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STUDIA UNIV. “BABES-BOLYAI", MATHEMATICA, Volume XLI, Number 2, June 1996

PROFESSOR GHEORGHE COMAN AT HIS 60™ ANNIVERSARY

D.D. STANCU

Professor Gheorghe Coman is the chief of the Chair of Numerical and Statisticai
Calculus, Faculty of Mathematics and Informatics, University Babes-Bolyai, Cluj-Napoca,
Romania. He was born on January 24, 1936 in Grindeni-Mureg, Romania. After attending
the primary school in his native village, he entered the secondary school in Ludug -Murey.
and after 3 years moved to Cluj-Napoca, where he obtained the school certificate. In
the period 1956-1961 he studied at the Faculty of Mathematics and Physics, University
of Cluj. In 1970 received his doctoral degree in mathematics under the direction of the
distinguished Romanian mathematician D.V.lonescu. After his graduation, in 196}, he
began his academic career at the University of Cluj as an assistant (1961-1970), lecture:
(1970-1977), associate professor (1977-1990) and since 1990 he is full professor.

During his teaching career, professor Coma.h has given courses on numericai anal
ysis, complexity of algorithms, optimal numerical methods, programming languages. ap
proximation of functions of several variables.

Since 1975 he is a member of American Mathematical Society and a reviewer al
Mathematical Reviews. He was visiting at the University of Moscow, Russia (1965) aud
at the University of Wisconsin, Madison, Wisconsin, USA (1973-1974).

Between 1988 and 1996 he was the dean of the Faculty of Mathenatics and lutor
matics. He is a member of the editorial board of the jurnals: Studia Univ. Babey Bolyal,
Mathematica (Cluj), Revue d’analyse numérique et la théorie de approximation. S«
1990 professor Gheorghe Coman became a scientific guide of doctorands.

Profest r Gheorghe Coman has obtained important scientific results in varicis
areas of the following domains (see “List of publications, Scientific papers”): numerical
integration of functions of one and several variables, with emphasis on optimal forndas
with regard to the error and efficiency (3-19, 21 , 27, 29. 30, 39, 56, 59, 73}, the approxi
mation of functions ( 20, 22-26, 28, 31, 32, 34, 38, 42, 44, 46, 19, 53, 57, 58, 61, 62, (55458,
71, 72, 77, 18, 79, 80, 82-85), the complexity of the numerical methods (33, 36, 37, 41,
47, 51, 63), parallel numerical methods (54, 55, 60, 64, 70).



D.D. STANCU

We join the members of the family of Professor Gheorghe Coman, his colleagues
and students, congratulating him on his 60** anniversary, wishing him good health and
happiness. May he be granted with many more years with an active life and with new

satisfactions in his scientific research work.
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PUBLICATIONS OF PROFESSOR GHEORGHE COMAN
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. O nomograma optima dintr-o clasi de nomograme cu punct aliniate, de ordinul

3, Studia Univ. "Babey-Bolyai” 1(1965), 13-22 (in colab. cu V.Groze).

. Despre transformarea proiectivid a nomogramei cu stari rectilinii, Studia Univ.

"Babeg-Bolyai”, 1(1967), 15-23 (in colab. cu V.Groze si B.Orban).
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2(1968), 51-54.
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Studia Univ. "Babes-Bolyai”, 2(1969) 53-58.
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253-264.
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gi cercet. matematice, 22, 4(1970) 551-561.

. Asupra unor formule optimale de cuadraturd , Studia Univ. "Babeyg-Bolyai™.

2(1970). 39-54.

. Optimal cubature formulas for certain classes of functions, Anal. Univ. "At1.Cuza”

16, 2(1970), 345-356 (in colab. cu G.Micula).

. Optimal cubature formulas, Rendiconti di Mat. 4, 1971, 1-9.
10.

Formule practice de cuadraturi , optimale pentru o clasi de functii, Studia
Univ. "Baheg-Bolyai”, 1(1971), 73-79. /
Kubaturno-optimalnih formuiah dlia nekotorih klasov funktii, Revue Rowmn. de
Math. Pures et Appl., 17, 7(1972), i025-1036.

Aplicatii ai functiilor spline la construirea formulelor optimale de cuadratura,
Studii si cerc. matematice 24, 3(1972), 329-334.

Asupra unor formule practice de cuadraturd , Studia Umiv. "DBabey-Bolyai”.
1(1972), 61-65.

Monosplines and optimal quadrature formulas, Revue Rouni. de Math. Pures

et Appl.. 17, 9(1972), 1323-1327.

. Formule de cuadratura de tip Sard, Studia Univ. "Babey-Bolyai™, 2019723,

73-77.
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Monosplines and optimal quadrature formulas. Rendiconti di Mat. 5, 1972,
1-11.

Monospline generalizate gi formule optimale de cuadraturd , Studii si cerc.
matem., 25, 4(1973), 295-303.

Two dimensional monosplines and optimal cubatures formulas, Studia Univ.
" Babeg-Bolyai”, 1(1973), 41-53.

Formule practice de cubaturd optimale, Rev. Anal. numer. et teor. aprox.
Bivariate spline approximation, Studia Univ., "Babeg-Bolyai”, 1(1974), 59-64.
Asupra unor monospline bidimensionale de abatere minimi in L, §i a unor
formule optimale de cubaturz“g , Studii gi cerc. mat., 26, 3(1974), 367-374 (in
colab. cu I.Gansci).

Multivariate approximation schemes and the approximation of linear function-
als, Mathematica, 16(39), 2(1974), 229-249.

On the approximation of multivariate functions, T.S. Report Univ. of Wiscon.
sin, Madison, SUA, 1974.

Multivariate approximation schemes and the approximation of linear function
als, T.S. Report, Univ. of Wisconsin, Madison, SUA, 1974.

Blending approximation schemes on triangle, Lecture Notes s Math. Springer
Verlag, 1976 (in colab. cu K.Bohmer).

Smooth interpolation schemes in triangles with error bounds, Mathematica,
18(41), 1(1976), 15-27.

Minimal monosplines in L; and optimal cubature formulas, L’analyse wanerigue
et théorie de 'approximation, 7(1978), 147-155.

On some bivariate spline operators. L’analyse nurnérique et la théorie de i appio
ximation, 8(1979), 143-153 (in colab. cu P.Blaga).

On some practical quadrature and cubature formulas, Studia Univ. = Baie
Bolyai”, 25, 3(1980), 40-47.

Asupra unor formule de interpolare de tip Hemite cu aplicagh la invepr.
numeric a functiilor, Studii gi cerc. mat., 32(1980), 291-307.

On some approximation schemes on iriangle, Mathematica, 22(45) (1950},

235.
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Multivariate interpolation formulas of Birkoff type, Studia Univ. "Babeg-Bolyai”
26(1981), 14-22 (in colab. cu P.Blaga).

. The complexity of the quadrature formulas, Mathematica, 23(48)(1981), 183-

192.

. Aproximare blending, cu aplicatii in constructii, Buletinul Ins. Politehnic Cluj-

Napoca, 24, 1981, 35-40 (in colab. cu I.Gansc).

. On some practical methodes for numerical solution of nonlinear equations.

L’analyse numerique et la theorie de I’approximation, 11(1982).

. Asupra complexitdtii unor formule de cuadratura, in volumul ”Seminarul itin-

erant de ecuatii functionale, aproximare gi convexitate”, 1982.
Asupra complexitatii unor algoritmi immerici, INFO-Iasi, 1983, Lucrarile celui

de al IV-lea colocviu de informaticd, 111-118.

. An application of blending interpolation, Lucririle Seminarului itinerant de

Ecuatii functionale, aproximare gi convexitate, Preprint nr. 2, 1983, 29-34.
The optimal quadrature formulas from efficiency point of view, Mathematica,
26(49), 1984, 101-108.

Solution of boundary-value problems by interpolating procedure, Research Sem-
inaries, Preprint nr. 6, 1984, 27-32.

On the complexity of some numerical algorithins. Research Serminaries, Preprint
or. 4, 1984, 1-33.

Some practical applications of blending approximation, Proceedings of the Col-
loquium on approximation and optimization, Cluj-Napoca,1984.

Algoritmi optimali, INFO-Iasi, 1985, 163-177.

Homogeneous multivariate approximation formula with applications in numer-
ical integration, Research Seminaries, Preprint nr. 4, 1985, 46-62.

Some effic.ant methods for nonlinear equations, Research Seminaries, Preprint
nr. 6, 1985.

On blending approximation and cubature formulas, Bul. St. Inst. Politehnic
Cluj-Napoca (in colab. cu I.Gansca).

The complexity of algorithm, Conferinta de ccuatii diferentiale i cu derivate

pargiale, Cluj-Napoca, 1985, Preprint nr. 3.
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Asupra optimalititii algoritmilor, Simpozionul *Informatica gi aplicatiile sale”,
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Preprint nr. 8, 1986.
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On some interpolation procedure of scattered data, Studia Univ. "Babes-

Bolyai”, Cluj, ser. Math., 35, 2, 1990, 90-98 (in colab. cu L. Témbulea).

.- On the shape of Bezier surfaces, Studia Univ. "Babeg-Bolyai”, Cluj, 35, 8, 1990,

37-42 (in colab. cu I.Gansci gi L. Tambulea).

On Bezier curves, "Babe -Bolyai” University, Faculty of Mathematics, Research
Seminars, Preprint nr. 6, 1990.
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. New interpolation procedure on triangles, Studia Univ. Babes-Bolyai, ser.
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FORMULES OPTIMALES DE QUADRATURE ATTACHE A LA
FORMULE DE QUADRATURE DU TRAPEZE
ET A LA FORMULE DE SIMPSON

DUMITRU ACU

Dedicated to Prof. Gheorghe Coman at his 60'* anniversary
Abstract. In the paper one obtains optimal quadrature formulas attached to the trape-
zoid’s formula and to the Simpson’s formula.
1. Introduction

Soit I[0,1] la classe des fonctions f définies sur l’intervztle‘[O,l] et intégrable dans
le sens de Lebesgue sur cet intervalle.

On considére la formule de quadrature

1 n-1
[ Heyiz = 3 augtai) 400 (1)
0 =0
ayant I’évaluation exacte pour le reste
7= sup |1(f)]- (2)
reJdfo,)

On se pose le probléme d’obtenir une formule de quadrature du type:

1 n—1 m~1
/O @)z =3 Af(s) + Y Biuf(un) + Bm(f) 3)
=0 k=0

de sorte qu’elle soit optimale sur [0,1] ¢’est & dire de déterminer les coefficients By et les

noeuds:
O0<yo<y <. ... <Ym—1 <1
de telle maniere que:

RO, = sup |R%.(0) )
Jello,1]

soit minime.

Iteceived by the editors: March 18, 1996.
1991 Mathematics Subject Classsfication. 66030, 65033
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FORMULES OPTIMALES DE QUADRATURE
avec

© _ ol M
T = sup |rn (f)l = . /a° (6)
1eWiV Ly (M;0,) 2nV3

Puis nous allons considérer n = m et les noeuds yi, k = 0,m — 1, qui ont la représentation

suivante:
Yo=an=h+0a...,Ypu1 =Tp1 +a,0<a<z, (M

Le probléme posé ci-dessus revient dans le cas ol on détermine les coefficients
By, k =0,n — 1, de sorte que:

n—1

[ s@aa =2 [gfm Y, (;)} 3 B RO

=1

0<a< %, soit optimale sur la classe Wél)Lg(M; 0,1).

Si on agit comme dans (1) on trouve:

1 3
BO@= s (R0 =m ([ K) 9)
FewV La(M;0,1) 0
ou
K(it)=1-t ln—l(i t) Ly niiB(y )
=1-t-- - — ——(1-t)y - ye — 1)+
nt'=l n + 2n k=0
avec

0, pouru<0

Uy =
1, pouru>0.

En utilisant I = fol K?(t)dt, alors 5% =0,/ =0,n — 1, et on obtient le systéme

i n—1

L
Y Bantw ) Bi= (;—a).t-o,n—l
k=0 k=141

qui admet la solution unique

NI R

Bo=%(l_a)v Bi=By=..=B,,=0. (10)

n

Avec (10) on trouve:

1

I= 12n?

[1 - .3(1 — na)’al

1






FORMULES OPTIMALES DE QUADRATURE

3. L’optimisation de la formule de Simpson

Pour f € W{"Ly(M;0,1) la formule de Simpson a la forme ((6]):

/ f(z)dz——[4zf(2’ )+2§f( )+f(1)]+n,.+.(f) (15)

i=1

avec

1‘2,.+1 (WOLg(M 0 1)) =—4/5— ;

On se propose de trouver la formule optimale de quadrature attachée a la formule

(15) sur la classe W&:(M ;0,1) qui a la forme

[ 1@y = & [“zf (%) ‘*iif ('i')'”(l)] '

2n
+ Z Brf(yx) + renta(f,a) (16)
k=1
ol
2k — —
Yk = 1+a’k=l,n (]7)
2n ’

a étant un nombre réel fixé de Vinterval (0, o

Comme dans le paragraphe 2, on demontre:

Théoréme 4. La formule optimale de quadrature du type (16) attachée a la formule de

Simpson (15) sur la classe fonctions chi), est

jolf(z)dz=6—ln—[4gf(2i )-{ 22;’( )+f(1)] +($_ga')f(a)+

i=1

Ae-w) SO ) ) ()

1 1 2n -1
-|--3— (a - '4;) f( on + G) + R2n+l(f)a)’

avec l’évaluation optimale du reste donnée par:

Ranss (W (M;0,1);0) = MVT,



DUMITRU ACU

I——L- 5_1 + 1 + 1 5a\ fa 1
= 36n? n dn m 6\ " 1m/)t

+ a__l_ _2_4n—3+2n—l €>0 1
4n 6 24n a8n? | ¢ "o (18

Théoréeme 5. De toutes les formules de quadrature

/olf(m)d:c [42]’(2' )+zzf()+m]+(,f(0)+

n
+Y Bf (k) + Ransi(f0),

k=1

avec yi, k = 1,2n, données par (17), 0 < a < 1/2n la formule optimale attachée i la

formule de Simpson sur la classe (l)(M 0,1) est:

folf(z)d:cz 6_1n_ [4gf(2i;l) +2:Zf(%) +f(1)] +(l_i(7l_l _a) F0)
() B 2

n\ i —1 1 2n —
3 (e i (o) (55 o) oo

=2

avec ’évaluation optimale du reste donnée par
Rangr (W(M;0,1);0) = Ranys (ME])(M;0,1);
2n+1 [4( s Yy );-a 2n+2 oL.)( 1 Vy ))a .

Remarque 2. Pour a = 1/4n les théorémes 4 et 5 conduisent aux résultats donnés

par M.Levin [6].
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-

ON THE MONOTONICITY OF A SEQUENCE
OF STANCU-BERNSTEIN TYPE OPERATORS

OCTAVIAN AGRATINI

Dedicated to Prof. Gheorghe Coman at his 60'* anniversary

Abstract. One makes a study of a sequence of Bernstein type operators, introduced
and studied in [9]. These are depending on two parameters a and b, 0 < a < b. First,
one deduces a representations by divided differences for the difference of two consecutive
terms of the sequence of polynomials obtained by applting these operators to a function
f € C[0,1]. Using this representation, one enounces several sufficient conditions for the

monotony of the sequence of Stancu-Bernstein polynoinials.

1. Introduction

In 1969 D.D.Stancu [9] considered and studied the following generalization of the

Bernstein polynomial:

(St f)(z) = D Purl=)f (/E it a) , (1)

k=0 n+ b
where
n k -k ¢
Por(z) = A z°(1 — x) {2)

and a,b are real parameters, independent of n, such that 0 < ¢ < b. This is an interpola-
tory type polynomial characterized by the fact that it uses equally spaced nodes «j = %ﬁ
(k=0,1,...,n). If ab # 0 and a # b then it does not cgincide at any node with the function
fiifa=0and " # 0 then it coincides with f at zo = 0, while if a = b # 0 then it cvincides
with f at 2, = 1. When a = % = 0 one obtains the classical Bernstein polynomial.

