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PROFESSOR IOAN A. RUS AT HIS 60™ ANNIVERSARY

PAUL SZILAGYI

1. CURRICULUM VITAE

Professor Joan A. Rus was born in August 28, 1936, in Ianogda (Bihor), Romania.
He attended primary school in Ianogda, secondary school in Janogda and Oradea (Liceul
"Emanuil Gojdu”), then universitary studies (1955-1960) at the Faculty of Mathematics,
Babeg-Bolyai University of Cluj-Napoca. In 1968 he obtained the title of doctor in math-
ematical sciences with the thesis "Dirichlet problem for strongly elliptic systems” (under
the guidance of Professor D.V. Ionescu). He worked at the Babeg-Bolyai University of
Cluj-Napoca as assistant professor (1960-1967), lecturer (1967—1972), associate professor
(1972-1977), full professor (since 1977). . ‘
Administrative appointments: Vice-Dean of the Faculty of Mathematics (1973-1976),
Vice-Rector of Babeg-Bolyai University (1976-1984 and 1992-1996), Head of the Chair of
Differential Equations (since 1985).
Pditorial positions: Editorial board of: Mathematica, Revue d’Analyse Numerique et de
‘Théorie de I’Approximation, Studia Univ. Babeg-Bolyai, Pure Mathematics Manuscripts.
I’h.D. Supervisor since 1990.
Seminar activity: Chairman of the Seminar on Fixed Point Theory
l'eaching Activity: The basic course on Differential Equations and many other special
courses (Qualitative theory of differential equations, Fixed point theory, Nonlinear oper-
ators, Mathematical modelling). Author of five books on Differential equations and six
books on Fixed point theory.
Scientific activity: More than 100 papers in the field of ODE, PDE, Integral Equations
and Fixed Point Theory. Tile main results in:

Sturm separation and comparation theorems (see ”List of publications™): [6], [16],
[17), (18], [19], [20}, [21], [22], [25], [85], [129).

Maximum principles in the theory of ODE and PDE: [6], [26], [27], [28], [29], (30},
(4], (90, [94), [96], [98], [101], [110], [117].

Green functions: [6], [23], [24], [33].
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o Metrical fixed point theory: 8], [10], [11], [15], [35], [37])-[42], [4{)]-[56], (58], (63}
[65), [67], [68], [76], [91], [106], [115], [119].

Fixed point structures: [7], [8], [11], [57], [60], (75], [76}, (79], [81], [86], [88}, 89],
(92], [95], [99], [100], {102}, [105], (112}, {114], [116}, (120}, [121], [122].

Applications of the fixed point theory: [6), [7]-[15], [59], [62}, [66], [83), [93], {109],
[113], [118], [128].
Travels: 1966-1967 (october 1, 1966 - june 1, 1967), Lund; 1966 - Goteborg; 1971 (october
- december) - Moscow; 1972 - Brno; 1973 Oberwalvach; 1976 - Zagreb; 1983 - Budapesta;
1991 - Vadul lui Voda; 1992 - Chigindu; 1993 - Tibingen; 1993 - Florenta; 1994 - Bu-
dapesta. '
Membership: Romanian Mathgmaticai Society (1962- ), American Mathematical Society
(1971- ), Japonesse Association of Mathematical Sciences (1995- ), International Federa-

tion of Nonlinear Analist (1995- ).

2. LIST OF PUBLICATIONS

A. Textbooks
1. (with P. Pavel) Ecuatii diferentiale i integrale, Babeg-Bolyai University, 1973.
2. Ecuatii diferentiale gi integrale. Intrebéri de control, Babeg-Bolyai University, 1975.
3. (with P. Pavel) Ecuatii diferentiale si integrale, Editura Didactics gi Pedagogicd, Bu-
curegtj, 1975.
4. (with P. Pavel) Ecuatii diferentiale, Editura Didactici gi Pedagogici, Bucuregti, 1982.
5. (with P. Pavel, Gh. Micula, B. Ionescu) Probleme de ecuatii diferentiale si cu derivate
partiale, Editura Didactica gi Pedagogici, Bucuresti, 1982.
6. Ecuatii diferentiale, Ecuatii integrale gi Sisteme dinamice, Transilvania Press, Cluj-

Napoca, 1996.

B. Books and monographs
7. Teoria punctului fix I, Teoria punctului fix in structuri algebrice, Babes-Bolyai Uni-
versity, 1971.
8. Teoria punctului fix II, Teoria punctului fix in analiza functionald, Babeg-Bolyai Uni-

versity, 1973.
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9. (with Gh. Coman, G. Pavel, I. Rus) Introducere in teoria ecuatiilor operatoriale, Edi-
tura Dacia, Cluj-Napoca, 1976.

10. Metrical fixed point theorems, Babes-Bolyai University, 1979.

11. Principii gi aplicatii ale teoriei punctului fix, Editura Dacia, Cluj-Napoca, 1979.

12. On the problem of Darboux-Ionescu, Babeg-Bolyai University, Preprint nr.1, 1981.
13. Generalized contractions, Babeg-Bolyai University, Preprint nr.3, 1983, 1-130.

14. (coordonator) Matematica gi aplicatiile sale, Editura Stiintificd, Bucuresti, 1995.

15. Picard operators and applications, Babeg-Bolyai University, Preprint nr.3, 1996.

C. Scientific Papers
16. Teorema de tip Sturm, Studia Univ. Cluj, fasc.1, 1961, 131-136.
17. Asupra unor teoreme de tip Sturm, Studia Univ. Cluj, fasc.2, 1962, 33-36.
18. Asupra radicinilor componentelor solutiilor unui sistemn de doud ecuatii diferentiale
de ordinul I, Studii gi cercet. mat., Cluj, .14, 196.;3, 151-156.
19. Proprietiti ale zerourilor solutiilor ecuatiilor diferentiale neliniare de ordinul al doilea,
Studia Univ. Cluj; fasc.1, 1965, 47-50.
20. Familii de functii cu proprietatea lui Sturm, Studia Univ. Cluj, fasc.1, 1966, 37-40.
21. Proprietiti ale zerourilor componentelor solutiilor unui sistem de doud ecuatii diferentiale
neliniare de ordinul 1, Studii i cercet. mat., Bucuresgti, 18, 1966, 1549-1553.
22. Theoremes de comparaison pour les systemes elliptiques aux derivés partielles du
second ordre, Boll. U.M. Italiana, 22, 1967, 486-490.
23. Sur la positivité de la fonction de Green, Math. Scandinavica, 21, 1967, 80-89.
24. Asupra pozitivitatii functiei lui Riemann, Lucririle colocviului de teoria aproximarii,
1967, Cluj-Napoca, 199-200.
25. Theoremes de comparaison pour les systemes d’équations différentielles du second
order, Bol. U.M. Italiana, 1968, 540-542.
26. Asupra unicitatii solutiei lui Dirichlet relativi la sisteme de ecuatii eliptice, Colloque
sur les équations fonctionnelles, Bucuregti, 1968, pp.58.
27. Sur les propriétés des normes des solutions d’un systeme d’équations differentielles
du second ordre, Studia Univ. "Babeg-Bolyai”, 13, 1, 1968, 19-26.
28. Sur 'unicité de la solution du probleme de Riquier, Studia Univ. Cluj, fasc.1, 1969,
48-49.
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29. Asupra unicitatii solutiei lui Dirichlet, Studii gi cercet. mat., Bucuregti, 20(1968)
1337-1352.

30. Un principe du maximum pour les solutions d’un systeme fortemen elliptique, Glasnit
mat., 4(1969), 75-78.

31. Asupra unei probleme bilocale, Studii gi cercet. mat., Bucuregti, 10(1969), 1511-1521

'
1

32. Asupra existenfei punctelor fixe ale aplicatiilor, Lucrari gtiintifice (Tg. Mures)
2(1970), 21-23.

33. Sur la positivité de la fonction de Green correspondente au probleme bilocal, Glasnik
mat., 5(1970), 251-257.

34. Differentiability of a function defined on a algebric extension, Revue roumaine de
math. pures et appl., 5(1971), ‘661-664, in colaborare cu Cont 1.

35. Some fixed point theorems in metric spaces, Rend. ist. di mat., Univ. Trieste,
3(1971), fasc.H, 1-4.

36. 'Que]qués remarques sur la théorie de point fixe, Studia Univ. Cluj, fasc.2, 1971, 5-7.
37. Some fixed point theorems in locally convex space, An. st. ale Univ. din lagi, 18,
1972, 49-53. |
38. O metode posledoviselninih Priblijenii, Revue roumaine de math. pures et appl,
17(1972), 1433-1437.

39. Asupra punctelor ﬁke ale aplicatiilor definite pe un produs cartezian. I: Structur
algebrice, Studii gi cercet. mat., 24(1972), 891-896.

40. Asupra punctelor fixe ale aplicatiilor definite pe un produs cartezian. II: Spatii met-
rice, Stud. cercet. mat. 24(1972), 897-904.

41. Quelques remarques sur la théorie du point fixe (IT), Studia Univ. Cluj, fasc.2, 1972,
5-7.

42. On a common fixed points, Studia Univ. Cluj, fasc.1, 1973, 31-33.

43. Quelques remarques sur la théorie du point fixe (IIT), Studia Univ. Cluj, fasc.2, 1972,
5-7. 44. Principii dé maxim pentru sisteme de ecuatii, Lucrarile conferintei de ecuatii
diferentiale gi aplicatii, lagi, 1974, 77-80:

45. Approximation of fixed points generalized contraction mappings, Topics in numerical
analysis, Dublin, 1975, 157-161.

46. Fixed point theorems for multivalued mappings in complete metric spaces, Math.

Japonica, 20(1975), 21-24.
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47. On a fixed point theorem of Maia, Studia Univ. Cluj, fasc.1, 1977, 40-42.

48. On a fixed point theorem in a set with two metrics, L’anal. numérique et la théorie
de 'approxim., 6(1977), 197-201.

49. Rezultate gi probleme in teoria metricd a punctelor fixe comune, Seminarul itinerant
de ecuatii functionale, Cluj-Napoca, 1978, 65-69.

50. Asupra punctelor fixe ale aplicatiilor definite pe un produs cartezian (III), Studia
Univ. ”Babeg-Bolyai”, fasc.2, 1979, 55-56. '

51. Results and problems in the metrical common fixed point theory, Math. 24, fasc.2,
1979.

52. Results and problems in the metrical fixed point theory, Ann.” St. Univ. “Al. L
Cuza”, 25, S.1., 1979, 153-160.

53. Approximation of common fixed point in a generalized metric space, L’analyse
numérique et la théorie de 'approx., 8, 1979, 83-87. '

54. Some remarks on the common fixed point tucorems, Math. 21, 1979, 63-66.

55. Some metrical fixed point theorems, Studia Univ. Babey-Bolyai, 1, 1979, 73-77.

56. Some general fixed point theorems for multivalued mappings in complete metric
spaces, Proceed of the third colloc. on operations research, 1979, 240-249.

57. Punct de vedere categorial in teoria punctului fix, Semiharul itinerant, Timigoara,
1980, 205-209.

58. Aplicatii cu iterate contractii, Studia Univ. "Babes-Bolyai”, fasc.4, 1980, 47-51.

59. Asupra unei probleme a lui D.V. lonescu, Itinerant seminar, 1980.

60. Probleme si rezultate in teoria punctului fix, Al III-lea Simpozion national de analizi
functionald, Craiova, 1981, 24 p.

61. Compactitate gi puncte fixe in spatii metrice, Seminarul itinerant Cluj-Napoca, 1981,
17,

62. On the problem of Da.rboux-lohescu, Research seminaries, Cluj-Napoca, nr.1, 1981,
32 p.

63. An iterative method for the solution of the equation X = F(X,...,X), L’analyse
numérique et la th. de 'app., 10(1981), nr.1, 95-100.

61. On a review of R. Schoenberg, Seminar on fixed point theory, 1981, 104-107.

65. Some remarks on the fixed point theorem bf Nemyskii-Edelstein, Seminar on fixed

point theory, 1981, 108-111.
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66. On a problem of Darboux-lonescu, Studia Univ. ”Babeg-Bolyai”, 2, 1981, 43-44.
67. Some equivalent conditions in the metrical fixed point theory, Mathematica, 23(1981),
nr.2, 271-272.

68. Basic problem for Maia’s theorem, Seminar on fixed point theory, 1981, 112-'115.
69. Generalized PHI-contractions, Math., 24, 1982, 175-178.

70. Surjectivity and iterated mappings, Mathematics seminar notes, 10(1982), 179-181.
71. Teoreme de punct fix in spatii Bana.ch, Seminarul itinerant, Cluj-Napoca, 1982, 6 p.
72. Coincidence and surjectivity, Report of the sixth conference on operator theory, 198,
57-61..

73. Rezultate gi probleme in téoria punctului fix, Al ITI-lea simpozion national de snalisd
functinali , Craiova, 1983, 67-77.

74. Fixed points and surjectivity for (Alpha.—Phi)-contra.ction,‘Preprint nr.2, 1983.
75.-On a theorem of E.isenfeld—Lakshmikantham, Nonlinear analysis, 7, 1983, 279-281.
76. Probleme actuale in analiza neliniard, Semina._rul "Theodor Anghelut3”, 1983, 67-77.
77. Seminar of fixed point theory: Fifteen years of activity, Preprint nr.3, 1984, 1-19.
78. A fixed point theorem for (Gamma,Phi)-contractions, Preprint nr.3, 1984, 55-59.
79. Relative fixed point property, Preprint nr.3, 1984, 60-62.

80. Example and counterexamples for Janos mappings, Preprint nr.3, 1984, 63-66.

81. Measures of non-compact-convexity and fixed point, Itin. semin. of functional eq,
1984, 173-180.

82. Bessaga mappings, Proceed. colloq. on approx. theory, 1984, 164-172.

83. Mathematical models in physics:  structural stability, Proceed. math. symp. meth.
mod. and tech. in physics, Cluj-Napoca, 1984, 19-28.

84. Remarks on (Beta,phi)-contractions, Itin. sem. on funct. eq., 1985, 199-202.

85. Separation theorems for the zeros of some real functions, Math., 27, 1985.

86. A general fixed point principle, Preprint nr.3, 1985, 69-76.

87. Fixed and strict fixed points for multivalued mappings, Preprint nr.3, 1985, 77-82.
88. Fixed point structures, Math., 28(1986), 59-64.

89. The fixed point structures and the retraction-mapping principle, Preprint nr.3, 1986,
175-184.

90. Maximum principle for first-order elliptical systems, Preprint nr.3, 1986, 253-258.
91. Normcontraction mappings outside a bounded subset, Preprint nr.7, 1986, 257-260.
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92. Further remarks on the fixed point structures, Studia Univ. "Babes-Bolyai”, 31(1986),
nr.4, 41-43.
43. Mathematical models in physics technique of diff. eq. with deviating arguments,
Proceed. symp. M.M. and tech. in physics, Cluj-Napoca, 1987, 12-23.
9. Maximum principle for some systems of diff. eq. with derivating arguments, Studia,
32(1987), nr.1, 53-59.
95. 'lechnique of the fixed point structures, Sfpt. Preprint nr.3, 1987, 3-16.
Y6. Maximum principle for some nonlinear diff. eq. with deviating a.rgumenté, Studia
nr.2, 32(1987), fasc.2, 53-57.
97. Picard mappings. Resultand problems, Preprint nr.6, 1987, 1-10.
98. Some vector maximum principle for second order elliptic systems, Mathematica,
29(1987), nr.1.
99. Measures of nonconvexity and fixed points, Itinerant sem. funct. eq. approx. conv.,
Preprint nr.6, 1988, 111-118.
100. Retraction method in the fixed point theory in ordered structures, Preprint nr.3,
1988, 1-8.
101. Maximum principle for strongly elliptic systems: a conjecture, Preprint nr.8, 1988,
43-46.
102. Fixed point retractible mappings, Preprint nr.2, 1988, 163-166.
103. Picard mappings. I, Studia Univ. "Babeg-Bolyai”, 33(1988), nr.2, 70-73.
104. Discrete fixed point thereoms, Studia Univ. ”"Babeg-Bolyai”, 33(1988), fasc.3, 61-64.
105. On a general fixed point principle for (6 — ¢)-contraction, Studia Univ. "Babes-
Bolyai”, 34(1989), fasc.1, 65-70.
106. Basic problems of the metric fixed point theory. I, Studia Univ. "Babes-Bolyai”,
31(1989), fasc.2, 61-69.
107. R-contraction, Studia Univ. ”‘Babeg—Bolyaj”, 34(1989), fasc.3, 58-62.
108. Technique of differential equations with deviating arguments in economics (I), Studia
Univ. "Babeg-Bolyai”, Oeconomica, 34(1989), fasc.1, 68-73.
109. A delay integra] equation from biomathematics, Research seminars, nr.3, 1989, 87-
9.

110. On some elliptic equations with deviating arguments, Research Seminars, nr.3, 1989,
91-100.
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111. On some metric conditions on the mappings, Research Seminars, nr.3, 1991, 1-4.
112. Technique of the fixed point structures, Bull. Appl. Math., BAM 737, 1991, 3-16.
113. On a theorem of Dieudonné, Diff. Eq. and Control Theory, Longmand, 1991, 296-
298.
114. Some remarks on coincidence theory, Pure Mathematics manuscript, 9(1991), 137-
148.
115. Basic problems of the metric fixed point theory revisited, Studia Univ. "Babey |
Bolyai”, 36(1991), 81-89. |
116. On a conjecture of Horn in coincidence theory, Studia Univ. ”Babeg-Bolyai”,
36(1991), 71-75. '
117. Maximum principle for elliptic systems, Int. Series of Num. Math., 107(1992), 37-45, ,
Birkhauser.
118. (fvith C. Iancu), A functional-differential model for price fluctuations in a single
commodity market, Studia Univ. "Babe’s-Bolyai”, 38(1993), fasc.2, 9-14.
119. Weakly Picard mappings, Comment. Math. Univ. Carolinae, 34, 4(1993), 769-773.
120. Technique of the fixed point structures for multivalued mappings, Math. Japonica,
38(1993), 289-296.
121. Some open problems in fixed point theory by means of fixed point structures; Lib-
ertas Math., 14(1994), 65-84.
122. Fixed point structures with the common fixed point property, Mathematica, 38(1996).
]
|
D. Other Publications '
123. Multimi, aplicatii gi ecuatii, Lucririle Seminarului Didactica Matematicii, 1(1984/1985)
83-90.
124. Principii de punct fix, Sem. Did. Mat., 2(1985/1986), 172-179.
125. Puncte fixe, zerouri gi surjectivitate, Sem. Did. Mat., 3(1986/1987), 219-226.
126. (with M. Tarini) Momentul Descartes in istoria matematicii, 4(1987/1988), 251-
264.
127 (with P. Mocanu and M. Tarind) Creativitatea in matematici, Sem. Did. Mat,
5(1988/1989), 177-190.
128. Modelare matematici, Sem. Did. Mat., 6(1989/1990), 275-292.

129. On the zeros of components of solutions of first order system of differential equations,
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APPROXIMATION THEOREM IN L, FOR A CLASS
OF OPERATORS CONSTRUCTED BY WAVELETS

OCTAVIAN AGRATINI

Dedicated to Piofeuor Ioan A. Rus on his 60" anniversary

Abstract. In this paper we deal with a linear operator of Baskakov-type which has been
constructed in [1] by using waveleis. Now, we estimate the order of approximation in

Ly-spaces (1 < p < 00) for smooth functions.

1. Introduction

Recently, wavelets” have become a versatile tool in both theoretical and applied
mathematics. Certain families of functions generated by dilations and translations of a

single function ¥, i.e. given by
Yap(z) = la| ™ *P(az —b), a,bER, a#0,

have been studied in many works, see (3], [4], [6]. By using wavelets it is possible to
construct classes of operators which are useful in the approximation theory. In [5] H.H.
Gonska and Ding-Xuan Zhou introduced a class of Szasz-type operators by means of
Daubechies’compactly supported wavelets, which have the advantage that they can be
used for Ly-approximation (1 < p < o). Following the same idea, in [1] was presented

Baskakov-type operators. These operators are defined as

o) o0 A
(Enf)e) =13 bus(a) [ S(000(0t = 0t = Y-bus(a) [ 1 (S5 ) w0, )
k=0 o

n
k=0
where
n+k—1 *
x>0,

bni(z) = k (1 + o)k 2

and ¥ belongs to L. (R) such as suppy C [0, ] with 0 < A < co. Also, for ¢ we require
the following conditions:
Received by the editora: November, 1996.

1991 Mathematics Subgect Classification. Primary. 41A25; Secondary 41 A35

Key words and phrases. Baskskov-type operators, order of approximation, wavelets
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(i) its first r moments vanish:

/R thp(t)dt =0, 1<k<r, )
and
(ii)
/R B(t)dt = 1. (3)

The condition (i) implies that our operé.tors have the same moments ag Baskakov
operators in an arbitrarily chosen number. When ¢ = x(o,1) Ln are exactly the Baskakov-

Kantorovich operators B}, given by:

> A
(Baf) (@) =n ) bax(z) A f(u)du.

k=0
The main goal in this paper is to give an approximation theorem in L, (1 < p < )

for the operators introduced by (1).

