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STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XL, 3, 1995

SOFTWARE QUALITY MANAGEMENT:
TO UNDERSTAND AND TO INTRODUCE

L

Ecaterina BALLA®

Recelved: 1.12.1994
AMS subject classification: 63NOS

REZUMAT. Controlul calititii produselor program (I). Dupd o scurti trecere in revistd a
definitiilor de calitate a programelor, se prezintd cel mai popular standard de calitate: ISO
9000. Sunt discutate avantajele si dezavantajele lui. Solutiile schifate, bazate pe studiul gi
experienta autoarei, pot fi aplicate in toate farile din Europa de Est, problemele de rezolvat
fiind similare.

ABSTRACT. - Following a brief exposition of the history of software-quality
definitions, today’s most popular approach to the problem is presented: building quality
management systems according to ISO 9000 Series. Some advantages and disadvantages of
this trend are presented. Using results of software quality oriented research and practical
training done by the author in Hungary, some problems are shown and some solutions are
sketched to start introducing software quality management. The problems sketched are similar
in most Eastern European countries, therefore we presume that presented solutions could be

applicable as well.

Acknowledgment. Information contained in this paper is result of research and
practical training supported by IQSOFT.

1. Introduction. The term quality, as "degree of excellence, relative nature or kind of
character, class or grade of thing as determined by this, general excellence” has, both in
philosophy @:ad in ordinary speech, a long history. The meaning of quality has changed over

* Technical University, Department of Mathematics and Computer Science, Budapest, Hungary, E-mail:
balla@inf.bme.hu



E. BALLA

time according to the mentality of people, but “good quality” has always had something to
do with the product’s capability to satisfy the needs of the users. (Product- for some people
meaning a thing, for others meaning a result of mental activity.) Requirements for quality
have changed as well. For centuries quality has been mostly “a matter of conscience” and
seldom an expressed need of some, wealthy groups. However, quality requirements have
evolved, and this evolution has accelerated mainly in our century. The first product
responsibility trial was registered in 1852 in New York (purchaser’s rights had to be defended
versus a company using improper inscription on chemical substances). Beginning with the
1950’s many quality organizations and bodies have shown up, some of them becoming of
national or international importance. Due to the work of these organizations, standards and
prescriptions regarding quality have been issued, and nowadays market-position of companies
highly depend on the application of these standards.

According to Armand Feigenbaum [Feigen93] world-wide market-competition has led
to a change in purchasers’ value judgment: they calculate in life-cycle costs, so quality comes

into prominence regarded to price.

2. Quality of software. Software is “intellectual creation comprising the programs,
procedures, rules and any associated documentation pertaining to the operation of a data
processing system”, a software product is the “complete set of computer programs, procedures
and associated documentation and data designated for delivery to a user” [ISO 9000-3].
The concept of software as used today exists since the NATO confersnce organized in 1968
in Garmisch Partenkirchen, so it is far from being a novelty. Due to the increasing number
of software users, quality is now of the same importance in developing, using and maintaining
of software as in the similar activities regarding any other - material or intellectual - products.
Quality of software is a concept hard to define, basically because the difficulties of
finding adequate quality-criteria, attributes and proper quality-measuring methods and tools.

2.1. Basic orientations in defining the meaning of "software quality”. In the “heroic
age” of computer science the programs were written in most cases by mathematicians, by

physicists or by engineers, and were usually concerned with the solving of some scientific
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problems (numeric approach of solutions of equations, inverting a matrix etc.). These
programs were dealing with simple mathematical operations that had to be performed many
times. A program was considered to be "good" if it was able to run - at least once, to
terminate after a time - the length of running-time was not really important, and to produce
results similar to those expected.

In the sixties and the early seventies - mainly due to the appearance of assembly and
high level programming languages and operating systems - the dimensions of the problems
to be solved have increased, and there was a need for programs to perform the same
operations thousands of times a day. It was the age of “tricky” programmers, quality being
‘characterized by the so-called “micro-efficiency”. A program was said to be "good" if its use
was cheap .in a certain hardware-software environment, and it handled the given resources
of the computer in an optimal way.

Beginning with the eighties the concept of quality has started to mean “macro-
efficiency”. Programs are being used in various hardware-software environments by many
people among whom the percentage of “ordinary users” (not informaticians) is increasing. Due
to the development of hardware there is in fact no point in “saving resources”. A "good"
computer program is therefore portable, its code can be understood by more people, and it
is highly user-friendly.

Nowadays complex program-systems are being developed. The question isn't the
correctness of a certain program any more, but the correctness, reliability, integrity,
interoperability of the whole system. A system is good if it's documentation is complete and
understandable, if it interacts with other - computer aided or classic - data-processing
systems in an optimal way, if it's maintenance can be done at low costs, if it is able to
cooperate with new software-hardware tools and so on.

Prescriptions for coding aren’t enough any more: complex organizational frame, well-
organized team-work are needed to insure the correct and optimal sequence of all activities
performed in the development of such systems.

Begiining with the eighties structured systems’ analyzing and developing methods and
methodologies have been worked out and complex computer-aided tools have been developed,

which are more then simple testing tools: they provide help for transforming the logical model
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of the system into physical. Further details about such methodologies and tools are described
in section 5.1.

A next step in system-development is the use of embedded intelligence. Programs are
“living” in the electronic circuits - they become organic elements of machines. Testing such
programs obviously needs techniques that completely differ from ordinary testing techniques.
Working out such testing techniques and tools is a new challenge for informaticians.

2.2. Five quality definitions. Let's imagine [Genuch91] that a product has been
developed according to the specification, but the users are not satisfied because the product
does not fit their needs. Developers conclude that the users are not able to explain what they
want, the users conclude that developers are not able to understand what the user needs. Both
parties end up being unsatisfied with the result of the development effort and it is not easy
to say who is right and who is wrong. In the opinion of Vari Genuchten “both parties are
right, according to their own definitions"”.

Here are the 5 quality definitions given by [Garvin84]):

« The transcendent definition says that quality is absolute and universally recognizable,

despite the fact that it cannot be defined precisely. Only experience can teach to

recognize quality.

» According to the user-based definition, quality is “fitness for use”. This definition

starts from the assumption that the individual customers have different needs and those

goods that best satisfy their needs are considered to have the highest quality.

» The product-based definition views quality as a precise and measurable variable.

» Manufacturing-based definition identifies quality as conformity with specifications.

* Value-based definition defines quality in relation to costs. A quality product provides

performance at an acceptable price or conformance at an acceptable cost.

The product-based definition of quality is one of the most used. This definition deals with
objective quality attributes and their relationship. Quality attributes - like correctness,

reliability, efficiency, integrity, usability, maintainability, testability, flexibility, portability,
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reusability, interoperability - are defined, their interaction is shown by tables of correlance®.
We can observe that using the product-based quality definition involves some effective
measurements on the software product (e.g., number of comments in a program, number of
errors, number of failures, etc.). This approach is now somehow neglected due to the new

approach suggested by a popular standards series.