It was proved that for f € (|0, 1] the sequence of the polynomials (1) converges

uniformly to f on [0,1]. Then the corresponding order of approximation:was evaluated

by using the modulus of confMity of f; also there were deduced expressions for the

Received by ihe editors. November 10, 1996,
199) Mathematics Subject Classsficatiun. 41A36, 36D15.
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remainder term of the approximation foriaula

f(z) = (S2*1) (2) + (Rt 1) (=)

and, finally, the author presented a theorem of Voronovskaja type giving an asymptotic
estimation for the remainder term. In this paper we shall investigate the monotonicity

properties of this sequence.
2. The basic theorem -
In order to study the monotonicity of the sequence (S3*f) we shall establish a

useful formula for the difference of two consecutive terms of the Stancu-Bernstein puly-

nomials. The following theorem holds:

Theorem 1. The difference between the polynomials ( "“f) (z) and (S2°f) (x) can be

expressed under the form:

. nz(l — n—1
(Setf) (=) = (S2%£) (2) == - (n+ b)((ln + b)+ 1) < Z ( )

1 k+a k+1+4a k+l+a‘ a k+1+a k—ll—{a )
n+bin+b n+l1+b n4d’ k+1|nt1406 n4b ’

b—alk+a k‘+1+a.
n—k

n+bdb n+1+ b’f]) (1 -2y 4 (U:'b]) (), )

where the brackets represent the symbol for divided differences and

(1(c5333) -/ (G55) )0 - o

n+l+a _ n+a 1 - ’
(/(n-i-lri-b) f(n+b))r ()
Proof. First we write:

(U2*f) (@)

+

k=0
S B P )"“"‘f( £ )
po k n+1l+b
) _ e\t “____‘1____ . pnt! ,_l__'f.l-:t ‘f) 5
” + (1-2) f(n+l+b).lx f(n+l+bl )
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a [k+l+a k+l+a.] b—-a[k-l-a k+14a f]}
fl - T . -

+k+l n+1+4+6’ n+b n+bnt+l1+4b

n { 1 [k+a k4+14+a k+1+a

=(n-l-l)(.n+b+l) n+bln+bd'n+l14+d n4bd ;f]+

+

a [k+l+a k+l+af k+a k+1+af
k+1ln4+140" n+bd '’ n - k n+b n+1+40b

Taking (8) into account, the equality (7) leads us to the desired formula (3).

(8)

We notice that if @ = b = 0 our result becomes:

S f) (@) - (52°F) (2) =

t(l-2) [ n—1 \[k k+1 k+1 kil _
=—n(n+1)2( )[" ntl ’f] e

n—-l

k k k
ZP»-]I:( )[ n:: :lvf]

n(n +1) &
This formula was established by D.D.Stancu in the paper [8].
3. Sufficient conditions to ensure the monotonicity. of sequence

The following definition of the notion of higher-order convex functions is known

(see (7))

Definition 1. A real-valued function on an interval I is called convex of order n on I if
all its divided differences of order n+1, on n+2 distinct points of I, are positive. The
function f is said to be non-concave of order n on the interval [ is all its divided differences

of order n+1, «n any n+2 points of /, are non-negative.

We shall consider the next particular cases:
A. If we choose a = b > 0 in Theorem 1 we obtain

(S ) @) = (52N (@) =

nz(l — z) "Z" n—1 1 [k+a s+a+1l k+a+l.f]+
(n+a)(n+a+1l) n+aln+a’'nt+a+l’ n+a ’
=0 \ k
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Corollary 2. If the function fis concave of first order on the interval [0,1] and increasing

on [0,1] then the sequence (S3*f) is decreasing on the interval (0,1).

To conclude, we mention that different liniar approximation operators introducea
and studied by D.D.Stancu (mainly by probabilistic methods) have been the object of
other investigations, made by many other researchers - see [1}, 2], [3], [4], [5], [6].
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ON THE APPROXIMATION
BY INTEGRAL FAVARD-SZASZ TYPE OPERATORS

ALEXANDRA CIUPA

Dedicated to Prof. Gheorghe Coman at his 60** anniversary

Abstract. In this paper we study a modified Favard-Szasz type operator for the approx-
imation of integrable functions on [0,00). We give an asymptotic result of Voronovskaia

type. We also prove that the studied operator has variation-diminishing properties.

I. Introduction In our paper [2], we have introduced a new operator for the ap-

proximation of integrable functions on [O,C;o). We have modified the operator of A.Jakinio+k

and D.Leviatan [4]. Let us remind this operator. One considers g(z) = 3 "

e U(I z% an

analytic function in the disk |z| < R, R > 1 and supposes g(1) # 0. One defines the

Appell polynomials pi(z), & > 0 by

glu)e™ = Zpk(z)uk (1)
k=0

To each function f defined in |0,00), A.Jakimovski and D.Leviatan [4], associated

the operators:

(Pof)() = "'—kanr)f( ) (2

If g(z) = 1, one obtains pi(z) = ‘;—, and the operators P, becomes the well known

[

Favard-Szasz operators:

(5u5(e) = e Y 0oLy (’“) ®)

k=0
B.Wood [8] proved that the operators defined at (2) are positive i and only if

a(l)>0 n=01,.

We have modified the operator P, by replacing f (f) by a positive linear funciional

Received by the editors: January 11, 1996,
1901 Mathematics Subject Classification. 41A35.
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detined for integrable functions on [0,00) by

nitk+l

= ——— = —-nt A4k
F(z\+k+l)/0 e f(t)dt, A 20

and thus we have obtained the operators

A(f)

e~ Kot X-HC-H

(L)) = Sy Somtnn) gy [, OO 220

This operators are linear and positive, i.e. g;'("'; >0, n=0,1,...

Remark: for g(z) = 1 and A = 0 one obtains the operators

(S. (:L') _e—ncz(nm) ) -—nt(nt) f(t)dt (5)

k=0 o
The operators S;; has been introduced by S.M.Mazhar and V.Totik [5)]. S.P.Singh
and M.Tiwari (7}, Zhu-Rui Guo and Ding-Xuan Zhou [9] also have studied the properties

of the operators S;.

I1. In this section we give a basic result for the approximation of integrable func-
tions by means of the sequence (L,). The next lemma gives the values of the operator P,
for the test functions.

Lemma 2.1. [2] For all 2 > 0, we have

(Lneo)(x) =

ey =er (1914 20)

_(_1_1_ g'(1) + 4'(1y

N , . 9) ‘ g
(e ="+ 2 (nv 2 Z05) 4 [ @ e g+ S0

g(1)
where ¢;(z) = z',1 €0,1,2.
Theorem.2. Let f be integrable on [0,00) and bounded. Then, lim, ,..(L, f)(r) =

f(z),almost everywhere on [0,00).
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Proof. Let F(z) = [7 f(i)dt be, where f is integrable on (0,00). Because F'(a) =
f(a) almost everywhere on (0,00), we will prove that the sequence (L, f)(a) converges to

/(a).
We will denote ®,x(t) = t**e~™*. For all k, 0 < k < oo, the function &, x(¢)F(t)

is absolutely continuous aud we have, for all ¢ € (0, 00):

8, 4(t)F(t) = / &, a(y)Fu)dy + / &, 4()f(v)dy

i'vnee, v can write the operator L, as follows:

P °'° "A+k+l

(1) = =55 S o)y [ hat P

The function F is differentiable and we have
F(t) = F(a)+ (t — a)F'(a) + (t — a)e(t — a),

where e(u) -+ 0 when u — 0 and &(u) is bounded.

So, we obtain:

e~ "% o n)\+k+l o0 ‘D, .
" T (W[F
b T9(l) & Zp"( T +k+1) /0 nk(DIF(a) +
+(t — a)F'(a) + (t - a)e(t ~ a)]dt
Next, we will use the linearity of the operator and it must consider two cases;

(i) If A > 0 we have limy o, ®ni(t) = 0 and ©,4(0) =0,k =0,1, ...

Hence

e-ne ad pitk+ o0
(Lrlf)( Zpk za)m—)F'(a)/ q),,,'k(t)dt -

e " & nAtk+l B

T — a)e(t - n, K (t)dt =
1)Zm(n O RTT ), (9t - e K (O

A+k+l o0

= I"(a) — "(—1‘5 Zpk( S orE ), — a)e(t — @), 4, K'(t)dt

(1) I A = 0, we also have lim, o0 Pax(t) = 0,P,4(0) =0 for k = 1,2,... and &,,0(0) = |

So, we obtain
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(Lnf)(a) = —=<po(na)nF(a) — (I)Po("a)nF (a)a+ F'(a) -

(1)

e—"e had k+l

-5 L) [ e - st

Now, to prove that lim,eo(Ls f)(a) = F'(a) almost everywhere on (0,00), it is sufficesto
show that R,(a) — 0 as n — oo, where we have denoted
A+k+l

eﬂ 00 ,
Rn(a)=g(1)2m(n OTETT [, - et - e

To continue the proof, let us remark that

A+k+l ' . /\+k+l nA"k
ok =7 ( NEETFS) R ORS e ""-'(‘))

nAtk+l

If we denote T, x(t) = W‘D" »(2), we can write that
Atk
'A+k+1)

Now, we can write successively:

®,, 1 (1) = n(=Tui(t) + Tux-1(t)

ey na wk(t) + Tuik—1(1)) (t — a)e(t — a)dt =
)= 0 e [ 1 (Tl + T ) (e =

e~ ™o ©

g(l Z (Pr(na) — pry1(na))n / Tor(t)(a— t)e(t — a)dt
0
By making use the Schwarz’s mequalzty for summation, we have

Ri(a) < — Pesr(na)) -

k'—O

_na oo

. (1) Z (pe(na) — pry1(na)) (/000 Tax(t)(a—t)e(t — a)dt>~ = n®S (n,a) - Sy(n,q)

Again, by using the Schwarz’s inequlity for integral, we can write that

(‘/(; Tox(t)(a—t)e(t — a)dt) < /(; Tax(t)dt -/0 Tax(t)a—t)e’(t - a)dt =
= /oo Tox(t)(a — t)’e*(t — a)dt
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Therefore, we have
Silma) < 535 3 (u(na) = puss(na) [ Tasta -t - ayie =
ywes 0

e =

=70 g(m(na) Put1(na)) { /‘; e Toi(t)(a — t)%e*(t — a)dt+

+ /l; e Toa(t)(a — t)?3(¢ -a)dt} - L+],

Because e(u) — 0 for u — 0, it results that there exists to each ¢ > 0 a § > 0 such that
le(t — a)] < € whenever |t-a| < 4.
It follows that
e na na To k()@ — )22 (t — a)dt <
L= S5 D (atne) = pesrne)) [ Tustt)a = 07t - e <

k=0

<e (—M g: (Px(na) - pk+1(na))'/0°° Tok(t)(a — t)%dt
We have
/Om Tui(t)(a —t)'dt = % [A+1)(A+2) +(2X + 3)k + K*] - 27_:’(,\ +h+1)+a?
and so we obtain

L <

(px(na) — pesr(na)).
(1) kz_; Pk Pk+

1 9 ‘
{;; [(A+ 1A +2)+ (22 +3)k +&°] - —;a(/\+k+1)+az} —d =,
To calculate J, and J; we will use the values of the operator P, for the mouomials

ei(z) ==',i € {0,1,2} :

(Paeo)(z) = 1

(1,.61)(1‘) =z+ n (1)
Vo) =22+ 2 g\, I? () +41)
(Fuea)(z) *a (l +Ea) (1)) *a g(1)
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We have

. ““'ZP*( ”’){'n% [(A+DA+2)+ (A +3)k + k7] - 2;a(uk+ 1)+a2}=~

k=0

2

Blfh

[(,\+1)(,\+2)+(2A+3) ((1)) ”(1;(‘:)-‘71(1)]+_.2a

To calculate

—ﬂﬂ 2]

Jy =€t (l ZpkH(na

'{%[(/\+1)(/\+2) (2/\+3k+k2]—-—v(,\+1\+ 1) + o }

we substitute into it k+1 = i, and in according with

(o) = Syeaf @+ Sy ot ()

we obtain

e ©

(1) Zp. na) {—[(A+ DA+2) +(2A+3)G - 1)+ (i - 1)} - 'zni‘(x +1) +a'l}

.]2 -

_g [(1 —M)(,\2+/\)+(2)\+3)

gQ) , ") +g’(1>] N
*g(1)

a0 g

62 e " L
a1+ 2q%aq0S
T “( A (1)) cae

Thus, it results that

2 ~-na
h SJ!'J2='§—2 [(aof—*—l)(/\“rk) }(1 FOAH DO+ ))} -

g(1) g(1)

F2 e~ e~ ™ . 1
—;‘2 A 2q? = 1(/) "7)
A (R ( R U
For |a-t| > §, the boundedness of e(t — «) on {0,00) implies that | (f-¢)] < M

-

M '37—51 Using this inequality, similarly we obtain

| A

—na X

= S Y (u(na) = s (1) / [ Tl = 07— <

g k=0
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M? ~pna ® ‘ 4 o
< 8 g(1) & Z(Pk(na) Pr+r(na) )/ Tai(t)(a —t)'dt = ____0< )

Thus, we get to

M2
Sg(n,a) S [1 + [2 S (6 + —5—2) O (iz)

= 3 (ph(ne) ~ phsa(na) - Sa(n,0)

k=0

M? 1
) 4 (5 *2—52)0(—2‘)=
=0
M? e ne 1
— 2 2, ). . —
=" (e +n262) %M O(vﬂ)

It results that lim,, o, RZ(a) = 0. This completes the proof.

and so,

R2

IIL. In this section we establish an asymptotic estimate of the remainder, which
corresponds to a result of Voronovskaia about Bernstein polynomials.
Theorem 3.1 Let f be integrable and bounded on [0,00). If f” exists at a point
z [0,00), then
lim nl(Ea)e) - 1) = (34 1+ S0 @) + 210

Proof. Because f” exists at a point z € [0, 00), we may write the Taylor’s expansion

10 = fz) + (1= @) + CSL ) 4 (- 2e( - o),

where e(u) — " as u — 0.
Hence, there exists to each € > 0 a § > 0 such that Je(t — z)| < € whenever |t-r| < §, and
also there exists a positive number M such that | e(t — z)] < M.

Now we introduce the function As(t) defined by

1 whenever |t — x| > ¢
As(t) = , :
0 whenever |t —z| < §
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Then the inequality | e(t — z) |< € + M - As(#) holds everywhere on [0,00). Since te

operators L, are linear it follows that
(Laf) (z) = f(z) = f'(z) (La(t - 7)) () + %f"(-’v) (Lalt = 2)*) (z) + E(t,2),

where E(t,z) = (La(t — z)%e(t — 7)) (z)

By making use of lemma 2.1, we can write:

(L) @) - 1@ = (A+ 14 Z)) 1) +

9(1)
s {2z+ - [(,\+1)(A+2)+(2,\+3)-"'((11)) g '(1;;)9' (‘)]} fle) s B

To prove the enunciated asymptotic it is sufficient to show that

n- E(t,s) = Ha(t,z) = 0 as n = oo

We have

,\+k+l =3
| Ho(t,2) |< nS— oD ZP"( )F(/\-I-k-l- A et —z)? | c(t- x) |dt =

e~ hacd ,\+k+1 0o

(1) Z”"( TO+k+1) Jo

-—nttx-c-k(t 2dt +

e "% oo ,\+k+l

") & ZM"’) TO+k+1) Jo TP — ) (0t = 1+ 1y

Obvious, in view of lemma 2.1, we have

Li=e-n(La(t —x)*) (2) =

{2:c+ [(A+1)(A+2)+(2A+3)g((11)) ')]} .0()

If |t-z| > 4, it results that 1 < 1‘—},’-)— and. so, we have
M ez &2 k41 oo

Lhsgn (1)2""( )F(A+k+l)

n?

et~ p)ldt = O (i)

Combining the estimates of I, and I3, due to arbitrariness of € > 0, it resulfs that

H(t, ) — 0 for sufficiently large .
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QUADRATURES BASED ON QUASI-INTERPOLATING
SPLINE-PROJECTORS FOR PRODUCT SINGULAR INTEGRATION

C. DAGNINO AND E. SANTI

Dedicated to Prof. Gheorghe Coman at his 60** anniversary

Abstract. In this paper we propose product quadrature rules based on quasi-interpolating
spline-projectors and we prove convergence results for bounded inlegrands. Convergence
results are proved for sequences of Cauchy Principal Value Integrals of these quasi-

interpolating spline-projectors.