2. Results

Firstly, we recall the Hardy-Littlewood maximal function M of a locally integrable
function g, that is g € L!*: It is a sublinear operator of the kind

= [ lotwids

t—z

: 4)

(Mg)(z) = sup
t#z
Obviously ||Mgllcc < ||glleo- Further, an application of Marcinkiewicz’s theorem

(see (2],
page 80) leads to the relation

IMgll, <v(p)llgll, 1 <p < oo, (5)

where v(p) is a constant and || - ||, indicates the norm of the Banach space L,. In our

investigation we shall use the function ¢,

¢(z) = Vz(z +1), =20, (6)

which represents the step-weight function related to the operators of Baskakov and Baskakov-
Kantorovich..

Also, we need the first moments of Baskakov operators:

#(2)

F‘n.O(z) =1, Pn.l(z) =0, /*‘".2(3) = n

12
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where, generally

nm(Z) = Zb,. x(z) (- - z) , meN.

k=0
Finally, we note with A.C.%° the space of all functions absolutely continuous in
every closed finite and positive interval,
Now, we mention some results in the form of lemmas which will be used in the

sequel,
Lemma 1. If f and f' belong to A.C.f,‘_“’ then, foranyz € [0, 7‘;] , the following inequality
A(A +3
(Laf)@) - F@) < 2OE Ny )y
holds.

Proof. Starting from the identity f(t) = f(z) + f; f'(u)du, and using the relations (1)

and (4) we can write successively:

(nf)(e) = F()] = Ln( f'(u)du;w) <3, k] el <
k=0
< zjbn,. R LER PRI ®)
Further, we have:
A t+k pY k
/0 : |dt<2—-+,\‘——z 9)

Applying Cauchy’s inequality and taking into account the relations (7), we obtain
for any z € [0, 7‘:]

3
~ —z| < plls 10
kz—o b" k x) T ” (ﬂ:) <5 = 2ﬁ ( )
Substituting (9) and (10) in relation (8) we arrive at the desired result. 0

Lemma 2. Let.z > 7‘; If we define:

Az, ) = H)}:bn.k(z) [ (-2 a

._.:L_
B.(z, )\)——Zbﬂk(z)/ (= )dt

k=0

13
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An(z,)) < (; + A)

Ba(z,)) < (A +4,\) 7 22 (12)

then

3|'—'

n2l1, (11)

and

Proof. According to (7) we have:

An(z,)) = prps +1)/ (#uz(l‘)——t#nl(x)‘i- ) :+ﬁ—l)—

The a.ssumptlon Vnzr > 1 implies the relation (11).

To estimate B,(z,A) we notice that

. .2
Ba(z,)) = ‘Zbﬂ'*(‘”) Mdy=
k=0 y
_ n(:c+l A A T+1
= gb,.,,( )ln(l+ +k)+—-«\ p (13)

From the inequality In(1 +t) < ¢, ¢t > 0, and (7) it follows for every n > 2 that:

- X A =~ (n+k-2) *  n4k-1 n
"Zb"-“(””)ln(” +k) < l+xkz=; Hn—2! 1+2)"*1 n+k

n—1
k=0

< A (2) n A n
T+ T S Ten—1
Returning to (13) we deduce:
A2 1 1 AA+8)
(2 < o+ a1+~
Bul= )<2n:1:+ (l+z)n—1< 2\/n
because 1 < \/n. Hence (12) holds. a

Lemma 3. If f and @2 f" belong to A.C.%¢® then, for any z > 7’; and n > 2, the following

inequality
3 2
(Eao) - S < (G + 5 + ) T2l M) )
holds.

Proof. We use the Taylor furinula
SO e+ L=+ [ - wf

14



APPROXIMATION THEOREM IN L,

and considering (1) we obtain:

(Laf)(x) = f(z) = f'(z)Ln(7z: 2) + La(Ra f; 2),
where 7.(t) =t — z and
(Fax§)t) = [ (6= 0" (i

The conditions (2) and (3) ensure L,(7;;z) = 0, consequently we get:’

/ t+ k
We use the fact that:

v — ul |z ~v| _ |z—v] 1 1
< <
u(l+u) “z(l+u)~ = l+:v+1+v :

(Laf)E) = F@) < 3 bunl) / u| ()l

k=0

for every u between z and v (z > 0, v > 0), and choosing v = £ we can write:

t+k

ek
Jirr s B '(1}” 1+_+_)Iso’(u)f"(u)l,

where @ is defined in (6).

dtllt/)lloo.

(14)

We place this above inequality in (14) and taking into account both the definition

of Hardy-Littlewood operator from (4) and the notations which were introduced in Lemma

2, we have:

|(Laf)(z) = f(2)] < (An(z,X) + Ba(2, ))lidlleo M (* f")(2)-

Recalling now (11) and (12) the proof of Lemma 3 is complete.

0

Combining the cases of Lemma 1 and Lemma 3 after a new increase, we have for

z€(0,00) and n > 2:

(Laf)(z) = S(@)] < (*3 + 30 + 323) Bl i o) + Mot )00,

This implies for 1 < p < 0o and f',p%f” € L,[0,00):

NLnf = Fllp < °*'1}p-"°°<uM(f o + 1Ml

where ¢ is a constant.

If we use the relation (4) in this above inequality, we are able to state our main

result.
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Theorem. Let 1 < p < oo and L, the operators defined in (1). If f, f' and o*f"
belong to A.C.!° N\ L,[0,00), then we have

M ;
WLnf = fllp < %(llf'llp +lle* o)l o

where M is e constant which depends on X\ and p.
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" STUDIA UNIV. “BABES-BOLYAI", MATHEMATICA, Volume XLI, Number 4, December 1996

THE GENERALIZATION OF FIXED POINT THEOREMS IN
ULTRAMETRIC SPACES
ANTAL BEGE

Dedicated to Professor loan A. Rus on his 60*" anniversary

Abstract. In this paper we prove some fixed point theorems in partially ordered sets

which generalize the results states in ultrametric spaces .

1. Introduction

Let (P, <) be an ordered set with 0 ¢ P and 0 < p for every p € P, we do not
assume that the order is total.

Let X be a nonempty set . A mapping d: X x X — P U {0} will be called an
ultrametric distance (and (X, d, P) an ultrametric space) , if the following properties hold

for all z,y,z € X,p € P:

1)d(z,y) =0 ifandonlyif z=y
2)d(‘19 y) = d(y, $)
3)If d(z,y)<p, dy,z)<p then d(z,z)<p

Example 1

For each prime p,the p-adic valuation v, on the field Q of rational number is defined as
follows:

ifm=p'-l (wheret >0, (p,!) =1) let v,(m) =1t

if2eQ,(m,n)=1,v,(2) = vy(m) — vy(n)

and v,(0) = oo.

" If we associate the p-adic distance d, : Q x Q@ — R3o,

dy(z,y) = p7*r )

Received by the editors: November, 1996.
1991 Mathematics Subyect Classification. 06A06.
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then d, is ultrametric.
Example 2.
Let V be a nonempty set.The (P (V),d,P(V)) is ultrametric space,where

d(U,W)=UAW = (U ~ W)U (W - U)

(the symetric difference of U and W € P (V)).
Let X  be an ultrametric space , let « € P and @ € X . The set:

Bu(a) = {z € X/ d(z,a) < a}

will be called a ball with centre a and radius c.

The ultrametric space X will be called spherically complete when every non-empty set B
of balls of X , which is totally ordered by inclusion , has a non-empty intersection . If
(P, <) is totally ordered , the relation between the concepts of spherical completeness , of
pseudo-convergence and completeness was examinate in [1]. |

Example 3.

The (P (V),d,P(V)) is spherically complete ultrametric spaces.(see example 2)
Example 4.

If (P, <) is artinian and narow , then X is spherically complete.

A map ¢ : X — X is said to be contracting,when z,y € X ,z # y implies

d(p(z),p(y)) < d(z,y)

In [1] and [2] the authors states some theorems which same to the Banach Fixed point
Theorem.The general form is the following:

Theorem 1.1.(S.Priess-Crampe,P.Ribenboim [2])

If X is spherically complete and ¢ : X — X is contracting, then ¢ has eractly one fired
point.

In this paper we generalize Theorem 1.1. in ordered sets.
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2. The fixed point theorem

Theorem 2.1.

Let X # O be a set,(P,<) be a poset.Let o : X — X and A: X — P be a maps such
that the cardinality of {z | A(z) = A(z¢)} is finite and

Ap(z) < Az Vz e X
Let B={B,; [x € X} and B, = {y | Ay < Ap(z)}.If every X, C X,

() B:#0

z€X1y

then ezxist n natural number such that

pi(z) ==z
for some z € X.
Proof
We observe that B, # 0 Vz € X. (p(z) € Bz)

Let C be the maximal chain by inclusion in B .It follows that exists z € () B;.
c
We prove that

B.={y/Ay<Ap(2)} CB, VB, €C
If z € B, implied Az < Ay (z).For every y € B,

Ay < Ap(z) < Az < Ap(a)
which implied y € B;.
Since C is a maximal chain in B then B, is the smallest element of C' .But y € By (z)
implies

Ay < Ap®(2) S Ap(2) , y€ B,

N
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which implies By (z) C Bz and by the minimality of B, , By (z) = B=.
If Ap?(z) < Ap(z) follows that By (z) C B, which contradiction. Then Ap?(z) = Ap(2)

Similarly we can prove that By" (z) C By™~! (2) every n € N* which implies By" (z) =
By (2) and Ap™*! (z) = Ap" (z) .Thus:

Ap(2) = Ap*(z) =...= Ap" (2) = ...

But cardinality of {A¢" (2) / n € N*} is finite ,follows that exists n; > ny natural num-
bers such that:

"(z) = ¢™(2)
which implies

P (9™ (2)) = 9™ (2).
Corollary 2.2.

Let X # 0 be a set, (P,<) be a poset.Let ¢ : X — X and A: X —+ P be a maps such
that A injective and

Ap(z) < Ar Vze X.
If every X, C X,

(] B:-#90

zeX)

then there ezist x fized point of ¢ .
Proof
If A injective the cardinality of {z / Az = Azo} one , and if we apply the proof of Theo

rem 1.1. we find that
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THE GENERALIZATION OF FIXED POINT THEOREMS IN ULTRAMETRIC SPACES

o(z) = ¢*(2)

which implies that ¢(z) the fixed point of ¢ .

Theorem 2.3.

Let X # @ be a set,(P,<) be a poset and 0 ¢ P such that 0 < p for every.p € P.Let
p: X —X, A: X — PU{0} such that

Ap(z) < Az Vz €X (for which Az # 0)

LetB={B; [z € X}, B, ={y [/ Ay < Ap(z),y € X} such that

VXicX () B:#0.
z€X,
Then ezists zo € X such that Azq =0 .
Proof
Assume that Az #0 Yz € X .Theset B = {B, / z € X} is ordered by inclusion.Let C

he a maximal chain in B .There exists an element

zeﬂB,.

z€C
It follows that B, C B, Vr € X,(Ay < Ap(z) < Az < Agp(z)) which implies that B, an

element in B ,contradicts the maximality of B .

Then there exists z¢ such that Azg=0.

Corollary 2.3.

If X spherically complete and ¢ : X — X is contracting;then ¢ has a fized point.
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SEQUENCES OF OPERATORS AND FIXED POINTS IN
QUASIMETRIC SPACES

VASILE BERINDE

Dedicated to meessor Ioan A. Rus on his 60'* anniversary

Abstract. For a sequence of certain selfoperators (f,) of a quasimetric space X, uni-
formly convergent to a (-contraction f, we establish a convergence theorem for the

sequence of fixed points of fs,(z}), to the unique fixed point of f.

This paper is in continuation with our investigations concerning the generalized
contraction mapping principle in quasimetric spaces [2]. Its main gbal is to extend a result
of $.B.NADLER (3] for contractions in usual metric spaces to generalized contractions in
quasimetric spaces. In order to state Theorem 3 (the main result of this paper) we need
some definitions , examples and results from [1]-[4] which we summarize here.

A quasimetric space is a nonempty set X endowed with a quasimetric, that is a
function d : X x X — R,satisfying the following conditions:

dl) d(z,y) =0if and only if z = y,

d2) d(z,y) = d(y,z),Vz,y € X;

d3) d(z, z) < ald(z,y) + d(y, )], Vz,y, 2 € X,

where a > 1 is a given real number, see [1].

Obviously, when @ = 1 we obtain the usual notion of metric (space).

Ezample 1. [1] The space [,(0 < p < 1),
00 p
l,={(z,.)c R/ El [%al <oo},

together with the function d:{, x I, = R,

. o0 i/p
de)= (Elon-wb) ",
where £ = (za),y = (yn) € Iy, is 2 quasimetric space. Indeed, by an elementary
calculation we obtain
| d(z,2) < 2¥(d(a,y) + d(y, 7)),
hence a = 25 > 1 in this case.

Received by the editors: January, 1997.
1991 Mathematics Subject Classification. 4ATH10.
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Ezample 2.[1]. The space L,(0 < p < 1) of all real functions z(¢),
t € [0,1],such that

fllz(t)l” dt < oo,

becomes a quasimetric space (;f we take

d(z,y) = (f 4 |=(t) — y()P dt)""? for each z,y € L,.
The constant a is the same as in thé previous example, a = 25.
DEFINITION 1. A mapping ¢ : Ry — R, is called comparison function if
(i) ¢ is monotone increasing;
(ii) ¢"(t) — 0, as n — oo,for each t € R,.
Ezample 3. The mapping ¢(t) = at,t € Ry,where 0 < o < 1, is a comparison

function. ' .
" DEFINITION 2 Let (X, d) be a quasimetric space. A mapping

f: X = X is called p-contraction if there exists a comparison function ¢ such

that

d(f(), f(¥)) < p(d(,y)),Vz,y € X. (1)

Remark. A ¢—contraction with ¢ as in Example 3 is an usual contraction.
DEFINITION 3. A mapping ¢ : Ry — R, which satisfies:

(i) ¢ is monotone increasing (isotone);

(ii) There exist a convergent series of positive terms io: v, and a real number

n=0
a,0 < a < 1, such that

©**1(t) < ap*(t) + v, for each t € Ry and n > N (fixed) {2)

is called (c)-comparison function ( ¢* stands for the k the iterate of ¢ ).
Remark.1) Using a generalization of the ratio test [5],(7], it results that if v isa

(c)-comparison function then the series

Z o5 (t) (3)

k=0

converges for each ¢ € R therefore
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¢*(t) = 0, as k — oo,

that is any (c)-comparison function is a comparison function too.

2) If we denote by s(t) the sum of the series (4) then s is monotone increasing and
continuous at zero.

I'srample {. The function given in example 3 is a (c)-comparison function but,
generally, a comparison function is not a (c)-comparison function, see [2]-[3]..

THEOREM 1.([2]) Let (X,d) be a complete quasimetric space and
f: X = X a p—contraction. Then f has a unique fized point if and only if there exists
29 € X, such that the sequence (z,)nen of the succesive appro-

mmations,

zp = f(2u-1),mn €N,

is bounded.

In order to establish a genera,lizéd fixed point principle which furnishes an approx-
imation method to the fixed point,we have to consider a stronger concept than that of
comparison function.

DEFINITION 4. Let a > 1 be a given real number. A mapping ¢ : Ry — Ryis
called a-comparison function if f satisfies (i) and V

00
(iii) there are a convergent series of positive terms ) v, and a real number a,0 < a < 1

n=0
such that

aF 1 o*(t) < a - a**(t) + vy, for t € Ry and for k > N (fixed) (4)

Remark. In view of the generalized ratio test [2] , the series

0

Y a1 (5)

k=0
converges for each ¢t € R, and its sum, denoted by s,(t), is monotone increasing
and continuous at zero.
Obviously , for @ = 1 (that is, d is a metric on X ) such an a-comparison function
is a actually (c)-comparison function.
Based on this concept, in [2] we established the following generalized contraction

principle in quasimetric spaces
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THEOREM 2. Let (X,d) be a complete quasimetric space , f : X = X ap-

contraction with ¢ an a-comparison function. If zo € X is such that the sequence (z,),

Zp = f(Ta-1),n € N*,
is bounded and F; = {z*}, then we have

d(2n,2") < @ 3,(d(2n, ZTn41)),n > 0, (6)

where 3,(t) is the sum of the series (5)

Remark.1) If a = 1,Theorem 2 is just the generalized contraction principle, given
in [2]-{4];

2) When ¢(t) is as in example 3, the condition (5) is satisfied if a € [0; 1] is such
that

aa < 1.

In concrete problems we need to compute the fixed point z*. An usual way is to
seek for a sequence of operators (f,) which approximates (uniformly) the given operator
f such that Fj,. # 0, for each n € N* and the set Fy, is easier to be determined.

The following question then arise: in what conditions over f and f, , from z; €
Fyp,it results that

z, +z*,asn—>oo?

If the answer is in the affirmative, then £* may be approximated by z;, for n
sufficiently large.

The main result of this paper is given by.

THEOREM 3. Let (X,d) be a complete quasimetric space, f,
fo: X = X(n € N*) such that

1) f satisfies the assumptions of Theorem 2 and, in addition, ¢ is subadditive;

2) (fa) converjes untformly to f on X;

3) i, € Fy,, for each n € N.

Then (z3) converges to x*, the unique fized point of f.

Proof. From (d3) we have

d(z;,2°%) = d(fa(23}), f(z°)) < ald(f(23), £(2") + d(fa(=3). f(=2))),

and, in view of the contraction condition, that is,
d(f(z3), f(z*) < p(d(z3,2%)),
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we obtain

d(x3,2%) < ap(d(z3,2%)) + ad(falz}), f(23)).
Based on the subadditivity of ¢ we then obtain by induction

k
d(z;,2%) A (d(a], 2) + ) a'ei(d(falz3), £(23))) k2 0 (7)

=0
But ¢ is a-comparison function, hence the series (3) is convergent. This implies
a* 1ok (d(z2,2%)) + 0, as k — oo

and then from (7) we obtain

d(z3,2%) < sa(d(fa(23), f(23)))-
But s, is continuous at zero and then,from 2) we deduce that -

d(fa(z3), f(23)) = 0, as n = oo,
therefore

d(z;,2*) 2 0,as n = 00
that is =}, = z*,n — 0o, as required.
Remark. 1) For ¢ as in Example 3, from Theorem 3 we obtain a theorem of
Nadler type in quasimetric spaces;

2) For a = 1 and ¢ as in Example 3, from Theorem 3 we obtain a result of Nadler
3)-
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ON THE SEPARATION OF VARIABLES IN THE GEODESIC
HAMILTON-JACOBI EQUATION FOR A SPHERICALLY-SYMMETRIC
DILATON BLACK HOLE

CRISTINA BLAGA AND PAUL A. BLAGA

Dedicated to Professor loan A. Rus, on his 60** Anniversary

Abstract. The aim of this letter is to show the geodesic Hamilton-Jacobi equation‘for
a new spherical symmetric exact solution of the Einstein—dilaton equation is separable

and to construct its complete integral.

It is known ([1])) that the metric of a spherically-symmetric, massless dilaton black
hole in four dimensions can be written in the following form, using the curvature coordi-

nates:
-1 2
(1) ds*=- (1 - ng) dt* + (1 - %) dr’* +r (r - %) [d02 + sin? 8dy?]

The covariant components of the metric tensor can be read off from the equation (1).

They are
-(1-21) 0 0 ]
o w=| o T 0 ’
0 0 r (r - %) 0
I 0 0 0 r(r—%)sin”)_
while the contravariant ones are
[y O 0 o |
® =] 2 TS X
0 0 ;r_'ﬁ%s 0
i 0 0 0 Téﬁ?

The geodesic Hamilton—-Jacobi equation for a pseudo-Riemannian space is written

on the form )
05 _ 19505
() “n =29 95 00

Received by the editors: November 2, 1996.
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In our case, the Hamilton-Jacobi equation reads (see [2)):

s 1 as\? 2M\ [/8S\? 1 4s\?
% - ) N Ty
1 as\?
5 + , (—)
®) r( —%)sin’() d¢

Now, to show that the equation (5) is separable, we could show that the following

necessary and sufficient condition of Levi-Civita is fulfilled ([2]):

(6) O'HY¥ HO;H + 0, HO;HO'H — ' HO;HO!H — &' HOHI: H = 0,
where we have used the notations:
OH . OH )
O,H = 3—11." O'H = a—p. and so on.

We mention that the canonical coordinates are numbered as follows: ¢' = r, ¢* = §,
¢ = ¢, ¢* = t, and p; are their canonical conjugate momenta.

