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SPLINE APPROXIMATION FOR FIRST ORDER FREDHOLM
INTEGRO-DIFFERENTIAL EQUATIONS

A. AYAD

Abstract. A collocation procedure with spline functions which are not neccessarily poly-
nomial is considered for the numerical solution of first order Fredholm integro-differential
equations. A connection with a one step method is the ingredient in the study of the

convergence of the spline methods.

1. Introduction

Consider the nonlinear first-order Fredholm integro-differential equation of the

formn:

V = o), / “K(zty(t)d), 0<z<a (L1)

Yo

ft

Y0

where f and K are given functions and y is the unknown function to be found.

There are a number of important problems and phenomena which are modelled
using such kind of integro-differential equation, therefore their numerical treatment is
desired. “ .

While for the numerical solving of Volterra integro-differential equations a lot of
methods are known, for the Fredholm integro-differential equations in the literature only
a few are considered. Linz [6] considered numerical methods for the linear form of (1.1)
Ly transforming it into a second kind of integral equation. Phillips [9] considered the
non-linear form of (1.1). For a more recent paper on linear equation see Volk [10]. Garey
and Gladwin [5] have adapted for (1.1) some direct numerical methods from the Volterra
integro-differential equations. .They investigated also the convergence of those direct meth-
ods, but most results are given only for linear problems. Gheorghe Micula and Graeme
Firweather (8] have adapted for the nonlinear form of (1.1) some direct nﬁmerical spline

methods.
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The estimation of error and the convergence of the spline methods were investigated
on the basis of an established connection with multistep methods.

In this paper, we present a new method for the approximate solution for the non-
linear form of (1.1). We use spline functions which are not necessarily polynomial for
finding the approximate solution. The method is a one step method O(h™**) in yt)(z)
where i = 0,1 and the modulus of continuity of ' is O(h®), 0 < a@ < 1 and m is an
arbitrary positive integer which equals to the number of iteration used in computing the
spline functions. Condition leading to a unique solution y for equation (1.1) can be found
in Anselone and Moore [1] for the linéar.ca,se and in Phillips [9] for the nonlinear problem.

For a deep investigation of the discrete Galerkin methods for nonlinear integral equations

see Atkinson and Potra (3], [4].

2. Assumption and procedure

Following [5], we shall write problein (1.1) in the following form:

y'(z)

z(z) )

f@,y(), ), y(0)=w, 0<z<a (2.)
/oa K(z,t,y(t))dt

Suppose that f : [0,a] x RZ = R is a smooth function satisfying the following

Lipschitz condition in respect to the last two arguments:
| f(z,y,21) — f(z,y3,22) IS L {li-—wl+la—2z|} 2.0
V(I, Y1, Zl), (:B, Y2, 22) € [01 a] X R2

Also, assume that the kernel K : [0,¢] x [0,a] x R = R is a smooth bou;.led

function satisfying. the Lipschitz condition:

| K(z,t, ;) ~ K(z,t,92) |[< La | 91 — 92 | (2.3

V(a:,t, yl)r(xv t)y2) € [0,‘1] x [0, a] xR

These conditions assure the existence of a unique solution y of problem (2.1). Let

A be a uniform partition of the interval [0,a] defined by the following points:

A:0=a20<7  <Tp <Th41' < Tp=a
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where z, = kh, h = £ < 1. Assume tile function y’ has a modulus of continuity
w(y',h) =w(h) =0(h%), 0<a<l.

Choosing the required positive integer m, then for z € [z4,2.41), kK = 0,1,...,

n — 1, we define the spline functions approximating the solution y(z) by sa(z) where

Sa@) = $@ =S+ [ S5 @7 @ @4

{m-1]

e e
Z (z)= /z Koty § ()

(m} [m) [m) .
where S (20) = §(t) = yo and S (=) is the left hand limit of SI™ () as = — z of the
segment of Sa(z) defined on [zk-1,z4).

In equation (2.4), we use the following m iterations zx < ¢ < 41, £k =0,1,...,n—

landi=1,2,...,m

] s =0 Lz
5@ = S+ [ 165 @), 7 @) (25)
G-1)

7@ = [Keun'§ ()
o - 8

k k-1

(m) e m)
M, = f(z,,,ké'l(zk), /o K(z,t,k._S_'l(t))dt)

(zk) + Mk(z - :ck)

Obviously such Sa(z) € C[0, a] exists and is unique.

3. Error estimate and convergence

To estimate the error it is convenient to represent the exact y(z) in various forms

as described by the following scheme:

) = v(z) = v + ¥'(E)z = 28), (3.1)

where 2 < € < Tiy4r and Y = Y(zs)-

For | € j < m, we write

. T . U"l]
[g"/](z) = y(z):yk-}-/ f(z,byl](x), Z (z))dz (3.2)
V) = /OK(z,t,u;](t))dt‘ (3.3)
1]
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Mbreovex‘, we denote the estimated error of y(z) at any point z € [0, a] by:

e(z) =| y(z) —sa(z) |, ex =| yx — sa(zs) | (3.4)

Lemma 8.1 (7.p.24). Let a and B be positive real numbers, { A;}[., be a sequence sat-

isfying Ay > 0 and A; < a+ fAiy1 for i=1,2,...,m — 1 then:

m-2

AP Anta) fF (3.5)
i=0
Lemma 8.2 (7.p.25). Let a and B be non negative real numbers, ¢ # 1 and {A;}5_, be
a sequance satisfying Ag > 0 and Aiyy S a+BA; for i =0,1,...,k—1 then:
awk-&»l - 1]
g-1

Definition 8.1. For any u € [z, %k41], =0,1,...,n—1and j = 0,1,...,m, we define

A < B Ao+ (3.6)

the operator Tj;(u) by,
m-— [m-J]
Tui(w) = |57 - 8 (u)
whose norm is defined by:

ITs;ll = max g {Tij(u)}

u€fzx,Try

Lemma 38.3. For any = € [xk,Tk41], k=0,1,...,n~1 and j=1,2,...,m.

ITimll < (1 + hbo)ex + huw(h) (47)
Tl < (E b:,) ex + b5 th™w(h) (33)
=0

where by = Ly + LyL,a, is a constant independent of h.

"Proof. Using (3.1), (2.5), (2.2), (2.3) and (3.3)

o], © , .
y(z) — f < ex+ Y () — Mi|z — zi|| <
< e+ 1Y (&) —villz — 2l + lyp — M| |z — 2] - (3.9)
s [m) a {m]
=Ml = [ FConuns [ KCont,y)dt= om0, [ Kont, 3 o)) <
4 b |

< anh+L|Lz/ K
A 0

- Sole (3.10)
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But for t € [zx-1,24), €(t) =

[m]
y(t) - k.fl(t)l — e; a8 t — T, then

Vs = Mil < Lyen + Ly Laea /o " @t < (Lyes + LiLaa)er (3.11)
use (3.11) in (3.9), we obtain:
NTimll < ex + hw(h) +h(Ly + LiLza)ex < [1 + h(Ly + Ly Lia) e + hw(h)
hence
ITiml| < (14 hbo)ex + huw(h)

where by = Ly + Ly Lja is a constant mdependent of h.
To prove (3.8), we compute ||T};|| using (3.2), (2.5), (2. 2), (2. 3) and (3.3), we get:

) (m=il
vy (z) - .2' 5e;,+L,f }dmg
o
# (lfmeie m ——n mejet], . [mmimt
<e+ Iy / {' 5 @) - (z) ‘ d"(t)— s (t) dt}dz
o)

. Hence

[m -J-ll

") - T @) +

+ L, /
(m—j-1]

m—3-1]
- S
e Y @- g (@)

e =1 tm=j-1]
+L2/ max { - S (@ }dt} dz
0 TEEmTa) k

:
et Lo [ {ITenl + o B o} d
zN

- Z(a:)

Tl Sex  +Li / { max
zy

< ex+ (Ly + Ly L3a) || Tigj4n) | /0 dz < ey + hbo || Tugisny ||

Using Lemma (3.1) and an inequality (3.7), we get:

m-—2 m
NTell < (boh)™ " Tl + e ) (boh)' < (Z b:;) ex + b h™w(h)

=0 1=0

0

Lemma 3.4. Let e(z) be defined as in (3.3) then there exzist some constants b, and b,
independent of h such that:

e(2) < (1 + hby)ex + bah™Hw(h) (3.12)

where by = f: bit! and by = b are constant independent of h.
$=0
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Pﬁof Using (3.2), (2.4), (2.2), (2.3), (3.3) and (3.8), we get:

(m-1]

[m]
oz) = |u(e)- f(m) Sekm[ {3~ "5+
x5
[m —1] -
+ | (:z:)- Z (a:) dt}dz<
< ek+L1/ {Tk1($)++L2/ s 1](t) S (t)’dt} dz <
T Ed ]
< e+ Iy / { {Tkl(z)} + L, {Tkl(z)} dt} dr <
zelz'k Tht1) te[ u.=h+1]
< e+ Ly / {ITw || (1 + Laa)} dz < ex + (L1 + L1 L2a) || T || h <
< ex+boh | Tl < e + h (z b'“) + b"'h""“w(h)
=0
Hence,

e(z) < (1 + hby)ek + bh™Hw(h)

where b, = 3" bgt! and b, = b} are constants independent of h. The inequality (3.12)
holds for any z € [0, a]. Setting z = 441, we get:

€k+1 S (1 + hb])Ck + bghm+l(J(h)

using Lemma (3.2) and noting that e¢q = 0 we get:

ola) < PH™w(h) [(1+ bk 1] < Zhmu(h) [(1 + T”) . x] < @)
1 1
< :2 (e ab — 1) A™w(h) = bsh™w(h) = o (A™**)
1
where b, :% (e - 1) is a constant independent of h. ]

We now estimate |y'(z) — sx(z)|. For this purpose using (2.4), (3.1), (2.2), (2.3), (3.3)
and (3.14), we obtain

ly'(2) — sa(2)] < behw(h) (3.14)

where by = byb3 + b; is a constant independent of h. Thus, we prove the following result.
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Theorem 3.1. Let y(z) be the ezact solution to the problem (2.1). If sa(z), given by
(2.4) is the approzimate solution for the problem then the inequality

y(z) - s9(2)| < boh™w(h)
holds for all = € [0,a], i = 0,1 where by is a constant independent of h.

Numerical Examples

The method is tested using the following two examples on the interval [0,1] with
stepsize A = 0.1 where m =1 and 2. The result tabulated below are evaluated at the

point 0.4.

Ezample 1. Consider the Fredholm integrodifferential equation
l .
Y=+ [yttt =130 = 1,0 <o <1
[

The exact solution i8 y = e~*

The numerical value | The absolute error
yi{m=1| 0.655149801 1.5 x-10~?
m = 2| 0.668546426 1.8 x 1073
11-0.706187504 3.5 x 10~2
21-0.668231103 2.1 x 1073

m
m

Ezample 2. Consider the Fredholm integrodifferential equation
1 .
v'=-v+ [ £+ 51,00 =108 51,
. CJo

The exact solution is 'y = e=*

The numerical value | The absolute error
y |m=1]| 0.681022393 1.1x 1072
m = 2] 0.674430125 4.1 x 1073
m =1|-0.691366681 2.1 x10°?
m = 2| -0.663759865 6.6 x 1073
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ON THE APPROXIMATION OF THE LAPLACE TRANSFORM
BY POSITIVE LINEAR OPERATORS

ALBXANDRA CIUPA AND I0AN GAVREA

Abstract. In this puper‘ we study a Favard-Ssass type operator, denoted by P,, obtained
by means of Appell polynomials by A. Jakimovski and D. Leviatan [2]. We prove that
if the function f is of exponential order, then the Laplace transform of the function P, f

approximates the Laplace transform of the function f.

LIntroduction In 1969, A. Jakimovski and D. Leviatan (2] have obtained a

00

Favard-Szasz type operator. Let us remind it. One considers g(z) = Y

aa2" an
analytic function in the disk, |z2| < R, (R > 1), and supposes g(1) # 0, a, € R for
n =0,1,.... One defines the Appell polinomials pi(z), (k-2 0) by

g(u)e* =) pu(z)u* (1)

k=0

" We denote by €, the class of real function of exponential order, i.e.

€ = {f :[0,00) = R for which there are A, B € R such that |f(z)| < Be?",Vz > 0}.

A. Jakimovski and D. Leviatan have considered the operator
P, : € - C[0,00),

e = k
P.f)(z) = —= pkn:vf(—),n>0 (2)
(Paf) (2) g(l)g (na)f ( -
P, is a Favard-Szasz type operator, because for g(2) = 1, we have pi(z) = "T';- and so from
(2) we obtain the well known operator

(Su) (@) = e Yo 2L (5) .

n
k=0

—_—
o
~—

13. Wood [4] has proved that the operators P, are positive if and only if ﬁﬁ >1l,n=

Heceived by the editors: November 8, 1998,
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Coming back to (4), we obtain

e—" s a4 eﬁ
(1) §m(nz) A= B (( )) en=(=xe(4)-1) < Bi«g(n_)'ex(epr—l)‘

It result that

é . pE(expA-1)
I(Paf) ()] < (1) (e#) - extorna-n.
therefore the function P, f is of exponential order, for n > N, where N = [ﬁ] +1. 0O

Next, we will show the Laplace transform of function P, f approximates the Laplace

transform of function f.

Theorem 2.2. If f € C[0,00) and f € £ , then there is a R such that
lim £{P.f} (s) = L{f}s),

for everi. s € C, with Re s > a.

. Proof. . For Re s > 0, we have

C{Pnf}(8)=/ e (Paf) (t)dt = g%fj/” ~pu(n)y (£) =

- ﬁ i [ /o ” e~'<'+">p,,(nt)d¢] (Z) - g_(lf) i C{p(nt)} (s + n)f (1—’:) :

k=0 k=0

We will show that the remainder in approximation formula

Lf(s) = L{P.f}(s) + (Raf)(s)

tends to zero when n —.00. We have
(R (6= LU =P} 0 = [ U0 - (P Ot
therefore

(Baf) (3)] < / Tl 15 = (P f) (1)l dt =

= / Y emthes (1) - (P Ot + / T et () — (Puf) (O],
0 A

for every A > 0.



ALEXANDRA CIUPA AND IOAN GAVREA

Because f € £ , it results that M, > 0 and 14, € R such that |f(f)] < MM,
for every t € [0,00). By making use of Theorem 2.1., it results that for n > A5 there
are Az € R and M, > 0 such that |(P.f) ()] < Mae*, for every t € [0,00). It results
that 3M > 0 and b € R, such that

IF(£) = (Puf) (£)] < M€, for every t € [0,00). 5)

Let ¢ > 0. From (5) it results that we can choose A > 0 such that
[T - En@laf <5, o> Az VeeC, Res>b

4 2 InR
We have proved (1], that if f € C|0,a], then

: 1
- < C—
(Puf) () = FO1 < Clamho (£ 72)

where C(a,n) = (1 +4/a+ %ﬂ%ﬁjﬂ , . By making of this inequality, we obtain

1- e-ARe-

foA e (1) = (Pof) ()] dit] < C(4,m)w (f ; %) N

Because lims_,o w(f;8) = 0, it results that IN,(¢) such that n > Ni(¢) and s € C with

Re s = max {0,b} = a we have

4 —st €
[ e vo-Enwial<s )

From (6) and (7), it results that for n > max (Alﬁ, Ni(€)) we have

[(R.f)(8)] <e,Vs € C,Res > a.
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A NOTE ON RING ENDOMORPHISMS

MARIAN DEACONESCU

Abastract. If o, 3, v and § are unitary endomorphisms of a commutative domain R,
if one of these endomorphisms is a monomorphism and a + § = 8 + v, then these
endomorphisms are equal in pairs. This generalizes a lemma of A. Vesanen which was

obtained for automorphisius of finite fields.

A. Vesanen [3, Lemma 3| proved that if F is a finite field and.«, # and y are
automorphising of F such that « = # + v - idp, then one of the automorphisms «, /4, 5
is the identity automorphism idg.

If K is a ring with identity and o, 8 are endomorphisms of R such that «(1) -
A1) = 1, then o — 8 € End(R) if and only if @ = 8. Indeed, if a — # € End(R), then
{r € 1| a(x) = p(x)} is an ideal of R containing 1, whence o = (.

Lev now o and 8 be two aatomorphisms of the complex number field 7 suct: thas
alz} + [3(2) = 2Re(z) for all z € C. Then it can be shown by elementary calculations
that one of these automorphisms is the identity automorphism and the other one 1« the
complex conjugation.

These results admit a common generalization and the aim of this n-te is to prove

the following:

Theorem. Let R be a commutative domain and let «, 3, v, & be unitary endomorphisins
of R. one of them being a monomorphism. If o + & = [3 + 7, then these endomorphisms

are equal in pairs.

Proof. Up to some point, the proof follows the original idea of Vesanen. 'lo stary with,
we write « = 3 4+ v - 8. Let z,y € R, so that O(zy) + y(zy) - §(ry) = (B(z) + (=)
S (y) + v(y) - 8(y)). After calculatiuns, one obtains

(B(x) = 8(2))(v(y) — 8(v)) + (B(y) - 8(v))(v(=) - 8(z)) (1)

y€ R
cetved by the editors: November 30, 1996,
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We define now three subrings of R as follows: B = {z € R | §(z) = f((z)}
C = {z € R| §(z) = 7(2)} and D = {= € R| B(2) = 7(2)}.

