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REZUMAT. - Familii inductiv inchise in semigrupuri. Folosind notiunea de

familie inductiv inchisd de mul{imi, se aratd ci un semigrup X, in care existi

o familie inductiv inchisd P de submultimi nevide ale lui X astfel incat

X E PsiaX € P, Xa € P pentru fiecare a. € X, poseda ideale

stangi minimale §i ideale drepte minimale, iar acestea apartin toate

lui P. Un asemenea semigrup are atunci un ideal minimal i

elemente idempotente.

0. From the theory of topological semigroups (see [2]) it is well-known
that a compact semigroup has idempotents, compact minimal left ideals and
compact minimal right ideals. This fact has determined us to search general
conditions that allow the deduction of some properties of semigroups that,
besides the algebraic structure, are endowed with an additional -structure (for
example, with a topology or an order relation). The main tool to realize this goal
is the notion of an inductively closed family of sets. By means of this notion we
show in the present paper that every semigroup X that has an inductively closed

family P of nonempty subsets of X satisfying X € P, on the one hand, and a ¥

€ P, Xa € P for each a € X, on the other hand, has minimal left ideals and

" "Babes-Bolyai” University, Faculty of Mathematics and Computer Scien: o 100« ing
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B. BRECKNER

and minimal right ideals and that these ideals lie in 2. Such a semigroup has

also a minimal ideal and idempotents.

1. An element F; of a family ¥ of sets is called a minimal set if FF € F
and F C F, imply that F = F,

The minimal sets play an important part in all the fields of mathematics.
In the present paper we apply this concept in the theory of semigroups. We
recall that a semigroup is an 'ordered pair (X,*), where X is a nonempty set and
- is an associative composition law on X. The set of idempotents of a semigroup
(X,) is denoted by E(h.

Let (X,) i)e a semigroup. A subset ¥ of X is called:

i) a left (right) ideal if Y w S and XY C Y (YXC Y),
ii) an ideal if it is both a left and a right ideal.

Let I(X), I(X) and I(X) be respectively the family of all left ideals, right
ideals and ideals of the semigroup (X,?). The minimal sets of these families are
called respectively minimal left ideal, minimal right ideal and minimal ideal. We
point out that a semigroup may haQe more than one minimal left (right) ideal,
but one minimal ideal at most. It is éasy to verify that if the set

M(X) = 0 {I|] € KX)}
is not empty, then it is the unique mipimal ideal of (X*).
The set of all minimal left ideals of (X,°) is denoted by L£(X), and that of

all minimal right ideals is denoted by R(X). If these sets are not empty, then the
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following statements are true.
| PROPOSITION 1.1 [2, COROLLARY 3.17]. Let (X,?) be a semigroup
with L(X) » & (R(X) = D). Then M(X) » & and the equality
M(X) =U {L|L € LX)} (M(X) = U {R|R € R(X)})
holds.

PROPOSITION 1.2 [2, LEMMA .3.18]. Let (X,’) be a semigroup, let L
€ L(X), and let R € R(X). Then the following assertions are true:

1°(L N R,") is a group and E(X) » O.

2° If e is the identity for the group (L N R,*), then R N L = eXe.

The aim of the present paper is to establish conditions that assure not only
the existence of minimal left (right) ideals of .a semigroup, but also that these
ideals satisfy a supplementary property (for example, a topological or an order
property). The main auxiliary instrument suitable for this aim is the notion of
inductively closed family of sets, which will be introduced in section 2. With
the aid of this notion and that of Zorn’s lemma we will establish in section 2 the
main results of our paper. In the last section there will be mentioned some
applications of these results. They will show that some results from the theory
of . topological semigroups, presented in [2], are valid in a more general

background.

2. A family ¥ of sets is called:

i) arower if it is not empty and if for each I, F, € F we have either [, C
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F,or F,C F,;
ii) inductively closed if it is not empty and if N{F,| i € I} € ¥ for each
tower (F)),; of sets from ¥.
It results from Zomn’s lemma that any inductively closed family ¥ of sets has
a minimal set. Using this result, we can establish the following theorems.
THEOREM 2.1. Let (X,)) be a semigroup, and let P be an inductively
closed family of nonempty subsets of X such that:
NHXeer
(i) aY €E P for everya € Xand Y € P,
(iii) Ya € P for evefy a€EXandY EP.
"Then E(X) » Q.‘
Proof. The family
F = {S € P|S subsemigroup of (X,*)}
is inductively closed, since P is inductively closed and the intersection of a
family of subsemigroups is also a subsemigroup, in case this intersection is not
empty. Hence there exists a minimal set S, of . We fix any x € S;. In view of
(ii), (iii) and of the fact that S, is a subsemigroup of (X;-), it follows that a5, €
F and S,x € F. On the other hand we have xS, C S, and Spx C S,. Consequently
the minimality of S, implies xS, = S, = Syx. So (S,,") is a group. The identity of
this group is obviously an element of E(X). (I
THEOREM 2.2. Let (X,)) be a semigroup, and let P be an inductively

closed family of nonempty subsets of X such that:
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() XeP
(ii) aX € P for everya € X,
(iii) Xa € P for every a € X.
Then the following assertions are true:

1° LX) »w & and L(X) C P.

2° R(X) » O and R(X) C 2.

Proof. 1° From (i) it follows that the family F =P N I(X) is not empty.
It is even inductively closed, because 2 is inductively closed and the intersection
of a family of left ideals is also a left ideal, in case this intersection is not
empty. Hence there exists a minimal set L, of F. We prove that L, is a minimal
lef ideal of (X,°). ‘

Let L be a left ideal of (X,?) such that L C L, Since L = &, we can
choose an a € L. Note that Xa C L, and hence Xa C L,. On the other hand, (iii)
implies that Xa € F. In view of the minimality of L, it follows that Xa = L,.
But, we have Xa C L C L, Thus L = L,, i.e., L, is a minimal left ideal of (X,
and so L(X) » Q.

Now let L € L(X). Since L » I, we can choose an a € L. From the fact
that /. is a minimal left ideal of (X,°) it follows that Xa = L. Combined with
(iii), it results that L € 2P and so the inclusion L(X) C P is proved.

2" This assertion is obtained by analogy to 1°, with the difference that
instead of condition (iii) one uses condition (ii). O

THEOREM 2.3. Let (X,") be a cancellative semigroup, and let P be an
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inducliveiy closed family of nonempty subsets of X such that:
() xeer
(ii) aX € P for every a € X,
(iii) Xa € P for every a € X,
(iv) aXb € P for every a, b € X.
Then (X,°) is a group.

Proof. In view of theorem 2.2-and assertion 1° from proposition 1.2 we
have E(X) » J. Let e € E(X). For each x € X we have then e(ex) = ex and (xe)e
= xe. Since (X,*) is cancellative, one obtains ex = x and xe = x for each x € \|
i.e., e is an identity for (X,*). Since a semigroup has at most one identity, it
follows that E(X5 = {e}.

We fix now an arbitrary element x € X. After that we denote

X=xXand?' = {PEPIPCX).
Then (X°,?) is a semigroup and P" is an inductively closed family of noneinpty
subsets of X~ satisfying the following conditions:
G) X e,

(ij) aX" € P" for each a € X,

Gij) Xa € P foreacha € X".
Condition (jj) results ﬁ'om (i) and (jjj) from (iv). Applying once more theorem
2.2 and assertion 1° from proposition 1.2, we conclude that £(Y') = (J, ic .
E(X) N xX = &. Since E(X) = {e}, there exists an element x' € X such that ¢

= xx". Thus (X,) is a group. O
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We recall that a semigroup (X,) is said to be completely simple if it has
no proper ideals and if the sets £(X) and R(X) are not empty. Taking into
account this definition, we state the following theorem.

THEOREM 24, Let '(X,.') be a semigroup such that M(X) » &, and let P
be an inductively closed family of nonempty subsets of M(X) such that:

(i) M(X) € P,
(i) aM(X) € P for every a € M(X),
(iii) M(X)a € P for every a € M(X).
Then the following assertions are true:

1° (M(X),") is a completely simple semigroup and M(X) N E(X) = .

2° (eXe,) is a group for every e € M(Xj N EX).

Proof. 1° (M(X),") is a semigroup, since M(X) is an ideal of (X,:). This
semigroup has no proper ideals. Indeed, if / is an ideal of (M(X),"), then
MXOIM(X) C I C M(X). Since M(X)IM(X) is an ideal of (X,), the minimality
of M(X) implies M(X)IM(X) = M(X). Thus we must have I = M(X), i.e, the
semigroup (M(X),*) has no proper ideals.

Applying theorem 2.2 to the semigroup (M(X),), we conclude that
L(M(X)) » D and R(M(X)) » D. In conclusion (M(X),*) is a completely simple
semigroup.

Applying now assertion 1° from proposition 1.2, it results that L(M(X)) =
@, i.e., MX) N EX) =D

2 Let e € M(X) N E(X). Since M(X) is an ideal of (X,-), we have eXe
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c e(eXé)e C eM(X)e. Notice that eM(X)e C eXe is obvious. Thus we have ¢ Xe
= eM(X)e.

On the other hand, the semigroup (M(X),") has no proper ideals and so
M(M(X)) = M(X). Therefore we have e € M(M(X)). In virtue of proposition 1.1,
there exist an L € L(M(X)) and an R € R(M(X)) such that e € L. N R. Hence,
in view of assertion 1° from proposition 1.2, (L N R,’) is a group. Since e € 1.
N R and & = e, it follows that e is the identity for this group. From assertion
2° of proposition 1.2 it follo§vs that L N R = eM(X)e. Thus the pair (eXe,*) is
a group. O

3. In the theorems stated in the previous section the existence of some
inductively closed families of nonempty subsets of the semigroups that occured
was assumed. In the present section we show, by giving three concrete
examples, that such families really exist. By applying for each of these concrete
examples theorem 2.2, we will deduce both the existence of minimal left (right)
ideals and the fact that these ideals satisfy some topological or order properties,

THEOREM 3.1. Let (X,) be a semigroup, and let ‘T be a topology o \
such that the following conditions a}e satisfied:

(i) (X,7) is a T, and compact space;
(ii) aX is compact for every a € X,
(iil) Xa is compact for every a € X.

Then the following assertions are true:

10
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1° L(X) » D and each L € L(X)bis compact.

2° R(X) » & and each R € R(X) is compact.

Proof. Let P be the family of all compact nonempty subsets of X. This
family is not empty, since X € 2. Let (P), be a tower of sets from 2. Put P
= N {P,|i€l}. We claim that P » &. To prove this we assume that P = .
Then, since the sets P, (i€]) are closed and (X,7) is a compact space, there exist
i\y...of,, € I such that

N {P,Jlje {1,.,n}} =0
But (P))e is a tower. Thus there exists a k € {1,...,n} such thatP, =N {P,}l JjE
{1,...,n}}. Consequently, we have P,.- J, which is absurd. This contradiction
shows that P » J, as claimed. Since P is closéd and X compact, it results that
P is compact. In conclusion, P € P. Therefore 2P is an inductively closed family.
Applying theorem 2.2, we obtain the two assertions of the theorem. O3

COROLLARY- 3.2. If (X,*]T) is a compact topological semigroup, then
the following assertions are true:

1° L(X) » & and each L € L(X) is compact.

2° R(X) = I and each R € R(X) is compact.

Remark. Corollary 3.2 is already known in the theory of topological
semigroups. A direct proof for it is given in the theorems 1.28 and 1.29 from
12).

Before stating the next theorem we remember that if X is a nonempty set and

< 15 a quasi-order on X (i.e., a reflexive and transitive binary relation), then the
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family (B,),eyx, where B, = {y € X| y < x}, is the basis for a topology on .\,
denoted by 7;(X) and called the left topology induced on X by < (see 1, page
142, Exercice 2a)).

THEOREM 3.3. Let (X,?) be a semigroup, let x, be an element of X
Further let < be a quasi-order on X such that x, s x for each x € X and such
that the left topology T,(X) induced on X by = satisfies the following conditions.

(i) aX € T,(x) for every a € X,
(il) Xa € T,(x) for every_b e X
Then the following assertions are true:

1° L(X) » @ and LX) C T,(X).

2° R(X) .. @ and R(X) C T,(X).

Proof. Let P = T, (X)\{D}. Since X € T,(X), the family P is not empty.
Let (P)e; be a tower of sets from 2. Then P = N{P,| i € I} belongs to P. To
prove this, first we note that x, € P, because x, € P, for each i € /. So I’ is not
empty. On the other hand, taking into account that x € B, for every x & A, it
results that

PCU{B |xEP}. REE)
But the inclusion

U{B|xEP}CP (30
is also valid. To see this, let yEU {B_| x € P}. Then there exists an v & I such
that y € B,, and hence y s x. Let now~i € I be arbitrary. Since P, € 4,(Y). theic

exists a subset 7' of X such that

12
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P,=U{B|tET}.
But x € P, hence there exists a t € T for which x € B, i.e., x s . From y < x
and x < t we deduce that y < ¢, i.e,, y € B, C P, This shows that (3.2) is valid.
From (3.1) and (3.2) we obtain
P=U{B | xEP}.

This means that P € T,(X). In conclusion, we have P € P. Consequently P is
an inductively closed family. Applying theorem 2.2, we obtain the two assertions
of the theorem. OJ

Let X be a nonempty set endowed with a quasi-order <. If a and b are
clements from X such that a < b, then we define [a,b] by

[a.b] = {x € X] asxaﬁdxsb}.

Every subset Y of X for which there exist a, b € X such that a < b and Y = [a,b]
is called a closed interval.

THEOREM 3 4. Let (X,°) be a semigroup, and let < be a binary relation
on X such that (X,s) is a complete lattice with the following propert:ies:

(i) aX is a closed interval for every a € X,
(ii) Xa is a closed interval for every a € X.

Then the following assertions are true:

1° L(X) » D and each L € L(X) is a closed .interval.

2° R(X) =» O and each R € R(X) is a closed interval.

Proof. Let P be the family of all closed intervals of X. Since X = [inf X,

sup A, it follows that X € P. Let (P), be a tower of sets from P. Put P =

13
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N{P,| i € I}. We assume that P, = [a,b] for every i € I and denote
a=sup {a|iE€I}and b=inf {b]|i€E I}

We claim that a < b. To prove this, we notice that if i, j € [ are arbitrarily
chosen, then we have P,C P,or P,C P, a, € P,and b, € P; thus it results that
a, s b, So we must have a < b. From a, < a < b s b, for every i € [, it follows
that [a,b] C P. On the other hand, if x € P, then q, < x < b, holds for every i €
I, hence a s x < b. This result shows that P C [a,b]. Consequently we have
= [a,b]; thus P € P. Theret"ore P is an inductively closed family. Applying

theorem 2.2, we obtain the two assertions of the theorem. [J

REFERENCES

1. Bourbaki, N., Eléments de mathématique. Premiére partic. Livre 11l Topologie
générale. Chap. 1, 2, Hermann, Paris, 1961,

2. Carruth, J. H, Hildebrant, J. A., Koch,R.J., The Theory of Topological Semigroups,
Marcel Dekker Inc., New York-Basel, 1983.

14



STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XLI, 1, 1996

ON a - DERIVATION OF PRIME RINGS

Sahin CERAN’ and llhan OZTURK"

Received: April 14, 1995
AMS subject classification: 13810

REZUMAT. - Asupra a-derivirii inelelor prime. In lucrare sunt demonstrate
proprietétile i) - iii) privind a-derivata pe un inel prim.

Abstract. Let R be a prime ring, char R = 2, U lie ideal of R and 0 = d.
R — R is a-derivation. In this paper we prove the fdllowing results.
i) If d(1)) C U and #(U) = 0, then U C C(R), where C(R) = {c € R: ¢x -
xc, ¥ x € R} is the center of R.
i) If [d(u),u] ,€ C(R) and «* € U, then [d(u),u] =0.
iii) If [d(u),u],€C(R), then [[d(r),u],u] . €ECR). UV ueE U re
Rld(u),u], = 0, then [[d(r),u]_,u]_=0O.