Nevertheless, in this particular case is simpler to look directly to the Hamilton-
Jacobi equation. Thus, since, clearly, ¢t and ¢ are ignorable coordinates, we shall seck a

solution of the form
1
(7 S = 551,\ — Et+ Lo+ S.(r) + Ss(9),

where S.(r) and Sg(@) are functions only of the indicated variables (see the book of
Chandrasekhar [3] for a justification of the notations E and L,; actually, E is to he
identified with the energy of a test particle moving freely along the geodesics, while L, is
its angular momentum).
Now, if S is of this form the the equation (5) becomes:
Q’ 1 2, 1 12
-2 ) =- E L
bir (" M -2y Tae T
2M Q*\ [dS.\* [dSs\?
+(1=5) (-3 (&) (@)

which is manifestly separable and gives

(-2 (-$) () s (-5 me -
ORI

(8)

9)
do sin?@ *’

where Q is a separation constant.
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DATA DEPENDENCE THEOREMS ON COINCIDENCE PROBLEMS

ADRIANA BUICA

Dedicated to Professor Ioan A. Rus on his 60" anniversary

Abstract. Data dependence results for coincidence problems are established using the
contraction fixed point technique. Applications to differential equations and complemen-

tary problems are given.

1. Introduction.

There are various techniques in the coincidence theory ( for more details see [6]
and the references cited therein). One of them concern the qquivalenée, under additional
assumptions, with a fixed point problem. This paper gives some data dependence results
on coincidence problems using the above remark.

Several authors dealt with this subject. Among them we remind the results of
Goebel [5] and Rus [6] which are needed further on.

Let X and Y be two nonempty sets and F,G: X =+ Y, H: X — X be some
mappings. We denote by :

Fp={ze X:H(z) ==z}
the fixed points set of the mapping H and by :

C(F,G)={z € X : F(z)=G(z)}
the coincidence points set of the pair of the mappings F' and G.

Theorem 1. (Goebel) Let X be a nonempty set and (Y, p) be a complete metric space.
Let F,G: X =Y be two mappings such that following conditions are fullfiled:
(i) G is surjective;

(ii) there ezists a € (0,1) such that p(F(z), F(y)) < ap(G(z),G(y)) for all z,y €

Then the pair of mappings F and G has a coincidence point.
Moreover, if G is bijective then the coincidence point is unique.

Received by the editors: October, 1096.
1991 Mathematics Subject Clouification. Primary: 84H25; Secondary: 47H99.
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A map F which satisfies the condition (ii) is called, by some authors, G-contraction
mapping. (see {2], [3])
Theorem 2. (Rus) Let (X,d) be a complete metric space, (Y,p) be a metric space and

F,G: X Y be two mappings. We suppose that:
(i) there exist ay > 0, az > 0, aza;* < 1, such that:

p(G(z), G(y)) 2 aid(z,y) for all 2,y € X,
p(F(z), F(y)) < azd(z,y) for all z,y € X;
(i) F(X) C G(X).
Then the pair of mappings F and G has an unique coincidence point.

Another result we use is the classical data dependence theorem in metric spaces.

Theorem 8. Let (X,d) be a complete metric space and f,h : X — X be two mappings
such that:
(i) there ezists a € (0,1) such that d(f(z), f(y)) < ad(z,y) for allz,y € X;
(it) there ezists n > 0 such that d(f(z),h(z)) < n for all z € X;
Then we have the following estimation:
d(z*,2*) < 7 I'-a'

where z* is the fized point of f and 2* is a fized point of h.

In the end our results are applied for some initial value problems and complemen-

tary problems.

2. Main results.

Theorem 4. Let (X,d) be a metric space, (Y, p) be a complete metric space, F,G,T,H:
X = Y be some mappings such that:

(i) G and H are surjectives;

(ii) there ezists a € (0,1) such that p(F(z), F(y)) < ap(G(z),G(y)) for all z,y €

(iii) for each z,y € X such that H(x) = H(y) we have T(z) = T(y);
(iv) there exist ny,n3 > 0 such that p(F(z), T(x)) < m, p(G(z), H(x)) < ny for all
zeX;
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Then we have the following estimation:
- - + a
p(G(="), H(z)) < L1
where z° is a coincidence point for F and G and z* is for T and H.

If, in addition, we have:

(v) there exists L > 0 such that p(G(z),G(y)) 2 Ld(x,y) for all z,y € X then:

.- e ’h+’72
d($ ,Z )S L(l—a)

Proof. G is surjective, thus there exists G;!, a right inverse of G.

From theorem 1 it follows that FoG;! : Y = Y is a contraction mapping with
constant a and Fg -1 = {G(z*)}.

Since H is surjective, there exists H ! : Y — X a right inverse of H.
Let us denote by H(2*) a fixed point for To H;': YV 2 Y.
For each y € Y we have:

. p(FoG '\ (y), ToH (y)) < o(F(G]'(v)), F(H '(v))) + p (F(H ' (y)), T(H'(y))) <

ap (GG W), GBS W) +m < ap(H(2),6(2)) +mi <
< m+tan

IA

where we denoted z = H(y).

Conditions of theorem 8 are fullfiled, so we have the estimation:
. . +a
p(G(=), H(z") < TR

Using this relation and conditions (iv) and (v) we obtain the estimation for the distance

between solutions of two coincidence problems:

. . n+ N2
d(x,y)s—————L(l_a)

0

Theorem 8. Let (X, d) be a complete metric space, (Y, p) be a metric space and F,G, T, H :
X = Y be some mappings such that:

(i) there ezist ay > 0, a3 > 0, aga;" < 1, such that

p(G(2),G(y)) 2 ad(z,y) for all 2,y € X,

p(F(z), F(y)) < aad(z,y) for all 2,y € X;
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(#) F(X) C G(X);
(iii) H is injective and T(X) C H(X);
(iv) there ezist ny,n2 > 0 such that p(F(x),T(z)) < m, p(G(z), H(zx)) < my for all
zeX.
Then we have the following estimation:
d(z*,2%) < mtm
a — as

where z* is the coincidence point for F and G and z* is a coincidence point for T and H.

Proof. The condition (i) assure that G is injective. Thus there exists G}, a left inverse
of G.

From theorem 2 it follows that G;' o F: X — X is a contraction mapping with
constant aza;! and Fgorp = {2"}.

Since H is injective, there exists H;' : Y — X a left inverse of H.

Let us denote by z* a fixed point for H7'oT : X — X.

For each £ € X we have:

IA

dGT" o F(a), B o T(@) < —p(G(GT (Fla))),GUH; i T(a)) =

=£ﬂﬂmmmﬂﬂmnﬁ
< ;1; [o(F(z), T(2)) + p(T(2), G(H[ (T (2))))] =
= -dll-[p(F(:t),T(x)) +p(H(z),G(2))] < m_:ln_z

where we denoted z = H ' (T(z)).

Conditions of theorem 3 are fullfiled, so we have the estimation:

d(z*,2") < BTR
a; — ap

3. An application to differential equatins.

Let us consider tne Cauchy problem:
m{fm=ﬂwmxmwm

z(a) = o
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We intend to find sufficient conditions for existence and uniqueness of classical
solution on the entire interval [a,b). The idea is to use a "smoothness” function. So, let
p € C'[a,b) be a mapping such that p > 0, p(a) = 1 and lim; » p(t) = +oo.

We are looking for solution in the following set:

z(t)

lim —-= exists and it is a real number}
7 p(t) ’

We suppose that f € Cla,b) x R and for each z € M there exists lim; » “ﬁ{{n, itis a

real number, and, also, j;b J(t,=(t))dt exists. All these conditions are basic for our work.

M = {z € Cla,b):

An existence theorem and a data -dependence theorem we shall establish.
Theorem 6. (Existence) Assume that:
|£(t,u) = f(&,8)| < L(t) lu — ] for all u, G € R, t € [a,b);

with L € C[a,b) such that j: L(t)p(t)dt exists. Then there ezists an unique z € M
- solution of the problem (1).

Proof. We shall define two mappings such that any solution of the problem (1) is a coin-
cidence point for them and conversely.

For each z € M, t € [a,b) we denote:
Zo + f: f(s,z(s))ds e~3J: L(s)p(s)ds

p(t)

28 -2 12w
p(t)

Fz(t)

Gz(t)

We get, according to our hypothesis, two mappings F,G : M — C|a,b] where
Fz(b) = lim¢ » Fz(t) and Gz(b) = lim; » Gz(t). We intend to use theorem 1.
We have: ‘

|Fz - Fz|| < % |Gz = Gzl| for all 2,7 € M.
We also have that G is bijective and (C|[a,b],dc) is a complete metric space, where d¢
is the metric which correspond to the ussualy max-norm. Theorem 1 assures that the
pair of mappings F and G has an unique coincidence point, which is the unique z € M
solution of the Cauchy problem (1). ]

Let us consider two Cauchy problems:
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z' = f(t,z) 2 =g(t,2)
d [)
(1){ M=z (Z){ 2(a) = %

such that basic conditions are fullfiled for both of our problems.

Theorem 7. (Data dependence theorem) Assume that:

() 1f(t,u) — f(t,%)| < L(t) |u — 4] for all t € [a,b), u,T € R with L € Cla,b) such
that f: L(t)p(t)dt ezists;

() there ezists n > 0 such that

|f(t,u) — g(t,u)| < n for all u € R,t € [a,d)
Then we have the following estimation:
lo*(t) = 2*(8)| < 2llzo — 20| + (b — a)p(t)e? = HPMe, for every t € [a,b).
where z* is the solution of problem (1) and z* is a solution of problem (2).

Proof. We shall use theorem 4. We have F,G,T : M — C{a,}] , where

¢
zo+ [ f(s,z(s))ds ‘
Fz(t) = 2 o0 e 2 LR for all t € [a,b);
¢
zo+ [ g(s, z(s))ds ‘
Tz(t) = . D) e 2 Lo L) for all t € [a, b);
Gz(t) = %e'z L Le)p()e for a1l ¢ € [a,b).

G is bijective.
z* is the unique coincidence point of the pair of mappings F and G.
z* is a coincidence point of the pair of mappings T and G.

It is easy now to obtain the estimation. 0

We shall give a simple example in order to ilustrate the above theorems.

Let us consider the Cauchy problems:
) o= E,tel0,1) 0 =2 4+,tel0,1)
z(0) = -1 2(0) = 2o
We consider:
1

1-1
{zeC[0,1): !1/[‘111(1 —t)z(t) € R}

p:{0,1) = R p(t)
M

)
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The basic conditions are fullfiled and hyphothesis of theorem 6 are satisfic -

L:[0,1) = (0, +00); L(t) = llj
The unique solution of problem (1) is z(t) = ¢ — 1.
We apply theorem 7 and we get:

If there exists a solution z* € M of the problem (2) then we have. the v

estimation:

1

[2°(t) = ¢+ 1] < 2lao'+ 1]+ m) 7=

e, te0,1)

4. An application to complementary problems

We consider in this section the complementary problem and its relatic -
coincidence theory. The'complementiry problem is one of the interesting anc -
problems defined after 1964 and much studied in the last fifteen years. I:

- variety of practical problems arising in: mathematical programming, optimiza.
economic equilibrium theory, structural mechanics and elasticity theory (sec i.,
refrences cited therein).

In [4] G. Isac.proved that if (H,<-,->) is a Hilbert space ordere?! : -
convex cone K C H and f,g9: H -+ H are two mappings, then a solution

coincidence problem

9(z) = Pk (9(z) — 7f(z))

is a solution of the complementary problem

(1) find z. € H such that g(z.) € K f(z.) € K" and < g(z.), f(z.) -

i

Here Px denotes the projection onto K, and K* is the dual cone of A"

Theorem 8. (Existence) Let H be a Hilbert space and let K C H be a closca o
cone. Given the mappings f,g: H = H we assume that:
(i) there exist T > 0, a € (0,1) such that

lg(z) - g(y) = (f(=z) = SWl < allg(z) - gy)|| for all z,y € L
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(ii) g is surjective.

Then the complementary problem has at least a solution.

Proof. We apply theorem 1 for F,G: H—+ H,F =Pxo(g—71f),G=g4. 0
We consider another complementary problem: \
(2) find z. € H such that h(z.) € K, t(z.) € K* and < h(z.),t(z.) >=0.

Theorem 9. (Data dependence theorem) We assume that: ‘

(i) there exist 7 > 0, a € (0,1) such that

Hg(x) ~ g(y) — 71f(2) — FW)Il < allg(z) — g(y)|| for all z,y € H,

(ii) g and h are surjectives;

(ii4) there ezxists L > 0 such that ||lg(z) — g(y)]| > L||lz —y||;

(iv) there exist 1,12 > 0 such that || f(z) — t(z)]| < m, llg(z) — A(z)|| < 2 fordi
z€H.

Then we have the estimation:

2
lz. — 2] < ™+ am

L(1 - a)

where z* is the solution of problem (1) and z* is a solution of problem (2).

Acknowledgement: The author express her thanks to Professor I.A. Rus for his sug

gestions and constructive comments throughout the preparation of this paper.
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EQUIVALENCE BETWEEN IMPLICIT FUNCTION THEOREMS

DOMOKOS ANDRAS

Dedicated to Professor Ioan A. Rus on his 60" anniversary

Abstract. We prove an equivalence between implicit function theorems. The impor-

tance of this fact is that the classical implicit function theorem, its nonsmooth gener-

alizations and results on stability of the solutions of parametric variational inequalities

from {4], [5), [6], in Hilbert spaces are consequences of an implicit function theorem for

monotone mappings.

In this paper we will show equivalence between two kind‘ of implicit function the-
orems. One of these is based on generalizations of the strong regﬁlarity and strong ap-
proximation concepts. These concepts appeared in the papers of S.M. Robinson [5],[6],
A.L.Dontchev-W.W.Hager [4], A.Domokos [3]. The other kind of theorem. appeared in

{1],{2] and is based on monotonicity conditions.

Theorem 1. Let X be a Hilbert space, let Y be a normed space (Y could be only a
topological space)let T : X xY — X be a map, let (zo,y0) € X x Y, let Xo be a
neighborhood of o and let Yo be a neighborhood of yo. L.t us assume that:

i) 0 = T(zo,¥0)-

ii) T is continuous at (zo,yo) and the mappings T(-,y) are continuous on Xo, for each
Yo € Yo.

iii) There ezists an increasing function ¢ : IR, — IR,, with o(r) > 0 for r > 0, such
that

(T(z1,9) = T(zny), 21— 22) 2 ¢(llz1 —z2ll) ll21 — 23|,

VyeYo, V1,22 € Xo.
Then, there ezists a constant r > 0 and a unique mapping z : B(yo,r) = Xo, continuous

at yo such that z(yo) = z0, T(z(y),y)) =0, Vy € B(yo,r)-

Received by the editors: October, 1096.
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Using Theorem 1 we will prove the following theorem.We mention it that this
theorem could be proven independently from Theorem 1 using the methods from the

papers (3],[4].

Theorem 2. Let X be a Hilbert space, let 'Y be a normed space,
f:XxY = Xbeamap, let F : X xY ~+ X be a set-valued map, let (zy,yo) € X xY¥

such that 0 € f(xo,y0) + F(zo,y0) and let €y, 3, > 0. We assume that: ‘
i) f(zo,*) is continuous at yo.
it) There ezist functions a,y : IRy — Ry , B : B(yo,&1) = Ry with ¥ monolow
increasing, Id — yoa: IR, — IR, increasing withr —vyoa(r) > 0 forr >0 and
lim o(r) =0, lim B(y) = 0, lim o(r) = 0.
tii) There exists a mapping g : B(zo,€1) = X such that
| f(z1,9) — g9(z1) = f(z2,9) + g(22) | < e(f|lz1 —z2ll),

V:EI,IDQ € B(.’L‘o,Sl) y ‘v’y € B(yo,€1) .
iv) For zg = g(xo) — f(Zo, Yo) the mappings

v(,y) = [g+ F( ’y)]_l(') : B(zo,62) = X
are single-valued for all y € B(yo,¢€;) and
“ \I’(zly y) - \p(z% y) " < 7( ”zl - 22") 3

| ¥(z0,50) = ¥(z;9) || < v(llz — =ll) + B(y)
Y z,2z1,22 € B(z0,€2) , V y € B(yo,€2) . Then there exists a constant r > 0 anda

unique mapping = : B(yo,r) = Xo , continuous at yo, such that x(yo) = o and 0 ¢

f(2(y),y) + F(z(y).y), Yy € Blyo, r).

Proof of Theorem 2. We can choose ¢ > 0 such that g{x) — f(r,y) € Bla.z),
when z € B(zo,e), y € B(yo,¢) and € < min{e;,e2}. We define the mapping T :
B(zo,€) x B(yo,€) = X by

Tlr,y)=a - ¥(g(z) - fz,y), 9)

Pron. 0€ Tlr,y) if and only if 0 € f(x,y) + F(x,y) .

Ve nave B ¢ T2y, yo)
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Let oy, 0y € B(xo,€), ¥ € B(yo,€) . Then
" T(mlvy) - T(z% y) " =

= ||z = ¥(g(x1) = f(z1,9), y) — T2+ ¥(g(x2) ~ flz2,9), ¥) || <
< ey =2l + 1 ¥(g(z1) = f(z1,9), ¥) — ¥gl(az) ~ f(e2,9), y) || <
< ey = xall + A1 f{z1,9) = g(21) = fz2,0) + g(z2)[|) <
< llzy — 22|l + voollzy ~22]) .

Using the continuity of 4 and « at 0 we obtain the continuity of T'(-,y).
Let x € B(xy,e) and y € B{yo,€). Then .

I T'(z,y) — T(zo,50) | <

< ller = 2ol + v(llg(=) — f(2,9) — 9(z0) + S(zo, o)l ) + Bly) <

< iz = z2ll + (1l = zoll + 1/ (20, %0) = f(zo0, ¥)II) + Bly) -

Using the continuity of a and v at 0 and the continuity of 3 at y, we obtain the continuity
of T at (xe,yo)-
Let <y, x2 € B(zo,¢), y € B(yo,€). Then

(T(zl’y) - T(.’Ez,y)’ T — 1:2) -
= [y ~ ;r2||2 — (¥(g(z1) = f(z1,¥),y) — V(g(z2) = f(z2,9),y), 01 — T3) >
> |z — zall® - 1®(g(z1) — f(21,9),9) — ¥(g(z2) — f(z2,9), ¥)]| - fla1 - 2ol >

2 ey — 22l — yoealllzy — z2| )21 — 4| -

Using the fact that Id — v o a is an increasing function, with r —y o a(r) > 0 for » > 0,

we can sce that the assumption iti) of Theorem 1 is satisfied and the proof is complete.

Remark 1. If we change the assumption i) with:

i1}’ The mappings T'(-,y) are strongly-monotone for all y € Y, i.e.
(T(x1,y) ~ T(22,9), 21 —x3) 2 cljzi — $2||2 V22 € Xo

then we can prove this theorem using Theorem 2 in a same way as is proved Theoremn 4.1

from [3].
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Indeed, we can take an € > 0 sufficiently small, such that B(zo,e) C Xo, B(yo,e) C Y,

and we can define
f(z,y) =0, F(z, y) =T(z,y) + NB(¢0.¢)7 g(z) =€z,

1
afr) = er, 1(r) = ==, B(¥) = (@0, w0) — T(zw,y)l -
We can use Theorem 2 to find a constant r > 0 and a mapping z : B(yo,r) = B(z,,1)

continuous at yo such that
2(y0) = zo and 0 € T(z(y), ¥) + Nb(zo.0)(2(¥)) -
But, if ||y — yo|| is sufficiently small,then
[lx(y) = zoll < €, NB(z0,¢)(2(¥)) = {0} and T(z(y),y) =0.

We can now prove Theorem 1 using Theorem 2:

Proof of Theorem 1. Let ¢ > 0 sufficiently small to B(zo,¢) C Xo , B(yo,¢) C
Yo. Let

F(z’ y) = T(:t, y) + NB(zo.t)’ f(z, y) =0, g(x) = €z, a(r) =é€r.
In this case F is maximal-monotone, g + F( ,y) is surjective, strongly- monotone and
U(-,y) = (9+ F(,y))~(-) is single-valued for all y € B(yo,¢). Let z = ¥(z,y). Then

0 € ez + T(2,y) — 2+ NB(z,0)(7) = T1(2,9,2) + Np(zo.0)(2) -

Ti(-,y, 2) is strongly-monotone, 0 € Ty(Zo, Y0, 20) + NB(zy.c)» 80 We can use Remark 1 to
find an €; > 0 such that if y € B(yo, ¢3) and z € B(z,€3) then z € B(zo, ).

Let 2,22 € B(z0,€3), y € B(yo,€2), 21 = ¥(z1,y), 22 = ¥(z3,y). Then 2, € ez, +
F(z1,y), z2 € exa + F(z3,y) and

e(llzr— z2|| )iz — zall < (21—~ 23+ €23, 31— 22) =

= (Zl - 22, 21'—.’122) - ellzl —1,'2"2 S

IA

llz1 = zall 121 = 2all — ellza — zal)* .