1. Introduction.

In several applications we have to deal with integrals of the form

1
I(K[)= ./1 K(z)f(<)dx (1)

where A is singular, but absolutely integrable, and [ is bounded in Z = [-1,1], or of the

form

J(uf;/\)=]l-l u(z) f(z))‘-da;, -1 <A< (2)

. -
where
= { /‘ / | w2)/(z)
J(uf; ) = lim + —
0 | J_; ,\_HJ z - A
is the Cauchy Principal Value (CPV) of u f, with u and f such that J(uf;)) exists.

The majority of numerical methods proposed for (1) and (2) are global methods,
usually based on orthogonal polynomial approximations in [-1,1].

It is we'l known that the above methods have good convergence properties, il f is
smooth over the entire interval. However since they can present some difficulties associated
with their iinplementation (see [11]). For instance, since the node points are generally
chosen as the zeros of an orthogonal polynomial, global methods are not appropriate for

integrals with input functions f that behave badly in sonie subinterval [o,f3] of [-1,1].
Received by the editors: July B, 1995,
1991 Mathematics Subject Classification. 41A18, 651032,
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For such integrals a numerical method with no restriction on the choice of not
points would have to be used in order to concentrate the nodes in [a,3]. Generally thisi
not possible with global methods.

In contrast, local methods permit a flexible choice of the node points. Thee
fore some authors (see [1}-[6]) have proposed quadratures for (1) and (2) based on th

approximation of f by a spline of order k of the form

N-1
S(z) = Z a; Bi(z)

i=1-k

where {B(z)} is the set of normalized B-splines forming a basis for a given spline spu:
Skx anf.! a; are chosen so that S interpolates f at some convenient set of points. Siu«‘!
the convergence theory for interpolatory splines is incomplete and imposes restriction
both on the spline spaces S » and the interpolation points, the theory of correspondiy
integration rules is not completely satisfactory (see [1],(6] and [13]).

For such reason, recently, some papers have tried to remedy the disadvantagesd
the above local schemes by using local schemes, based on quasi-interpolatory (g¢-i) splina
(see [7]-[10] and [13]). Such strategies approximate f by g¢-i splines Qnf of the form

N-1 /¢ :
Qnvflz)= ) (Z aij[Tit, Taa, - - ,T.'j]f) Bi(x) 3
i=l-k \j=t
that is defined for any f € C[~1, 1] and where [z0,21,....%}f 1s the p-th divided difference
based on the points zq,z1,...,2p, € < k, the sets {7:1,7i2,...,Tie}, i = 1-k, ..., N-1, are chosen

|

in a suitable way in [-1,1} and the a;; are such that

Ung=g @

for all g € P,, the set of polynomials of order ¢ or degree < ¢ — 1.
If the 7;; are distinct for each i, the divided differences in (3) involve only function

values. In this case, since

4
[Ty T2y ooy 750 S }: , AL (%)
e - m) |
s
we can obtain the following expression for Qn/f
N-t ¢
Qnf =Y Bul) ) vif(r;) (6

i=1-k j=1
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where

U5 =Z T a"" (7)

Once we choose a spline space S » and the set of points {r;;} we replace f by Quf in (1)

and obtain
N-1 ¢
IKf)~I(KQnf) = Y Y mif(n;) (8)
i=1-k j=1
where
pi; = vi; I(K Bis). (9)

Similarly, for CPV integral (2), we obtain

N-1 ¢
Juf; ) = JWQnfi ) = 30 3 vi(Nf(r) (10)
i=l1-k j=1
where
V.'j(/\) = ‘U.'_,'.](UB,‘],; /\) (1 1)

We recall that the quadratures (8) and (10), proposed up to now in the literature
(see [7]-[10] and [14}) and based on q.i splines (3), have interesting convergence proper-
ties but, contrary to those based on interpolatory splines, they are not exact for splines
belonging to Sk x.

In this paper we propose and study quadratures for (1) and (2) based on an
approximation method of the form (6) with ¢=k, that is a projector, i.e. reproducing
splines of order k.

In Section 2 we define the q.i spline-projector (..9-p) operators and we emphasize
some of their properties.

In Section 3 we propose product quadratures based on a q.i spline-projector and
we prove convergence results. We remark that they can be generalized to other q.i spline-

projectors.
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2. On quasi-interpolating spline-projectors.

Let Yo: -1 = yo < 1 < ... < yn = 1 and a corresponding sequence of positive
integers {d;}"" be given. We write my for the non decreasing sequence {z,}?, obtained
from {y:}7, by repeating y exactly d; times (thus N = E:‘;l' d; 4+ 1). If k is an integer
with k > d;, ¢ = 1,2,...,n-1, we define the class of polynomial splines of order k£ and knots
of multiplicity d; at the points {y}:

Skan = 19° 9lii) € Pes 1=0,1,...,n—1
gy =gy ), 7=0,L,... . k—di—1

i=1,2,...,n~1}

where P, is the set of polynomials of degree less-than' k.

We say that, the sequence of partitions { ¥,} is locally uhiform (l.u), if

Y1 "% A forall0<i<nandj=itl, (12)
Yitr — Y;

where 4 > 1.

To define a basis for Siny, let 1y = {z;}}, be extended to a non decreasing

sequence
mn, = {z: )4

where

Ti<zTigpk, t=1—k,. ,N-1

Tk =..=2_ 1 =29=—1, (13)

INpk—1 = =INp1 = ZN = L.
With

Gi(tyz) = (t — =)',

we define

B,‘k(I) = (1i+k — 22.')[1.',...,1,'4.;;]01‘(-.:):), i=1—-k,..,.N—-1 (1)
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The functions B;; satisfy

0 < Bi(z) <1 forall z € (zi, xi4x)

(15)
Bi(z) =0 otherwise,
except that By_xx(—1) = By-14(1) = 1;
N-1
Z f{“)B.'k(:c) =Uu(z) = e p=1,2.,k (16)
i=l-k ’

with

ﬁgu) = (__l)p—l(p’ - 1)!¢gk-p)(0) - SYMmMy— 1 (Tit 1, -y Titk—1)
where symmy_; (Z;41, ..., Zipk-1) and t; are defined by
Yi(z) = (z—zip) (T — Tigknr) =

)

(k—1)!
Z(-l)““z""‘symmu-n (Tit1y ooey Titk-1)-
u=1

Let F be a linear space of real-valued functions on Z and let {};}Y;", be a set

of linear functionals \; : ¥ — R. Given f € F we construct an approximation for f (see

(12]):
N-1
Qnf() = D NfBu(a) (17)

i=1-k
that defines a linear operator mapping F into S« .
For each i = 1-k, ..., N-1 we consider a set {\;;}5_, of linear functionals defined

on F such that

det(\;U,)% ) #0. (18)
Let {ai;}5., be the solution of
k
3 iU, = €9, p=1,2,...k. (19)
Jj=t
We assume
k
)‘,' = Z agj)\;_,- (20)
i=1

in the definition (17) of Qn.
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We recall (see [12]) that the operator (17) is a projector for all S € Sipy ifud

only if {};}}7!, is a dual basis to {Bi}¥;!,, i.e.

AiBjp =6ij, 4,j=1—k,....N - 1.

The following Theorem (see [12]) gives a sufficient condition to assure that Qyi

a projector.

Theorem 2.1. For i =1 —k,..,N —1, let {\;}., satisfy (18), and suppose {);}!
all have support in one subinterval (z,;,z,.41] of [zi,zisx]. Then with {a.,} 1 given by

(19) the set {\}NL, is a dual set to {B.k}._l &

jal

If we define |

Nif = [T, Tiay oy Tl f (1)

with {r;}5., distinct a.nd chosen from intervals [, zu,+1] C [zi, Zit), then the hypothe
ses of Theorem 2.1 are verified and the corresponding operator defined in (17) is a gi
spline-projector, defined for any f € C(Z).

We remark that in this case {);;}}_, satisfy (18) and, moreover, the hypotheses of
Theorem 3.3 of [12] hold. Therefore, from Lemma 4.3 of [12] the real values {a;}%_, are
given by

ang =1
k—j)! .
a; = %-k—_—i{-, Yo = Ta)eAZpy_y — Ti-r)s I =2,k

where the sum is taken over all choices of distinct yy, ..., ;-1 from i+1,...,i+k-1.

(22)

Now we consider how well the above q.i spline-projector defined by (17), (20),(21)

approximates smooth functions. In particular we are interested in the quantities

B2 | TU-aRD0, 0sr<s o
D Qnf(t), s<r< k.

where D" is the r-th derivative operator and s is an integer with 1 < s < k.

Let {Y,} be such that

oJnax (y,+1—-y.)—-)Oasn—+oo (zh
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Corollary 2.3. If pn is uniformly bounded for all m and for all N, then, for all f €
C[-1,1], if Ax =0 as N = oo,

| f—QNf llo— 0as N = c0. (35)
Furthermore if, in addition, A,,/Ap, x-1 is uniformly bounded for all N, then

max | DRNF(Y) |€ C1A (S, Am; In).

TmSI<Tmy
We also recall in the following Theorem, an interesting result about the modulus of con-

tinuity of Qn f and its derivatives (see [14]).

Theorem 2.4. Let 0 <r < k and I = {-1,1]. Let f € C"(I) and consider any spline
space Skx, Such that nn is locally uniform with constant A. If any spline S € Si.,
satisfies ‘

1. SeC(T),

2. | D" (f = S)(t) IS Crw(D" f; Ami Im), Tm St < Tmaa,s

8. | DHS(t) |< CoAZ (D" f; BAmi In)y Zm <t < Ty,

then

w(D"S; An;T) < Caw(D" f; An; I),
where
Ca = ma.x(402,1 + 204) and C4 = [A"}Cl

3. On product quadratures based on a q.i spline-projector

We consider product integration rules for (1) and (2), based on the approximation of f
by the spline-projector defined by (17), (20), (21). These quadratures have the form (8)
and (10) respectively, with £ = k.

Since the nodes {r;;}i., are chosen from nondegenerate intervals [z.,,,,41] C
[2i, Zisx], then for ¢ = 1-k, ..., N-1 we have to mark out an interval formed by two
consecutive distinct knots of the B;x support.

Such an interval always exists, because we suppose that we repeat every point y,
4, times, where 1 < & < k,for'i =0, 1, .., n,withdg=d, =kand d <k 1 =1, ..,
n-1. Moreover, we choose it as the most central” interval among those eflective in the

support | ;, Zisk)-

42



QUASI-INTERPOLATING SPLINE-PHROJECTORS

Let P = {p;}}t*.! be a set of integer numbers, such that p; is equal to the index

of the element oi Y, repeated d; times, i.e.

P=¢00,...,0,,1,...,1... n—=1Ln—-1,... ,n—-1,n,n,... ,n
e - ” o

k times dy times dp—1 times k times

For ¢ = 1-k, ..., N-1 it results that

(26, zisk] = [Upor Ypuva] - (36)
Then we will assume
[Z0ir Zvia] = [yp.'+[kl/'l]7yp.‘+[kl/3]+l] (37)
or
[Z00s Tuetr) = [Wpisttri-1/2) Ypurltka-1y/2141) (38)

with k1 = pjyr — ps.

We remark that if k1 is odd, then both the choices (37) and (38) give rise to the
same interval, if k1 is even, then the choice (37) gives rise to a right central interval,
the choice (38) gives rise to a left central interval among those effective in the support
[5,544]-

Now, for all ¢ = 1-k, ..., N-1 we propose to choose the points 7;;,73, ..., T equally
spaced throughout [z,,,z,,41], i.e.

mu.‘-l-l - xv;

G -1) i= 1k N =1 =12,k (39)

Tij = &y +
and we study the convergence of I(K @Qn f) to I(Kf) and of J(uQnf); A) to J(uf; A).

In our discussion we need the following Lemma.

Lemma 8.1. Let the partition Y, be locally uniformn with constant A and1 < s < k.
Then

Tigk — Ty
= max —— < 40
Pm mAl-k<i<m Oy, P (40)

where
p=(k-1)[14+2(A+ A + ...+ A¥)] (41)
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and for0 <r<k

Am a
Bois fa (42)\

with
a= A1, (49

Proof. From the definition (39) of points {r;;} it follows that

Toi+t — Ty,

k-1
From (44) and from the hypothesis of local uniformity of the partition Y,,, we can easil

Gin 20 = (4

prove the thesis (40), with p equal to (41). Now, for the partition 7y we can write

- +,,_l(==-'+x - i) < AN (@m1 — Tm) (45)
and
m;}-l—lllel-li-?siSm(z‘+k-r —%) 2 ZTm41 — T, 7 =0,1, ...,k — 1. (46)
From (45) and (46) we deduce (42) and (43). o

Theorem 3.2. Let the partition Y, be locelly uniform with constant A and k € L,(I).
IfAnx = 0as N — oo then

I(KQnf) = I(Kf) for all f € R(I), (47)
where R(ZI) is the set of all ( bounded) Riemann integrable functions on T.

Proof. From Theorem 2.2 and Lemma 3.1 where we put r = 0 and s = 1, we can deduce

that

I(KQnf) - I(Kf) for all f € C(T). (48)

The weights {u;;} of the quadrature are defined by (9) and they are such that

| mii |<1vis || I(KBa) | - (49)
Moreover
- r— (z"i - I, )"“l
[I(m5 =7} 2 (ris = 7)™ = __(,fo_—l)—-‘n'” (50)
et
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and, from (22), it results that
| o |< (@igr — 27 (51)

Therefore

k . —_ . r—1
los 1< Y (‘—*"i) (k~1)". (52)

oyt Tui4l — Ty

From the hypothesis of local uniformity of Y, we can obtain

k
o 1< 3~k = 1) (53)
=)
where
v=142(A+ A%+ ...+ AWy, (54)
Now, from (48), (49), (53) we can proceed as in [7] and [13] to show (47). 0

The following Corollary provides a bound for the quadrature error
Rn(Kf) = I(Kf) - (KQnS). (58)
Corollary 3.8. Let 1 < s <k, then for all f € C*"Y(T) and for K € L (1)
| Rv(Kf) |= O(AR'w(D*7 f; An; T)). (56)
Proof. From Theorem 2.2, where we put r = 0 and from Lemma 3.1 the thesis follows. [

Remark. The choice above proposed for [z,,, z,,+1] is better numerically, but it requires,
for the convergence, that the spline spaces are locally uniform. A different choice enables

us to avoid the requirement of local uniformity. In fact, if we assume

(Zvir Tvia] = (Tivutr — Tity)

max
0<pu<k-1
it is easy to show that, if the ¢-i points 7;; are equally spaced in the subinterval [z,,, ., 11},
then the sequence of ¢-i splines will converge for every continuous function and the product

quadratures I(kQn f) will converge for all f € R(Z).

Theorem 3.4. Let the partition Y, be locally uniform with constant A. Let u € L(I) "
DT(Ng(A)) and f € C(I) N DT(Ns(A)) for some A € (—1,1) and some & such that
N(A)=A=8&r+48C (-L,1). If Ay 2 0as N — oc, then

J(uQnfiA) -+ J(uf; ). (57)



C. DAGNINO AND E SANT!

Proof. For our approximation scheme Qnf the hypotheses of Theorem 2.4 hold. In fag,

for all f € C(T) and 2, < ¢t < Typy1 With 0 < m < N-1, from Theorem 2.2 and from

Lemma 3.1 it follows that

L(f = QNnA)®) =] Eoa(t) IS Crw(f; Bmi Im) (5)
and |
| DQNF(t) |=] Eva(t) I C:ALw(f; Ami Im) (59)
with
Cr = k? {1 + Z(zp)"‘] (60)
=2
and
. .
Cy = AF KTy, [1 + Z ('zp)"’J ) (61)
. i=2

Therefore from Theorem 2.4, where we put r = 0, we can write
wW(QNSf; AN;T) < Cawl f: An; I) (62)

where C3 = max{4C,, 142C,} and C4= C,{A¥]. Now the proof of (57) is similar 1o that

of Theorem 8 in [13], therefore we do not report it here. 0
The following Corollary provides a bound for the quadrature etror
En(uf;A) = J(uf; A) — J(u@n F; A). (63)
Corollary 3.5. Let 2 < s <k, then forall f € C*"1(1)
| En(uf;2) |= O(AN (D™ f; AN, 1)), (61

Proof. From Theorem 2.2, where we put v = 0 and » = 1, and from Lemma 3.1, we can

proceed as in {7] to show the thesis (64). 0
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BEST PIECEWISE CONVEX UNIFORM APPROXIMATION

Z. FINTA

Dedicated to Professor Gh. Coman on his 60" anniversary

Abstract. In this paper there is given a constructive proof of the existence of the best

uniform approximation of a continous function by piecewise convex functions.