3. Today's fashion: ISO 9000. Among the many national and international quality
organizations ISO® has undoubtedly reformed the concept of quality (the direction of this
reform can be questionable). In March 1987 it issued the ISO 9000 Series, prepared by
ISO/TC 176. In November 1987 CEN* adopted the set as EN 29000 Series - this was
followed by a rapid adoption of the standards world-wide. The ISO 9000 News, March 1992
issue, lists 45 countries with identical adoption, and 3 countries - China, Jamaica, Venezuela -
with equivalent adoptions, another booklet [Interl93] speaks about “over 90" countries that
have adopted ISO 9000 by the beginning of 1993.

ISO 9000 series is a set of international standards for both quality management and
quality assurance. ISO 8402 defines the concepts used, 9000 provides a guide for selection
and use of the standards. Standards 9001 to 9003 deal with contractual situations, presenting
three quality assurance models, while 9004 is in connection with non-contractual situations,
presenting quality system elements used in quality management. The series has been
completed with other standards, among which there is a standard for software quality
management.

The ISO 9000 series was developed mainly for contractual business relationships. The
goal is to increase customer confidence in the quality system used by their suppliers.

Theoretically there is no contradiction between "confidence in the quality system" and

"confidence in the product's good quality”, because a well designed and well maintained

2 Quality attributes and their relationship have been modelled in the USA for the first

time, by Boehm (1977) and by McCall (1978).

3 International Standard Organisation

‘ Comité Européen de Normalisation
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quality system should assure the proper quality of the products.

However, there is a contradiction between the two mentioned aspects, due to the fact
that the application of ISO 9000 suggests the use of manufacturing-based definition of quality,
the development process being more emphasized, while measurable quality attributes suggest
the use of the product-based definition.

One of the most important features of ISO 9000 is that it provides a third-party
auditing model to review, certify and maintain certification of organizations.

3.1. The main concepts of ISO 9000. ISO 9000 Series operates with many concepts,

among which some important concepts are:

« Quality = the totality of features and characteristics of a product or service that bear

on its ability to satisfy stated or implied needs®.

* Quality policy = the overall quality intentions and direction of an organization as

regards to quality, as formally expressed by top management.

¢ Quality management = that aspect of the overall management function that

determines and implements the quality policy.

» Quality management system = the organizational structure, responsibility, activities,

capabilities and resources that together aim to ensure that (software) products will

satisfy stated or implied needs.

* Registration/ certification = the assessment of a company’s quality system by a third

party - a quality system registrar.

3.2. Registration. The company contacts such a registration body, which assesses first
the documents of the quality system. In case the documents satisfy the requirements stated
in the appropriate standard(s) of ISO series, an internal audit follows. The internal audit
examines the compliance of the things written in the documentation with the things that really
happen at the company. In most cases these reviews will expose inconsistencies that will be

included in the final report. After the adequate corrective actions the auditors can fully

5 The following definition was suggested by [Geiger93]): Quality = Realised totality

of characteristics and their values of an entity in relation to requirement for quality. The
definition proposed at the meeting of the ISO TC 176/SC 1 (1991) was rejected with the
argument that the whole world is used to taking the existing definition.
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approve, conditionally or provisionally approve or disapprove the company’s registration. A
company is registered for a three-year period. During that time, the organization must
maintain and improve the quality system that was certified.

Registration certifies the quality management system developed according to ISO 9000,
not the outstanding quality of the products.

3.3. Evolution of ISO 9000. ISO 9000 Series has evolved using some earlier quality-
related standards (MIL-Q-9858A, MIL-I-45208A, ANSI/ASQC A-3, DEF/STAN 05-
21,22,24,25&29), among which some national standards were issued in the UK, USA,
Canada, France, Germany, the Netherlands.

It is interesting to observe that Japan has not contributed with a national standard to
ISO. According to [Stephens93], quality management is not invented in Japan, although many
terms of the modern disciplines of quality have been borrowed from successful and innovative
Japanese applications. None of these terms, concepts and techniques represent quality system
assessment, certification, registration. In fact ISO 9000 Series was only adopted in 1991 as
the JIS Z 9900 series into the Japanese national standard system, mainly dictated by the
international harmony, trade and co-operation.

This shows that quality can be produced without having a registered quality
management system - and again takes us to the idea that ISO 9000 registration is not always
the guarantee for outstanding quality. ‘

In opinion of many quality specialists, ISO 9000 is just the first step to Total Quality
Management. It deals too much with documents, forgetting the aspects apart from assessment.
A quality management system developed only in order to registrate the company cannot be

viable. (See Brian Plowman's opinion in 4.2.1.)
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PERTURBATION METHODS WITH LIE SERIES
Alin BLAGA®

Recelved: 3.09.1995
AMS subject classification: 68Q25, 68Q40, 65Y25

REZUMAT. - Metode de perturbatie cu serit Lie. Puterea programirii pe obiecte, facilititile
de paralelism ale calculatoarelor modeme cit si cele ale produselor program de calcul simbolic
sunt instrumentele perfecte pentru algoritmii folositi in teoria hamiltoniani a perturbatiilor,
pentru prezicerea tralectoriilor satelitilor atrificiali. Este vorba, aici, despre metodele cu serii
'Lie, datorate lui Hori, Deprit §i Kamel. A se nota ci formalismul Lie a fost introdus de
Grdbner gi poate fi gisit in Nayfeh, sau Giacaglia.

1. Introduction. In celestian mechanics the methods used to predict the artificial
satellites trajectories with a big accuracy were changed from time to time, become more
.eficient, more precise. Thus, we find important names in this field such Poincaré.

In Hamiltonian Theory of Perturbations the ice was broken by introducing Lie series
and transforms, according to Hori (1966), Garrido (1968) and Deprit (1969). The Lie
formalism can be found in Nayfeh (1973) and Giacaglia (1972). The basic idea is to find the
solution of perturbation problems using power series. The problem is of the type:

%—y,—‘ =x;(t,y;) v&f i (t,y;)-
This is a differential equations system with unknown functions y,(¢) and with perturbed
terms &f (¢, y;), where € is a small parameter showing that the perturbing terms are
small with respect to the principal terms of x, When € is zero the system is reduced to the
unperturbed system:
dj};—i =x,(¢,y;).

In real problems the perturbing functions are more sophisticated, so it is too difficult

* *Babeg-Bolyai* University, Faculty of Mathematics and Computer Science, 3400 Cluj-Napoca, Romania
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to solve them by classical Runge-Kutta methods, the error propagation is too high in such a
problem. But we find particular problems solved in this way, using also refined numerical
methods (see [16]). Steifel introduces the Fourier expansion as a good reason to approximate
the solution.

Transformation of variables expanded in power of a small parameter plays an
important role in the theory of perturbation. Hori (1966) and Deprit (1967) have proposed two
methods to build canonical transformations, depending on a small parameter and based on the
consideration of Lie series and transforms.

This paper tries to use the Lie transforms technology developed by Kamel (1969),
combined with approximation methods of orthogonal Chebyshev polynomials. A big
advantage of this technology is that it allows parallelism.