Then ¢([lz1 — z2||) + ellzr — zafl < flzn -zl

The multivalued function ¢, : Ry ~ Ry, ¢1(r) = [p(r—0)+er, p(r+0)+er] is maximal
monotone, surjective, and has a single-valued continuous, increasing inverse et Ry

R, with lim, 7' (r) = 0.
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Then ||lz; — z3)] < @7 ()21 — 22)|). In this case we can take y(r) = 7 (r).
Indeed, let r,,r; > 0. Then

(r1—¢p'(en) —ra+ o7 (Era))(ri —ra) =

= (r—r2)’ — (¢7'(em) = 7' (era))ri ~ 12) 2
= (Ir1 = ral = loi (er1) — 7 (er2)] )lry = 12 -

If we note ¢, = ¢y (er1), t3 = ;' (er3),then ery € p1(t1), erz € (t3), hence -

er1 € [p(t1 — 0), @(t1 +0)] + €ty erz € [p(t2 — 0), p(t2 + 0)] + €tz

and
0 S (87‘1 - th — Ery + €t2)(t1 - tz) = €(7‘1 - rg)(tl ad tz) - (tl - tz)z .

Then |t; — ;| < |ry — 5| and so we have proved that Id— ;" 0 a is an increasing function.
Because of lim,o (r — ¢f1(a(r))) =0, Id — 97! 0 & has positive values.
Let us prove that r — ¢7'(r) > 0 when r > 0. Let r > 0. Then

O=r— (pl‘l(er) & er € [p(r —0),p(r +0)],

so r = 0, because ¢(r) >0 forr > 0.
Let z € B(Zo,eg), S B(yo,eg). Then

Il‘I’(Z, y) - ‘I’(z(h yo)," S "‘I’(z' y) - \I’(ZO) y)" + "‘I’(ZO» y) - ‘I’(zoi yO)" <

< 7(llz = zoll ) + 1¥(20,y) — ¥(z0, o)l -

We define S(y) = ||¥(z0, y) — ¥ (20, 30)ll-
If we note z = ¥(zo,y), then 0 € ez + F(z,y) — 20 and we can use Remark 1 to see that
lz = zol] = 0 when ||y — wo)l = 0. Then B is continuous at yo and the assumtions of

Theorem 2 are satisfied.
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ON THE BEHAVIOUR OF A THIN LIQUID LAYER FLOWING DUE TO
GRAVITY AND A SURFACE TENSION GRADIENT

C.I. GHEORGHIU

Dedicated to Professor loan A. Rus on his 60" anniversary

Abstract. A thin liquid layer flowing due to gravity and a surface tension gradient is
taken into account. On the liquid/gas interface one of the boundary conditions re;:Iuces
to the fact that the normal stress equ§ls the atmospheric pressure. This is the main
difference between our study and those where the same boundary condition expresses
the fact that the normal stress is prcportional to the curvature. In these, by using the
standard lubrication theory, a fourth-order nonlinear parabolic equation for the fluid
film height is obtained. In ours, by using the same theory, a nonlinear conservation law
with a nonconvex flux function is deduced for the same variable. For this equation a
similarity solution is carried out. It shows that the behaviour of the liquid layer depends
essentially upon the gradient of surface tension and is quite insensitive to the viscosity
of the liquid. " Viscous” and weak formulations for the conservation law are also carried

out. An entropy condition to pick out physically relevant weak solutions is used.

1. Introduction

The thin film theory (lubrication theory) and similarity methods are used to de-
termine the behaviour of the free surface (the liquid / gas interface) of a thin liquid laye.
flowing due to gravity and a gradient of surface tension. This gradient acts on the liquid
/ gas interface (the upper surface of the liquid layer). The surface tension o at each point
of the interface is related to the local surfactant concentration I’ through an empirically
determined equation of state o (I'(z)). The gradient in I', and thus in o, along the inter-
face induces a shear stress at the surface of the underlying liquid, and thus a Marangoni
flow in the substrate. If the liquid substrate is thin, and if diffusion of the surfactant on
the surface of the layer is sufficiently slow, and consequently negligible, that shear stress
induces large deformations in the layer of liquid. From the mathematical point of view

this gradient of surface tension behaves like an advancing rigid plave. Thus, if the initial
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gradients in surface tension are sufficiently large, the deformations of the liquid layer may
be severe enough leading the film to rupture.

In order to refine the similarity solutions, a "viscous” and also a weak equation for
the evolution of the interface z = h (z,t) are deduced.To peak out the physically relevant
weak solution an entropy condition is displayed. Numerical solutions starting from both
"viscous” and weak formulations will be the aim of a following work.

The dynamics of thin liquid layer.s is important in many industrial process, from
painting a car-body to coating a microchiﬁ ([5], (6]) and also in medicine in the develop-
ment of the respiratory distress syndrome of many prematurely born infants ([3], [6] and
(7).

The last two quoted works represent a very keen analysis on the existence of shock
profiles. They also give a continuous dependence result for the initial value problem
encountered iﬁ flows described above.

Our analysis is eventually orienta.t_ed towards numerical results.

2. The model

The model to be investigated here has been described in details in our previous
work [2] and accordingly only a brief summary is given here. We will consider a thin
liquid layer of a viscous incompressible Newtonian fluid flowing on a rigid inclined plane
{a is the slope). A monolayer of insoluble surfactant creates a gradient of surface tension
which acts at the upper surface of the layer. Thus, this gradient of surface tension can
act along or against gravity.

The variables of the flow are scaled as follows. Let U be a typical velocity cor-
responding to undisturbed height d of the layer. We consider U = pgd®sina/u as the
average velocity of the undisturbed flow, where p is the density assumed constant, g grav-
itational acceleration and p is fluid’s dynamic viscosity. According to what we reported
in [2], the aspect ratio e = d/L « 1, where L is the initial length of the layer, thus the
thin film theory ([1}, p.239), may be used.

From the equation of mass conservation we are led to scale the vertical velocity by
¢ U. We choose to scale time by hje U and the pressure by p U?. We also suppose that
the Reynolds number Re = pUd/yu is sufficiently small so that the leading order inertial

terins in cimentum equation, of O (¢?Re), are negligible.
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The surface tension o at each point of monolayer is related to the local surfactant
concentration I’ through an empirically determined equation of state 0 = o (I'(z)). The
gradient in I', and thus in o, along the monolayer induces a shear stress at the surface of
underlying liquid, and thus a Marangoni flow in the substrate. If the liquid substrate is
thin (as we assume), and if diffusion of the surfactant on the upper surface of the layer
is sufficiently slow, the flow induces large deformations in the layer (Jensen & Grotberg
13)-

Neglecting surface diffusivity of the surfactant, our aim is to analyse these defor-
mations.

A very elaborate discussion on the dependence of o on I’ can be found in [3].
In the expression of the gradient of surface tension do/dz = %%, do/dl' is in general
nonlinear, although a linear law is predominantly used in !iterature. Our analysis remains
chiefly qualitative and mathematically orientated so we do not pay more attention to
these aspects.

If o is scaled by o9, the higher surface tension on the liquid / gas interface, and if
we take the coordinates (z, z), with z vertical to plane and z downwards the plane, scaled
by d, the corresponding velocity field is (u(z, z,t) ,w (=, 2,t)). The upper surface of the
layer is at z = h(z,t).

We notice that in practice it is highly unlikely that gravitational and intermolecular
forces (van der Waals forces) would ever be of the same order. As in the work of Jensen
& Grothberg [3], the influence of intermolecular forces is deeply analysed, our intention
is to concentrate on the dependence of the behaviour (deformations) of th. liquid layer
upon the competition between gravity and the surface tension gradient.

Thus, the equations of momentum and mass conservation for the layer of liquid

are
0= + 1 + sina (1)
= TP T Rt T T
cos a
0 = —p‘t - —F2 (2)
ur+w, =0 (3)
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where F = U/(gh)"/* is the Froude number and subscripts denote differentiation witl
respect to that variable.

On integrating the second of these,

Cos
F?

p=- z+f(:c,t).

On the liquid / gas interface, z = h(z,t), the condition that the normal stress be

equal to atmospheric pressure po reduces essentially to p = po, so

p(z,,0) = 5 h(z,1) = ) +po 0

On this boundary condition we will comment at the end of the paper.

The tangential stress condition at z = h reads

do dl’

U = Ca d—[; E (5)

where Ca = 0o/Up is the capillary number.

With (2.4) the equation of motion (2.1) becomes

1. sina cosa

R =T TR

Now, h, is small, by virtue of the thin film approximation. Thus, unless « is very
small, the last term may be neglected and with the boundary condition (2.5) and the no

- slip condition at z = 0, we find

22 do dI'

Taking into account that the quantities do/dl’ and dI'/dz are given, the incom:
pressibility condition (2.3) gives

w, = —u; = —z h,.
On integration and application again of the no - slip boundary condition we have
w=——h,. ()

The final consideration is the purely kinematic condition at the free surface In

dimensionless form it reads:

w = eh; + uh,,
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The corresponding "viscous” equation for (3.4) reads as follows:
hi+ F(h), =7vhey, 0<y<K1. (13)

Here v is the "viscous” parameter and a solution of this, for vanishing 7, is called an
entropy solution or a vanishing viscosity solution.

A wealk formulation for (3.4) is obtained in a straightforward manner. Multiplying
the equation by a smooth "test function” & € C} (R x R) - the space of functions that

are continuously differentiable with "compéct support”, we obtain the problem:

find u € L3(R x R) such that "

T T w®:+ F(u)®,)didz = — | &(2,0)u(s,0)ds,¥® € CL(RxR).
0 —o0 —~00

Thus a solution of (3.6),- named a weak solution, if it-exists, involves no deriv-
ative on u and hence requires less smoothness than the corresponding solutions of the
”viécous” equation (3.5) or even "inviscid” equation (2.8). Unfortunately, weak solutions
are often not unique, and so an additional question is to identify which weak solution
is the physically correct vanishing viscosity solution. In order to avoid working with
the ”viscous” equation directly, we will formulate another condition on weak solutions
which is easier to check, and which will also pick out the physically relevant solutions.
This is the so called entropy condition (due to Oleinik, [4], p.36) which reads as follows
h(z,t) is the entropy solution if all discontinuities propagating with speed s given by
F(h))— F(h,) = s'(hl — h,) have the property that

B L
for all h between h; and A,.

Finally we observe that the case of F' nonconvex is more complicated mathemati-
cally than that of F' convex and more important the entropy solution might involve both

a shock or a rarefaction wave.

4. Concl.uding remarks

The similarity solution (3.3) can be interpreted as follows:
for t — oo,

|Caoz|, o0,<0
0, g, > 0.

h =
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This means that a negative gradient of surface tension could sustain a liquid layer
of height |Cao,| and a positive gradient does not. It is phisically plausible and is in fact
a linear theory of thin liquid layer (thin liquid film) rupture. Moreover, this result is
quite insensitive to the viscosity of the liquid. It depends essentially upon the sign of the
gradient of surface tension, confirming the fact that this gradient drives the system. In
[9] one could find a nonlinear theory of film rupture for a horizontal liquid film. There the
surface tension is assumed to be constant, London / van der Waals forces are included,
but double - layer forces are neglected.

The "viscous” equation for evolution equation, (3.5), and the weak formulation of
that, (3.6), with entropy condition, (3.7), create a fine background on which numerical
methods could work. Such numerical results could refine the rough information given by
similarity solution.

They will be the aim of a following paper.

On the importance of the boundary condition for pressure on the liquid/gas inter-
face we have the following comment. If one take the Laplace-Young equation (the normal
stress due to surface tension is proportional to curvature) as a boundary condition, in-
stead of p = pg, z = h, which is physically motivated, he obtains an equation for h(z,t)
which is similar to the lubrication one from [5]. It reads:

ehy + %— [h3 (Rehzze +1) + %Caa,,h’] =0.

xz

A proper comparison between these two type of boundary conditions and their implica-
tions on the theory of flows where the surface tension is a driving mechanism remains ar
open problem.
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PERIODIC SOLUTIONS FOR PERTURBED HAMILTONIAN SYSTEMS
WITH SUPERLINEAR GROWTH AND IMPULSIVE EFFECTS

EDUARD KIRR

Dedicated to meessor Ioan A. Rus on his 60" anniversary

Abstract. The aim of this paper is to prove the existence of periodic piecewise contin-
uous solutions for planar systems of impulsive differential equations having the form of
a perturbed Hamiltonian. The proof relies on a continuation method introduced in [1]

and adapted for impulsive equations in {2].

1. Introduction

In this paper we shall prove the existence of at least one piecewise continuous

solution for the periodic boundary value problem:

z'(t) = J grad V(z(t)) + q(¢,z(t)) for a.e. t € [0,1],

z(t}) = ¥ (z(ty)) for k € T,m, (1)
z(0) = (1),
0 -1 A . . .
where J = , 0 <t <ty < ... <ty <1, are fixed points, in which the
1 0

solutions are subject to impulsive effects, and we have denoted z(t*) := lim,\ z(s). In
what follows (-,-) and || - || will be the euclidean scalar product, respective the euclidean

norm in R?, and we shall suppose that:

(h1) V : R® — R is of class C'! with the properties:

Jim | (erad V(),2) [/ 1] 2[°= +oo, @)
and
lgrad V(z) IS A| V(2) | +B, forall z € R?, (3)

for some fixrd A, B € Ry;
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(h2) ¢:[0,1] x R? — R? is a L'—Carathéodory function, i.e. ¢ is Carathéodory and
Il q(t,2) 1< Q(t) for a.e. t € [0,1] and all z € R?,

for a fixed function @ €L!(0,1; R, );
(h3) ¥* : R? = R? are continuous for every k € 1,m and there exist n € N*, r >0
such that

% f:[arg 2z —argP*(z)) #1 mod(2)
k=1

for all (zx)g=rs € (R?)™ with || z¢ ||> r and || ¥*(zi) |> 7, k € T,m.

We point out that the superlinear character of (1) is given by condition (h1). Such
problem have been already studied in [1], where no impulses were considered, and in [2,
Example 3].0ur main goal is to improve the result from [2, Example 3] using more deeply
the properties of the planar Hamiltonian systems, namely the uniform rotation around
the origin of the solutions. Those properties will allow us to relax the assumption on
impulses from [2, Example 3] using (h3) instead. In order to obtain the existence of al
least one piecewise continuous solution for (1) we shall need an abstract result proved in
[4] in the frame of the topological transversality theory. For convenience we shall state
this theorem.

Let X be a real Banach space, K C X a convex set and H : K x [0,1] = Ka

completely continuous map. Denote
S={(z,)) € K x[0,1]; H(z, ) = «}
and for any fixed z¢ € K, let
S(zo) = {r € K; (1 — p)xo + uH(z,0) = z, for some p € [0, 1]}.

Also consider a continuous functional ® : K x [0,1] & R. Then, we have the following

theorem [4, Corollary 2.]:

Theorem 1. Assume
(i1} @ is proper on 5;
(i2) @ is bounded bellow on S and there is a sequence c;; . of real numbers such
that ¢; = oo and ¢; & ®(S) for all € N;

(13") there is oy € K such that S(xg) is bounded.
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Then, for each A € [0,1), there erists at least one fired poinl of H{- \) o I .
2. Main result

In this section we shall prove the existence of solutions for (1) in the following,
space of functions
Cr= {z:(0,1] - R? = is everywhere continuous except,
eventually, the points t;,1,,... , t, of discontinuity of
first type at which z is left continuous}.
Theorem 2. If (h1)-(h3) are satisfied, then the periodic boundary value problem (1) has

al least one solution in Cr.

Proof. Let us consider the family of periodic boundary value problems:

z'(t) = Jgrad V(z(t)) + Aq(t, z(t)) for a.c. t€(0,1],

z(t}) = MWr(z(ty)) for ke T, m, (1)

z(0) = z(1).
In order to apply the Theorem 1 we choose X := Cp endowed with the usual 7 norin,
| z o= sup{| z(¢) |; ¢t € [0,1]}. Notice that Cr can be identified with the real Banach
space [Tieo Clik, trsr], where to := 0 and t,4y := 1. Thus, Cp is a Banach space too.
Also, we choose K := {x € Cr; z(0) = z(1)} the convex subset of ('y.

To construct the completely continuous map H : K x |0,1] -3 K we define
Wit = {x € K; z is absolutely continuous on cach
1tk tesil, £=0,1,... ,m}.

and the linear map

L:W! - L}0,1;R?) x (R?)"

L(":) = (Ilv {"’(t:)}lsks'u)‘
This map is invertible and to get its inverse
L™ L' < (RY)” > K
we have to solve m + 1 initial value problems:

'(t) = y(l). for a.e. f o |l tig].

.I,‘(!k) = U,
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for 1 < k < m, (recall that {,n4 :=1) and
'(t) =y(t) forae. t€0,¢).
z(0) = z(1),
where y €L! and u = {::}1 £ k < m € (R*)™. Thus, the unique solution « € A 1o
L(z) = (y,u) is the function:
z(t) = up+ f:k y(s)ds for ty <t <tpyy, 1 <k <m,
z(t) z(1)+ [y(s)ds for0 <t <ty

We also define the nonlinear map

I

N: K x [0,1) = L'(0,1;R?) x (R?)™

N(z,) = (J grad V(@) + M(-,2)i W¥{a(ta))).

Then, under assumptions (hl) and (h2), N is well-defined, continuous and bounded.
Moreover, by (5) and Ascoli-Arzela’s theorem, the map L™'N : K x [0,1] + A is com

pletely continuous and we can choose
H=L"N.

Finally, we consider ® : K x [0,1] = R, given by

/‘ (Jz(t), Jgrad V(=(t)) + Aq(t,2(1))) |,
0 max{r, || z(t) ||}

where (-,-) and || - || denote the euclidean scalar product, respective the euclidean nom

1
(I>(z, A) = El'.

in R2. This functional is a modification of the classical map which counts the number of
rotations around the origin of the continuous integral curves of a planar system (see [J))
and, clearly, ® is continuous on K x [0,1].

Now, if we can prove that the hypothesis (i1’)-(13’) are satished. then, applying
theoreml, we will deduce that /(-, 1) has at least one fixed point in A, which is equivalent
with the existence of at least one solutiqn in Cp for the periodic boundary value problem
(1).

Check of (i1°); Due to the completely continuity of H, @ is proper on 5 = {{r. V¢
K < {0,1]; H(x,)) = x} if, for every j € N, ®71([0, 7]) N S is bounded. indeed, lot
consider an arbitrary compact set P C Ry, then P is bounded, s, there oximts o N
such that P C [0,5]). Hence, @1 (P) NS C @71[0]) N~ and @ (1~ s bounded

zs 3 subset of the bounded set @7'([0,]) 1S, Siuce ¥ 1s completels ot we

I

hi
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have that I/(®~'(P) N S) is relatively compact. Moreover, from the definition of S, we
deduce ®~'(P)N S C H(®~'(P)N S) x [0, 1] and, by Tychonov’s theorem, ®~}(P) N §
is relatively compact. Now, ®~!(P) and S are closed, because of the continuity of the
maps ¢ respectively H. Consequently, ®~!(P)N S is compact. Since P was an arbitrary
compact subset of Ry, we have just proved that the restriction of ® on S is proper
provided that ®~'([0,5]) N S is bounded for all j € N. So, it remains to verify that
®-1([0,5]) N S is bounded for all j € N and we shall do this in two steps -

In the first step we shall show that for each j € N there exists r; > 0 such that,
for every (z,A) € S, ®(z,A) < j implies inf{]| z(¢) ||; ¢ € [0,1]} < r;, while, in the second
step, we shall show that for each r; > 0 there is R; > r; such that, for every (z,)) € S,
inf{|| z(t) ll; t € [0,1]} < r; implies sup{|| z(¢) ||; ¢t € [0,1]} < R;. Clearly, from these
two steps, we shall have that ®~'([0, j]) N S is bounded for all j € N, and the check of
(i1’) will be complete. ‘

For the first step, we fix j € N arbitrarily, and we choose

r; = max{r, (¢ +1)/2n,r’}

= [ ewa

is the L' —norm of @ and r} is such that:

where

| (grad V(2),2) | / Il 2 If*> 27(j + 1) (6)

for all z € R? with || z ||> r}. Note that the existence of r; with the above property is a
consequence of the superlinear growth of V' (see the relation (2) from (h1)).

In order to prove that for every (z,A) € S, ®(x,A) = j implies inf{|| z(¢) ||; t €
[0,1]} < r;, let us suppose contrary, i.e. there is (z,A) € S, such that ®(z,)) = j and
inf{]] =(t) JI; t € [0,1]} > r;. Then, by the definition of the functional ®, we have

successively:

\ 1 (Jz(t), J grad V(z(t)) + Aq(t, z(t)))
) A max(r, [ 2(2) 7] "‘l

- L[ ) el

I
|

2n | =(t) I1? || ) II?
1 (z(t),grad V(z(t))) (z(t) q(t x(t)))
2 g | SO - 5| [
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Since || z(t) ||> r; > r}, for all t € [0,1], we can apply, in the first term of the -

relation, the inequality (6). Using also the Cauchy-Schwarz inequality for the - .

product in the second term, we get:

&(z, ,\)>]+1—,\/ "2;Ir?|+(t)"”dt

Now, from 27 || z(¢) ||> 2#r; > g+ 1, for all ¢ € [0, 1], and (h2) using also the fact tha
is the L'—norm of Q, we obtain:

1
. Q1) - q :
O(z,A) > 1-A —dt = 1 - A——
(2,0) 23+ /oq+1 7+ +1>]

which contradicts ®(z,A) = j.

