate on (A, ), p(z,,z2,z3) =" (z122)23 = 71(x223)",
and P = P,. As 3-elementary, P is also hereditary (Theorem 3). Particularly it follows

that each subgroupoid of a semigroup is semigroup too.
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AN EXTENSION OF THE SPLINE FUNCTIONS OF FOURIER TYPE
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Dedicated to Professor D.D. Stancu on his 70t? anniversary

Abstract. The aim of this paper is the investigation of a class of interpolation
spline functions, which are more general then Fourier-type spline functions. One
computes the analytical expression of this functions and a numerical example for

there computation is provided.

1. Introduction

Let 2 and b be real nuinbers such that @ < b and let ¢ be a positive integer. We
denote by H9(a, b] the real linear space of all functions f : [a, ] = IR whose derivatives of
order ¢ exist a.e. on [a,b] and are square Lebesgue integrable. Endowed with the scalar

product (-, -)q : Ha, ] x H[a,b] = R defined by

q b . .
(=Y [ 1O0e 0,
i=0 Ve

this space becomes a real Hilbert space (see (3], p. 1565).
It is well known (see [3], p. 226) that a spline function of Fourier type represents

the minimizer of the functional
1 2
fe?i"[—l,l]r—)/ (f(")(f.)) dt e R (1)
—1

on the set consisting of all functions f € H9[—1, 1] that satisfy interpolation conditions
of the form
1
/ MOfOd =y ({1, n}). (2)
-1
where n is a positive. integer satisfying n > g, AL, ..., Ay are the first n consecutive

Legendre polynomials with respect to the interval [~1,1], and y1, . . ., yn are real numbers.
Received by the editors: March 15, 1997.
1991 Mathernatics Subject Classification. 65D05, 65D07.

Key words and phrases. Fourier-type spline functions, analytical expression



HANNELORF. BRECKNER

The purpose of this paper is to introduce a kind of spline functions that solve
minimization problem which is more general than the problem mentioned above. For this
end the special interval [—1,1] is replaced by the arbitrary interval g, b}, the functional
(1) by

feHa,b] / ’ ( f<v>(t))2dt €R, (3)

and the Legendre polynomials Ai,..., A, by n arbitrary polynomials p;,...,p, of de
grees qi,...,q, respectively, where qy,...,qn are distinct positive integers safisfying
{0,....¢-1}C{ar, -..qn}

In the paper we prove the existence and uniqueness of such spline functions. Since
the polynomials py, .. ., p, that occur in our interpolation conditions are not orthogonal,
the techniques used in the case of spline functions of Fourier type cannot be applied
in our case. By investigating minutely the properties of the functions that we use, we
arrive to results that have not been explicitly pointed out in the case when the Legendre
polynomials were used. We also find an analytical expression for these spline functions

Their practical determination will be illustrated by a numerical example.

2. Some Preliminary Results

Let £2[a, b] be the real Hilbert space consisting of all equivalence classes of func-
tions f : [a, b] = IR which are square Lebesgue integrable. Let (., -)o be the scalar product
and let || - ||o be the norm of this space. We denote also by f the equivalence class which

contains the tunction f. Wc define D : H9[a, b] — L[a, b] by
D(f) = 9.

‘This mapping is linear and continuous. The linear subspace D(#9(a, b)) of £*{a, ] will
be denoted by H-. In what follows it will be consideted as a linear space endowed
with the scalar product (-,-)o and the norm || - ||o. We also denote by D the mapping
D:Ha, b — H.

Proposition 2.1. The space {H, ]| - ]|} ts o Hilbert .pace.

16
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Proof. Let (f,) be a Cauchy sequence in the space (H,|| - |lo). We will show successively
that for each k € {1,...,¢ — 1} there exists a sequence (F,) in the space H[a,d] such

that the following assertions hold:

(F497%)) is a Cauchy sequence in H*[a, b]; (1)

D(F,) = f, for each n € IN. (2)

Let k = 1 and consider an arbitrary ¢ > 0. Since (f,) is a Cauchy sequence,

there exists an ng € IN such that

/: (f,,(z) - fm(t))Zdt < ¢ (3)

for all m,n € IN with m > no,n > no.

Fix an arbitrary n € IN. Since f,, belongs to H, there exists a function G, €
H(a,b] such that D(Gn) = fa, i.e. Gs,q)(t) = fa(t) ae. L€ [a,b]. Because (}'s.q"') is an
absolutely continuous function (see {1}, Theorem (18.17), p. 286), it has the form

t
GU-(t) = / fa(s)ds + GUV(a) for each t € [a,d].
On the other hand, there exists a function F,, € H9%a, b] which satisfies
FO-91) = GY-Y(t) - G9~*-Y(a) for each 1 € [a,b].

By derivation we obtain F,(.q)(t) = Gs.q)(t) a.e. { € [a,b], which implies D(F,,) = f,. So

we have found a function F,, € #[a, b] satisfying

Fl-1(4) = /t fa(s)ds for each t € [a,d] (4)

and D(F,) = fa.
The relations (3) and (4) imply

2 b 2 .
(FiD() - Fe9(0) " < (b——a)/ (fa0) - fm(0)) dt < (b - @)
for all m,n € IN with m > ng, n > ny and each t € {a,b]. Hence it results that

b 2
[ (#ew - B @) de < o a2 5)

for all m,n € IN with m > ny, n > ng. Taking into account that

b 3 b -
NFSD — Fl= D) = / (P - F@) ars [ (faw fun)
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we deduce from (3) and (5) that ( ,sq~l)) is a Cauchy sequence in #![a, b]. Therefor
there exists a sequence (F,) in #4[a, b] for which (1) and (2) hold.

Now we consider a number k € {1,...,¢ — 1} satisfying (1) and (2). We prov
that these assertions are also true for k + 1. By the hypothesis concerning k there exist:
a sequence (G,) in the space H%[a,b] such that (Gf,q—k) ) is a Cauchy sequence in th
space H*[a,b] and D(G,) = f, for each n € IN.

Consider an arbitrary n € IN. Since k 2> 1 and G € H9a,d], it follows thal
Gﬁ.q—k_l) is differentiable and that its derivative Gs,q—k) is continuous. Therefore it car

be written as
G0 = [ Gl(e)ds + G+ ) ®
a
for each t € [a, b]. On the other hand, we can find a function F,, € #%a, b] which satisfies
F,Sq‘k;l)(t) =G *-V(t) - GW*-Y(a) for each t € [a,}]. (7

By derivation we obtain G.(,q_k”)(t) = G&q_kﬂ')(t) for each j € {0,...,k — 1} and each
t € [a,b], and also F\?(t) = GP(t) ae. t € [a,b]. Thus D(F,) = f,.
Take an arbitrary ¢ > 0. Since (Gs.q—k)) is a Cauchy sequence in the space

H*[a,b], there exists a number ng € IN such that the inequalities

1G4 = Gl < ¢ ®
and
b 2
[ (60 -6l hi) a g e ©

hold for all m,n € IN with m > ny, n > ng. From (6), (7) and (9) it follows that

(ri*=00 - Fg0) < - a) [ (6570 - Gl ) dt < (- )

[

for m,n € IN with m > ng, n > ng and each t € [a,b]. This implies
b 2
| (R - Blg0(0) dt < 6= o (10
a
for m,n € IN with m > ng, n > ng. Taking into account that

b 2
=0 = B, = [ (P00 - FE0) e 6 - G
a

18
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it follows from (8) and (10) that (F{**~") is a Cauchy sequence in the space #*+1[a, b).
So there exists a sequence of functions in the space H9[a,d] for which the assertions (1)
and (2) hold.

Finally, it follows that for k = ¢ there exists a Cauchy sequence (F,) in the
space H9(a, b] such that D(F,) = f, for each n € IN. Since #%(a, b} is a Hilbert space,
there exists a function F' € H9a,b] such that (F,) converges to F. In virtue of the
continuity of the mapping D the sequence (D(F,)) converges to D(F), which belongs
to H. Therefore the sequence (f,) is convergent. Consequently, (H,|| - ||0') is a Hilbert
space. a

In conclusion D is a linear, continuous and surjective mapping between two

Hilbert spaces.

3. Main Result

Let ¢ € N be fixed and choose n € IN distinct positive integers ¢, ..., ¢, such

that {0,...,4—1} C {q1,...,9n}. Foreachi € {1,...,n} we consider a nonzero polyno-
mial p; of degree ¢; and define the functional ®; : H[a, b] = IR by

b
@m=/mmmm.

In view of the Riesz Representation Theorem there exists for each i € {1,...,n} a unique

u; € H9[a, b] such that
®;(f) = (f,ui)q for each f € Ha,b].
We claim that the functions u,,...,u, are linearly independent. Indeed, let ay, ..., o,
be real numbers such that
ajuy + -+ apy = 0.

Then we have

b
/ (eaps(t) + - - + anpa(t)) F(t)di =0

n
for each f € H[a,b]. In particular, for f = Za;pi we ¢ olude that f = 0. But the
i=1

polynonials py, .., p, have distinct degrees and therefore © . are linearly independeat.

19
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Hence we must have o; = 0 for each 7 € {1,...,n}. In other words, the functions
U1, ..., U, are linearly independent as claimed.

Let the mapping ® : #%{a, 5] = IR" be defined by

Obviously, ® is linear and continuous. Let ®* : IR" — H[a, b] be its adjoint mapping.

This is also linear and continuous, and has the fcllowing expression:

Q*(z) = sz, for each £ = (x,...,2z,) € R".

=1

Proposition 3.2, The mapping ® : H9a, b] — R” s surjective.

Proof. Starting from the linearly independent polynomials py,...,p, we construct n
orthonormal polynomials ry,. 1, by the orthonormalisation proéess associated to the
scalar product (-, )0 From this construction it follows that each polynomial p; (i €

{1,...,n}) can be written in a unique way as

i
pi =y oy, (1)
j=1

where o} (j € {1,...,i}) are real numbers with ol #0.

Let (by,...,b,) € IR". We will find n real numbers ¢;, ..., ¢, such that
Q(Clrl""""i‘cnrn)—_‘(bly-")bi.‘)' (2)
Indeed, in view of (1) and the orthonormality of the polynomials 74, ..., r, we have

n b
Di(cyry+ - Fearn) = ch‘ / p;(t)rj(t)dt = cla'l + - +cal
j=l1 a

for each 7 € {1,...,n}. Introducing these values into the equality (2) we obtain the

following system:

e -
C1Q, - bl
ﬁ craf 4+ -+ cal = b
aal - teaid - -Feqan = by
‘This system has a unique solution, because its determinant is a} - - - - - aly # 0. So there

exist 1 real numbers o, ... ¢, satisfying (2). Hence @ is a surjective mapping. 0
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Notations. If X and Y are linear spaces and 7" : X — Y is a mapping, then

we set

N(T) = {z € X | T(2) = 0},
IT)={yeY |Ize X :T(z) =y}

For any y € R” the set of all functions f belonging to the space #[a, §] that satisfy the

interpolation conditions

b

/ pi(t)f)dt =y (1€ {l,...,n}),

a

will be denoted by A,, i.e.
Ay = {f € Ha, 8] | &(f) = y}.
Proposition 3.3. The following relation holds:
N(D)n N(®) = {0}.