1. Introduction. Let R be a ring and d is an additive mapping of R. We
say that d is a a-derivation of R if d(xy) = d(x)a(y) + xd(y) for all x,y € R,

where « is automorphism of R. We will set C (R) = {c € R: ca(x) = xc for all

* Cumbhuriyet University, FFaculty of Arts and Sciences, Department of Mathematics, Sivas,
Trurke 3

" Frciyes University, Department of Mathematics (K.M.Y.Q).), Kayseri, Turkey
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x € R} z;nd [x,y], = xa(y) - yx.

Let R be a prime ring, char R = 2 and U lie ideal of R. If d is a non zero
derivation of R such that &#(U) = (0), then U C C(R). This was proved in [4].
‘Our aim in this paper is to extend the above mentioned result to a more general

situation using the a-derivation.

2: Some Lemmas.

LEMMA 1. Every non zero weak - a-derivation of a prime ring is a non
zero a~derivation (2].

LEMMA 2 Let d;: R — R be a g-derivation and d,: R — R a-derivation
and dyo. = ad,. If dd(R) =0, then d, = 0 or d, = 0 [6]. ‘

LEMMA 3. i) If U is a non zero right ideal of R and d(U) = 0, then d =
0. ii) If U is a non zero ideal of R and ad(U) = 0 for an element a of R, then
a=0ord=0.iii) If d(R)a = 0 for an element a of R, thena =0 or d = 0 |2).

LEMMA 4. If U is a non zero lie ideal of R, 0 »w d: R — R a-derivation
and d(U)t = 0 for an element t of R, then t = 0 [6].

Throunghout the present paper, R will represent a prime ring of

characteristic not 2 with center C(), U a non zero lie ideal of R and d a «-

derivation of R.

16
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3. Main Theorems.
THEOREM 1. Let d be a non zero a-derivation of R such that da. = ad
and U a non zero lie ideal of R such that d(U) C U. If &U) = 0, then U C
C(R). .
Proof. Suppose that U & C(R), V = [U,U] is a noncentral lie ideal of R,
by [4). So, if we prove that IV C C(R), then the theorem is proved.
There exists an ideal M of R suéh that [M,R] C U and [M,R] € C (R), by
[4. f mE[M,R)CUNM and u € U, then d(u) Ed(V) C U and so d*(u) =0,
for any element y of R,0 =d*([mu,y]) = 2d(m)d(alu,y})) + 2d([my})d(a(u))
since, char R = 2 it follows that:
d(m)d(a([u,y))) + d([m,y])d(a(u)) =0 for all m € [M,R], yE R. (3.1)
Replacing u by d(u) in (3.1), we have
d([M,R])a(d([d(u),y])) =0 forall yER, u € U. (3.2)
But [MR] is a noncentral lie ideal of R. From Lemma 4 and (3.2) we have
d([d(U),y]) =0 for all y € R, u € U. Thus,0 =d([d(x),y]) = d*(1)a(y) +
+ d(u)d(y) - d(y)o(d(w)) - yd*(u) = ~[d(y)d(u)], gives us
[d(y), du)} =0 forall yER u€ U. (3.3)
Replacing y by yd(v), v € U in (3.3), we have
[d),d(u))d(a(v)) =0 forall yE R, uv € U. (3.4)

Bat a(?/) is a non zero lie ideal of R. Then by [2] and (3.4) we have
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[d(y),d(u)} =0 forall yER uE U. 35
Replacing y by xd(y), x € R in (3.5), we have
[x,d(1))d*(y) =0 forall x,y E R, u € U. (3.6)
-Replacing x by xz,z € R in (3.6), we have
[x,d(u)]Rd*(y) =0 for xy ER u € U. 3.7)
So since R is a prime ring, d(U) C C(R) or &(R) = 0.
If"d’(R) = (, then from lemma 2, d= 0. This is a contradiction. Thus d({/)
C C(R). Now, we take v=ur-ru, u€U, rE.R. Since uv € U, using the
hypothesis, we obtain 0 = d®(uv). Then d(u)a(d(v)) = 0. We know that d(u) €
C(R), 50 d(u) = 0 or d(v) = 0. Hence,
du)=0 or dur-ru)=0 forallu€ U, r € R. (3.8)
Let K={u€U.d(u)=0} and L= {u€EU.d(ur-ru)=0 for all »r € R}
Then U = K U L, where K and L are subgroups of U and U = K. From Brauer
trick, U = L. Thus, d(V) = 0. Since V is a lie ideal, using [2] we have arrived
to ¥V C C(R). That is [U,U} C C(R). Then, by [3], U C C(R). This is a
contradiction so the proof is finished.
THEOREM 2. If for each u€ U, [d(u),u],€EC, and yz € (! thon
[d(u),u), = 0.
Proof. If the hypoihesis is made linear, then we havefdiu).u-]

+[d(u?),u) € C,. Thus, if we make some needed operations on these cquations

18



ON a-DERIVATION

at the end of these operations we get
| uld(u),u) €C,.
Since [d(u),u) €C_, for every r €E R,
[u,r] R [d(u),u] = 0.
So,
[u.r] = 0 or [d(u),u],=0 forall rER, u ER. 39
Let # € C(R). Since Ris a pﬁmé ring, by [d(u),u] €C, [d(u),u], =0 or
a(u) = u. If o(u) = u, d(ux - xu) = 0, then [d(u),x] =0. Hence, d(u) € C,. If
d(u) € C,, then [d(u),u], =0.
THEOREM 3. For each r € R and for; every u € U, if[d(u),u] €C,,
then [[d(r),u),, u] €EC,. Also, if [d(u),u} =0, then [[d(r),u],, u], =0.
Proof. Since [d(u),u] € C,, if we take u + [u,r] instead of u, for each r
€ R, u € U, then this implies that [d(u),[u,r]] + [d([u,r]), u] € C,. Thus,
[d(u), [1,71], * ([d@), ), u], - [[d(), u] EC, (3.10)
If we use the equation [x,[y,z]]_+ [[x,z],, V], - [[*.}]. 2],=0, then we

have [[d(u),u] , r], for the first and second terms of equation ((3.10). Therefore,

«?

we arrive at the following form of equation (3.10).

([d(u),u}l,, r}, - [[d(r),u],, u] €EC,.
Thus, [[d(r),u],, u) €C,. If [d(u),u], =0, then [[d(r),u]

u], =0 can be

a’

done shmilar,

19
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1. Introduction. Let A denote the class of functions fiz) which are
analytic and univalent in the unit disc U = {z: |z] < 1} with £0) = 0. For a

function f(z) in 4, we define

D%z) = f(2), (1.1

D'f(z) = Dfiz) =2/ (2), (12)
and

D"f(z)=D(D™'f(z)) (nE€N={1,2,..}). (1.3)

The differential operator D" was introduced by Saldgean {2]. With the help of
the differential operator D", we say that a function f{z) belonging to A is in the
class S,(a) if and only if
Re { D™ 1z) }>a (mEN,=NU{0}) (1.4
D"f(z)

for some a (0 s a < 1), and for all z € U. The class S,(«x) was defined by

Salagean [2].
Let T denote the subclass of A consisting of functions of the form
f(z)=a|z—§:akz* (a,>0; a,z0). (1.5)
k=2 .
Further, we define the class 7”°(n,a) by
r**(n,a)=S (a)NT.
We note that when a, = 1, the class 77" (n,a) = 1°(n,0) was studied by Hur an.d

Oh [1] and by Salagean [4], [5]. .
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For a given rcal number z, (0 <z, < 1) let 7'(z,) (m € {0,1,.. . n+1}) be
the subclasses of 7' satisfying
D™z, =z, (1.6)
We say that this function has two fixed points. Let
1, (na,z)=T"(na)NT (z,) (1.7)

We note that the classes 7, (n,a,z,) were introduced in [3] and the
classes 157(0,a,2,), 7,7°(0,,2)), Ty (1,0,2,) and 7',"(l?i1,z(,) were studied
by Silverman [6].

In this paper we obtain coefficient estimates, distortion theorems, closure
theorems and radius of convexity of order p (0 < p < 1) for the classes
T (n,a,z,) (m€{0,1,..,n+1}). Further we determine a necessary and
sufficient condition that a subset B of the real interval (0,1) should satisfy the
property that U T, (n,a,z,) forms a convex family. For these classes the

2ER

extreme points are also determined.

2. Characterisation Theorem a_nd Coefficient Estimates
THEOREM 1. Let the function f(z) be defined by (1.5). Then f(2) is in the
class 17 (n,a0) if and only if

Y krk-a) a,s(1-a)a, (2.1)
k2
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The result is sharp for the function £z) defined by

o (1-a)a,
@) =a;z 76—"(16—-01—)

Proof. The proof follows exactly on the lines of the proof of Theorem |

z* (k=2). 2.2)

in [1]): hence the details are omitted.
THEOREM 2. Let the function fz) be defined by (1.5) and (1.6). Then

SR ET, (n,a,z,) if and only if

Y {kmt-0)-k"(1-0)zt" } a,< (1 - a0, 2.3)

k=2

Proof. Since f(z) € T, (n,a,z,) we have D "f(z,) =z,=a,z, - ¥ k "a,z,'

k=2
(a, > 0: a, = 0) which gives

k-1

a,=1+Y k"a,z . (2.4)
: =2
Substituting the value of a, in Theorem 1, we have the theorem.
Remark. A proof of Theorem 2, without the use of Theorem 1, may be
found in [2].
COROLLARY 2.1. Let the finction £2) defined by (1.5) be in the dass T',,"(n, ., 2,)).

Then

a,s Lo ke(23.). (2.5)
k"(k-a) -k™(1 ~a)z,

The equality in (2.5) is attained for the function f(z) given by
k"k-a)z-(1-a)z*

f@) = (k-a)z-(1-a)z _
k"tk-a)-k™(1-a)z,

OOROLLARY 22. Let the finction £z2) defined by (1.5) be in the dass T, (n,<1,=,).

, kE(23,.). (2.6)
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2"2-a)+2(1 -a)r
27(2-0) - 2"(1 -a)z,
for |z| = r < 1. The result is sharp.

|/ @)] =

Proof. 1t follows from Theorem 2 that

oo

E as (1 "(].)

= rC-w) -2"(0 -0z,
and
% 12,.(2 -a) - 27(1 o)z, Z;ka,,
=Y {k "(k-a) - k™(1 —a)zo""} a,s(1-a).
k=2
which implies

f:kaks 2(1 -a)

pec {(2"2-a)-2"(1-0)z,}

Further from (2.7) we have ,
2"2-w)

a s .
2"2-a) - 2"(1 -a)z,

1

Hence we have

-]
|2} sa,r+r?y a,=

2"2-a)+(1-a)r

k=2 2"2-a) -2"(1-a)z,

by using (3.3) and (3.6). Further

2"Q2-a) +2(1 ~a)r

| /'@ sa, +rY ka,s
=t

2"2-a) - 2"(1-a)z,

(3.2)

3.3

(34)

(1.5)

(3.06)

(3.7)

(3 8)

by using (3.5) and (3.6). Finally the result is sharp for the function £,(:) given

by (2.6).
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4. Closure Theorems. Let the functions J{2) be defined, for i = 1,2,...,/,

f@=a,z- § a,z*(a,>0;a,, 20 @.1)
forze U.
We shall prove the following results for the closure of functions in the
classes T,°(n,a,z,) (m € {‘1,2,...,n+l"}).
THEOREM 4. Let the functions f(z) (i = 1,2,...,]) defined by (4.1) be in

the class T,(n,a,z,). Then the function h(2) defied by

]
h(z) = 21: d f(2) (d,=0) 4.2)

is also in the same class T, (n,a,z,), where

1
Yd-=1 (43)

i=1
Proof. According to the definition of h(z) we can write

h(z)=b,z - i bz 4.4)

k=2
where

I I
b,=Y da, and b =Y da, (k=23,.) (4.5)

=l =]

Since f(z) are in ’l‘,:'(n.,a,zo) (i=1,2,...,1), by means of Theorem 2, we have
Y {k -y -k (1 -)z "} g, = (1-00) (4.6)
ko2

for every i = 1,2,...,l. Therefore we have

k=2 i=]

- !
Z {k "(k-a)-k"(1 -(1)20"_'} [E d‘a“]
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(L] ke2

-X4 [2 (k-0 -k (102"} "*‘]

< Zl: d,](l ~a)=(1-a)

il
which shows that 4(z) € T, (n,a,2,). Thus we have the theorem.
COROLLARY 4.1. Let the Junctions f(z) (i € {1,2,...,1}) defined by (4 1)
be the class T, (n,a,z,). Then the function h(z) defined by

hz)=bz-Y bzt (47)

k=2
also belongs to the class T, (n,,z,), where

! I
b, =_}.E a,, and bk=.§_Za,‘_,, ke (2,3,.}. (4.8)

i} i=1

Proof. Wé have

14 I L
h2)=={Y a,z:-Y a,.:*}=Y -/
[ =1 -
and now we can use Theorem 4 with d, = 1/, i € {1,2,../}.

COROLLARY 4.2. The class T, (n,a,z,) is closed under convex linear

combination.
Proof. Let the functions f{(z), i € {1,2} defined by (4.1) be in the class
T, (n,a,z,). Then it is sufficient to show that the function A(z) defined by
hz) = M,@) +(1-Nfiz), 0sAs | (4
is also in the class T, "(n,a,z,). But h € T, (n,a,z,) by Theorem 4.

THEOREM 5. Define f,(z) = z and

1(2) = k"(k-a)é -(1-a)z*

A kl’k€{2’3""}’ EN
krk-a) -k™(1-0)zy
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Then fz) is in the class T, (n,a,z,) lf and only if it can be expressed in the

form
1) =X M2, @i
where'h, = 0 (k € N) and’ -
g A =L 4.12)

Proof. Assume that

f2) =Y M@ =M@+ Y NS =

kel k=2

k"k-a)z-(1-a)z* A =
= k"(k-a) - k"1 -0zt

= k"(k~a)\,

=\ + -
Z; k"(k-a) -k™(1-a)z, " ’

= (1-a)h,

2 kr"(k-o) -k™(1-a)zy
Then it follows that

= - (1 -,
k"(k-a)-k"(1-o)zs '}

kzz:{ ( ,‘,a) (1-0)z } k"(k-a) -k™(1-a)zy "

=(1-)Y A =(1-a)(1-A)s(1-a).

k=2
Also by definition we have D "f,(z,) =z,. Therefore

D "f(z,) = Y \D ”f,‘(zo) =Y Az, = z°§ A =2,

kel k=1

=\z+

k

(4.13)

This implies f(z) € T, (z,). So by Theorem 2, f(z) € T,,'(n,a,z,).
Conversely, assume that the function f{z) defined by (1.5) belongs to the

class 1.,.°(n,a,2,). Then
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as (1-a) (k=2).
k(k-o)-k™(1-a)zy"
Set
kr(k-a) -k™(1 -a)z,
A, = — ° a, (k=2),
‘and
A=1-Y 1,
k=2

Hence we can see that f{z) can be expressed in the form (4.11). This complet
the proof of the theorem.

THEOREM 6. The extreme points of T (n, a,z,) are the functions i
k € N, defined by (4.10).

Proof. We show that f; cannot be expressed as a2 convex combin.:
functions in 7, (n,a,z,).

We suppose that there exist g, and g, in T, ’(n,a,z,) such that

Ji(2) =g (@) + (1 -M)g(2).

From Theorem 5 we know that

g,(z)=2)»uj;(z), 20, Y A =1, i)
) . )

and then
=Y M, + =M, ] 1) = ¥
J=1
We obtain

A=A+ (-0, =0, jE (2.8
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and this implies A.IJ=)\.2J=O,jE {2,3,...k-1,k+1,..}.
Hence we have ‘
£ =[)J\.“ +(1 -)»))\.u]z +
(M, + (=N J4G)
which implies A, , =A,, =0 and then g =g, =/,.