For the second step we shall prove the more general resuit:

Lemma 1. If (h1)-(h3) are satisfied, then, for each ¥ > 0, there erists R > 7 s
Jor every (z,A) € S with inf{|| z(¢) ||; t € [0,1]} <7, we have sup{|| z(¢) ||; - .
R.

Proof. First of all, using the Cauchy-Schwarz inequality and relation (2), we dedu.
limy ;400 || grad V(2) ||= oo, hence, by (3), we have limy o [V(2)] = o0, S
exists r' > 0 such that

V(z)| >0

whenever || z ||> /.

Now, let us fix 7 > 0, and (z,A) € S such that inf{]| z(¢t) ||; ¢ ¢ 0
z € Cr, the restriction of  on each interval Jt;, txy1], 0 < k < 10l van
continuous function zx on [tx,tk+1]. Consequently. ther-

with the property that
|zx(s)] = inf{]| z(¢) |l; t € (0. 1j}

In what follows we shall construct an upper bound for tue
]tk  tis1]}. We have only two possibilities: either || x(t) || < 7/, for all £«

is an t €]ty, teqr] such that || z(t) ||> . In the second case we can b
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with the properties

llzx (so)ll = max{F,r'},
iz (s)ll = sup{ll z(t) Il;  €]tx, tasa]},

Hze(®)] > ' for all t € [so, 1] (or [s1,30]).
If we denote
v(t)=In| V(zk(t))| for all t € [sg,s1] (or [s1,50]),

we can write

v(81) = U(So) +/; v'(t)dt < v(so) + sgn(s; — 30)/; Ivl(t)]dt. (7)
But, using the fact that(z, A) verifies (2), we have for every t € [so, $1] (or 34, so]):
'(8)| (grad V(z(2)),2'(t))|  |(grad V(z(t)), J grad V (z(2)) + Aq(t, z(t)))
V(z(t)) V(z(t))

(grad V(z(1)), 9(t, 2()))
V(z(1)) '

Hence, by the Cauchy-Schwarz inequality, relation (3) and assumption (h2), we obtain

Iv'()] < Alg(t, ()] %g_?ﬂ

Replacing the last inequality in (7), we get

= A

<AQ(t)(A + B).

v(s1) < v(s0) +q(A+ B).

Now, the properness of the function Ino |V| (recall that limy, .o [V(2)] = 00) implies
that there exists an R, > 0, depending only on v(so) + Ag(A + B), such that |[zi (s;)]| =
sup{l} =(t) II; t €}te, trna]} < Ri.

Anyway, choosing R, = max{r’, R,}, we have

sup{|| z(t) Il; t €]ts,tira]} < R

where R, depends only on r (and the fixed constants r’, ¢, A and B) regardless the two
possible cases. Consequently, ||z(tx41)| < R, which implies [|z(tes1)|| = |2(0)]] < R, if

k = m (recall that t,,4, := 1) or, using the continuity of the functions P*, 1 <k <m,

ottt )l < suprermsup {l¥*@)5 1zl < Ba}. Anyway,
inf{|| z(2) [I; ¢ €}trsr tis2]} <7
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where | = max {E.,supkemsup {“n/"‘(z)” N [E2 El}} dependa only on Fand if k=
m, then Jtm41, tms2) must be interpreted as the interval ]0, 1].
The same arguments on Jtey, te42) as on Jtk, tk41), where 7 will be replaced by 7,

will allow us to construct the positive numbers Eg and 7, such that

sup{|| z(t) ll; t €}trs1,tes2]} < R,

and

inf{|| () Il; ¢ €Jtesa, tiga]} < 72

where R; and 7, depends only on 7 by the intermediate number 7, and if k = m, they
Jtm+1,tms2] must be interpreted as the interval ]0,1]. Continuing in the same way we
can construct the finite sequence El, ﬁz,. ey ﬁm“ which depends only on 7, and clealy

R = max {El, fig, ceey Em+l} will have the property
sup{|| =(¢) |l; t € [0,1]} < R.

and will depend only on 7.

Thus, the lemma is completely proved. 0

The lemma covers also the purpose of the second step, so, as we saw at the begin-
ning, the check of (i1”) is now complete.

Check of (i2’): Clearly, ® is bounded bellow by 0, since @ takes values only in R,

By the Lemma 1, there is a positive number R such that sup{|} «(¢) {|; t € [0,1]} <
R whenever (z,)) € S and inf{|| z(¢) ||; t € {0,1]} < r. Then, from the compictely
continuity of H and Tychonov’s theorem we deduce that {(z,A) € S, || £(¢) |< R fur
all ¢t € [0,1]} is relatively compact in X x [0,1]. Consequently, the continuity of ¢ w
X x {0,1] implies that the set ®({(z,A) € S; || z(¢) |< R for all ¢ € [0, 1}}) is bounded
in R. Let jo € N be such that

(Jo + 1/2) /n> ®({{z, M) € S; || x(¢) IS R for ail t € [0,1]}).

where n € N* is given by tie nypothesis (h3).

In order to verify that {i2’) holds we can choose

Lo=AytJo+1/2)/n. forall j€N
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Now, by the definition of H, we have that each z € S (z¢) verifies

z'(t) = pJ grad V(z(t)) for a.e. t €[0,1],
z(t})=0 for ke 1,m,
z(0) = z(1).

for some p € [0,1]. Hence

(z'(t),grad V(z(t))) =0 for a.e. ¢ € [0,1],
or, equivalently,
[V(;c(t))]' =0 forae. t€[0,1)

Tacking into account that V(2(t{)) = V(0) and that the function V(z(-)) is absolutely
continuous on [0, 1] except, eventually, the points ¢, 13, .. .¢, in which it is left continuous
and admits right limits, we deduce that V(«(t)) = V(0) for all ¢ € [0,1]. Since V isa
proper function on R? (see the proof of Lemma 1), we can conclude that S(z) is bounded.

So, (i3’) also holds, and the theorem is completely proved. 0

Remark 1. The main difference between the assumption (h3) and the correspondent as-
sumptions on impulses from (2] is that (h3) allows the impulsive effects to compensate

each other. For example, let us consider m = 2, ', respectively ¥2, one of the continu-

3/2 1/2

ous branch of the multivalued complez function z - z

identified R? with C). Then, (h3) is verified for n = 1 and r = 1 while the condition on

, respectively z — 212, (we have
impulses from [2, Example 3] is not.

Unfortunately, the technique used in this paper can not be extended at other planar
differential systems different from a perturbed Hamiltonian. The difficulty arises from the
nonuniform rotation around the origin of the solutions for such systems. More precisely,
even if (h3) is satisfied for a-well chosen n ( in order to agree with the symmetry of the
system), it may be poésible that the impulses move integral curves from high angular speed
zones to the low ones and, consequently,- the functional ® may not be proper anymore.
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BOUNDED SOLUTIONS AND PERIODIC SOLUTIONS FOR CERTAIN
SYSTEMS OF DIFFERENTIAL EQUATIONS

NICOLAIE LUNGU

Dedicated to Professor loan A. Rus on his 60'" anniversary

1. Introduction

The study of the existence of bounded solutions and periodic solutions for certain
systems of differential equations have large applications in technical problems. In this
paper one gives existence conditions for bounded solutions and periodic solutions, for one

system which generalizes the systems of Liénard type.

2. Bounded Solutions and Periodic Solutions

Let be the system:

2y = u(zy)n(z2) (21, 22) + fi(z1, z2)wi(z1)21(2)
£ = uz(T2)va(T1)g2(71, T2) + falzs, 22)wa(3)25(1 )
and suppose that f;,g; : R? = R, u;,v,w;,z : R -+ R, i € {1,2} are continuous
functions. Also, suppose that the system (1) has unique solutions for any Cauchy problem
formulated about it.
We shall prove that in certain conditions there exists a bounded, closed and simply
connected domain D C R?, such that any trajectory of the system (1) , which meets the

frontier of the domain D at a moment {g, remains in D for any ¢ > {.
Theorem 1. Suppose that:
1. There exists bounded sets D C R?, i € {1,2,3}, with the following preperty:
hizi,z2) < 0, (21,22) ¢ Dy,
fazr,22) < 0, (21,72) ¢ Dy,

2. Zg(:l'z),Zg(:L']) Z 0 , Vxl,z-) € R,

Received by the editors: December 1, 1996,
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ui(z1)sgnzy > 0 yua(z2)sgnzy > 0
—vg(zy)sgnz, > 0 ,vi(z2)sgnz, > 0

wy(z1)sgnzy > 0 ,wy(z3)sgnzz >0, Vz,,z, € R\ {0}

Then there erxists a bounded, closed and simply connected domain D C R such that any
trajectory of the system (1), which meets the frontier of D at a moment to cannot leave

D for any t > t,.

Proof. Let be the function V;: R = R , ¢ € {1,2}, defined by:
1 vy(s) /z' vi(y)
V1:=—/ ——ds, WVi(z1) = - —2d
==, womm® =L e ®
and the function V : R = R, V(zy,x2) = V(z1) + V(z2). Let C be a pozitive number,
great enough such that the set Dy U D; U Dj is contained inside the domain bounded by

the curve V(z,,z;) = C. We consider the following domain:
D = {(z1,72) € R*}|V(z,),25) < C} (1

We prove that this is the domain we search for.

Let 2o = %10, 220) be an point of the curve V(z(,z2) = C, te > 0 and « = (i, 1)
a solution of system (1) verifying the initial conditions (o) = 10, T2(to) = T30, and T}
the point of R? in which lies, at the time ¢, the corresponding positive half-trajectory. We
shall show that for any time ¢ > ¢y, at which the solution « is defined, we have '1",‘l e
Indeed, otherwise there would be a time t, > {o at which the solution z is defined and
T} ¢ D. We may assume, without loss of generality, that T;" ¢ D for all ¢ € [t,t)].
Then,

V((Pl(tl),zg(tg)) > C, C = V((Elo,l'g()). (2)

BuT V, as t function, is nonincreasing on the interval [to,¢,] along the solution , since,

by (a), (b), (¢) and (e), the derivative of V by virtue of the system (1) is

/(4 _ 92(T1,22) gy, T2) _U')(.’l‘l)zl(.l?g) N
Vi) '”'(“)”"(I‘)[ } ] w(®)

'LUQ(:L‘2) w,(x;)
f’l(ll )z2(r3)

x fi(z1,22) + *:(;S‘—fi(rn,n) <0
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whenever the point (z,,z;) is so that V(z,;,x;) > C. Thus, for any t € [to,t,] we obtain
V(z1(t), z2(t)) < 0, whence

V(z1(t1), z2(t1)) < V(21(to), z2(t0))

and that is a contradiction to (2).

Remark. The domain D may be chosen so large that it contains every given point

of R? and all trajectories of system (1) are bounded.

Theorem 1. Suppose that all requirements of Theorem 1 are fulfilled, that (1) is such as
to guarantee the uniqueness of any initial problem for this system, and that‘(O, 0) is the sin-
gle singular point of (1). If, moreover, f,(0,0) > 0, f2(0,0) > 0, [9’:(:—(‘;:—;1 - ‘:—u(%l] SgNnT18gNT;

0 in a neighbourhood of (0,0), then the system (1) has at least one distinct from 90,0)

closed trajectory, or limit cycle.

Proof. Choose a positive number r so small that the circle 22 + 22 = r?is included
in D, and fi(z1,z3) > 0,f2(z1,22) > 0 for 2 + 22 < r?. We can see that the positive half
‘tra.jectories, starting from points of the circle 22 + 22 = r?| enter into the ring i limited by
the circle and the curve V(zy,z;2) = C, with C > 0 as in the proof of Theorem 1. Indeed,
for points (z,, ;) with 22 + 23 < r?, it holds that V(z,,z;) > 0.

If it is the moment when the trajectory crossing the circle 23 4+ 2 = r? and ¢, > t,,
and because V is an increasing function of ¢, we have V(z,(t,), z2(¢1)) 2 V(z1(%o), z2(t0)),
but that is in contradiction with the fact that for one point by inside the circle , we have
V(z1(t), z2(t)) < V(z1(to), z2(to)), therefore the trajectories crossing the circle , go out
fro the circle and enter in the ring I, therefore owing to Poincaré-Bendixson theorem, the
ring | contains at least one closed trajectory.
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Abstract. In this paper, a new method for apﬁroximu.ting the solution of the nonlinear
n*® order Volterra integro-differential equations is presented by using a polynomial spline
functions. Error estimation and convergence as well as the stability of the method were

investigated.

1. Introduction

Consider the nonlinear n** order Volterra integro-differential equation of the n'*

order form

D = £ (2,9(2), [T k(= t,y())dt), 0Sz<a

i ! ) ()
v = v, i=0(1)n—1

where f and k are given functions and y is the unknown function to be found. There
are a number of important problems and phenomena which are modelled using such kind
integrao-differential equation, therefore their numerical treatment is desired.

Recently many authors {5,8,10] have proposed methods to approximate the solution
of first-order Fredholm integro-differential equations.

In this paper, is proposed a polynomial spline approximation method for solving
Volterra integro-differential equations. The purpose of the present study is to extend
some results from ordinary case to the n** order Volterra one. We use a polynoinial spline
function for finding the approximate solution. The method is one step method O(h"+*)
in ¥y, and O(h™*9) in y"™*9) assuming that f € C"([0,a] x R?) and the modulus of
continuity of y™ is O(h*), where i = 0(1)n — 1, ¢=0(1)r, rée Nand 0 < a < 1. It is
also shown that the method is stable.
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2. Description of the method

Following (5] we shall write problem (1) in the following form:

y™(2) = f(z,y(z), 2(z)), yP0) =), i=01)n -1, 0<z<a

z(z) = [y k(z,t,y(t))dt (2)

and suppose that f : [0,a] x R? = R is defined and continuous together with ity r'*

derivatives, r € N satisfying the Lipschitz condition

lf(q)(x’ yhzl) = f(q)(z, y2’z2)| S Ll{lyl - y2| + Izl - Zgl} ('”

V (z,51,21), (2, ¥3,22) € [Ov a] x R?and ¢ = 0(1)r.
Also assume that Kernel & : [0,a] x [0,a] x R = R is a smooth bounded function

satisfying the Lipschitz condition:
|k(z,t, 1) — k(=z,t,2)| < Lalys — v gl

V (z’ t’ yl)’ (3’ t, y?) e [0' a] X [0) a] X R'
These conditions assure the existence of a unique solution y of problem (2).

Let A be a uniform partition of the interval [0, a] defined by A:
0=20<Z) <2< - <L < Tpp1 < - <Ty=4a, zx=kh,

and h = a/N. Assume the function y(**) has a modulus of continuity w(y"*",4) =
w(h) = O(h*), 0 < a < 1. For z € [zk,Zk41), K = O(1)N — 1, we define the polynomii

spline functions approximating the solution y(z) by sa(z), where

sa(z) = si(z) = Z "" ("' Aot (3 — 3) + E (H_n), — o)

M/(,j) = fUN(zx, Sk-1(zk), Jo* k(zxt, Sk-l(‘)dt)' J=0(1)n -1

where S,(t) = yo, $(0) = y{" and S,f?,(zk), t = 0(1)n — 1 are the left hand limits of the
derivatives S(‘_)l(z) as T — z; of the segment sa(z) defined on [ri_), x4} obviously such

Sa(z) € C" 1[0, a] exists and unique.
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3. Error estimation and convergence

To estimate the error, for all * € [z, Za41], k = 0(1)N — 1, the exact solutions can

be written by using Taylor’s expansion in the following form:

ntr—-1 (i) z . r n)
y(z) = Z 2&%2(, - xk)t ( ++ (f)':)(:t )r+n (6)

where y{i) = y)(zs), i = 0(1)n +r — 1 and & € (24, Zr41). Moreover we denote the

estimated error of y(z) at any point z € [0, a] by:
z) = y2) - Q@) &) =’ - @), i=omn-1. (@

Lemma 3.1 (7 p.25).
Let a and 3 be nonnegative real numbers, B # 1 and {A;}* be a sequence satisfying

Ao 2 0 and Ajy, < a+ B;A; for i = 0(1)k then:

[Bk+l — 1]

k+1
Auny S B Ao+ o, (8)

By using direct calculs a.nd math induction, it is easy to prove the following lemma:

Lemma 3.2. If y(z) = E (z — x3)* then for p=0(1)n — 1

n-p y (i+p)
yz) =) (o~ z). (9)
=0

Lemma 38.8. Let e()(z), i = 0(1)n—1 be defined as in (7), then for p = 0(1)n — 1
the following inequality holds:

n—p=1 (i+p) ) h) hrtr—p
®)(z) < Sk i 4 hbe, + w(h)h™ 7P 10
€ X : €,

where b = (L) + L, Lyk)e is constant independent of h.
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Proof. Using (6), (5), (3), (1) and (7), we get:

ntrop=t (i+p) P ete)
Oy = P} — SP ()| = Yo E-xe) o ytHE) L
e z) = |y""(z) - S5 (z)| ; ] + (n+r—p)!('t L)Y -
n-p-1 S(H‘P) '
- Z =l (z—2) 4+ Z (z — )™ 7%
=0 J-o P + )
n-p-1 | (i+p) _ (-+p) (n+i)
_ yk ( k)l ' I Mkl n—p+t
= < 2 = z|+§ p+)'|z—-zkl ’
r n~p-1 (4
+ ly("+')(€k) - M( )|'z |"+r > i (+P) ;
m+p= o)
- Vii ~ V. .-
et LA S S A4
+ g(n—p-}z)! +n+r—~pl (1)
where

. . . .'ﬂk 3
Vi = [y — MO = |/, / K ok, t,y()dt) -

}

f(‘)(:tk,Sk_l(IL‘k),/ K(:Bk,t,Sk..|(t)dt| <
1]

IA

T
Ly {ka = Sk (zi)] + 1/2/ ly(t) - Sk. .(t)|dt}
) 0

but for t € [Ti-1, zx)e(t) = |y(t) — Sk-1(¢)] > e as t -+ x4

-Hence

V.‘k _<_ I./| (8k+ Lge;‘/v lll) ot indok)ey (l"
0

Vi

il

() ~ MOTS &) - o T AR

IA

(YR (L4 LLakyer S w(h) 4 (Ly 4 Lidook)e,
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using (12) and (13) in (14), we get:

nepTl (i4p)
Py < N —*',-'—h'+

r pn—p—s
(L1 + Ly Lak) Z '———l e +

s &= (n—p+i)!
%;"_f_m_! <h [(Ll + L,sz)g (n_—Tl)TzT] ex +
-3 S e

where
: 1
= —_—— <
b= (L, + LlL,k)g = (Ly + Ly Lak)e

is a constant independent of h.

Definition 3.1. Let A = [a;;] and B = [b;;) be two matrices of the same order.
Then we say that A < B iff

(i) both a;; and b;; are nonnegative

(ii) a;; < bij Vi,j.

In view of this definition and if we use a matrix notions
E(z) = (e(z)eM(z)eP(z)... e V(2))T, Ep = (erel ...,

then from Lemma 3.4, we can write

E(z) < (I+hA)E: + h"H'w(h)B (14)
where
(61 & % - ) ()
b o1 -2]-' % (n-l2)! n+rl'—l
A 00 & 4 B 7
L
I 1
\0 000 0 0 ) \(,;,,,)

and [ is the identity of order n.
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Definition 8.2. Let T = [¢;;] be an m x n matrix, then we define the norm of T

n
I = max 3 It

7=0
In view of this definition an inequality (14) yield
IE@)I < (1 + Al A ER] + I BIIA™ w(h).
This inequality holds for any = € [0, a]. Setting = z4, then

Exsall < (1 4+ AJAIDIERN + | Bl w(h).

Using Lemma 3.1 and noting that || Eo|| = 0, we get:

~

. . k+1 __
I5(e) < hiartoqn EAAE 21 o
1181 lae \"
< Jape® [(‘ * TR 1]. <
UBU, wate _ virscr  r e
< m(c"“" —1)A"w(h) = bk w(h)

where b = H—g—llll(e"“"" - 1) is a constant independent of h. Using Definition 3.2 we get:
eV(z) < bk w(h) for i=0(1)n— 1. (15)
We now estimate |y"*+9)(z) — $&*9(z)), g = 0(1)r. For this purpose, using (6),
(5), (3), (4), (7), (9) and (15), we obtain
ly™+9(z) = STT(2)| < b "w(h) (16)
where b, = Zr_l—“), + bby is a constant independent of k. Thus, we proved the following
result.
Theorem 3.1. Let y(z) be the exact solution to the problem (1). If Sa(x), given by
(5) is the approzimate solution for the problem and f € C"([0,a] x R?) then the following
inequalities
ly'9(2) - S8(2)] < bah"w(h), g =0(1)n -1
and

Iy (z) ~ ST ()] < bk w(h), g =0(1)r
hold for all z € [0,a], where r € N, B3 and by are constants independent of h.
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4. Stability of the method

The stability concept for a one-step method means that "a small changes in the
starting value only produce changes in the numerical values provided by the method”. To
study the method given by (5), we change Sa(z) by Wa(z), where

Wa(z) = Wi(e) = &, S5 - 1) + T (e = 2
N = j0) (z,‘,w,._l(z,‘), Jet Ko t, Waa(8)dt), §=0(1)r
where W_,(t) = y3, W9(0) = 13 and W (z4), i = 0(1)n — 1 are the left hand limits

of the derivatives S¢ )‘ as T — zi of the segment Wy (z) deﬁned on [rg-,zx). Moreover

(17)

we use the following notations:
e*(z) = |SQ(2) - WP (@), & =15Q(zs) - W(za)l, i=0()n-1. (18)

Lemma4.1. Let e*t)(z), i = 0(1)n—1 be defined as in (18), then forp = 0(1)n—1,
the following inequality holds

n=pl e(it+p)

- ’ L] €
e"?)(z) < hbej + Z L:'_ (19)

=0
where b is defined as in Lemma 3.4.
Using (5), (17), (3), (4), (18) and (19) the proof is similar to the proof of Lemma
3.4.