1. Introduction.

The problem considered is that of'ﬁnding a best uniform approximation to a real
function f € C[a,b] from the class of piecewise convex functions. The existence and
nonuniqueness of best approximations are established.

Let I = [a,b] be a compact real interval and B = B(]) (resp. C = C(I)) be the
Banach space of all bounded (resp. continuous) real functicn f on / with the uniform
norm || f}| = sup {|f(z)|: =z € I}. For any integer n > 1, let A = {p = (po, P1, ---, Pn)
€R": g = po < p1 < ...< pu = b}. Then, A is compact in R**!. Given a p € A define
intervals §; = [pj—1,p;), for 1 < j < n-1, and I, = [pn-1,pn)- Let K{p) = { ¢ € B: p is
con}rex on f;, 1 < j < n}. K(p) is called the set of all n-piecewise convex functions with
the vector p. Next, let K = U{K(p): p € A } the set of piecewise convex functions. We

denote by Conv I t;he~ set of all convex and continuous functions on the interval f.

2. Best approximations from Conv /.

Since the set Conv I is nonlinear, we cannot apply the general theory of linear
approximation to obtain the existence of the best convex approximation in the space C.

So we shall prove its existence directly.

Theorem 2.1. Let f € C. Then there ezists a function ¢ € Conv I such that I} f-@ I
| f=e || for all ¢ € Conv I.

Proof. If f is a convex function, then we put @ = f. Otherwise, we consider the following
sets: [f] = {(z,2) € [a,b] x R: z > f(x)} the epigraph of f and conv[f] = N{M : [f] C
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8 N4 M is convex}, respectively. Obviously, conv [f] is a convex set, so b for
71 1 nor-empty and card ({a(2z,y) + (1-a)(zo,y0): @ 2> 0} N bd (conv {f]) < 1 for evers
Zu,Yo)€ int (conv [f]) and (z,y) € R%. Hence {(z,z): z } N bd (coav {f]) = {(£.5,)}

wery i« € (a,b). Now, we can define the function f : [a,b] = R by

f(a), if z=a
fx)=1S2, if a<z<b mi
fb), if z=b

We assert that f € Conv INC. Indeed, we have (Az;+(1= ), Az, +(1 Ao
A @1y z01) + (1 = A) - (22, 252) € int (conv [f]) for every A € (0,1) and (xy. 2y ). (2. 5,0
couv {f]. So {a(Azy+(1—A)z3,0)+(1—a)(Azy +(1=A)xg, Azgy + (1~ )2z} s @ € [0, 1)1
bd (conv[f]) = {(Az1 + (1 = X)22, 2a,4(1-)z3 )} 1€ FOzi+(1- MNe2) = zvup0 e
Azgy 4+ (1= N)zay = Af(z1) +(1— A) f(x2). Thus f € Conv I. On the other hand it vesults,
by f € C and {a(z,2) + (1-a)(2,0): a > 0} N {(z,f(z): z [a,b)} # ., that f e (' We
observe, if g € Conv I and ¢ < f on I then ¢ < fon I (1).

Let G(g) = {(x,9(z)) : © € [a,b]} be the graph of g : {a,6] = R and the constant
function f, : [a, ] —) R ‘, Ja(z) = o, respectively. Next, let ag = sup{a > 0 d((/(f 4
fa3, G(f - fa)) = 0}, where d(A,B) denotes the distance between the sets 4 C R* and
B C R%. Then there exists zo € [a,b] such that f(wo) + o = ]'(xoj .

We shall show that @ = f + fao. Indeed, || f—@ ||= coand f  fou <@ < fifa
on 1. So it is enough to show ||f — ¢]| > ag for every ¢ € Comv [ with condition
f = fao € @0 € f+ fao on 1. Because ¢ € Convl and ¢ < f + [, therefore o
f + fao = @ on I by (1). At the same time f(xo) + a0 - flrn) ag ~y trg) and be
@tio) = flzo) +ao. 5o | f(Zo)-w(zo) 1= | f(wo) [/ (ro) i o) |2 o by (2] Conscy,

| f =@l f(za) - plza) f=ao=| f -9l

Proposition 2.2. The best uniform approrvmation to a real function [ < € fron

cliss Clouv (1) 1s nonuntque.
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Proof. We show our assertion by means of exemple.

Let f, % : [0, %] — R be two function defined by

T, if z€l0,1)
flz)={2-z, if ze[1,2)

-2, if z€ [2,%

and

) 5 if z€/0,2)
Pr(z) =
(2k—1)z - }(8k —5), if =z¢€[2,%],

respectively, where k € [%, 1] . Then every function ¢, satisfies the conditions of theorem

21 (p=@rand || f-grl=13)- o

3. Best approximation from K(p) and K.

Theorem 3.1. If p € A then there exists P, € K(p) such that || f — o, < || [ — ¢ |
for every ¢ € K(p).

Proof. Apply theorem 2.1. upon every intervals /; U p;, 1 < j < n. Then there exist
Bj,1 < j < n, such that || f —@; |l;< || f— 9, ||; for each j € 1,2,...,n and 9, € K(p),
where || g ||;= sup{| 9(z) |: = € [; Up;}. i ¢,(x) = p;(z) for z € I; and j € 1,2, ...,n,
then we have || f — ¥, ||<|| f — ¥ || for all $, € K(p). i

Theorem 3.2. There exists a function ) € K such that || f — ¢ ||< || f — ¢ || for every
YveK.

Proof. Let h : A = K be a function defined by h(p) = ,, where v, appears in the
statement of t!-eorem 3.1. Because the function f and ¢ (see theorem 2.1.) are continuous,
we obtain the continuity of A. But A is compact in R**!, therefore there exists p € A
such that h(p) = min{h(p) : p € A}. So there exists 5 by theorem 3.1. Let ¢ = 95
Then || f — 4 IS f ~ ¢ || for every y € K. 0
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INTERPOLATION BY CUBIC SPLINE WITH FIXED POINTS

C. IANCU

Dedicated to Prof. Gheorghe Coman on his 60** aniversary

Abstract. In this note we study an interpolation problem by cubic spline functions with
a fixed point. We give a method for the construction of a function similar to to that

from [19] and we obtain some inequalities in the case where tha dates are convex.

1. Introduction

In the last years, knowing a considerable development, both theoretical and prac-
tical in a vest literature (e.g. [11}, [13], [14]), spline functions have been constructed using
interpolation conditions, fitting and smoothing conditions of data by a functional mini-
mization (see: [1}-[5], [10], etc.), at which it has been added joining conditions, periodicity
or other end conditions, least squares method, {12], convexity etc.

The goal of this note is to study a cubic spline function, s, of the form such in the
(19}, at which the conditions s'(zo) = s”(z0) = 0 are replaced by the condition that the
spline function, s, and first derivative, s', has a fixed point.

It is known, [15], that if X be a nonempty set and f: X = X, a mapping, then
z € X is called fixed point, for f, if f(z) = z.

Let f: [a,b] — be a function and let

Apn:a=290<z1 <...<Tp=bne€N, n>1 (1.1)

be a partition of the interval {a,b].
We know of the function f only his values y; = f(z:),i = 0,1,...,n.
Let Sp(3, An) be the set of the cubic splines for the partition A,, and having the properties:
(1) 8 lizicy.z0€ Pa
(i) s € C¥a,b],i =1,n.

Received by the edit J y 37, 1996.
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In {19] we shown that there exist and it is unique a cubic spline functions s €

Sp(3, An) of the form:

s(z) = il

(z = ziz1)* + mizi(T — Tiz1) + Yi-1s (1.2)
for z € [zi-1,zi),t = 1,2,...,n, where
M = 8"(zx)
my = 8'(zx), k=0,1,..,n (1.3)
- Vhh=zp— 2k, k=1,2,..,n

if the following conditions are satisfied

S\T;) =¥ M, = 614-"%—1 _61_1;,;1 —.2M.~__
( ) o i1 h’. hi | 1 (1.4)
(=) = s i=0n m; = 314-'-’.1:.'-1 —-2m;_; — L"n'—‘l' !
and
™o = Mo =0. (1.4)

2. Spline functions with fixed points.

Now, one considers the following spline interpolation problem: find the cubic spline
s € 5,(3,A,) that interpolates the data (z;,y;),i = 0,n, when the data are convex on

interval [a,b].

Theorem 1. For this problem there erists a unique cubic spline s € S,(3,A.) of the

form (1.2) in the following conditions:

M; = 6”—;—-‘1‘:“‘ - 6""'.—:'1 - 2M;_,

m; = 3U¥=l oy Micip =T
4 h o (2.1)

s(z7) = o]

s'(z3) = 3
\
and there exists a following inequality

Misrhigr + Mi(2hipy — hi) = 2Mi1hi + 6(mi—m; ) 20,1 =1, ..n- 1. (2.2)
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Proof. In (2.1) for i = 1, we have
(Ml =6n7:?m —6%—2Mo
m; = 3uﬁm —2mo - %"h)

M, +5Mo + 24538 = 485%—?&, for zj=%tn

| ™o = o, for zj ==

This system has a unique solution:

(
Mo = Tg
my = zo(hy~4)—421+10y0—2y1
= m
4 u (2.4)
M, = 2z9(4—3h1 )48z —14y0—21
0 - he
i
_ —2x9(8—3hy)—-1621+22y0+10y
le - { ) i 1

The next step is to put i = 2 in (2.1). Thus we have:

M, = 6130 — 671 -~ 2M,
2 2
mqg = 3”%11'2 - 2m, - !%th
which determines the values of M3 and ms. So, the system (2.1) can be recursively solved

starting from the solution (2.4) and the existence and the uniqueness of s € 5,(3,4,) is

completely proved. O
When the data (zy,3:), ¢ = 0,n are convex on [a.b], we can write the following
inequality

Yi — Yi-1 Yiv1 — U
<
hi = hipa

,i=1,2..,n-1 (2.5)

which is equivalent with the inequality (see (1.2)-(1.4)):

M, Mi_y13 , Mi_;;2 . Mig1-Mi 13 Mip2 .h.
oh; Lh? ) -hi + mi_1hy <« Ok hn+1 + 7"”:’1-: +mihiyy

h; - hiyy
] M.'_ M.'__i IM.' 1 1
12 Mfgh.‘ ~ —'6—1’1.' + —2—’&5 +mi; < %ha}l - M.‘ghiﬂ + M.Eh-‘ﬂ + 1,
1\/1.' /W,'_ M.‘ P M.
& ?h.‘ +2 6 ~hi +my, < 6+l higy + 2—6*}&.41 + m,

and from this we have (2.2).
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Consider now the fundamental spline function s; € S,(3,4,),7 = 0,n, satisfying

the following conditions
0 for i#j

sj(zi) = &; = . (26)
1 for 1=

and

My +5Mo + 2470 = 485tiizie
) A1 2"' (2.7)

mo =To
Using the technique from [19] we can construct fundamentals cubic spline functions re-

lating te above data and for = € [z, 2,], one obtain:

’ 3
so(z) = 1 + [2zo(h1 — 2) — 42, + 6yo + 2y1) [" hl”°] + 2.8)

T—

2
+[zo(4 — 3hy) + 421 — Tyo — ) [ h o] + zo(z — z0).
1
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2. Existence Results '

Let us list our assumptions:
(Hy)  f(t,z) is nonnegative and continuous for -+ <t <7 and z > 0;
(Ha)  there exist the real numbers ¢ > 0 and 4 > 1 such that

wp L0 (L
te{-r,7] € T

” z 7¢ < inf {z > c| there exists t € [—7, 7] such that f(t,z) = :—T} )
(where, if the set is emply, we mean inf § = +o0);
(Hs) there exist a real number ¢ > 0 and an integrable function g(¢) such thatﬁ
fit,z) > g(t), for —7<t<T andas:cs’yzlc (5)
and

/“ g(s)ds >a, for0<t<T
(H,) &(t) is continuous and
0<a<¢t), for —7<t<0. (6)
Now, we state our first result:

Theorem 2.1. Suppose (H,)-(H,) hold. Then the problem (1)-(2) has at least one con-
tinuous solution z(t), -1 <t < T, with the property:

a<z(t)< 71c for —~T<t<T ()

provided that

c<¢(t) <

Y
c for —7<t<0. 8
v-1 { - ®

Proof. Let E be the Banach space of all continuous functions z(t), 0 < ¢ < T with norm

llzll = max |z(¢)l

let K={z € Eaz(0)=bandz(t)>afor0<t<T}letlU = {:t € K|z < T,'IT"}
Clearly, K is a convex and closed subset of E and U is a nonempty, open, bounded subset
of K.
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For each ) € [0, 1) we define the nonlinear integral operator:

TA:U—)K

Dz(t)=(1-2)b+ A t f(s,z(s))ds, 0<t<T

t—r
where f(s,2(s)) = f(s,4(s)) for -1 < s < 0. It is easy to show, using conditions (H,), (Hs),
(H,) and Ascoli-Arzelé’s Theorem, that the operators T), are well-defined and completely
continuous from { into K. Now we shall prove that, for every ) € [0,1], thc; operator T)
has no fixed points on the boundary U of U with respect to K. .
Suppose contrary, there exist Ao € [0,1] and zo € K such that || =0 ||= J%e and
Tx,2o = zo. Then there exists at least one ¢y € [0, 7] such that zo(to) = ¢, and by

-1
Tso%o = zo we obtain

to
o= aufte) = Tumolto) = (1= Jb+do [ floaalohds  (9)
. A
K Xo = 0, then (5) implies T3¢ = b = ¢(0) which contradicts (8). Therefore we have
A >0. f

Now, (H;) and the conti'nuity of f(¢,z) imply that there exists § > 0 such that:

1
f(t,z)g:—rsg-yzlc,for—rStSdec—JSszzlc (10)

If 20(s) > ¢ for all s €[0,t0), then from || zo ||= ;Zjc we get c-8 < zo(s) < Zye,
8 € [0, o] and, using (10) and (8), (9) implies:

7
¥-1

to
c< =D+l o —T—c[ ds<(l-o)b+hr
mw v

Y
1° ). o

and, by b = §(0) < ;1;c, we deduce Ao > 1, which contradicts A € [0,1]. -
' If there exists so € [0,o] such that z¢(s0) < c-6, then, by the continuity of zo,
there exists at least one t; € Jso, to[ such that zo(t)) = ¢ € ]zo(80),z0(to)[. Choosing now

t1 = sup{t € [0, to]; o(t) = c}
it is easy to show that

0<ty '< to,
Zo(tl) = C,
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and using || 2o ||= Xe,

c < zo(8) £ 7—7-1-c, for all s € Jt4,1o).

By zo(tl) =¢0<t; <t and T,\020 = Zo we get
4
c= Io(tl) = T,\OZQ(tl) = (l - Ao)b-f- Ao f(s, 30(8))d8

-1

From the last equality and (9), using the nonnegativity of function f(¢,z), we have:

Y - o as— [ d
Tre-e = x| (" soaoopas- [ ft02oto) o -
- [/ * (s, zo(s))ds - “i-rf(s,zo(s))ds] < (i)
‘ol 1
< [ £(3, 20(s))ds.