We obtained that the functions f,, k€ {1,2,3,...} are extreme points for
T.'(n,0,z,) and by using again Theorem 5 we deduce that all function in
T,’(n,a,z,) can be expressed as a finite convex combination of the functions
fe & € {1,2,3,..}, or as a limit of a sequence of functions which are finite

convex combinations of the functions £,

5. Radius of Convexity. In this section we determine the radius of
convexity of order p(0 < p <1) for the classes T, (n,a,2,), m& (0,1,...,n+1}.
THEOREM 7. Let the function fz) defined by (1.5) be in the class
T, (n,;,2,), let j be an integer, 0 < j < n+1 and let p be a real number, 0 < p

< 1, then f satisfies
+l
Re 2712)
D’f(z)

re =mf{M_)_Q_‘£’l ks }ﬂ, ke (2,3.) (5.1
v | (1-a)(k-p)

The result is sharp.

>p, for |z| <r®, where
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Proof. 1t is sufficient to show that

D"/ -1|<1-p for |z|<r".
Df(2)
We h ®
M Y kik-1)a, |z
D™Mf(z) | 0=
D’f(2)

a, - Y kla,|z|*"

k=2

Thus (5.2) holds if

Y kik-1)a,|z|F < (1-p) [al -Y k/a, |z|"')
k=2

k=2

By using (2.4) we find that the inequality (5.2) is equivalent to
y [k’(k—p) lz|*' -k (1 —p)z(,""]ak <l-p
k=2
But Theorem 2 ensures that
k=2 l1-a
Hence (5.3) holds if
ki(k-p) |z < (1 —p)_’fl](il"l, kE (23,3,
-
orif |z|sr"

The sharpness follows by taking the function f, given by
D' £,(2) _k"k-a)z -k (A -oyzt
D’f,(2) k"k-o)z -k/(1-a)z*

“h), Btk
ko«
and

inf Re h(z) = h(r)

|2 =¢
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From h,(r) = p we obtain r*' = a-plk-a k™.
(1 -a)(k-p)

Remarks. 1). The conclusion of Theorem 7 is independent of the point z,.
2). If we choose n = 0 and j = n+1, then we obtain that a starlike function

of order o is convex of order p in the disc {z; |z| < r*}, where
1
re = inf (k-a)(1 -p) La
ke3,..y | (1 -a)(k-p)k

If = p, then inf {1/k})"*D=1/2 and we obtain that a starlike function
k€ (2,3,.})

with negative coefficients is convex in the disc { z; |z] < 1/2} (and the result

is sharp).

THEOREM 8. Let j be an integer, 0 s j < n1; thenT,’(n,a,z

0

)C
1.°(),8,2,), where

. I -a
- =1- .
bepinsa) 272 -a) - (1- )

The result is sharp.
Proof. Let fbe a function in T, (n,a,z,). By using a method similar to
that used in the proof of Theorem 7 we obtain (see (5.4) for p=f and |z| = I)
k/(k-B) = (1-B) "_I(’:T“) ke (2.3,

or equivalently,

k"' ~ak™ - (1 -a)k
k"' - ak" - (1-a)
and it is sufficient to find the largest § which satisfies (5.5) for all k.

L.ct g(x) be a real function, x € [2,0) and g(x) = M:f)_x. where

W) - (1 -w)

B s glk) = . ke(2,3,..} (5.5)

33



MK. AOUF, G.S. SALAGEAN

Q(x) =x"'Y - ax"’; then
a-1 X
O
where P(x) = @(x) + ¢’'(x) - x¢/(x) +a -1 and /'(x) =(1 -x)¢” (x).

g'(x)=

But ¢” (x)>0 for x € [2,), hence Y/'(x)<0 and v is a decreasing
function and then (x) < (2) <0.
We obtain g'(x)>0, hence g(2) = g(x), xE[2,) and B(n.j,a) = g(2) =
gk), k€ {2,3,..}.
The extremal function is
2"2-a)z - (1 -a)z?

@) = :
2"2-a) -2"(1 -a)z,
Remarks. 1) If j = n-1, then B(n,n-1,a) = 2/(3-at). For n = 1 we deduce

that if a function with negative coefficients and two fixed points is convex of
order a, then it is also starlike of order 2/(3-a).
2). If n =1 and a < 0, the conclusion of Theorem 8 holds too I-or
instance, if there exist z, €[0,1) and a € (-,1) such that f{z,) = =, and
Re {2/ @ . 1y>q,

1)
then fis starlike of the positive order 2/(3-«).

6. Convex Families. Suppose B is a nonempty subset of the real interval

(0,1). We define the family 7,°(n,«,B) by
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T, (n,0,B)= U T, (n,a,z,).
2EB
If B has only one element, then 7', (n,a, B) is a convex family (Theorem 4 and
Corollary 4.2). It is interesting to investigate this class for oiher subsets B. We
shall make use of the followirnig:

LEMMA 1. If f())ET, (n,0,2,) T (n,0,z,), where z, and z, are
distinct positive numbers, then f(z) = z.

Proof. Let f(2) €T, (n,a,z,)NT (n,0,z,) and letf(z) =a,z - i: az*

. k=2
a,>0; a,20. Then
a=1+ i k "'a,‘zo"'I =1 +f: k "'a,‘z,"".
ko2 k=2
Since a; 2 0, z, > 0 and z, > 0, this implies a, = 0 for k = 2.

Remark. The fact that if f(z)ET,’(n,a,z,) and fz) is odd, then
f2)E T, (n,a,-z,) shows that the conclusion of the lemma doen’t have to
follow if we relax the condition that the fixed points be positive.

THEOREM 9. If B is contained in the interval (0,1), then T, (n,o,B) is
a convex family if and only if B is connected.

Proof. Let B be connected. Suppose 2,2, € B with z, = z,. To prove
1. (n,a,B) is a convex family it suffices to show, for fz) =az —i: az'e€

k=2

1, (n0,z,), 82)=bz-Y b,z*€T,7(n,a,z) and 0 < A = 1, that there exists
iz

-, (2, s 2, s Z;) such that h(z) = M2) + (1-M)g(2) is in T, (n,x,2,). Since Az)
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€ 1,'(naz) and g() € T (na,z,), we have a,=1+Y ka7 and

k=2

=1+ E k™b,z}". Therefore we have
() =27 Lag e (1-M)b, -AY kgt - (1- x)zk'"b
k=2

=1+k2k ma,(z! - 24 + (1 - x)y_:k"'b '). 6.1)

k=2
1(z) is continuous function of z and is real when z is real with «(z,) 2 1 and «(z))
= 1. Hence «(z,) = 1 for some z,, z, < z, s z,. This implies D "h(z,) =z, for some
2, Zy S 2, S Z,, that is h(2) E’T,,,(zz). Now, from (6.1) and h(z,) = z,, we have

k"(k-a) - k"(1-a)z," +(1-
Z;{ (k-a) ~k"(1-a)z Hra, +(1-Mb,)

@

=AY {ktk-0) -k "(1-a)z }a, + (1 -x))f {k (k-

k=2 k=2

-k™1 —a)zl"—'}bk + (1 —a)i {z(,"'l - z,""}k "a,
=2
«(1-M)(- a)E {22 P,

=x2 {k"k-0) - k"1 -a)z" Ja, + (1 -MY {k"(k-01)
k=2 k=2
- k(1-a)z }b, s (1-ogh + (1 =a)(1 -0) =(1 )
by Theorem 2, since fz) €T, (n,a,z,) and g(z) ET,."(n,a,z,). Hence we have
h(z) E T, (n,a,z,), by Theorem 2. Since z,, z, and A are arbitrary, the family
T."(n,a,B) is convex.

Conversely, if B is not connected, then there exists z,, z, and =, such that

ZoZy € B, z; &€ B and z; < z; < z;. Assume f(z VYE T (n,,z,) and
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g(z) ET,’(n,a,z,) are not both the identity function. Then, for fixed z, and 0

s A s I, we have from (6.1).

tz)=s) =1+ xfj kma(z - 24"

k=2

+(1 -k)f:'k "'b,‘(zl"'l -z ").

Since s(0) > 1 and s(1) < 1’: :hcre must exist Ay, 0 < A, < 1 such that s(A,) = 1
or h(z;) = z,, where h(z) = A, f(z) + (1-Ag(z). Thus h(z) € T, (n,a,z,). From
Lemma 1 we have h(z) & T,."(n,0, B), since z, & B and h(z) = z. This implies
that the family T,,°(n,a,B) is not convex which is a contradiction.

THEOREM 10. Let [2,z] C (0,1). Then the extreme points of
T (n,0,[z,,2,)) are z,

oy KR a
{k"(k-a) -~ k™(1-a)z '}

and
k"(k-a)z-(1-a)z*
{k"(k-a) - k™(1 -a)z) "}

Proof. Since T,,"(n,a,{z,,2,]) is convex, a function h(z) E T, (n,a,2,), z,

8(2) = k=2,3,..).

s 2, s z,, can only be an extreme point of T,,"(n,0,[z,,2,]) if h(2) is an extreme
point of T, '(n,a,z,). Therefore to prove the theorem it suffices to show, when
h(z) is an extreme point of T,’(n,a,z,), that h(z) is an extreme point of
T,.(n,a,[z,,2,]) if and only if z, = z, or z, = z,. Let h(z) be an extreme point

of 1'°(n,a,z,). Then
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k*k-a)z-(1-a)zt
fk"(k-a) - km(1-0)z, ")

hz) = (k=2,3,.).

Define

{km(k-a) -k "(1-a)z, '}
+(1-2) k"(k-o)z -(1-a)z*
{k"(k-0) -k"(1-a)z}™"}
When z, < z, < z,, we have p,(1,2) < h(z) < p(0,2) for z real and positive.

p(\2) =x( k"k-a)z - (1-a)z* )

Hence there exists a Ay, 0 < Ay < 1 such that p,(Ay,2) = h,(z). This implies the

coefficients of p,(A,,z) agree with the coefficients of hy(z) for A, so that
A, 1-2,

+

k"k-a) ~k™(1-a)zy"  k"(k-o) -k™(1-a)z}”

1
k(k-a) -k ™(1-a)z}™"
That is, p,(A,2) = h,(z) throughout the unit disc U when

k n(k "‘(1) - k m(l _a)zok-l Zlk-l = Z;hl

P {(kn(k-a) -km(1-a)zt '} (25" -2

This shows that A,(z) is expressed as a linear combination of f,(z) and g,(z) wheu
2, < z, < z,. Hence h(z) can not be an extreme point of T, °(n,a,[z,,2,]) when
2,<z <z and h(2)ET, (n,a,z). |

Now we have only to show that f(z) and gk(z) cannot be expressed
respectively, as a linear combination of extreme functions in 7,,"(n,,z), =.

zsz andin T, '(n,,z2), z, s z < 3,. This really follows from the fotlowing |
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z positive and 0 < A < 1, we have

£@)<A [ k(k-o)z-(1-a)z*
| {k"e-a) -k (1 -0z,

+(1-M)

[ k(k-a)z-(1-a)z*
| {k"(k-0) -k "(1-a)z,"™)

(2,<z,82, 2)<z,%2z)

and

[ k"(k-a)z-(1-a)z*
| (k"(k-a) -k (1 -0)z™)
[ kr(k-a)z-(1-a)*
| {k"(k-a) -k "1 -0z )

8>\

+(1-M)

(z2,%2,<z,, z,52,<2z).
Hence the proof is completed.
Using the method of proof in Theorem 16, we obtain the following:
COROLLARY 10.1. If 0 < z, < z; < 1, the closed convex hull of

T, (n,0,{z,,2,}) is T, (n,0,[z,2,)).
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REZUMAT. - Un criteriu de convexitate. In aceasti noti, uﬁlizﬁnd tehnica
subordonirilor diferentiale, vom obtine un criteriu simplu de convexitate pentru
functii analitice.

1. Introduction. Let H(U) be the set of functions that are analytic in the

unit disc U. We denote by Ha,n], 4, n = 1, the following classes:
Ha,n] = {fe HU), fe)=a+az"+a, z"" +.., zE U}
a, = {fE HU), f@)=z+a,, z"+., zE U}.

Let fbe analytic in the unit disc. The function f, with f/(0) = 0 is convex
if and only if Re(zf” (z)/f/(z) +1)>0 in U. The function f, with £0) = 0 and
f'(0) = 0 is starlike if and only if Re(zf’(z)/Az))>0 in U.

If fand g are analytic in U, we say that fis subordinate to g, written f <
g or fiz) < g(2) if g is univalent in U, f0) = g(0) and AU) C g(U).

The purpose of this note is to establish a sufficient condition for

convexity, concerning functions of class A4, We use the differential

" “Bahey Bolyai” University, Faculty of Mathematics and Computer Science, 3400 Cluj-
Napoca, Romania
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subordination technique.

This convexity criterion involves the second and third derivative of

considered functions, and it may be useful in the cases in which these¢

-derivatives have a simply form.

2. Preliminary. We will need the following results:

LEMMA 1 [4]. Let a € C, p € Ha,n], h € H). If the function h 1s

starlike in U and zp'(z) < h(z) then

PE) < 4@ = pl0) + - Jﬁf’—) .
n
LEMMA 2. Let the function W: CxU — C satisfy the condition:

(A) Re Y(ix,y,2) <0, for all real x and y with y < —.'21(] +x2) and for all -
e U.
If p belongs to the class H[1,n] and Rey(p, zp’,2) >0 for z € U then Re
pz) >0,z U

42

More general forms of this lemma may be found in {t] and in |2].

3. Main results.

THEOREM. Ler f€ A" and

O0<m = (t)
[
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If
Re [z " () +zf" (2)]> -, zEU Q)
then f is convex.

Proof. If we note k(z)=zf"(z), condition (2) can be written

20z
Re zk/(z) > -a, which is equivalent to zk’(z) < : ", z€ U. Since the function

20,z . .
h(z) = is starlike, by Lemma 1 we deduce

1-2 )
2a
k(z) <q(z) = - n" log(1-2)
and hence
2a. .
z2f"(2) < q(2) = - n" log(1-2) 3

Since ¢ given by (3) is convex and q has real coefficients then Re q(z) > g(-1)

and so

2a,

Rezf" (2)>B,= - In2, zEU. 4

n
If we let now k,=f', then k;, € H]1,n] and using again Lemma 1 we

deduce that

k@) <0@) =1 - 2% J'°g P

2
n
The function Q is convex (we used Alexander’s integral operator), it has

real coefficients and so-
-1

2 ' - 200 " lop(1 - A g2
ReQ(-0(-1)=1 -2 (1080 Dy - 20 (110 oy 2
n

|5

L]

n t n
Hence

a2
Ref'(2)>y,=1 —_1-?,26(/. (5)
n
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A simple calculation, according to (1), shows that y, > 0 and

Ref/(z2)>0 for z € U. (6)
If we let
"
p(z)=M+lforz€U, (7)
'@

then p is an analytic in U, because of (6).
From (7) we obtain first
fl(p-1)=zf". ()
Derivating (8), multiplying by z and éubsfituting the expression of zf”

from (8) we deduce

S p?-1+zp’}=2°f" +3zf". ¥
Taking the real parts in (9) and using (2) and (4) we obtain
Re[f'(p2-1+zp')]>-a +28,. (10)
Let
W(p,zp';2) = @ (P*@) -1 +2p'(2)) (1)

We will show that (1) is fulfilled then the function ¥ defined by (11)
satisfies condition (A) of Lemma 2.
Indeed, if x and y are real, y =< —%(1 +x2) by using (1), (4) and (5) we
obtain, after a short calculation, that
Rey(ix,y;z) =Re[f(x2-1-y)] s -(.'21 + l)yns -, + 2

Hence the conclusion of Lemma 2 is true and we deduce that f is a
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convex function.

COROLLARY 1. Let f€ A, and

0<a,s 3 = 0.240385...

2
2{1 +4mm2+
4

If
Re [z} " (2) +zf" (2)] > -a,, zEU
then f is convex.

COROLLARY 2. Let f€ A, and

2

0<a,s =0.6232...