Using Definition 3.1 and the matrix notations

E*(3) = (e'(2)e"W(z)... e N2)), Ei(erey”...esM)T
then from lemma (4.1) we write _/_.
E*(z) < (I + hA)E; (20)
where A and [ are matrices defined as in an inequality (14). Use Definition 3.2 we obtain:

IE"@)I < (1 + RIADIE].
Setting £ = x4, and use Lemma 3.1 we get
e < @+ man s < (140 gy < gy < 153 < bl

Using Definition 3.2 we get:

e O(z) < b||E|| for i=0(1)n—1 (21)
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The exact solution is y = €*.

To test the stability we solve the same problem with y(0) = '(0) = 1.000001.

First APP. S Absolute error | Second APP. S | First APP - Second APP
y |r=0]1.347694525 | 0.22 x 10~2 0.134695929 1.4 x 10~8
r=1] 137987429 | 0.41 x 10~* 1.349818845 1.42 x 10~¢
y |r=0/(1.332932704 } 0.17 x 10! 1.332934486 1.78 x 10~¢
r=1[1.349810499 | 0.48 x 10~4 1.349812379 1.88 x 10~¢
y" | r=0]1.224538134 0.125321 1.224541394 3.26 x 10~
r=1] 134872591 | 0.11 x 10~2. | 1.349829983 4.1 %107
y" | r =111.220426686 0.129432 1.220434674 7.99 x 107
Example 3. Consider the Volterra integro-differential equation
¥ @) =y" + /o Tutdt -1, y(0)=y30) =1, y(0)= -1,
The exact solution is y = e~~.
To test the stability we solve the same problem with
¥(0) = y®(0) = 1.000001, y'(0) = —0.999999.
First APP. S Absolute error | Second APP. S | First APP - Second APP
y |r=0]0.740640432 | 0.18 x 1073 0.740641795 1.36 x 107¢
r=110.740822838 | 0.46 x 10~° 0.740824193 1.36 x 107
yO | r =0]-0.742690124 | 0.19 x 10~2 | -0.742688695 1.43 x 107¢
r=1|-0.740783236 | 0.35 x 10~* | -0.740781841 1.4'x 107
y® |r=0/[0.727166402 | 0.14 x 10~} 0.727167937 1.54 x 1078
r=11] 0.74093608 | 0.25 x 10~* 0.740795266 1.66 x 107
y® | r=0/-0.823491072 | 0.83 x 10~ | -0.823488835 2.24 x 10~
r=1-0.741530348 | 0.71 x 10-* | -0.741527994 2.35 x 10~
y¥|r=1]0.818769243 | 0.78 x 10! 0.818770495 1.25 x 107

Example 4. Consider the Volterra integro-differential equation

The exact solution is y = e™*.

y(z) = y¥(z) - / yt)dt—e* +1 0<z<1
)

y(0) = y@(0) =1,

T

y(0) = y(0) = 1.



To test the stability we solve the same problem with y(0) = y(®(0) = 1.000001,
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yM(0) = y®(0) = —0.999999.

First APP. S Absolute error | Second APP. S | First APP - Second APP

y |r=0]0.740830815 [ 0.13 x 10~* | 0.740832166 1.35 x 10~8
r=1]0.740817966 | 0.25 x 10~¢ | 0.740819252 1.29 x 10-8

y | r =0-0.740640452 | 0.18 x 10~ | -0.740639099 1.35 x 10-¢
r=1-0.740819677 | 0.15 x 10~ | -0.740821169 1.49 x 108

y® | r =0/ 0742689635 | 0.19 x 10~ | 0.742691015 1.38 x'107¢
r=1/0.740783261 | 0.35 x 10~* | 0.740784046 0.79 x 10~°

y® [r=0]-0.72717479 | 0.14 x 10~! | -0.72713368 1.42 x 10~¢
r=1-0.740791128 | 0.27 x 10~* | -0.740793566 2.44 x 10-¢

y® | r=0/0823414525 | 0.83 x 10°! | 0.823414856 0.33 x 10°
r=10.741536336 | 0.72 x 10~3 | 0.741537924 0.59 x 108

y® | r=1]-0.818732957 | 0.78 x 10~* | -0.818733468 0.51 x 10~
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DIFFERENTIAL INEQUALITIES AND BOUNDEDNESS
PRESERVING INTEGRAL OPERATORS

SANFORD 8. MILLER AND PETRU T. MOCANU

Abstract. Let p be analytic in the unit disc U and let L > 0, P,Q,R: U — C. The

authors determine an appropriate M > 0 such that
|P(2) - 2p'(2) + Q(2) - p(2) + R(z)| < L = |p(z)| < M.
They also consider integral operators of the form
116 = 6™ [0 + wiwor-tae,

and show, with appropriate conditions, that these operators preserve boundedness.

1. Introduction

Let Hp denote the set of functions f that are analytic in the unit disc U with
" f(0) = 0. If € Hp and |g(2)] < 1, for z € U, then by using the Schwarz lemma it can be
shown that the function p defined by

p(z) = z'l/2/ g(t)t~2dt
0

is in Ho and satisfies |p(z)| < 2/3, for z € U. This result can be written in terms of

derivatives as
|2p'(2) + p(2)/2| < 1, for z€ U, = |p(2)| <2/3, for z € U. (1)

All of the inequalities in this article involving functions of z, such as (1), hold
uniformly in U. The condition "z € U” will be omitted in the remainder, although it is
understood to hold.

In this article we consider generalizations of (1) of the form
|P(2) - 2P'(2) + Q(z) - P(2) + R(2)| < L = [p(z)| < M, (2)

where L > 0, M > 0 and P, Q, R are functions defined on U. In particular, for a given
P,Q and R we shall determine an M = M(P,Q, R, L) such that (2) holds. These results
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will be presented in Section 2. Integral analogues of (2), which deal with integral operators
that preserve boundedness, will be presented in Section 3.
2. Differential inequalities
We begin with a lemma that will be used in the proof of the main theorem of this

section. A more general form of this lemma appears in [1, p. 158).

Lemma 1. Let p € Hy, and let g(z) = Mz, where M > 0. If |p(z)| ¢ M, then there
exist points zg € U, ( € OU, and m > 1 such that p(|2| < |zo|) C q(U),

(a) p(z0) = a(¢) = M(, and

(b) zo0p'(20) = m(q'(¢) = mM(.

Theorem 1. Let L < 0, M > 0 and let P,Q,R: U — C, with P(z) # 0. In addition,
suppose that .
(i) Re[Q(2)/ P(2)] 2 -1 and
(#) |P(z) + Q(2)| 2 [L + |R(2)|]/M.
Ifp e Hy and
|P(2) - zp'(2) + Q(2) - p(2) + R(2)| < L, (3

then |p(z)| < M.

Proof. Note that (3) requires that |R(0)] < 1. Assume that |{p(z)] £ M and let

W(z) = P(2) - 2p'(2) + Q(2) - p(2) + R(2). (1)

According to Lemma 1 there exist points zp € U and ¢ € U, and an m > 1 such that

p(20) = M¢ and zop/(20) = mM(. Using these conditions and (4) we obtain

IW(z)|* = |mM(P(z0)+ M(Q(20) + R(z0)|* = (5)
|M[mP(z0) + Q(20)] + CR(z0)* =
(M{mP(z0) + Q(z0)] — | R(20)])*.

I

v

Since m > 1 and P(z) # 0, by condition (i) we have

tm + Q(z)/P(2)| 2 1 + Q(2)/ P(2)]
sau
imP(z) + Q2)] 2 [P(z) + Q(2)].
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Using this last result and condition (ii) in (5) we deduce that
IW(20)[* 2 (M|P(20) + Q(20)| = |R(20)])? > L?,
and |W(z)| 2 L. Since this contradicts (3) we obtain the desired result |p(z)] < M. O

Instead of prescribing the constant M in Theorem 1, in some cases we can use
condition (ii) to determine an appropriate M = M(P,Q, R, L) so that (3) implies |p(z)| <
M. This can be accomplished by solving (ii) for M, and by then taking the supremum
of the resulting function over U. If this supremum exists we have the following version of

Theorem 1.

Corollary 1. Let P,Q,R:U — C with P(z) # 0 and

RelQ(z)/P(z) 2 -1 6
U
= sup { LR
M= { |P(z) + Q(z)l} (7)

and p € Hy then
|P(z) - 2p'(2) + Q(2) - p(2) + R(2)| < L = |p(2)] < M.

Note that for the example given in (1) we have P(z) = 1, Q(z) = 1/2and R(z) = 0.
In this case (7) leads to M = 2/3 as expected. A simple example using this corollary is

as follows:
1+ 2)2p'(2) + (1 —2)p(z) + € — 1| <1 = |p(2)| < e/2.
Several, more interesting, examples will be given in the next section.
In the special case when R(z) = 0, Theorem 1 and Corollary 1.1 can still be used.
However, we can replace conditions (i) and (ii) of Theorem 1 by a single condition as

follows.
Theorem 2. Let L >0, M >0 and let P,Q : U — C, with P(z) #£ 0. If
|Im Q(z)/P(2)| > L/[M|P(2)l], (8)
and p € Hy then,
|P(2) - 2p(2) + Q(z) - p(z)| < L = Ip(z)l < M.
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Proof. Following the proof of Theorem 1, from (5) we obtain
W (z0)[* = L* > (M*|P(20)|'m® + (2M? Re P(20)Q(z0))m + (M*|Q(20)* — L?).

Condition (8) can be used to show that this quadratic in m has a non-positive discriminant,
Since the coefficient of m? is positive we must have |W(zo)|* — L2 > 0, or |W(z)| > L.

The rest of the proof follows as in Theorém 1. 0

We can use (8) to determine a bound M on |p(2)|. In analogue with the case R # 0
(Corollary 1.1) we have

Corollary 2. Let L > 0 and let P,Q : U — C, with P(z) #0. If

L
M=o { PG ImQ(z)/P(z)|} (9

and p € H, then
|P(2) - 2p'(2) + Q(2) - p(2)l < L = |p(z)| < M.
When R = 0, condition (8) of Theorem 2 implies condition (ii) of Theorem 1 since
|P+Q|/IP| 2 |ImQ/P| > L/(M|P|). (10)

It does not imply condition (i) of Theorem 1. Also in this case we can see from (10) that
the bound M obtained from (9) will be greater than or equal to the bound M obtained
from (7). However, (7) requires that condition (6) be satisfied, while (9) requires no such

condition. As a simple example consider the differential inequality
|2p(2) + (3i + 22)p(2)| < 1.

Corollary 1 can not be applied since Re Q(z)/ P(z) = Re[3i4+2z] ¥ —1. However, Corollary
2 can be applied to obtain

1
M = su —_— =,
<1 { [ Tm(3i + 2zu}
and [p(z)| < 1.
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3. Boundedness preserving integral operators

In this section we obtain integral analogues of the results of Section 2.

Theorem 3. Let v be a complex number and w € Hy. Let ¢ and 1 be analytic in U with
#(z)/2" #0, P(z)/2z"/ned (n a non-negative integer) and

Relz¢'(z)/d(z) + v+ 1] > 0. (11)
If f € |bfH,, and if the function F is defined by
F(z) = 27"¢(2)™" ;/Oz[f(y) +w()p(t)de, (12)

then F € Hy, and
f( <L = |F(z)| <M,

where

M= M(’)’,¢,'l,[),’w,L) = sup{

213

¥(2) L + |w(z)|
#(2) | |l2¢/(2)/$(2) + v + 1|}' (13)

Proof. Note that (11) requires that the constant v satisfies Rey > —n —1. This restriction

on v together with the conditions on ¢,¥,w and f imply that F' is analytic in U and
F(0) =0.

If we let P(z) = ¢(2)/¥(2), Q(2) = [v$(2)+2¢/(2)]/%(2) and R(z) = —w(z), then
P(z) # 0. Conditions (11) and (13) are equivalent to conditions (6) and (7) respectively
of Corollary 1. Since |f(z)| < L, if we differentiate (12) we obtain

|P(2) - 2F'(2) + Q(2) - F(z) + R(2)| = |f(2)] < L.
Hence all conditions of Corollary 1 are satisfied with p = F' and we obtain [F(2)| < M. O

Note that by Schwarz’s lemma the conclusion of Theorem 3 can be rewritten as
1f(2)| < Llz| = |F(2)| < M|z].

We next refine the conclusion of Theorem 3 by carefully selecting the functions
é,¢ and w. If ¢ € Hp and if we let ¢(z) = g(z)/z and ¥(z) = ¢'(z) in Theorem 3 we

obtain the following corollary.
Corollary 3. Let v be a complez constant and w € Hy. Let g € Ho with ¢'(z) # 0 and
Re[zg'(z)/9(z) + 7] > 0. (14)
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If f € Hy and if the function F is defined by

Flz) = I[f)(z) = #~"g(2)"" / A (1) + w(t)lg (), (15)

then F € Hy, and |f(2)| < L implies |F(2)] < M, where
_ L + jw(z)| .
M= .i}‘!i{u +vg<z)/(zg'(z>|}' (15)

Condition (14) requires that g(z)/z # 0 and that Rey > —1. The conclusion of

this corollary can be written as

I <l >

/0 o w(t)]g'(t)t*-'«u’ < Ml2"g(2)].

Example 1. Let v be real, with v > 0, and w(z) = 0. Let g(z) = z¢'?, with
|A} € 1. In this case ¢'(z) # 0,

Re(zg(2)/9(2) + 7] = Re[l + Az + 4] > 0,

and from (16) we deduce

L+ Az
1+9+ Az

_ L4\
T4y + A

M = sup
|zl<t

(17)

Hence for |A| € 1 and 4 > 0, from (15) and Corollary 3.1, we have

|f(2)l < Llz| =

z—"’e"\'/ SO+ At)eMerdt
0

< Miz|,
where M is given by (17). In the special case L =y = A = | this simplifies to

2
< el = =

z” e"/o F()(1 + t)e'dt

For our next result we let ¥ = 1 and ¢ = ¢ in Theorem 3 to obtain the following

corollary.
Corollary 4. Let w and ¢ be analytic in U with w(0) = 0, ¢(z) # 0 for z # 0, and
Relzd(2)/$(2)] > —2.
If f € Ho and if F is given by
P = 1) = =78 [ 1)+ wolote)a (19)

then F € Hy and
|f(2)] € Llz| = [F(2)] £ M]z|,

86



DIFFERENTIAL INEQUALITIES AND BOUNDEDNESS PRESERVING INTEGRAL OPERATORS

where

= L + |w(z)|
M= {2 +29(2) ] phi(2)] } ' (19)

Example 2. Let ¢(z) = e, with |A| < 1 and let w(z) = pz/(1 + Az?). Then
Re[2¢/(2)/#(2)] = 2 Re[A2?] > —2 and from (19) we obtain

Lt lpel/1L+ 2] _ L= A+
M= =
oo { S o 21— ) (20)

Hence for |A\] < 1 we obtain

@) S Llzl = |e /o F(8) + mt/(1+ 33)]eat| < MzP?,
where M is given by (22). For A= 4 =1/2 and L = 1 we have
IS el = |/ / [£(t) + /(2] dt| < 221"
0

Just as Theorem 3 is the integral analogue of Corollary 1, we state, without proof,

the integral analogue of Corollary 2.

Theorem 4. Let ¢ and v be analytic in U with ¢(2)/z" # 0 and ¢¥(z)/z" # 0 (n «
non-negative integer), and let v be a complez number such that Rey > —n—1. If f € H,
and if the function F is defined by

F(z) = I[f)(z) = 27¢(2) ! /Oz feype)r'at,

then F € Hy and
If(D) <L = |F(z)| < M,

where

M = M(7,,%) = sup {
|x|<1

¥(z) L ‘
8(z) | TTmly + z¢'(z)/¢(z>n}‘ )

If we compare Theorem 4 with Theorem 3 when w = 0, we see that the constant M
as given by (13) will be less than or equal to the constant M as given by (23). However, in
order to use (13) we need to also satisfy condition (11). The following example illustrates
a case when condition (11) is not satisfied, but in which we can apply Theorem 4.

"Example 3. Let f € Hy and consider the function
F) = 1)) = =7 [ feeta,
1]
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where y = a +if, f > 0and 0 < 1+ a < |A] < B. The function F is well-defined with
F € |bfH,. If we try to apply Theorem 3 or Theorem 4 to this operator we need to take
#(z) = ¢(z) = €**. Unfortunately, Theorem 3 can not be used because condition (11) is

not satisfied, as can be seen from
Re[2¢'(2)/#(z) + v+ 1] = Re[Az] + 1 + a ¥ 0.

However, Theorem 4 can be applied since there is no such supplementary condition re-

quired. In this case, from (21) we obtain

-1 L
M"ﬁ}i‘i{llmuz)+m}“ﬂ—w
Hence
@IS Dt = [s7me [ ortevar] < Lisi/8 - ).
1]
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NEWTON’S METHOD FOR NONLINEAR DIFFERENTIAL EQUATIONS
WITH LINEAR DEVIATING ARGUMENT

VIORICA MURESAN AND DAMIAN TRIF

Dedicated to Pﬁerosor Ioan A. Rus on his 60*" anniversary

Abstract. In this paper we describe and we show the convergence of an algorithm for

solving some nonlinear equations with delay.

1. Introduction

J. Terjéki in (2], 1995, gives an algorithm for solving a differential linear homoge-
neous equation with delay and with variable coefficients. .

Terjéki’s method can be extended to the differential linear nonhomogeneous equa-
tions and so it can be included in a Newton type algorithm for solving some nonlinear
" equations with delay.

In the present paper we describe and we show the convergence of such algorithms
and we give a numerical example in that the linear differential problems are solved with the
power series method: We also give the graphics of the solutions and of the approximation

error.

2. An algorithm for linear homogeneous equations with delay [2]

Let be the equation
'(t) = A(t)z(t) + B(t)=(6(2)),t 2 0 (1)

where A, B are continuous (complex or real) n x n matrix functions on IR, the lag

function @ is continuous and 0 < 6(t) < t. The following fundamental result takes place:

Theorem 1. If yo denote an arbitrary solution of equation

y'(8) = A(t)y(1)

Received by the editors: October, 1996.
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and the sequence (yn),is defined by
Yn(t) = A(t)ya(t) + B(t)yn-1(0(1))
yn(0) =0

then x, where

.’E(t) = Z Yn (t)

n=0
is a solution of equation (1). Moreover, this series absolutely and uniformly converyes on
every finite subinterval of [0, oo[.

3. An algorithm for linear nonhomogeneous equations with delay

Let us consider the following Cauchy problem

¥'(z) + p(z)y(z) + 9(z)y(9(z)) = v(z),z € [0, 7]
y(0) =c¢

(2}
We have

Theorem 2. Suppose that the following conditions hold
(i) p,q,9,v € C[0,T] and 0 < g(z) < z for every z € [0, T
(i1) yo is the solution of the problem

y'(z) + p(z)y(z) = v(z),z € [0, 7]
y(0) =c

{h

(iti) the sequence (yn), 5, is defined by solutions of the following problems:

Un(z) + P(2)yn(2) + ¢(2)yn-1(g(z)) = 0,2 € [0, T
y,,(()) =0

(h

. x
Then the function y defined by y(z) = Y yu(x) is the solution of the problom
n=0
the series being absolutely and uniformly convergent on (4, 17.

Proof. The solution of the problem (3) is given by
T
Yor ) = oo Jo plodds 4 / Yz, s)v{s)ds
0

where

3(.1 ) = ' fo' P(U)«lu{-fo’ pludu
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We define the operator Y. : C[0,T) = C[0,T] by

Y.u(z) = /(:B Y(z, s)v(s)ds

and then we have
yo(z) = ce~ Is v(s)ds + Y.v(.z:)

The solutions of the problems (4) are given by

yn(z) = Yo (—q(2)yn-1(9(2))),n = 1,2, ...