By ¢ < zo(s) < ;4y¢, 3 €]y, o], using (10) we find

to 1 v /“’ c
8,zo(8))ds < — c ds < ——.
/t: flo,zols)) my-1J, v-1

Since A € 0, 1), the last inequality and (11) imply

c
2 ¢—c< ——, a contradiction.
v—1 v—1

Therefore, T defines an admissible compact homotopy on U which is fixed point
free on the boundary of U with respect to K. Now Ty = b is essential because the function
z(t) = b, 0 < ¢t < T is an element of U (see [2, Theorem 2.2]). By the topological
transversality theorem (see {2, Theorem 2.5]), T, is essential too. This implies that T,

has at least one fixed point z(t) € U. Clearly

agz(t)<77 7€ for0<t<T
and
(0) = b.
z(t), 0<t<T
So, &(t) =
#(t), -7<t<0
is a solution of problem (1)-(2) and satisfies (7). The proof is complete. 0
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Remark 2.1. From (10) we see that Theorem 2.1 remains true if we replace condition (8)
with:

c—65¢(t)<7zlc,for—‘r$t$0. (8)

If we suppose that b < ¢, then we can use instead of (H;) a weaker condition:

(H;) there exist ¢ > b and 4 > 1 such that
flte) 1

sup ——= < —,
tgfo,7) € "

poo 7¢ < inf{z > c¢| there exists t € [0, 7] such that f(¢,z) = %} . (4"

Our next result is:

Theorem 2.2. Suppose (H,), (H}), (Hs) and (Hy) hold. Then problem (1)-(2) has at

least one continuous solution such that

7

¢1$:¢:(t)<’y_1

cfor0<t<T (7)

Proof. Let E, K, U, T\ be as in the previous theorem. If we prove that T has no fixed
points on the boundary U of U with respect to K, the conclusion follows as in the proof
of Theorem 2.1.

Suppose contrary, there exists A\g € [0,1], zo € AU, and ¢y € [0, T], such that
T2o = zo and zo(ty) = »T?-T"' As in Theorem 2.1 we can have Ay = 0 because of
b< ¢ < ;Xgc. Now from b = z(0) < ¢ < z(to), and the continuity of z(t), we that the set
{t € [0, ¢}, z(t) = c} is nonempty. Therefore we can choose ¢, = sup{t € [0, ¢); z(t) = c}.

Argueing now as in the proof of Theorem 2.1 we obtain -X;c - ¢ < -5 ‘even in the case

that ¢; = 0. Thus, we have 5<% contradiction. Therefore, the conclusion follows

from the topolrgical transversality theorem. The proof is complete. 0

Remark 2.2. f T < y7In ;1;, then Theorem 2.2 can be derived by using Theorem 1 from
[7], with a suitable choise of function h(z). Nevertheless, we note that Theorem 2.1 and

2.2 are completely different from those in {7} and (8].

In order to study the continuous dependence on f, ¢, 7 of the solutions of problem
(1)-(2) we need an existence result which holds in a "neighourhood” of f, ¢, . This is

the goal of our next results.
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Letnbea real positive number. Consider a continuous extension to [=7~n, T)xR,
of f(t,2) and a continuous extension to [-r-1,0] of ¢(t). These two new functions will b
also denoted by f(t,z) and ¢(t). From the biological point of view this means that w
must know the functions f(¢,z) and ¢(¢) on some interval larger than [-7,7].

Now, let us consider a number ¢ , 0 < ¢ < 1, a positive real number 7., and the

continuous and nonnegative functions f,(t,z), ¢,(t), such that:

' e —-T| <€

‘ lbe(t) — &(t)| < € for all ¢ € [-7,,0} | "
\fe(t,2) - f(t,2)l < € for all ¢ € [~7., T] and = € [a, ;2;¢]

b, = 6.0) = [°,, fls, (o).

Then for the problem
1

z(t)= |  fu(s,x(s))ds, for0<t<T (1)

t—7,

z(t) = ¢e(t), for — 7, <t <0y (%)

we have the following existence result:

Corollary 2.3. Suppose that for problem (1)-(2), conditions (H, )-(H,) are satisfied. Then,
there exists 0 < €9 < 1 such that each problem (1.)-(2), with € € [0,&0], has at leas! one
continuous solution, provided that conditions (12) and (8) hold and inequalities (4), (5)
and (6) are strict. Moreover, for each ¢ € [0,c0] and each solution z.(t) of (1.)-(2), we

have

1

a < z(t) < P for -1, <r<T.

Proof. We choose ¢ sufficiently small such that for the problems (1,)-(2,) with ¢ € [0,
conditions (H;)-(H,) and (8’) hold and, consequently, we can apply Remark 2.1 and
Theorem 2.1.

In order to do this let us remember that (Hjz) with strict inequality in (4) implies

that there exists 6 > 0 such that

C o,
— forallt € [- - 4.
f(t,z)<71_ orallt € [-7,7] and :te[c ,7‘_10]
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that z.(t) < a, then, choosing to =inf{t € [0,7],z(t) < a}, we have a < z,(t) for -7, < ;
t < to and z.(to) = a. Now, from (H;) and (5,.) we deduce

to

to
a=zdto)= [ flsz(s))ds > / gls)ds > a.
to—7 to—-r

Thus, we obtain a > a, a contradicton.

So, we can conclude that for each ¢ € [0,&0) and each solution z.(t) of problem
" (1,)-(2,) we have

~
7-1

a <zt) < c for -7, <t<T.

Now the proof is complete.

In a similar way we obtain the following corollary of Theorem 2.2:

Corollary 2.4. Suppose that for problem (1)-(2),conditions (H,), (H;), (Hs) and (H,)
are satisfied. Then, there ezxists 0 < €9 < 1 such that each problem (1.)-(2 ), with 0
< € < €g, has at least one continuous solution, provided that (12) holds and inequalities
b < ¢ (4), (5) and (6) are strict. Moreover, for each € € [0,c0] and each solulion z(t)
of problem (1.)-(2), we have:

a<a:,(t)<7—7—fc, for0<7<T.
We omit here the proof since it is similar with that of Corollary 2.3.

3. Uniqueness and Continuous Dependence on f, ¢, 7.

Let us suppose that the assumption of Corollary 2.3 or 2.4 hold for (1)-(2). Con-
sider the continuous and nonnegative functions f,(¢,z), ¢,.(t)', n > 1 and the positive real
numbers 7,, n > 1 such that b, = ¢,(0) = ffr.. fo(8,0n(8))ds, 7y = 7, ¢ '@ and f,'f
as n — oo, i.e. for eaé:h 0 < € < 7 there exists ng > 1 such that for every n.> ng, we
bave |7, - T| <&, | u(t) — H(t) |< € for all t € [~7,,0) and | fu(t,z) - f(¢,z) |< € for all
te|-raT]and z € [a, ;—:’_—lc] .

Finally, let us consider the problems

¢

z(t) = fa(s,z(s))ds, for0 <t <T (1a)

t—-7n

66



POSITIVB SOLUTIONS OF AN INTEGRAL EQUATION
2(t) = ¢n(t), for— 10 < t 0. (20)

By Corollary 2.3 or Corollary 2.4 we deduce that for sufficiently large n, problem (1,)-(2,)

bas at least one continuous solution, and every solution z,(t) of (1,)-(2,) satisfies

a < z4(t) < ¢, for -7, <t<T (Ta)

-1
respectively

2l

a<a:,.(t)<‘y_1

c,for0<t<T. (7%)

The question is if we choose an arbitrary sequence z,(t))n31 of solutions of problems (1,)-
(2a) respectively, then 2,(2))n>1 converges uniformly to a solution of (1)-(2)? In the case:
that (1)-(2) has at most one continuous solution the answer is given by the main result

of this section:

Theorem 3.1. Suppose that problem (1)-(2) has at most one continuous solution and let
the conditions of Corollary 2.8 or Corollary 2.4, respectively, hold. Then, the continuous
solution z(t) of (1)-(2) depends continuously on f, ¢, 7, i.e. (Zn(t))nx1 converges uniformly
to z(1).

Proof. From (7,) or (7,), respectively, we deduce that the sequence (x4(t))n»1 is uniformly
bounded. In order to.apply Arzeld’s Theorem (see {6, p.138]) we derive (1,) with z(t) =
z(t) and we obtain

z:l(t) = fn(t’ :l!,.(t)) - fn(t — Tny ¢n(t - Tn))v for0 <t<T.
From the continuity of f and ¢ we deduce that there exist M, N > 0 such that

| f(t,z) |< M forallt € [0,T]and z € [“’7'73]

| F(t,(t) |< Nforallt € [—7—n,0].

Now, using that f, " f, ¢, ~ ¢ and 7, = T, we get for n sufficiently large

| fat,2) |< M + 1forallt € [0,7] and z € [4,7 1 1C]

| falt, dn(t)) IS N + -l for all t € [~1,,0].
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Consequently

| 2,(2) |=] fa(t,za(t)) = falt — Tn,du(t — 7)) ISM + N +2for0 <t < T.

So (z},(t))n31 is uniformly bounded. By Arzeld’s Theorem we can choose a subsequen

(Zny (t))kp1 such that z,, * zo on [0,7), where z, is a continuous function on [0,7]. Bu

from (1,) we have
' .
zq,(t) = fon(8,20,(3))ds for 0<t<T

t=Tn,

and ta.lging the limit as k — oo, we obtain l
. \
2oty = [ S, u(s))ds for. 0t ST '

t—71

where we have used the hypothesis f,, * f, ¢n, ~ ¢ and 7,,, = 7. Hence z(t) is a solution
of (1)-(2)
Now the uniqueness of solutions of (1)-(2) implies that zo = . Moreover the entire

sequence (£n(t))n>1 converges uniformly to z(t). The proof is now complete. a

An immediate consequence of Theorem 3.1 is:

Corollary 3.2. Suppose the conditions of Corollary 2.3 or 2.4 hold for (1)-(2) and there
exists k > (0 such that

| f(t,21) ~ f(t,z2) |< k|2, — 22| forall t€[0,T] and x,,z, € [u, 7? l.c[.

Then problem (1)-(2) has an unique continuous solution which depends continvously on

f} ¢:T'

Proof. Using Corollary 2.3 or 2.4 respectively and Gronwall’s Lemma it is easy to obtain
the uniqueness of solutions for (1)-(2). Now, we can apply Theorem 3.1 and the proof is

complete. o

Another result can be derived by using the "one-sided generalization of Nagumo’s crite

rion” (see [4. p.35)).
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Corollary 8.3. Suppose that the conditions of Corollary 2.3 or 2.4 hold for problem (1)-
(2) and

[f(t,z1) — f(t, z2))(z2 — 23) < (z—l—t—m)z- Jor 0<t<T and

T
I, T2 € [a”y—lc[. (13)
Then (1)-(2) has an unique solution which depends continuously on f, ¢, 7.

Proof. Let us observe that (1)-(2) under condition (3) is equivalent with' the Cauchy

problem:

z'(t) = h(t,z(t)), for 0<t<T, (14)
z(0) = b,

where h(t,z(t)) = f(t,z(t)) — f(t — 7,¢(t — 7)). From (13) we obtain that

- 2 .
[A(t, z1) — B(L, z3)}(z1 — 22) < (—zl—Tm—zL for 0<t<T and

Ty, T2 € [a': _—j__c[ ’
v--1
and consequently, (14) has an unique solution (see [4, p.35]). Therefore, problein (1)-(2)

has an unique solution and we can apply Theorem 3.1 to obtain the conclusion. 0O

If we suppose that f(t,z) is nonincreasing with respect to z € [a, ?1——1"[' for t € {0,T],

then (13) is obviously satisfied. So we proved the following result:

Corollary 3.4. Suppose that the assumptions of Corollary 2.3 or 2.4 are satisfied and
f(t,z1) 2 f(t,z2) whenever z, < z3, 1,22 € [a, ‘—Yl—fc[ and t € [0, T].

Then problem (1)-(2) has an unique solution which depends continuously on [, ¢. 7.

4. Continuous Dependenc_e on f, ¢, 7 of the Minimal and Maximal Solutions.

What happens when we have no uniqueness? Let us note that problem (1)-(2)
is equivalent with the Cauchy problem (14). So, we locally have a minimal z.(¢t) and a
maximal z*(t) solution of (14) (see [4, p.25]). Suppose that the assumptions of Theoremn
2.1 or 2.2 hold. Then we have at least one continuous solution z(t) of problem (14) on
[0,7], with the property (7’), hence ¢ < z(¢) < z*(¢) and using the apriort bound -X5c
obtained in the proofs of Theorems 2.1 and 2.2 we deduce that z(t) is defined on [0,7)
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and @ < 2°(¢) < zXgcfor ¢ € [0, 7). On the other hand, if we suppose that /(¢,0) =0
for t € [~7,T] then considering only nonnegative solutions for (14), we have 0 < z,()
< z(t) for t € [0,7]. Consequently z.(t) is defined on [0,7]. So we have a miniml
and a maximal solution for (1)-(2) on [0,77]. It is well known that in general we have no
continuous dependence on the data for the maximal and minimal solutions. Moreover the
result from {6, p.176] can not be applied for problem (1)-(2) because the variation of b in
(14) implies, by (3) the variation of ¢ which implies the variation of A in (14).

In order to obtain the continuous dependence on f, ¢, 7 of the minimal and
maximal solutions we suppose that
(Hs) “ f(t,z) is nondecreasing in z for all ¢ |-,7] and z € [a, _—;}Tc[

As in the previous section we consider the family of continuous functions f{tz),
®n(t), n > 1 and the sequence of positive real numbers 7, n > 1 such that b, = ¢,(0) =
L2 fa(s,8n(s))ds, T = 7, ¢n “pand fn * fas n — oo and the problems (1,)-(2).
Moreover, we suppose that for each n > 1, f,(¢,z) satisfies (Hs) with 7 = 7.

We need the following comparison: lemnma:

Lemma 4.1. Let us consider the functions fi(1,z), ¢i(t), ¢ = 1,2 and the real pasitive
numbers 7;, i= 1,2 such that (H,)-(Hs) hold for (1;)-(%), i =1,2. Also suppose thal
Ai(tz) < fhi(tz) for all t 10, T] O [r5,T] and = € [a,;zTc[, $i(t) < ¢alt) forall te
[=71,00 0 [=72,0], and ¢:(0) = [° fils,i(s))ds, ¢ < du(t) < Lye for-all t [-7,,0), i =
1,2. Then (1;)-(%), i = 1,2 have the minimal x;+(t) and the mazimal x;(t) solutions such
that

v

y—1

a<zio(t) L zi(t) < c for te[-7,T),i=1,2

and
Z1+(t) < z3e(t), z;(t) < x3(t) for t € [—m, T)N{—7,,T).
Proof. E;, K;,U; be as in the proof of Theorem 2.1, i = 1,2 (with 7 = ;). Define
l. :U; = K;

t

Tiz(t) = fi(s,z(s))ds for t €[0,7],

t—-7;
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where fi(s,z(s)) = ¢i(s) for s € [-7;,0]. Also consider the sequences (A7)n>y, (3! ),51 <
U; such that

Al(t)=a for t€[0,7],

AM! =Ty (A}) for n>1

1., 7
B} = L for t € (0,7)
B =Ty(B}).
Following the proofs of Theorem 2 and 3 from [8) we obtain that

a=Al<A*<..<z.<2]<...<B’<B!'=

| Lo i=12
and (A?),(B?) converge uniformly on [0.7] to z;» and z}, respectively, the minimal and
maximal solution for (1;)-(2), i = 1,2.

Moreover, it is easy to prove that if z; € U; and x1(t) < z4(t) for all t € (0, T) then
(Thx:1)(t) < (Taze)(t) for all ¢ €[0,7]).

Consequently, AT(t) < A3(t), Bp(t) < B3(t),for alln > 1 and t € [0,7].
Taking the limits as n — 0o, we obtain that z,.(t) < zj.(t), z}(¢) < z3(¢) for
telo, 7]

Thus, the proof is complete. ]

First we shall deal with the continuous dependence of the minimal solution:

Theorem 4.2. Suppose that f, " f, ¢n. ~ &, 7, = 7 as n — oo, (Hs) holds for each n
> 1 and (H,)-(Hs) hold for problem (1)-(2) with strict inequalities in (§), (5) and ().
Then, for sufficiently large n problem (1,)-(2,) has a minimal solution z,.(t) such that
0 < zpe(t) < zLyc for t € [0,T] provided that (8) holds. Moreover, if for cach n > 1,
Hltz) < f(t,»), ¢,.(t,m) < ét,z) and 7, < 7 forall t € [~7,,T]and x € Iu, w{|‘|

then 0 z.