This method has been implemented in Maple V, but for high solution accuracy it was
too hard to handle it, because of many symbolical differeniation and ordering, and
impossibility of parallelization; and out of run-time and out of memory space appeared. It has
been also implemented in MACSYMA and SPASM (see [2]), but there were the same
problems of run-time and exhaustive memory needs. First, we have:

T x,») = H(x, p) + 2: (C3 [Hy(x, 9, S(x, 9]+
+ JC:’-: K. ,;j(x, ), where
S,=7(Tr),
K = p(TD),
Koo =5 51~ % G (B 1)
(£8] is Poisson bracket operator, defined as:

_~(Of 98 _ of 9
161 (2.0 - (35 3 - S 3 )
We also have here:

i(f) = [f (p. q)dg,
p(f) = f[f -i(f)])dgq,, wherethe Hamiltonian: .

12
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v &
F(P, Q &) = ‘Z-; T K(P, Q.

To avoid Poisson brackets, Kamel developed an algorithm based on Lie transforms,

where
i
K ,=K 1+ gq-l Ly K 1, i1 and
LK(x) = H(x) LEx).

This short tablexshows the run-time for the sequential algorithm (C++, PAC++) and

for the parallel (Athapascan) algorithm. The default values are n = 100 for matrix dimension

and m for matrices:

m - sequential/ PAC++ PAC++ Athapascan

processors - sequential sequential parallel

parallel double floating point Rational double floating point
(sec) (sec) (sec)

4 31.66 44.16 28.44

5 42.53 88.33 36.23

30 492.12 4057.3 402.32

100 2328.8 51021 23319

In this paper we do not try to increase the Hamiltonian’s order, but increase the
accuracy with a given precision (= 30) according to speed. With such accuracy we can find
a more powerful approximation of Lie transform, we have maximum run-time speed, by its
parallelism and no more exhausted workspace. It is amazing what we can do using power
orthogonal series, then aliate with symbolical calculus to make almost perfect the ideea that
the trajectory of an artificial satellite is more precise, more perfect even after hundred
revolutions.

Most of technologies of perturbation analysis can be introduced by a short study of
a sample algebraic equation. So, let us consider the following quadratic:

r+ex-1=0 §))
Here € plays a perturbing role for the solution. This quadratic has exact solutions:
Xy = £ X %/W .

If we expand them using Taylor series, for a small €, we find:

13
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1 1 1

xlzl"—2-€+§€2‘m£4*...
x2=-1-%s-%ez+ 121864+...

The most important thing is that we have a very good approximation, even for a few given
terms. Let see for € = 0.1 what is going on:
x =1
= 0.95
= 0.95125
= 0.95124921
x, = 0.951249219 ...
Let us have the new quadratic:
el +x-1=0. (V3]
Here € plays a perturbing role for the solution. For € = 0 we have only one root, x = 1 and
for € » 0 we find two roots. This is the most easies example of that we call singular
perturbation problem. The problems that are not singular are regular. In reality, most of the
problems are singular and those are the most interesting.
Performing a Taylor series expansion for those two roots, for a small €, we have:
x,() =1 -6 +2e%-563+... 3)
xz(e)=—sl—l+e-2£2+5$3+... @
But the power series for x, starts with an €o instead of the usual &-1, so a very good
ideea is to make a coordinate transformation, thus the singular equation becomes a regular
one. That is the mechanism of Lie transforms, to regularise the singular problem and more,
to reduce the finding of solution to a standard power series expansion form problem.
For example let us rescale:
x =L )
We now have the regular equation:

y2+y-¢=0.

14
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2. General theory of the algorithm
DEFINITION. Let G c Cbe anopen setand p,: G" —C, i =TI, n holomorphic
functions. f z = (z,, 25, ..., 2,) €EG", then

o2y 2 o, 5
D - pl(z) azl + pz(z) azz ... p,,(Z) aZ,, (6)
is the Lie differential operator.
Notation. Let be the openset Gc Cand f, p,: G" —=C, i =T, n, holomorphics.
Then
- o, /A K
Df pl(z) azl pz(z) azz cr pn(z) 61"7 (7)
D°f = f, ®
D™f = D(D"f). )

DEFINITION. A power series of type
- t” . = 5 _t__ + ‘_2 +
'2‘;"_![).{(1) f(Z)*l'Df(Z) Z!sz(z)
where f : G" —C is an holomorphic function, G ¢ C is an open set, ¢ > 0, is called Lie
‘power series. Formally
e'¥(2) = 3 o D (2). (10)
THEOREM. G ¢ C is an open set. Any x-dependent, holomorphic and indefinitely
differentiable vector F(x,e) of the form
ﬂnﬂ=§%ﬂ0%
where € has a perturbing role, can be expressed in the form of another holomorphic and
indefinitely differentiable vector of power series, using x =y + z\: % F,(x) transform,
2 n!
where f; G—~C
Proof. Let be the indefinitely differentiable vector F(x,e) developed in power series

of the form

F(x, €) ='§z—;l’,(x), with an

F,(x) =[%F(x, £) (12)

e=0

15
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If x = x(y,€), then the vector has the power series form such as

F(x, €) = ’g—:—!:ﬁ»(x), where 3

F(x) - [% F(x, e)] : (14)

=0, x=y
The relation between Qlj(;_,g_)_ and gﬁ(a‘%’—s)— was established using obsolete

differentiation formula:
dF _ OF , OF dx

de "% " x de 9
It is obvious that if x is y independent, F, is expressed using partialy differentiation, elss

totaly differentiations required, such as in (14).

At the next step we need to make the transform

N
x = ’§ 7 fa(y), where (16)
fo(¥) = y, according to Lie transform by the known generating functions (12). Thus, for the
x -y and known F, functions we can express F.,,. This powerful mechanism can reduce a
singular system of differential equations to a regular one.

We may now differentiate equation (16), and we find
dx -y
de Z; ;Tfm()’)’

which has no solitary y. Let be W(x, &) =Y " —:,—"f",l(y) and f = W we have the
simple formula

Wx, €)= 3o W) an
(17) is called a Lie Transform. This is just a power series, but it has the most important role
to perform the final Kamel Transform.

Combining (15) with (17) we obtain

dF(x, €) _ OF(x, €) , dF(x, ¢
2e£) o of, Wx, £) _La}_l' )

Let us make the notation L, F(x, €) = Wx, ¢) i"'_%j)_ which is the Lie derivative.

Applied to (18) it will have a more compact form

16
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di(x. ) . (%, &) , L Fx,¢). 19

Let substitute F in (19) by (11) and W also in (19) but for this time in (17)

dF(x, e)x~ &" .
—‘—‘T,f‘—:gn—! (%)

® sn aF;' ] e‘
+§FT(X),§}TW“(X)' (20)

2.4

Sorting terms of (19) we have for e»

1L )y,
(n—ll)! r aFiaix) W(x),
b 242
Thus, one obtains
A =.Z:;F"’(’) é‘& RYCEIL T Wux), o
e . Z; & [F...,(x) + gc," Eaﬁ‘l Wa(x) | @1

Making the notation F, ,(x) = F,,(x) *+ Y Cx Ly, F,4(x), where

L F(x) = L)y,

will have for (21)
dF(x, = en
_(%)— :"z-;_:TFn.l(x)- 22)
Performing formal notation of F, by F,, and by induction, yields to
d"i(—)-: = g :—: F, x), m2l, where 23)
F, {(x) = Foy pi(x) + gC,," Ly Fop mi(x), m21, n 20. 24)

17
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Here, F,, = F, and F,, = F_,,. QED, only if we show that F_,, is holomorphic. But we know

that
n
F, (x) = F,(x) + g G Ly, Fyi(x),
so it is obvious, according to F,, i 2 0, that F, , is an holomorphic function. Thus, using (24),
F,,, n 2 0 are also holomorphic functions.