If char R # 2, let y = z in (1). This yields (8(z) - §(z))(7(z) - §(z)) = 0 for all
z € R. Since char R #.2, one obtains that ‘

?

(B(z) - 8(z))(+(=) — §(z)) = 0 (2)

for all z € R. But (2) is equivalent to R = BU C, which forces R = B,or R = C. If R
= B, then 8 =é and a = v, whileif R = C, then y = § and a = 8.
If char R =2, let y = z? in (1); this yields

(B(z) — §(z))(v(=) — 8(2))(B(z) - (<)) = 0 (3)

for all £ € R. But (3) is gquivalent; with R = BUCU D. In order to complete the proof
it suffices to show that one of the subrings B,C,D equals R.

Since a group is not union of two of its proper subgroups, one can assume that the
terms of the union are irredundant.

Suppose that B,C,D are proper subrings of R. Since the additive group of R is
a union of three subgroups, it follows by a result of Haber and Rosenfeld [1] that the
additive factor group R/B N C N D is isomorphic to the Klein four group. Now Lemmna
1 of J. Lewin {2] asserts that R contains an idea! / such that / C BNCN D and |{R/]]| s
finite.

‘ ff I = 0, then R is a finite field and B,C,D are subfields of F. But it is straight-
forward to prove that a field is not a union of three of its proper subfields. Therefore ne
of the subfields B,C,D must equal R and as a consequence two of the endomorphisins :re
equal.

If I #0, let  be a nonzero element of I. Pick an element y € B\ (C U D). T'hen
zy € I C BNCN D, soin particular zy € C. Thus y(zy) ='§(zy) and since z € (" one
obtains that y(z) = &(z). But then y(z)(v(y) - §(y)) = 0.

Without any ioss in generality, one may assume that v is the one-to-one endonor-
phism, because anyway [ is contained in BN C N D.

But then, since z # 0, we get that y(z) # 0, whence ¥(y) = §(y). This means
that y € C, against the choice of y. This contradiction proves that one of the subrings

B,C,D must be equal to R, that is, two of the four endomorphisms must be equal.

14
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If R = Bor R = C, then we are done. If R = D, then § = v, whencea =3 + 8
- § = § and the p¥oof is complete. O
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8.8. DRAGOMIR, B. MOND, C.E.M. PEARCE, AND J. PECARIC

Jensen’s inequality involving a weighted or unweighted sum of n points may be
interpolated using partial sums of the quantities involved (see [1-5], [7]). In terms of
the foregoing probabilistic interpretation, the partial sums in the weighted case may be
regarded as arising from a sampling experiment without'replacem'ent.

In fact, corresponding results exist for sampling with repia.cement. This is ad-

- dressed in the following section, where such refinements are made in three different ways.
Section 2 concludes by melding three results together to give an interpolation of the tri-
angle inequality for a normed linear space. The left-hand side of (1.2) is given a sequence
of successively larger majorants ending with the right-hand side of (1.2).

The remainder of the paper ex;;lores this extended inequality in detail for, the
basic case p = 1, putting bound.s. in turn on the differences between successive majorants.
Alternative forms are available for each in the special case of an inner-product space and
give rise to refinements of the Cauchy-Schwarz inequality. Some preliminaries for use in
this case are presented in Section 3.

The differences involved in Sections 6 and 8 involve a second, independent, weight-
ing on the points #. This is of particular interest in that it offers the flexibility for con-
crete physical applications, especially if probabilistic interpretations are utilized. The
results are redolent of the fundamental inequality of information theory, namely, that if

(pi)M, (¢:)M are probability distributions with strictly positive elements, then

M M
- pilogpi < — ) piloggi,

i=1 i=1
with equality if p; = ¢; for all .

With one exception, each section after the third addresses the difference between
two consecutive majorants. The exceptic‘m, Section 7, is an additional section that con-
siders two majorants which are separated by a third. The separator involves the second
weighting alluded to whereas the other two terms do not, so rather simpler arguments are

available by skipping over it.

2. Some interpolations of Jensen’s inequality

Theorem 2.1. Let k be a positive integer and f : C C X — R a convez (respectively

concave) function on the conver set C. Suppose z; € C, p; 2 0 (i = 1, ... ,n) and
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Proof. A simaple calculation shows that.

k

Z P.‘~-~Pi,,zrk,1xt, = P Zp.:t.,

..... in€l i=1 €/

8o that the left-hand side of (3.2) may be expanded as

k
1 - .
;IT:; Yo pae Pl Y ez, 1P 2R <Z Tk.jfe,a"$4k+.> +a’ | ziy,, ]

$1reenthg1 €1 =1 1=1

= Z Pi - -Pi | Zf‘k,ﬂ-, I +20§R< Zp..r,, Zp.z.>

1tk €1 =1 'el iel
k
Zn E +P" Yo opam Y e, I+
el $1 4tk €1 i=1
+2a || —Zp't' "2 ZP! Ia’. "2
el tGI

lience, for a given value of &, (3.2) follows immediately if (3.1) holds and it suffices
to establish the latter. This we may do inductively.

Equation (3.1) is immediate for ¥ = 1 (when r;; = 1), providing a basis for
induction. For the inductive step, suppose the result is true for all choices of r ; for some

k > 1, so that (3.2) also holds for that value of k. For riy; glven and satisfying Ry =

1, choose 7y ; = ri4,5/ Et_ ripre (1 <j<k)and a = reg 1/ Z Tk41,e- Then we have

(=1
1 k+1
TR Y P Piag 1Y ez =
! YY1 j=1
1 : 2 £ 2
W(Z r"+l") Z Piy - - Pigys “ Z TkjTi, + aTiy,, ” =
I =1 Boingr €1 i=1
k k
= () rre1) [(Zrk, +a’) D pillalf + 1= rhi+20) | —Zp,r. 1]
=1 i=1 i€l i=] ' :GI

On substitution for rx; and «, the last expression simplifies to

k4 k+1
Y- s Lol + ( Zriﬂ.,-)

=1 :el )=1

Zw'

'Gl

that is, (3.1) with k replaced by k+1, so we are aone. ]
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Remark 3.2. We may define a sequence Y}, .. ., Yiy) of X-valued independently and identi-
cally distributed random variables, each taking the value z; with provability p;/P; (i € I).
Then

E(Y;) = Zp-z. (1<j<k+1)
Tier
‘and
E(IY; 117 = ZP» || P 1<ji<k+1)
-el
By analogy with the usual case of scalar-valued random variables, it is natural to define

the variance V(Y;) of Y; by
V()= E(IY; I~ | EW) I

Then (3.2) reads

(}: Tx,;Y; +0Yk+1) (Z Tt a ) V(h),

i=1 Jj=1

which is a standard result in the scalar case.

Corollary 3.3. Under the suppositions of Proposition 3.1

1
i3 Z Piy - -+ Piy z"k.ﬂt, P ZP-“—'- =
Pi ik € i=1 i€l
k 1 3
AL P || e,
i=1 Ter Prig
Proof. The left-hand side can be expandeﬂ as
k 2
Z Pir - Piy || T,
61,0k €T j=1
1 2
2R <E Z Diy - - - Pi, Zrk,x.,, P, Zp.z.> zp.z.
I, . ivel j=1 i€l T el
1 k
= oF Z Piy - - - Pi Z"k,j-‘b'i, Zp.x- ’
1 gy,..ixel i=1 el
and the desired result follows from (3.1). 0
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4. First majorant
The extreme terms in (2.1) coincide if (and only if) the points z; (i € I) are all

equal. We now show that the difference between the members of the first inequality in

Theorem 2.4 is bounded above by

Cv(z):= max {2~z |}

This result is further interpolated.

4

Theorem 4.1. Let (X, || - ||) be a normed linear space, z; € X, p; > 0 for all i € I with
Pr > 0. Then

0 S k+l 2 p'l plh.']

k+1 1
AT

1400 "h-}lel el
1 k+1
S —r Z b - Pc',,..., m Z Ti; — vax'
1, it € j=1 -el
< E Pi- Z% 5 3 b
Y- § J—l tel
< Zp, Zp.z. < Z pip; || zi — z; |I< (), (4.1)
el Iier B i.jel

for eachk e N .

Proof. The first inequality in (4.1) restates the beginning of Theorem 2.4 for the case
; 1. Now by the triangle inequality

Zp-zc

i€l

k+1

k+lz b

so on multiplication by Piy - - < Pipy, (2 0) and summation over 1,. .., 1541 We get

k+l Z Piy -+ - Pings

k+1

k+lz "R Zp'z'

0€I

)

k+1

1
k+1 Z - Zp‘zl
j=1 ae[
1 k+1
.

LI t'h+l €l

Z Piy - Pc‘..“ <

IV

$1yeening1 €1 i€l
k41
k-H E Py - p'k+l k + 1 Z ‘: ” PI ZP..’L‘. ’
$1venthg1 €1 el
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Proof. The first inequality is that of Theorem (4.1). By the Cauchy-Buneakowski-Schwarz

inequality for multiple sums, the right-hand member of the second inequality in (4.1) is

k+1
Pk+l E Piy <« < Pigyy k + 1 Z Ti; — Zpﬂ?c =
ety 1 €1 oel
k+1 1/2
k+1 Z Piy oo Pigga k-|- 1 Zz.’ P, EP.-"‘ )
i1 €1 i€l

The result is now immediate from Corollary 3.3 with k+1 in place of k£ and ry4; =
1/(k +1). ' O

The above inequality can also be regarded as a refinement

Zp- .z II? —' Zm- >
tel lEI
k1
2 (k+1) k+x D PP k+1z"u " 2re ) 20
1y r‘k+l€l le[

of the Cauchy-Schwarz inequality.

5. First and second majorants

Theorem 5.1. Let (X, ||-]|) be a normed linear space, z; € X, p; > 0 t for all : € I with
Pr > 0. Then for each k € N

0 < Z Pi kzz':

Pk.H Z p‘l p'h+l

k+1
k+lz "“

u. W€l . i=1 i1eeinpr €1
1 zl'l + + zlh
< p o T e |,
= k+l 1 L33 (23]
k+1 S1peening 1 €1 k
- 1 Tiy -+ T, .
S ETTR X PR Tpop oo
i€l
1
< 1 2 Zp,p, | zi —=; ||< u(a:) (5.1)
i€l
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Pﬁo‘of. Thie first inequality in (5.1) is obvious. For the second, observe that by the triangle

inequality
lk k41 k41

1

_ z.~,+--~+z.-,.
T k+1

k = Tip1

forall z;; € X, j=1,...,k+1. On multiplying by p;, ...pi,,,(> 0) and summing over

f1,... 8k in I, we get

X + voe + ;
k__ k+1 Z Piy - Piggy _:ITA_"#H 2
$14eenrinpt €1 .
. 1 k41
:ZF}?F 2 P‘l"""’m(kz i kHZ ':)=
$100minp1 € J=1 J=1

1

k+1

k+12z.,

1
—I,' z: Pi .-

i1, t‘hel

Z %ij

J:l

PH.[ Z Piy - Ping

1 peeingt €1

and the second inequality in (5.1) is proved.

This gives
i ey 1 ot v,
= ¥ p- .|y, - y-.lspk_ Y b P |y1__k_:1_y_
I $enin€l I iy penin—3 €1

where y;; € X,1 < j <k and k > 2. By choosing

Vi, =, —.z'.».“,...,y;,‘ =T, —'T"k-n

we get

Ti ot T

k = Tiryr <

LI,, z Pis - Py

< T,T,_ E Piy -« Piroy
I

$1peenth-1 €1

Tiy + -+ Ty, -z
k-1 i
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and thus
Ty o+
E Piy oo Pingy L'—k_lh = Tiyp <
‘lv v'h#le’
i+,
Z Pirss E Piy -+« Pinoy ;k_—l"‘i ~ Tings || =
Pt a1 €1 {1ina1 €1
Tiy + 00+ T,
= _F 2 Piy - J_k__l__'h_i -z,
I “l I'hel

and the third inequality in (5.1) is proved. The last inequalities follow by recursion and
the end of Theorem 4.1. 0

Corollary 5.2. Let (H;<,>) be an inner product space and z; € H, p; 2 0 for alli € I
and P > 0. Then

h+1
0 < —;; z Pi; Zza, Z P, . p...+l k+1 Zzg
s i |'kel J-l : ‘l. ,!h.‘.let
, ' . 1/2
1 Tiy + 00 Ty
S k +1 -T— Z Pu pu,.“ _l'——k—'—_h' - 1‘.'.,“ = (5-2)
T eningt €1

P ZP:%

i€l

[k(k+1) ( RIETE )]th.

Proof. The first inequality is the leading inequality of Theorem 5.1. By the Cauchy-

Buneakowski-Schwarz inequality for multiple sums,
iy + e iy

Z Piy - Pings A = Zipp <
‘h |‘h+lel
2\ V3
| ) Ty, + otz
< 'I;E.Tf Z Piy -+« Pipygy —E_—E__!' = Tings o
. I "h---v"k-}let

so that the second inequality also follows from that of Theorem 5.1. Equation (3.2) with
re; = 1/k and a = -1 yields the final statement. ' 0O

Remark 5.9. The above inequality also can be regarded as a refinement

3
_ZP."JH" —l EPJ- >k(k+1)( E Piy -+« Di

oEI lE’ $1yenfn€d
) 2

k Z“"

J=}

k4l

k_HEx.,

1
- _PT.H' E pi, - plh+l

I il....,‘..',.el
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of the Cauchy-Schwarz inequality.

6. Second and third majorants

Theorem 8.1. Let (X,||,||) be a normed linear space, z; € X, p,'. > 0 for alli € I with
Pr>0,k>2andqg >0 with Qx> 0. Put

1 k
0" I} qa=g%§{a§!qs—qzl}

and let ¢ = min{q,,q2}. Then

0= l<;<k {

0 < E Pi, - EQJ:"": Zz.’

#1500k € J—l J"l
S B 2 P Z‘b% - Z%
I [T Y7 4 J-l J—l
< ZP: " T "
tE[

Proof. The first inequality is immediate from Theorem 2.4. By the triangle inequaliity

k
quxl, Zzn, < Z%-‘D-, = Zzt, j qé)zﬂj
1=1 J—l J-l r-l £=1 j=t

Note that
k
Zz(q, wo| <13 |E 9 o | < LS e
t=1 j=1 j=1 i=1
and
1 k &k
Zz(q, @eoil S g2 lai—aellzy lisa g Z (e
=1 j=1 i=1 ¢=1 =1
Thus

Z q5%;

J—l

k Z"’

j=1

k
<+ le z,, |

L

< “ zq is,

J—l

28



INTERPOLATIONS TO JENSEN'S INEQUALITY

and so
q x;: +...+ r:
Zp,"z," -5 Y Pe.-—-p.-.(" i ll . Il ‘*")2
1 el I g,,...ix€l \
1
S DT L STES N
I .. ixel k=1 ,..1
1
> % T ( San| - Jr3x)
LA k j=1 J—l
and the theorem is proved. (m|

7. Second and fourth majorants

Theorem 7.1. Under the assumptions of Theorem £ we have

z“.'.....j.z..h

0 < P,Zp.uw.u-— Y pi-.p z <
il 1y €l
i +...+z-
< k+l Z Pis « - Pirga —"—k—-ﬂ'——z;.“ <
$1pening 1 €7
1 Tyt +x,
S B Y P Lk——l—#-x""”< (7.1)
I $1yein €1
<
< ZPcPJ 2 —2; ||I<
i€l
< V(z).

Proof. The first inequality follows from Theorem 2.4. From the third inequality
on, the result has been given in Theorem 5.1. Also

Ti, + 0+ T,
k

If we multiply by Piy - Piry, and sum over iy,..., 1k in I we get

3(. + et + zl’*
k+l E : pi, - Piux k = Tipy,
S5tk 1 €1

Z Z Piy <« - Pigg (" Tinys " -

T +...+m.
“ Tingr " - < Tingy — '"_k—.h

>

z, +- +

)z

k
$eningr €1
T+
Z"‘ZP- ‘3"““_’ Z Piy -+ Piy '—“_—k_—_k ’

lGI I (TP W -7 §

which proves the second inequality in (7.1).
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The case of inner-product apaces is more interesting as it provides another re-
finement of the Cauchy-Buneakowski-Schwarz inequality. We derive the following result
easily from (3.1).

Corollary 8.2. Suppose that (H;<,>) is an inner-product space. Under the above as-

sumptions we have

0 < Zp' " T " "'_ Z b . Zqu';

'ln v'hel J—l
27 1/2
< PIZP' | z: "2 Z b, - quml, =
€l 01, Sn€ET J"l )
. 1/2
- l-z(-—)] Sl “ Sope
[ j=1 Q" P iel T
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QUARTIC INTERPOLATORY SPLINES

J. KOBZA

Abstract. The continuity conditions for quartic interpolatory splines with knots dif-
ferent from the points of inte}polation are given. Boundary conditions completing such
system are discussed and the existence theorem and algorithm for computing parameters

of the spline are discussed.