Proof. If f € N(D), i.e. D(f) = 0, we can write f(9(t) = 0 for a.e. t € [a,}]. By a
well-known theorem (see [1], Theorem (18.15), p. 284) we can see that

F9=I(t) = fl9-1)(q) for each t € [a, b},

ie. f € Py_1, where P,_, is the set of all polynomials of degree ¢ — 1 at most. Therefore
N(D) = Pg_:.

Take an f € N(D) N N(®). Then we have f € Pyg_; and ®;(f) = 0 for each
i€ {1,...,n}, which means that

b
/ pi(t)f(t)dt =0 foreachie€ {1,... n}. (3)

Since p;,...,pn are polynomials of degree ¢;,...,¢, which satisfy {0,...,¢ ~ 1} C

{q1,...,4¢n} and since f € P,_,, there exist n real numbers «;, ., @, such that
n
f(t) = aipi(t) for each t € [a,b].
i=1

Multiplying each side of this equality with f(t) and then integrating over the interval

[a, b], we obtain
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In view of (3) it follows that

/ab (f(f))2dt =0.

Therefore f must be a.e. equal to zero. So N(D) N N(®) = {0}. 0

Using tle results stated in this section and in section 2 we will solve now the‘l

o . i
minimization problem formulated at the beginning of this paper. ‘

Theorem 3.4. For any y € IR" there exists a unique o € Ay such that
tD(o)llo = min{}{D(f)llo | f € 4y} (4

Proof. Finding a function o € Ay for which (4) holds is equivalent to determinate a class

fo € D(Ay) such that

ifollo = min{liglio | ¢ € D(4y)}.
In other words we have to find the best approximation to the zero class belonging to H
by using the elements from (Ay). For this end we prove that D(Ay) is closed. D(A,)
can be obtained from D(Ag) by a translation, hence it suffices to prove that ID{Ag) isa
closed set.

Let us define Dy : N(D)* — H by Dy = D |y(py+. Obviously D is linear,
"continuous and satisfies N(D;) C N(D). But we also have N(D;) C N(D)*. which
implies '

N(D1) C N(D) N N(D)* = {0}.
So N(D,) = {0} and therefore D, is injective.
Since N (D) is a complete subspace (N (D) = Py_, is a linear subspace of dimen-
sion ¢), we can write
H[a,b] = N(D) & N(D)*,
and so
D(Ha,b]) = D(N (D)) + D(N(D)*),
which means

A = {0} + Dy(N(D)') = Dy(N(D)*).

Consequently, Dy is surjective. Therefore D; is a linear, continuous and bijective map-
ping. From a well-known theorein concerning the continuity of the inverse mapping (see

[3], Theoreme 4.2.7, p. 183) it follows that Dy is a closed mapping.
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In order to show that D(N{®)) is clused, we prove that
D(N(®)) = D((N(I)) + N(®)) N N(D)*).
Obviously, we have
D((N(D) + N(®)) N N(D)*) € D(N(D) + N(®)) C D(N(®)).
So it remains to show that
D(N(®)) C D((N(D) +N(®)) N N(D)l).
Let us choose an arbitrary f € N(®). Since
#H9{a,b) = N(D) & N(D)*,
there exists a function g € N(D) such that f — g € N(D)*. Consequently, we have
f -9 € (N(D)+ N(®)) N N(D)*,
which implies that
D(f) € D((N(D) +N(®)) N N(D)*).
Hence
D(N(®)) C D((N(D) + N(®)) N N(D)L).

Since N(D) = Pg-; has the dimension ¢ — 1 and N(®) is closed, it follows that
N(D) + N(®) is closed. N(D)* is also closed and

D((N(D) + N(@) NN(D)*) = Dy((N(D) + N(@) n N (D)),

where D is a closed mapping. Thus D(N(®)) = D(Ao) is closed and hence D(A,) is
also a closed linear subspace of the space H. Using a well-known theorem (see [2], Satz
16.2, p. 143), we conclude that there exists a unique best approximation fo € (Ay) of
the zero class (belanging to H) using the elements of D(A,).

The relation fo € D(Ay) implies the existence of a tunction o € Ay for which
D(o) = fo. In order to show the uniqueness of this function we consider two functions
01,02 € Ay such that D(oy) = D(02) = fo. Hence 0, - 04 € N(D) and oy - a2 € N(P)
From Proposition 3.2 it follows that o4 = 2. So there exists a nnigue {excepting a set

of measure zero) function o € 4y for which (4) holds ]
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Let y € IR”. The function o € A, whose existence and uniqueness are assured
by Theorem 3.3 is called interpolating spline function with respect to (D, ®,y).

In particular, if we consider the interval [~1, 1] and if the polynomials p,, ..., p,
are the first n consecutive Legendre polynomials with respect to the interval [-1, 1], then
the interpolating spline function with respect to (D, ®,y) is exactly the spline function
of Fourier type.

Next we will use the following result whicn can be found in {3], Theoreme 4.3.9

p. 193.

Proposition 3.5. If T is a lincar and continuous mapping between two Hilbert spaces,

and T™ is its adjoint, then the following relations hold:
()]
1. [(T) L= N(T*), I(T*)' = N(T).
2. I(T) = N(T")*, I(T*) = N(T)*.
3. I(T) is closed if and only if I(T") is closed.

Proposition 3.6. The following relations hold:

I(D*) = N(D)*, ()

(%) = N(®)*. (6)

Proof. Since D and ® are surjective, it follows that I(D) = H and I(®) = IR". Therefore
I(D) and I(®*) are 2lso closed sets. Thus (5) and (6) hold. ]

Theorem 3.7. Let y € IR", and let 0 € Ay. Then o is the interpolating spline function

with respect to (D, ®,y) if and only if there exist n real numbers ry,...,r, such that
n
D*(D(0)) = ) rius. (7)
i=1

Proof. Necessity. Since ¢ is the interpolating spline function with respect to (l),¢?y),
D(a) is the best approximation of 0 € H by using elements of D(A, ). By means of the
characterization theorem of the best approximation in a Hilbert space (see [2], Satz 16.3,
p. 144) we have (D(0),g)o = 0 for each g € D(Aq). Therefore D(s) € D(Ao)* and
(D*(D(0)), f), = 0 for each f € Ao. But we have Ag = N(®); thus D*(D(0)) € N(®)*.
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Taking (6) into consideration, it follows that D*(D(s)) € I(®*). On the other hand, the
adjoint mapping ®* : IR" — H9{a, b] of ® has the form

®°(z) = Zz.-u,- for each ¢ = (z,...,z,) € R".

=1
Since the functions uy, . .., u, are linearly independent, we have I(®*) = sp{u;,...,u,}.
Therefore D*(D(o)) € sp{ui, ..., un}, i.e. there exist n real numbers ry,." ., r,, for which

(7) holds.

" Sufficiency. From (7) it follows that D*(D(c)) € sp{uy,...,un} = I(®*). Ac-
cording to (6) we have /(®*) = N(®)*, and hence D*(D(c)) € I(®)t. This means that
(D*(D(0)), f)q = O for each f € N(®), ie. (D(c),g)o = 0 for each g € D(N(®)). By
the characterization of the best approximnations in the subspace D(A,) we conclude that

o is the interpolating spline function with respect to (D, ®,y)." 0

Now we are able to determine the analytical expression of the interpolating spline
function with respect to (D, ®,y). From Theorem 3.6 it follows that there exist n real

numbers 7y, ..., 7, such that

n

D*(D(e)) = ) riui.

i=1

On the other hand, (5) imphes that D*(D(o)) € N(D)*. Consequently, we have

n
(Zﬁ'ui,}’)q =0 for each pe N(D)="P,_,.

i=1

Therefore the following relation holds

n b
Yo [ mOpOd =0 for each p Py ®)
P a
Since {1,¢,...,t971} is a base of the linear space Py—1 we can see that (8) holds if and
only if
n b )
Zr‘[ pi()t?dt =0 foreach j€{0,...,g~1}. (9)
. a

Let us choose an arbitrary f € #%{a,b]. By Taylor’s formula we have

b _Tq—l
t)—Z(‘ e+ [ o ar (10)
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for each t € [a,b]). Using (9) and (10) we obtain

(D(f), D(0))o = (f, D" (D(0)))g = Y _ rilf wi)q =
i=1

=N i [ pft)dt= | fOr)G(r)dr = (D(f),G)o,
[ [ 196t = (011,61
where

G(r) = Z / (q___)ﬁTdt for each 7 € [a, ).

Since the equality (D(f), D(c))o = (D(f),G)o was stated for an arbitrary f € H9[a,b],

we must have
o9(r) = G(r) forae. r€la,bl.

G is a polynomial and so it velongs to H. Since the interpolating spline function with

respect to (D, ®, y) is unique (excepting a set of measure zero) it results that

—t
o 9(r) = (- 1)927.'/ pilt (r + dt for each T € {a, b]. (11)

By ¢ times integration we get

— $)%4-1
o(r) = Zc]r’+( 1) Zr./ pi(t (T2 t_)l) dt (12)

i=1
fo. each 7 € [a, b}, where ¢, ...,cq_1 are real constants.

Conversely, if we have a function o defined by (12), where the real constants
€0, -.,Cq—1,T1,. .., Tn satisfy (9) and ®(o) = y, then o is the interpolcting spline function
with respect to (D, ®,y). The n + ¢ constants can be uniquely determinated by solving
the following system:

b

/ pi(t)a(t)dt
Xn:'l‘,' /b p,'(t)tjdt

So the analytical expression of the interpolating spline function with respect to (D, ¢, y)

vi (Fe{l,..,n})

1l

0 (Ge{0,....q—1}).

It

is given by (12) and the constanis can be determinated by solving the above system.
If we start from (11) we find another characterization of the spline function with

respect to (D, ®,y). By g times differentiation of eacl side of the equality (11) we get

&R
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o®(r) = ripi(r) (13)
i=1
for each 7 € [a, b] and
o W(a)=0 for each j € {q,...,2¢-1}. (14)

For each j € {g,...,29 — 1} we use Taylor’s formula for (/) and have

2q—1-j 2q—1—

; b—a)f . (b — 7)29-1
o) (b) = ( ok +i)(q) + / (g
kz_-:;) k! @ (241—1—1)'0r (r)dr.

From (9), (13) and (14) we obtain

—r)%9-1-J n b (b r)2¢-1-j
@b (ks M %) =3 (6-1) . -
o / g1 _])' (m)dr 2. r; o 1=g) pi(t)dr =0

foreach y € (9, ..., 2¢—=1}. So the interpolating spline function & with respect o (4, S, ¥)

satisfies {13), (14) and also
e (b) =0 foreach j€ {g,...,2¢—1}. (15)

Conversely, if o € H[a, b] satisfies (o) = y, (13), (14) and (15), then o is the
interpolating spline functior with respect to (D, ®,y). This assertion results because

(13) and (14) imply (11), while (14) and (15) imply (9).

4. A Numerical Example

Let g=1and n =2, let & = ($;,®;) : H[0,1] = IR? be defined by

1 1 )
- / fOdt, () = / £ f(t)dt
0 0

and let y = (1,11) € IR2. We search for the analytical expression of the interpolating
spline function with respect to (D, ®,y).