?
1+42In2+ -
" +2In +]2

Re [z " (2) +zf" (2)] > -a,, zEU
then f is convex.
We close this note by considering the following example:
Example. If A is a real number which satisfies 0 <A < 0.6232
is defined by
f(@)=z- kj’jloLl;u_z_)_ dudt
then fis convex.

Indeed, fbelongs to A,
2022

1+22

ZZf/I/ (Z) "‘Zf” (Z) = —

and

. and if f
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?
1+z2

Re >-A>-0.6232...
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REZUMAT. - Conditii suficiente de univalents in semiplanul superior.
Lucrarea se ocupi de un criteriu de univalent# §i extensibilitate cvaziconforma
a unei functii analitice fin semiplanul superior.

Introduction. Let G C C be a Jordah domain with quasiconformal
boundary curve, let A: G — C\G be a quasiconformal reflection in dG, and let
A be the upper half-plane, i.e. A= {z€ C/Im z > 0}.

This papér is concerned with a criterion for univalence and
quasiconformal extensibility of an analytic funcﬁon fin A,

We shall need the following theorem to prove our results:

THEOREM 1 [3]) Let A be generated by the q - chain h(z,t), q € (0,1); let

Zy = h(0,0). Let a,b,c,d be analytic in G, a(2)d(z) - b(z)c(z) # 0, z € G and

o(zw) = 90+ (W =2yb@)
() + (w-2)d(2) ,
Let f be meromorphic and locally univalent in G, f(2) = ¢(2,z) = a(2)/c(z), z€G

2EG, weC (1

and suppose that

* University "Transilvania” Brasov, Department of Mathematics, 2200 Brasov, Romania
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/
w

Then f is univalent; if k < 1 f has a quassiconformal extension F to C given by

FM2)) =¢(M2), zEG &)

The Theorem 1 can be transferred to unbounded domains G as well by

/
| %(z,)»(z)) +MN@) | sk|M@) | ae inG ks ()

means of linear transformations.

COROLLARY 1 [3] Let A be a Loewner reflection in dG, (that is,
generat;zd by a Léewner chain), and let T C—» C be a linear transformation (;
= T(G,), A =Toh,oT". Then the conclusion of t;le Theorem 1 also holds for GG
and \.

Mains résults. The Theorem 1 and the Corollary 1 cover, in particular,
the standard cases G=U={z€C/|z|<1}, Mz2)=1/z, G=H={zEC/Rez>0},
Mz)=-z and G =A = {z€ C/Imz >0}, M2) =z. If we consider the case G = A
and A(z) =z, we obtain the following c.oroliary of the Theorem 1:

COROLLARY 2. Let a,b,c,d. A — C be analytic functions in A such that

a(z)d(z) - b(z)c(z) »0, zEA and -

(z,W) = a(z) + (w-z)°b(z)
’ o(2) +(w-z)d(z)’
Let - A — C be an analytic and locally univalent function in A, £z) = ¢(z.2) und

ZEA, WEC

suppose that
¢, |
| —@2) sk aeinA ks ()

w -_—
Then fis univalent in A. If k < 1, fhas a quasiconformal extension I 1o C given
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by Hz)=6¢(z2), zEA (5)
Using Corollary 2 and suitable choices of ¢(z,w) we can obtain the next
univalence criteria.
TH: 'REM 2. Let fhx: A — C be analytic functions in A, such that

@) h' ()T (2)=0, zEA. If
(Imz)’ 8,2 - (Imz)* f"(2) h" () _
v(2) Y@ [ h'@)

(i1 )[f”(Z) h"@) _ t”(Z)‘ T(@)-1]_ 2 zEA ksl (6)

/@ K@ Y@ 2

then f is an univalent function in A and if k < 1 f has a quasiconformal

extension 1o G

Proof. The conclusion of this theorem follow by applying Corollary 2 to

the function

=f(z) + (w-2)f'(2) A ¢
d(z,w) =f(z) e —E ZEA, WE
| 2 K2

If k < 1, the quasiconformal extension F to C of the function f'is given by

FE) = 0@7) =) - — M@ ey
¥ (2) - (iIm2)- " (Z)

Remarks.
1) 1If /=1 and h(z) = z in (6), we obtain the univalence condition of Becker
[2] for the half-plane A:

Imz- ff’:((z)) s_ ZEA, ks . (7
z

49



D. RADUCANU

2) If+' =1and h' =(f')", (6) gives the univalence condition of Nchari 1]
for the half-plane A:

(Imz){S,(2) sé, ZEA, ks1 @)

3) If h/ =g’-(f')", where gz A — C is an analytic function in A and

g’(z)»0, z € A in (6), we obtain the univalence condition of Epstein [4]

for the halfplane A:

2 ’ 2, _ +9 .[g//(z) _ ‘l:”(z) oyt (
';,-(;iﬂmz) [S;(Z) Sg(Z) 2’Imzlg’(z) 70 1 -t/(2)|sk, zEA, k< 1(9)
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4;H Au = f, u € D(A),
has a solution, then this solution is unique and minimizes the
Jfollowing quadratic functional:
F(u). = (Au,u) - 2 Re (fu), u € D(A). (0.1
(ii) If uy € D(A) minimizes the functional F on D(A), then u, is the
unique solution of the equation (A;f).

For some developements of this fact to K-positive definite operators or
non-linear operators with K-s&mmetrical and K-positive definite differential see
[3], [5-6] and [2] or the monography [1] where further references are given.

In the sequel we shall study the equation (4;f) for some classes of
nondense defined linear operators in a Hilbert space. Applications for special

equations associated to some linear operators in Hilbert spaces are also given.

1. A variational method for nondense defined and positive opcrators.
Let (H;(,)) be a (real) complex Hilbert space, D(4) be a given linear subspace
in H, nondense in general, and 4: D(4) — H be a (symmetric) positive operator
on D(A).

Further on, we shall consider fhe next operator equation:
7:N)) Au = f, u € D(A) and f € H,
and we shall study this equation in connection to other equation in teims ol
variational methods.

Put, for a given operator 4 as above:
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LA): = {u € D(A)]| (4u,1) = 0}
and
O(A): = {u € D(A)| Au € D(A)")}.
Tth L(4) and QO(A) are linear subspaces in D(A) and the following
inclusion holds.
LEMMA 1.1. If A: D(A) C H — H is as above, then:
Ker(4) C L(4) € O(A). (1.1)
Proof. The first inclusion is obvious. Let prove the scéond. Suppose u, €
L(A), i.e., (Auyu,) = 0.
For all A € K and u € D(A) we have:
(AMu + Aug, Au + u(',) 20
what is equivalent to:
|\ |2 (4u,u) + 2 Re [MAu,u)] = 0 for all A € K, (1.2)
since (Auy,u,) = 0.
Put A = ¢t € R. Then by (1.2) we derive:
(Au,u) + 2t Re (Auu) =0 for all t ER,
what gives Re (Au,u,) = 0.
Put A = - jt, t € R. Then by (1.2) we also have:
£(Au,u) + 2t Im (Au,u,) = 0 for all t € R,
what implies Im (Au,u,) = 0.
Consequently:

0 = (Au,u;) = (u,Aug) for all u € D(A), i.e., Au, € D(A)",
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and the iemma is proved.
Remark 1.2. By the symmetrie of the operator 4 we have:
Q(4) = {u € D(4)| u € R(4)"},
‘where R(4) denotes the range of the operator 4.
COROLLARY 1.3. If A is as above and dense defined, then we have:
Ker(4) = L(4) = Q(A). (1.3)
Proof. If u, € Q(A), then (Augu) = 0 for all u € D(A) and by the density
of D(A) in H we derive that‘('Auo,z) =0 forall z€ H, ie., Auy,=0 and Q(4) C
Ker(A).
Now, let S, bé the set of all solutions of the operator equation (A4.f) for
a given element. fin H. Then the following proposition holds:
PROPOSITION 1.4. If u, is a solution of (A;f) then:
Sup = o + Ker(4) C uy + L(A) C uy + O(A). (1.4)
The proof is obvious and we omit the details.
Let also consider the following equation associated to the positive operator
A
(AL D)) Au€E f+ @(1.4){ u€ D(A) and fE H.
PROPOSITION 1.5. If u, is a solution of equation (A;fD(A)"), then the
set Sy poay) of all sqlutions of this equation is given by:
Suusromd) =Y + ((A). (1.5)
Proof. "2". Let u, = u, + w, with wy € Q(4). Then for all u € D(A) we

have;
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(Au, - f, )= (Au, - f, u) + (Aw,, u) = (Au, - f u)
since Wy € O(A), then uy € Sy rpupy
"C". Let u, be another solution of (4;£D(4)"). Then for all u we have:
(Ayo-f w=0,(Au, -, u)=0
what implies that:
(A(u, - u,),u) =0 for all u € D(A4),
i.e., u; - uy € O(A) and then u; € u, + Q(A).
The proof is finished.
Remark 1.6. If u, is a solution of (4;£D(4)"), then:
t+ Ker(f) C thy + L(A) C Syuzmiany

COROLLARY 1.7. If A is as above and dense defined on H, then we
have:

Sugoums) = t + Ker(4) = uy + L(A) = uy + Q(A). (1.7)

The proof is obvious by Proposition 1.5 and Corollary 1.3 and we shali
omit the details.

To equation (A4,f) we can associate, as in the case of strictly positive or
positive definite operators on a dense subspace of H (see for example [4] or [1]
p.125) the following quadratic functional:

Fp: D(A)-— K, F 1) = (Au,u) - 2 Re(fu) (1.8)
which will be called energetic functional associated to equation (4./).

It is easy to see that, for all u,v € D(A4) and A € [0,1] we have (see for

example [1], p.126):
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MFp(®) + (1 = MF %) = Faghas + (1= )
=M1 - A)(A(u - v),u - v)

what implies that F,, is convex if 4 is positive, strictly convex if 4 is strictly
positive and uniformly convex if A4 is positive definite.

The following lemma is important in the sequel.

LEMMA 138. i. If uy, € D(A4) is a solution of equation (A:f) then u,
minimizes the energetic functional F

ii. If u, € D(A) minirhizes the energetic_functional F,, then u, is u
solution of equation (A;f.D(A)").

Proof. i. If Au = f, then for all u € D(A) we have (as in {1] p.126):

Fyp(u) - Fiup(u) = (Auu) - 2 Re(fu) - (A(uo),uo) +

2 Re(fu,) = (Au,u) - 2 Re(Auyf) - (Auy,u,) + 2 Re(Auy,u,) =

(A(u - ug),u - uy) 20,
i.e., u, minimizes the energetic functional F,,.

ii. Let 4, € D(4) minimize the energetic functional I, , Then tor all
€ D(A) and for all A € K we have:

Fuphu + ug) = Fiy (uo).
By simple computations we obtain:
IN*(Au,u) + 2 Re[Mu,Au, - f)} 2 0 (110

for all u € D(A) and A € K.

Put A = ¢ € R. Then by (1.10) we get:

£(Au,u) + 2t Re(u,Au, - f) = 0 for all ¢ € R,
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what implies Re(u,Au, - f) = 0.
Put A = -it, t € R. Then by (1.10) we also derive:
£(Au,u) + 2t Im (u,Au, - f) = 0 for all t € R,
what gives Im (u,Au, - f) = 0..
Consequently, (u,4u, - f) = 0 for all u € D(A), i.e., Au € f+ D(A)" and
the lemma is proved.
Now, let denote by M, the set of all elements in D(4) which minimize
the energetic functional F,,. Then the following result of répresentation holds:
PROPOSITION 1.9. If u, € D(A) minimize the functional F, ,, then we
have:
M, =ty + O(A). (1.11)
Proof. "C". If uy € D(A) minimize F,,, then ¥, € S rm4, and since
Mup S Suusout) A4 Syarmupny = % + O(A), the inclusion is proved.
"2". Let u, € u, + Q(A). Then for all u € D(4) we have
F ) - Fun(u) = (Au,u) - 2 Re(uf) -
- (Auy,u)) + 2 Re(u,,f) = (Au - Auu - uy) +
2 Re (u,Au, - f) + 2 Re (u,f - Au,).
Since u; € Sy m4y) We conclude that (u,4u, - /) =0 and (u,,f - Au)) =0
what implies that:
F (1) - Foy(1) = (Au - Auju - u)) 2 0,
i.e., u, minimize the functional F,

Remark 1.10. If uy € D(A) minimize the functional /., then:
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uy + Ker(A) C uy + I(4) T M, (1.12)
COROLLARY 1.11. If A is as above and ‘D(A) is dense in H, then for all
u, which minimize the functional F ., we have:
M = uy + Ker(4) = uy + L(A) = u, + Q(A). (1.13)
Consequently, we have the following main result:
THEOREM 1.12. Let A : D(A) C H — H be a (symmetric) positive
operator on D(A) and f a given element in H. Then we have the inclusion:
Sen S Moap C Suuporary (1.14)
The proof is obvious from the previous considerations and we shatl omit
the details.
COROLLARY 1.13. Let A be as in Theorem 1.12 and D(A) is dense in
H. Then we have:
Sun = Mup = Susgoury (1.15)
Proof. Let u, be a solution of (4, D(4)}). Then we have (Au, - f.u) = 0
for all u € D(A). Since D(A) is dense in H we conclude that (Au, - f.z) = 0 tor
allzE€ H, ie, u, € Sy,

2. A variational method for géneral linear operators. Further on, H will
be a Hilbert space over the real or complex number field and 4: D(4) C I/ -
H be a linear operator on linear subspace D(4) which is nondense, in general,
in H.

Let reconsider the next operator equation:
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VN)) Au = f, where u € D(A) and fis given in H.
The following simple proposition holds.
PROPOSITION 2.1. If u, is a solution of (A.f) then the set of solutions of
VN i; given by:.
Swup = U + Ker(4). Q.1
We also consider the following equation:
(A R(AD Au € f+ R(A)", u.€ D(4) and f € H,
where R(A) denotes the range of the operator A.
The next proposition is also valid.
PROPOSITION 2.2. If u, is a solution of ‘the operator equation
(A;f R(A)") then the set Sasrray of all solutior.zs of this equation is given by:
Susrayp) = U + Ker(A). 2.2)
Proof. "2". It’s obvious.
"C". If u, is a solution of (4;fR(4)") then for all u € D(A) we have:
(Au, - f,Au) = 0.
If u, is another solution of (4;/:R(4)") then
(Au, - f,Au) = 0 for all u € D(A).
Then we obtain:
(Au, - Au,, Au) = 0 for all u € D(A4),
what implies: A(u,) - A(y,) = 0, i.e, u, - u, € Ker(4) and the pro‘position is
proved.

To equation (A4;f) we can also associate, as in the case of positive
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operators, the following quadratic functional:

F .y DA) = K, F,, (w): = |Aul - 2 Re(Au), 0
which will be called the energetic functional associated to (A;/). A simpl

calculus gives:

M) + (1= WFy ) - Fopp iy + (1 - M) =

=M1 - ) 14w, - w)P, (20
for all A € [0,1] and u,,u, € D(A), i.e., the mapping [-( 4 18 convex and if thare
exists a constant £ > 0 so thai:

l4x} = k lx|| for all x € D(A), (%

then 17( 4p 18 uniformly convex. We also remark that [_( 4 18 strictly comee
A is an injective operator.

The following lemma is important in the sequel.