1. Quartic splines

Let us have the increasing set of knots on the real axis
To <71 <... <ZTp < Tpyr- (A.’B)

We shall denote Sa(z) or simply S (z)j a quartic spline with the defect one on the knotset
(Az) - a functional with the following properties:
‘1. Sa(z) € C¥[zo, Tpial,
2. Su(z) is a polynomial of the fourth degree on each interval [z, zi11],t = 0(1)n.
Let us denote S(Az) the linear space of such splines with dim $(Az) = n+5. It is known
(see [1]) that there ate some difficulties connected with quartic splines interpolating the
given function values at knots z, concerning the problems of existence of such splines
in some cases and in the lack of localizing properties (causing then undamped error
propagation) and of symmetry in boundary conditions (three free parameters).

Some part of such difficulties can be overwhelmed using separa.teci meshes of knots
of the spline z and points of the interpolation #, as was used also at quadratic splines
(see [3], [4).

In the following we will use the separated knot set
po<lhh<z<h<..<th_1 <z, <, < Zppr (A(I:At)

with stepsizes h; = x;41 — 2,7 = tj41 — tj. The case t; = (z; + zi41)/2, Ti = o + th

(equidistant set) is the most frequently used.

Received by the editors: October 26, 1995.
1991 Mathematics Subject Classification. 41A18, 68D0S5.
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In‘the following we shall describe the algorithm for computing of appropriate local
parameters of the spline S41(z) which corresponds to the conditions
3. Su(t;) = gi,s = 0(1)n (conditions of interpolation).

We have still four free parameters for the quartic spline on. (AzAt); We shall use

some boundary conditions symmetrically on both sides of the interval {zq, Zn4.1]-

2. Basic relations between parameters - continuity conditions

We can write the Taylor formula with the remainder in the integral form for S(z):
O

; Yo - idt - (1)

' 5(2) = S(z0) + ' (z0)(@ ~ 20) + 35"(20) +

where 2}, = 27 for 2 > 0,2} = 0forz<0 (" cut pbwer;").
Let us denote T; = $"(z:), ¢ = S(t;) the two of the local parameters of the spline.

For the third derivative of S(z) we can write

S’”(t) =T+ (t - 3’:)(Tk+1 - Tk)/hk for t€ [zk,zk“], k= O(I)n - (2)

2.1. Internal knots. . Using calculus of divided differences (see {2]), the third difference
of both sides of (1) can be written as

Tn4l |
2tj3,tj-1,tjs 1) S(2) = / S"(t) {[tj-2, ti-1 tis tim)(z — t)3 } dt. (3)

zo

In ‘our case of noncoinciding points t we can write the difference on the left-hand side of
(3) as

J+1

[ti-2 tica, tis tiaa)S(2) = D €iS(t:) (1)

i=j~2
with coefficients ¢;; = 1/ [[,(ti—t), k=37 —2,..,5+1, k#1, j =2(1)n -1, depending
on the geometry of the knotset only. Explicitly,

1/¢ij-a = —Ti-a(Tj-a + T )(Tj-2 + Tima + 75),
1eijm1 = Tttt +75),

Yej; = ~=7iati(ti-a + 7j-1) (5)
Vejgn = 7i(Tit +7)(Tima + 7521 + 75)

on the general knotset.
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On equidistant knotset we have simply
Cigtr = —Cig-2 = 1/(6h°), cij1 = —c;; =1/(2h%).
The same difference on the right-hand side of (3).is applied to the function (z—-t)3
only (in z-variable):
J+t
[timas tien s tinl(z - )3 = ) ejiti — 1) (6)
i=j-~2

This difference is equal zero for « ¢ [tj_3,;41]. Using (2) and (4), (6), we can write (3) as

. i+l Thil . J+1
20tj-2,ti-1,tis tin)S(@) = Y [ {[Tk + (1= 24)(Tewr = TW) /b)) Y csilti — t)i} dt
k=j-3 Y %k i=j—2

(M

For more detailed study of (7) let us further denote

Thyl .
Py = / (ti—t)idt = % [(ti—z)} = (i —zer)i] >0 for k<,

Tx

Thit
P = / (ti - t)3dt = % [t —20)} — (ti = 2ena)}]) >0 for k<i,  (8)

13

Qix

et 2 1 3 1 3 :
(t - zk)(t.' - t)+dt = —§hk(t.' - 3‘]¢+1)+ + '3‘P.k __<_ 0 for k S t.

1]

The values of ‘this coefficients on equidistant mesh (ho = h, = h/2,h; = h for j =
1(1)n — 1) and k,j > 1 are given in the Table 1:

i k k+1 k+2 k+3
24P, /h® |1 26 98 218
192Qu/h* (1 72 328 776
64P3/h* |1 80 544 1776

We can write now the right-hand side of (7) as

j+i i 1 41
Z {Tk' Z ¢;iPa + [(Thrr = Te)/hi] Y Cinik} = Z alT;

k=j-3 \  i=j-2 i=j-2 i=j=1
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with the coefficients a defined by the relations
Jj+1 ,
aly = Y ciPij-z — Qij-a/hj-2),
=j~2
. J+1 ) A
o = Y ci(Pu— Qu/hi+ Qipcr/hanr), k=3=1,55+1 9)

i=j-2

842 = CinQinis/hip;
in the equidistant case we have
&, =al,, =1/1152, a]_, =l , = 76/1152,4} = 230/1152. (10)

The equation (3) can be written now as
j+l 3 . . '3 '3 M I3
2 Z cj.-S(t.') = aj‘-sz-ﬂ + “;'-LTJ'-I +aiT; + "3‘+1Ti+l + a§+zTJ‘+2 (11)

f-j=3
with coefficients c;; given in (5) and o deﬁngd in (9). When we write the relations (11) for
J =2(1)n —1, we obtain altogether n-2 linear equations for calculation of the parameters
Tiyi = 0(1)n + 1. To complete the system of equation, we have to prescribe four another

- usually boundary - conditions.

Remarks

1. The diagonal dominance condition in equations (11), sufficient for solvability of

such systems,
J i j J
a; > a; ,+aj l+¢1'“1+a‘“2

could be written as
J+1 Jj+1
Z ciiPi; > 2 i(Pij=a + Pijo1 + Pijr + Pijea — 2Qij-1/hj-1 +2Qii/h;);  (12)

imj=3 i=j=3
we can see from (10) that it is fulfilled on the equidistant mesh.
2. Let us mention, that it is possible to work with the more general set of poin:
interpolation {t;,: = 0(1)n + 4} . The system of equations (llj with j =2(1)n + 3 15
then complete and existence of such interpolating spline depends on the solvability of
such system. According to the general result of Curry-Schoenberg (see [2]) such problemn

has unique solution in case that ¢ belongs to the support of the corresponding B-spline.
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3. We can give some intuitive interpretation to the relations (11) using the values of

coefficients a} from (9)-(10) and the fact that
6 [tj-2,ti-1, b5, ti41] S(2) = §"(2)), 2 € (tj-2,tin1) :

the weighted mean of the values T;_,,..., T4, is equal to some value S"(z;).

2.2. Multiple knots on the left boundary. To complete the system (11) of n-2 equa-
tions for n+2 parameters T.i= 0(1)n + 1 on the set (AzAt), four bdugdary conditions
can be prescribed. In case of prescribed values of S’, S” at boundary points = to,z = t,,
we can complete our system by the relations analogical to (3) with j = 1, 2; n, n+1, where
the divided differences with multiple knots have to be used (see [2]). For any function
f(z) € C¥(zo, Tn41] defined on the mesh (AzAt) we can find that

(o + 1) [to, to, tr, 82 f = (270 + T1) {Tg(fo--i' "'1)}"l Jfo+(m) ' fy -
—(0 + Tx)(Toz"'l)—lfx + {n(mo + “'1)}_l Jay (13)
78 [to, to, to, 1a] f = (o — fo) /70 — fo = 703 /2,

where f; = f(t:), f§ = f'(te), f§ = f"(to).

Fur t € [to,t) and function f(x) = (z —t)} in z-variable we obtain
2 2 _ 2,
7o [to, to, to, ] (z — )3 = (81 — t)3 /70
for 1 € [ty,t3) we find that

(10 + 1) [to, to, ta, ta) (2 = )} = [ru(mo + 7)) ™" (82 — )3 — [(70 + m)/ (")) (82 — 1)3.
(14)

Ilie equations corresponding to (11). for j = 0,1 are then
iy, o Lo, 6] S(z) = /th 5" (t) {[to, to to, 1] (z — )3 } dt = a3To + a}Th + 63T (15)
0
ith
= (Pio — Qro/ho) /78, @} = (Pu + Qio/ho — Qu/h1)/75, a3 = Qu/(h173)
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and
3 .
2({to, to, 11,13} S(z) = [‘. S"(t) {to, tosta,tal (z — )4 Y dt = alTo 4+ a\T, + aT5 + aTa,

. (16)

where

ag = ao(Po — Q20/ho) — Bo(Pro — Qro/ho), a0 = [n(r0 + 7)Y,
af = ao(Pu = Qu/hy+Qu/ho) = folPus ~ Qui/hs + Qrofha),

ay = ao(Pn = Qau/hy+ Qu/h1) — Bo(Qu/h1),
‘& = aoQufhs, fo=(rin)™.

For equidistant case the values of coefficients in |(15)-(16) not occurring in Table 1 are

given in Table 2:

k 1 2 3 3 (o 1 2 3 4
24Pofh® | 7 37 91 [ 19242 [34 29 1
192Quo/h* |11 67 171 768a} |26 154 71 1
192P3,/h® |45 525 671(1152¢2| 2 75 230 76 1

2.3. Multiple knots on the right boundary. Quite similar, using some symmetry of
our problem (but unfortunately with some asymmetry given in the notation) and some

algebraic manipulations with the values of divided differences, we can prove that generally
Toalta-tstastastalf = Tac1 fo/2 = far' + (fa = fa1)/ a1,
. (Ta=2 + Ta=1)[tn=2, tn-1stns ta) f = far'[Tacy — {Tn-a(Taa + Taz1)} ! faoz + (17)
+{(Tacs + Tt/ (731 T-2)} frmr = @t + Tact) {72 (Taz + 7)) ™ o
In our special case we have
for t € [ta-tstn] i [tamiytnsta,ta)(® =0} = () (= teo)s
for t € [ta-a,ta]: (a2, tn-1,tn, tal(z — )3 = (18)
[rca(Fnet + Taca) 17t = taca)l = (2 7ea) (2 = tnea )3
Choosing in a symmetrical way the representation of S"(t),

§"(t) = T; + (z; — )(Tj-1 = T;)/hjor for t€[z;,35), j=nn+1
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we obtain after integration over interval [f,_,,¢,] and using (18), (3)

2[tn-l [} tm tm tﬁ]S(z)

tn
[ S Oltasstart (e~ it =

tn-i

= a:tiTn-l + a:'l-lT” + a:i{Tﬂ.f.l (19) .
with coefficients
a:t} = Qn-l,n/rs_lhn-l, a:ti = (Pm. - Q,m/h,.)/Ta_l,
a::.H = (Pﬂ;‘l." - Q"—l.n/hn-l + an/hn)/'r:_l- (20)

The integration over interval [¢,_3,¢,] using (18) results in

tn
2[t"_2,t,._1,tn, t,.]S(a:) / Sm(t) {[tn—21tn—htmtn](z'— t)i} dt =
th-2 )

Gn3Tn2 +ap 1 Tno1 + aiTn + any To (21)

with the coefficients

a:."z = anQn-?.ﬂ—l/"n-h where T, = [Tn—ﬁ(Tn—l + Tn-a)zl_l’
a:-l = an(Pn—z.n—l - Qn-—ﬁ.n—l/hn—Z + Qn-l,n—l/hn—l) iy ﬂuon-l,n/hn—ly
a: = an(P -1n-1+ Qn,n-l/hn - Qn—l,n-l/hn-l) - C!,.(P T Q'm/hn - Qn—l,n/hn-l)s

a:+1 = an(Pn,n—.l - Qn,u-l/hn) - ,Bn(Pvm - an/hn), Bn = (72_17'»-2)—1- (22)
We have used in (20), (22) the notation

= 1 ' .
Py = 3 [(z,-+1 - t;,-l)‘:’,, — (2 — tk_l)i] for i=n, k=n-1n;

i=n—-1, k=n—-1ni=n-2k=n-1;

i

P i‘[(zi+l-tlc-l)i_(’i—th—l)i] for i=n—-1, k=n-1n; (23)
i=n, k=n—1ni=n-2k=n~-1;

_ 1 1=
Qu = 3 [(Zi41 = te)+(igr = ta-1)3 = bz — teor)3) + 51’.‘1-

For equidistant case the values of these coefficients are equal to the symmetric coefficients

on the left boundary given in Table 2.
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2.4. Complete system of continuity conditions. The relations (16), (11) and (19),

(21) form now together with (11) the complete system of n+2 linear equations for the

parameters T, ¢ = 0(1)n + 1 with right-hand sides (see (13), (17))

fi = 2tj-2,t-1,t5,t4]S(2), F=2(1)n -1
Jfo = 2[to,to,20,t]S(z), fi =2[to,0,t,t]S(z),
fn = 2[tn—2’tn—lvtn’tn]S($)7 fn+l = 2[tn—l7tn»tn,tn]S(x))

of the general form

..................

n n n
Ap_3 an-l a, a’n-H
n+l n+l n+1

Gp-y Gp an+1_

To
T -
T,

T;

T.

-Tn+ l -

[ fr+1]

fo
h
fa
i

I

The matrix of the system (24) is fivediagonal - the diagonal dominance condition

(12) can be easily completed for the first and last pair of the equations from (20), (22;
In case of equidistant mesh (AzAt) with h; = 1, = h,ho = hy, = h/2 the complete

system of continuity conditions can be written as
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34 20 1
2% 154 75 1
2 75 230 76 |
1 76 230 76 1
176 230 76 1
1 76 230 75 1
1 75 154 26

29 M

To
T
T
15

" :
n-2

Tn—l
o
T,

ln-fl

[ o
/i
fi
fs

fn—2
fn—l
fn

_fn+l‘
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with diagonally dominant matrix,

- 1 " .

fo = 8§ -8 — hS{) - §h25{,', fn+l =8,— Sp_1 — hS,’, + %h‘S:,’,
fi = 35 —451+ S +2hS}, fo=—35, +48n-1 — Sn-2 + 2hS",,
fj = Sj...l - 3Sj + 35,'-1 - S,'_g, j= 2(1)n - 2.

We have thus the unique solution of this system for any values on the right-hand
side of (25).

We summarize our discussion from 2.1-2.4 in the following theorem.

Theorem 1. Let S(z) be a quartic sph:ne on the knotset (AzAt). Then between its
parameters T; = $"(z;) and the third divided differences of the function values ( and the
values of appropriate derivatives on the boundary) the relations (24) hold (7 continuity

conditions”).
3. Boundary conditions

The matrix of the system (24) is quite determined by knotset (AzAt) and its
geometry. The prescribed values g; = S(#;) are used for computation of the components
of the right-hand side values f;,i = 2(1)n — 1. In the first ao.nd last two components f the
values of §’, §” and t = tp, t = {41 appear as additional parameters of the problem. To
determine the interpolating spline uniquely, we have to prescribe additional conditions -

the v.:lues of boundary derivatives or some equivalent conditions.

3.1. The first and second derivatives. Given the values S'(t0), S"(to), S'(ta), S"(ts)
and function values S(t;) = gi, ¢ = 0(1)n on the knotset (AzAt), we can immediately
calculate all components on the right-hand side of the system (24) or (25) When the
condition of diagdnal dominance in the matrix of the system is fulfilled (as it is in the
case of equidistant mesh), we have then unique solution 7; of the system for any given

data.

3.2. The conditions of periodicity. When the spline we search has to be a periodic
funclion, we can extend our mesh (AzAt) in the periodic way on the left and rig!:

houndary. The simplest way is now to consider the case of the mesh

11 <Tg<tlg=a8< Ty < ... < Ty <tp=b< Tpy1 < lpyi
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Writing now the relation (11) for j = 1(1)n with
S(to) = S(tn), To = Tm T\ = Tﬂ+l) T—l = Tn—h (26)

we obtain the system of n linear equations for the parameters T;, j = 1(1)n with cyclic
fivediagonal matrix; the components f are determined now by function values only. In

case of equidistant mesh the coefficients a! are just the numbers given in (25).

3.3. The first and third derivatives prescribed. When the values $'(t;) and 5"'(t;) =
T; at the boundaries z = to,¢ = ¢,, are prescribed, we can handle the problem in the fol-
lowing way: '

a) we omit the first and the la.st‘equa.tion in (24) (j =0,n +1);

b) for j = 1,n we substitute in thesg equations for fhe known values Ty, Tny1, S'(t0), S'(¢n)
on the left and right side using (13), (17).

We obtain the system of n linear equations for parameters T;, § = 1(1)n in this way.