We start by using the formula (12). In our particular case we have

a(ry=co— 1 /T(T —t)dt — ry /T(T - t)t2dt
0 0

for each 7 € {0, 1]. The real constants cg, 1,77 are determinated by the conditions

1 H
(1)1(0') =1, <I>2(cr) =11, 7’1/ 1dt + 7o / t3dt = 0.
0 J0






STUDIA UNIV. “BABES-BOLYAI", MATHEMATICA, Volume XLII, Number 1, March 1997

CONNECTION BETWEEN THE NUMBER OF MULTIGRID
ITERATIONS AND THE DISCRETIZED ERROR IN SOLVING A
PROBLEM OF CONVECTION IN POROUS MEDIUM

IOANA CHIOREAN

Dedicated to Professor D.D. Stancu on his T0*" anniversary

Abstract. The connection between the number of multigrid iterations and the dis-
cretizing process error in obtaining the nuinerical solution of a problem of convection

in porous medium is studicd.

1. Introduction

Free convection in an enclosure filled with a fluid-saturated porous medium has
occupied the central state in many fundamental heat transfer analysis. The study was
made according with the shape of enclosure, the position of the heat sources, the bound-
ary conditions, etc. For instance, Prasad and Kulacki [8] study the problem in a rect-
angular cavity with a heated vertical wall, the other one kept cold, and the horizontal
ones adiabatic. In [7], Prasad reconsider the problem, but with external heat sources.
Riley and Rees [9] consider a more general situation, when the walls of the cavity make
a variable angle . Pop and Inghara [6] study the phenomena in a sphere, solving a 3D
problem. Several other interesting results are given in Nield and Bejan {5]. The problein
under consideration is that of a 2D steady laminar convection in a porous layer bounded
by an inclined square enclosure with four rigid walls of constant temperature. Heat is
generated by uniform distributed energy sources within the cavity. The porous layer is
isotropic, homogeneous and saturated with an incompressible fluid. The heat generation
creates a temperature gradient across the layer, and thereby provides a driving mech-
anism for natural convection within the cavity. The fluid motion obeys the equations

Darcy-Oberbeck-Boussinesq.
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2. Basic equations

Taking into account the nomenclature from [1], for the case of volumetric heating

given here, the governing equations are:

V.V =0, (1)
K
V'=—(p'g - Vp'), (2)
m
aT’ ’ / / 2 i
(p)p g + () (V- V)T = k9T 4 8, 3)
P = poll - B(T' - Ty)] (4)

Transforming these ¢quations by using the dimensionless variables and the Ray-
leigh number, the following parabolic in T system of partial differential equations is

obtained:

or  0yoT 0y oT

6t 0Oydz Oz dy

, ( oT

VY = Ra |sin¢— — cos ¢
Oy

=VT +1,

oT (5)
%)
The unknowns are the temperature function T and the stream function ¢ . We solve this
system being situated in an enclosure with unit square section (L = 1), with the initial

va'ues Ty = 1o = 0 and the boundary conditions

T=¢=0forzr=0and 1,y=0and 1. (6)

3. The discrete problem for the steady state problem

In order to obtain the solution for system (5) with the boundary conditions (6),
we studied, first, the steady state problem, by attaching to the continuous problem a
discrete one, obtained by approximating the space derivatives with the centered finite
differences, according with Roache [10]. The discrete solution for temperature and strean
function was obtained using a multigrid algorithm with a Gauss-Seidel smoother (see

Hackbusch [3]), working on equidistant grids €, defined in the following manner:

@ O = {(ihi, )0 < 1.5 < Nyp by = 1/Ny, Ny = 241}
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Note 1. Index | stays for the level of the grid. Denoting T;; = T(ihy, jhi), ¥i; =
Y(th, jhy) for every 0 < i, j < Ny, the discrete system corresponding to (5) is

Vijrr —Yij1 D —Ticay Vi — Yo Lijn —Thjo1
2+ hy 2+l 2xhy 2Ny
Tijar+Tij1+Livj+ Ty ;—4T; . T
_ , " Y4 =
1
< Yijar +Vij-1+ g1 i1 — Wi R ( T~ T (7)
5 = Ra(sing ————7
h‘ 2*’11
Tiy1 —Ticy,j
k cos ¢ v

The considerations upon the numbers of iterations of multigrid method

As we stated above, the multigrid method with Gauss-Seidel smoother is used

in solving the discretized system, according to the following general scheme :

1. Establish the work grid of points;

2. Fix the initial values for the temperature function;

3. Compute the stream function values in the inner points of the grid based on
the temperature values and on the boundary values;

4. Compute the temperature function values in the inner points of the grid based
on the stream values and on the boundary values;

5. Repeat Steps 3 and 4 until the convergence criterion is fulfil or a maximnm

number of iterations is exceeded.

Note 1. The initial values for «emperature and stream functions are supposed to be

Zeros.

Note 2. In obtaining the convergence criterium, we used the scaled residual norm.
According with Hackbusch {3], the following property takes place:

Property. The discretization error is proportional with power kof the discretized step.

Taking into account this result, we following result. holds:

Theorem. 1fec,~/¢e,~-1 <ax107!, withi=1,..., N(l). then the nunimal needed number

of multigrid iterations needed in obtaining the solution is

ahk
N(l) > [log, —L/log, 5]
reeg 10

, wicre ee; denotes the approximation error at the step i + 1, eeq is the initial error and

a 15 a real constant which verifies 0 < a <5.
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Proof. To make the writing of the proof easier, we will denote in what follows N(l) by

n. According with the hypothesis, by mathematical induction, we can proof that
ee, < eega”107". (8)!

So, for i = 1, we get

eeyfeeq < alO'_l Seep < eegal0~!,

it means (8) is fulfilled. Let’s suppose the relation true for i=n — 1:
een_) < eega™ 1101
We have to prove it for i = n. Accordi'ng with the induction hypothesis
ee, < eeq-1al07! < eega™ 110~ (""1g10~! = eepa™ 107",

so (8) is fulfilled. Further, based on the previous property and on (8), the following
relation takes place: .

een < eega™10™" < ahf (9)

where, without loss of generality, we used the same constant a form the theorem. Taking

into account that eeg > 0 and a/10 < 1, we have:
(e0a™107™ < ahf) & (a" 71107 < h¥ Jeep) & ((n —1)log,a — nlog, 10 <

< logy(hf /eeo)) & (nlog; 15 < log,(ahf/eea)) &

¢ (n > logy(ahf /eco)/ log; 15).
Noting that n is an integer, the theorem is proved. a
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COEFFICIENTS CHOICE FOR A NEW DIRECT INTEGRATION
OPERATOR

A. CHISALITA AND I. CHISALITA

Dedicated to Professor D.D. Stancu on his 70" anniversary

Abstract. For a new direct integration operator, introduced by the authors in {3]
and (4], the best choice of operator coefficient values is presented. The coefficients
B,~ and § are defined as the limits these coefficients approach when At. — 0. The
coefficients 8, 8’ and 8", associated with §,~ and &, are derived from the condition
that they minimize the local error. Global error analysis, time step choice, and
operator order are presented. The two body problem is considered as a numerical
example showing the accuracy features of the new operator, which offers better results

in comparison with Runge-Kutta 4*» order method.

1. Introduction
The operator applies to the direct integration of equations of the form
MU +4(U) + f(U) = P(t) (1)

describing the non-linear dynamical response of a syétem.

In Eq.1: U denotes the degree of freedom vector, and U, U/ the derivatives of U
witl; respect to time t; M is the mass matrix; f and g are the non-linear stiffness and
damping functions, respectively; P(t) is the excitation function.

In particular, for a linear response f(U) = KU and g(U) = CU, in which K

and (" are the stiffness and damping matrix, respectively. For a single-degree-of-freedom

system, Eq.1 reads
mii + g(4) + f(u) = p(2). ()

Direct integration operators for Eq.1 are presented in {1}, [2] and {5]. The new

operator analyzed in this paper has been introduced by the authors, in [3] and [4].
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2. Operator formulae for a single-degree-of-freedom (SDOF) system

We suppose that function u fulfills on the interval I = [to,¢;], ¢} = to + At, one
of the two following conditions:

(1) i is differentiable in I — {t0} or,

(2) it is continuous in to and there exists u-finite valuated or not in I — {to}.

Let denote function values in tg abd t; by the subscripts 0 and 1, respectively.
E.G.: ug = u{to), o = u(to), up = u(t1), etc. Then, for every positive integers p, p’ and

p”, the remainder in the Taylor series of u,4 and i can be taken in Schlémilch-Roche

form, i.e.:
uy = ug + o (At) + iig(1/2)(At)2+ 4 (to + 0AL)B(AL)® (3)
i) = g + dlg(At)+ U (to + 0’ At)y(At)? (4)
iy = tig+ u (to + 0"At;6(At) (5)

Coefficients 3, and § are given by:

_ (1 - 0)3"” _ (1 - 9’)2—}” _ (1 . oll)l—p“
f= 2p = 7 RS I’z (6)

in which 6,8’ and " € (0, 1) and depend on p, p’ and p"”, respectively, and on ¢, - see [8].

If we denote by a bar the truncated Taylor series, i.e.:
Uy = up+ uo(At\) + ﬁo(At)2/2

?;1 =g+ ﬁo(At),

Eqgs.2a-2¢ become

w =W+ U (Lo + 0AL)P(AL)? W)
uy = U+ U (to + 0’ At)y(At)? (8)
iy = tig+ u (to + 8" At)5(AR) (9)

Eqs.4a-4c are general formulae for deriving direct integration operators. Several operutors
are obtained by introducing asswmptions oun the variation of ¥ over the interval [to,t,].
For instance. Newmrark operator assume that u is constant on the interval [to,t,] - see
[4].
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The new operator

The new operator is based on from the following assumption:
Al. | u (2) varies linearly on interval I = [to,1,]

Assumptidn Al leads to
u (Lo + 6AL) =ug +0A u, (10)
where
Aup=u; — Ug (11)

The formulae of the new operator are

uy =Ty + B(4L)2 g +08(AL)3A 4, (12)
i = + 7(At)? g +6'7(Al)?A U, (13)
iy = fig + 6(At) tg +6"5(AY)A 4, (14)

Uy=tg +A U, (15)

3. Coefficient choice

3.1. Coefficients 3.y and 4. The operator coefficients 3, and & will be chosen as the
limit values these coefficients approach when At — 0.
Eqs.7 can be put in the following form:

u; — Uy

A = f o +65A u, (16)
—"(‘A't)';‘ = g +6'7A U, (17)
“‘;t“° = § U +0"8A i (18)

When At — 0, the left-hand sides of Eq.8 approach (1/6) ug, (1/2) uo and up,
respectively. In the right-hand sides, if we suppose u continuous on I, A u;— 0.

So, for any uo# 0, the limit values of 8,4 and § will be the following:
1
= = — = e
B=g5 =5 =1 )
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The value of § in Eq.11 corresponds to the choice of p = 4 in Eq.10a.

In an analogous way, it can be shown that picking

¢ = % and 0" = —;—, (26)

the local errors in © and % are minimized and expressed as follows:
. 1 ..
|Br(in)] < gMs(80)' and |Br(in)] < %Ms(At)a (27)

where My is defined by Eq.12b.
The values in Eq.13 correspond to the choice of p’ = 3 and b" = 2, in Eq.10b

and 10c, respectively.