Remark. The recursive relation of (24) can be visualized in the forward triangle

FO-FQ>
|
F, - Fy, = F,,
! l
Fy ~F, ~Fp,=F,,
| [} |
Fy - F,y, - F; - Fy3=Fg,
| | I |

Remark. The recursive relation of (24) is the same one found by Deprit, except to L,
operators, substituting Poisson brackets, which is more eficient.
We introduce some theoretical fundaments of Chebyshev polynomials, now.
DEFINITION. We call Chebyshev polynomial of degree n, the function T,: [-1,1] -
[-11],
T,(x) = cos n arccos x. (25)

LEMMA. If T, is the n degree Chebyshev polynomial, then

T,,(x) =2xT,(x) - T,,(x), n21. (26)
LEMMA. The n degree Chebyshev polynomial, T,(x), has n zeros on [-1,1]
X, = cos (2’;;1 1r), k =0, 7T @7
and n+1 extremal points
x{ = cos KT k-0 (28)

THEOREM (of Orthogonality). 1°. Continuous case. Let be the scalar product

(f, 8) =f_i ;i___x_: dx. Then

18
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0, if i #j
(T,, T,)) ={m2, if i=j =0
m if i =j =0,

2°. Discrete case. Let be the scalar product

(f,8) = z.;f(xk) 8(xy),
where x,, j = 0, & are the zeros of Chebyshev polynomials of m+1 degree. Then

(0, if i =j
(Tdt Tj)= %‘1‘9 if i =j #0
ml, if i =j =0.
Remark. Fourier coefficients ¢, for an orthogonal system { @ };'x and continuous

function f are picked-up from the interpolating problem
»

ch(pj(x,) =f(x;), i =0, mwhere 29)
- @) g (30)
([0F]
Remark. Fourier coefficients for Chebyshev polynomials are
f(x4)
0 = g“;"'ﬁ_"_, 31)

L, Tra s (x) i)
m+1
LEMMA. Let be c, the Chebyshev coefficients of a continuous function f. [-1,1] - R

o y i =T, m (32)
and ¢ the Chebyshev coefficients of its derivative. Then
Cj,-] = C.‘lol + 2(‘ "l) Ci-p ‘ = m, (33)

/ /
Cm=Cm1 =0.

3. Sequential computing of Lie matrix. The computing scheme is obtained by
equations presented in last section

F, (%) = Fpy o1(x) + Z;C,."L,‘,,F,,_t.m(x), m=1, n 20, (34)

L F(x) - i%rﬂ W(x), k 21,

19
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Fn.O EFn' FO.n EFQ’
We find useful some complexity studies. We start here with the background algorithm;

INPUT. Matrix dimension N=n+l1, where n is fixed;
Generating functions Fi(x), i=0,n;
Transform functions Wj(x), j=0,n;
ALGORITHM.
Stepl. F(i,0) = F(i), i=0,n;
{filling the first colum - initialisation step)
Step2. F(n,n-i) := F’'(i), i=0,n-1;
{initialise the last row with derivatives
of the first column}
Step3. for-i=0,n do
for j=1,i+l1l do
Sum := O;
for k=0,i-3j-1 do
Sum := Sum + C(i-j-1,k) *
W(k+l) * F(n-j,n-i+j+k+l);
{C(n,k) are binomial coefficients)
endf;
endf;
{complete upper triangle:}
F(i-3)-1,3+1) = F(i-3,])) + Sum}
{keeping the result before making modifications :)
if n-j-1 = 0 then O(j+1) := F(i-3j-1,3+1);
endif;
{complete lower triangle with derivatives 3}
F(n-j-1,n-i+j+1) = F’'(i-3-1,3+1);
{The main idea, for a best comprehensive algorithm
is that on generate indices pairs of the form,
keeping this order :
(0,1)
(1,1), (0,2)
(2,1), (1,2), (0,3)
(3,1), (2,2), (1,3), (0,4)
Corresponding indices are F(i,j) - F(i-j-1,3+1)
F'(i,j) » F(n-3,n-1).
}
OUTPUT. o(i),1i=0,n;
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We must note that the triangular matrix become a dense matrix by keeping also the
derivatives. Thus, the algorithm is more complex, but is more faster, according to the

complexity study at this stage. The computation scheme look like, at this moment:

Fo=Fq - F;, - F, = Fy, -
! | t |
F, - Fy=F,, - F,, - Fas -
| | | 1
Fz - Fl.l - FO.I-F<"> F-l.3 hnd
| | | |
F; - F}l - Iﬁz - Foy=F,, -

| l . !

“This is just the formal algorithm which is the basic form of MapleV used algorithm,

but for C++ or Athapascan languages it is not possible to make formal derivatives. These

languages, first for a sequential algorithm second for a parallel one, can increase the speed

of the algorithm and it is implemented by choosing Chebyshev approximation methods. This

idea make a faster algorithm and a more accurate computations according to Plauger studies

and implementation on C Standard Library. The algorithm is changing now:

INPUT. n for matrix dimensions;
m is the number of Chebyshev coefficients;
Generating functions Fi(x), i=0,n;
Transform functions Wj(x), j=0,n;
ALGORITHM.
Stepl. for i=0,m-1 do
FRes_1i(3,0) = c_i(F_Jj); 3=0,n;
endfor;
S8tep2. for i=0,m-1 do
Fres_i(n,n-i) := diff(c_i(F_j)); J=0,n;
endfor;
Step3. for i=1,n do

for j=1,1i do
for 1=0,m-1 do
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compute c_1 of FRes[i,]j] function;
endfor;
Setting FRes(i,3];
{keeping the result )
if i=j then O(i) := FRes(i,i);
endif;
{complete lower triangle with derivatives )
FRes(j,1) := FRes(i,]);

OUTPUT. 0_1(i), 1=0,m-1; i=0,n;

. One Lie matrix is filled with Chebyshev coefficients and thus, the function F; is
represented by its c,(i , j ), k = U, m Chebyshev coefficients on each matrix. We may
see that it is an exhaustive memory consumption, but we win on run-time.

In the first step we must fill the first column functions of the forward triangle by
computing all their coefficients. And the same thing for the first row of derivatives.
In Stepl we compute all the (m-1) coefficients for each F;, j = 0, n continuous

functions, using the common formula:

2SS () Tx), i - T

m+1
where x, are the Chebyshev roots of the T, polynomial. Step2 was developed in purpose of

Ck=

computing all derivatives of continuous functions F;, j = U, n, according to Chebyshev
coefficients computed at the Stepl and to formula:
Ch1 = Chn * 2(k-1)c,,, k =mT,T,
Cm=Cmi =0,

where c; are the corresponding Chebyshev coefficients to derivative of the function
represented by ¢,, k = 0, m-T.