LEMMA 2.3. Let A: D(A) C H — H be a linear operator on ‘D(AY .

fa given element in H. The following statements are true:

(1) If uy is a solution of (A;f) then u, minimizes the energetic function.:
F(A;f)'
(ii) If uy € D(A) minimizes the functional I', ., then u, is a solur

equation (A:f R(A)).
Proof. (i). Let u, € D(A) be a solution of (A /) Theo 1
have:
Foy W) = Fy (1) = 1Aul? - 2 Re(An, 1 »

+2 Re(Auy,Au,) = lAu, - Aul* 2 0,

0?
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-
-

i.e., 4y minimizes the functional ¥, .
(ii). Let u, € D(A) minimize the ‘energetic functional 1-( N
Then for all u € D(A4) and A € K we have:
Ij:(N)(ku + uy) 2 ﬁ(,m(“o)
By simple computations we obtain:
IN?HAul? + 2 Re[M(Au,Au, - )] =0
for all u € D(A) and for all A € K.
Put A = ¢t € R. Then we obtain:
PYAuf? + 2t Re(Au,Au, - f) = 0 for all t E R,
what implies that:
Re(Au,Au, - /) = 0.
Put A = -ir, t € R. Then we derive:
AlAul? + 2t Im (Au,Auy - f) = 0 for all t ER,
what gives:
Im (Au,Au, - f) = 0.
consequently, (Au,Au, - f) = 0 for all u € D(A), i.e, Au, - fE R(4)" and the
lemma is proved.
Now, let M, , be the set of all elements in D(4) which minimize the
energetic functional }?(,4-, N Then the following result of representation holds.
PROPOSITION 2.4. If u, € D(A) minimize the functional I 4, then:
M, = Uy + Ker(A). | (2.5)

Proof. "C". If u, € D(A) minimize F

sy then u, € Sy, and since
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M Q'S(A‘.m by = Uy + Ker(A), the inclusion is proved.

"2". Let u; € u, + Ker(f). Then for all u € D(A4) we have

F ) = F, () = JAul® - 2Re(4u,f) - |4u,) +

2Re(Au,, f) = lAu - Au,\* + 2Re(Au,Au, - ) + 2Re(Au,, f - Au,).

Since u; € Ssp4yL) We conclude that (4u,Au, - f) = 0 and (Au, f - Au,)
0 what implies that:

F o W) = F,, o (w) = lAu - A | 20,
i.e., u, minimize the ﬁmctio_ﬁal IF( e

In conclusion, we have the following main result:

THEOREM 2.5. Let A4: ‘D(A) C H — H be a linear operator on D(A) und
f be a given ele'ment in H. Then:

Sutn S Mup S Suarnonty (2.6)

The proof is obvious from Lemma 2.3 and by the above proposition. We
shall omit the details.

COROLLARY 2.6. Let A: D(A) C H — H be a linear operator such that
R(A) is dense in H. Then for all f € H we have:

Suun = Mup = Susrary (27

Proof. Let uy € Sy zrapy Then (Au,Au, - f) = 0 for all u € D(A). Since
R(A) is dense in H we deduce that Au, = f and the corollary is proved.

COROLLARY 2.7. Let A: D(A) C H — H be a closed dense defined
linear operator on D(A) and suppose that A’ is injective. Then for all ¢ 1

relation (2.7) holds.
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Proof. To prove this fact, we need the following well-known result from
operator theory (see for example [7], p. 105):
LEMMA 2.8. Let T be a closed dense defined operator on Hilbert space
H. Then 1" is dense defined and
(i) Ker(T*) = R(T)"
(ii) R(T™) =Ker(T)"
If A" is injective, then it follows that R(4)" = {0}, i.e.,
R(A) = SpRA) = (RA)"Y = {0} =H,
and by Corollary 2.6 we obtain the desired result.
COROLLARY 29. Let A: D(A) C H — H be an injective self-adjoint
operator on dense linear subspace D(A). Then (2.7) is also valid and there
exists at most one element u, € D(A) such that u, € S, .

The proof is obvious by the above corollary and we omit the details.

3. Applications to linear operators in Hilbert spaces
1. Let H be a (real) complex Hilbert space and 4: D(4) C H — Hbe a
(symmetric) positive definite operator on dense linear subspace D(A). Put:
i(A): = inf {(Ax,x)/Ix|?>, x € D(A), x = 0},
then i(4) > 0.
By the use of Corollary 1.3 for the positive operator 4 - i(4)/ the elemen
u, € D(A) is a solution of the equation;

Auy = i(A)u,,
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if and only if u, is a solution of the scalar equation
(Au,u) = i(A)lul’.
The following result is also valid.
PROPOSITION 3.1. Let f € H and u, € D(A). Then the following
statements are equivalent:
) u, is a solution of the equation:
u = 1/i(4) Au + f,
(ii) u, minimizes the' Junctional G 4.,. D(4) — K,
Gy (@) = (Au,u) +2i(A)Re(f,u) - i(A)|ul?
The proof follows by Corollary 1.13 for the positive operator 4 - i(4)/ and
for the element.-i(A)ﬁ
We also remark that the positive operator A - i(4)] has the following
properties:
(1) A - i(A)] is injective iff for every f € H there exists at most one
element u, € D(A) which minimize the functional:
Hy D(A) = K, H (1) = (Au,u) - 2 Re(fu) - i(Allul?,
(ii) A - i(A)] is surjective 1ff for every f € H there exists at least one
element u, € D(A) which minimize the above functional #, ,,
(iii) A - i(A) is bijective iff for every f € H there exists a unique
element u, € D(A) such that u, minimize H ,,
2. Let A: D(A) C H — H be a symmetric operator on dense subspace

D(A) and suppose that 4 is bounded on D(4). Put
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141: = sup {(Ax,x)/Ix}?, x € D(A)\{0}}.
By the use of Corollary 1.3, we derive that u, € D(A) is a solution of equation:
u=1/JA4| Au
if and only if , is a solution of the scalar equation:
(Au,u) = A lul®.

The following proposition holds.

PROPOSITION 3.2. Let f € H and u, € D(A). Then the following
Statements are equivalent:

(i) u, is a solution of the equation:
u= 1Al Au +f,
(i1) u, minimizes the following energe.tic Sfunctional:
Ly D(A) = K, L, (u): = lul®14ll - 2141 Re(fu) - (Au,u).

The proof follows from Corollary 1.13 for the positive operator |4l - A
and for the element |A4|l f and we omit the details.

3. Let A: H — H be a bounded linear operator on H. Then the following
identity holds:

Ker(4°4) = Ker(4) (Ker(44") = Ker(4")).
Indeed, by Corollary 1.3 for the positive operator A°4 we have:
Ker(4'A) = {u € H| (4'Auu) = 0} = {u € H| J4ul = 0} = Ker(A).

This fact implies that the operator A" (44°) i.s injective if and only if the

operator A(A4") is injective. |

PROPOSITION 3.3. Let f€ H and u, € H. Then the following sentences
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are equivalent:
(i) u, is a solution of the equation:
AAu=f (A4'u = ),
(ii) u, minimizes the following functional:
S it
T () = V4ul - 2Re(f) (S () = 14 "ulP - 2Re( f)).
The proof follows by Corollary 1.13 for the positive operator 4°4 (4A4")
and for the element f € H.
Remark 3.4. If A: H— H is a self-adjoint operator on H, then:
Ker(4%) = Ker(4),
and for a given .element f € H the equation:
Au=f
has the solution #, if and only if u, minimizes the energetic functional .J,, ,
4. Let A: H— H be a self-adjoint operator on Hilbert space H and put:
o, =inf {(Ax,x)| x| =1}, Q,: =sup {(Ax,x)l Ixi = 1}.
Then
o Jxf? = (4x,x) < Q Ix}* for all x € H,
and it is well-known that o(4) C [0,2,] and ®,,RQ, € o(4).
By the use of Corollary 1.3 we observe that u, € H is a solution of
equation:
Au = u (Au =Q u),

if and only if u, is a solution of the scalar equation:
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(Au,u) = o Jul? ((Au, W=Q AIIuII’).
i The following proposition is valid too.

PROPOSITION 3.5. Let f € H and u, € H. Then the following sentences
are equivalent:

(i) u, is a solution of the equation:
Au=wu+f(Au=Qu+f)

(ii) uy, minimizes the quadratic functional:
KW,(EM): H— K given by
K, W): = (Au,u) - o Jul? - 2Re(f,u)
(K () = bl + 2Re(f; ) - (Au,u).

5. Let 4: D(A) C H— H be a closed linéar operator on Hilbert space H
and consider the following operator equation:
an Au=M u+fu€E D), fEHand A EC.

PROPOSITION 3.6. Suppose that o (A) is nonvoid (where o (A) denotes
the continuous spectrum of A) and \ € o (A). Then the following statements are
equivalent:

(i) uy € D(A) is the unique solution of (A;\[);
(ii) u, € D(A) is the unique element which minimize the quadratic
Jury D(A) = K where:
Junpy @) = §4u - ul? - 2Re(Au - . f).

Proof. If A € o,(A), then the operator Al - A is injective andR(A/-4) =

X. Applying Corollary 2.6 the proposition is proved.

67



S.S. DRAGOMIR

REFERENCES

Dinci,G., Variational Methods and Applications (Romanian)-Ed. Tehnjci, Bucuregsti,
1980.

DincA,G., Rosca 1., Une methode variationelle pour les operateurs non-linéaires a
differentielle K-positivement define, CR. Acad. Sci. Paris, 286(1978).

Martyniuk A.E., Nekotorie novie bn'lojem’a metodov tipa Galerkina, Mat. Sb.,
49(1959), 85-108.

Mihlin S.G., Variationnie metodi v matematiceskoi fizike, Moskova, Nauka, 1970.
Petryshyn W.V., Direct and iterative methods for the solution of linear oper'ator
equations in Hilbert spaces, Trans. Amer. Math. Soc., 105(1962), 136-175.
Petryshyn W.V., On a class of Kpd and Non-K p.d. .operators and operator
equations, J.Math.' Anal. Appl.,+10(1965), 1-24.

Vasilescu F.-H., Initition in Operator Theory (Romanian), Ed. Tehnici, Bucuresti,
1987.



STUDIA UNIV. BABES-BOLYAI,'MA'I'HEMATICA, XL, 1, 1996

PERFECT DUALITY FOR K-CONVEXLIKE
PROGRAMMING PROBLEMS’

T. ILLES™ and G. KASSAY™

Dedicated to Professor 1. Kolumbén on his 60" anniversary

Received: January 15, 1996
AMS subject classification: 49N15

REZUMAYT. - Dualitatea perfecti a problemelor de programare K-
convexd. Se demonstreazi o teorem# de altenativi de tip Farkas, ce
generalizeazd o serie de rezultate obfinute in aceasti directie. Se obtine un
rezultat de dualitate perfecti pentru probleme de programare K-convexi.

Abstract. In this paper a Farkas’ type lemma and a perfect duality
theorem is given for K-convexlike programming problems. Our result (Theorem
2.2.) is more general than Hayashi and Komiya’s Lemma 2.1. ([7]), since the
class of K-convexlike functions includes that of convexlike (in the sense of [7]).
A similar result under different regularity condition has been obtained by
Gwinner and Jeyakumar ([6]). Their regularity condition and the structure of the
defined problem as well, allowed them to get an e-duality theorem (e > 0),
while we prove a perfect duality theorem (where e = 0; Theorem 3.1.).

The results of this paper are presented in finite dimensional Euclidean
spaces ordered by there positive orthant, but it has to be mentioned that these
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results can be extended with the same proofs to topological vector spaces
ordered by arbitrary conex cones. In this sense the class of problems considered
here is more general than that of [6,7].

1. Introduction. Let X be a nonempty subset of R”, and let
i X->R ffX->R. g X—>FK
Consider the problem (P):

min f(x) )
x€EX

Sx)s0 . 2)
g(x) =0. €)

In this paper a condition related to generalized convexity is given in order
to obtain a perfect duality theorem between problem (P) and its Lagrangian
dual.

Let F: X — R?, where p is an arbitrary positive integer and K C R” be a
nonempty cone’. The function F is said to be K - convexlike if there exists a
€ (0,1) such that for each x,,x, € X there exists x; € X with

aF(x) +(1-a)Fx,) - F(x,) EK.
Concerning problem (P) we take
p=l+m+k F=(/.£8)
and
K=RxK'x {0} CRxR"x R
(The constraint (2) can be reformulated as —f(x) ER}).

Our extended version of Farkas’ lemma (Theorem 2.2.) is proved for a K-

* Throughout this paper cones always have their vertices at the origin, as usual.
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convexlike function and it is based on the separation theorem of two disjoint
convex sets. Applying Theorem 2.2. for F and K defined above we obtain a
perfect duality result for problem (P) (Theorem 3.1.).

There are several generalizations of Farkas’ lemma (see for instance
M.Hayashi and H.Komiya (7], B.D.Craven, J.Gwinner and V.Jeyakumar (5],
V.Jeyakumar [5], V.Jeyakumar [9], C.Zalinescu [15], L.Blaga and J Kolumban
[2], T.1llés and G.Kassay [8], G.Kassay and J.Kolumban [10]). Most of these
papers deal only with inequality constraints.

In paper [6] of J.Gwinner and V.Jeyakumar, theorems of the alternative
of Motzkin (Theorem 3.1.), Farkas (Theorem 3.2., 3.4.) and Gordan type
(Theorem 3.5.) are given for a K-convexlike function F X— R where Y = &
and K =R.. Since their results are based on the separation theorem of disjoint
closed convex sets, their regularity condition is different from our’s, which is
of Slater type. They also obtained an e- duality theorem (with € > 0; in case of
perfect duality one has € = 0).

The paper is organized as follows. In section 2 we prove a new version
of Farkas’ lemma (Theorem 2.1.), which allows us in section 3 to prove a
perfect duality result for K-convexlike programming problems. As it is well
known, saddle point theorems give another method in proving perfect duality
results (see for instance Zeidler [16]). In order to obtain a similar perfect duality
theorem for K-convexlike functions by using saddle point techniques, we need
a minimax (for instance Konig’s [11]) theorem. The disadvantage of these
techniques is that we have to suppose the lower- semicontinuity of the

Lagrangian. However, in our Theorem 3.1. we do not need this additional

71



T. ILLES, G. KASSAY

assumption. Hence, it seems that the method based on Farkas’ lemma is more

efficient for K-convexlike programs than that of saddle point.

2, Farkas’ lemma for K-convexlike functions. We first introduce some
notations and recall some well-known results.

A subset M of R? is said to be nearly convex if there exists a € (0,1) such
that for each y,,y, € M we have ay, + (1 - @)y, EM. If M is nearly convex then
the interior (intM) and the closure (cIM) of M are convex sets. Furthermore the
set B= {b € [0,1] | Vy,.y, € M: by, + (1-b)y, € M} is dense in [0,1] (see for
instance Aleman [1]).

Let X be a nbnempty set, : X —>R", . X— R* be given functions and
let K = K, x K,, where K,CR (i=1,2) are convex cones, with intK, = &.
Denote by ® the pair (p,): X — R"'",

LEMMA 2.1. The set ®(X) + K has nonempty interior in R*" if and only
if the interior of the set M= ®(X) +((intK,) x K) is nonempty.

Proof. The if part is obvious since M C P(X) + K. Suppose that
int(P(X) +K) = 3. Choose xEX, k, €K, (i =1,2) such that (p(x) + k;, y(x) +
k,) € int(®(X) + K). Then there exist U and V neighbourhoods of the origin in R”
and R™ respectively, such that
[9(x) +k, +(ntK )N UL < [(x) +k, + VIC [0(x) +k, + U] x [9() +, + V] CR(X) K.

Therefore, for any u € intK, N U and v € V, there exist z € X, [, € K,
and /, € K, such fhat

@x) +k, +u=0(2) +1,
and
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YD) +hy + v = (D) +L,
' Since K +intK CintK, we obtaing+k +2u=q@(z)+u+l Eq(z) +intk
and Y(x) +k, +vEY(2) + K,, or, in other words
[9(x) +k, +2((intK,) N U)] x [W(x) + k, + V] CO(X) + ((intK,) * K,).
Since in the left hand side of the inclusion we have an open set, than inth
is nonempty. B
Next we prove the following "Farkas’ lemma" for K-convexlike functions.
Let @ =(,): X—>RB"™ and K'=K!x {0} CR" xR,
THEOREM 2.2. (i) Assume that ® is K-convexlike and the set (X) + K

has nonempty interior. If there is no x € X such that
w0 @
then there exist y, € K, ¥, ER* with (y,,y,) »(0,0) ER*™ such that
D P> + <y, P(x)> 20, YXEX. (%

(ii) If there exist y, € K'\{0} and ¥, EX% such that (5) holds, then there
is no x € X such that (4) holds.