Definition 1. The operator coefficients defined by the Eqs.9, 11 and 13, will be called

the limit coefficients.

In that follows, Eqs.7a-7c will be considered with 3,4, and 8,6’,8”, taken as
the limit coefficients.

Note 1. The smaller is At, the closer to the exact formulae of u,, %, and i,, are
operator formulae 7a-7c.

Note 2. The limit coefficients are also consistent with the assamption Al, in the
sense that formulae 7a-7c are exact for an assumed variation of a fourth degree polynomial

for u and, a third and second degree polynomials for u and i, respectively.

4. Global error and time step choice

If we denote by T'T the length of the response interval, the global error GEr(u,)

can be bounded as follows:

IGEr(u1)} < (1/24)MsTT(At)* (28)
where

[u® ()| < Ms for te€fto, TT) (29)

The time step has to be small enough in order to meet assumption A2 and use the
limii coeflicients. An estimation of the time step needed to keep the global error under
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7. Numerical example
The two body problem, expressed by the following equations [7] is considered:
Ete/r3=0, j+y/rP=0.
The initial conditions are:
z(0)=1-¢, £(0)=0,

¥(0) =0, ¥(0)=[(1-e)/(1+e)"/?

where r3 = 22 + 2, and e is the orbit eccentricity. The analytical solution is given by
z=cos(u) —e, y=\1-e?sin(u)

where u is given by y — esinu = t. The response is periodical with the period 7' = 2r.
The case of e = 0.1, with time steps 0.01, 0.1 and 0.5, was considered. The step
range is approximately T/600...T/12. The integration time was T'T = 20, which is over
three times the motion period.
The solutions are computed via the new operator and via Runge-Kutta method
of order fourth, using a constant time step. The computed solutions are compared with
the analytical solution. The results are presented in Table 1, where the comparison

criterion is the error in displacement response at ¢ /3 6m (3 periods), and in Fig.3 and 4.

Table 1. Two body problem, e = 0.1 - ERROR in Displacements at ¢ ~ 6!

Time Step | Time X-Displacement Y-Displacement
At t Proposed | Runge-Kutta | Proposed | Runge-Kutta
Operator 4t4 order Operator 4*» order

0.01 18.85 | 1.079E-12} 3.810E-11 |-3.354E-09 | -5.738E-09
0.10 18.90 | 1.228F-06 | 1,261E-05 |-3.356E-056 -1.581E-04
0.50 19.00 | 1.867E-03 | -2.025E-02 | 1.655E-01 | -3.750E-01
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SHEPARD OPERATORS OF LAGRANGE-TYPE

GH. COMAN AND R. TRIMBITAS

Abstract. The interpolation operator, introduced by D. Shepard in 1964 has the
degree of exactness zero (it reproduces only the constant function). Later, tﬁere have
been defined Shepard operators with a degree of exactness (dex, for short) dex > 0,
but these ones require information not only on the function f, but 2lso require the
values of some derivatives ot: f. In the present paper there azre constructed Shepard
interpolation operators with a degree of exactness dex > 0, using only the values of

the function f on interploation nodes.

0. In 1964, D. Shepard (5] has introduced the so called "Shepard interpolation
procedure” for arbitrary loca,ted data (z;,vi, fi), ¥=1,...,N, on a plane doman, i.e.
(z;,vi) € D (D C R?) and fi is the value of a function f (f : D — R) at the point
(@i, 4i)-

The Shepard interpolation operator, say Sy, is defined by

N
(SOf)(xa y) = Z Ai(x) y),f(:!:;,y;),

i=1

where

N N N
Az,y) =[]/ 3 ] @)
i=1 k=1 j=1
i J#k
with d;(z,y) = ((z — z;)* + (z — y;)*)"/? and p € R,.
An important characteristic of an approximation operator (procedure) is its de-
gree of exactness (abbreviated here by "dex”).
It is known that dex(So) = 0 (S reproduces only the constant function).
In order to increase the degree of exactness, it was defined the Shepard-type

operator Sy [5]:

N .
$iN@) = 3 A 9@ y) + (@ — 2) 7w, ) + (0 - 9 FO0 (@i w)l,

i=1

HReceived by the editors: November 30, 1996.
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that:
1. interpolates the values of f and of its first order partial derivatives f(1:0)
fF©1 at the points (z;,y:), i =1,...,N and
2. dex(S;) =1.
Using, for example, the bivariate Taylor interpolation operator T),:

Tz = 3 &

p+es<m

p

)P -y )9
2P 00 0,
it was defined the Shepard-type operator S;,. (3):

N

Smf =Y ATnf,

i=1

with the properties:
1) if 4 > m then (Smf)‘(p,q) (E‘, y‘) = f(P.v)(z‘.’y‘)' 1=1,...,N,

for all p,¢=0,1,...,m; p+qg<m.
2) dex(S,,) = m.

Remark 1. Using the Taylor interpolation, it can be constructed Shepard-type operators
of any degree of exactness. But it implies the values of the partial derivatives of f of

higher order.

The goal of this note is to construct Shepard-type operators of higher degree
of exactness using oniy the values of the function f at the interpolation nodes P; :=
(z:,9:), i =1,..., N, i.e. Lagrange-type information about f.

1. Let L} be the bivariate n-degree operator (associated to the point P;), that

interpolates the function f respectively at the set points
{HleH-l)---)Pi-f-;n—l}’ i=1’-"’N)m<N) (1)

with Py = P, i = 1,...,m -1, and m := (n + 1)(n + 2)/2 - the number of the

coefficients of a bivariate polynomial of the degree n.

Remark 2. For given N, it can be considered only operators L with n such that (n +
1)(n+2)/2 < N, ie. forn € {1,...,v}, where

v = integer [(VBN +1--3) /2].

The existence and the uniqueness of the polynomials L} are assured by [1, pg.
275, Theorem 17.1}:
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Let P := (zi,1:), ¢ = 1,..., (n-+ 1)(n+2)/2 bhe different points in plane that do
not lie on the algebraic curve of nth degree ' ):( a;jz'y? = 0]. Then, for every function
f defined at the points P;, i = 1,...,(n + ;);‘(’7—1'; 2)/2 there exist a unique polynomial
Q. of nth degree that satisties Q (i, ¥i) = f(zi, ), i =1,...,(n+ ){(n +2)/2.

Hence, if the points Py, k = 1,...,i+ m — 1 of the set (1) do not lie on an
algebraic curve of n th degree, for each i = 1,..., N, then L} exists and it is unique for
ali=1,...,N.

Suppose that the existence and the uniqueness conditions of the operators LY, i =

., N are satisfied.

We have

itm-—1

L)) = Y W@y f@om), i=1,...,N, (2)

k=1

where I are the corresponding cardinal polynomials:
le(zjy;) =6, k,j=14, .., i+m- 1 (1)
The basically properties of L} are:
(LY e wr) = flme, ), k=4, 4m 1 (4)
and
dex(Ly)=mn, i=1,. .,N. (5)

Definition 1. The operator S& given by

N
(SEf) (@ w) =Y Al w)(L! f)(z,y) (6)

=1

is called a Shepard operator of Lagrange-type.

Theorem 1. Let f : D =+ R (D C R?) be a given function, I == (&,.4;) € D, i
i,....,Nandm := (n+ 1)(n+2)/2 < N. If the points ;.. |, Piyp y do not lie on an
algebraic curve of nth degree, forall i = 1,... )N (Py = Pr, &k = 1, e b)) thesn

here exist the operator SL with the properties:

(Sr':f)(f"jyyj) flrju). g1, N 7



and
dex(SE) = n. (8)
Proof. Taking into account that
Ai(x,, y;) =48y, 1,j=1,... N,
from (6), we have:
(SaH(z5.9,) = (L N(=,95), §=1,....N.

Now, using (4), the interpolation condition (7) follows.
To prove the property (8}, it can be used the linearity of the operator SL. This

way, we nave to check that

Ske,o=ep, pg=0,1,...,N withp+g<n,

where epo(r.y) = 2"y

From (6), one obtains:

N
(Skepg)(z.y) =) Az y)(Llepg)(z.y).

=1
But.
Lley, =ep, forp+qg<n
(dex(Ly=n, forall 1 = 1,... . n).
It follows that
N
(Skep)(z.y) = epglz,yi Y Az, y)
i=1
and the relation
N
2 Aizu) =1
i=1
completes the proof. @]

Next, one considers two particilar cases, for n = 1 and n = 2.

2. For n = 1, the Shepard operator from (6). becomnes

N
SUfuro = Z Ay fitr.y).
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where
(LI, y) = bz, y) (i, 36) + i (2, 9) f(@ign, vin) 4 biga (2, ) (wig 2 via o)

fori=1,...,N (Pn41 := P1, Pny2:= P3). From (3) one obtains

(Yigr — Yig2)® + (£ip2 — Tig )Y+ Tig1¥igz — TigalVig

li(z,y) =
(i — zix1))(Yie1r — Yiv2) = (@ip1 = wip2) (U — Yigr)
_ _ (miv2 —w)z + (@i = Ti2)y + vy — ivigy
l‘+1($’y) - _
(zivr = Tiv2) (Birz = 9) = (Fir2 — 2) (B — Bi2)
lLisalz,y) - (3 — Yi1)Z + (& —-:L'.-)y-i—a-,-y,»+I - T

(sivz = 2i) (¥ = Y1) = (07 = i) (wiv2 — %)
Remark 3. The existence and uniqueness condition of L! is that the points Iy, Fiyy and
P42 do not lie on a line (Az + By + C = 0), or to be the vertices of a non-degeneraic

triangle A;, foralli=1,..., N.

Remark 4. SEf and Spf (the Shepard tunction) use the same information about f

(flei,w), i=1,...,5), but dex(ST) = 1 while dex(Sy) = 0.

3. In the case of n = 2, we have

N
(S5 f)(=z,y) = }“ Ai(z, y) (LI f)(x,y)

where L?f are two-degree polynomials that interpolate f at P;, ..., Piys, respectively.

In accordance with the theorem 1, the interpolation nodes £, ..., Piys must not
lic respectively on an algebraic curve of second degree ¢;, ¢ = 1,..., N. I, for some
J, 1 < j < N this condition is not satisfied, the index order of F;, i = 1,..., N can be
changed.

Remark 5. A two-degree of exactness Shepard operator of Lagrange-type, can be ob-
tained using more information about f. Roughly speaking, the only problem is to exist

snive two-degree Lagrange-type polynomials which interpolate f at £, k=1,. ... N.

A sufficient condition for the existence and the uniqueness of such polynomials,
say L7 f, is that theé six interpolation nodes to be the vertices I, iy y, Pigs of '} - triangle
A; and the midpoints; say Q;, Qiy1, Qisz, of the'sides of A; [9,10]. fori=1,...,N.

Using the polynomials [:?f, t=1,..., N, one can be defined the Shepard oper-

ator .§'2:

(9 ey Z/l(.: WLINC )

1=
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A NOTE ON THE DEGREE OF SIMULTANEOUS APPROXIMATION
BY HIGHER ORDER CONVEXITY PRESERVING POLYNOMIAL
OPERATORS

I0OAN GAVREA AND HEINZ H. GONBKA AND DANIELA P. KAGHSO

Dedicated to Professor Dr. D.D. Stanicu on the occasion of his 70th bivthday

Abstract. In this paper that it is shown fur certain operators preserving the shape
of a function quantitative estimates for simultaneous approximation can be given by
reducing the problem to the approximation of continuous functions by positive linear

operators.