Proof. From Corollary 2.3 we deduce that Lemma 4.1 applies to problems (1} (2.}, i})
{2) for sufficiently large n. Hence
¢ < Tpe < 2Tu < —-—7——'('.
vy -1
As in the proof of Theorem 3.1 we can choose an uniformly convergent subseqirence ol

(#ae(£))uz1 to zo. Taking the limit in (1,) we obtain that 2y is a solution of (1)(2) But
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z. is the minimal solution of (1)-(2) in U, and by Corollary 2.3, each solution of (l)~(2).
is in U, hence z. < z¢ and using the fact that z. is un upper bound for the sequence
(Zn+(t))n>1, we deduce that z. = zo. Now, the uniqueness of the minimal solution z.

implies that the entire sequence (z+(t))n>1 converges uniformly to z.. 0

The corresponding result for the maximal solution is:

Theorem 4.3. Suppose that f, " f, ¢ " @, 7w = 7 as n — 0o, (Hs) holds for ecach n
> 1 and (H,)-(Hs) hold for problem (1)-(2) with strict inequalities in ({), (5) and (6).
Then, for sufficiently large n problem (1,)-(%) has a mazimal solution z3(t) such that
a < zp(t) < ;hc fort € [0, 7] provided that (8) holds. Morcover, if for each n > |,
fa(t ) > f(t,2), dalt,x) < ¢(t,z) and Ta 2 7 for allt € [-7,,T] andzc € [a,;z—lc[,

'Y

then z;, ~ z*.

The proof is similar with that of Theorem 4.3.

Remark 4.1. In Theorem 4.2 we can give up the condition (8) and use (H;) instead of
(Hz). But this is not possible for Theorem 4.3 because, in this case, Theorem 3 from (8

and Lemma 4.1 are no more true.
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LOW ORDER SPLINES IN SOLVING NEUTRAL DELAY
DIFFERENTIAL EQUATIONS
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Abstract. Some low order splines (linear, quadratic, hermite cubic) and spline recur-
rences are used in algorithms for the numerical solution of initial value problems in

neutral delay differential equations.

Key words: splines, numerical solution of retarded differential equations

1. Introduction

The mathematical models of retarded processes in many fields of applied scicnces
lead to delay differential equations. We are interested in the numerical solution of the

initial value problem

v'(t) = f(,y(t), y(d(1)),¥'(d(1))), t € [a,b], @ < d(t) <, (1)
y(t)=g(t) fort € [o,a], a<a<bgel! (2)
Suppose that the functions f, g, d satisfy certain conditions which guarantec the existence
and uniqueness of the solution of the IVP (1) (see e.g. [4),[7],[1]).
The validity of the condition
9'(a) = f(a,g(a),v,w), with v = g(u),w = g'(u),u = d(«) (3)

eliminates the jump discontinuities in the first derivative of the solution caused by the
délay function . {t) . These discontinuities appear generally at the points & which are the
roots of the equation (see {1}, [17], [4], (7])

d(&) = &i-1, So=a. (4)

These points can now be the the points of discontinuity of ¥” (y’) and we shall count
them to the obligatory knots of the spline used to the approximation of the solution. In

practical computations with given discrete values g(t;) we can arrange the validity of the
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condition (3) by approximation of ¢’(¢;) by unique spline Sz1(z) or s3;(z)) interpolating
the starting values g(t;) and fulfilling the condition (3).

In case that the condition (3) does not hold we recommend to restart our algorithins
at such points. The simplest case d(t) < ¢ for ¢ > a with monotone increasing delay

function d(t) is quite natural in many applications.

2. Low order splines

Let us have the spline knot set on the interval [a, b
(Az) ;=29 < ) < ... < Ty < Tpy) With stepsizes h; = z;;, — x;. (5)

Definition 1 A function s(z) = sk.d(z)‘ is called a spline of the degree k
and with the defect d on the knotset (Azx) if

1. s(z) € C*zo, zp41),

2. s(z) ts a polynomial of the degree k on each interval {z;, z;y:],

i=0(1)n .

In this contribution we shall use the following low degree splines ( see e.g.[2],
(10},(12], [18))

o linear splines (polygons) sy, € C°,

e quadratic splines s, € C?,

o the local Hermite splines s3; € C*, sg3 € C2.
We use the local parameters s; = s(z;), m; = s'(z;) in appropriate local representations

with the local parameter ¢ = (¢ — z;)/h;

su(zi+ qh) = (1 -¢q)si+gsisn, (6)

sa(@i +qh) = (1—¢")5i + ¢’sisa + hig(1 — q)mms, (7)
= s+ higl(1 - g/2)mi + (9/2)minl, (8)
= (1 - q)si +9(2 = @)sirs + higly = D (9

We can use some function values g; = s(t;) with x; < t; < 2y, di = (t; — x;)/h; in the

local representations
sa(z) = (=@l —g/di)si+ q[l — (1 — g)/(1 ~ di)}siys +
[(g/d)(1 - @)/(1 — di)gi.
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81(2) = gi + hi(q ~ di)[(2 — q — di)m; + (g + di)mp]/2. (1)

With the local parameters &'(t;) we can use the representation
sn(z) = a(q)a: + b(q)is1 + hic(q)s'(ts), di #1/2 (11)

with b(q) = —q(q — 2d;)/(2d; — 1), a(q) = 1 - b(g), c(q) = q(q — 1)/(2d; ~ 1),

su(z) = s; + himiq + h;qa(al(ti) -my), di=1/2. (12)
For the local Hermite cubic spline we use the local representation (see e.g.[2], {10], [12])
sxn(z) = (1 - ) (1 +2¢)si + ¢*(3 - 2)3i41 + hig(1 = Q)1 ~ @)mi = gmua].  (13)

The local representations of splines enables us to compute the function value or the value
of the derivative in any point of the retarded argument from known local parameters. In
the predictor formulas we use some of the recurrence relatious between local parameters
8 = s(z;), m; = $'(z;), gi = s(t),

% < t; < x4 of the approximating spline s2,(z):
mi+mip = 2Asipy - 8i)/hi, (14)
aimi_y +bim + amip = 2(gi - giea) (15)
with a; = h;_ (1 — di_1)?, ci = d2hi, b; = hidi(2 — di) + hioy (1 — d2)).
On the equidistant knotset with the stepsize h; = h, d; = 1/2 the last recurrence reads
(mi—1 +6m; + miy1)/8 = (g ~ gia)/h (16)
Similar recurrences hold for the values of the second derivative (which is constant over
the local intervals) - see e.g.[10] and section 5.2 .
3. Simple explicit algorith,ms

3.1. Spline s;; in Euler’s method. Let us have the problem (1)-(2) with known points
€ of discontinuities of y'(y”). These points should be used as obligatory knots of the
approximating spline, with so many additional inner knots as the accuracy requires.

Let us denote in the following t; the knots of spline s;; used,

u; = d(t;) < t;, v; = y(u;), w; =y'(u;).

The modified Euler explicit algorithm known from ODE’s (see {3]) and 5] for the problem
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(1)-(2) with given functions f,d, g can be described as follows:
Algorithm FDELRI(h,t,ys,yps) for computing y!,yis1:

1. Let us have the knotset t = [t;] containing the points §; with stepsizes h = [hj],
constructed a priori or during computations; the starting points are included
in our knotset. The input vectors ys,yps contain the starting values ys(i) =
9(t:), yps(¢) = ¢g'(t:) of the solution and its derivative - in the amount which at
least corresponds to the needs of the problem solved. We do not suppose to
have the analytic expression for the starting function g(t) generally, although
it is easily possible to use it and obtain so quite naturally the starting data on

. the knotset. The prescribed accuracy parameter may be added for controlling
accuracy strategy, which v;ill be not discused here.

2. In case a =a, d(a) =a, y1 = g(a) we conipute
v2 =y + b1 f(a,51,5,9(a))
to have the ini'tial vector ys with at least two components;
in the general case, given analytic form of function g(t),
we compute d(a) and corresponding values of the function ¢, ¢
to calculate the value y;.

3. In the general step in the knot ¢ = ¢;:
find u; = d(t;);
find index 3 such that ¢j_; < u; <¢j;
compute ¢ = (u; — tj—1)/hj-1; vi = (1 - q)y;-1 + qy; ;

4.if j <i—1, then w; = (1 - q)y; , +qv} ;
else w; = (1 — q)yi_, + qf (ti, yi, vi, yi_,); end
vi = f(t, yi, vi, wi),

Yir1 = i + hiyj.

Example | The equation with the general delay function d = d(t)

y(8) = = 5ly(t) + y(d(t))] — ¥ (d(0) + 2Atcapl-4/2) + devp(~df2)

has the exact solution y(t) = t%.exp(~—1t/2) with y(0) = 0, y'(0) = 0.

For the delay function d(t) = 3t/4 with d(0) = 0 the conditions (3) and y(0) = 0 give
¥'(0) = 0. For the general delay function with p = d(0) < 0 the coudition (3) reads
¥'(0) = —1[y(0) + y(p)} — ¥'(p) + 2p.exp(—p/2). For the delay function d(t) = 3t/1 we
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if < % (833 interpolant )
v =(1-q)%(1 +2q)y;-1 + ¢*(3 — 2q)y; + hj-19(1 - @)1 - Q)y}-, — qv]];
w = 6q(1 — q)(y; — yj-1)/hj-1 + (1 — g)(1 = 3q)y}_, + q(3¢ — 2)y/;;

else (321 interpolant)
v=yioi(1 - @) + id® + hicrg(l — Qyi_y; (17)
w = 2q(yi — yi-1)/hiar + (1~ 2q)y)_,; (18)
end .

3. 4 = f(ti, g, v, w);

4. Yirr = plyi-r + (1 — p2)i + (hica + hi)pivl, pi = hifhicy
(extrapolation with s3; used - with midpoint rule as a result in equidistant case)
- or with more stability

(the generalization of LMM yiy1 = yi + hi[3y} — v_,]/2)

Yirr = ¥i + hipil—pivi_, + (2 + po)yil/2.

Remark The weak stability of resulting midpoint formula is known from ODE’s and can

be recognized in computations. Extrapolation from cubic s3; spline leads to the formula
Yir1 = Syiot — 4y + 2h(yi., + 2:)

which is unstable.

Ezample 3  The equation

y'(t) = 4y(d(t)) — 2y(t) - ¥'(d(t)), t€[0,5]

with the delay ®inction d(t) = t—exp(—t/10), d(0) = —1,d(t) < t fort > 0 has unknowu

exact solution. The condition (3) for the starting function g(¢) reads now
¥'(0) = 4g(--1) - 29(0) - ¢'(~1) - 2.

We have constructed this function by Hermite interpolation with given values g(--1), ¢'( -
and y'(0) computed from this condition. The results for the equidistant knot set with & =
0.1 are plotted in Fig.3a. The solution on the interval [0, 10} for g(—1) =0, -2, ¢'(—1) =
1, g(0) = 2 is plotted on Fig.3b.
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V21 = sa(tiy1) with local parameters y;, y!, viy1;
why, = 3% (4iy1) with local parameters y;,39,,, ¥/ ;
"‘?ﬂ = f(ti+hy?+hv?+lvw?+l) .

5. Correct the predicted values - iterate

y:tni =y + lhi(!/: + m§+l)’

.",:', = 331(%i41) -local parameters y;, y/, y-+1

wuk-tl = sy (tip1) - local parameters y;—1, 4, ! ,

E+1 k41 | k4l .
.+1 =f (tu+1,.'/.1'1 » Y ..:', ,w,;"l ) (collocation)

to convergence ; then y/,, = myy, .
Remark: We recognize the trapezoidal formula in the correction step; it is known to be

the convergent method of the order p =2 (see e.g. [1],[3]).

Ezamples 4, 5. For the equation

I, , 3
y'(t) = B8t — y'(d®))] - Zlw(t) + y(d(t))]
with the delay function d(t) =t — exp(—t/10), d(0) = -1 the continuity condition (3)

for the starting function reads now

¥'(0) = —%y'(—‘l) - %[9(0) +g(-1)};

we have constructed again the function g(1) by the Hermite interpolation from data in
t = —1,0 ; the results for five such data are plotted in Iig. 4a . On Fig. 4b we can see
the result of numerical solution of the equation

y(t) =1—-2y%(t/2) with y(0) =0, ¥'(0) =0, t€]0,14]

and with the exact solutin y(t) = sin(t); the starting values were taken from the exact

solution.

5. Higher accuracy methods

We can try to obtain the higher accuracy in case of the solution smooth enough
by correction with the second derivative, obtained from the values of the first derivative

or from the recurrence relations for the splines sy, 332 .

5.1. Algorithm FDIMPS.
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together with the condition of collocation at ¢t = 2,41, yi41 = y(zis1),)
l 1 " " e
‘,;[3(‘.'4-1) - s(t:)] - 2—4"[3 (tiv1) = 8"(6)] = S(@i1y Yigs, v, 0), (23)

with u = d(zi41), v = s(u), w = ¢'(u) and delay function d(t)

offers to be the formulas for computing stepwise the new local parameters on the interval
[tiy ti41); unfortunately these recursions correspond to the unstable LMM formulas, what
is the case of many similar formulas at hand.

After some experiments we propose to use the formulas described below in the Algorithm
FDIMP4 for computing local parameters [y, ', y”] at the points of the equidistant knotset
[t:] (using the values of y,y’ computed in the midpoints).

Algorithm FDIMP{

1. Suppose we have given the starting interval (or computed it with some similar
-or more precise, with iterations to the given tolerance - starting procedure)
containing at minimum the points ¢; < ) < t; of the equidistant knotset ;]
with values of y;,y},yf at t = ¢t;, j <4

2. We compute the function vaiue of y(z;41) at the midpoint ;1\ = ¢; + /2 with

the stable formula

Y(zin1) = [y(ti-1) + 3y(t:) + 3hy'(8))/4, (24)

the delayed values of u = d(x;41),v = y(u), w = ¥'(u) and then we compute the
value of y'(zi41) by collocation to FDE.
3. We predict the value y(t;41) from the stable formula (p = 3)

y(tis. ) = [y(tica) + y(&) + 3hy (2is1))/2 — B*ly"(ticr) + Ty (4)]/16, (25)

and compute the delayed values v = d(t;4,),v = y{u), w = y'(u) using iuterpo
lation with sa; in case u < t;, or from sg,.
4. We correct the value y(¢;4+,) and compute the values y'(i41), y"(Liy1) to the

given tolerance using Hermite interpolant ss3 with y,,y,y7, j = 1,2 + |

yltiar) = y(t) + Aly' (L) + ¥' (L2 + Ry (6) ~ v (Lan))/ 12, (26)
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Dedicated to Prof. Gheorghe Coman at his 80** anniversary

Abstract. Let G be a finite group and k a commutative ring. In the context of fully G-
graded k-algebras versions of the Green correspondence and of the Burry-Carlson-Puig

theorem, generalizing recent results of M. Auslander and M. Kleiner.

1. Introduction

In [AK], M. Auslander and M. Kleiner have proved two categorical versions of the
Green correspondence and two versions of the Burry-Carlson-Puig theorem. These results
were obtained as applications of some general theorems concerning adjoint functors and
quotient categories. It is well-known that the classical theorems mentioned above hold in
the context of fully graded algebras (see (D], [N] or {B]). The aim of this note is to show
that the results of [AK] also hold for fully-graded algebras.

We begin by recalling some hasic facts about group-graded algebras and graded
modules. The main references are [N] and [NV]. Let £ be a commutative noetherian ring,
G a group and R a fully G-graded k-algebra. We shall assume that G is finite and that
R is a finitely generated k-module, and denote by S(G) the set of subgroups of (G and by
R-mod the category of finitely generated (left) R-modules. If H is a subgroup of G, then
an R-module M is called G/H-graded if M = &,cq/nM. (as additive subgroups) and
R,M, C M, for all g € G and = € G/H. We denote by (G/H, R)-Gr the subcategory
of R-mod consisting of G/H-graded R-modules and and grade-preserving linear maps.
Notice that for H = G we obtain the category R-mod, and for H = {1} we obtain the
category R-gr of finitely generated G-graded R-modules.