The main loop needs to compute all c(i,j) coefficients only by using (j-1)"* column and
J* row of each matrix. For one ¢,(i,j/) element we have (see also the (25) formula):

i
¢, (i,j)=CHc(i,j-1)) *g Gy CBc(j-1,i-k-1)) W i=T,7, j=T.7, (39)
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where CE is a function that evaluate one function by its Chebyshev coefficients.

The internal Chebyshev computations are done by using of trigonometric high
accuracy mathematical functions, that are more exact that the Standard C Library Math
trigonometric functions. Also, for the binomial coefficients we made a vector to keep all

values for all 1 to n degree. This method increase the algorithm run-time to very high speed

and the vector reach only 1"—“1)7(112-)- size.

3.1 Complexity by algorithm. Sotne changes in the computation triangle are required,
from this point of view.

If all values are recorded using triangle model shown in the 7* page of this paper, the
algorithm complexity depends most of 2all in accessing and unaccessing direct matrix
transform and some high precision evaluations. So, let consider that the other subalgorithms,
wich are not shown in the background algorithm, have zero-complexity. Everyone can see that
these subalgorithms are low-level functions that performs that performs some computations
we do not need to know how, right now.

Dereferencing the classical forward triangle it leads to the upper triangle

F, 0,0 - F, 0,1 - F 02 - F, 03

| | | l

F 1,0 - F 1,1 - F, 1,2

{ l |
Fyo - F,,

| |
Fso

|
But let follow the algorithm and find its complexity. It is obvious that we may consider all

matrix accesings and the first study is done only by this point of view.
At the Step 1 on access only the first column to store generating known functions F,.

If we denote by @, the algorithm to this level, will have
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cplx (a,) =(n+l)[l+%(n+l)]. (36)
Next, on Step 2, must initialize the last row of lower triangle by first column
derivatives. So, denoting by «, this algorithm, on leads to
cplx (ap) = -g-(n2+7n+4)+1. &)
The recursive equation access intensively the matrix, in Step 3, so we must split its
complexity in three parts. Anyway, the final result obtained here is
ople (a) = B0 v2nt s B2 g2, An g
We don't need to worry about, because nothing will stop here. We must try another
method to store and compute triangle computations. On see that we begin with storing not in
the lower triangle, but in the upber side, wich is the natural ideea. But we access more
frequent derivatives stored in the lower triangle. So, the complexity increase at very high
order. Thus we must inverse storing. This leads to others formulae. First, the recursive
formula is changing.
Thus, if we denote by B the new algorithm compléxity, we have
cplx (B) = 11n*  5n° 1322  n, ,

12 2 12 2
This was obtained by the algorithm steps Stepl, Step2 and Step3. It is obvious that cplx(p)

<< cplx(e). For example, if n = 32 on have
cpix(a) = 6,476,781 and
cplx(B) = 1,044,242,
Thus
oplx _(a) _ ¢ 202,

cplx (B)
which means:
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run-time o run-time p
(sec) (sec)

3600 580.27
1800 290.13
300 48.22

60 9.40

1.0 0.09

We can see its density and only one look make you think of its complexity. Even in
this case, the method leads to a more efficient algorithm. Until this reached point we have
made studies on the formal algorithm. '

We discuss the B-version of the algorithm, because of its already studied performance.
So, let be m(¢) the time need to access one vector element, ¢(*), 1(") the basic operations time
needings for a user or predefined specified operands and C(f) the time for Chebyshev
computations.

Remark. If C(i,j;¢) is the complexity to compute c(i,j) coefficients by using (35) then
the main loop complexity is

+ N .
epix (r) = 221 qr) o+ (me1) IO NCUFEIE
On evaluating cplx(¢) let crossing C(i,j;) and find that
Chjst) = (m1) (i j+2)m(t) + 3(i-j+1)e (") +¢(") + (i-j+2)C(¢t) =

=(j2) [ (m)m(e) + Q) + ()] + () - 3¢(9). (38)

Thus the order of complexity will be of the form:
qat) =l630(¢) + ";"'t(-) +£;_'!';(*) + "36"'211(:). (39)
Remark. The complexity of one trigonometric function has the order

T(e) =12[¢(7) + () + (1) ].
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4. Parallelization of the algorithm. An elementary task is defined as an indivisible
work unit, specified in terms of its external environment such as I/O, execution time and so
on. The parallel complexity study consists in splitting a part of the algorithm in elementary

tasks. Thus, to compute F;, function we need m Chebyshev coefficients. Thus the m tasks are:

= (B () "l(o}-l
TaskP, =§Ci_j-1 7;(01_/) - 'T +
= (bl . (0
+ gcl.j g ¢, -1 Ty (i g) - (40)

- 01(91"2,-:-1 ] W), ¢ =0
This leads to the well known precedence task graph, called PARBEGIN - PAREND graph,
introduced by Dijkstra. If we denote by #T}), the time to execuﬁ thetask 7, i = 0, m, then
the T, time need to execute the algorithm from point A(T)) to point B(T,) will be:
T,=max{T,, i =0, m},
instead of sequential time
T-= 2 T;.
We can write, using Dijkstra PARBEGIN - };AREND form, that
T,: T,; PARBEGIN T,; |T,; |... |T,; PAREND; T,.

In (35) CE can be use unless all ¢!}, I = U, 7 are computed. We must note that
one computes for one function the all its coefficients into one FOR loop and these
computations are independent. Also one coefficient needs a lot of time for the computations
since this is dependent of mn? other coefficients. So this requires a small code for
paralellization. One may see that we describe the parallel algorithm here.

INPUT. n for matrix dimensions;
m is the number of Chebyshev coefficients;
Generating functions Fi(x), i=0,n;
Transform functions Wj(x), j=0,n;
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ALGORITHM.
Stepl. for i=0,m-1 do
FRes_i[),0) 3= c_i[F_3); 3=0,n;
endfor;
Step2. for i=0,m-1 do
FRes_i[n,n-i) = diff(c_i(F_j)); j=0,n;
endfor;
step3. for i=1,n do
for ji=1,1i do
BEGIN PARALLEL LOOP from O to m-1
compute ¢_1 of FRes [i,)] function;
END PARALLEL LOOP;
Setting FRes{i,]j);
{keeping the result :}
if i=j then O(i) := FRes(i,i);
endif;
{complete lower triangle with derivatives :}
PRes(j,i) 3= Fres(i,j);
OUTPUT. O_1(i), 1=0,m-1; i=0,n;

The c(i,j) element is computed by spawning all c(i,j), from /=0 to m-1. This means,
to this level, that on run with m parallel processes and at the end of all of them will have the
FRes(i,j) function expressed in terms of Chebyshev polynomials.

The slave, in parallel algorithm, compute one coefficient for the specified function,
so, if we want to obtain the maximum speed it will be preferable to set the numbers of slaves
to the number of Chebyshev coefficients. The result is collected when all of the slaves done
their work.