3.4. The second and third derivatives prescribed. In case of prescribed values

S”, S™ at boundaries we can use the relation (13) to eliminate the expressions
5o — (51— So)/m0 resp. S, —(Sn— Sn-1)/Tn-1 -

from the boundary pair of equations (24) to obtain equivalent relations without the first
derivatives

3

S8 +2ro + 7)™ [(S2 = $1)/m = (51 = So)/rol = Y, [roa§ + (o +m)a}] i .

=0
Sp = 2(Tn-1 + Tn=2) [(Sa = Sn-1)/Ta-1 = (Sn-1 = Sn-2)/Tn-2] =
n+1
= Z [Tu—la;'.+l + (Tn—l =+ Tn—-z)a;"] T} (27)
j=n-3

With known Tp, Ty these relations complete the system (11) to the fivediagorial system
of equations for Tj, j = 1(1)n. ‘

3.5. The second (third) and the fourth derivatives prescribed. For the fourth

one-sided derivatives at the boundaries there is
Qo = SW(zo +0) = (Ti ~ To)/ho, Qi1 = S (@41 = 0) = (Toga — Tu)/ha.  (28)
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In case of prescribed values Mo, Qo, Mny1, Qni1 We can write in (24) the first and last
equation (j = 0, n+1) as

—To +T = hOQO’ ~Th + Tn+l_ = hﬂQn‘H‘ (29)

we use further relations (27)' for j = 1,n to complete in such a way the rearranged system
(24) to n+2 equations for the p.a.rameters T;, = 0(1)n+1.

When the boundary values Ty, Qo are prescribed, we can ca.lculate~T1 from (29)
and then Tj, j = 2(1)n + 1 recursively from (11). ‘

3.6. General type of boundary conditions. It is possible to consider more type of

boundary conditions

adTo + alT, + qua = fo,
aiTo+ alTy + ajTy + aiTs = fi,
a:_ng—z + a’,:_lT -1+ a:Tn + a:+1Tn+l = fn, (30)

1 1 1
a:tlTﬂ-l + a:+ T. + a:LTnH = fn+l

with given coefficients a, f; or various conditions which can be finally expressed in this

form.

4, Local paramefers of the quartic spline

For the given knot set (AzAt) with prescribed conditions of interpolation S(t) =
giy t = 0(1)n, the continuity conditions (11) completed by boundary conditions analyzed
in 3.1-3.6 form together the complete system of linear equations for computing the pa-
rameters T; = $"(z;),i = 0(1)n + 1. To the complete determination of the interpolating
spline we have now to compute the remaining local parameters of the quartic spline under

search.

4.1. Some local representations of the quartic spline. .

a) Let us denote

s = S(zi), m; = 8'(2:), M; = §"(z;), T, = §"(2:), Qi = SW(z:) (31)
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the Taylor coefficients of S(z) at z = 2. Then the representation
1 2,1 3, 1 4
S(z) = si+ miz — z:) + gMi(z — 2:)" + STilz - 2)° + 5,Qu(= — zi)*, 7 € [zi, 204
(32)
uses all local parameters concentrated in z = % (with function values & unknown).

b) For the Taylor expansion S(z) at z = ¢,

4 .
S(z) = Z S(j)(t;)(a: - Zi)j/j! for z € [zi,zip1],

i=0

the needed values of derivatives at = # can be expressed as

SW(t;)

Qi = (Tiyr — T5)/hi,
SO) = T4diQi with =t gz,

S"(t) = M;+dT+ -;-d?Q, = M; + d; [(2hi — d))T; + diTin) /(2hs), (33)
S’(ti) = m;+d;M; + —;—J:T. + %d?Q'
Sit) = g

c) To reduce the number of needed local parameters we can use the Taylor representation

at z = 5 with variable ¢ = (z — ;)/h;

4
S(z) = Z big for z €[z, 2] (34)

J=0

b; = himiy

by = h¥mip — mi)/2 — h(Tip + 2T0)/12 = (hi[2) (i1 — mi — K} (Tipn + 2T0) /6] .

by = h3Ti/6,
4
b, = h¥(Tir—T)/24, b5 =g — Y bidi,

=1

where now d; = (t; — z;)/h;. We sce now that it is enough to store the parameters m,, T,

only.
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d) It is possible also to use the local representation
S(z) = gi+himi(q—di) +hiMi(q* — d})/2 +
+hi[mips — mi — hi(Miyy +2M;) /3] (¢ ~ &) + (35)
+hi (hi( M1 + Mi)/4 = (miga —mi) /2] (¢* — df) for € [z, zip],
with ¢ = (z — z))h;, d;i = (t. —ba:.')/h.-, where only parameters g;, m,, M; occur.

4.2. Computing local parameters m;, M;. Suppose that we have computed the pa-
rameters T;, 1 = 0(1)n +1 for the spline S(z) with some boundary conditions from 3.1-3.6.

The remaining local parameters we can ¢compute as follows:

Qi
: 1 1
My = Mi+hTi+ §h?Q; =M+ Ehi(Ti + Tig1)- (36)

(Tiqr = T)/hiy i=0(1)n,

The last relation can bé used in casé of boundary conditions with My or M, given.

Similarly we can use the recurrence
1
miy1 = m; + M + —Z'h?T.' + lﬁh?Q.‘ =mi+h; {Ma + —16’1-'(2'['-' + Ty 1)1 (37)

for calculation of all m; in case of given mgo or mp4+; and known M;,7;. Some another

relation following from the Taylor expansions of g;, gj-1 at z = z;,
1
(8 = tim1)m; = g5 = gjma + 5M; (-1 — 23)" = (8 — 25)"] - (38)
1 ; 1
= 5T [t = 23’ = (-1 = 3)°] = 57 (45 — 23)'Q; — (b1 — 25)*Qy-1]

can be used to calculate the values mj, j = 1(1)n.

In case of equidistant mesh with hg = h, = h/2, h; = h the relations
my = (g1 —go)/h — h*(Tz + 13Th + 2T5)/384,
m; = (gj — gi-1)/h — B (Tjs1 + 14T; + T;-1)/384, (39)
My = (gn = Gn1)/h — B2 (2T n41 + 13T, + T-y) /384

can be used directly for work with the representation (34). The continuity conditions for

the cubic spline Sa3(z) = S'(z) can be also used for computing nceded parameters - ¢.g.

(M1 +4AM; + Mjn)[6 = (mjp1 —mj1)/(2R), 5 =1(1)n -1

(Ti-1 +4T; + Ti1) /6 (Mjo1 = 2m; + mj) /1 {40)
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in the equidistant case; the first one gives the recursion in case of known mg or m,,,, the

second one form the tridiagonal system of equation for computing m; from known values
of T;.

5. Algorithm of computation, existence

Given the set of knots (AzAt), values g;,i = 0(1)n and some of boundary condi-
tions discussed in Section 3 for interpolating spline, we can proceed as follows:

a)formulate the boundary conditions as additional equations to the system of con-
tinuity conditions (11) in terms of parameters T;, as discussed in Section 3;

b)calculate the coefficients of the matrix and right-hand side of resulting system
of equations (24); .

c)solve this system of equations (using special algorithms for systems with penta-
diagonal or cyclic pentadiagonal matrix);

d)choose appropriate local representation for S(z) and calculate corresponding
local parameters as discussed in Section 4.

We can summarize obtained results in the following theorem.

Theorem 2. Let us have given the mesh (AzAt) of knots and points of interpolation
with prescribed values g at points t;,i = 0(1)n. Under the condition (12) and boundary
conditions discussed in section 3 there exists the unique quartic spline interpolating the

values g under given boundary conditions.

6. Examples

Example 1.
For the test function g(z) = 1/(1 + z*) we have used the knotset

z;|-6 -3 -1 1 36
t |-6 -2 0 2 6

and boundary conditions
a) §'(—6) = $'(6) = 0,5"(—6) = S"(6) =0
b) §'(—6) = 0.5,5'(6) = —0.5,5"(—6) = $"(6) = 0

for computing parameters of the corresponding quartic spline. The resulting splines are
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displayed in Fig. 1 a), b).
The same data (without the second boundary derivatives) were used for corresponding
quadratic splines, denoted by c), d) in Fig. 1 (the knots of the spline are marked on the
z-axis, the points of interpolation are market by full dots).

Example 2.

For the function g(z) = jte*sin 2z with the knotset

z| -1 0 1.5 2.5 3.1 3.8 4.2 47 5
ti] -1 1 2 3 3.5 4 4.5 5
g }0.021 0.154 -0.345 -0.351 1.360 3.376 2319 -5.046

the quartic splines corresponding to the boundary conditions

‘a) S'(-1)=0, S'(5) = —21 (rounded exact values of g, g
§"(~1) =0, 5"(5) = =20
b) S'(-1)=-1, §'(5) = -1
§"(~1) = 0, S"(5) = —20

are given in Fig. 2 together with quadratic splines determined by the same conditions of
interpolation and boundary copditions

¢) $32(~1) = —1,8,2'(5) = —1.

The local influence of the changes in prescribed function values is demonstrated in Fig. 3,
where the curves correspond to the splines determined by the above data with consecutive
changes . '

d) S(1) = 1 instead of (1) = 0.154

e) $(3) =-18(3) =-0.351

f) $(5) = -35(5) = -0.046.

Ezample 3. For the monotone data

z|0 05 15 22 3 38 45 6 7.5 8.5 10
t;|o 1 2 25 35 4 5 7 8 10
gl -1 -1 04 04 1 12 16 2.2 3
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STUDIA UNIV. “BABE§-BOLYAI", MATHEMATICA, Volume XLI, Number 3, September 1996

ON SOME SUFFICIENT CONDITIONS OF ALMOST
STARLIKENESS OF ORDER 1/2 IN C*

GABRIELA KOHR

Abstract. In this paper the author obtains some sufficient conditions of almost star-

likeness of order 1/2 for holomorphic mappings defined on the ball in C".

1. Introduction.

Let C" denote the space of n complex variables z = (z,, ..., 2,)’ with the Euclidian
inner product < z,w >= )77 | z;®; and the norm || z ||=< z,z >!/2, for all z € C*. The
open Euclidian ball {z € C* ;|| z ||< r} is denoted by B and the open unit Fuclidian ball
is a.bbre.viated by B, = B. The origih (0,0,...,0) is always denoted by 0. As usual, by
L(C*,C") we denote the space of all continuous linear operator from C" into C* with

"the standard operator norm. The letter I will always represent the identity operator in
L(C*,C"). The class of holomorphic mappings from a domain G C C" into C" is denoted
by H(G). A mapping f € H(G) is said to be locally bihplomorphic in G if its Fréchet
derivative Df(z) = (°8—"‘15)-

2D )15j,k5n
z € G. A mapping f € H(G) is called biholomorphic on G, if the inverse mapping f~!

as an element of L(C*,C") is nonsingular at each point

does exist, is holomorphic on a domain € and f 1) =G.

If D?f(z) means the Fréchet derivative of the second order of f € H(G) at the
point z, then of course D?f(z) is a continuous bilinear operator from C* x C* into C"
and its restriction D? f(z)(u,-) to u x C* belongs to L(C*,C*). The symbol ” ’ ” means
the transpose of elements and matrix defined on C*.

For our purpose, we shall use the following definitions and results.

Definition 1.1. A holomorphic mabping f : B = C» is starlike if f is biholomorphic on
B, f(0) = 0, and (1 - ¢)f(B) C f(B), for all ¢ € [0,1].
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Lemma 1.1. ([5]) Let B — C" be a locally biholomorphic mapping on B with f(0) =
Then f is starlike iff

Re < [Df(2)]7'f(2),z > > 0,
for all z € B\ {0}.

Definition 1.2. Let f: B —+ C" be a locally biholomorphic mapping on B with f(0) =
0 and Df(0) = I. We say that f is almost starlike of order 1/2 on B if

Re < (DS ()2 > > 3 1= 1P,
for all z € B\ {0}.

It is clear that if f is almost starlike of order 1/2 on B, then according to Lemma

1.1, f is starlike, hence univalent on B.

Let M = {f € H(B) : f(0) =0,Re < f(z),z2> >0,z € B\ {0}}.

Lemma 1.2. ([1]). Let p € H(B) with p(0) = 0 and Dp(0) = al, where a is a compler
number, with Re a > 0. Suppose that p ¢ M, then there exist 2o € B\ {0} and a red

number m such that the following relations hold:
(i) Re < p(20),20 >=0 and Re < p(2),z> > 0 forall 0 <|| z ||<|| 20 |,
() [Drz0)] 20 + plz0) = mz0
(iii) Re < D?p(z0)(v,v),20 > +2Re < Dp(z0)v,v >>m || v ||?,
for all v € C*\ {0}, with Re < 20,0 >= 0, where m < ~shee @ s | ol
8= “;fﬂ;Im < p(20),20 > .

2. Main results

Theorem 2.1. Letf bea locally biholomorphic mapping on B, with f(0) = 0 and .
I. Suppose that
2

b

Re < [Df(2)] "' D*f(z)(z,2),z ><| || +% |<$"§—">

for all z € B\ {0} and z € C*\ {0} with Re(z,ﬁ;) =1, then f is almont
order 1/2 on B.
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Proof. Let p(z) = [Df(2)] f(2), tl'lén. p is holomorphic on B, p(0) = 0 and Dp(0) = 1.
If we show that Re < p(2),z > > 1 || z ||?, for all z € B\ {0}, then f will be almost
starlike of order 1/2 on B. '

Let q(z) = p(z)— }2, 2z € B, then ¢ is holomorphic on B, ¢(0) = 0 and Dq(0) = 11.
It is enough to show that Re < ¢(2),z >> 0, for all z € B\ {0}.

Suppose that Re < ¢(2),z >¥ 0 in all points of B\ {0}, then according to Lemma
1.2, there exists zo € B\ {0} and m € R such that

Re < ¢(#0), 20 >= 0,

[Dq(z0))' 20 + 4(20) = mzo,

where m < — [ + %] and s = mﬂm < ¢(zo0), 20 > .

Straightforward calculation yields:

(D)1 D f(2)(p(2),) = I - Dp(2), = € B\ {0},

hence at 2z = 2z, we have

[Df(20)]™* D? f(20)(p(20), P(20)) = p(20) — Dp(20)p(20).

Multiplying with z = 2z in the both sides of above equality we obtain:

< [Df(z0)]" D* f(20)(p(20), P(0)), 20 >=< p(20), 70 > —< [Dp(z0)]'70, P(70) >
On the other hand, it is clear that
[Dp(20)]'z0 = (m + 1)z0 — p(20),

50,

< [Df(20))"' D* f(20)(P(20), P(20)), 20 >=|| p(z0) |I* —m < p(20), 20 > .

Sincemn < — (3 + %) and s = mlm < p(20), 20 >, we.obtain:

Re < [Df ()] D* f(20)(p(z0), P(20)), 20 >=I| p(20) I =5 I 0 2

st (o)

Let o = p(zo), then z # 0 and Re < z,20 >= 1 || 20 ||* . So, the above inequality
is a contradiction with the hypothesis.

Hence, Re < p(z),z2 >> 1 || z %, for all z € B\ {0}. ]
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For n = 1 in Theorem 2.1 we obtain the following result:

Corollary 2.1. ([8]). Let f be a holomorphic function on the unit disc U, with f(0) =
f(0) — 1 =0 and suppose that

f(z)| .3
7o <eev
then .’.!L('%)._1| <1, forall z€U.

Proof. 1t is clear that, if l’fﬁ"g)l

<2,z€U, then
2f'(=
for all z € U\ {0} and z € C\ {0} with Re[zz] = } | z |%, so, applying the result
of Theorem 2.1, we obtain that Re;%—% > 1, for all z € U, which is equivalent with
L6 1| <1, forallz €. o

<sleP, )

With the same arguments as in the proof of Theorem 2.1 we obtain:

Theorem 2.2. Let f be a locally biholomorphic mapping on B, with f(0) = 0 and Df (0)
= I. Suppose that

2

’

[< (DS D13}z, 2), 2 >I<l 2 IP 4 |< ﬂ>

for all z € B\ {0} and z € C"\ {0} with Re<:z:,“-}"‘> = 1, then f is almost starlike of
order 1/2 on B.

Theorem 2.3. Let f be a locally biholomorphic mapping on B with f(0) = 0 and 1)f 0)
= I. Suppose that

| Im < (DA D12}z )= >I< [1m (= "—|—|>]

for all z € B\ {0} and z € C"\ {0} with Re<:c,“;‘";> = 1, then fis almost stu .
order 1/2 on B.

Proof. Let p(z) = [Df(z)]"' f(z),2 € B, then it is enough to show that
1
Re <p(z)z> >zl 2%
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for all z € B\ {0}. If this assertion does not hold, then as in the proof of Theorem 2.1,
there exist zo € B\ {0} and m € R such that

1
Re < p(20), 20 >= 2 | 2o |I?

[Dp(20)) 20 + p(20) = (m + 1)zo,

wherem < — (§ + %) and s = “-;:ﬁ;lm < p(20),20 > -

Straightforward calculation yields

1m < DF oI D e, 21,20 >1= —m 3l 202 [im (= H>]

where z = p(2o). Since this inequality is a contradiction with the hypothesis, we conclude
that Re < p(z2),z >> Il z |I?, for all z € B\ {0}. 0
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P

SOME INTEGRAL OPERATORS
AND HARDY CLASSES

GH. MICLAUS

" Abstract. In the paper one obtains results concerning the Hardy class of the integral

operators (3).