1. Introduction

The present note is a supplement to an earlier paper on "Pointwise estimates
for higher order convexity preserving polynomial approximation” (sce [3]) written by
Jia-ding Cao and the second author of this note. We will show and recall here (again)
that for certain operators preserving the shape of a function quantitative estimates for
simultaneous approximation can be given by reducing the problem to the approximation
of continuous functions by positive linear operators. Qur paper can thus be viewed
a8 being written in the spint of three contributions by Sendov & Popov (8], Knoop
& Pottinger [7], and the second author [6]. The latter paper mentioned contains the
idea to involve positive linear operator estimates in terms of w; into inequalities for
simultaneous approximation. This type of estimate for the approximation of arbitrary
continuous functions was first given by Jia-ding Cao in 1964 (see [2]); a more refined
version of it ran be found in [6). In fact, this is the type of estimate which we will be

using below

Feceived by the editors: October 23, 1996,
1991 Mathematics Subject Clasnification. 41A10.

Key worde and phinscs. degree of approximation, polynomials
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2. Main Results

Tn this section we will give a quantitative estimate for certain operators con-
structed with the aid of Beatson-type kernels. We present first the following result given
by Beatson [1]:

Lemma 1. Let f,g: C(I), I = [-1,1], and let the convolution operator G given
by

1 "
G(f,z)=(f*g9)(z)= ;r-/ f(cosv){cos(8 — v)]dv, =z =cosd.
-

Let j be a non-negative integer. Then the cone of j-convex functions is inbariant
under the operator G(f) = fxg if and only if g is j-conver.

Furthermore we will consider the operators Hy, ; : C[~1,1} = [],,_,4;, Where
j €N, s>j+2and n> 1, introduced by Cao and Gonska in [3] in the following way:

Let

sin (n arccos £ 1 =
K,n—s(arccost) = Chp , <sin(chos%27)_> =3 + ,‘2:1 Pk sn—s cO8(arccost),

where C,, , is a normalizing constant.
For j € N they considered a j-th antiderivative of K,,_,(arccost), namely

1

oY e : _ pi-t
Fo,j(2) = (j——~——_ 1)!/-1(2 t)? ™ K ,n—4(arccos t)dt.

Normalizing yields the kernel

7Fy s j(cosv)

Fo,j
i) = [T Fa,j(cost)dt’

which can also be written as

n—-s+j
+ Z Aijn,e,j COSIY.

i=1

F"’,.j(ll) =

| -

The operator H, , j is then given by

(Haif)@) = 2 [ fleos)Fa,j(0— v)dw =

1 Ls
:flr" ]4"”'."1.(005 y)dy .
Using Lemma 3.8 in [4] we can now write: For 0 < i < ns — s+ j (degree of H)

f(cos V) Fy 5 jlcos(8 - v)]dv.

we have:

Hy s (1), 2) = Ain s jTi{T), (1)

&6



THE DEGREE OF SIMULTANEOUS APPROXIMATION

where T; is the i-th Chebyshev polynoinial. From the latter relation it follows that H,, , ;
transforms the polynomials of degree i into polynomials of degree i, for 0 < i < ns—s+4 j
(e, Hnui [l CILL)-

Also from (1) we get that the coefficient of z* in Hp , j(ei,z) is Ain s ;.

In [3, Theorem 4.3] and [4, Lemma 3.9] the authors proved the following results:

(i) The operators Hy , ; are positive. Furthermore, if the function f is i-convex,
then Hy, , j(f,-) is also i-convex, where i € {0,1,...,j}.

(1) 1= Xip,j =0(n~2).

Theorem 1. Let i € {0,1,...,j} be fized. Then there exists a constant C
independent of f,n,z such that the following estimate holds:

010 < e[y Loy (0:2) s (50 )]

for every f € C'(I).
Proof. Fori € {0,1,...,j} fixed, we consider the operator H; , ; : C(I) =
[l,n-,+; defined by

\H

’

(Hy 0 s D)@) = ——(H), Fi)(2),

i,n,s,j
where Fi(z) = [, h”‘foi_l f(ti)dtidt;_y ...dt,. Since H, , ; preserves the convexity
of order i, it follows that H} , . is positive.

n,s,j

An easy computation yields

Hupjleoiz) =1, (2)
H, jlei;z) = A'Aiu_-ix
.n,3,)
Ai )
H;,.,j(eg;z) = _'_".'l:_'}i'-lxz,
. i,n,8,)

S((e1 = 2)%i2) = Mig2ni = Phitingst N 2

Xinsij
We will need now the following special case ot‘z a result given by Gonska and
Kovacheva in [6]:
Let K = [a,b], K' =[c,d]and K' C K. f L: C(K) -» B(K') is a positive linear
operator, satisfying Leg = eg, theu for f € C'(K), x € K’ and each 0 < 'h < 3(b—a), the
foll >wing holds:

‘

IL(f32) = f(a)1 < FILermr D)o (F )+

R7
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3 3
+!:§+-QZ|L(€1_£7£)I+ZE§L(( ) GT)]wz(fSh)' }

In our case the latter inequality becomes (writing A; = Ai 0 ,,5)

2 i Ai
IHn a:](ga ) g(l‘)l < -—':L‘l ' —+1'— WI(Q, )
h Ai
3 3 /\x+1 )‘ 3 2' :+2 2Al+l + /\
+[2+2h|z| X l+4h2 by wa(g; h),

for every g € C(I) and every 0 < h < 1.
For every f € C*(I) we take in the latter inequality g = f(). We obtain for

g
Dt o)) < 0 [Lan (10:1) #en (70:3))].

>
il
[=

which implies
1, 32) = 191a) + 101 = 01 < C [0 (70 2) +ea (70 2)]

Now it follows immediately that

”H’(:"l’ (f - fON<cC <||f(' Il (f(- ) +w2'(f(‘);%)>-

We mention that in the latter inequality we used the fact that 1 — ;.. ; < .
O
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DESIGN OF WILSON-FOWLER SPLINES

HEINZ H. GONSKA AND DING-XUAN ZHOU

Dedicated to Professor Dr. D.D. Stancu on the occasion of his 70" birthday

Abstract. Wilson-Fowler splines are characterized by Bézier polygons. By thjs char-
acterization a natural extension to the space is given. We also present a method to
design Wilson-Fowler splines and an algorithm of solving the corresponding interpo-

lation problem with speciﬁé boundary slopes.

1. Introduction

The Wilson-Fowler spline was introduced by Wilson and Fowler [Fowler & Wilson
'66] (see also [Fritsch 86)) as a planar, curvature continuous spline curve interpolating
a set of planar points {P;}?_,. For each segment joining P; and P; 4, of this curve we
introduce a local (u, v)-coordinate system {u, v}, with the variable u € [0, L;] running
along the chord connecting P; and P;yq, Li = |P;y1 — P4, and v = ¢;(u) representing

the deviation from the chord as a cubic polynomial:
ci(u) = tan A;u(u — L;)?/L? + tan Bju®(u — L;)/L?. (1.1)

Here A; and B; are the angles tangent vector at P; and P;,,, respectively, makes
with the i-th chord P, — P;. The segments are joined so that the curve they describe
is GC? (For the definition, see [Hoschek & Lasser '93, Farin '85])

The Wilson-Fowler spline is a cubic spline. So it is natural for us to consider its
Bézier representation (see [Nielson '74]). If we denote the Bézier points for the segment
joining P; and P;4; as {ba;, bsit1, bsis+2, bsita}, then we know by definition that bs; =
P.',B3.'+3 = P;,1. Moreover, we have the following characterization which will be proved
in Section 2.

Roceived by the editors: Octlober 25, 1996 °

1981 Mathermatics Subject Clasafication. 41A15.
Key words and phrases Wilson-Fowler aplines. GC* continuous curves, interpolation problem, design,

equally-spaced Wilson-Fowler splines.
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Theorem 1. Let {ba;,D3it1,bait2,baiza} be a set of points in the plane.
Then the cubic Bézier polynomial using it as the Bézier polygon satisfies (1.1) in the
above mentioned local coordinate system if and only if for j = 1,2, one of the following
conditions holds:

i) “+3i4; lies on the line passing through bg; and bs;y.s, i.e.,
(bai+;j — bai). x (bai4+a — bai) = 0; (1.9

ii) ba;; lies on the line which is perpendicular to the chord connecting by; and

b§;+3, and through the point by; + %(b3;+3 — ba;), ie,

(baiy; — (bai + %(b3i+3 — bs;))) - (bsi4a — bai) = 0. (13)

Remark. If (1.2) is satisfied for both J = 1,2, we know that v = ¢;(u) =0,
no matter how b3,~+;‘ and baiyq are located. In this case, (1.1) is not suitable for the
representation of the curve segment. So in Section 5 we shall restrict ourselves to the
case when (1.3) is satisfied for j = 1,2.

This characterization enables us to perform the following tasks: firstly, we can
extend the planar Wilson-Fowler splines to the space, see Section 3; secondly, we can
easily design a Wilson-Fowler spline, see Section 4; thirdly, we can solve the interpolation
problem with specific .boundary slopes by finding zeros of a corresponding univariate:

algebraic polynomial, which we shall discuss in Section 5.

2. Proof of Theorem 1

In this section, we prove Theorem 1.
Proof of Theorem 1. The cubic Bézier curve using {ba;, bai+1, baj+2, baisa)

as the Bézier polygon is defined for v € [0, L;} as
3 u
X(u) = Eb3;+jB$(F), (2.1)
i=0 i

where L; = [baiy3 — bai| and {B}(t)}3_, is the Bernstein basis.
Given u € [0, L], the vector X(u) — X(0) has the following form in the (u,v)-

coordinate system:
X(u) = X(0) = (u, (X(u) — X(0)) - v). (2:2)
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Thus, X satisfies (1.1} if and only if
(X(u) = X(0)) - v = ¢; () = tan Ayu(u — L;)? /L7 + tan Biu®(u — L)/ LE. (2.3)

We observe that (2.3) is satisfied for v = 0, [;. Also, both sides ol (2.3) are

polynomials of degree three. So (2.3) is satisfie¢ for u € [0, L] if and owv if

d d
— w) = XN Y= = ,
A () = XN} = -i(w) (24)
for u = 0, L;. But the latter is equivalent to the following equations:

3

F(bs,’,’_] — I);;,') v = lan A;, (25)
3 o .
F(b3,‘+3 - b3,‘+2) v = tan B,‘. (26)

Let us note that

bais1 — b
(bsiss — bai) - v = tan A;(bayyy - bg;) - 2t = bai)

i
and
(bai+a — baiy2) - v = tan Bi(baiys — baig) - M
Thus, (2.5) is equivalent to (1.3) with j = 1 or tan 4; = 0, e:nd (2.6) is equivalent
to (1.3) with j = 2 or tan B; = 0. Let us mention that (1.2) is equivalent to tan A; = 0
for j = 1, and to tan B; = 0 for j = 2. Therefore, X satisfies (1.1) if and only if for
j=1,2, one of the statements (1.2) and (1.3) holds.