Proof. (ii) is obvious, hence we have only to prove (i). Let M:= ®(X) +
((intK,) x K,). Since @ is K-convexlike, then M is nearly convex. By Aleman
[1] and the hypothesis, the set intM is nonempty and convex. On the other hand,
by the assumption, (0,0) doesn’t belong to M. Using a well-known separation
theorem (see for instance Zeidler [16]) the sets {(0,0)} and intM can be
separated by a hyperplane i.e., there exists y = (y,,y,) ER'x R* with y = (0,0)
such that |

<y, u>>0, Vu€E intM. 6)

We show that the relation
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<y,u>20, VueM )
holds, i.e. the same hyperplane separates the sets {(0,0)} and M. Supposing the
contrary, there exists u, € M such that <y,u,> < 0. Fix u, €intM. Since the
function f(f):= <y, fu,+ (1 -f)u,> is continuous on R, there exists A € (0,1) such
that <y,u,> = 0, where u,:= Ay, + (1-M)u,. Let V be an open neighbourhood of
u, such that ' C M. Since M is nearly convex, there exists T € B\{1} such that
u:=(1/(1 -%))(u, -tuy) € V. Then we have u, =tu +(1-tu,) EM. We show
that ‘u, € intM. Define the map H: R"» — R by H(y):= (11 -T))(y-u,).
Since this map is continuous, the set U= H'(V) is an open neighbourhood of
u,. It is obvious that U C M. Indeed, for each u € intM let ii:= H(u) € V. Then
we have u=7u + (.1 -tu) € M. Therefore u, € int M and taking into account (6)
we obtain a éontradiction with <y,u,> = 0. Hence, we have shown that (7) holds,
i.e.

<y,v>+<y,w>20, Vu=(vw)EM.

By this relation we clearly obtain y, €K, on one hand, and (5) on the
other hand. @

Theorem 2.2. is a lop-sided version of Farkas’ lemma. The sufficiency
needs the additional condition (y, = 0), which can be guaranted for instance by
the assumption 0 € intp(X). This is a natural restriction taking into account thal
in case of @ convex and afﬁné functions, the matrix corresponding to 1 s
always supposed to have full row rank. In this case vy is onto, therefore
0 € intyp(X). Under this additional constraint (given on system (4)) Theorem

2.2. can be stated out as a usual alternative theorem.
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3. Contrained optimization. In this part we deal with problem (P) and
its Lagrangian L: X x R” x R — R defined by

L(x,y,,3) = fo(x) + <y, fx)> + <y, g(x)>.
Consider the function h: K] x R* — RU {-o} given by

()= inf L(x,y,,3,).
The Lagrangian dual problem of (P) is
maxi(y,,y,)

(D) :
y 1 e Kf’y 2 E R‘
We introduce the primal and dual feasible solution sets

P:={xEX|fx)s0, g(x) =0}
and
D:={(y,y) EK x| infL(x.,.y)> -},
respectively. Consider F =(f,.f,g): X—RxR" xR and
K=R xR x {0} CRxR" xR
as in the introduction.

It is easy to see that A(y,,y,) s f(x) for all x € Pand (y,,y,) €. We say
that there is no duality gap between problems (P) and (D) if there exists x° €
P and (y,",y,) € D such that

Jox®) =h(3,y7).
In this case, problems (P) and (D) are in perfect duality.

THEOREM 3.1. The following two assertions hold:
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(i) Suppose that F is K-convexlike, and there exits p € R such that (1,0,0)
€ in(F(X) + K). If X’ € P is an optimal solution of (P), then there exits
(31, )2 ) € D optimal solution of (D) such that

fx") = h(yy',y2) (8)
and the complementarity condition
<y fxTy> =0
holds.

(ii) If there exists x*€ P, (y,,y;) € D such that (8) holds, then x" and
(»/,),) are optimal solutions of (P) and (D) respectively.

Proof. (i). It is obvious that h(y,,y,) s f(x) for all x € P and(y,,y,) € D.
Therefore, it is enough to prove that there exists (3,,),) € D such that

Jx) sh(y,yy). )
Define the functions
P X—=RxR" Y. X—>R
by @(x) = (f(x) - fi(x "), Ax)), ¥(x) =g(x) and let ® = (@,yp). Then P is K-
convexlike (with K defined above) and by the regularity condition the set ®(\)
+ K has nonempty interior. Appling Theorem 2.2. (i) it follows that there exists
(A7, 7,) = (0,0,0) with A ER ¥, c R and 7, € R* such that

A Si(x ) S A S0 + <P AX)> + <P,8(x)> VXEX. (10)
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Again by the regularity condition it follows that

0,0) Eint{ fix) +k, g(x)| xEX,kEK}.

Thus X, = 0. Dividing (10) by X, we obtain (9) with y; = 1.7, and y; = L7,

0 0
Part (ii) is obvious.
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REZUMAT. - Teoreme de A-punct fix pentru operatori multivoci local

contractivi §i aplicatii la stabilitatea punctelor fixe. Folosindu-se notiunile

de A-punct fix §i A-stabilitate introduse recent de B Ricceri §i O.Naselli

Ricceri (vezi [11], [8]) se demonstreazi o teoremi abstractd de existentd pentru

o incluziune functionald de tipul @(s) € F(s,9(s)) in ipoteza de local

contractivitate a operatorului multivoc F. Ca i consecint3 se obfine un rezultat

asupra stabilititii punctelor fixe. O aplicatie a acestor rezultate la incluziuni

" diferentiale depinzind de un parametru este de asemenea prezentats.

1. Introduction. The study of random fixed points was initiated by the
Prague school of probabilities in the fifties. Recently the interest on this subject
was revived especially after the survey article of Bharucha-Reid {2]. The theory
of random fixed point has found important applications in random operator
equations, random differential equations in Banach spaces and differential
inclusions (see [2], [4], [5], [8]).

To be more precise, we recall that given a measurable space (S, F) (¥ is

a o-algebra of subsets of S), a topological space X and a multifunction F from
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Napoca, Romania



A. PETRUSEL

S*X into X, a measurable function ¢: S — X is said to be a random fixed point
of F if ¢(s) € F(s,9(s)), for all s € S.

In [9] O. Naselli-Riccen considers the following problem:

Given a family 4 of singlevalued functions from S into X, find an A-fixed
point of F, i.e. ¢ € A such that ¢(s) € F(s,9(s)), for all s € S. Under two basic
assumptions: X is a complete metric space and for every s € S, F(s,) is a
multivalued contraction with closed values, O. Naselli-Ricceri proved the
existence of an A-fixed pbint of F.

The purpose of this paper is to show that a similar result can be obtained
for locally contractilve multivalued operators. As consequences we obtain a result
on fixed poiﬁts stability. An application to a differential inclusion depending on
a parameter is also considered.

We follow the technique given in [12] and [9].

2. Preliminary results. Let 4, B be two nonempty sets. We will indicate
by P(B) the family of all subsets of B and by P(B) the family of all nonempty
subsets of B. A multifunction (or multivalued operator) from A4 into B is a
function from A into P(B).

Let ' A — P(A). A point a € A is said to be a fixed point of 7' if « ¢
T(a). We will denote by Fix T the set c;f fixed points of T’ Let 7% 4 — P(B). We
will denote by Graph T the set {(a,b) € AxB| b € T(a)}. If C is a subset of B,
weput THC)={a € A| Tx) N C = D}. If 4, B are topological spaces, a
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multifunction T A — P(B) is said to be lower semiconinuous at a € A if for
ever); open set C C B such that a € T"(C) one has a € int T'(C). T is said to
be lower semicontinuous (l.s.c.) in 4 if it is so at every point of A.

Let (X.d) be a generalized metric space (see [14]). If 4, B are two non-
empty subsets of X, x € X and r > 0, we will put:

Bfxr)y={y € X| dxy) <r;

D (x,A):= inf d(x,y)

YEA

pA4,B) = ig{) D (x,B).

Let P.{X) be the family of all non-empty closed subsets of X endowed
with the generalized Hausdorff-Pompeiu metfic defined by:

H (A,B):= { I:l:x {p,(4,B), p (B, )}, :)fth t::;::rcmum exists

(P.{X),H,) is a generalized metric space (see [14]).

Now, let S be a non-empty set, G C P(S), X a topological space. We will
say that 7% S — P(X)fis G-measurable if 7'(C) € G for every open set C C X.
Thus, if G is a topology then G-measurability means lower semicontinuity. If G
is a o-algebra,"we will say simply measurability instead of G-measurability.

From now on, S will indicate a nonempty set, (X,d) a metric space and F
a multifunction from $xX into X. Let us denote by M(S,X) the of all singie-
valued functions from S into .X. We will always consider M(S,.X) endowed with
the generalized metric a, deﬁned by a(f,g) =supd(f(s),&(s)), for fg €
M(S,X). =

DEFINITION 2.1. Let f € 4. We say that f is an A-fixed point of F if
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f(s).e F(s, f(s)), for every s € S.
DEFINITION 2.2. Let T: S — P(X) be a multivalued operator. We say
that the multifunction T is A-stable if the following two.conditions are satisfied:
i) there exists f € 4 such that fs) € T(s) for every s €S
ii) for every m,r€ER =]0,o[ and every g € A4 such that
T(s)NB,(g(s),)=D for all s € § there exists h € A  such that
h(s) € T(s) N B (g(s),r+n) for all sES. . u
DEFINITION 2.3. Let T: X — P_(X) be a multifunction. Then T is said
to be: '
i) mulﬁvalued contraction if there exists a constant ¥ € [0,1] such that:
. H (T(x), T(y)) = kd(x,y), for every x,y € X.
ii) e-locally contractive multivalued operator (where e > 0) if there exists k
€ [0,1] such that:
H (T(x), T(y)) = kd(x,y), for every x,y € X with d(x,y) < e.
Finally, for every s € S we put I'.(s): = Fix(F(s,")).
We will need auxiliary results on G-measurability of multivalued
operators. |
PROPOSITION 2.4. ([9) Let G C P(S). Assume that either G is closed
under arbitrary union or G is closed under countable union and X is separable
Let {T, ' }.en b€ a sequence of g-mgasurable multifunctions from S into X and let

T: S — P(X) be such that

lim sup H (T (s), T(s)) =0.
n-o s€S
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Then T is G-measurable.

PROPOSITION 2.5. Let G S P(S), (Y.d) be a metric space, L. = 0 and
I: SxX — P(Y) be such that one has H,(1(s,x), 1(s,y)) s Ld(x,y) for every s
€ S and x,y € X with d(x,y) < e."Moreover, suppose that:

1) there exists a dense subset D of X such that F(-x) is G-measurable for
each x € D.
i) G is a topology or G is closed-under finite intersection and countable

union and D is countable.

Then, for every G-measurable function @: S — X, the multifunction
1¢,9()) is g-meas;r;ble.

The following theorem is a consequence of a result given in [10]:

THEOREM 2.6. Let (X,d) bg a complete generalized metric space, 1: X
— P_(X) an e-locally contractive multivalued operator. We suppose that there
is an element x, € X such that D (x,,T(x,))<e. Then Fix T = .

Finally, the following proposition will be useful in the sequel:

PROPOSITION 2.7. [1] Let X be a paracompact topological space, (¥,d”)
be a metric space, G. X — P(Y) B 1.s.c. multivalued operator and g: X — Y
be a continuous single-valued function. Let ¢ X — R, be ls.c. Then the
multivalued operator T: X — P(Y) given by T(x) = G(x) N B, (g(x),e(x)) isLs.c.
Jor each x € X with T(x) = &.
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3. Basic results. The main result of this paper is the following: ’
THEOREM 3.1. Let (X,d) be a complete metric space, A a nonemp)
closed subset of M(S,X) and F: $xX — P {X) a multivalued operator. SuppoJ
that:
1) the multifunction G, (given by G(s) = F(s,9(s)) for everys € S) is *
stable for each o € A
i) there exists k € [0,1] such-H (F{(s,x),F(s,y)) s kd(x,y) for every s € S a
every x,y € X with d(x, yj <e

iii) there exists @, € A such that sup D (@,(s), F(s,9,(s)) <e.

Then F admits an .ﬂ-ﬁxed point @’ szi‘sh that o.(9°, @,) <.

Proof. For every ¢ € 4 put

N)= {Y € 4| Y(s) € F(s,9(s)), for every s € S}. Thanks to the 4
stability of G, one has T(¢) = & for each ¢ € A. Let us prove that 7' is an¢
locally contractive multivalued operator from 4 into P(A4). Let @, € A wil
a(@,p) < e. Fix f € T(g). Then, for every s € S we have:

D (As), F(s,%(s))) = H,(F(5,9(s)), F (5,9(s)).
Since a (@, y) <e it follows ﬁat d(p(s),Y(s)) <e for every s € S. Then
H (F(s,9(8)), F(5,9(5))) = kd(@(5),¥(s)) = kot (@, )

for every s € S. Hence D (s, F(s,4(s))) = ko (,y), for every s € S. Therefor,

for every 1 > 0 we have

F(s,9(s)) N B|f(5), ka (9, %) +12‘. -,
Thanks to the A-stability of G, there exists g € 4 such that g(s) € F(s.p(s))(
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Bff(s)), koL, p) + ), for every s € S. Hence, g € T(y) and afg) < k
aa(q>,§p) + 7. Since ) is arbitrary, it follows that Da,( [, T(P)) s ka (9, ). This
inequality holds for any f € T{(¢) and so pa‘(T(qa), T(y)) s ko (9, y). Changing
the roles of @ and v, we obtain pa‘(T(tp), T(9)) s ka (@, ).

Hence, for every o € A such that o (p,)<e one has
Ha‘(T((p), T(y)) sko (@,). (where k <1). Since X is a complete metric space
and 4 is closed in M(S,X) it follows that (4,a) is a complete generalized metric
space. |

Thanks to the A-stability of the multifunction G, the condition iii) from
theorem im.plies that p (,, 7(¢,)) <e. Therefore, by Theorem 2.6 we obtain
the conclusion. Moreover, by the proof of Theorem 2.1 of [10] we can derive
that p (9", @) < +. QE.D.

Now, we state some consequences of Theorem 3.1.

THEOREM 3.2. Let S be a paracompact topological space, X a closed,
convex subset of a Banach space (E '), Z a subset of S with dim4Z) < 0 (i.e..
dim(U) = O for every U C Z which is closed in S, where dim(U) .denotes the
covering dimension of U; see also [8]), and F: SxX — P (X) a multivalued
operator such that F(s,x) is convex for every (s,x) € (S\Z)xX. Suppése that:

i) F(*x) is l.s.c. for évery xEX
ii) there exists a continuous function k. S — [0,1[ such that
H,(F(5,x),F(s,y) s kK(s)lx-yl for each s € S and x,y € X with |x-y| < e.

Then for every closed subset V of S and every continuous fuhction y: vV
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— X such that Y(s) € F(s,9(s)) for every s € V there exists a continuous
Sunction @: S — X such that @(s) € F(s,9(s)), for every s € S and that @|, =
Y. If in addition Z = S, we can suppose that X is only closed.

Proof. Let V and v be as in statement. By Theorem 1.4 of [8], we can
choose a continuous function §: S— X such that @|,=vy. Observe that the
multifunction F(-,§(*)) is closed-valued and by Proposition 2.5 it is l.s.c.
Moreover, if s € S\Z, F(s,¢(s)) is convex. Consider the multifunction G: S —
P(X) given by G(s) = F(s,@(s)) N B,,(§(s); ), for every s € S. By Proposition
2.7 G is 1.s.c. and G(s) is convex for each s € S\Z. Then, by Theorem 7.1 of [8]
there exists a contiﬁuous function @,: S — X such that @, (s) € G(s), for every
s € S and ¢0|V=w. Therefore @ (s) € F(s,9(s)) and lo,(s) - §(s)l <e, for
every s € S.

Observe that, for every s € S one has:

Dy @), Fs,@(S))) < Hyy (F(5,8(5)), Fls,0,(s) =
< K(s) 1§(s) - @4()I.