Parallelizing the algorithm leads to maximize relation (38) for i = I, » and
J = T, 7. It is obvious that the order of cplx, is from now:

O(r) = 2ae) + Be() + Ba() + B Ma(s). )
So, getting the results from (39) and (40) on have
an - Qo = L2 g)a(r) -

2 \3
cEm) oy, 22mD -2 qe. @)
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On 3D graphical representation by array dimensions and number of coefficients we can get

the evaluating continuous time of all operations described here. We can see how time-smooth

is the parallel computing behind the sequential computations. The smoothness can be also

visualized according to (40).
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REZUMAT. - O abordare axiomatica a asambloarelor. Scopul principal al asambloarelor
este de a atribui valori simbolurilor din program. Programul obiect se asambleaza din aceste
valori. Se studiazi procesul de atribuire a valorilor, valoarca simbolurilor s¢ genereaza pe baza
numirului de treceri si a gradului de postdefinitate. Se determind numarul exact al trecerilor
necesare traducerii programului de asamblare.

Abstract. - The main purpose of assemblers is to assign values to the symbols of an
assembly program. The target program is assembled from these values. The process of
assigning values is studied, the values of the symbols are generated depending on the number
of passes and the degree of postdefinity. The exact number of passes needed to translate an

assembly program is determined.

1. Introduction. The assembler creates the target program and the list from the
assembly language program. The assembly language program is a series of symbols, during
the translation the assembler assigns values to these symbols, and the target program and the
list are composed from these values.

Emphasizing the common characteristics of assembly languages [11, [2], [7])-[11] firstly

we define a grammar and the assembly language examined is generated by this grammar. The

* Eotvés Lordnd University, Department of General Computer Science, Budapest Hungary,
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symbols of the assembly language programs are classified depending on their positions. The
syntactic error-free assembly language programs will be given by axioms, and The
Fundamental Axiom of Assemblers [12] will be stated. In order to study the process of
assigning values, the values of symbols are defined precisely and the classes of pre- and post-
definit symbols are determined.

The degree of postdefinity [4] is introduced, and the relation between the value and
the degree of postdefinity is studied to determine the minimal number of passes needs to
translate the assembly program [3]. The result of this study is summarized in The

Fundamental Theorem of Assemblers [5].

2. The assembly language. To study the assembly languages we define a simple
context-free grammar G, and the assembly language program is a sentence of language L(G)
generated by grammar G. We give only the first few productions:

(1) <program> - <line> ¢ol |
<program><line> ¢ol

2) <line> ~ <symb> = <expr> |
<stmt>

(3) <stmr> ~ <symb> : <stmt> |
<mnem> |
<mnem><opnd>

(4) <opnd> - <expr> |

<opnd> , <expr>
(5) <mnem> - ADD|MOV|...
From the above productions it is obvious that the unit of the assembly language

program is the line, and that the line can be decomposed into three fields: label, instruction

and operand field. The instruction field contains either a directive (e.g.=) or a mnemonic (e.g.

ADD, MOV).

We complete the line with the serial number field. Thus, the k-th line of the assembly
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language program has the following structure:

(0) (1) (2) (3)

k label statement operand

With the production (3), it is possible to give labels in the program, and it can be seen
that it is possible to have more labels for one mnemonic:
symb, : symb, : ... symb,, : mnemonic operand eol
The assembler assigns the actual value of the current location counter to the label. Marking

this counter by $, we transform the above line into the following form:

symb, = $ ol
symb, = $ eol

symb, = $ ¢ol
mnemonic operand eol

After the transformation the assembly language program P consists of rows of the next types:

0) (1) (2) (3)

k mnemonic operand "
k mnemonic

k symbol = operand

Let a(k), m(k) and u(k) denote the set of symbols in the field (1), field (2) and field (3) of the
k-th line, respectively, and let |P| = max k. Now we define the set of symbols:

DEFINITION 2.1 Let A(0) = {$}, A(k) = A(k-1) va(k) (1 < k < |P|),and A = A(|P)).
Set A is called the parameter set of program P.

We note that $ ¢ a(k) (1 < k < |P)).
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Those a € A parameters which appear in the label fields in the line

) (1) (2 (3)
k a = 3

are called labels, and let us denote by b(k) the label of the k-th line:
bk) = {a(k) | m(k) = {=} A u(k) = {$}}

The set of labels is the following:

DEFINITION 2.2 Let B(0) = o, B(k) = B(k-1) u b(k) (1 < k < |P|), and B = B(|P|).
Set B is called the labél set of program P.

In the assembly language program the labels need to be unique, that is a label cannot
appear in other label fields of the program. This is stated by the following axiom.

Axiom I b(k) ¢ B(k-1), 1 <k < |P|

If a label does not satisfy this axiom, then the assembler reports a “multiple defined
symbol” error on every occurence of this label.

In the instruction fields there are directives or mnemonics:

DEFINITION 2.3 Let M(0) = o, M(k) = M(k-1) u mkk) (1 s k < |P|), and M =
M(|P|). Set M is called the instruction symbol set of program P.

Into the instruction field only an element of a previously given set .# can be written,
The set A is called the instruction set of the assembly language. The requirements for this
set are stated by the following axioms:

Axiom II M c #

AxiomIIIANnM=o

The symbols found in the operand fields are given in the following way:

DEFINITION 2.4 Let U(0) = o, U(k) = U(k-1} v u(k) (1 s k < |P|), and U = U(|P)).

Set U is called the operand symbol set of the program P.
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The u(k) consists constants and operators, too, denote uq(k) and u,(k) the set of
constants and the set of operators in the k-th line, and let U, U, denote the set of constants
and the set of operators of program P.

Similarly to the instructions, the elements of U, can only be elements of a previously
given set ¢ and the restrictions for these sets are stated by the following axioms:

Axiom IV U, c @

Axiom VU, nA =0 A UonM-a,and

UnA=oANUNnM=o9

The non-operator and non-constant symbols found in the operand field must be deﬁne&

in the label field, that is if

U, = WU v Up),
then every element of U, must be a parameter. This is stated in the fundamental axiom of
assemblers.

Axiom VI (The Fundamental Axiom of Assemblers) U, c A

Let u,(k) = u(k)\uck) v uyk)) (1 < k < |P|). If for a symbol s € u,(k) the above
axiom does not hold, then the assembler in the k-th line gives an "unknown symbol" error

message for the ymbol s.

3. The values of symbols. We will now examine what kind of values the assembler
assigns to the elements of the previously defined sets of symbols. Let val(s,k) denote the
value of symbol s in line k. If the assembler cannot determine this value, then let it be
val(s,k) = €.

Axiom VII For every symbols € U. UM, | < k < |P| the inequality val(s,k) * €, and

for every 1 < k, I < |P| the equality val(s,k) = val(s,]) is valid.
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The above axiom states that the values of constants are determined unambiguously,
and these values are independent from the lines. On the basis of the axiom the same is true
for the mnemonic, that is the machine code assigned to the statement is independent from the
program.

We only have to deal with the elements of sets A and U, As $ € A, we examine the
value of this symbol first.

DEFINITION 3.1 Ler val($,1) = 0, and for k > 2 let

val($,k) = val($,k-1) + fim(k-1),u(k-1)),
where fim,u) is a non-negative integer function which gives the length of the machine code,
its value for every m(k-1) ¢ M and for every u(k-1) c U is previously given, even in the case
of s € u(k-1), val(s,k-1) = €.