The proof of Theorem 1 is complete.

3. Wilson-Fowler splines in the space

Eatly in 1976, Thomas [Thomas '76] expressed the belief that the Wilson-Fowler
method is a usable and competitive approach to planar curve fitting of the type which
exhibits the mechanical spline syndrome. He defined a class of Wilson-Fowler splines in
the space. This method has a number of practical merits. But the structure of these
splines is not so easy to understand.

Concerning the characterization of planar Wilson Fowler splines presented in
Theorem 1, we define the Wilson-Fowler splines in the space as follows.

Definition 1. Trt n = N, {b;}32, be a set of points in the space R®. Definc
a s line curve of third degree with its i-th (0 < i < n — 1) component spline to be the
Bézier polynomial curve whose Bézier points arc bai,ba;yy, buiya, baya. We say toat

ot
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this spline curve is a Wilson-Fowler spline in the space if it is GC? continuous and for
0<i<n—1,1<j<2, one of the following conditions holds:

i) baiyj lies on the line containing ba; and b3, i.e.,
(bai4+; — bai) x (baiya — ba;) = 0; (3.1

i) bsjy; lies in the plane which is perpendicular to the line containing bj; and

bs;i43, and through the point ba; + %(b3;+3 - by;), ie,

(baiy; — (bai + %(b:_sus — bai))) - (b3iya — ba;) = 0. (3.9)

In our opinion, the above definition is natural since we have another representa-
tion for these Wilson-Fowler splines which is similar to (1.1). For convenience, in what
follows, we shall denote < a,b > € (—m, n] as the angle the vector b makes with the
vector a.

Suppose that a Wilson-Fowler spline is given as in Definition 1. Let 0 < i < n-1.
If (3.1) is satisfied for j = 1 or 2, then the i-th component Bézier curve, denoted as X;,
is planar, hence we have the representation (1.1). So let us consider the case when (3.2)
is satisfied for j = 1,2, and X is not planar, which implies that for j = 1,2,

bsiy; # bai + %(baus ~ by;). (3.3)

We define a local system (u, v, w) as

baiys — ba;
= ) 34
" |baita — bail (34)
b 42 — ba; - 2 b H — bj;
v = siy2 — (bai + 32( 3i+3 — bai)) ’ (35
{baiyz (b3 + 3(bais3 — bay))]
W = uaxv. (3.6)

By (3.2) and (3.3), (u,v,w) is a local coordinate system in which Ab3.- is the
origin.

The parametric Bézier curve X;(u) with u € [0, L;], L; = |ba; 43 — ba;] is defined
by

3
u
X;tuj =) baia B 5)- 37
y =0} 3
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In the local coordinate system (u, v, w), X;(u) can be represented as (w, i (), di(u

[0, L;]). Then

> 4, U
ci(u) = (Xi(n) — by) v = ;(baiﬂ -~ by) - vn;;(n ), (3.8)
and
4, U
di(u) = (Xi(u) — bai) - w = (baiy1 — b)) wl_ff( » ). (3.9)
Write
Ai = < baizz—bsi, bajp1 — bai — ((bajg — ba) w)w >,
B; = < bsiys —bsi,baiya — baiye >,
L;
C; = < V,ba,'.,_l - bg; — ?u > .
It can be easily seen that
1J|'
(bais1 —ba) v = 3 tan A;,
L;
(bsiy2 —ba)-v = -3 tan B;,
L; s
(b3,’+1 - b3,‘) W = —3- tan A; tan C;.
Combining these formulas with (3.8) and (3.9), we obtain
ci(u) = tan Aju(u — L;)? /L2 + tan Byu®(u — L)/ L2, (3.10)
di(u) = tan 4; tan Ciu(uw — L;)*/L} (3.11)
Thus we have set up a representation for the Wilson- Fowler splines i the space
similar to (1.1) under a local coordinate systemn. I'his representation combining (1.1) is

equivalent to the definition of the Wilson-Fowler splines in the space
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4. Design of Wilson-Fowler splines in the space
24

In this section, we consider the design of Wilson-Fowler splines in the space,
Let X(u) be a cubic spline curve whose i-th () < i < n) component spline X;/uy]

has Bézier points ba;, bai4+1, bais2, baits and has the parametric representation

3
4 U=~ Ui
Xi(u) = Zha,-.,.jBf(_- I, —1-), i1 Su<uy, (4.]]
j=0 s
where
uy = 0,
i o= o+ Lioy;
Li = |baita— bal.

From the general design of GC? spline curve (see [Hoschek & Lasser '93, Nielson
'84]) and Definition 1, we can design a Wilson-Fowler spline in the space as well asin
the plane as follows.

Let 1 <i<n-—1 If <bziyz— bz, bsy —bai_1 >¢ (-5, %), then X cannot be
a Wilson-Fowler spline.

If A; :=< baiy3 —ba;,bai —ba;_; > € (-5,0)U(0, §), then

L; bgi—bg;i_,

Bai+1 = boi + 3cos A; |bs; — bai-1l’ ua
and in case B;_; :=< bg; - bsi_3,bsi —bzi_1 ># 0,7,
bait1 = ba; + ki(ba; — bai-1) (4.3)
with k; = 28t >0,
If A; =0, then
baiy1 = ba; + ki(bai — bsi—1) (44)

with k; > 0.
"The design of bs;4» follows from Hoschek and Lasser [Hoschek & Lasser "93, pp.

223-224]. One possible choice of by, is the intersection of the line

hﬂz e k;'!(l);ﬁ..; - l)g,‘_g) + /t(b;ﬁ - l)3,‘..]), /J E R (15)
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with the plane perpendicular to the vector bg;;3 — bs; and through the point bs; +
$Li(ba;+3 — bsi). The other possible choice is the intersection (if it exists) of the line
(4.5) with the line

bs; + p(bsi+s —bai), u€R. (4.6)

Thus, if A; # 0, there are one or two possible choices of ba.’+2.’ The case A; =
0 can be easily discussed with possibly infinitely many choices of bg;;3. The above

discussion will be used in the next section.

5. Interpolation problem with specific boundary slopes

In this section we show how to find a Wilson-Fowler spline with specific boundary
slopes. We restrict our discussion to the planar case here, and moreover, to the following
type.

Definition 2. Let X be a Wilson-Fowler spline in the space given as in Definition
1. We say that X is an equally-spaced Wilson-Fowler spline iffor0 <i<n-1,1<j <2,
(3.2) is satisfied.

Assume that {P;}?_, is a set of points in the plane R? and T, and T, are
two unit vectors in R? with < Py — Py, To ># 0,5, 7, < Pp = P, Tn ># 0,3, .
The purpose of the interpolation problem is to find a Wilson-Fowler spline so that it
interpolates the points P; and have Ty, T, as its unit tangent vectors at Py and P,,.
Denote L; = |Piy1 — Pi|, v =< e1,Piyy — P; >, TAp = tan < P; — Py, Ty > and
TB,., =tan < P, — P,_,, T, > since Ty or T, cannot be perpendicular to P; — Py
or P, - P,_1.

Suppose that we have an equally-spaced Wilson-Fowler spline satisfying the

above conditions. For 0 < i < n — 1, in the local (u, v)-coordinate system, let

baiy1 = (%, ri), (5.1)
baiyz = (2—§i, R;), (5.2)
A; = <baiyz—bai, baiyi— b >
Bi = < bziyz—bzi,baiza—bai 2>
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Then
Al:: B~ (¥ =7i-1),
which implies

L van A= SiFi-1)

= tan A= ), 53
3 MU= TR (5-3)
whene
T‘(J‘) — 1- I,:?f, tall(’)’.‘ - 7"—1)) if Yi — Yi-1 # i§<
* z, iy —yi-1 =%
S'(T) - —rl:l__l,—lx - %l ta“('ﬁ - 7“1)' if’Y’ - 7‘—1 # i%y (5 4)
fubems iy —vio1 =25,

and in terms of design pararieters for GC? spline curve (see, [Hoschek & Lasser *93)),

|bai 41 — bai| Li—y
|bai — bai—q1| Li

cos B;_, cos B;_,

Wi 11

= oA cosBia—(n-w ) (3:5)
From (4.5), we have
L 9
lei —bai| = (T;Wi,ll) |bai_1 — bai_q|
_ Li 5 Lia
- (L,‘_l‘d"“) —-3sina;_,
L; 1 cos B; 2
! 3L,‘_1 sin a; -1 ajs(..B;_l - (’)‘,’ - 'y,'._]))) (56)
and .
tana;_; = - Liy (h.7)

3(Ri-1 —ric1)’

with a;_; = ¥5 when R, =r,y.
We als0 observe that
: ba: - ¢ T _ g
<b'}l+}"¢() > TR 77 -4t di-.

which is algo valid foref. y = :;% and nuplies

“" - byl fc ‘-ﬁ“
- Bi-atoial -
46 g



Hence, in case v —vi-1 # 173,

Ri = tan A.'(gL.' — |di — by|)

3R._

—tan(yi — vi-1)
1- :',L"t';'ta"(% Yi-1)

sm(}-: B.'_l +a,’...1)l l‘l,____l COS H, ] )2}

—L~+ -
3L sin A; !I, 18ina; (‘()s(“. \ (7, 7,».;.))

3R,
—T=r —tan(yi = vio1) I, ) 3Li  2Hi_y -rioy

I- Pettan(y —wio1) 3 Lior Loy (14 (3R=t)?)

(R 4 (s -0 - 2

l 1 i—1

R. 1

tan(yi — %i-1))* cos(% ~ yi-1)]™"

tall('Yt Yi— 1))2 + (3R' ! + tan(yi — 7i- 1)) ”

3R, :S_Ri-x
L.

(-

= {L-— (1+(-———) (1 - tan(yi - yi1)) eos(yi )

i—-1

> Li oRiy - ,)[1+(3f ban(y — %-1)) + (ﬁr-‘)— Pt )]
-1 $—1

3R; R;_
+2L;_ 1(1+(—'—‘) (3 -

2k

+tan(‘7n Yi-1))

(1= 2= an( - 7.»-1))2cos(v.~ 1))

-1

Qi(Ri-hri—-l)’

Pi(Ri-1) (5:8)

Here

Pi(z) =

Az, tan(yi =y, 1)) cos(y = 20), (5.9)

u 1

L 3L. ’h’ 3
——3- Lis \213-' y)[l 0 l/. p - lan(ny; = I)) + (T"-'l')
3 3r
+(tan(y — vi—1))?) + 2L (1 + (-——-') (-,——- ftan(y; =% 1))
R [

Qi(zv y)

I

3z Y
(1- L. tan(yi &7 .1))" cos(y, (v H)
i-1

are univariate and bivariate polynomials, respectiv. .
We notice that (5.8) is also valid tor I
If yi —yio1 =15, say. -g—: then
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with
3z .,
Ple) = 301+ (2),
Qi(e,y) = —%i(l+(%)2){2i—li(2z—y)—2[,.~_l}.