Let {a,},n be an increasing and unbounded sequence of positive real

numbers such that for every n € N g, = € and the set

5, ={s €51 1901 * B <a,} N {sES| ks <1 - )
is nonempty. Then {S,},cy is an increasing sequence of open sets and'U];S‘" =S
We prove that there exists a sequence {9}, of continuous and f)oundcd

functions from S into X such that, for each n € N" one has:

@,(5) € F(5,9,(5)), for every s Sh (H
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9,(5) € F(5,%(s)), for every s€ STM )
Q.5 =9, (where S, = Q) (3)
P I s, =q. (4)

We construct such a sequence by induction. Let us construct ¢,. Denote
4, the family of all continuous functions from S_'l into X and put B, = {p €
4o} o~ P}. For each ¢ € B,, the multifunction F(-9(")) is B,-stable (see
Example 1.3" of [7], Proposition 2.5 and Proposition 3.2 () by {12]). Now,
observe that B, is closed in (M (S_'l X),a,), that d)o Iz € B, that.

H (F(s,x), F(s,y)) s k()ix -yl = <] _al fx-yl foreverys€ S,andx,y € X

with [x-y] < e and that sup D (@,(s). F(s (po(s)))< €. By Theorem 3.1 there
exists a continuous functlon P S —»X such that o, |,,ns =, 9;(5) EF(s,9,(5)),
for each sESl and su_pllq),(s)—qao(s)ll<°°. Therefore @, is bounded on Sl.

Consider the siﬁsgllevalucd function ;" S_’I U §2 — X, defined by:

Q}(s), SES,

L 1] s = |
P (5) os), SES,
¢, is a continuous selection of the following multivalued operator

F(s,01(5)), SES,
F(s,§(s)) N B(§(s),e), SES,

G, §,U S, P(X), G(s) =

Then, by Theorem 1.4-of [8] it is possible to extend ¢;" to a continuous

and bounded function @, on S which satisfies (1)-(4) for n = 1. Suppose now
that bounded and continuous functions @, ..., ¢, from S into X satisfying (1)-(4)

for 5= 1,2,...,h have been constructed. Let us construct @,,,. To this end, denote
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by A,,, the family of all continuous functions from 3:.. . into X and put B,,, =
€.l o |s-‘ =@,}. Asinthe case n =1 F(.9()) is B,,,-stable. Observe
that B,,, is closed in (M (ST,M,X), a,) and that q)hlfm € B,.,. Moreover, for all

sE 57,"1 one has:
D (@,(s), F(s,9,(s))) = H(F(s5,9(5)), F(s5,9,(5))) =
= ks) 1§(s) - @, (D <e.
. Hence sup D (@,(s), F(s,9;(s))) <e.

Fma]_ly,sez;lle has Hl.l(F(s,x), F(s,y)) sk(s)lx-yl s|1 - % lx - yll, for
every s€S,,, and x,y € X with |x-y| < e. Therefore by Theorem 3.1 there
exists a continuous function Pry S"-,M—vX such that ;| 5=®, and
Pi(5) € F(s,@1(5)), forevery s€S, . Consider g5: S, US, . — X defined

h+1 h+2
by -
q);n-l(s)’ lf s e S

h+1

9,5, ifs€ES

h+2

(P;.:l(s) =

@ is a continuous selection of the following multivalued operator

F(s,B31(5), SES,,
F(s,5()) N B@(s),e), sE€S,

142

Gh+l: L§h~vl U §In2 - P(X)’ G(S) =

'fhen, by Theorem 1.4 of [8] it is possible to extend @;., to a continuous and
bounded function ¢,,, on S which satisfies (1)-(4) for n = A+1.

So, the sequence {@,},n has been constructed. Now, define ¢: S — X' by
putting (1) = @, (1) if s ES\S,,, n EN.

Then @(s) € F(s,q(s)) for every s € 4 and ¢|, =1. The continuity of ¢
follows ﬁ'om 3)..
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Remark 3.3. Since every complete metric space can be isometrically
embédded in a Banach space as a closed set, when S = Z in theorem 3.2 we can
suppose that (X,d) is a complete metric space.

'DEF INITION 3 4. [6] Let (X,d) be a metric space and {4,},ex @ Sequence
of non-empty subsets of X. The set:

LimA : = {xeX| limD(x,4,) = o}
is called the topologicnz;lmlower limit of '{:1:} N

The following result is a consequence of Theorem 3‘.‘2.

THEOREM 3.5. Let (X,d) be a complete metric space and let U, U,,U,,...
be a sequence of closed-valued multifunctions from X into itself which are e-
locally contractive multivalued operator with the same constant k € [0,1].
Suppose that there exists a dense subset D of X, such that

| U(x) CLim U (x), for every x € D &)
Then Fix UCLimFix (U,).

Proof. Let S be the one-point compactification of N with the usual

topology. Define a multivalued operator F: SxX — P(X) by putting
R A

F satisfies the hypotheses of Theorem 3.2. In particular, relation (6) is

equivalent to the lower semicontinuity of F(-,x) at the point s = o for x € D.

Then, choose x, € Fix U and put V' = {}, y() = x,. By Theorem 3.2 there

exists a continuous function ¢: S — X such that @(n) € F(n,g(n)), for all n €

N and ¢() = x,. Thus, if we put x, = @(n), n € N we have x, € Fix (U,).
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Moreover, by the continuity of @, we have lim x, = x,. Hence x, € Lim Fix ( U,).

QED.

n—x

Now, we state the following result on the fixed points set stability.

THEOREM 3.6. Let S be a first-countable topological space, (X,d) a
compact metric space and F: TxX — P (X) a multivalued operator such that:

i) F(-) is Ls.c. for every x € D (where D is a dense subset of X)
ii) there exists an upper semicontinuous function k. S — [0,1[ such -that
H (F(s,x), F(s,y)) = k(s)d(x, Y), for every s € S and x,y € X with d(x,y) < e.

Then the multifunction Ty is lower semicontinuous.

Proof. Let s, ES. By Proposition 2.1 of [4] to prove the 1.s.c. of 'y at s,
it suffices to Show that

T4(s,) CLim Iy (s,) (©)
for every sequence {s,},n of points :tr QT convergent to #. To this purpose,
consider the multifunction from X into itself defined as follows:

U (x) =F(s,,x), foreveryx€EX, n €N

U(x) = F{(s,,x), for every x € X.

Observe that by upper semicontinuity of k, all these multifunctions are &-
locally contractive with the same constantk* =max {k(so), sup k(s")} <1.
Moreover, by (1) one has U(x) & Lim U (x), for every x € D. Ther:, by Theorem
3.5 one has Fix(U)QL_igFix(U:r Q.E.D.

An application to a differential inclusions depending on a parameter, can

be obtained from Theorem 3.6.
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REZUMAT. - Teoreme de punct fix pentru aplicatii multivoce
generalizate. Sunt demonstrate teoremele de punct fix comun pentru aplicatii
multivoce de tip contractie generalizati. Rezultatele extind la cazul multivoc
o teorem3 stabilitd in [9].

Abstract. In this paper we give common ﬁied point theorems for a
generalized contractive type set-valued mapping. The results extend
corresponding theorem due to F.Skoff [9] for point-valued mappings to set-

valued mappings. Suitable examples are given.

1. Introduction. Let (X,d) be a complete metric space with a metric d. Let
R' denotes the set of all non-negative real numbers and ® be the family of
mappings ¢ from R* into R* such that:
(i) ¢ is continuous and strictly increasing in R,
(i) ¢() =0 iff £ = 0.
(iii) ¢(r) = Mt* for ‘cvcry t >0, where M > 0, p > 0 are constant.

The following theorem was proved by F.Skoff in [9].

" Assiut University, Faculty of Science, Department of Mathematics, Assiut, Egypt



R.A. RASHWAN, M.A. AHMED

THEOREM 1. Let T be a self-mapping of (X,d) and ¢ € ® such that for
every x,y € X,
A) &(d(Tx,Ty)) s ad(d(x,y)) + bo(d(x,Tx)) + co(d(y, 1)),
where 0 < at+b+c < 1. Then T has a unique fixed point.
In [8], the author has considered functions ¢ € P such that ¢(t) = 1",
n €N, for every t =2 0.

' In the literature of fixed point theory many fixed point theorems of point-
valued mappings can be extended to set-vétlued mappings under different
contractive type conditions (See for example [1], [2], [3],{4], [6)).

The maiin purpose of this paper is to extend Theorem1 for point-valued
mappings to set-valued mappings satisfying a generalized contractive condition.
Following Fisher [2], let B(X) be the set of all nonempty, bounded subsets
of X. We define the function 8(4,B) with 4 and B in B(X) by:
&(A4,B) = sup{d(a,b)]: a € A and b € B}.
If A is a single point {a}, we write
&(4,B) = 8(a,B)
and if B consists also of a single point b, we write
8(4,B) = 8(a,b).
It follows immediately from the definition that

8(A4,B) = 8(B,A) = 0, 8(4.4) = diam 4,
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8(4,B) < &(A4,C) + 8(B,C),

for all A,B and C in B(X) and if &(A4,B) = 0, then A=B= {a}. If {4} is a
sequence in B(X), we say that {4,} converges to 4 C X, and write 4, — A, iff

(1) a € A implies that a =lim a, for some sequence {a,} with a, € 4, for
n €N, and

(2) for any € > 0, m € N such that

A,C A4, = {x €E X d(xa) < e for some a €4}

forn > m.

The following lemma was proved in [2}):

LEMMA 1.1. Suppose {4,} and {B,} are sequences in B(X) and (X,d) is
a complete metric space. If A,, — A € B(X) and B, — B € B(X), then 8(A4,,B,)
- 6(A,B)..

The following definition is due to Jungck-Rhoades [5]:

DEFINITION 1.2. Let (X,d) be a metric space. Let X —X and F:X -»
B(X). F and I are 6-compatible iff /Fx € B(x) for x € X and 8(/Fx,Flix,) — 0
whenever {x,} is a sequence in X such that Ix,—t and Fx,—{¢t} for some (EX.

As stated in [5] Frneed not be single-valued even throung the conditions
of the above definition are satisfied: consider, for example, I:R - R and
F:R — B(R) defined by Ix =% and Fx = [O, %} where R denotes the reals with

the usual topology.
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Note that by definition 1.2, a function F:.X — B(X) is continuous iff x,_, —»
z in (X,d) implies Fx, — Fz in B(X).
Next, we give proposition for our main theorem as in [5]:
PROPOSITION 1.3. Let (X,d) be a complete metric space. Suppose I.X
— X and F-X — B(X), and I and F are d-compatible
(i) Suppose the sequence {Fx,} converges to {z} and {Ix,} converges to :.
IfI is. continuous, then Fix, — {Iz}.

(ii) If {Iu) = Fu for some u € X, then Flu = IFu.

2. Main Result. We now state and prove the following theorem:
THEOREM 2.1. Let I be mapping of a complete metric space (X,d) into
itself and let F:X — B(X). Suppose there is an increasing, continuous function
¢:R* — R’ satisfying property (ii) such that for all x,y € X, x = y.
D WO(Fx.Fy)) = a fd(Ix.1y)) + b [¢(8(Ix.Fx)) + &(d(Iy.F¥))]
+ ¢ min{¢(3(Ix.Fy)), ¥(d(ly.Fx))},

where a, b, ¢ are constants satisfying at2b+c < 1.
If

(@) F(Y) C I,

(b) I is continuous,

(c) (F,]) is d-compatible.
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Then F and I have a uniqgue common fixed point u in X. Moreover Fu = {u} =
{Iu}.
Proof. Let x, be an arbitrary point in X and define the sequence {x,} by
Ix,,€EFx,=X,,n=0,12,.
For simplicity, we put
9, =X, .X,,), forn=012_.
Using inequality (I) and property (ii), we have
00n) =00, FX,,)
sa¢(d(ix,,,Ix ,)) +
+ b [9(8(Ix,,,, Fx,,))) + 9OUX, 5, Fx,.))]
+cmin{¢(lx,,,, Fx,,,)), 9(&(Ix, ,, Fx,, )}
=a¢(d,) +b[¢(5,) +¢(3,.,)],
So, we have
8(0,.) = 972 6(8,) <0 5,) ()

Since ¢ is increasing, then {d,} is a decreasing sequence, which has a

limit & > 0. Letting n — oo in (1) and using property (i), then 8, = 0 implies that
OPLARTORIION
This is a contradiction. So ¢(0) = 0 implies 8 = 0.
Let z, be an arbitrary point in X, for n = 0,1,2,... Now we show that {z,}

is a Cauchy sequence in X. Since
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limdz,z,  )<limdX, X, )=0,
it suffices to prove that the sequence {z,,} is a Cauchy sequence. Suppose not,

then there exist € > 0 and two sequences {m(k)}, {n(k)} such that for every n

€ N\{0}, we find that m(k) > n(k) > k,

€ <Az Z)) S HK o Xogs) (2)
and
(X ty-1> Xoity) < ©- (3)
For each n = 0, we put S, =8(X ,, X, ). Then we have
e 58, 50X 1 Xp) * Xy X)) <Oy, * €.
Since {5,,} converges to 0, {S,} converges to e.
Furthermore, for each n = 0,
0™ Bty * S0 S Kogiyots Xoiyor) S 0ty * Oy * 5,
therefore the sequence {&(X,, .,,X,.,)} converges also to e.
Applying inequality (I), we get
DO 1 X)) = O(OFX, 45, F,)) = DA 00,1, .))
+ IOy Fp)) *+ 90U, Fpg V] +
A+ { (O, P, ) DO, 5, D} STOON 4,1, ) D, 1, 1)
+ D00 1) * 9,0 )] +
+ e min{P(B(X, 4, 1, X)) PO 4, 1> X)) *+ Oy * 9041 )
Using (3), we have
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*S,) = 0O, X))
sad(e+d,, ) +b[9(,, ) + 900, )] +
+cmin{¢(e), §(e +5,, , +$(d,, )}
Letting k£ — o and using (i), (ii), we have
®(e) =ad(e) +co(e)
=(a+c) d(e) <d(e)
a contradiction. Therefore the sequence {z,} is a Cauchy sequence in the
complete space (X,d) and so it has a limit » in X. In particular, the sequence
{Ix,} converges to u and further, the sequence of sets {Fx,} converges to {u}.
Since I is continuous, then IIx, — lu.. But / and F are d-compatible,
therefore FIx, — {Iu} by proposition 1.3 (i). Consequently, since (1) holds, then
¢d(Fix , Fx N =sadp(d(llx,Ix )
+ b[O(IIx,, Fix,)) + 9 (B(Ix,,, Fx,., )]
+cmin{¢(d(/x , Fx, )), o(d(Ix, , Fix ))}
for n € N. As n — o we obtain
®B(fuu))  =ad@d(u,u)) + co(d(lu, u))
=(a+c) ¢ (d(lu, u))
<o (3(Iu, u))
a contradiction by applying lema 1.1 and property (ii). Thus /u .

Further
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¢ (O(Fu, Fx,,)) s a¢ (d(lu, Ix,,))
+b[¢ ((Iu, Fu)) + ¢ (8(Ix,,, Fx,, )]
+cmin{p (8(fu, Fx,,,)), 6(3(x,,,, Fu))}
Letting n — oo, by lemma 1.1 and properties (i), (ii), it yields
OB(Fu,u)) =ad(0) +b[6(d(u, Fu)) +$(0)] +c¢(0)
= bo(d(u, Fu))
< ¢ (8(u, Fu)) |
a contradiction. Thus ¢(8(x, Fu)) = 0 implies fu = {u}.
Let v € X be'a common fixed point of F and /, v = u. Then
W) = (B(Fv, Fu))
< ad(d(Iv,Iu)) + b[o(0(Iv, Fv)) + ¢(O(1u, Fu)))
+.c min{$(O(Iv, Fu)), o(0(Iu, Fv))}
= (a+c) §(d(v, u)) < ¢ (d(v,u))

a contradiction. So v = u. So u is the unique common fixed point of I and

Remark 1. In theorem 2.1 if we put ¢ = 0 and ¢(¢) = ¢ for every ! 20,
obtain a result in Rus [8].