A direct summand of a G/H-graded R-module will be called a H-projective K-
module, and we denote by (R, H)-mod the full subcategory of R-mod consisting of H-
projective R-modules. If F is a subset of S((7), then an R-module M is called F-projective

1991 Math tecs Subject Classsfication. 16W50, 20C20.
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if there is H € F such that M is H-projective, and (R, F)-mod will denote the full subcat-
egory of R-mod consisting of F-projective R-modules. Finally, we denote by (G/F, R)-
mod the full subcategory of R-mod consisting of objects M for which there is H# € F such ‘
that M € (G/H, R)-Gr. '

_ If Ais an additive category and M, N € A, denote for short #(M, N) = Homa(M, N).
Let B be a full additive subcategory of A, and let B(M, N) be the subgroup of A(M, N)
consisting of morphisms between M and N which factor through an object of B. Then one
can define the quotient category A/B, whose objects are the objects of A and (A/B)(M, N) =
A(M,N)/B(M,N). If fM — N and g N -+ P are morphisms in A, then the composition
is defined as (g + B(N, P)) o (f + B(M,N)) = go f + B(M, P). '

Let A and B be additive categories, X’ and ) full additive subcategories of A, and

T A — B an additive functor. We denote by T X the full subcategory of B consisting of
all finite direct sums of objects T'(X) with X € X. Finally, we say that X divides Y if

every object of X is a direct summand of an object of Y.

2. Induction, Coinduction and Restriction

The main ingredients in [AK] were the properties of adjoint functors. We present
here the constructions over G-graded algebras (see also for instance [NRV] and [M]). The

assumptions are those of the first section.

2.1. Let H be a subgroup of G and consider the subalgebra Ry = @aen Aa. We have
two functors from Ry-mod to (G/H, R)-Gr. The first is the induction functor

Ind$ = R®g, — Ry-mod — (G/H, R)-Gr,

where for N € Ry-mod, (Ind$ N), = R, ®g, N for all z € G/H, where R, = ®,¢.R,.

The second is the coinduction functor
Coind§ = Homp, (R, -) Ry-mod — (G/H, R)-Gr.
For z € G/H and N € Ry-mod,
Coind§(N); = {f € Homp,(R,N) | f(Ry-1) =0 for y € G/H, y # z},

where y~! = {g7' | g € y}.

2.2. The truncation functor (=)y (G/H, R)-Gr - Ry-mod is clearly a left inverse for
both Ind§ and Coind$. If R is fully graded, that is, Ry Ry = R,y for all g,h € G, then it
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is well-known that these functors are equivalences of categories, and therefore Ind% and
Coind?, are naturally isomorphic. We give here an explicit isomorphism between these
two functors. If N € Ry-mod, let

¢ R®gr, N = Homp,(R,N),

{(rg ®r, n)(r}) = riryn if hg € H and 0 otherwise, where r, € R,, r}, € Ry, g, € G.
We may also write { as follows: for r € R,

C(rs ®ry n)(r') = gy,

where r} i = 3 ,ep Tho-1- It is straightforward to see that ¢ is a natural isomorphism
in (G/H,R)-Gr. To define the inversc of {, we need to chbose a system {gi,...,q}
of representatives for the left cosets of H in G, and for each g;, let ri,... ”':1 € R,
8.8, € R, such that Y risi =1. Then (™! Homg,(R, N} = R®g, N is given
by ¢=Mf) = has L1 7§ ®ra £(s))-

We shall be interested to regard Ind§ and Coind$; as functors from Ry-mod to

R-mod, and we shall also consider the restriction functor Res§ R-mod — Ry-mod.

2.8. The functor Indg is a left adjoint of Res§;. For M € R-mod and N € Ry-mod, we

have the natural isomorphism
aN.M Homn(R ®ry N, M) — HomnH(N, M)

defined by axm(f)(n) = f(1 ® n), with inverse ay'y(f')(r @ n) = rf'(n), for all n € N,
r € R. The unit of this adjunction is

nv N = Res(R®r, N), n(n)=1@n;

the counit is up R ®r,, R,es,cj(M) -+ M, py(r ®m) =rm.

2.4. The functor Coind$ is a right adjoint of Res§j. The natural isomorphism
ym.n Homg,, (Res§ M, N) — Homg(M, Hompg, (R, N))

is defined by Y n(f)(m)(r) = f(rm), and its inverse by 7y n(f1)(m) = f'(m)(1), for all
r € R, m € M. The unit vpy M — Coind$j(Res§; M) is defined by vp(m)(r) = rm, and
the counit 8y Res Coind§ N — N by én(f) = f(1).
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32.5. If R is fully graded, it follows that Ind$ is both a left and a right adjoint of Res;.

Using the above definition of { we may give explicitely the definition of the isomorphism

Bu,~ Homp, (Res§ M, N) -+ Homp(M, R ®g, N).

We have that
[} t
Brn(f)m) = 33 i @ny f(sim),
iml jml
where for i = 1,...,0, r§,...,ri, si,...,s| are chosen as in (2.2). The inverse is

B~Y(f')(m) = f'(m)y, for all m € M. Then the unit associated to 3 is 7y M — R®gr, M,
Tm(m) = 1®p, m, and the counit is ey Res§j(R®r, N) = N, en(r ®r, n) = run, where
*H = Y ey Th € Ry and n € N. We have used here that (R®g, N)n = Ru®@r, N = N.

Finally, we record Mackey’s formula (cf. [D}, [B] or [N}).

Theorem 2.8. Let K and H be subgroups of G, and ¢y,. .., 9, be representatives for the
double cosets of (K, H) in G. Assume that R is fully graded and that N is an Ry-module.
Then s

Resf(R®r, N) ~ @D Rk ®r .y (Roitt ®ny N).

i=1

3. The Green Correspondence

in this section, k will be a commutative ring, R a fully G-graded k-algebra, and
we shall preserve the conventions and notations of the preceding sections.

We fix the subgroups D < H of G, and consider the categories ¢ = H-mod,
H = Ryg-mod, D = Rp-mod, and the functors § = Ind%, &' = Indf, T = Res§,
T' = Resl .

Let g, = 1,43, ..,9, be representatives for the double cosets of (H, H) in G. Then,

as an Ry-bimodule, we have that R = @;_, Ru,u. Define the functor

U= @ Rygn ®py —H =+ H.

i=2
We need only to check that the assumptions made in {AK] on these functors are satistied.
We have already seen that S (respectively ') is a left and a right adjoint of T
(respectively T).
From. the fact that Ry is an Ry-bimodule summand of K, one casily can deduce

that the following assertions hold.
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31a. ToS=idyoU.

8.1.b. The unit pidy — T o S induces the functorial morphisms n; idy — idy and
nu idy — U such that 1, is an isomorphism.

3.2.c. The counit ¢ T o S = idy ® U — idy induces the morphisms ¢, idy — idy and

w U — idy such that ¢, is an isomorphism.

We need now to look for a subcategory Y of H such that S5’ o T'Y divides Y and
U-y. |

We chose a subset Y of S(H) closed under subgroup and conjugation in H, let
X={DAY |Y € Y}, and let Y = (H/Y, Ry)-mod (or with the same effect, J =
(Rm, Y)-mod).

If g € Gand N € Ry-mod, denote °H = gHg™" and N = R,®gr, N ~ R,y ®p,, N,

which is clearly an Rsy-module. With these notations we have:

Proposition 3.2. a) S'o T'Y C (H/X, Ry)-mod. b) (H/X, Ry)-mod divides S’ o T"Y.
¢) The quotient categories Ry-mod/S' o T'Y and Ry-mod/(H/X, Ry)-mod coincide. d)
SoT'yC).

Proof. c) and d) are consequences of a) and b). For a) let N = Ind W, where Y ¢ Y.

and W is an Ry-module. By Mackey’s formula we have that
T'N = Resf} Indff W ~ €D Indp,wy Respyy "W,
A

where h runs over a system of representatives for the double cosets of (D,Y') in H. We
have that %Y € Y, so T'N € (D/X, Rp)-mod. Consequently, S'T'Y C (H/X, Rj;)-mod.
Let now Y € Y and W € Rpny-mod. Since T o S = id@@ U, again by Mackey’s
formula it follows that IndD., W is a summand of T'N, where N = Ind{ Indp., W. It
follows that Indf , W is a direct surnmand of S’ o T'N, hence (H/X, Rﬁ )-mod divides
S'oT). | 0

We need some additional notation. if F C S(H) denote F' = {HNW' | ' ¢ ¥V, g ¢
G\ H}, and by Z the largest subset of S(D) satisfying Z' C Y.

Proposition 8.8. Assumec that F is a subset of S(H). Then:
a) U((H/F, Ry)-mod) C (H/F', Ry)-mod.
b) (H/F', Ry)-mod divides U((H/F, Rg)-mod).
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Proof. Proof a) Let F € F, V € Re-mod and N = Ind® V. We have that U(N) = |

D:.. Bugn ®ry N, so it is enough to prove that Ry,y @r, N € (H/F', ’tyy)-mod for
g € G\ H. We have that

Rugn ®ry N ~ Ry ®@Rynoy (°N) = Indf oy Respl o Ind (V)

By Mackey’s formula we obtain

Resiiney Indgf (V) ~ @ I“dzg:fm"vﬁ‘ Res:;fwlm"vﬁ‘(hgv)v
h

where h runs over a system of representatives for the double cosets of (H N?H,9F) in 9H.
There is t € H such that hg = gt, so HN?H N"F = H N9F, hence U(N) is a
direct sum of modules of the form P,; = Ind} . Resyr e (9V), with g€ G\ H, t € H
Since gt € G\ H, the assertion follows.
b)If g e G\H,t € Hand V € Rr-mod, we have that P, above divides
U((H/F, Ry)-mod), since we can regard g as a representative for HgH, t € H as t =
g 'hg for some h € 9H which, in turn, is regarded as a representative for ( H N 9H Yot
We take W = Indf .- Q € (H/F', Ry)-mod, where g € G\ H and Q € (H 1

9F)-mod, and let t =1 and V = Indf_,Hr‘F(f'Q}. Mackey’s formula again gives us that.
Ind¥ o Respror Indfr e @ >~ Indi c(Qa .. )W .

Since the modules of the form P, ; divide U{( H/F, Ry )-mod), it folows that (H/F', ;) mod
divides U((H/F, Ri)-mod). i

Corollary 3.4. a) If X' C Y, then S’ 0 Ty divides Y and U™')Y.

b) Let Y = {Y | 3g € G\ H such that Y < HND}. Then X = {X | ¢ €
G\ H such that X < DN} and X' CY.

c) Assume that EE H and DN EE G, and let Y = S(E). Then X = 5D N k)
and X' CY.

Since we have generalized to the case of fully graded algebras all the resuits of

[AK, Section 3], we may now state the main resuits.

Theorem 3.5. Assume that X' C Y. Then:

a) The functor Ind$ (Ry,Z)-mod/( Ry, X)-mod - (R,Z)-mod/(#. X} mod 5 an
equivalence.
92
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b) The functor Res§; (R, Z)-mod/(R,X)-mod — (Ry,Z)-mod/(Ry/Y)-mod is an
equivalence.
¢) Res§ oInd§ (Ry,Z)-mod/(Ry,X)-mod — (Ry,Z)-mod/(Ry,Y)-mod is an

equivalence isomorphic to the natural projection.

In order to state the classical Green correspondence and the variants of the Burry-
Carlson-Puig theorem, we shall assume that the commutative ring k is local, noetherian

and complete. This implies that for all H € S(G), Ry-mod is a Krull-Schmidt category.

Theorem 3.8. Assume that k local and complete and that X' C Y. Let M € (R, Z)-mod\
(R,X)-mod and N € (Ry,Z)-mod \ ( Ry, X)-mod be indecomposable modules. Then:

a) Ind$ N has a unique indecomposable direct summand g(N) 6 (R.Z)-mod \
(R, X)-mod.

b) Res$ M has a unique indecomposable direct summand f(M) € (Ry,Z)-mod \
(Ru,Y)-mod.

¢) f(g(N) = N.

d) g(f(M)) > M.

Theorem 3.7. LetZ, Y and k be as above, and assume that M € (R, Z)-mod\(R, X)-mod
and N € (Ry,Z) \ (Ry,X)-mod are indecomposable modules.

a) If B is an wcomposable Rp-module such that U(B) is relatively Y -projective
and M is a direct summand of Ind§; B, then B ~ f(M).

b) If A is an indecomposable R-module such that N is a direct summand of Res§y A,

then A ~ g(N).

Remark 3.8. Using the duality theorem of M. Cohen and S. Montgomery, J. Haefner has
obtained in [H] a version for graded algebras (not assumed fully graded) of the Green

.cétrespondence We hope to deal with this situation in a forthcoming paper.
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A NOTE ON THE REMAINDER IN A POLYNOMIAL
APPROXIMATION FORMULA

DIMITRIE D. STANCU

Dedicated to Professor Gh. Coman on his 60" anniversary

* Abstract. In this note one uses the divided differences as basic tool for expressing the
remainder in an approximation formulaof a function f € C[0, 1] by means of a Bernstein
type polynomial, introduced in 1994 in the paper [5)], defined by the formula (1) from
the paper, where r and s are integer, nonnegative parameters, subject to the condition
2sr < m, where m is a natural number. For the remainder of the approximation formula
(8) we have obtained a convex combination of second order divided differences, given in

(18)-(19). It geneniiles the formula (21), established in 1964 in the author’s paper [3j.

1. In this note we use the divided differences as a basic mathematical tool for
expressing the remainder in the approximation formula of a function J € Cl0,1] by
means of an associated generalized Bernstein operator, introduced in 1984 in our paper
[}, which is defined by the following formula

(Smeaf)) = Y Pucsril@) {Zp,.,-w (£ fn’)} , (n

k=0 3=0

where r and s are nonnegative integer parameters satisfying the condition: 2sr < m,

while
s . ,
Pos(®):=| (L) (2)
J
It is easy to see that we have Sy, ;0 = Smo0, = Bm -the Bernstein operator, derfined by
m _ k N
(Baf)) = Y- pmate)f (). @
k=0
while S, .1 = Lm, -the operator of Stancu {4], defined by
— , k k4r\
(Lm.rf)(x) = ;Pm-r,k(x) {(l - J?)f ("Tl) +af (—-1-;;—)} . {4)
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1991 Math tics Suby Classificats 41A36, 41 A80.

JJ




DIMITRIE D. STANCU

One observes that the Bernstein type polynomial S, ., f is interpolatory at both sides of
the interval {0,1], that is

(Sm,r,af)(o) = f(o)v (Sm,r.-f)(l) = f(l) (5)

By a straightforward calculation one can verify that if we consider the monomials ¢;(t) = ¢/

( = 0,1,2), where t € [0,1], then we obtain
Sm,ra€0 = €0, Smre€1 = €1 (6)

and

m

(Smrae2)(z) = 22 + [l+s r(r 1)] 21— 2) (7

Therefore the degree of exactness of the approximation formula

1) = (Smra§)@) + (Bmrahl@)  — (3

is equal with one.
2. We now proceed to investigate the remainder of the approximation formula (8).

The main result of this paper is represented by

Theorem 1. The remainder of the approzimation formula (8) can be expressed, by means

of the second-order divided differences, in the following form

12
(Rm"-',f)(:l:) = x('_z—m_l)_ : (CM,r.af)(z)’ (9)
where
(Cmrf)z) =
{(m—-sr) _Z- Pm—sr—1,4(2) (EP:;(I [ k+Jr k Ff’l’ + l.f])
k=0 =0
— k+q9r k+jr +v
+3T kz—; pm—ork(x (J-Zopa—l J 13) [z, mJ s ’:n ,f])} . (10)

Proof. It is easy to see that we can write
(Rm,r,lf)(z) = f(t) - (Sm.r,sf)(z) =
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- "g""’""(z) {z‘:p,.j(z) (f(z) -f (k + jr)) } )

=0 m

By using the first order divided difference, we have

-1 (EE) < (-2 25

and the expression of the remainder becomes

(Bmssf)z) =

m-—sr

= zp.‘,-(z) {-']; Z p,,._,r,;,(z)(mz -k —jr) [z, k ‘:'njr; f] } .
J=0 k=0 .