In order that w; 11 > 0, from (5.5) we must require

cos(yi — ¥i—1) +sin(vi, — vi—1)tan B;_; > 0

which is equivalent to

R;_ , if Y —vi-1 € (-m,0),
i—1 2~ 3tan(7.- _7._1) Y — Yi-1 ( )
and
Li-y .
Ri_ —_— iy - - , 7).
1< 3tan(y; — ¥i-1) % —%-1 € (0,7
The boundary conditions can also be described as
L
rg = —3—°tan <P;-Po,To >,
and
Ln—l
R._1= -3 tan< P, —Pp_1,Tp >.

Combining the above observations, we have

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

Theorem 2. Let {P;}"_, be a set of points in the plane R? and Ty, T, be two
unit vectors in R? with < Py — P, To ># 0,5, 7, < Py — Pn_y, Ty ># 0,5, 7. Then

there exists an equally-spaced Wilson-Fowler spline X (u) whose segments are of the form

(4.1) and such that

—_ X(ui) = Pi, 0<i<n,
X'{0)
20—,
X’ (0)] °
X'(un)
X! (us)] T,

(5.17)

(5.18)

(5.19)

if and only if there is a finite sequence of numbers {r;, R;}7=; such that for1 <i<n-1,

(5.3), (5.4), (5.8), (5.9)-(5-10) ( or (5.11)~(5.12) when v; — iy = £5), (5.13)-(5.14) and

(5.15)-(5.16) are satisficd.

98



DESIGN OF WILSON-FOWLER SPLINES

Thus the interpolation problem for equally-spaced Wilson-Fowler splines is re-
duced to the problem of finding a finite sequence of numbers ith specific properties.
Let us state the following algorithm for the solution of this problein:

1. For 1 <i<n-—1, compute the polynomials S;, T;, F;, Qi;
2. Let ro = ’—gltan < Py —PyTo>and forl < i< n~—1, compute the

rationa! polynomials by induction:

Si(Ri-1) _ fi(Ro)

i(R = = , 5.20
rilRo) Ti(Ri-1)  gi(Ro) (5.20)
Qi(Ri—y,1i1) __ pi(Ro)
(R = et 5.21
Ri( o) Pi(Ri-)) i(Ro) (5:21)
3. Let F(Rp) be the polynomial given by
L,_ .
F(Ro) := pn-1(Ro) + 22 tan < P, = Ppu_y, T > gn-1(R0); (5.22)

3

compute all its zeros {zy,z2, -, 2} withl > 0;
4. For 1 < j <1, compute {Ri(z;)}5)! by (5.21);
5. Find the set E of all j € {1,2,---,1} such that for 1 <i < n -1, Ri_y(zj)
satisfies (5.13) and (5.14);
6. For j € E, compute {r;(2;)}"=}! by (5.20);
7. Ifl =0 or E = ¢, then the interpolation problem has no solution;
Ifl > 1 and E # ¢, for any j € E, we have a solution of equally-spaced Wilson-

Fowler spline whose Bézier points are given by

by = P;, 0 < 7 <n,
L.
bsiy1 = Pi+ ‘T'(P-‘H = Pi) +ri(z)v,
2L;
— bsiys = Pi+ T(Pi-H ~ Pi) + Ri(zj)vi,

where v; is the unit v .cior such that (P—"*T“':P—',v,-) is a local coordinate systen.

From the above algorithm we can sce that the vscutial part of solving the inter-
polation problem for equally-spaced Wilson- Fowler splines o find the zeros of a relat~1
algebraic polynomial.

The above algorithuu can be extena |, tue meceid Wikon-Fowler splines as

well a3 1o Wilson-Fowler sphines in the space.
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uniqueness apd the convergence of the consbructed approximate spline solution are in-

vestigated.
2. Description of the approximating method
Following [11] we shall write problem (1) in the form

V' = flay(z). 2(2), 2(e) = /0 " K(a (), 0< 1 7 @
(0) vo, ¥ (0) =y

I

Throughout in this paper we suppose that the problem (2) has a uni . tution
y:[0,a] & IR and that it is smooth enough.
The function f:[0,a] x IR* = IR is assumed to be sufficiently smooth function

and both it, and its first derivative satisfy the following Lip.chitz condition:

|FO (2 u1,v1) = (2, u2,v2)] < Liflug — uz| + |vg = va) (3)
Y(x,u1,v),(z,uz,v3) €[0,a) x R?, i=0,1, fO =7

Also, we assume that the kernel K : [0,a] x [0, a] x IR = IR is a smooth function

and satisfies the following Lipschitz condition:

[ (z,t.y1) — K(z,t,y2)] < Ls|y ~ vl (4)
V(.’B,t, yl)»(tvtayQ) € [Oia] X [01 a] X lR’

Let A be the uniform partition of the interval [0, a] defined by:

a
Am<wk<mk“<...<z1v=a,zk :=kh.h:=[—v-

Assume that f € C'"([O,a] x IR?) and that the modulus of continuity of the
function ¥ is w(y®, h) = w(h) = O(h®), for i = 0,1 with 0 < a < 1.

Let m be an integer number with 2 <m < N.

Following the idea froin [L0] we shall construct a polynomial spline functions of
degree m and class of continuity €' [0, a], on the partition A to approximaté the exact
solution of (2).

For = € [z, rxq1). k = 0,1,... , N — 1 we define the component of the spline

function sa in the following way:

/ . m-2 ()
sa(x) = sp(x) = Speaonf «‘iﬁ:%l_kl(l - Tg) + ; (ja: 2)!(I —zi)t? (5)
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. . Ta
al? == Uz, sk_l(ark),/ K(zx.t,s6-1(t))dt),j =0,m—2,k=0,N — 1
0

where s_4(0) ;= yo and s’., =y, and sgzl(a:k),i = 0,1 are the left hgnd limits of the
derivatives sgl,(x) as = — z of the segment sa(z) defined on [xx_1,z]. On the
usual technique it can be shown that such a spline function s5 € C' {0, a] exists and it
is unique by the above construction.

3. Error estimation and convergence

To estimate the error, for any r € [rk, Tk 41] the exact solution y of the problem

(2) can be written by using the following Taylor’s expansion:

2Ly oy (m)
y(x) = Zy_i(!ﬂ‘_).(m_.mk)' + yhn—-*-(lé)k')(z_xk)nl-fl (6)
i=0 :

where £ €]k, k41| In what follows we shall denote
y,(:) = y(i)(z:k) for t=0,1,... m+land k=1,... ,N—-1
For any z € [0, a] we define the error by the usual way:
e(x) := |yz) — salz)|, €'(x) = |y'(x) - §'(2)], (7)
and
ek 1= |ye —sal@k)l, e = lyk — sa(zk)]
In what follows we need the following Lemnas.

Lemma 1. [4,p.25]. Let o and 3 be nonnegative real numbers, § # 1 and {A;}5., be

a sequence satisfying the conditions : —
Ay > 0, A,‘+] < a4+ fJA;,i=0,1, . k.

Then the follounng tnequality

k gt — 1
Ak < B + Ao + (y—ﬁ::—i_ (8)

holds .
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Lemmi. 2. [10]. Let e)(r),i = 0,1 be defined as in (7). Then for p = 0,1 the followy

inequalities hold :

l-p (i+p) ; m+2-p
®) G piy e g @R
ep(x)fg F R P aps )

where b is a constant independent of h.

)

Definition. Let A = (a,;) and B = (b;];) be two real matrices of the some vider. We

say that A < B if:
(1) both a;j and b;; are nonnegative

(2) aij < bij, Vi,j
In view of this definition a+ f we use the matrix notations:
E(z) := (e(z), ¢ (2))7, Ex := (ex, k)
from the Lemma 2 we can write

E(x) < (I + hA)Ex + k™t w(h)B

(22)

If for the matrix T = (t;;) we define the norm by

ITI = max ) jtij
' i

where

bl O
SN —
o
l
—
[ o
o [
N—

then on the basis of (10) we have:

IE@) < (1+ RIIAIDIELN + | BIIA™ w(h)

This inequality holds for any = € [0, a}. Setting z = x4 it follows:

E el < (1 ALAIDIE + | BIA™ w(h)

and because ||Ey|| = 0, using Lemma | we have:

(i + LA — 1 |1B]l
TRAIAT= 1 = Al

Now it follow : straigh' forward

NE(@))| < | Bllw(h) (Al — 1)hmw(h)

() < biw(h)W™ fori =01
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where b; =

1Bl
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———(e"“‘"“ — 1) is a constant independent of h.

llAl}

Thus, we proved the following result:

The rem 1. Let y be the exact solution of the second order Volterra integr..-differential

equation problem (1) and sa be the spline approzimation of y, given by (5). If f €
i C™([0,a] x IR?), then the following estimations hold:

ly(z) — sa(z)|

v/ (=) — s ()

< bw

<

b3w

(h)A™

(h)h™

where z € [0,a] and by and bs are constant independent of h .

The method of approximating the solution of probleni (1) by a spline function

presented here has some advantages order the standard known methods for second order

Volterra integro-differential equations, producing continuous, differentiable, accurate and

global approximation to the exact solution and its first derivative. The step size h can

be changed without additional complications and the methods need no starting values.

Note that in this paper it was assumed that the value a

(7)
k

are calculated exactly.

In practical wpplication it should be suggested to choose a suitable quadrature formuia.

4. Numerical example

Consider the following Volterra integro-differential problem:

y'(z)

¥(0)

The exact solution is y(z) = €°.

Taking the step size

v (z) + / y(t)dt — & 41, z € [0, 1]
0

y(0)=1

h = 0,1, a quadratic (m = 2) and cubic (m = 3) spline

approximation s evaluated at the point z = 0, 3 gives the following performances:

y s Error i s’ Error
m=2|1,349846 | 1,347694 | 0,22 x 1072 | 1,34 "53| 1,332032 0,17 x 10~2
m=3 | 1,349846 | 1.3498171 0,41 x 10~* LI,M‘:MH i 349810 ] 0,48 x 10~

<165
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ERROR ESTIMATES OF SOME NUMERICAL DIFFERENTIATION
FORMULAS

A.l. MITREA

Dedicated to Professor D.D.Stancu on his 70*® anniversary.

Abstract. Estimates for the error of some numerical differentiation formulas of in-

terpolatory type in the case of Hermite nodes are given.

1. Preliminaries
Denote by Hy, n > 1, the Hermite polynomials, namely
Ha(z) = (-1)"e” (e'”z)('n) , T€R
and let 5, n > 1,1 < k < n be the roots of H, so that
gl <zl <. <2l

Define M as the triangular node matrix whose n-th row contains the roots of

Ha,p, together with 0, i.e.
M={t:n>1, --'nSIkSn}
where
tho=aith k= gk = el R 1<k <nandtd =0.
Denote by C!(R) the set of all functions f : R — R which have a continuous
derivative and consider the numerical differentiation formnlas '
f'(0)=Dnf+Rnf, n>1, feCYR) (1)

where the functionals D,, : C'(R) — R are defined by

n

D.f = Z aﬁf(tﬁ) (2)

k=-n

Received by the editors: December 11, 1996.
1991 Mathematics Subject Classification. 65D25.
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and Ry f = 0 for all polynomials which have the degree at most 2n. The last condition
shows that the numerical differentiation formulas (1) are of interpolatory type.