Remark 2. We note that if F is a single-valued mapping on X and /is
identity mapping, theorem 2.1 reduces to the following result:

COROLLARY 1. Let F be mapping of a complete metric space (X.d)

itself. Suppose there is an increasing, continuous function ¢ R' — R' sulisf
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y = E with a+b+c < 1, we would have
O(d(F4, FE)) =¢(1)sa (1) + b ¢(1) + c (1) < (1),
which is a contradiction.
Motivated by the work of Fisher-Sessa [3], we give the following exan
which satisfy all requirements of Theorem 2.1.
Example 2. Let X = [0,1] with Euclidean metric d and let o(f) = t*. De
Fx =[ %} Ix =%
for all x € X.
Note that
FX) = [o, %]c [o, %} - Iy,
and / is continuous mapping.
For any sequence {x,} in X, we have
Ix, > 0asx,—0,
Fx,—~0asx,—0

and

x x
d(FIx ,IFx )=max{~, " }—+0as x,—0,
" +x,~ 8+2x
Thus 7, F are d-compatible, /Fx, € B(X).
For any x,y IS X,
®(3(Fx, Fy)) = (8(Fx, Fy))*

4
=(max X, Y I]
)
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R' — R satisfying property (ii) such that for all xy € X, x w y.
HXUFXFY)  sad(dixly)
+b[o(8(Ix, F,x)) + ¢(5(ly, Fy)]
+ cmin{¢(8(lx, F,y)), ¢y, F, )},
where a, b, c are constants satisfying a+2b+c < 1.
If
® UF,X) CI(X),
() 1is continuous,
(©) (F,D is 8-compatible for all o in A.
Then F, and I have a unique common fixed point u in X. Moreover
F,u= {u} for all a in A.
If the continuity of / in Theorem 2.1 is replaced by the continuity of F,
we have the following theorem:
THEOREM 2.3. Let (X,d), F and I be defined as in Theorem 2.1. Suppose
there is an increasing, continuous function ¢: R* — R' satisfying property (i)
such that the inequality (1) and the' inequality
(1) 8(Fx,Fx) = &(x,Fx) holds for all x,y in X.
If (a) and (c) hold as in Theorem 2.1 and if F is continuous, then F and

I have a unique common fixed point u in X. Further,
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Fu= {Iu} = {u}.-

Proof. Define the sequence {x,} as in Theorem 2.1 so that Ix, —
O(Fx,u) =+ 0 as n — o, and so &(Fx,Ix,) — 0 as n — . Since F is
continuous, we have 8(FIx,, Fu) — 0 as n — o,

Since F and I are 8-compatible, we get

8(IFx,, Fu) s d(IFx,, Flx,) + 8(FIx,, Fu)
—0asn— o

Since Ix,,; € Fx, and by inequality (I), we have

¢(0(FIx , Fx_ ) sa¢(d(lix,, Ix , )

+b [¢(8(IIx,, FIx,) + $(8(Ix,,,, Fx,,,))]

+ cmin{$¢(8(/Ix,, Fx,,,)), $(d(Ix,,,, Fix,))}

<a ¢(X(IFx,.,, Ix,,,))
* bIOOUFx, ,, Flz,) + §(8(,,,, Fx, )]
+ cmin{¢(8(IFx, ,, Fx,,,)), $(8(x,.,, FIx,))}.
As n — », by using condition (III) we have
HFu) s ag(d(Fu, u))
+ b [9(3(Fu, Fu))) + ¢(0)]
+ cmin{¢(8(Fu, u))), ®(8(Fu, u)))}
< (a+b+c) o (8(Fu, u)))
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< ¢ (5(Fu, u)))
a contradiction. So Fu = {u}. Since the range of I contains the range of F, there}
exists a point u’ such that Iu’ = u € Fu.
From the inequality (I), we obtain
OO(FIx, ., Fu' ) sadp(dlx,, , Iu'))
+ b [¢(8(Ix,,,, FIx,,,)) + 6(8(fu’, Fu'))]
+ cmin{¢(d(Ix,,,, Fu')), 9(d(lu’, FIx,,,)}
<a¢(&(IFx,,Iu'))
+ b [9(d(Fx,, FIx, ) + o(8(Iu’, Fu'))]
+ cmin{$p(d([Fx,, Fu')), o(d(lu’, Fix ,))}.
As n — o, we have
®O(u,Fu’))<a¢(0)
+ b [9(0) + ¢(8(u, Fu'))]
+ cmin{¢p(d(u, Fu')), $(0)}
= b¢(8(u, Fu'))
<¢p(O(u, Fu'))
a contradiction and so Fu’ = {u}. Since F and [ are d-compatible and
O(Fu',Iu’) =8(u,u) =0, we have 8(IFu’, FIu’) =0 and hence

IFu’ = {Iu} = Flu' = Fu = {u}.
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So Iu = u. This proves that the point u is a common fixed point of / and F with

Fu = {u}. The uniqueness of the common fixed point of / and F can be proved.

REFERENCES

1. Tong-Huei Chang, Fixed point theorems for contractive type set-valued mappings,
Math. Japonica 38, No. 4(1993), 675-690. '

2. B.Fisher, Common fixed points of mappings and set-valued mappings, Rostock. Math.
Kollog, Vol. 18(1981), 69-77. |

3. B.Fisher and S.Sessa, Two common fixed point theorems for weakly commuting
mappings, Periodica Mathematica Hungarica, Vol. 20, No.3(1989), 207-218,

4. Merele D.Guay, K.L.Singh and J.HM.Whitfield, Common fixed points for set-valued
mappings, Bull. Acad. Polon. Sci. Ser. Sci. Math,, Vol. 33, No. 11-12(1982), 545-551.

5. G.Jungck and B.E Rhoades, Some fixed point theorems for compatible maps, Internat.
J. Math. & Math. Sci., Vol. 16, No. 3(1993), 417-428.

6. M.SKhan and L.Kubiaczyk, Fixed point theorems for point to set maps, Math.
Japonica 33, No. 3(1988), 409-415.

7. M.S.Khan, M.Swaled and S.Sessa, Fixed point theorems by altering distances between
the points, Bull, Austral. Math. Soc., Vol. 30(1984), 1-9. ’

8. LRus, On common fixed points, Studia Univ. Babeg-Bolyai, Fas. 1(1973), 31-33.

9. F.Skoff, Theoremi di punto fisso per applicazioni negli spazi metrici, Atti. Accad. Sci.
Torino Cl. Sci. Fis. Mat. Natur. 111 No. 3-4(1977), 323-329.

107






STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XLI, 1, 1996

ANIVERSARI

PROFESSOR JOZSEF KOLUMBAN
AT HIS 60™ ANNIVERSARY

Wolfgang W. BRECKNER’

Received: October 15, 1995
AMS subject classification: 01470

Jozsef (losif) Kolumban was bom on 4® August 1935 ir; Gheorgheni, a small town that
lies in the district Harghita, Romania, in a picturwqué region, surrounded by the Carpathian
Mountains. His parents were farmers. After he had studied at the primary and low secondary
school in his native town, he attended the pedagogic high school from Miercurea-Ciuc
between 1949 and 1953. He completed his education at the Faculty of Mathematips and
Physics of the Bolyai iJniversity in Clyj (today’s Cluj-Napoca). In 1957 he received his
diploma in teaching mathematics and physics. After that he also attended the section of
mathematical research of the Faculty of Mathematics and Physics of the Babeg University in
Cluj and received a second diploma in 1958. In 1959 he became an assistant at the Faculty
of Mathematics and Physics of the Babeg-Bolyai University, a new university which was
foﬁnded in that year in Cluj by the union of the Babeg University with the Bolyai University.
Since then J6zsef Kolumbén has Bee’n working at this university. The most important positions
he held during his professional career were: 1969-1978 an assistant professor, 1978-1990 an

associate professor, and since 1990 a full professor. His speciality is mathematical analysis,

* "Babeg-Bolyai” University, Faculty of Mathematics and Computer Science, 3400 Cluj-
Napoca, Romania
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but besides this discipline he also taught measure theory, optimization theory, convex analys
and geometry of fractals.

In 1968 Jozsef Kolumban received his doctoral degree in mathematics from the Babqi
Bolyai University with the thesis "The duality principle for a class of optimization problems'
“This thesis was written under the supervision of Tiberiu Popoviciu (1906-1975), a well-know
master of numerical analysis.

The stays of Jozsef Kolumban outside Romania had.an impact on the quality of b
teaching and scientific work. As a scholar of the Alexander von Humboldt Foundation he‘
spent 15 months in 1972-1973 at Hamburg, working under the guidance of Lothar Collu
(1910-1990) at the Institute of Applied Mathematics. He was on further short period researd|
stays at Hamburg, Augsburg, Bayreuth and Munich during 1991-1992, these stays being’g
supported by the same above-mentioned foundation. In 1993 and 1995, respectively, he w
a visiting professor for three months at the Eétvés Lorand University in Budapest.

Professor Kolumban is a devoted researcher who has made significant contributions
in various fields of mathematics such as approximation theory ([1], [3] - (7], (I}
optimization theory ({8] - [14], [17], [33], [34], [39], [43], [47]), mathematical analysis (]}
(161, [19), (23], [25] - [32], [36], [37], [40] - [42], [44] - [46], [48]) and the teaching o
mathematics ([18], [20] - [22], [24], [35], [38], [49], [50]). The numbers in the brackes

indicate the articles in the annexed list of publications by Jozsef Kolumban where resuls
belonging to the specified fields can be found.

On behalf of the members of the Departmem of Analysis and Optimization of th
Faculty of Mathematics and Computer Science of the Babeg-Bolyai University, as well as, o
behalf of the other colléagues and the students of this faculty, we congratulate Professa
Jozsef Kolumban with esteem, on his 60™ birthday, wishing him good health, happiness an

new satisfactions in his research work.
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A theorem regarding the best approximation in abstract spaces. Mathematica (Cluj),
2(25), 277-280 (1960)
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270 (1962) (Russian)

Sur un probléme d'approximation optimale. Mathematica (Cluj), 8(31), 267-273
(1966)

Despre caracterizarea infraelementelor. Studia Univ. Babes-Bolygi, Ser. Math -Phys.,
13, No. 1, 4349 (1968)

Thébre‘mes de caractérisation des éléments de lq meilleure approximation. C.R. Acad.
Sci. Paris, Sér. A, 266, 206-208 (1968) (jointly with W.W BRECKNER)

Uber die Charalkterisierung von Minimallosungen in linearen normierten Raumen.
Mathematica (Cluj), 10(33), 33-46 (1968) (jointly with W.W.BRECKNER)

Uber die Charakterisierung der Losungen eines optimalen Approximationsproblems.
Mathematica (Clyj), 10(33), 285-291 (1968)

Dualitit bei Optimierungsaufgaben in topologischen Vektorrdumen. Mathematica
(Cluy), 10(33), 229-244 (1968) (jointly with W.W.BRECKNER)

Konvexe Optimierungsaufgaben in topologischen Vektorrdumen. Math. Scand., 25,
227-247 (1969) (jointly with W.W.BRECKNER)

Dualitat bei Optimierungsaufgaben. In G.ALEXITS, SB.STECHKIN (eds.):
Proceedings of the Conference on Constructive Theory of Functions, Budapest, August
24 - September 3, 1969. Akadémiai Kiad6, Budapest, 261-265 (1972)
Optimierungsaufgaben mit Nebenbedingungen. Proceedings of the Conference on

Differential Equations and Their Applications, Iagi, October 24-27, 1973, 85-87
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Uber ein abstraktes Maximumprinzip. Revue d’ Analyse Numér. Théorie Appr
37-46 (1974)

Verallgemeinerte Differenzierbarkeitsbegriffe und ihre Anwendung in
Optimierungstheorie. Computing, 12, 17-41 (1974) (jointly wifh K.-HHOFFM
On the rule of multipliers in optimal problems. Math. Balkanica, 4, 399-407 (
(jointly with LLAZAREVIC)

Uber die nichtlineare trigonometrische Approximation. In L.COLL
GMEINARDUS (eds.): Numerische Methoden der Approximationstheorie. Bz
International Series od Numerical Mathematics Vql. 26. Birkhiuser Verlag, Base
72 1975)

Eine Verallgemeinerung des Satzes von Ljusternik. Revue d’ Analyse Numér. Tt
Approx., 6,.133-137 (1977)

Conditii de optim pe baza regulii generalizate a multiplicatorilor cu aplica
control optimal. In IMARUSCIAC, W.W.BRECKNER (eds.): Proceedings o
Third Colloquium on Operations Research, Cluj-Napoca, October 20-21, 1978.B
Bolyai University, Cluj-Napoca, 139-152 (1979)

A hatdrozott integrdl értelmezésérol. Matematikai Lapok (Cluj), 84, 372-376 (1
Das Prinzip der Kondensation der Singularititen prdkonvexer Funktionen. R
d’Analyse Numér. Théorie Approx., 9, 59-63 (1980)

A Cauchy-Schwarz-féle egyenlotlenség és annak egy alkalmazdsa. Matematikai L
(Cluj), 86, 54-56 (1981) '

Megjegyzések a vdltozocsere képletével kapcsolatban. Matematikai Lapok (Cly
467-469 (1981)

A Lagrange-féle kozépérték-tételrol. Matematikai Lapok (Cluj), 87, 52-53 (198
Verallgemeinerte konvexe Funktionen und das Prinzip der lokalen Beschrdni

Revue d’An::yse Numér. Théorie Approx., 11, 99-108 (1982)
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Unele inegalitdfi asupra integralelor. Gazeta Matematic3, Perfecionare Metodic3 si

" Metodologicd in Matematic si Informaticd, 4, No. 1-2, 48-53 (1983) (jointly with

C.MOCANU)

Uber die Stetigkeit quasikonvexer Funktionen. Itinerant Seminar on Functional
Equations, Approximation and Convexity, Cluj-Napocs, 83-84 (1983)

A method for solving nonlinear equations. Itinerant Seminar on Functional Equations,
Approximation and Convexity, Cluj-Napoca. "Babes-Bolyai” University, Cluj-Napoca,
Preprint Nr. 6, 15-18 (1984) (jointly with M.BALAZS)

Solving nonlinear systems using an excluding method. 'In IMARUSCIAC,
W.W BRECKNER (eds.): Proceedings of the Colloquium on Approximation and
Optimization, Cluj-Napoca, October 25-27, 1984. University of Cluj-Napoca, 185-194
(1985) (jointly with M.BALAZS)

On the completeness of some semimetric spaces. "Babeg-Bolyai" University, Cluj-
Napoca, Seminar on Math. Analysis, Preprint Nr. 7, 101-114 (1985)

Functions which are locally bounded from above. "Bab_es-Bolyai" University, Cluj-
Napoca, Seminar on Optimization Theory, Report No. 5, 23-38 (1985) (jointly with
W.W BRECKNER)

Uber das Kurzweil-Henstocksche Integral. "Babeg-Bolyai" University, Cluj-Napoca,
Seminar on Math. Analysis, Preprint Nr. 4, 17-24 (1986)

Integrala Kurzweil. Lucririle Seminarului de Didactica Matematicii 1985-1986, Cluj-
Napoca, 31-116 (1986)

Uber die degheit&momente. Itinerant Seminar on Functional Equations,
Approximation and Convexity, Cluj-Napoca. "Babes-Bblyai" University, Cluj-Napoca,
Preprint Nr. 6, 189-196 (1987)

A multiplier rule for constrained optimization problems containing state and control

variables. "Babes-Bolyai" University, Cluj-Napoca, Seminar on Optimization Theory,
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Report No. 8, 1-22 (1987) (jointly with W.W . BRECKNER)

Multiplier rules for optimization problems with a finite number of constraints. Stui
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W.W BRECKNER)
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Napoca, Seminar on Math. Analysis, Preprint Nr. 7, 7-24 (1988) (jointly with
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