1. Introduction

Let A denote the of functions f(z) = z + azz? + ... that are analytic in the unit
disk U, and S denote the subset of A consisting of univalent fiinctions. During the last
several years many authors have used various methods to study different types of integral
operators I(f) mapping subsets of § into S. In [4] the authors develop a more general
type of integral opiarator which maps subsets of A4 into S:

B+
21¢(2)

In [6] P.T.Mocanu defines the second order integral operator

L) = Aﬁwwm#wr,wmmamma 1)

F(z) = ﬁ(z) fo (n-ﬁ*%% /0 t f(s)sﬁ"lgo(s)ds) dt. )

On the other hand, in [3] O.Fekete determines the Hardy class for the second order
integral operator (2). In this paper we obtain some results for the Hardy class of integral

operators:
| - “ )
_,ﬂ+7/‘fm 9)]° jars-1
mn-[,, 2] [29] eirae) ©
studied by many authors {5] and the more general operator (1).

We define the n-order integral operator for the integral operators (1) and (3), and

we determine the Hardy class. b

Reccived by the editors: October 30, 1966.
1991 Muathematics Subject Classification. 30C4S5.
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2. Preliminaries

For f € A and z = r €Y we denote

L
(& J2" |£(re®)|? d8)” for 0<p< oo

sup |f(re?)| for p=o0
0<6<2x

Mr, f) =

A function is said to be of Hardy class H? (0 < p < o0) if M(r, f) remains bounded as
r — 17. H*™ is the class of bounded analytic functions in the unit disk.
We shall need the following lemmas:

Lemma 1. If f € H*,0<p <], then { € H™. If f'€ H?,p> 1, then f € H™.
Lemma 2. If f € H? and g € H? then fg € H#x.

Lemma 3. If f € H? and F(z) = Js f(t)dt then F € HTE_P,for O0<p<land Fe H*®
forp> 1

Lemma 4. If fe H?,p2>1,9'/g € H%,q 2> 1 and L i3 defined by:

NG = g0 [ FOC s frg e A,z e U

then

(i) L(f) € Hw and L'(f) € H%5 for p < &3;

-1

(i) L(f) € H> and L'(f) € H™ for p> 4.
Lemma 5. If f € H?,p>1,4'/g € H%,q> 1 and L is defined by

Ly(f)(z) = g—(l—) [ “fOg @)t fg€ Az eU

then
(i) L,(f) € H#¥ =% and L,¢'(f) € H#% for p < eyt
(i5) Ly(f) € H™ and L,g(f) € H™ for p> 3%;.
Lemma 1, Lemma 2 and Lemma 3 are well known (see [2]). Lemma 4 and Lemma

5 were proved in {3].
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3. Results for the integral operator I,

Let be a,f,7,d € R, f,g € A and I; defined by (3) we have the following results:

Theorem 1. I, = J* oKololJ,, where

Joslf) = [&][2‘—2]"
I(f) = / ,f(t)t"""’dt;
KU) = kst
B = [M]
Proof. A simple computation yields the results of the theorem. .

Theorem 2. If f.€ HP-and g € HY then
Jog(f) € HT%,

a §
Proof. If f € H” then F(z) = z [L&ﬂ] € H% and if g € H? then G(2) = ['-(,ﬂ] € Hi,
From Lemma 2, we have F -G € H=+% and Jp.,(f)eHa‘c&’E, 0

Theorem 8. If f € H?,p < 1, then I(f) € H™5 and if f € H?,p > 1, then I(f) € H™.

Proof. I(f) = [y f(t)t>*+*-2dt and I'(f) = f(2) - 204+6-3
Hence I'(f) € H?,p < 1 and I(f) € H™* or I'(f) € H?,p > 1 and I(f) € H* (Lemma
1). g

Theorem 4. If f € H? then Jf(f) € HF?,

Proof. J#(f) =z [ﬂ'ﬂ]’ obta'.ining Jf(f) € HP?. a

Theorem 5. If f € Hp’.g € H"qu"a’ﬂ’ae R.'.. then
(i) if £ < 1 then I,(f) € H¥eem; .

éptag

(i) if $EL- > 1 then I (f) € H™.

Proof. (i) If f € H?,g € H? from Theorem 1 and Lemma 2 we have Jg,(f) € H*, A =
£k = 52 Hence I (Jpy(f)) € HYX, and I (Jp,(f)) € H#55, Using the definition
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of K we have K (Jpa(f)) € H557, and from Theorem 4 Jy (K (I (Jpa(f) €
Ho¥esw and I,(f) € Hiwosm;

(ii) If BL- > 1 then I (Jp4(f)) € H* (from Lemma 1). Hence K (I (Jg,4(f))) €
H* and from Theorem 4 I,(f) € H™. n}

4. Results for the integral operator I,

The integral operator Iy, defined by (1) was introduced by S.S. Miller, P.T. Mo-
canu and M.O. Reade in 1978 [5] and more generally in 1991 {4].

Theorem- 6. If the integral operator Iy, is defined by (1) then I, = J# oloJ, where
Jalf) =2 [84]" and 1(9) = 2425 [F fOe(hdt, =B+ 7~ 1,6 =+ 7 e

Proof. A simple computation yields the results of the theorem. 0

Theorem 7. If fe H,p2>a,¢'/g € H',q> 1,a >0, and ¢(2) = ¢(z) = g(z) then:

(1) Lso(f) € Hr¥eamms; for B < oAy
(i) Iso(f) € H® for B > A5 where

I¢.¢ff) = [zﬂq;(;’) /0 | f"(t)g(t)tﬁ—ldtr

£4q
Proof. (i) If f € H? then J,(f) € H= and from Lemma 4 we have I (J,(f)) € H ¥+ %
and [ (Ja(f)) € H r¥ae—rq,
Hence ‘Ié (I (Ja(f))) € H¥aewi. for B < Aoy

(ii) I f € HP then J,(f) € H? and from Lemma 4 I (Jo(f)) € H*, 2 > .&; hence

Iy (I (Ju(£))) € H™. o
Theorem 8. If f € H?,p> a,¢'/g € H%,q> 1 and ¢(z) = g(z),9(2) = ¢'(2) then
(') Iy (f) € Hﬁg{ﬁ for &> 4. P
(i1) lso(f) € H® for & > 13

o = q=

Proof. Using Lemma 5 and the methods of Theorem 7 the results of Theorem 8 follow. O

Theorem 9. If f € H?,p € H% 3 € H" then
(i) if pg < p+ aq then I, (f) € HPFwFw sw=rw;
(i1) if pg > p+ aq then I4,(f) € H".
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Proof. (i) ¥ f € H?,g; € H%, a;,[i,7,0 € RS from Theorem 5 we have I,¢'(f) =

L(f) € H» )\ = m—;ﬁh hence A\, = mﬁ‘f:(%n.—_ﬂ?' We suppose that I7~!(f) €
H*»= and from Theorem 5 we obtain I;‘(f) = I, (1;-1(f)) €H™ A\, = Bngnin-y

anqn"'/\n-l(sn'%)
if cigi + /\.'_1(5.' -_ q.») >0, (Vi)i €12,...,n.
(ii) If angn+An-1(8n — ¢n) < O and aigi+ Ay (6i—qi) > 0, I} (f) € H®,neN. O

Let be f, ¢, ¢: analytic functions, &, fi, %, & € R} and

2%¢pi(z) Jo

We define the n-order integral operator I3, :

: ; o *.‘
I¢.-.¢.~(f)=[ﬁ it f""(t)go.-(t)t“"dt] )

I;'w(f) = I-#v'nwn o I¢n51.¢n-1 00 I"hvvnn €N~
Theorem 11. If f € H?,p; € H"‘,%‘ € H",0;,5;,6; € RS, then
(i) I;‘M(f) € H>» where A, is defined by the recurrent formula:

= dno1 | —4gnTn "
Aﬂ - ﬁ n Gnq';?n-‘-xn_](q"-}.rn_an"), n e N (4)

Ao=p

where a; - q; - i + Aica(gi + i — qiri) > 0,1 € 1,2,...,n;
(i) I} (f) € H® if aj-gi-ri+ Xica(gi + 13 —-q.:r,-) >0,i€1,2,...,n and an-gn 1o+
/\n—l(Qn + 7 — q»rn) <0

Proof. (i) Since f € H?,p € H",3- € H" from Theorem 9 we have Iy, ,,,(f) € Ii™,

where A\, = ’51"mmn+p§(lg:-n—qm) for ay-q1-r1+p{q1+r1—q1r1) > 0. We suppose that ) e
: - An— nn
H>»-1, then 13 (f) = I4nn (I;‘vl(f)) € H*» where A, = e ‘n . anwnﬂnfl(q"“”_qw'

for o; - gi-ri + Mic1(gi + 1 —qiri) > 0,1 € 1,2,...,n.
(i) s giri+ Aica(gi+ri—gqri) >0,i€1,2,...,n—1land ap g -rn+ A1 (¢
Tn — gntn) < 0 then from Theorem 8 13 (f) € H®.

Remark 1. If (3)k,k € 1,2,...,n - l,ak - qx- T + Mmr(ge + e — qeri) < 0
I} (f) € H* and to determine the Hardy classes we have I:;’(f.) € H*+ whe.

k+1

Ak L = 1 Tk+l‘1k+l]_qk+, _ 1 Thk41Qk+1
=g e =
Brar Tt + 1oy BreaThar + Gkt — Tht1Gee

and returning to (4) we obtain results for Ag = Ag4i-
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Theorem 12. If f € HP, ﬁ,ﬂ‘ € H% ¢; > 1,04,00; € R} and ¢i(z) = pi(2) = gi(2), z U
then

(i) 13 ,(f) € H* where

Ao = An—lmgm‘ nenN

oo (8)
/\o =p
for aiqi + Aici(1 —q) >0 andi€l,2,...,n;
(i) I3 (f) € H® for aigi+Xi-1(1-¢;) > 0,5 € 1,2,...,n ~ 1 and anga+An-1(1~gn) <
0.

Proof. (i) Since f € H”,',‘:l € H%, from Theorem 7 we have I} (f) = Iy, 4, (f) €
HM A = chqT-%?l-_nY for ayg1 + p(1 — ¢1) > 0. We suppose that ;‘;‘(f) € H,,_,, then
L. (f) = Lsnion (185 (£)) € H» where Ay = Aoy grmpfitar—s for cngn-+An-1(1-au) >
0; "
(ii) From Theorem 7, if angn + An-1(1 — ga) < 0 we have I} (f) € He. O
Remark 2. If (3)k,k € 1,2,...,n — 1, anqn + M1 (1 — g&) < O then I} (f) € H*
and to determine the Hardy classes we have I:L‘( f) € H™+ where M\pyy = quyr and

returning to (5) we obtain results for A\p = Ayy41.

Remark 3. From Theorem 8 we obtain an analogous result for f € H’,';'-:-' €
H¥%,ai, B; € R}, and 4i(2) = g(2), wi(z) = gi¥'(2)-

6. Some particular cases

Forn=2,4=1,6;=1, we obtain the second order integral operators studyed in

[3]. In that case I3 (f) is

B(f) = —.,,—;m [ (228 [ jgem-tonepas) s

For ¢5(z) = ¢a(z) = ga(2),61(2) = ¢1(2) = qi(2) and if f € H?, & € H¥,
i=1,2,¢; > 1 Theorem 11 we obtain I} (f) € H* where

2 1 2
A = A = _ . =
! T M- @) P +rl-a) YTt iy (1 - )
Q9P

Qg2+ gz + P — 2142
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A NEW GENERALIZATION OF PFALTZGRAFF'S
INTEGRAL OPERATOR

HORIANA OVESEA

Abstract. The paper is dealing with a kind of operators which preserve a specific class

of functions and conatruct a generalization of such of operator, invented by Pfaltzgraff.

Let A denote the class of functions f which are analytic in the unit disk U =
{z € C:| z|< 1} with f(0) = 0 and f'(0) = 1

Let S denote the class of functions f € A, f univalent in U.

Many authors studyed the problem of integral operators which preserve the class
S. In this sence, the result due to Pfaltzgraff ([5]) is well-known.

Theorem A. ([5]) Let f € S, 6 € C. If | § |< 1/4, then the function
) PG = [ ()
15 ynivalent in U,

In the papers (2], [4] were obtained other integral operators which preserve the
univalence and in the same time they generalize, in different manner, the result due to
Pfaltzgraff.

Theorem B. ([{]) Let f€ S,6€CineN. If | §|< <, then the function .
(@) Fiale) = [ (/)
s univalent in U,

Theorem C. ([2]) Let f € S,0,€ C. If |a=1|< 1 and |§|<(1- | @—11)/4, then
the function Fyg,

(3) Fos(z) = (a ./o. u=! (f'(w))* du) v

is analytic and univalent in U.

Received by the editors: November 30, 1998,
1991 Mathematics Subgect Classification. 30C45.
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In this paper we obtain a generalization of the Theorem A,B and C

First let us state some results which will be used in the sequel.

Lemma A. ([1]) Let f € . Then

2"(2)
F2)
Theorem D. ([3]). Let g € A. Let a,8 and c be complez numbers, Rea > 0, Re(a +
B) >0, Ref/a>-1/2, |c|<1and |c(a+B)+B|+|B|<|a+B]. If

212 4= 157 L8 <a15), sev

2atB) 1— l z'|2(0+ﬂ) zg"(z) _ I
@ olx o 8 (50 )| <
Jor all z € U \ {0}, then the function G,,
5 1/a
(5) Gal2) = (a /o u"'lg'(u)du)

is analytic and univalent in U.

We shall prove our result using Theorem D in the particular case § = n-a, where

n € N For this choice, from Theorem D we get the following:

Corollary 1. Let g € A. Let a,c be complez numbers and let n be a positive integer
number. If la—-n|<n, |c|<], [cn+n—a|+|n—a|<nan

- n o
c|z|2n+1 |z | (zy(z)+a_n)

@) n g'(z)

<1,

forall z €U \ {0}, then the function G,,

Ga(z) = (a /0 | u"‘lg'(u)du) v

is analytic end univalent in U.

Theorem 1. Let f€ S, n€N, a,6 €C. If |a~—n|<n and | § |< 22l then the

function Fgu 44y,

(6) Fasals) = (a [ u““(f'(u"))‘du)m

.

ts analytic and univalent in U.
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Proof. Because the function f is t.miva.lexit in U, we can choose the analytic branch of

( f'(u"))‘ equal to 1 at the origin and then the function g belongs to A, where
o) = [ (rw)au
We have

| ) )
(7) ORI

In view of (7), from (4') we get

elepmplzlel” (‘5;(‘)) ta- n)

=6(—2|z|"‘+(1 2 ) 2 f, ))+(c+26+1-—%)|z|’"+£-;—2.

lfc=-2~1+a/n,from|a—~n|<nand|d|< (n~|a=n|)/(4n) it results
that |[c|<landalso|en+n—a|+|n—-a|=|2n8|+]|a~-n|<n.

Using Lemma A and in view of assertion | § |< (n— | @ — n |) /(4n) it follows that

L (R

From Corollary 1, we conclude that the function F, 4,

Fodnls) = ("‘ [ e (")d") " (" [ w ey du) "

is analytic and univalent in U. O

| a-

I<1

<4|J|+

Remarks.
1. For a = 1 from Theorem 1 we obtain Theorem B.
2. For n == 1 Theorem 1 becomes Theorem C.

3. From a = 1 and n = 1 from Theorem 1 we refined Theorem A.
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with the given initial conditions

¥©O) =po, ¥N0) = 0, i=2,3,..,n, (1.6)
(r©Oy™©0)"™ = 0, i=1,2...0,

where r(t) is a real-valued positive continuous function defined for t € I = [0,00); f,9,h :
IxR=R; F,G,H:IxRxR—= R are continuous and Yo is & given real constant and
R denotes the set of real numbers.

In the past few yeais there has been a great deal of interest in the study of the
oacillatox:y and asymptotic behavior of the solutions of the equations of the above forms
when the integral terms involved therein are absent, see [2,5,6,11,12]. Although, a great
many papers have appeared related to the special versions of such equations, it seems
to us, however, that very little is known about the global existence of the solutions of
such qquations. ‘Our objective here is to establish results on global existence, uniqueness
and error estimates of the solutions of equations (1.1)-(1.2), (1.3)-(1.4) and (1.5)-(1.6)
belonging to an appr&pria.te space of functions. The analysis used in the proof is based
on application of the Banach fixed point theorem in an appropriate space of functions
endowed with Bielecki type norm, see [1,3,4,8-10]. In fact, our work in the present paper
is motivated in part by the interesting results given by Morchalo (7] for special versions of
equations (1.1) and (1.3) with r(¢) = 1 and the given boundary conditions and the study

of the special versions of such equations by various investigators in [2,5,6,11,12].