The key of the proof of the theorem consists in using the following important

simple identity:
mz—k—jr=(m—sr—k)z—k(l—z)+r(s—j)z—jr(l - x).

Further we split the expression of the remainder in two parts

(B s f)(2) = (Pmraf)(2) + (Qmoraf)(2), (11)
where
(Prmrof)(z) =
= 2 22} (x(Vnsa)o) = (1 = 2) W), (12)
with
(Vmraf)(z) =
—1-0r,-l e m —~ sr k() — gym-r=k zk+jr.
_g(m s _kA)v( L )z(l ) [,———m ,f]
and
(Wi raf)z) =
_ m—or m — sr £H(] — )yt k+jr
_gk( . ) (1-z) [z, ~ .f],
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while

(Qmraf)(z) =

= —rn; 2_: Pr-ori(2) {2(Tmraf ) 2) = (1 = 2)(Um,r s f)(2)}
k=0

with

(Taref)(a) = Lo = pusta) [2, 5250 ] (13

k+jr _
m vf]a “l)

By using some combinatorial relations we can establish the equalities

(Vm.r.nf)(x) =

(Uneu)@) = Y ipas(@) [z,

j=1

m—sr—~1

= (m —sr)(1 — z) z Pm—or—14(T) | T,

k=0

k+j
Jr;f],
m

(Wanrof)(z) =

m—asr-—1 . :
. k+r+1 | .
=(m ~ sr)z E Pm-or—1,4(T) [x, —]——-—‘: f] .

k=0 ' m

It follows that we can write

(Vinro f)(2) = (1 = 2)(Vinr o f) () =

m—sr—1
(Tn"‘s )Z(l'_;z) z pm—or—lk(z)[ k+Jr k-’]r-fl f] “5)

m m

since, according to the recurrence relation of divided differences, we have

[ k+ jr ] [ k+_1r+1 ] l[z k+jr -k+ﬁ+‘-f]

™m m m

If we replace this result in (12) we obtain

(Pmrsf)(z) =
_ z(z — )(m _ sr) Z e 1 4(2) (an k+]1 k +j‘I el f]) (16)
m? pord o m
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By using a similar technique, one can prove that

(Qmrsf)(z) =

zz(zm— 1) Y Prewa(z) (Zp,_l_,(:t) [z,k+1r k+]r+r’f]) a7)

k=0 j=0 m
If we replace (16) and (17) in (11), we obtain just the representation of the remainder
given at (9)-(10). O

3. By using the result established above we can state and prove

Theorem 2. The remainder of the approzimation formula (8) can be expressed by means

of a conver combination of second-order divided differences.

Proof. We can see that the expression of the remainder given at (9)-(10) can be represented
by means of a linear functional D, ,, composed by a convex combination of second-order

divided differences, namely

(Rmsaf)o) = [1 46721 222 =) (e, (18)

where

(D s f)(2) =

1 =" : Ck+gr k+jr+l
g {(m - sr) ,.Z.; Prn-or-14(T) (z Psj(2) [.1:, i/

j=

m-—er -1
4573 Z —— (Zl’n—la(-’") z, k +Jr’ k +]r + r,f]) } (19).

k=0
It is obvious that all the coefficients of this linear functional are positive and their sum
equals (D 0€3)(z) = 1, for any « € [0,1]. Hence it is made up by a convex combination

of the second-order divided differences evidenced in formula (19). ]

The equality (18) tells us that the remainder of the approximation formula (8) can be

represented under the following form

(RmrafN@) = (R rs€2)(2) - (Donrn f)(7)- (20)
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4. Now let us consider some special cases.
If s =0 or r = 0, then we obtain the Bernstein operator B,,, defined at (3). In this case
the representation given at (9)-(10) reduces to the following expression for the remainder

in the classical Bernstein approximation formula

k "“,f], (1)

-1
(R‘mf)(x) = ) me—l k() [z’ ’
k=0
established first in 1964 in our paper [3].
For s = 1 we get the Bernstein type operator Ly s, introduced and investigated in

the paper [4], which is defined at (4). In this case the expression of the remainder is

(B () = ZE= ){(m—r)mfkpm-,-,k(z)(l—w)([z,f—,’fi—‘,f]

k=0

k+r k+r+1. k. k
+.’L'[:t, mr?‘—_r:;_—;f]) +"22Pm-rk(z) T, — m’ +rvf]}s

k=0 m
which was first obtained in our paper [4].

Now let us state some consequences of our theorems.

Corollary 1. We have (Rn s, f)(0) = (R sf)(1) =0 and Ry, .f = 0 if and only if f

ts a linear function.

Corollary 2. If all the second-order divided differences of the function f are bounded on
[0,1], then we can write

(Burafo)l < [14 6520 222 g (22

where M3 (f) is the least upper bound of the absolute values of the second-order divided
differences of the function f on [0,1].

Corollary 3. If f is convez (resp. concave) on [0,1], without being linear, then we hare
Smeisf > f (resp. Smenf < f) on the interval (0,1).

Corollary 4. If f € C[0,1] and z is any fized point of [0,1], then there exist on thi

interval three distinct points u,,; v, and w,,, which might depend upon f, such that

(Rourof)(z) = [1 + 31'(1'"-: 1)] . :c(:tm- D [Um, U, Wi f] (213
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This statement needs to be demonstrated.
From the expression obtained for the remainder we can see that the degree of
exactness of the apprc;ximation formula (8) is one and also that R, ,,f # 0 when f is a
convex function. By using a known theor{niof T.Popoviciu (1] we can state that there

exist three distinct points u,,, vy and w, on [0,1} such that

(Rm.f.',f)(ft) = (Rm.'.te2)(x) : [uma Umy Wi f] -
By using formula (7) we arrive just to the representation (23), which permits to give a

simple proof of the inequality (22).

Corollary 5. If f € C*[0,1] then there ezists a point £ € (0,1) such that the remainder

can be expressed under the Cauchy form

(Rmsf o) = |14+ 57EZ 0] ZE= e, (24

2m

In the case s = r = 0 this formula was established first in our paper [2].
Finally, we want to mention that details and complete proofs of our theorems will appear

elsewhere.
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Dirk Wern er, Functionalanaly-
sis, Springer Lehrbuch, Springer-Verlag,
Berlin Heildeberg, 1995, 446 pp.

The author is a leading special--

ist in geometric functional analysis with
substantial contributions to the study of
M-ideals in Banach spaces, mainly in
spaces of operators. For a good account
on results in this area we recommend
the book by P.Harmand, D.Werner and
W.Werner, M-Ideals in Banach spaces
and Banach Algebras, Lecture Notes in
Math. vol. 1547, Springer-Verlag, Berlin
Heidelberg 1993. As it is natural to ex-
pect, the present book reflects, by the
choice of the topics and by their presen-
tation, author’s interest in the geometric
aspects of the theory.

The ce: :ral theme of the book is
the theory of Banach and Hilbert spaces
and of operators acting on them. The au-
thor postpones as much as possible the
use of locally convex spaces which are in-
troduced only in the eighth chapter. For

this reason, weak and weak* properties

BOOK REVIEWS

of Banach spaces are considered first in
their sequential versions.

The book is divided into nine
chapters and two appendices - A.Measure
and Integration Theory and B.Metric
and Topological épaces.

Pass now to the detailed presen-
tation of .the book. The first chapter
”Normed Spaces” contains the basic facts
about normed spaces as well as clas-
sical Banach spaces of sequences or of
functions. The second chapter ”"Func-
tional and. Operators” is concerned with
continuous and compact operators be-
tween Banach spaces. The conjugate
spaces to classical Banach spaces are cal-
culated. The chapter ends with a proof
of Riesz-Thorin interpolétion theorem for
LP spaces (real and complex forms).

Ch. III. "Hahn-Banach Theorem
and its Applications” is dealing with var-
ious vefsions of Hahn-Banach extension
theorem and its applications to separa-
tion of convex sets in normed spaces.
Some weak sequential properties of re-

flexive spaces are proved. The chapter



ends with a study of adjoint operators in-
cluding Schauder compactness theorem.

Ch. 1IV. "Fundamental Theorems
for Operators on Banach Spaces” con-
tains the basic principles of Banach space
theory relying on Baire category theo-
rem, i.e. Banach-Steinhaus principle,
open mapping and closed graph theo-
rems. As applications, one proves Ko-
rovkin’s theorem (the trigonometric case)
and Féjér’s theorem on Cesaro summa-
bility of- Fourier series.

Ch. V. "Hilbert Spaces” is
dealing with fundamental properties of
Hilbert spaces and of operators acting on
them with applications to Fourier trans-
form and Sobolev spaces.

The spectral theory of compact
operators on Banach and Hilbert spaces
is developed in the sixth chapter *Spec-
tral Theory for Compact Operators”,
with applications to integral equations.
Nuclear and Hilbert-Schinidt operators
are also considered.

Ch. VII. ”Spectral decompasi-
tions of Selfadjoint Operators” contains
a presentation of continuous and mea-
-surable functional calcubi for such oper-
ators. The case of unbounded operators
on Hilbert spaces is also included.

Ch. VIIL. "Locally Convex
Spaces” is devoted to the study of ba-
sic properties of loca;.lly convex spaces.
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Weak and weak® topologies on normed’
spaces are defined now in full geficral-
ity and some fundamental results on Ba-
nach spaces such as Alaoglu-Bourbaki,
Krein-Smulyan, Krein-Milman, Banach-
Dieudonné and Lyapunov theorems are
proved. A brief (but relatively thor-
ough) introduction to distribution theory
is provided.

Each chapter contains a set of well
chosen exercises illuminating, illustrating
or completing the questions in the main
text. -A section, containing remarks and
comments of historical nature as well as
references to related results, is included
at the end of each chapter.

Symbol and key indexes are in-
cluded. The bibliography at the end of
the book contains only books on func-
tional anaiysis and related fields. Refer-
ences to original papers are given in the
comment section of each chapter.

The result is a fine book which we
a recommend warmly to all people desir-
ing to learn or to teach (or both) func-
tional analysis. In reviewer opinion, the
book fully deserves an English version
which will make it accesible to a larger

audience.

S. COBZAY



WolfgangWalter: Analysis,
1-2, Springer-Verlag, 1992 ISBN 3-540-
55234-0; ISBN 3-540-55385-1

The two volumes of this math-
ematical analysis textbook written by
meessor Wolfgang Walter from the Uni-
versity of Karlsruhe, has been first pub-
lished as the third and fourth volumes
of the series "Grundwissen Mathematik”,
Springer Verlag, 1985 (vol.1) and 1990

(vol.2), respectively. This third edition

contains only a few changes with respect
to the first ones.

The book is addressed, first of all,
to those students who wish to profouhd
their knowledge in mathematical analy-
sis, but - especially by its conception - it
is useful also for those who teach mathe-
matical analysis, for those who use it as
an instrument, or simply wish to know
something about the scientifical (and cul-
tural) importance of this discipline in a
more general context. It is a lucid book,
accessibly written, without excessive for-
malism. By the presentation of some crit-
ical situations srom the history of math-
ematical analysis, the author succeeds to
capture reader’s attention and, in this
way, the lecture of the book becomes

more agreable. From each part of this

book comes out the idea that the under-
standing of the environing world, from a
rational point of view, and the revealing
of its laws is the most fascinant activity
which has ever been contrived.

Let us mention some subjects and
ideas treated in the book which distin-
guishes it from the majority of books on
mathematical analysis. The first volume
is devoted to functions of one variable;
from complex analysis only the power se-
ries are presented. It contains topics,
usually taught in Germany in the first
semester, to students from the faculties
of mathematics, informatics and physics,
but, in some places, supplementary top-
ics are included too.

The real numbers are the basis
on which the mathematical analysis is’
built. They are defined axiomatically,
as the elements of a totally ordered field
where the supremum axioin is verified.
Approximately, one half of the first vol-
ume is dedicated to differential and inte-
gral calculus of functions of one real vari-

able. It starts with integral calculus fol-

lowed by the differential calculus, by pay-
ing a special attention to applications.
The improper integrals, linear difteren-
tial equations of second order with con-

stant coefficients, the Stirling formula,
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Dini derivatives and an example of con-
tinuous nowhere differentiable function
are given at the end of the first volume
in a section entitled "Complements”.
The second volume is concerned
with the analysis of functions of several
variables. The concepts of limit and

: continuity are treated in metric spaces.

Banach and Hilbert spaces, orthogonal- -

ity, hperplanes, convex sets and convex
functions are shortly treated. In the
paragraph concerning differential c#lct;-
lus, beside the usual topics, the local clas-
sification of smooth functions (Morse’s
lemma) is treated. The integral is intro-
ducea on the basis of Moore and Smith’s
nets, defined by the refinements of divi-
sions. As an application of Sard’s lemma,
a new proof for the formula of changing
of variables is given. This is applied to

the convolution product and to potential

KonradKonigsberyg
e r, Analysis, vol.l (3" edition), 392
ppP., 1995, vol.2, 365 pp., 1993, Springer-‘
Verlag, Berlin-Heidelberg-New York (in

German).

This is a course on mathemati--

cal analysis for students in mathemat-
ics and informatics or at technical uni-

versities. A characteristic feature of this
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theory. Weierstrass’theorem concerning
approximation of éontimqom functions by
polynomials is also proved using the con-
volution product. Lebesgue measure is.
defined by the mdhod of Carathéodory.
The Lebesgue integral is introduced as
the limit of a net with order defined by
the refinement of divisions.

The L” spaces and absolutely con-
tinuous functions finish the part dedi-
cated to integral calculus. The second
volume ends with a paragraph ooncerning
Fourier series and their generalizations to
Hilbert spaces. The ideas of Chernoff and
Redhefler are followed in order to develop
tﬁa topic.

A lot of examples, exercises and"
applications (for instance those ~from

physics and astronomy) complete the 22

paragraphs of the book. .

I. KOLUMBAN

books is that the author tries not merely
to explain what mathematical analysis is
but also to show what it is good for (ex-
cept promoting semestrial exams). For
this reason, a wealth of examples, most
of them classical and which afe custom-
ary neglected in the modern treatises on
mathematical analysis, are included. As

examples, we mention the fundamental



theorem of algebra (a proof given by Ar-
‘gand in. 1914 and based on the proper-
ties of continuous functions), the irra-
tionality of x (Niven’s proof), Walles and
Stirling’s formulae, a study of the Rie-
mann function ¢ and Euler function T,
Kepler’s laws, the isoperimetric problem
(Hurwitz’s proof). Differential equations
are studied in two chapters - 10 and 13.
‘The existence of natural numbers

is accepted a priori (with a quotation of

Kronecker’s famous "God created natu-

ral numbers, the rest is man’s work”).
Real numbers are introduced, as usual,
axiomatically, with Ca.ptor property on
deecendihg sequences of compact inter-
vals taken as axiom of completeness.
Complex numbers are considered too, al-
lowing the author to study power se-
ries and elementary functions in com-
_plex setting. For instance, transceden-
tal functions (exponential, trigonometric,
hyperbolic and their inverses) are defined
through their power series expansions.
This way, their basic properties can be
derived in a rapid and elegant manner.

‘ Some .esults in differential calcu-
lus are developed in the more general
context of functions which are derivable
excepting a countable subset of their in-

terval of definition. Properties of convex

functions are studied with applications to
some classical inequalities.

Integral calculus is developed for
the class of regular functions, (uniform
limits of step functions). This is a par-
ticular class of Riemann integrable func-

tions but sufficiently large for applica-

‘tions. At the same time, this approach

prepares the reader for the study of
Lebesgue integral given in the second vol- '
ume via Stone’s definition (using L! -
limits of integrable step .functions). Im-
proper integrals. are also considered.

Local (Taylor polynomials and se-
ries) and- global (Weierstrass’theorems)
approximation of functions are studied.
The first volume ends with a chapter on
Fourier series and approximation of peri-
odic functions (including Bessel inequal-
ity and Parseval identity).

The first chapter of the second
volume is dealing with topological prop-
erties of R" and properties of integrals
depending on a parameter. The second
chapter develops the differential calculus
for complex valued functions defined on
domains in R". The study of differen-
tiable applications (functions of n vari-
ables with values in R™) or vector func-
tions, is given in the third chapter where

the fundamental theorems of differential
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