According to the definition the value of the current location counter is zero in the first
line, and the value of the increase is detennined by the mnemonic and the symbols of the
operand field, and not by the values of these symbols. '

Let A’ = A (S}, Us= U)\(S$}, andlet

"R - u{ K if $¢ufh
ualk) =\ ugb \(S)if $ Eulh
In the following we deal with the symbols of A’. We can see that if s € A’ is in the
field (1), then in the operand field (3) only one expression can appear:

©0) (1) (2) (3)
l « s = expr |

The directive = means the assigning value, and for this reason we first give the value
of the expresion.

We say that for an expression expr the inequality val(expr,k) # € is valid if
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ufk) = eorifforall s €Eui(k) the value of symbol s is known. Then
val (expr , k) = x val (s, k),
uo(b)
where s € u (k) U u k) and x means the execution of operations in u,(k).

If in the expression expr the u ,{( k) = o, then val(expr,k) + €, as the expression at
the very most can only contain symbol $, constants and operators. The value of $ according
to Definition 3.1, the values of constants according to the Axiom VII are known.

A symbol s can occur in the label and operand field of the same line:

(0) (1) (2) . (3)
k s = s+1 I

and from this it can be seen that the value of the ymbol s in the two fields will not be the
same. Let val (s, k)) denote the value of symbol s in field j of the k-th line.

If s € a(k), then let val (s, k() = val (expr , k). Wenote if us(k) = o,
then val (s, k(M) we. If val(expr,k) = €, then val(s k") = €. |

As a symbol can appear in the label fields of different lines, we define the scope of
symbols.

DEFINITION 3.2 [fs €a(k,), s €a(k,), ..., s €a(k,), and1 <k <k,
<.. <k, < |P|, then let the scope of symbol s (s € a(k,)) be

Bs, k) ={(k+1)?, (k;+2)®, ., k), ifi+m and

Bs, kp) = (1,20, kP, (kp1)?®, ..., |P|D).

We note that for s € b(k) according to Axiom I

Bs, k) = (19,20 |p|3},

When we assign values to symbols, a very important property is the pre and
postdefinity of symbols.

DEFINITION 3.3 If s € a(k) and I € E(s,k), then symbol s in field I® in the case of
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k < l is said to be predefinite, in the case of k > | is said to be postdefinite symbol.

If s €Ea(k,), s €a(ky), ..., s €Ea(k,), then symbol s in fields
i 20k is a postdefinite, and in fields (k, +1)®), ..., |P|® isa
postdefinite, and in fields (k,+1) (), ..., |P|(® is a predefinite symbol. Similarly, if label
s € b(k), then label s in fields 13, 203, . . k() is a postdefinite, and in fields
(k1) |P|Y is a predefinite symbol.

From the last example, in which symbol s is in the label and the operand field, it is
obvious that the value of the symbol s is depending on not only the fields but the passes, too.
We extend the definition of values for passes, let val (!)(s, k()) denote the value of
symbol s at pass i, in field j of the k-th line of the program. -

For symbol § let

val (D ($, k) =val ($, 0 (1 sks|P)
where val($,k) is the value given in Definition 3.1. At the begining of translation the value
of symbol s € A’ is unknown, that is for all s € A’ .

val D (s, 1) =g,
and symbol s can only get value in such a first line, where in the label field appears:

DEFINITION 3.4 [f symbol s € a(k) and i > 1, then,

e if 3r€ufk),
and val \(r, k) =¢

x val (g, k) otherwise
up( B)

where q € u,(k) U uc(k), and x means the execution of operation in u k) c U,
If we determine the value of a symbol, then the value in all of predefinite references
is equal to this value, and the postdefinite references only get their values in the next pass.

DEFINITION 3.5 If s €a(k), s €Euql), 1'® €ERs, k) andi 2 1, then
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val (s, 7)Y =val D(s, kD), if k<1, and

val U D (s, 1) =val D (s, kM), if k21.

From these definitions unfortunately it can not be seen that the value of a symbol is
determined in which pass. This is why we introduce the degree of postdefinity, and the
relation between the value and the degree of postdefinity will be investigated.

4. The degree of postdefinity. The value of a parameter in the label field is undefined
if in the operand field of the same line there is a symbol with undefined value. It is possible
that the assembler gives a value to this symbol of the operand field in one of passes, and

therefore in this pass and in the next passes the value of the parameter in the label field can

be determined.
DEFINITION 4.1 If s € a(k), then the degree of postdefinity of symbol s in kK let
0 if udk) =o
Pd(s, kM) =1 max pd(r, &) otherwise
rEuf‘h

According to the definition the symbol in the label field takes the highest degree of
postdefinity from the operand field.
DEFINITION 4.2 If s € a(k), s €Eu4(l) and | O € E(s, k), then the degree

of postdefinity of symbol s in I let

_[pd (s, kM) if 1>k
Pd(S. 1(3)) _{pd(s, k(l)) + 1 if 1 <k

The definition says that in postdefinite references the degree of postdefinity is one
greater than in the line of its definition, and in predefinite refences the degree of postdefinity
does not change.

If s € b(k), then pd(s, k") = 0, that is the degree of postdefinity in the label field of
its definition line is zero, and according to the definitions, the degree of postdefinity in the

predinite references equals zero and in the postdefinite references it equals one.
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THEOREM 4.1 If s € a(k), then pd(s,k™) 2 0.

Proof. The statement is a consequence of Definition 4.1 and 4.2. O

'COROLLARY 4.1 From Theorem 4.1 and Definition 4.2 it follows that pd(s,19)>0
for all symbols s €uj(1).

THEOREM 4.2 [f pd (s, I {¥) =pd(s, 1§V), where1 sI, <l, s |P|,
then 3k, for which |, < k < |, and s € a(k).

Proof. If | 1(’), 12(3) € E(s, k), wheres € a(k), then the theorem is a consequence
of Definitions 4.1 and 4.2.

If1{¥ €E(s, k,), andl{> € E(s, k;), wheres Ea(k,), s Ea(k,) and
k, # k,, then k, k, can not be elements of neither set E, = {1, ..., -1}, nor set E, = {,, ..., -
1}, nor set E; = {l, .. |P|} at the same time, otherwise the inequality
pd(s, 1{1¥) »pd(s, I1$?) isnot hold. Similarly, the case of k, € E, and k, € E, is not
hold. If k, € E, and k, € E,, or k, € E, and k, € E,, then the statement is true, since in the
first case let k = k,, and in the second case let k = k,. CI'

Clearly not every symbol has a finite degree of postdefinity. For example, if symbol
s only appears in the line

0) (1) (2) (3)
l k s = s+1

then according to Definitions 4.1 and 4.2
pd(s, kD) = pd(s, k) = pd(s, kV) + 1,

and we can state the following theorem:
THEOREM 43. Ifs €u/(k) and k® € E(s, k), then pd(s, k(M) = &
If s €ui(1), then Corollary 4.1 shows that pd(s, 1®) =1. If

pd(s, 11¥) < o then according to Theorem 4.3 k # 1 is true in the case of 1® € E(s,k),
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that is 3k (1 < k < |P|), for which 1?® € E(s,k). Thus, using Definition 4.2, we can state the
following corollary:

COROLLARY 4.2 If s € u/(1) and pd(s,1®) = n < o, then in the case of 1? €
E(s,k) it is true that k » 1 and pd(s,k") = n-1.