2. Statement of results

Let B be the space of continuous functions @ : 7 — R such that
| (t) |= O(exp(Lt)), (¢

where L is a positive constant. In the space B we define the norm (see, Bielech. |

also [3,4,8-10])
| ® ||== sup,; [| #(t)exp(—Lt)].

It is easy to see that B with norm defined in (2.2) is a Banach space. We note that the

condition (2:1) implies that there exists a nonnegative constant M such that

|  |< Mexp(Lt),tl. ' (2.3)
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Using (2.3) in (2.2), we observe that’
lell< M. (2.4)

We are now in a position to formulate our main results to be proved in this paper.

Theorem 1. Suppose that .
(H,) there ezist nonnegative continuous functions py(t), ¢i(t) defined fort € I and a

constant a > 0 such that

| F(ty,2) - Ft,0:,2) ISp®) (ly -5 | + 12— 2]), .

| f(t9) = f(t,9) IS aa(t) |y - § 1,

and
t t tn—2 1 tn—t )
e f - —— I t,) [exp(Lt,)+
/c;‘/; /; r(tn—l),/(; pl( )[ P( )
tn poy on—3 1 on—1 L dsod .
+ —_— n n)A3ndS8y_y...dsy | X
[ 7 s [ atonexp(banydsndsncs..s]
Xdtndty_...dt; < aexp(Lt),
fortel;
(H;) there exists a constant § > 0 such that
. ¢ 6 "n—ﬁ 1 tn—1 tn 9
+ / ———/ 'F (t,.,O,/ / X
50l ./o /o o r(tn-1) Jo o Jo
-3 1 /"n-l f( o)d d d )
x . Sp,0)ds,ds,_;...ds; || x
-/o r(sa-1) Jo ! '
Xdtpdty_y...dt < Bexp(Lt),
fortel.

If a < 1, then there ezists a ‘unique'solution y € B of the equations (1.1)-(1.2).
Further, for any yo(t) € B, the sequence {ym(t)} given successively by

m®) = v+ | yi TS " F(tar ymer(ta), (25)

L L L - rtmamatean

Xd3nd3n-l ...d3| )dtndtn-l ...dtl y
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for m = 1, 2, ..., converges in B to a unique solution y of the equations (1.1)-(1.2).
Moreover,

m

[44
Hym =y IS == Hv1 —w (2.6)

form =1, 2, ..., where 0 < a < I i3 a constant defined as above.

Theorem 2. Suppose that
(Hs) There exist nonnegative continuous functions P2(t), q2(t) defined fort € I and a

constant a > 0 such that

| G(t,y,2) - G4, 5,2) IS () (|y -7 | +12-2]),

| 9(t:9) — 9(,9) I< a2 [y~ 5 |, .

/: r—(-i—l)- ‘/:l /ot"_l P2(tn) [exp(Lt,.) + /Ot" r(il) /(;" e X

In—1
x / qg(sn)exp(Ls,.)ds,.ds,._l...ds;] dtndt,_y...dt) < aexp(Lt);
0

and

(Hy) there ezxists a nonnegative constant ﬁ such that

| l t 1 iy tn—1t G 0 tn 1 EDY
vo o T(t) Jo 0 - o r(s1) Jo
1

x / " g(s,.,O)«Is,,ds,._l...dsl) dtpdin...dty < Pexp(Lt)
0

fortel.
If a < 1, then there erxists a unique solution y € B of the equations (1.3)-{1. [}
Further, for any yo(t) € B, the sequence {ym(y)} given successively by

ym(t)=yo+/0t r(i.)/oh'“[MG(tn,ym_l(tn),/ot"ﬁx o

o Sn—1
X/ / g(s,., y,,._l(s,,)) ds,,ds,,_;...dsl) X dtndtn_l...dtl,
0 0

form = 1, 2, ... converyes in B to a unique solution y of thq equations (1.3)-(1.4).
Moreover
m
m " < ™ - ’ 2.8
om =y 1< @™ = o | (23
jsrm=1 2 .., where 0 < a < I is a constant as defined above.
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Theorem 3. Suppose that
(Hs) there exists nonnegative continuous functions py(t), qs(t) defined for t € I and a

constant a > 0 such that

| H(try’z)_H(t$g’i) |Sp3(t)(|y—g | + I z2—-2Z I))

| h(t,y) = h(t,9) IS @s(t) |y =7 |,

and
t 17} tn—1 1 in s Tn—1
—_— ) lexp(Ly )+
AT A ~T A AT RO T
/-r.. /u /-..-x 1 /'n /an /“’n-l L
+ —_— on)exp(Lo) x
o Jo 0 r(sn)Jo Jo 0 %l ) p()
Xdadon-y...do1dspdsp-y...ds1] dTodT,_y...dT) X dladt,-)...dt < aexp(Lt),
fortel;

(He) there exists a constant 3 > 0 such that

| ' LI 2 31 tn-t 1 T Tn—1 H( 0 T™n 861
Y +/ / / ——/ / Tny ,/ / e X
° o Jo (i} r(ta) Jo 0 o Jo
n—1 1 /‘Un ‘/‘Ul /0n—l
X h({on,0)do,do,_y...doy X
L r(sa) Jo Jo 0 ( ) . ' !

Xd3ndsn-1...ds1)| drndra_1...dndt,dt,_...dt, < Bexp(Lt),

fort € I. If a < 1, then there ezists a unique solution y € B of the equations (2.5)-(2.6).
Further, for yo(t) € B, the sequence {ym(t)} given successively by

] ) tn—1 1 tn k4t Trn—1
() = yo+// / —/ / o [T H g () x (29)
o Jo 0 r(ta) Jo Jo 0
/Tn /Dl /ln—l 1 /ln /‘UI /Vn—l h( ( ))
X Oy Ym-1(0n)) X
o Jo (1 r(sa) Jo Jo ()} !

Xdo,don-y...do1ds,dsy_y...ds))dTadTy_y...dTydt dty_,...dE,

for m =1, 2, ..., converges is B to a unique solution y of the equations (1.5)-(1.6).
orcover,

m

| ym -y lI< o™ o —wo I, (2.10)

1'—0

form =1, 2, ..., where 0 < a < 1 is a constant as defined above.
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3. Proofs of Theorems 1-3

Since the proofs resemble one another, we give the details of the proof of Theorem
1 only; the proofs of the Theorems 2 and 3 can be completed by following the proof of
Theorem 1 with suitable modifications.

For y € B we define the operator T by

Ty(t) = o+ ]0 ‘ /0 " /0 - ?(t,.l—_d /o tn-lF(tn,y(t“), /0 " /0 Y ox (3.1)

n=3 1 n~)
X / / f (8,,, y(s,,)) ds,.ds,._l ...dsl) X dtﬂdt"_‘...dtl,
0 (sa-1) Jo '

for t € I. Clearly, the solution. of equations (1.1)-(1.2) is a fixed point of the operator

equation

Ty(t) = (¢). (3.2)

Now we shall prove that T maps B into itself. From (3.1), (H,), (Hz), (2.2), (2.4), it
follows that

ITvO] < lwol+ /o ‘ /0 " fo . ;ﬁ fo | Plta,y(ta), (3.3)
/0‘" /:l ‘/0‘."_2 @71:5 /0."-l F(8n,y(3n))dsndsn_y...ds;)
— F(tn, 0, /0‘" /0" ..,/O’M r(si_l)/o."'l F(3n,0) x

xds,,ds,._l...dsl) I dtldtn_l...dtl

‘/o‘an'z o) /’n' F(3n,0)dsndsn_1...ds1) | Xdtndtn-y...dt,
/ / /‘"-2 {tno1) /t"—. pi(ta)ll y(ta) | x

xexp(—Lt,)exp(Lt,) +/o /o .../0.”_a ;‘-(:;;:1—) x

x/ " q1(3n) | y(sn) | exp(—Ls,)exp(Lsy)dsndsn_y...ds;) x
o
thndtn_l...dtl + ﬂexp(Lt)
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<o [ [ (t#) [ mtaesnista
+ - [ [ s [ atonerstion) x

Xdspds,_)...ds,)dt,dt,_,...dty + Pexp(Lt) < (Ma + Blexp(Lt).

" This shows that T maps B into itself.

Now we verify that the operator T is a contraction map. Let y,z € B, then from

(3.1), (Hy), (2.2), it follows that

170 -101 < [ "o [ [ R, (34)
/o " /o o /0 " r(s%l—)‘ /0 " F sy §(0)) X dSndn_g.dsy) ~
—F(t"’ z(t,.),/of"' /: .../O'M ;‘G-vl:—) X
x / 7 Fsy 2(30))dsndsnrondsr) | Xdltadtn_y.dty <

<f[-[ s [ melvte) - 20) |

h xexp(—Lt,)exp(Lt,) + /0‘" ./o" ‘/:"_z ;_-(&1'—_1—) X

Sn—]
x f 01(3n) | ¥(3n) = 2(sn) | exp(~Lsn)exp(Lsn) x
xds,.ds,,;l ....dslldtndt”-l...dtl S

Sy=el [ [ [ s [ e x
x [exp(Ltyn) + /o‘" /: .../:nq ;‘(—8,11-_1) /0.”_l X

xXq (s,.)exp( Ls,.)ds,.d,._l ...dsl]dt"dtn_.l . ..dtl S

<ally-z | exp(Lt)
From (3.4) we have
I Ty-Tzl<aly-2]. (35)

Since a < 1, it follows from Banach fixed point theorem that T has a unique fixed point

in B. The fixed point of T is however a solution of the equations (1.1)-(1.2).
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Lét yo(t) € B be given. Then we can determine a sequence {ym(t)} successively '

from

Ym(t) = Tym-1(t),m=1,2,.... (36)

It is easy to observe that, the sequence determined from (3.6) converges to unique solution
y € B of the equation (3.2). Since (3.2) and (3.6) are the operator equations of (1.1)-(1.2)
and (2.5) respectively, we conclude that the sequence {ym(t)} given by (2.5) convergesin
B to the unique solution y(t) of (3.2) and hence to the unique solution of (1.1)-(1.2). The
error estimate follows immediately from the contraction property of the opérator T and

the proc;f of Theorem 1 is complete.

4. Further generalizations

In this section we indicate in brief the further applications of our approach to the

study of more general nonlinear higher order integrodifferential equations of the forms:

(r(t)y" () - alt, y(t))) thy
¢ 8y -3l 1 -1
=F (t,y(t),/; /0' /c: o) Jo S(8n,y(8n)) % ds,.ds,,_,‘..da,),

with the given initial conditions

y0) =y,  (r(0)y™"1(0) — a(0,y(0)) =0, (1.2)
y0) = 0, i=2,3,.,n-1;

(r(e)'() = b(t, y())"™) = ()
3 1 01‘ -1
= G(t,y(t),/0 m/o /0 g(s,.,y(s,.))ds,,ds,,-,...ds,),

‘with the given initial conditions

¥(0) = yo, (r(0)y'(0) — 5(0,y(0)))"" P = 0,i = 2,3, .., n; (1)

(r(0)y™(2) — et y(t))"™ = (15)

—H (t,y(t), / ' /o " /0 _(1-5 / ) /0 . /

Xh(0n,y(00))dondon_y...dodspdsn_y...ds)),
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with the given initial conditions
¥(0) = Yo,y V(0) =0, i =2,3,...,n, (4.6)
(r(0)y™(0) - c(0,4(0))) ™ =0, i=2,3,...,n,

where r, f, g, b, F, G, H, yo are as defined in Section 1, a,b,c : ] xR = R are continuous
functions such that r(¢)y™~1(t) — a(t, y(t)) is continously differentiable on I; r(t)y'(t) —
a(t,y(t)) is (n-1)-times continuously differentiable on I and r(t)y™)(¢) — c(t,y(t)) is n-
times continuously differentiable on I. The following result similar to "~ heorem 2 can now

be formulated reéarding equations (4.3)-(4.4).

Theorem 4. Assume that the hypotheses (Hy) and (H,) in Theorem 2 hold. Suppose
that '

(Hz) there exists a nonnegative continuous function k(t) defined for t € I and a constant
ay > 0 such that ‘

| o(t,y) - b(t, §) I< k(2) |y — 7 |,
and
/0‘ ;—é—ljk(tl) exp(Lt,)dt, < ajexp(Lt),

fortel;
(Hg) there ezists a constant 8y > 0 such that

¢ty
/0 ;'_(t_J | b(t1, 0) | dty < Brexp(Lt),

fort € I. If ap = a+ a; <1, then there ezists a unique solution y € B of equations

(4.8)-(4-4). Further, for any yo(t) € B, the sequence {ym(t)} given successively by

Ym(t) = 'y0+/('; ;Tlt—Jb(tuym—l(tl))dtl-i- (4.7)

3 1 131 tn-1 . tn 1
—_— G(t,., m-1(tn ,/ X
+/o "(tl)/o L ym-i{tn) o r(s1)
2 n~—1i
X/ .../ g(s,.,y,,,_l(a,,))ds"ds,,_.l...ds,) x dt,.dt,._l...dtl,
0 V]

for m =1, 2, ..., converges in B to a unigue solution y of the equations (4.3)-(4.4).

Muicover,
m
]

Q
‘"ym_yllﬁ 1=

” Y1 — Yo ||, (4~3)
Qg
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form =1,2, .., where 0 < ao < 1 is a constant defined as above.

The details of the proof of this theorem is very close to that of the proof of Theorem
1 given in Section 3, with suitable modifications and hence we omit it here. Finally, we
note that the formulation of results similar to that of Theorems 1 and 3 for the equitionn
(4.1)-(4.2) and (4.5)-(4.6) are quite straight in view of the result given in Theorem 4 and

hence we do not discuss them here.

References

[1] A. Bielecki, Une remargue sur la méthod de Banach-Cacciopoli-Tikhonov dans la théorie du
équations différentielles ordinaires, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 4(1956)
261-264.

[2) L.S. Chen, On the oscillation of solution of eguation [r(t)z("’l)(t)] +830, pi(t)é (2 [g:(t)ly =0,
Ann. Math. Pura Appl. CXII (1977), 305-314.

[3] C. Corduneanu, Bielecki’s method in the theory of ‘integral equations, Ann. Univ. Mariae Curie
Sklodowska. Section A, 38(1984), 23-40.

(4] C. Corduneanu, Integral Equations and Applications, Cambridge Unlverslty Press, Cambridge 1991.

[5] A.L. Edelson and J.D. Schuur, Nonoscillatory solutions of (rz("))("):kf(t z)z = 0, Pacific J. Math.
109(1983), 3123-325.

(6] T. Kusano and H. Onose, An oscillation theorem for daﬁemnttal equations with deviating argument,
Proc. Japan Acad. 50(1974), 809-811.

[7]) J. Morchalo, On two-point bounary value problem for an integro-differential equation of higher order,
Fasciculi Mathematici, Nr. 9(1975), 77-85.

[8] B.G. Pachpatte, On a nonlinear Volterra integral-functional equation, Funkcialaj Ekacioj 26(1983),

[9] B.G. Pachpatte, On a nonlinear Volterra integrodifferential equation of Iugher ovder, Utlhtu Math-
ematica 27(1985), 97-109-

[10] B.G. Pachpatte, On certain nonlinear higher order differential equations, Chinese J. Math. 16(1988),
41-54.

(11} V.N. Sevelo and N.V. Vareh, On the oscillation of solutions of the equation (f(t)y™=V(1)) +
p(t)f(y(r(t))) = 0, Ukrain Matth. Z. 25(1973), 707-714.

[12) M. Venkova, On the boundedness of solutions of higher order differential equations, Arch. Math.
Scripta Fac. Sci. Nat. Ujep Brunensis 13(1977), 235-242.

MARATHWADA UNIVERSITY, DEPARTMENT OF MATHEMATICS, AURANGABAD 431 004 (MAHAR: i-
TRA), INDIA






J.E. PECARIC AND GH. TOADER

2. Some results of M.P. Drazin
The finite differences A* are dcfined for any sequence (a;)i»o recurrently by:
A%; = a;, Ala; = aiyy — a;, A¥a; = Al(Ak‘la;), k>2,:>0.

M.P. Drazin proved in [1] the following results:

i) For any sequence (a;)i>o and any Y holds:

2": ( r: ) vai=(=10) ( n ) (-1-yyA"aj, n20. (1)

i=0 =0 7
i) If:
(=) A™a; >0, for 0.<j<n,
with at least one inequality, then:

E(?)y"a;>0, for y>-1. (2)

i=0 \ ¢
i) If:
A"‘jaj >0, for 0<j<mn,
with at least one inequality, then:
(—1)”2": ( n ) y'a; >0, for y< -1 (3)
=0 L
3. A new proof
Let us remind the following notatlion:
W =i -1)...(0-k+1).

In (2] and {3] are given two identities which we can use for proving and geucralizing
(1): ,
n n 1 n
Y pai=) (p > i‘”p.-) Akag (1
=0 k=0 =k

and

n

n k
Z piai = Z ((;l—:l—k? Z(" - i)("-k)l’i) (—1) A, (5)
Ti=0

=0 k=0
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For p; = ( n ) ¥, (5) becomes:
i
n n k .
)> ( : ) v = (-1 Y (1) (Z ( o ) ( : ) u‘) avta,
i:20 L4 k=0 i=0 n—k i

=(-1)"), ( : ) (-1-y)A~*a,

k=0

ie. (1).