— —_ — ay _
We denote My = max lio(=)l, Yo = max V(@ o)l.Yi = max [%(s,9)], P =

max, lp(2)1,Q = Jax, lg(<)] and we have

aZ” n I
lya(z)] < Mo (YoQ) 7S M, (YoQ) o

for every z € [0, T} and n = 0,1,....
Similarly it can be shown that

! n rr n-1 -t
Wal)] < Mo (HQ)" 77 + QMo (%eQ)™ sy = 1.2,

It follows that the series ) . yn(z) and Y o | y,.(z) are absolutely and uniform conver-

gent on [0, T). Therefore

¥'(2z) = yo(2) + 102, ynl) = —p(2)yo(z) + v(z) — 02, p(£)ya(2)—
= 2ozt UT)Yn-1(9(x)) = —p(z)y(x) — 9(z)y(g(z)) + v(z)
O

4. An algorithm for nonlinear equations with linear deviating of the argument

Let (Y, |I.]}) be a Banach space and T a diferentiable operator in Y. We consider
the equation Ty = 0 with a solution y*. We search a sufficiently good approximation for
this solution.

Newton’s sequence associated to the equation Ty = 0 is defined by

Ymi1 = Ym — [T” (ym)]_l T (ym),m=0,1,...
where yo € Y and we suppose that [T (yn)]™" exists for m = 0,1,....
Since T is a linear operator, the above relation can be written as follows
T’ (ym) (ym+| - ym) = “T(yvn) s m= 0, 1' .
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Kantorovitch’s theorem gives us sufficient conditions for the,convergence of New-

ton’s sequence to the exact solution y* and also an evaluation of the approximation error:

Theorem 3. (Kantorovitch) We suppose that
(i) T' is continuous and [T (yo)]™' ezists for an yo € Y and ||[T" (0))™'|| < By
(i) IT" ()l < K for y € B(yo,r)
(i#) |y — yoll < no, where y1 = y5 — [T" (y0)] ™" T (vo)
(iv) BoKno < %
Then Newton’s sequence converges to a solution y* of the equation Ty = 0 that

belongs to B(yo,r1), where

> 1 - /T=2B,Kno
- ByK

™

We apply Newton’s method to a nonlinear differential equation with linear devi-
ating of the argument. Let us consider the following Cauchy problem
¥'(z) = f(z,4(z),y(Az)),z € 0,T],0 < A < 1
y(0) =c

where f € C([0,T] x R x R), f = f(x,y,u) and it has continuous first and second order

(5)

partial derivatives in y and u and ¢ € IR is a given number.

This problem has an unique solution on C'[0,T]. We consider the operator 1" :
C'[0,T] = C0,T) defined by
T(y)(z) = L~ /(2 3(2),u(002))
Let be yo € C* [0, T). The Gateaux derivative T'(yo) is given by

T(yo + th) — T(yo)
t

T*(yo) (h) = lim

and we obtain

T'w))(z) = G = 5o (@30(2) 30 (02 h(a) = 5L (2,0 (2) 30 () A

The operator T’ (yo) : C* [0, T] = C [0, T] is linear and continuous and from Section
3 it follows that it is invertible with bounded inverse. Newton’s sequence associated to

the equation Ty = 0 is defined by

T (Ym) (Ym+1 — Ym) = =T (ym),m = 0,1, ...
ym(o) =c
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where yo € C'[0,T) is the first approximation of the solution. We usually consider
yo(z) = c.

We denote um(z) = ym+1(2) = ¥n(2), pm(2) = —5L (2,ym(2), ym(A2)), gm(e) =
~ 35 (2,Ym(2), ym(A2)) , vm(2) = ~T(ym)(2) = —~%2(2) + f(2,ym(z), ym(Az)). Then we
obtain the following Cauchy problems

Z U (@) + Prl@)um(z) + ¢(2)um(Az) = v(z),2 € [0,T},0 < A < 1 (6)
um(0) =0
form =0,1,....
We can apply Theorem 2 to these problems and we have the following result:

If 4y 0 is solution of the problem

éum,o + pm(x)um.o(z) = vm(z)v T € [0? T]
u,,.,o(O) =0
and the terms of the sequence (u;n ), are solutions of the following problems
Lt + P (2 b(2) + (2t (Az) = 0, € [0,T]
um',,(O) = 0

for k = 0,1,.... Then the function u,, defined by

um(z) = Z Um k()

k=0
is a solution of the problem 6 for m = 0,1, ..., the series being absolutely and uniformly

convergent on [0,7]. If we know the sequence (un),,., We can find Newton’s sequence
(Ym)m3o-
5. Numerical application

Let be the problem

Y(z)=-y*(z) -3y (() + tn(z + 1),z € [0,1]
y(0)=0

Considering yo(z) = 0, the linear equations from Newton’s method are

£t (2) + 2ym(z)um(z) + {m () = vm(z),z €[0,1]
un(0) =0

93



VIORICA MURESAN AND DAMIAN TRIF

where
d 2 1 T 1
Vm(2) = = 7=Yn(2) = Ym() = 7¥m (5) + 5 ln(z + 1)
By the power series method for these problems, with O(z%) cut-off, the y, ..., ys
from Newton’s method were computed (Fig. 1). We remark that y,, y2, y3, ya, ys coincide
in the picture. We obtained

ys(z) = —0.000251204011558687x%° + 0.00027005-152182553428 —
0.0002911137350621862%"-+ 0.000314741477048363:x% —
0.000341374133306388z7° + 0.0003715451146871042%¢ --
0.000405912019237038z%* + 0.000445293122630196222 —
0.000490717054542795z' + 0.000543491412125040z%° —
0.000605299051459985z ' + 0.000678335579358926x '8 —
0.000765509439599829z17 + 0.000870739740404521 "6 —
0.000999409435061762z" + 0.00115906824229100z 4 —
0.00136057811310449z'* + 0.00162004039311335z"'2 ~
0.00196176987753260z"! + 0.002424137138890462'° -
0.00307396125494130z° + 0.004015190413922062° —
0.00540841469240449z7 + 0.007810701360942902° —
0.0120103370188318z° + 0.0167459705075447z* —
0.0342592592592592z° + 0.1000000000000002*

The replacement error for y; into the equation (7) is

err = —0.007027900331271952%° — 1.0 x 107172%8 + 2.3 x 10~'72*7~
2.5 x 1077226 - 2.8 x 10717224 + 1.0 x 1071722 — 1.4 x 107222
1.0 x 1071722 4 7.6 x 10717220 4 1.0 x 1071%21° — 3.4 x 1071728
1.0 x 1076216 — 3.4 x 107172 + 1.33 x 10718213 + 3.2 x 10718244
5.0 x 107}z 4+ 6.0 x 1071721% + 2.6 x 1071%2° ~ 8.0 x 10~ '7z®+
1.8 x 1071827 + 1.8 x 1071528 + 1.6 x 107'2° + 1.0 x 10714+
4.0 x 107623

and its graphic is given in fig. 2.
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CONTINUOUS SELECTIONS FOR MULTIVALUED OPERATORS
WITH DECOMPOSABLE VALUES

ADRIAN PETRUSEL

Dedicated to Professor loan A. Rus on his 60" anniversary

1. Introduction

Consider (T, A, 1) a complete o-finite and nonatomic measure space, i.e. 1" is an
arbitrary set, A is a complete o-algebra of subsets of T and p is a positive o-finite and
nonatomic measure on A (see [1]). If (E,|| - ||) is a Banach space, let L!(T, E) be the
Banach space of all functions u : T — E which are Bochier p-integrable [6].

We call a set K C L*(T, E) decomposable if for all u,v € K and A € A
uxa +vxm\a € K, forall u,v € K, (1)

where x 4 stands for the characteristic function of set A.
Denote:
P(E) the space of all nonempty subset of E;
P.4(E) the space of all nonepmty closed subsets of E;
P.,(E) the space of all nonempty convex subsets of E;
Piec(LY(T, E)) the space of all nonempty decomposable subsets of L!(T; E).

A classical theorem make use of a convexity assumption.

Theorem 1.1. ([1), p. 83). Let F be a lower semicontinuous mapping with closed,
convezx values from a paracompact space X to a Banach space Y. Let G : X = P.(Y)
be @ multivalued mapping witﬁ open graph. If F(z)NG(z) # 0, for all z € X then there
exists a conlinuous selection of FNG.

The purpose of this paper is to show that in the case where Y = L!(T, E) then
an analogue of the above theorem holds with the convexity assumption remplaced by
decomposability.
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The first result concerning the existence of a continuous selection for a Hausdorff-
continuous multifunction with decomposable values is due to Antosiewicz and Cellina
[2]. Their selection therem yields the existence of solutions for the differential inclusions
z' € F(t,z) with Hausdorff continuous right-hand side.

In 1983 A. Fryszkowski stated a general selection theorem for lower sernicontinuons
multivalued mapping from a compact metric space X tv the Banach space L!(T, E) with
decomposable values [4]. More recently A. Bressan and A. Cellina extended this result to
the case of a lower semi-continuous multivalued mapping defined on a separable metric
space X.

Their theorem will be considered here:

Theorem 1.2 ([3]). Let (X,d) be a separable wmetric spuce and el
F : X = Pyge(L'(T,E)) be a lower semi-continuous multivalued mapping. Then F
has a continuous selection.

The main result of this paper is given in Section 3. Section 2 contains notations

and basic definitions.

2. Notations and basic definitions

Throughout this paper (T, A, u) denotes a measure space, such that A is a complete
a-algebra of subsets of T and u is a positive o-finite and nonatomic measure on A. If
(E, | - ||) is a Banach space, L}(T, E) denotes the Banach space of Bochner p-integrable
functions u : T — E with norm |jull; = [ ||ul|de. Let (X,d) be a separable metric space.

Definition 2.1 ([1}). A multiv’alﬁed operator F : X — P(F) is lower semicontin-
uous (l.s.c.) iff the set {z € X : F(z) C C} is closed for every closed set (/' ¢’ Y.

Definition 2.2 ({1]). A multivalued operator F' : X — P(F) is locally selectionable
at xo € X if for all yo € F(zo) there exist an open neighborhood N(ry) of &y and a

continuous map f : N(zy) — E such that
f(zo) = yo and for all z € N(xo) flz) e F(x) (2)

F is said to be locally selectionable if it is locally selectionable at every xy € X.
Definition 2.3 {11!: iet F: X — P(E) be a multivalued operator. We say that

a singlevalied mapping /X — F is a continuous selection for /il [ is continuous and
fir)y € F(x), for every x € X, {3)

i
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Remark 2.1 ({1]). Any locally selectionable multivalued operator is Ls.c.

3. Basic results

We begin with the following:

Lemma 3.1. Let (X,d) be a separable metric space, (T, A, 1) be a complete o-
Jinile and nonatomic measure space and (E,]| - ||) be a Banach space. Let I : X -
Piec(L)(T, E)) be a locally selectionable multivalued operator. Then F has a continuous

selection.

Proof. We associate with any y € X and z € F(y) an open neighborhood N(y) and a
local continuous selection f, : N(y) — L}(T, E) satisfying f,(y) = z and f,(z) € F(z),
when = € N(y).

Since X is separable metric space, there exists a countable locally finite open
refinement of the open covering {N(y): y € X}.

We denote by {V, : n > 1} this refinement. Using Theorem 2 p.10 from [1] it
follows that there exists a contiruous partition of unity {1, : n > 1} associated with the
countable locally finite refinement {V,: n > 1}.

Then, for each n > 1 there exist an element y,, € X such that V,, C N(y.) and
a continuous function f,, : N(ya) = LY(T, E) with f, (yn) = 2., fy.(z) € F(x}, for all
z € N(y,). We define do(z) = 0 and Mu(z) = 3 Pm(z); n 2 1. Let g € LT, Ry) be a
function defined by g(t) = ||z.(t) — zm(t)]], form:;ch m,n > 1.

We can arrange these functions into a sequence {gr : &k > 1}  L'(T.R;).

Consider the function 7(z) = Y. ¥m(z) - ¥u(z).

mun>i

Using Lemma 1 from [3] it results that there exist a family {¢(7, A)} of mcasurable
subsets of T' with the properties:

(a) ¢(1, A1) € (r.Ag) i A S Ao

(b) (e, M)AG(12, A2)) < |A1 = Ae| + 2|11 = 72

(¢) [ gudp=X[gadp, Yn <1

(7N T

for all A, ), A, € 0,1}, 7,735,722 0.

Define f,.(x) = fy (=), Vo 2 T and xu(d) = N temotriap i ey Ve = 1

Sonstruct a singlevalued mapping f : X — LY(T, E) defined by f(e) = 37 fulwinala,

a3l
for all £ € X. Clearly f is contibuous. because the above summation ix locally
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finite. Moreover, by the decomposability assumption we have that f(r) € F(r). for all

z e X. i

Lemma 3.2 ([1}, p.81). Let F : X — P(FE) be locally selectionable at xo € X. Let
G : X = P(E) a multivalued mapping with open graph.

If F(x0) N G(z0) # 0 then F NG is locally selectionable at .

The main result of this paper is the following:

Theorem 3.1. Let (X,d) be a separable metric space, F : X — Py (L'(T,F))
be a lower semicontinuvous multivalued operator and G : X — Py (L'(T, E)) be with open
graph.

If F(z) N G(z) # 0, fm; each € X then there exists a continuous selection of
FnG.

Proof. Let xo € X an arbitrary element. For each yo € F(xy) we consider the

multivalued operator given by:

{w}, ifz=uzx

Fo(.’l,‘) =
F(z), ifx# =z

Obviously Fo : X — Puye(L}(T, E)) is l.s.c. Using Theorem 1.2, we find a
continuous selection of Fy, i.e. fo(zo) = yo and fo(z) € F(z), for all r € X with
z # zo. Using now Lemma 3.2, it follows that ' N G is locally selectionable at ), with
decomposable values.

Lema 3.1 implies the existence of a continuous selections of £ N . r
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For the proof, apply Theorem 1 with € = 1/2 to get y € M such that
(1/2)d(y, T(y)) 2 o(y) — o(T(y))-
This, by (1), yields (1/2)d(y, T(y)) > d(y,T(y)) whence T(y) = y.
Remark 1. If T : M — M is a contraction, that is
d(T(z), T(y)) < ad(z,y)

for some a € [0,1] and all z,y € M, then T satisfies (1) with p(z) = (1=a) td(z,T(x)).
Thus, Caristi’s theorem is a generalization of Banach’s fized point theorem. Nevertheless,
a mapping satisfying (1) can be not continuvous. For an ezample, take M = R, () = r,

T(z)=z for0<z <landT(z)=2z -1 forl <z < +00.

Recently, Granas [3] and Frigon-Granas [2] proved some continuation theorems of
Leray-Schauder for contractions in complete metric spaces. Also, in [5], we have obtained
some improvements of the continuation principle for nonexpansive mappings, while in {6},
we have presented a very general continuation principle. Motivated by these results, in

this paper we shall state and prove continuation theorems for mappings of Caristi tyge

2. Main results

Theorem 3. Let M be a complete metric space, X C M a closed nonempty set. 4 :
X x [0,1] = R; a lower semicontinuous function and N : X x [0,1} » M a mappmy.
Let X be the biggest subset invariated by Ny = N(., ), i.e.

Xy = N{(N)N(X); k=1,2,..}.

Suppose that

(l) d(Z,N,\(:lI)) S ‘(I))‘(z) - 'l/},\(N,\(:L')) fOT‘ all ¢ € X,\ and A & [U.:], e
Ya= d’(v A);

(ii) there is a closed nonemply set S C {(x,A) € X x [0,1], x & X\} such that

if (zo,do) € S and Ao < 1, then there erists (x,A) « & such thaf

’\“" < A) d(IOaw) S d’/\o(‘ro) - "p,\(l‘)) i\-)‘
{N\{xq),1) € S5 whenever (g, 1) € 5. (4
Then, if Ng has a fired o0 rounth {2,0) € 5, Ny also has e fired pouni.
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Proof. We define an order relation on S, namely

(z,2) X (y,n) if A <nand d(z,y) < ¥a(z) — P,(y).

Let us show that Zorn’s lemma is applicable. Suppose Sy C S is a totally ordered set and

denote
¥ = inf{¥a(z); (z,)) € So}.

Consider a sequence (Zn,An) € So such that ¥,,(z,) decreases to ¥* as n — oco. Then,

since Sy is totally ordered, we have
(.‘L‘[,/\;) j (22, /\g) j ves j (.’l:,,, /\,.) j oo o

From
d(:c,., $n+p) < '/)/\n(x") - 1/)'\n+p(z"+P) —+0as n — oo,

uniformly with respect to p, it follows that there exists z* € X such that z,, = z*. Denote
A. =lim A,. Since ¢ is lower semicontinuous, we then have ¥, (z*) = ¥*. S being closed,
(z*,A.) € S. In addition, (Z4, An) < (2*,A.). Two cases are possible:

Case 1. There is no (z,A) € S with (z*,A) < (x,A). Then (z*,).) is a upper
bound for Sp. Indeed, let (z, A) be any element of Sp.

a) if (z,A) X (za, As) for some n, then, since (z,, A,) X (2%, A), it clearly follows
(z,2) X (=%, 20).

b) if (zn,An) < (x,A) for some n, then obviously, ¥x(z) = ¥* and A, < A If we
would have A, < A, then (z*,A.) < (z,A), which has been excluded by the beginning.
Hence A. = A. On the other hand, d(z,,z) < ¥a.(.) — ¥a(x) = 0, and so 2 = .
Therefore (z,)) = (z”, \.).

Case 2. There is (2. A) € Sp with (2%, A.) < (z,A). Then, z = z*. Let

X = sup{X; (2",)) € So, (2%, M) < (", M)}

We have A, < A* < 1. Let us consider a sequence (27, A) € Sy such that A increases
to A" and (z°,).) X (z°,A,). The element (z*, A7) is an upper bound for Sy. Indeed, let
{z,A) € So.

a) if (x,A) < (z°, X)) for some n, then clearly, (x,A) < (2%, 7).

b) if (z°,M) < {z,A) for every n, then ¢ = 2~ and A > A, whence A > A”.

Consequently, A = A*,
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Therefore we can apply Zorn’s lemma and obtain a maximl element (zq, Ao) € S.
According to (ii), Ao = 1 and zo € X,. Now, using (i) and (3), we get (zo, 1) < (Ny(z0),1)

whence, due to the maximality of (zo,1), zo = Nyi(z0)- O

Theorem 3 together with Theorem 2 immediately yield the following result for

continuous mappings N.

Corollary 1. Let M be a complete metrit; space, X C M a closed set, 1 : X x[0,1] = Ry
a lower semicontinuous function and N : X x [0,1) = M a continuous mapping. Suppose

1) d(z, Na(z)) < ¥a(x) — Pa(Na(z)) for all z € X, and X € [0,1};

2) if Nx(z0) = zo and Ao < 1, there ezists A €)Ao, 1] such that zo € X, and
V(o) < ¥ao(20)-

Then, if Xo # 0, each mapping Ny, X € [0,1], has at least one fized point.

Proof. In order to apply Theorem 3, take
S ={(z,)) € X x[0,1]; Ni(z) = z}.

Since N is continuous, the sets S and X are closed. Hence X is a closed nonempty
subset of M. In addition, No(Xo) C Xo. Consequently, by Theorem 2, there exists = with
No(z) = z. It remains to show (2). For this, suppose (z¢,Ao) € S and Ao < 1. By 2),
zo € X, for some A €]\, 1[. Further, by 1), the sequence (N¥(xo)) is fundamental and so
convergent to some z. Clearly, (z,A) € S and

d(zo,7) < Pa(20) — ¥Ya(x) < ¥ao(T0) — P2 ().

0O

Remark 2. For X = M, Ny =T continuous and ¢y = ¢ for all X € {0,1], Corollary-{

reduces to Caristi’s theorem for continuous mappings.
A simple consequence of Corollary 4 is the following result by Granas.

Corollary 2. ([3]) Let M be a complete metric space, U C M an open set, and N :
U x [0,1) =+ M a mapping such that the following conditions hold:

(h1) N(z,)) # z for ali z € DU and X € [0,1];

(h2) there is a € [0, 1] such that

d(N(va), N(y) ’\)) < ad("’» y)
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for all z,y € U and X € [0,1);
(b3) there is a nondecreasing lower semicontinuous function w : [0,1] = R such

that
d(N(z,}), N (z,1)) <|w(}) —w(n) |

forall A\ ne[0,1] andz e T.
Then N, has a fized point if and only if Ny has one.

Proof. Apply Corollary 4 to X = U and
¥a(z) = (1 = @) [d(z, Na(2)) + (1) = w(})] .
O

We finish with a continuation theorem for not necessarily continuous mappings of

Caristi type.

Theorem 4. Let M be a complete metric space, X C M a closed set, v : M x[0,1] = R,
a lower semicontinuous function, and N : X x [0,1] - M a mapping. Suppose that the
following conditions hold:

(i) Xy is closed for every X € |0,1];

(ii) d(z, Na(z)) < ¥a(z) — ¥a(Na(z)) for all z € X and X € [0,1];

(iii) ¥a(z) < d(z,0X) for all X € [0,1] and whenever N,(z) = z for somen € [0,1].

Then, tf Xo # 0, each mapping N, X € [0,1], has at least one fized point.