Putting

n

Wa(z) = ] (z-t5) and t5(z) =

k=-n

_ Wal)
(z ~ th)W'(t%).

n>1,-n < k< n,z€R, by the equalities R, [X = 0 we get the following expressions

for the coefficients a¥:

awrgsy, f1<k<n
af=¢ a5, if~n<k<-—1. (3)
0,if k=0

2. Estimations for the coefficients a®
Let Ls.a), a > —1, n > 1 be the Laguerre polynomials, namely
1
LNz) = ;e‘z'“(c"’x"""")("), z>0.
By the classical relation
nog2n (;‘Jl‘) 2
Hon(z) = (-1)"2°"n!Ly ? '(2°), n2>1,

we deduce that

Wa(z) = 2~ 2 Han(s) = (~1)"nleL87 ) (=)

and
W (z) = (—1)"n! [L,(.'T‘)(ﬁ) + 222 (L,(.:’l)), (zz)] . )
The following relations
L{(0) ~ n® (5)
If L) =0, 1 < K <n, then yf ~ k*/n (6)
If L () = 0, 1 <k < n, then |L{® (yh)] ~ k=~ 2pH! (7)

hold too for each a > —1, where a, ~ b,, b, # 0, means that there exist two 1cal
numbers A > 0 and B > 0, which don’t depend on n so that A < |aa/ba| < B for al
n> 1

Remark, too, that y% = (15)*, 1 <k < n.
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Using (3) and (4) we obtaiu:

S0
N (Lﬁ"”) (s8)

It follows by (5), (6), (7) and (8) the following estimation:

a, =

, 1<k<n. (8)

lag| ~ Vn/k?. (9)
3. Estimation for the error of formulas (1)

Let E,(f) be the degree of approximation of a function f in C!(R) by polyno-

mials of degree at most n, i.e.

En(f) = inf{sup{|f(z) — P(z)]: z€ R}: P € P,}
and put
ea(f) = inf{|f(0) = P(0)| : P € Pn).

For each polynomials P in P, we have D, P = P’(0) so that, using (2), we get:
|Rafl = |£'(0) = Dafl = |£'(0) = P'(0) + Dn(P — f)| <

<0 = PO+ D lakIllF(th) - P(EE)] + | £(—tk) — P(~t5)]).

k=1
It is easily seen, taking into account of (9), that:

{Rnf| < e2n1(f') + M\/nEs.(f),

where M > 0 don’t depends on n.

Finally, we obtain:

|Rnfl‘62n—l(f/)_ ) il E
retll) — 0 (V) if Bunt) 0. (10

4. Remark .

If w(f; ) denotes the modulus of continuity of a continuous function f : [a, ] =

R, one proves that
|Dnf = f/(0)] < Miw (fr;1/Vn),

where M; > 0 don’t depends on n and f, : [—t},t"] —+ it is the function defined by
falz) = fzx) for all z € [—12,t7].
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If f/ is a uniform continuous function, one can show that
lim D, f = f'(0),
per o
which proves the convergence of the numerical differentiation formulas (1) correspo
to f.
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ON THE USE OF UMBRAL CALCULUS TO CONSTRUCT
APPROXIMATION OPERATORS OF BINOMIAL TYPE

ANDREI VERNESCU

Dedicated to Professor D.D.Stancu, on his 70 -th birthday

Abstract. In this expository paper it is shown that the approximation operators of

Bernstein type or Stancu type can be obtained by the methods of umbral calculus.

1. The Romanian School of Numerical Analysis and Theor.y of Approximation, devel-
oped around Professor D.D.STANCU, has given important contributions in the field of
linear approximation operators. One of the methods of constructing approximation op-
erators is based on the umbral calculus. This calculus was developed by G.C.Rota and
his collaborators (S. Roman, R. Mullin, D. Kahaner, A. Odlyzko) in some papers (see
(3], [5] - [10]) and the treatise [4]) and it was introduced in our country by a group of
mathematicians which worked around Professor D.D. STANCU.

2. In order to comstruct linear approximation operators using the umbral calculus we
consider a sequence of polynomials (pn)n>0, where p, is exactly of degree n, for all n. A
polynonﬁal sequence is said to be of binomial type if
n
izt =3 (})n@rmst)  n=012. 1)
k=0

We present here some basic facts about umbral calculus which we will need. Let us denote
by A the algebra of all polynomials in one variable, with real coefficients and with I1,, the
linear space of all polynomials of degree at most n. We will consider all operators 4 -+ A
to be linear. The shift - operator E%: A — A is defined by (E7)(2) = p(z + a) for all
p€ A. An operator T: A — A is called a shift-tnvariant operator if E°T = TE®, for all
a € R. We denote e, (t) =1, n=0,1,2,.... A delta operator Q: A — A is defined as

a shift-invariant operator for which Qe is a non-zero constant. Delta operators possess
Received by the editora: February 11, 1997.
1991 Mathematice Subject Claseification. 41 A10, 41 AlS, 41 A, £ .36
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many of the properties of the derivative operator D: Qeo = 0, Qp € I, (if p € II,).
A polynomial sequence (pn)n>o is called the sequence of basic polynomials for a delta
operator @Q if:

(i) po(z) =15

(ii) pa(0) =0, n 2 1;

(i) Qpa = npn-1.
Every delta operator Q has an unique sequence of basic polynomials associated with it.
If K: A — A is the operator defined by (Kp)(z) = zp(z) and T': A — A is an operator,
then the Pincherele-derivative of Tis T' = TK — KT. If Q is a delta operator, then §'
is shift-invariant and moreover, (Q')~!exists. One of the most important results is the

following

Theorem. (R. Mullin, G.C.Rota, [3])

a) If (pn)n i3 a basic sequence for some delta operator Q, then it is of binomial type.
b) If (pn)n i a sequence of polynomials of binomial.type, then it is a basic sequence for
the same delta operator.
¢) Q: A— A is a delta operator if and only if Q@ = DP for same shift-invariant operator
P, where P~} exists and Dp = p'.
d) Let (pn)n be the sequence of basic polynomials for the delta operator Q = DP. Then
(1) pn = QP " len;
(i) pn = P™"en — (P™")'en-1;
(iii) pn = KP "eq_y;
(t) Pn = K(@) Po-r1.
3. The approximation operator constructed by C. Manole ([2].) Let (pa)ay:

be a certain polynomial sequence of binomial type with py(1) # 0, pn(z) > 0 for all
z € [0, 1). The approximation operator of C.Manole is defined by: ‘

(@) = 3 (D) oura-sti - 217 (£) 0

k=0

Obviously, L, is a linear operator of interpolatory type. Let us introduce the notations

Su(z,y,n) = Z (Ypi(x)pa-rly) (£)™;

So(z,y,n) = ]),I(I + )

@)
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Let @ be the delta operator corresponding to the binomial sequence (pn)n>0. By using

the umbral calculus, C. Manole has established in [2] two lenimas and the following
Theorem. If Q is the delta operator associated to the binomial sequence (pn)n>o, then

So(z,y,n) = pa(z +y)

Si(z,y,n) = pn(z+v)

z
c+y

Sa(2,4,m) = ——pn(z +y) - (—n;n-lm (@ *pn-2) (= +9).

T
z+y
Corollary. Let Ln: C[0,1) = C[0,1), n = 1,2,... be the sequence of linear operators
defined by (2). If (pn) is the binomial sequence with respect to the delta operator Q, then
(Lneo)(x) =1
(Lney)(z) ==
(Lnea)(z) = 27 + i(l;:—”) +2(1-z)al?

where the coefficients a( ) are given by the formula

_(=1)n-2) - (n-k+1) [, (@ *pa- ,.)(1)]
nk-1 pn(1)

By means of umbral calculus it is possible to arrive at once on some classical
approxiniation operators.
a) In the particular case of the sequence px(z) = ex(z) = z* one finds the

operator of Bernstein, defined by the formula
k
(Lnf)(z) = (Baf)(z) = “A-z)f| =
i 2_2,(k) : (n)

b) In the particular case of the sequence pi(z) = pg*>(z) ol pliei-o) z(z +
+a)(z+2a)-...- (2 + k= 1a), where a > 0 (which is of binomial type accordingly the
Vandermonde’s idqntity). we arrive at the operator of Stancu

(Laf)(z) = (Suf)z) = ;:%(1) é (k) P (2)pSe2 (1 - x)f (?)

This approximation operator was introduced by Professor D.D. Stancu in 1968 in the
paper (12].

Of course, in the particular case o = (¢ we find the prator of Bernsten. o) Set
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Q = f(D) be the delta operator associated to (p,), where f(t) is a formal power series
with f(0) = 0, f'(0) # V. Noting with u(t) the local inverse of f(t) (i.e. u(f(t)) =t)it

is know that
R =N tk
ezu( ) = ,‘X‘pk(:ﬂ)ﬁ.
=0

Let D be a linear space of funct,.ions f:[0,00) = R with the property that
the series Z Pk n);—f (%), (where z = tu'(t) and n = 1,2,...) is convergent for z ¢
(—A, A). Let J=[0,a],0<a< A, and Lo: f— Ly f, (f € D), defined by

hid k
e = e St (1)

By certain particularizations we obtain some known operators: of Favard-Szass,

Bernstein and Baskakov.

4. The approximation operator constructed by L.Lupag and A.Lupasg. ([1])
First the following notation and definition are presented: If (pn)n, pn(n) #0,is
a basic sequence for the delta operator @) let us denote

un(@) =1~ "= (@ pns) (o

Definition. A linear operator Q: A — A belongs to the class W if

(i) Q is a delta operator with the basic sequence (p,)
(i) pn(0) 2 0; n=1,2,...
(iii) nlLrlgo wn(Q) =0

In [1] some particular examples are examinated.

1. The differentiation operator D, for which wa(D) = %

1. Backward difference operator V, for which w,(V) = %
ITL. The Touchard operator 1', for which % <w,(T) < ?'-
1V The Laguerre operator L, for which —% <w,(T) < %
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Let Q be a delta operator and (p.) his basic sequence. In [1] L: C(I) = C(I)
is defined by

(LY f)(=

7 2 (Dmmacstn o (£) @
Using theorem 1 it is shown that
Le=ep
Lier=e
(13e2)() = e2(2) + 21~ 2)ua(Q).

So: If Q € W, then lim w,(Q) =0 and then L,ex «— ex.
n—00 n—oo
Using the Bohman-Korovkin theorem, there are proved in [1] the following the-

orems.

Theorem 1. If Q € W and f € C(I), then nli’rlgo”f - LZfll = 0 (where ||f|| =
max| (1))

Theorem 2. Let (LS),,ZI, Q € W, be the sequence of linear positive operators defined

above. Then:

(i) If h € C(I) is conver on I, then h(x) < (LYh)(z), z € I.
(i) Ifhe COI, my = mmf”(x) M, = maxf"( z), then forz €1
Smy - un(Q)2(1~ 2) < (L3/)(2) — f(+) < 5 My - un(Q)z(z —1).

Theorem 3. Let Q € W, f € C[0,1] and w(f,8) be the modulus of continuity of the
function f. Then

|£(z) = (L31) ()] < 20 (f; V/2(1 = 2)wn (@) )

I = L8111 < 3 (£, V(@)

Ending this paper we mention that the Bernsteir. operator L2 and the operator
LY can be obtained from some class of operators introd .ed by Professor D.D. Stancu

in his papers {13} - [15).
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