Similarly, for p; = ( "

1

n n ) n . .
Z )yl = Z n 1+ y)""‘A"ao.
=0 \ ¢ k=0 k

4, The main results

) y"", (4) gives:

Let r = (r¢)3=0» % € {0,1} be a given sequence. We define:
Kor = {(ai)peo : (-1)*A%a9 20, for 0<k<n},
and
Loy = {(a)jeo : (-1)*A"%a;, >0, for 0<k<n}.
Obviously K, ., and L,, are convex cones. Using (4) we have the following result:

Theorem 1. If pi(k =0,1,...,n) are real numbers such that:

n

i=k
then (p jizo € Ko
Also, using (5) we get:
Two a2, If the real numbers p, (k= 0,1,...,n) are such that:

k
(=1)retn-k E(n — i) Bp. >0, for 0<k<n,

=0

o (Vo € Ly
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ON THE CONTINUATION PRINCIPLE FOR NONEXPANSIVE M 4PS
RADU PRECUP

Abstract. In this note the continuation principle (nonlinear alternative) for nonexpan-
sive maps on Hilbert sp;u:es.(see [5]) is extended in two directions: 1) to the case of
uniformly convex Banach spaces; 2) for nonexpansive maps on a not necessarly ‘convex
set of a Hilbert space. In the proofs we use the Leray-Schauder continuation principle for
condensing maps [7], [9] (We can also use Granas’ continuation principle for contractions

on complete metric spaces [6]).

In [5], the following nonlinear alternative for nonexpansive maps was proved by

means of the Banach fixed point theorem.

Theorem A [5]. Let H be a Hilbert space and C the closed ball {z € H;|z|<c}. Then
each nonexpansive map T: C — H has at least one of the following properties.;

(a) T has a fized point.

(b) There is z € AC and X €)0,1] such that z = AT(z).

In what follows we shall prove the following two generalizations of Theorem A:

Theorem 1. Let E be an uniformly convez Banach space and U a bounded open convez
sl of E with 0 € U. Then each nonezpansive map T : U — E has at least onz of the

following properties:

{a} T has a fired point.
(h) There is z € QU and A €]0,1[ such that z = AT (z).

'Theorem 2. Let H be a Hilbert space and U a bounded open set of H (not necessarily
conver ) with 0 € U. Then cacﬁ nonezpansive map T : U — H has at least one of the
Jollowing properties:

ia) T hus a ficed point.

() There is ¢ € QU and X €0, 1] such that £ = AT (z).

7
ftecuived by the editors: December 11, 1995,
1991 Mathematics Subject Classification. 47HO09, 4TH10, 34G20.
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Recall that a Banach space E is said to be uniformly conver provided that for'
each € > 0 there exists § = d(¢) > 0 such that || z +y ||< 2(1 — §) for every z,y €k
satisfying | z l=|| y ||=1 and || z -y ||I> e.

Each uniformly-convex Banach space is reflexive (see, for example, [4]), and esd
Hilbert space is uniformly convex as follows from the parallelogram equation |z -y['4
+|z+y?>=2(z|* + ]y |*). For example, the spaces L?(2) with @ C R measurable
are uniformly convex for 1 < p < oo (see [4]). ‘

|

For the proofs we need some lemmas essentially due to Browder. ‘.

Lemma 1. Let E be an uniformly conver Banach space, D a bounded convez set of .
and T : D — E a nonezpansive map. Then, for each € > 0 there exists § = §(¢) > 0 suck ¥
that if zo,, € D, || 7o — T(xo) [|< § and || 21 — T(z1) ||< 8, it follows || z — T(z) <}
for any z of the form z = (1 — A)zo + Az, with X €]0,1].

For the proof see [2] or [8, Teorema 1.4.2]. t

Lemma 2. Let E be an uniformly conver Banach space, D a bounded closed convex sel of
Eand T : D = E a nonezpansive map. If (z,) C Dz, — xo weakly and z,—T(z,) -y

in norm, then o — T'(z0) = yo.

For the proof see the proof of Teorema 1:4.3 a) in [8}.

Proof of Theorem 1. Suppose (b) does not hold. Then, « # AT(:x) for all « ¢ JU
and A € [0,1[. For each fixed A €]0,1[, the map AT is a contraction and so, it is
con(iensing. Then, by the Leray-Schauder - untinuation principle for condensing nrap fsee
[7], [9]), there exists z) € U such that 2y—AT(x») = 0. Let us denote by z, such an ele ut
5 for A =1- 1/n , n € N*.Then, passing if necessarily to a subsequence, we may supj. se
that (z,) converges weakly to some zg. On the other hand, from x, — (1 —1/n)T'(x,) =0,
it follows that x, — T'(zn) — 0 in norm. Then, from Lemma 2, we get xy ~ T'(:ta) 0.
Thus, (a) holds and the proof is complete.

Revﬁark. If in particular, T(U) C U, then (b) in Theorem 1, clearly, does not hold.
In this case, conclusion (a) follows directly by the following theorem of Browder-Kirk:
If E is an uniformly conver Banach space, D is a bounded closed conver sct of I and
T : D — D is nonexpansive, then there exists € D with T'(z) = z.

In the case of Hilbert spaces, we may renounce at the assumption that U is convex

and also give a much simpler proof:
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Proof of Theorem 2. Also suppose (b) does not hold. The sequence (z,) obtained

in the proof of Theorem 1 satisfies:

(n =120 = (m = 1) 200, 2 — ) = (T(x0) — T(;,,.),z,. —Zp)— | Tp — Tm °<0

for all n,m > 1. Denote r, = (n — 1)~! and use the equality
2rnTn — rmZTmy Tn = Tm) = (Tn +Tm) | Tn — Tm I2 +(ra = rm)(] 2a l2 ~Tm Iz)

Then, we obtain -
0< (ra+7m) |20~ 2m IS (rn —rm)(| 2w |* - | za ).

Since (r,) is a decreasing sequence, we get that (| z, |) is an increasing sequence. In

addition, U being bounded, (| z, |) is also bounded and thus, convergent. Next, from
| 20 = 2m 'S (|@m P = | @0 ) = 7m)/(Ta + "),

it follows that (z,) is convergent. It is clear that its limit is a fixed point of T and the
.proof is complete.

Ezample. Let H be a Hilbert space and let us consider the boundary value problem

u’' = f(t,u,u') for0<t<1
flt,u,u)  for0 < )
u(0) =u(l)=0

where f : [0,1] x H? — H satisfies
(i) f(:,u,v) is measurable for any fixed u,v € H; there exist 1 < p < oo and
h € L>(0,1) such that f(-,0,0) € L?(0,1; H) and

| £(t, w1y 01) = f(t,uzyva) IS AE)(| ws — v | + | o1 —wa )

for all uy,ua,v;,v3 € H and a.e..t € {0,1). _

We look for a weak solution u € Wy*(0,1; H) N W*?(0,1; H) to problem (1).

Let G(t,s) be the Green function, i.e. G(t,s) = (1 —t)s for s < t and G(t,s) =
(1 — s)t for s > t. Also, denote by C the smallest coustant in the Wirtinger-Poincaré

inequality:
1 1 .
/ |u|”dt$C’/ | u'|P dt, u e WyP(0,1; H)
0 0

(see [1]).
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Theorem 8. Let (i) holds. Also assume

(ii) there is r > 0 such that
(u, f(t,u,v))+ v ?>0 for ae. te0,1]

and whenever | u |> r and (u,v) = 0;
/
(i) (C+ 1) fy {Jo (1Gult, ) | -h(s)) ds} " dt < 1.

Then (1) has at least one solution.
Proof. Problem (1) is equivalent with
u(t) = — /0 LGt o) (s u(s)ul(s) ds,  0<t<1.
We shall apply Theorem 1 to E = .Wol *(0,1; H) and T E-E,
T@0) = = [ Gl,9)1 (5,u(0) () do

By the uniform convexity of L?(0, 1; H), it easily follows that W,"*(0, L; H) endov.cd

1 1/p
= (/ |u'|ﬂdt) ,
0

with norm

is also uniformly convex.

Next we have
p

| T(u) - T(v) |P= /O /0 Gult, ) F(s,u(s),u(s)) — (s, 0(s), o'(5))) s el
1 1 , .
S/o {/o L Gi(t,8) | -h(s) (] u(s) —v(s) | + | u'(s) — v'(s) I)ds} dt <

rly

< [au@ w1+ 1w -vo ras [{ [ e aera) @

where 1/p + 1/¢q =1, by Hélder’s inequality.

Further, since

/01 (| u(s) = v(s) | + | w'(s) = v'(s) |)'ds <

< {([ | u(s) = v(s) P ds)l/p + (/: [ w'(8) = v'(8) | ,L,)'/p} ¢

SE@+ 1) [lu=v]P
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we obtain

I T(u)~T@) IS(C+1)B||lu-v]

where B = [fo { S Git,s) | h(a))ws}”' ] "

Thus, by (iii), T is nonexpansive.
Finally, by a standard reasoniement, from (ii), we get a number R > 0 such that | u ||l< R
for each u € Wy™*(0,1; H) solution to u = AT(u) for some A €]0, 1[. Therefore, (b) does
not hold and so T has a fixed point.
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STUDIA UNIV. "BABE§-BOLYAI", MATHEMATICA, Volume XLI, Number 3, September 1996

ON AN EXPONENTIAL TOTIENT FUNCTION
JOZSEF SANDOR

Abstract. It is introduced and studied an arithmetical function, analogous to the Euler

" function, for exponential divisors.

1. Introduction,

Let n > 1 be a positive integer, n = p{' ... p?" be its canonical form. The number
d=pi...p% is called an exponential divisor or e-divisor of n if b; la; (i=1,2,...,7).
This notion is due to Straus and Subbarao [11]. Let o.(n) be the sum of all e-divisors of
n and by convention o.(1) = 1. Analogously, let de(n) denote the number of exponential
divisors of n, with do(1) = 1. We call n e-perfect if s.(n) = 2n. In [11] it is proved
the non-existence of odd e-perfect numbers, with related results. For other results on
g-perfect numbers as well as e-superperfect numbers (i.e. satisfying o.(c.(n)) = 2n; for
such a terminology, see e.g. [8]), see [4). For density problems, e-perfect numbers not
divisible by 3, or e-multiperfect numbers, etc. see (3], [7], [2], [L]. For results on d.(n) we
quote e.q. [5].

2. The e-totient function
First we remark that:
Lemma 1. If d is a common ezponential divisor of a and b (a, b, d > 1) then a, b, d

can be written as a =2 ...pt, b=pit ... pbr, d = ph ... p%, where dy | (a1,01),...,d. |

(ar,b).
This Lemma permits the introduction of a notion of exponential-comprimality:

Definition 1. We say that a and b are exponentially coprime (or e-coprime), when for

each common e-divisor d of a and b in Lemma 1 we have d, =1,...,d, = 1.
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Definition 2. Let n > 1 and let .(n) denote the number of all 1 < a < n which are
e-comprime with n (in notation: (a,n). = 1). The function ¢.(n) will be called as the

e-totient function. Let ¢.(1) = 1, by convention.
Theorem 1. The function @.(n) is multiplicative and for 1 <n = Py ... p% we have

pe(n) = ¢(a1) ... p(ar) (1)
where ¢ denotes the classical FEuler totient function.
Proof. . Clearly ¢.(p*) = (k) since (a,p*). = 1 only when a = pf with (r,k) = 1. If
¢ is another prime power, then v.(q’) = ¢(s) and ¢.(p*q*) = p(k)p(s) = p(p*)pc(q).
Indeed, (a,p*¢*). = 1 iff a = p*k'q*s’ with (k',k) = 1 and (¢, s) = 1. It is immediate that
there are p(k)p(s) such a’s. The general case, when n is a product of r prime powers,
can be proved in a completely analogous way. This shows that
pe(mn) = p(m)pe(n) for (m,n)=1 (2

where (m,n) = 1 means that m and n are coprime in the usual sense. 0

Theorem 2. Let n =py'...pt > 1. Then

Zcp,(d) =a...a ]

djen
Proof. By definition d |. n iff d = pP'...p¢ with d; | a; (1 < i < 7). Thus, by us
ing (1)’ den (,Oe(d) = Edlldh...,drlﬂr ‘p(dl) i '(P(d") = (Zdl I“l (P(d‘ )) v (Ed, jas \'9(\“’)> =
a; ...a, by the well known Gauss identity 3, ¢(d) = k. g
Theorem 3. a) If n |, m, then

@e(n) | pe(m) (n,m > 1) {1
b) One has
cp,(n)d,(n) >a...4a, {5)

Proof. a) f n |, m, then m = pi'...pl" and n = pf*...p% with a; | b (1 < ¢ <),
Then since it is well known that for a; | b; we have p(a;) | ¢(b;), we conclude with
@e(n) = pla1) ... p(ar) | (br)...p(b,).

b) This follows by a) since p.(d) < pe(n) and 3, 1 = d.(n), the number of exponential

divisors of n. ]
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Theorem 4. If n=p}'...p% > 1 then
a) -
Pe(n)de(n) > ay...a, (6)

b) If all a; (1 < i < r) are odd, then

Pe(n)de(n) > o(ay)...0(a,) (N

where o (a) denotes the sum of ordinary divisors of a.

Proof. a) This is the same as (5), but here we obtain a new proof. By d.(n) = d(a,)...d(a,),
relation (1) and the inequality ¢(a)d(a) > a due to R. Sivaramakrishnan [10] implies at
once (6).

b) For odd a, in [9] it is proved that ¢(a)d(a) > o(a). Inequality (7) follows on the same
lines as (6). | | a

.Finally, we prove:

Theorem 5. The mazimal order of magnitude of log p.(n) is

log4 logn
5 loglogn

(8)

Proof. We need the following theorem due to Drodova and Freiman (See [6], p.125):

Let f (n) be a multiplicative function with the proper ty f(p*) = g(k) where p is
a prime, and g(k) depends only on k. Suppose g(k) > 1 and that there exists ko with
g(ko) > 1. Assume that for a certain number a > 0 one haslog g(k) = o(k'~*). Then the
mazimal order of magnitude of log f(n) is given by '—‘5-;"-.(2)- ﬁfo%;, whcrc'm is defined by
(log g(k))/k {< (log g(m))/m for k < m and < (log g(m))/m for k > m. }

In our case g(k) = tp(k) and logg(k) = logg(k) < evk ( ¢ > 0, constant),
thus @ = 1/2 can be chosen. We have ¢(k) < k-1 for k > 2. On the other hand, the
function f(z) = (& — 1) (z > 1) has a derivative f/(z) = (£ — In(z — 1)) /2. Since
ahoa 109 <1 +§ =1,3... and In4 = 1,38.-. > 1+% = 1,2...; the equation

A
r-1

to. Since 34 < 4¥/% clearly (k — 1)1/* < 4Y/5 = ((5))"/® and (k — 1)V/* < 4"/% for k >

5. This shows that m = 5 can be selected, an this finishes the proof of the theorem. O

- la(s — 1) = 0 has a single root ¢y € (3,4). Thus f(z) has an absolute maximum at
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STUDIA UNIV. “BABES-BOLYAI", MATHEMATICA, Volume XLI, Number 3, September 1996

ON THE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS
OF CERTAIN FOURTH ORDER NON-AUTONOMOUS
DIFFERENTIAL EQUATIONS

CEMIL TUNG

Abstract. Our aim in this paper is to present sufficient conditions, under which all

solutions of (1.1) are uniformly bounded and tend to zero an t — oo.

1. Introduction and statement of the result

We consider the equation
2 + a(t)p(z, &, E, £)3 + b(1) (2, £, 8) + c(t)g(=, %) + d(t)h(z) = p(t, 2, &,4,8) (L.1)

where a, b, ¢,d, ¢ , f, g, b and p are continuous functions for the arguments dis-
played explicity and the dots as usual indicate differentiation with respect to t. We
shall henceforth suppose that the functions a, 4, ¢, d are positive and differentiable
in R* = [0,00) and that the derivatives Z¢(z,y,z2,u), %tp(m,y, z,u), ;;u(,o(a:, Y, z,u),
= f(z,y,2), -a%f(a:, ¥,2), £9(z,), %g(z,y) and h'(z) exists and are continuous for all
7, y, z and u. Furthermore, it will be assumed that all functions and solutions are real.
Special cases of the differential equation (1.1) have been treated in Abou-El-Ela [1] and
(2], Hara (3], Tung [4] and others. The purpose of the paper is to prove the following:

Theorem. Futher to the'fundamental assumptionona, b, ¢, d, p , f, g, h'and p, suppose
that:

(I) A>a(t)>ao>0, B2b(t)>by>0, C>clt)>co>0, d>d(t) >do >0, for
t€ R,
(1) (z,y,z,u4) > a; >0 forall z, y, zand u; o3 > 0,a4 > 0.
(1) g(z,0) =0 and %g(m,y) 2 as>0 for all z and y.