Proof. Since Xj is a closed nonempty set and Np(Xo) C Xo, by Theorem 2, there exists
zo € X such that No(zo) = zo. Further, by (ii) and (iii),

d(zo, Nx(20)) < ¥a(20) — ¥A(NX(20)) < ¥a(20) < d(20,0X),

whence N¥(zo) € X for all k € N. Consequently, zo € X, for every A € [0,1]. Hence, for
each X € [0,1], X # @ and we can apply Theorem 2. 0

Remark 3. In particular, if X = M, Ny =T and ¥ = ¢ for all A € [0,1], Theorem 6
reduces to Theorem 2. Indeed, in this case, we have X, = M, 0X = 0 and d(z,0X) =
+o00.
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EXTREMAL SOLUTIONS FOR THF DISCONTINUOUS
DELAY-EQUATIONS

ALEXANDRU TAMASAN

Dedicated to Professor loan A. Rus on his 60'" anniversary

Abstract. We prove the existence of the extremal solutions of the initial value probiem,

for short 1VP: y'(t) = f(t,y(t), ¥(6(2))), ¥(0) = yo with f discontinuous, using soine

monoton iterative technique.

1. Introduction

The subject matter of the present article is the delay-differential equation :

y'(t) = f(t,y(1), y(0(t))), a.e.t € [0, T]

(1
¥(0) = wo )

with f satisfying some Caratheodory’s type conditions and monotony. The lag § is an
absolutely continuous function with 8(0) =0,0<60(¢t) <ta.e. t€{0,7T].

This problem is dealt with in several papers (see [3], [4], [5]). The main merit of
this paper consists of allowing discontinuous right hand side. The idea is to treat the
delay term as a new variable. We are looking for solutions in the space of absolutely
continuous functions denoted by AC[0,T)].

The monotone iterative method used in section 2 is the one presented for ODE in

[1]. In particular we use the following two results:

Proposition 1. ( Theorem 1.5.1, (1] ) Consider the IVP z'(t) = f(¢,x), (0) = xq.
where f : (0,7} x R — R. Let o, 3 € AC[0,T)] be a lower and respectively an upper
solution, such that « < 3. Consider f is a Caratheodory function in @ = {(t,x) : olt) <
r < (), t € [0,T)). If there emists an m € L'([0,T],Ry) such that: |f(L,x)| < m{t) for
all x € [a(t),B(t)] end a. e. t € [0,T] then the IVP has the extremal solutions wm the

order interval [a, 3.
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Proposition 2. ( Proposition 1.4.4, [1] ) Given a nonempty order interval [, /i] C
AC[0,T], a nondecreasing mapping G : [a,] — [a,8) and assume there ezists v €
L'([0,T),Ry) such that |(Gz)'(s)| < v(t), = € [@,B], a. e. t € [0,T) then the chain
{G"a :n € N} has a mazimum z. and the chain {G"( :n € N'} has a minimum &~ and
r. = min{r : Gz < z} and £* = max{z : ¢ < Gz}. In particular z., x° are the ertremal

fized points of G.

We call a lower solution of (1) a function a € AC[0, T) which satisfies:

a'(t).g F(t,a(t),a(8(t)))a.c.t € [0,T)
a(0) < yo.

By duality we get an upper solution.

In the beginning we assume the existence of a lower and a upper solution hut later
on we shall drop it under some additional conditions on F. The monotony dependence
on data of the extremal solutions is also pointed out.

In the last paragraph we apply the results to a discontinuous pantograph- like

equation.

2. Existence of the extremal solutions

Consider the IVP (1) with f: [0,7] x R* — R obeying the followings:

(H1) there exist a,8 € AC[0,T) a lower and a upper solution for (1) with a(t) <
B(t), t € [0,T);

(H?2) there exist a N € L'([0,T],R;) such that [f(t,z,y)| < N(t) a. e. L€ [0,7],
2 € [a(t), B(t)] and y € [a(6(t)), BO()]

(H3) f(-,z,y(-)) is measurable for all + € R and y € AC[0,T};

(H4) f(t,-,y) is continuous a. e. t € [0,T] and y € R;

(H5) f(t,z,-) is nondecreasing a. e. t € [0,7] and x € R.

We are able now to state the following:

Theorem 1. If the hypothesis (H1) to (H5) hold then the problem (1) has the cctremal
solutions in the order interval [a, ) for each yo € [a(0),3(0)]. The muumal solution
y. = max{G"a : n € N} = min{y € [o,8] : Gy < y} and the marimal solutron
v = min{Gn € N} = max{y € o, 9] Giy > y).
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Proof Let yo € [e(0),5(0)] and y € [a, 8] be given. Consider the following IVP:

{ 2'(t) = Fy(t, =(t))

2
z(0) = yo @

where F,(t,2) = f(t, z,y(0(t))).
It is easy that a and 3 are a lower solution and respectively an upper solution for

(2). Also we have
[Fy(t, o)l = 1 £(t, 2, y(8())] < N(t)

for z € [a(t),B(t)] and F,(t,z) is a Caratheodory function on 2 = {(f,z) : a(t) < z <
B(t), t € [0,T]}. Using Proposition 1 the IVP (2) has for each y € [a, 3] the extremal
solutions in [a, 8]. We set G : [a, 8] — [a, B] by Gy = =z, where z is the maximal solution
of (2) for each y € [a, B]. Since (Gy)'(t) = F,(t, Gy(t)) for ally € [o,8] and a. e. t € [0,T]
we get the bounding condition |(Gy)'(t)| < N(t). Moreover G is a nondecreasing operator.
Indeed let y;,y; € [a, 8] be such that y; < y; and z; = Gy;, ¢ = 1,2. Since

zll = Fm(tvzl) = f(t, T, yl(o(t))) S f(t’zlv y?(o(t))) = Flu(t’wl)

we have z, is a lower solution for &’ = F}, (¢, ). But z; is a maximal solution of it whence
(cf. [1]) 2y € 23 0r Gy; < Gy,. Thus G satisfies the hypothesis of Proposition 2. Therefore
z, = maxyeN G"a is the minimal solution and z* = min,esyn G™ B is the maximal solution
of (1).

Remark (i) If we use a criteria to solve the problem (2) and so to build up the
operator G one can approach the extremal solutions by successive iteration starting from
any lower and respectively upper solution;

(ii) Assuming
|f(t,z,y)| < H(t,|z|,|y|) for z,y € Rand a. a. t € [0, T (3)

where H : [0,7] x R — R, is a nondecreasing on the second and the third variable
and the IVP: w' = H(t,w,w), w(0) = |zo| has an upper solution w* then —w" and +w"
are lower and upper solution for (1);
(iii) The existence of the extremal solutions are within the order interval {a, 3]
provided yo € {@(0), 3(0)). We do not know anything about solutions for yo ¢ [a(0), 5(0)].
The main assumption we made is the existence of a lower and an upper solution.

Under an additional assurnption we can avoid this inconvenient. The same arguments as
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given in [1] work out for our delay differential equation and give us a sufficient condition
to ensure lower and upper solutions for all yo € R as follows:

(H6) |f(t,z,y)| < p()h(lz],ly]) a. e. t € [0,T] and z,y € R where p €
L*([0,T),Ry), h : [0,00) x [0,00) — (0,00) is a nondecreasing function in both of

its arguments and
(> o]

du
h(u,u)

(o 9]
0

Suppose f confined to (H6), then a lower and an upper solutions for (1) are given
by:

a(t) = yo + |yo] — w(?)
B(t) = yo — |yl + w(2)

where w € AC[0,T)] is the only solution of

w' = p(t)h(w,w)
w(0) = |yol

and moreover all the solutions of (1) will lie within these lower and upper solutions. We

conclude:

Theorem 2. Consider the IVP (1) with f satisfying (H2) to (H6). Then for each y, € R
the IVP (1) has the extremal solutions which lie together with all the other solulions in
the order interval [a, 5] where a, 3 are given by (4).

3. Monotony dependence on data

The result stated in Theorem 1 can be used in studying the dependence of the
extremal solutions on the initial value yo and on f. We emphasize that we refer to extrenial

solution only within the order interval [a, 8].

Theorem 3. Let f,f : [0,T] x R? — R be satisfying ({I1) io (H5) with f(t,zr,y) <
f(t,z,y) for ali t € [0,T) and z,y € R and yo, o € [(0), B(0)] be such that y, < ju

Consider the two correspeiiing IVP:

|y (t) = f(t,y(t), y(8(t))), a.et € [0, 7]
’J(O) = Yo
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and
7 (t) = f(t,7(t), #0(t))), a.c € [0,T)
37(0) = go

Ify.,y* respectively 3., y" are the extremal solutions of the above problems within the order

(6)

interval [a, ] then y, <y and y* < y".

Proof It is obvious that y. is a lower solution for (6) but a lower solution is less

then any solution hence is less then the minimal solution y.. The dual fact holds similarly.

4. Application

Let us consider the IVP of the discontinuous Pantograph-like equation:

y'(t) = ay(t) + ly(g)l, t€[0,T] @)
¥(0) = %o
where [z]. is the integer part of z, a is a real constant and 0 < ¢ < 1.
For yo = 0 the only continuous solution of (5) is the null one. Whereas for y, # 0

we have
2ct

a(t) = yo + |yol — |yole
B(t) = yo — lyol + lyole*
with ¢ = max{|a|, 1} are respectively some lower and upper solutions. Since the above
IVP satisfies (H1) to (H5) we guarantee the existence of the extremal solutions and
moreover the minimal solution y.(t) = lim,_. G™a(t) and the maximal solution y*(t) =
limy, 400 G"B(2).
For this simple example we can compute analyticaly some iteration of a through

. We have Ga is the only solution of:

¥ (1) = ay(t) + [vo + lyol — lyole®***]., t € [0,T)

(8)
¥(0) = wo
For the sake of simplicity let us set A = —lﬁgf + lﬁ‘l + 1. For 0 < -Z%q_ In(A + ';';') the only
solution of (8) is the solution of
y (1) = ay(t) + [vo)., t€[0, 7] )

'!/(0) = Yo

Ley(t)= et (yo + [!/_:1:) - [ﬂﬂ: .

a

1
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Iteratively we get for
1 ? 1 t+1

—In(A+ —)<t< —In(A4+ —-
Zog " o) 1S 2eg A )

the solution of (8) is the solution of

y'(t) = ay(t) + [yo). — 4, t €[0,T)

10
y(a:) = yi(a; - 0) 1o

where
6= (A + )
" 2 |yol
and y; is the solution of the previous problem (10) with 7 is replaced by 7 — 1.

It is worth noting that the null set of non-differentiable points changes on each
iteration.
Acknowledgments: I am grateful to professor lIoan A. Rus for his valuable re-

marks.
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A NOTE ON LINKING PROBLEMS IN EQUIVARIANT CASE

CSABA VARGA AND VIORICA VARGA

1. Introduction

In the article [4] is defined the limit of relative category and this notion is used
for establish multiplicity theorems and the authors resolve the V.1. Arnold conjecture. In
paper [5] the authors study linking problems for differentiable functionals with the aid of
limit of relative category. These problems were studied by many authors, see [8], [6] and
{1]. A generalization of the lusternik-Schnirelmann category and the relative category
appear in the papers of M. Clapp, D. Puppe, see (2], [3]. In the previous papers the
authors have studied the notion of A-category and the relative A-category. Using the
.notion of relative A-category we introduce the limit of relative A-category.

In the following we suppose that G is a compact Lie group. Let (X, X’) be a
G-pair, i.e. X a G-space and X’ a G-subspace of X. Let (X, X"),(Y,Y’) be two G-pairs
and f: (X,X’) = (Y,Y’) an application of G-pairs, i.e. f: X — Y is a G-equivariant
such that f(X’) CY’. We consider A a class of G-space for example:

(i) A is the class G of omogen G-space, i.e. G-space of the form G/H, where H is
a closed subgroup of G.

(ii) A is the class G°, i.e. the disjoint union of spaces from §.

(iii) A is the class G}, i.e. the finit disjoint union of space from G.

Definition 1.1. The A-category of a G-map f: (X, X’') = (Y,Y'), A —cat(f), is
the smallest number k suéh that X can be covered by k+1 open G-subspaces Xy, X, ..., X;
with the following properties:

(i) X’ C Xo and there is a G-homotopy ¢, : (Xo, X’) = (Y,Y’), ¢ € [0,1] such
that po(z) = f(z) and py(z) € Y’ for all z € Xo.

(ii) For every i = 1,...,k there exist G-maps «; : X; = A; and §; : A; = Y with
A; = A such that the restriction of f to X; is G-homotopic to the composition F;a;.
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If no such number exists, we define A — cat(f) = 0o. If X is a G-space and X', Y

are G-subspace of X we use the notation
A-— catx x'Y = A—cat((Y,Y N XI)) - (X, X')

A - cat*Y = A - catx Y.

Let G be a compact topological gi‘oup and X a G-space. We consider a sequence
(Xa)n>1 a G-invariant subspaces of X. Suppose that for every n € N* exists 7 : X — X,,
a G-equivariant retraction, i.e., 7 : X = X, is a G-equivariant continucus function such
that roi, = 1y, where tn ¢ Xpn = X is the inclusion. If A C X we note 4, = AN X,,.

Remark 1.1. A subset of X, is a A-contractible in X,, is and only if is A
contractible in X.

For this, let B, a subset of X,, which is contractible in X,. Then exists 4, €
A, a: B, = A,, PBn: Ay, = X, and a G-homotopie h : B, x [0,1] = X,, such that
h(z,0) = (Bnan)(z) and h(z,1) = z for every z € B,. If we consider the homotopies
H : B, x [0,1] = X, given by H(z,t) = h(in(z),t), then H satisfied the following
conditions:

(a) H(z,0) = (Bnan)(in(z)) = (Brnan)(z), for every z € B.

(b) H(z,1) = h(in(z),1) = in(z) = z, for every z € B.

(c) H is a G-equivariant homotopie.

Now, we suppose that B, C X, is A-contractible in X, i.e. exists A, € A, o, :
B, = Ay, Bn: A, = X and a G-equivariant homotopie h : B, x [0,1] = X such that
h(z,0) = (Bnan)(z) and h(z,1) = z for every z € B,. If we consider the homotopic
H : B, x [0,1] = X,, given by H(z,t) = r(h(z,t)) satisfied the desired propertics.

Definition 1.3. Let Y, A closed G-subset of the G spaces X, such that Y ¢ 1.
The limit of relative A-category of A in X relative to Y with respect the sequence (X)), -
is from definitions: A — cat§ ,{A) = '}gg sup A — catx, y.(An).

Definition 1.4. If Y, Z and X' are closed G-subset of the G-space X, we write
Y <x Z if is G-deformable in Z niod X.

By definition we pur Y <§. Z with respect the (Xp)ny). is and ondy if for «
sufficiently large Y5, <x; Z..

Proposition 1.1. A - cat(y y, have the following propertics:

) A-cat¥ )y P =0

4
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2) IfY <% Z, then A — caty xn(Y) < A - cally xo(Z).
I IfX isaG—~ANR and Y, Z are G-subspace of X such that =N X' =0, the we

have:

A—catfy xy(YUZ) < A—catly xy(Y)+ A= carx Z.

2. The main deformation lemma

In this paragraph we generalize a deformation lemma of Willem in equivariant
case for locally Lipschitz invariant continuous functions. For locally Lipséhitz continuous
functions this result is proved in {9).

Let G be a compact Lie group which action isometric on the reflexive Banach space
X, i.e. the function G x X — X is differentiable and for every g € G, g: X — X is an
isometrie.

On the dual space X* the action is defined by (gz*)(z) = z*(gz), for evey

Indeed ||gz*|| = sup |(g9z*)(z)| = sup |z*(gz)|, and using the fact that the action
of G is isometric on XI’Izll;: get g(S(O,l)")z“—:—-lS(O,l), i.e. {lgz*)| = sup |z*(z)| = ||l=°||,
where S5(0,1) is the unit sphere of Banach space X. =

We suppose that f : X = R is a locally Lipschitz G-invariant function, i.e.
f(9z) = f(z) for every g € G and z € X. From the paper [KrMa] we have the relation:
90f(z) = 0f(gzx) = O0f(z) for every g € G and = € X, where 3f(z) denote the generalized
gradient (see [7]).

In conclusion we have that, the subset 0f(z) C X is G-invariant.

The function Mu) = wég}'): |lw|| is G-invariant.

Lemma 2.1. Let X be reflexive G-Banach space and f : X — R a locally Lipschitz
continuous G-invariant function and S a G-invariant subset of X. We consider the
number z € R and €,8 > 0 such that for everyu € f~1([c—2¢, c+2¢])NSys we have Mu) -~
. In this conditions exists a G-equivariant vector field o : f~'([c—2¢,c+2€]) NSy -+ X
which satisfies the following:

(a) lI5(z))| <1 for every z € f~'([c— 2¢,¢ + 2¢]) N Sas.

(B) (z°,8(z)) > ¥ for every z* € df(x) and z € f~'([c — 2¢,c + 2¢]) O Sus.

Proof. Using the standard method (see [1]), let v : f~'([c~ 2¢, ¢+ 2e]) N Sys -+ X

the vector field constructed in Lemma 2.1 (see (9]). We define the vector field o ¢ f ' ({c -
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3. Applications in critical point theory

We suppose that X is a reflexive Banach space on which G acts free and isometric
and let (X,)a>1 2 sequence of closed G-invariant subspaces such that every subspaces
have a closed complement.

Let f : X — R be a G-invariant locally Lipschitz function and Y a G-invariant,

closed subset of X. For every j > 1 we define the sets A; = {A C X| A—closed G—subset, Y C
2 sup (@)
Theorem 3.1. Suppose that the following conditions holds:

A and A - catfy y)(A) 2 j} and the numbers ¢; =

a).;stelef(:c)=ck=ck+1=~-'=c",,+,,,=é<+oo. .

b) The function f satisfied the (PS): condition with respect the sequence (Xy)nen -

In these conditions c is a critical value for f and A — catx(K.;) > m + 1.

Proof. The fact that ¢ is a critical value of f results from Lemma 1.2. Using the
continuity property of A — catx exists an open G-invariant neighbourhood N € Vx(K.)
such that NNY = 0.

From the conditions a) and b) follow that the existence of a real number f*+\
N <& fe=.

From the definition of the number ¢ = ¢,, = ¢ 4% We have:
ktm < A—calRy(f) < A—catFp(fT\N)+ A—catx(N) < k—1+ A~ catx(K.),

A—catx(K,)>m+ 1.

Theorem 3.2. Let f : X — R be a G-invariant locally Lipschitz continuous
Junction and let F,G be two nonvoid, closed and G-invariant subset of X. We consider

the set:
A={ACZ| Aisaclosed, G — invariant subset, Y C A and, A —cally =1}.

We define the numbers:

o=
We suppose that the following conditions holds:
(a) For every n € N and for all closed G-subset B, of X, for which Y, C
B., B.NF =0 we have A — catx, y.(Bn) = 0.
(B) dist(F,Y) > 0.
(7) —~o0 <z —infy f.
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Then for every j € N, € > 0, & €]0,dist(F,Y)/2| and A € A such that SUp
c+¢, existsn € N, n > j and u € Xy, for which the following conditions holds:

a)c—2 < p(u) <c+ 2.

b) dist(u, Fn N As) < 26.

o) IAxa(w)l < %.

Proof. Let j,¢,6 and A € A such that the conditions («a),(f3) and (8) holds we
suppose that the conclusion a), b) and c) of the Theorem is not true.

If we apply Theorem 2.1 for X := X,,, f:= —f and 5 := [, (1 Ay, then for every

2.0

n > j exists a deformation 7, which satisfied the conclusion (1)-(6) from Theorewm

For every n > j, we define B, = {u € X,| n)n(l,u) € A,}. From conclusion
(3) follow that n.(l,y) = y for every y € Y,, consequently A catx, y,(A,) A
catx, vy, (By).

If for every n > j we have B, N H = 0, then we have:
l=A—catfy(A)= lHn sup A — catx, v, (An) = lim sup A - catx, y, (1) 0.
n—+o00 n-ou

Contradiction.

Therefore, exists a n > j such that B, N F # @. Cousequently exists an element
u € F, for which n,(1,u) € A,.

From the condition ¢ = infp f we obtain that u € F' C f7 and from the mequality
lIn(t.u) —ul| < é follows that dist(u, A,) < 8. Thereforeu € SN(- /)" and from relation
(1, fH 0 8) C f° we obtain ¢+ < fa(mu(l.u)) < supy, fu < 4 &, and these is a
contradiction.

Definition 3.2. it - € R be a real number f : X -» R Ginvariant locally
Lipschitz continuous function and F a closed nonvoid G-invariant set. Let (N, )., be
a sequent of G-invariant subspaces of X such that each X, has a closed complement,
We say the function satisfics the (P.S.)}.. condition if for every sequence (ugleen . X
satisfying: k& — 00, up ¢ X, dust{up, Fi) - 0, o{ux) > ¢, M{an} 7 0 possesnes a
subsequence which converges in X to a critical point of [

Theorem 3.3. fet f : X -+ R be a locally Lipschitz, (/-invartant furctios
and F\Y two closed G-movuriant subset of X. We suppose thal [ U and Y safisficd

the conditions {«) ~ () from Theovem 3.2 and f sabisficd the (P.5 )y conddion wher

e = infsup,ey f(r). Then b0 [ (e) #0.

The proof resalts rme-nately from Theorem 3.2,

Iy
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