Received by the editors: November 28, 1998,
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(IV) There is a finite constant 8o > 0 such that
aoboco ajazas — C’a,-,-a%-g(z.y) - A'Dayap(z,y,2,0) 2 &
forall z, y and 2.
(V) 0< &9(z,y) - '-(%‘ﬂ <é < a-}%‘a'ﬁ“ﬂ forallz and y # 0.

- (VI) (i’) folﬂo(zayva )d¢ ~ o(2,y,2,0) < & < ]:{:%:‘!:; for all z, y and 2 # 0.

(V”) y&?(mv%z’o 0, z*‘l’ z,9,2,0) < oyblﬁo (z,y,2,0) < 0 and zf;gp(z,y.z,l))
for all 2, y and z.

(vini) f(,y,0) =0, Oyf( ¥, %) S 0¢yfo' %f(z,y,C)dC <0 for all z, y and 2, and
y ' 3
0 S f(z’zy’ Z) —an < 50':303

1= BDa}
for all z, y and 2z # 0, where 6y s a positit}e constant such that
- . 1 D a; 60 Ceas 2a, Dao
fo<& = min [aoal’ coas’ 4a9coa1 a3y’ 4DayAg \ Caoayclal b)),
Aaoa1 260 ‘ !
4/ (Aa?,coa?as - 62)] (14
with
_ [ 8oboconaa | aobocoazas
Ao - ( o + AD04 ) ’
(IX) [ ~g(z ,y] < ﬂini(%;v)ﬂ for all z and y, and ‘ A ”g(z,n)dn < "—3-(3-‘—1“ Jordl
zand y # 0.
(X) k(0) = 0, h(z)sgnz > O(z # 0), H(z) = f; h(£)dE — o0 as |z |+ ov and
2 2
0504_,,/(3)5%%
for all z
(XI) za%cp(x,y,z,u) + Azyé%go(:c,y,z,d) >0 for all 7, y, 2z and u, where
A=D e (1Y)
CoQx3

(XI) [°v0(t)dt < oo, d'(t) = oo as t = oo, where Yo(t) =| a'(t) | +b4+'(¢)+ | ()]

4d/() |, be+'(t) = maxb/(t),0.
(XTI | p(t,2,3,2,8) |< po(d) + pa(t) [H(z) + 37 + 22 + 621} + A2 + 22+ )}, whore
A, § are cosnstants such that 0 < 8§ < 1,A > 0 and p,(t), p2(t) are non-negalice

continuous functions satisfying
(=
/ pi(t)dt < oo(i = 1,2). (1.4)
o
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FOURTY ORDER NON-AUTONOMOUS DIFFERENTIAL EQUATIONS

If A is sufficiently small, then every solution z(t) of (1.1) is uniformly bounded
and satisfies

z(t) = 0,z(t) = 0,%(t) = 0,(2) 20 as t— oo, (1.5)

Remark 1. When we take a(t) = b(t) = ¢(t) = d(t) = 1, and ¢(z,%,%,3) =
Ni(e,&), and f(z,2,2) = f2(%), and g(z, %) = f3(z), and h(z) = a4z and finally p(¢, z, , £, %)
0, the conditions (I) - (XIIT) of the theorem are reduced to those of Abou-El-Ela [1].

Remark 2. When ¢(z,2,%,8) = f(&), f(z,2,8) = ¢(z,%) and g(z,&) depends
only on %, then the conditions (I) - (XIII) become similar to those of Hara (3].

Remark 3. When o(z, &, #,%) = (2, £, %), and g(z,%) depends 6nly on &, then
the conditions (I) - (XIII) of the theorem are reduced to Tung [4]

2. The Function Vy(t,z,y, z,u)
“quation (1.1) has an equivalent system
T =y Y=z Zi=u (2.1)
i = —a(t)p(z,y 2, u)u—b(t)f(2,y, 2) - c(t)g(z,y) — d(t)h(z) + p(t, 2, 4, 2, u).

The main tool in the theorem is the differentiable function V, = Vo(¢,2,y,2,u) defined
by:

z v
2o = aadt) [ hE)de +2(t) [ ofe,min+

[1] 0

+ 28000) [ fo0. 0+ 20(0) [ Cola,,6,0)¢

+ 20y [ p(e,u, (00 + [Aronb(t) ~ Arad O~ (22)
o

- A222 + A1u2 + 2d(t)yh($)

+ 2A1d(t)zh('z) + 20, c(t)zg(z,y) + 205yu + 2zu + k.

where
1

GgQy

A= + ¢, (23)

A, heing the constant defined by (1.3) and k. is a positive constant to be determined later
in the proof.

First discuss somme important inequalities.
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Let ®, be the function defined by

(4) f3 o(2,,¢,0)d(, z#0

Ql(z) Y, 2’0) = (24)
¥(z,¥,0,0), z=0.
Then
®(z,y,2,0) > a; >0 forall- z,y and 2z, (2.5)
®y(z,y,2,0) — ¢(z,9,2,00<8; foral z,y and 2 (2.6)
from (II) and (VI).
Further we define
| =)
' y#0
Pa(z,y)=4¢ ¥ (2.7)
'a%g(z’o)’ y=0
Now

®3(z,y) > a3 for all z and y, (2.8)

0< %g(z,y) — ®3(z,y) <6 forallzandy (2-9)

by using (III) and (V). By using (1.3), (2.3), (I) and (IV) we have

/]
agb(t) — Alc(t)-a—yg(a:, y) — Aqa(t)o(z,y,2,0) > & —¢eloforall z,y,z and all t

QoCo1 O3
(2.10)
Similarly, we can easily obtain
Ay - ———i———>sf 11 and allt € RY (2.11
' aD®i(z,y,2,0) — o HFAEE i
ayD
. - > +. By
Ay D y) > € forall z,yand allt € R (2.12)
Since ®,(z,y, z,0) = p(z,y,%,0),Z = 02,0 < 0 < 1, we have
azb(t) — A c(t)—a— (z,y) — D2a(t)y( 2,0) > 6 0 ~ €A (2.13)
2 1 6yg 'Y 2 iz, y, =2, = oaocoa,a;, [SYAY)) .

for all z,y,z and all € R*; by (2.10). The following two lemmas are essential for the

actual proof of the theorem.
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Lemma 1. Subject to the assumptions (I) - (XI) of the theorem, there are positive con-
stants D, and D; such that

Dy [Hz)+y'+ 22+ v’ + k] <Vo < D [H(z) + y* + 2% + u’ + &) (2.14)

for all z,y,z and u

Proof. Since f(z,y,0) = 0 and L(z_;hfl > a(z #0), it is clear that

2A1b(t) /z f(.’t,vy, C)dc > Alazb(t)zz.
0

Then we have

20 > [2A2d(t) /0‘ h(£)d¢ - c((iz—t)(%):—(zf—y))] ¥

[Azazb(t) — Araud(t) — Ada(t)®1(z,y,2,0)] ¥* +

2(t) / " gz, m)dn — () Bs(z, ) +

-+

+

-+

[Araab(t) ~ Az — Ale(t)®s(z,y)] 2° + 2a(i) / " Cp(e,9,¢, 0)dC ~

, R B

— a(t)z°®(z,y,2,0) + [Al - a(t)®i(z,y, 2,0)
ot) [dt)
4)3(:1:, y) c(t)

a(t) u 2
®,(2,9,2,0) |a(t) ® k.
®,(z,y,2,0) [a(t)+z°‘($’y’z’°)+A2y x(z,y,z,O)] +

|

h(z) + yOa(e,y) + Ards(s, y)] 4

By using (2.11) we find
A - ! u? > eul
YT a(t)®y(z,y,2,0)) T
Thus it follows that

2Wo2Vi+Va+Vat+eu’ +k, (2.15)
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where
Vi = 28 [ e Gl
‘/2 = [Agagb(t) - A104d(t) - Aga(t)Ql(z, Y, 2, 0)] y’ + 26(‘) ./ov g(.‘l‘, T’)d’] -
- c(t)y2¢3(31 y),
Va = [Ajab(t) — Az — Ale(t)®s(z,y)] 2° + 2a(t)/o Co(z,y,¢,0)d( -
- a(t)zzél(z’y)z»o)'

The function V), can be estimated as in [4]. In fact, the estimates there show that

Vi 2edo [ (s
From (1.3), (2.3), (I), (IIT) and (2.13) we find

y Da 0
: _ —_ A2 4 _
Agagb(t) A104d(t) A,a(t)@l(:v, Y2, 0) > o0t (JoaoCoalaa EA()) .

Since yg(z,y) = [y 9(z,n)dn + [} 9,(z,n)dn, then
’ dn — ] > —éﬁ 2 b
2(t) A g(z,n)dn — c(t)y'®s(z,y) 2 { -~ | ¥, by (2.9).

Therefore

Va2 [Da‘ (60 0 —er) - C—J‘] y’ > —f— (M— - 6,) y*, by (1.2,

3
CoQ3 \  @oCo1 03 2 Capa)cio?

Also, using (1.3), (2.3), (I), (II), (2.9) and (2,10) we get

A;agb(t) - Az - A?c(t)@a(z, y) Al [agb(t) - Alc(t)(bg(:t, y) - A-,a(t)fp(.r, y, o0

+ Aé,[Ala(t)cp(z, y,z,O) - 1] >

> A [agb(t) - Alc(t)tbg(:c,y) - Aza(t)go(;l“g, ;,Uij

(@) bt
Aoy QoCox1(x3

o) [ pte1.6.0 - ute 0] 2 - () 2 by 26

Therefore

\Y

Further

A 260 2 p
Va2 2 (Aagcoafaa 62) 22, by (1.2).
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+ Mrclthysgale, ) + Selt)s oo ) + ey [ Lole,man +
d(t)yzh’(l‘) + Ald(t)yzh’(z) - a(t) [()o(z’ Y, 2, “) - tp(:t, Y, 2, 0)] wu-
Aza(t) (2, y, 2,u) - ¢(2,y,2,0)] yu + a(t)y /o ¢ -c%sé(r,y, ¢,0)d( +

<+

29
+ Aza(t)y2/ 5;?(3’ y’ C’ O)dC + (AQy + z + Alu)P(t, z) y, zy u) + %
)
From (VII) and ( VIII) it follows that
[ ot 0 <0
o ay rJ — ) ?
[ gt c0d <0, [ e ot 0 <o
y o ax¢ ’y’ b -— b z 0 ay¢ ’y, ) P 3
z~/0 yaiy‘lo(l"ya ¢, O)d( <0and

-
/(; %‘)o(m’ Y, C) O)dC < 0.

Then we find
d ) Ve
PACES —(Va+Va+Ve+ Vo + Vs + Vo) + (Agy + 2+ Ayu)p(t, z,y,2,u) + 20 &)
where

Ve = Aaclthyole,s) - audt - Arclyegates) = oty [ grotenidn
W= [oublt) - Al gha(en)] 2 - Auat0: [ oo 0N

Vo = [Ara(t)p(,y,2,u) - 1],

Vi = b(t)f(2,9,2) — asb(t)2? + Aab(t)yf(2,4,2) — aahab(t)yz,

Y = adt? - dOW@Y + Aiadyz - bdd @)y,

Vo = a(t)lp(e,% 2 u) — 9(2, 4,2, 0)) 20 + Aaa(®) (2, ,2,8) — 9(2,5,2,0) .

The functions V; and V3 are the same as in {4]. The estimates for V;, Vg there give

that

Vz

v

—(60003)!/27 ("‘)IB)

Vi > —(eAg)7 (2.19)
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By using (1), (2.8) and (2.12) we obtain
Ve 2 ds(eny) [82 - 2] - vt o)~ oty [ amsteniin 2
> (ecwasly’ = Arclt)yezale,s) oty [ zmole,ndn (2.20)
Combining (2.18) and (2.20) we . have

17} v .
Vi+ Vo 2 (€ —¢eo)coasy® ~ Ax«:(t)yz—a 9(z,y) — c(t)y / 9 g(z,n)dn >
z o Oz

' . 8 1 v o

> (€ — €o)coasy® — AnC(t)yfgg(w,y) —c(t) [; /0 ggg(m,fl)dn] ¥ >
3 s}

2 - €o0)co3y” — Are(t)yz5—g(z,y) =

= L eenony® + K- s 40

= 3le = codwany” + 506 = ea)as [47 = Sy g(a,p)] >
1 , a2 [ o NE

> e — 2 __¢\V)y 19 2
z 2(5 60)cﬂa3y (E-EO)QSCO [axg(z'ry)] z 2

1
> —(e — 2 _ 8§ ———— 2
2 2(5 €0)Co03Y ( 0 da0c00, 3) z

by using (I}, (IX) and (2.3) and (1.2).

Vs = [agb(t) - A;c(t)%g(z, y) — Aga(t)Ol(a:,y,z,O)] 22> (60

QoCor1 (3

- SAo) 22,

by (2.13) In case we use (I), (II) and (2.3), we find
Ve = [Ara(t)p(z,y, 2,u) — 1] u? > capoyu?
From (XI) for u # 0 we obtain
Vo = a(t) [z0u(2,y, 2,0u) + S2ypu(z, v, 2,0u)|u> 20,0 <0< 1

but Vo = 0 when u = 0. Hence Vg > 0 for all z, y, z and u. On gathering all these
estimates into (2.17) we deduce that

. 1 0
Vo < —5(6 — €o)coaay® — (5

o
4apcoaaz

) 2} — eapaqu® +
, av.
+ (A +z+AMu)p(t,z,y,z,u) + —m—",
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since

£ < §p———-
®4agcoa;a3o

by {i.2}. From (2.2) we have

% = a'(t) /C‘P(-’t,y,C,O)dC+A2yetg(p(z,y,(,o)d(]
L/ O

v 80 [0 [ 0+ (803 o] + ) | [ otemiin + Buzgta

. - )
+ d() {Az‘/ h(&)dE - (AIE) gy’ + h(z)y + A,h(m)z] .
[+] .
On the basis of the proof of [4, Lemma 2] it can be shown
Ve

St S Dol () |+ 4+'()+ | @) | + 14D ] [H(z) +y* + 2% + v*] < Dol

where D, = Dg%l. Hence can find a positive D such that
Vo < —2D5(y* + 22 + u?) + Aoy + 2 + Au)p(t,y, 2,u) + DivoVo.
Let Dy = max Az, 1,A;. We have
Vo < —-2Ds(y* + 2%+ u) + V3De(y? + 22 + u®)F | p(t, 2,9, 2,u) | +Dibi
< ~2D5(y? + 22 + u?) + V3Dg(y? + 2 + ud)}
{px(t) +p(t) [H(z)+y* + 2%+ u’]* + AP+ + u’)%} + Dy
In that case A can be fixed as follovs A = 7?5:. With this limitation on A we have
Vo < —Ds(y?+2*+ ﬁ’) +V3Ds(y? + 2* + u?)}
{Pl(t) +pa(t) [H(z) +¥* + 2* + 47 %} + DivoVo
Since [H{z) +y* + < + uz]% <1+{H@)+y*+2+ u’]% , it is clear that
W < ~ba(y’ + 2% +u?) + V3Ds(y® + 2 + u)} {pi(t) + (1))
+ V3Depa(t) [H(z) + 4 + 5 + 4] + Derole.

3. Completion of the proof
See [4].
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STUDIA UNIV. “BABE§-BOLYAl", MATHEMATICA, Vol XLI, Number 3, September 1990

CORRECTION: LA T-TOPOLOGIE D'UN GROUPE ABELIEN

GRIGORE CALUGAREANU

Abstract. In the paper published in the same journal, vol.40, no.4, 1995, p.5-12 the
Proposition 1 is not true.

1. Introduction

Dans Zbl.Math. 857.20038, Adolf Mader remarque que la Proposition 1 qui suit est

incorrecte, la topologie p-adique étant un contreexample. Voici la Proposition incriminée:

Proposition 1. "Si pour une topologie fonctorielle T, la classe discréte C(T') est une
classe Sérre alors un sous-groupe B de A est T-concordant ssi A/B € C(T).

Démonstration. Premiérement, si B est T-concordant, de Uy C B NU,4 on déduit
-que pour chaque U < B, B/U € C implique A/U € C. C étant fermée aux sous-groupes,
on a 0 € C donc on peut prendre plus haut U = B. Donc A/B € C.
Réciproquement,....... o

Cas particulier. B est T-concordant ssi A/B est un groupe de torsion.”

2. Correction

Un sousgroupe est T'-concordaat [1] si sa topologie de sous-espace de T(A) = AUy}
coincide avec la topologie fonctorielle de B. Donc B est T-concordant ssi Up = BNU,.

En effet, pour établir que p(;ur un sousgroupe T-concordant B de. A, A/B € C a
lieu, le raisonement fait est négligent: B € Ug = B NU, implique seulement ’existence
d'un sousgroupe C, tel que B < C < Aet A/C € C(T), mais qui peut étre different de
B. '

D’ailleurs 0 est evidemment un sousgroupe T-concordant dans r’importe quel
groupe A. Si A est un groupe sans-torsion et T est la topologie p-adique (ou la 7-
topologie), A/0 € C(T) est clairement faux.
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