There is an obvious generalization of Theorem 4.3:

THEOREM 4.4 [f for symbols s,,5,,...,S.

5, € a(k), s, € uy(k), K € Bs,, k),

s,€a(ky), s, Eulk), K> €Hs,, &),

s.€a(k), s, Eusk), k) €Es,, k,),
then pd (s,, kfV) = (1 si <m).

Proof. The theorem follows from Definitions 4.1 and 4.2. O

We note that the infinite degree of postdefinity is based on a ‘circle’ in the declirations
of symbols.

The next theorem states that if in the assembly language program there is a symbol
with finite degree of postdefinity, then there is a symbol with zero degree of postdefinity too.

THEOREM 45 [f s €a(k) and pd(s, k(")) <og then 3r € A’ and 31 (1 <
I < |P|), for which r € a(l) and pd(r,IV) = 0.

Proof. Let pd (s, k(1) =i, according to Theorem 4.1 0 < i < . We prove the
theorem by induction.

If i = 0, then let r = s, and / = k. Let us now suppose that the statement is true for
every j < i-1, and we prove that the statement is true for j = i, too.

If pd(s,k®M)=i, then Definition 4.1 shows that 3r, € u,(k), for which
pd(r;, k) = 4, and if’ r, € a(k,), then k® € E(r k). According to Theorem 4.3 k, » k. If k,
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> k, then according to Definition 4.2 pd (r,, k{") =i -1, and due to the hypothesis of
the induction the statement is true.

If k, < k, then by Definition 4.1 it follows that 3r, € u,(k,), for which
pd(r,, k®) = i, and if r, € a(k), then k(> € E(r,, k,). Ask # k, in the case of k, >
k, the hypothesis of the induction is applicable, and if k, < k,, then 3r, € u,.’( ky), for
which pd (r,, K¥) = i.

It can be seen that either we reach a symbol with degree of postdefinity i-1, or there
exist

k> k >.. >k,
and r,,, €us(k,), pd(rm> k&) =i. Ask, 2 1, inthe worst case k, = 1. In this
case however, due to Corollary 4.2, pd (7 ,.,, ! (V) =i -1, and therefore the hypothesis
of the induction is applicable. O]

From the above proof it can be also seen ﬁm if there is a symbol for which the value
of the degree of postdefinity is equal to n (0 < n < ), thex; there are symbols with degree of
postdefinity 0,1,...,n-1:

COROLLARY 43 If s € a(k) and pd(s;k’) = n, where 0 < n < o, then
3ry, ry, ..., 1, €A, and 31,, 1,, ..., 1,,, forwhichl <l < |P|, 1 €a(l)
andpd (r;, 1) = j (1 sj sa-1).

5. The relation between the value and the degree of postdefinity. We will now
examine the relation between the value and the degree of postdefinity, and we will show that
the degree of postdefinity of a symbol determines in which pass this symbol gets its value.
Moreover, we prove that if this value was assigned in one of passes, then the value does not

change in the following passes.
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THEOREM 5.1 (The Fundamental Theorem of Assemblers)

Ifs €Eui(l) and pd(s, 1 ®) =n <o thenval ("(s, [ ) =g,

Proof. We prove the theorem by induction. In the case of n = 0 the method of proof
of Theorem 4.5 can be used, and it will not be presented here. Suppose that for every symbol
s,€uf k,) in the case of pd(s;, k{’) =j -1 the statement is true, that is
val D(s,, ki¥) »e.

We prove that if s €uys(l), pd(s, ! ®) =j is hold, then
val UV (s, 1) »g,

If s € a(k) and I® € E(s,k), then according to Theorem 4.3 k # /. If k > I, then using
Definition 4.2 pd (s, k() =j -1, and on the ground of the hypothesis of the induction
val ()V(s, kM) weg. Definition 3.5 states that val (/*D(s, | (3)) = val'(s, k"), thus
the statement of the theorem is valid in the case of k > /

If k < I, then by Definition 3.5 it follows that the equality
val UV(s, 1) = val UV(s, kV) is hold. As according to Definition 4.2
pd(s, kV) =7, and Definition 4.1 shows that 3s, €Eus(k), for which
pd(s;, k') = j. For this symbol s, 3k, where s, = a(k,), kP €E(s,, k,). If
ki, > k, then we have finished, according to Definitions 3.5 and 4.2
val UV (s, k) = val N(s,, k"), and pd(s,, k") = j-1.

If k, < k, then repeating the above procedure for s and k, either we reach a symbol
with degree of postdefinity j-1, or we get series s, s,, s, ..., s, and
k>k >k,... >k, Inthe worstcase k, = 1, and composeing the next element s,,, of the
series, we find that pd (s,.,, 1(¥) =j. According to the Definitions 3.5, using Corollary
4.2, in the case of s,,€a(k,,) pd(s,,, k{¥) =j-1, and
val (D(s,4, ki) = val UV (s,,,, 1), This value on the ground of the hypothesis
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of the induction # €, which completes the proof. O

Now we prove that if we assign a value to a symbol in the n+1-st pass, then this value
does not change in the following passes.

THEOREM 52 Let s €uy(l). If pd(s, I ®) =n <o then for all
n,, n, 2n+1 the equality val (" (s, I @) =val (™ (s, 1 ) is valid.

Proof. We shall prove that val (™ (s, | (3)) = val (™) (s, 1 3) for every m
> n+1, from this the statement of the theorem follows.

Suppose that the statement is not valid, that is the inequality
val (A(s, 1) val (®V(s, 1) is true. We prove that from this condition it
follows that there exists at least one symbol s,, for which in the case of s, € a(k,),
pd(s,, k.‘ Dy <n-1, and the values of symbol s, are different in two different passes.

Lets €a(k), | ®) €E(s, k), thenour condition is true according to Definition
35, if

1. inthecaseof k >1 val ("D (s, k(D) #val ("')'(s, k(M), but using Definition
42, pd (s, kM) =n-1, so we have found a symbol which has different values
in different passes, and its value of degree of postdefinity equals to n-1. Let s, = s and
k, = k.

2. inthecaseof k <! val (M(s, k(M) #val (™)(s, kD), and according to
Definition 4.2, pd (s, k(1)) = n. Using Definitions 3.4, 4.1 and 4.2, in the worst
case more times repeating the above line of reasoning and by Corollary 4.2 it follows
that we surely reach a symbol which has different values in different passes, an its
value of degree of postdefinity equals to n-1.

Therefore 35, € us(k,), for which val ("D (s,, k) =val ™(s,, k)

and pd (s, k,‘”) < n-1 in the case of m-1 > n.
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Using this method, we can produce a series of symbols s, s,, ..., s, andaseries
of lines k,, k,, ..., k,, for which pd (s, k{’) =0, andval (s, k{’) =
val (®V(s,, k). 1tisobvious that for the symbol s, ,» With postdefinity degree zero,
the above inequality is false, and thus we have proved the theorem. O

DEFINITION 5.1 Let pd(P) denote the degree of postdefinity of program P

0 if U=o0
Pd(P) = max max pd(s, k&) otherwise
Isks|P seuyyp

The following theorem states that if the degree of postdeﬂnity of a program is equal
to n, then the program P can be translated by an n+1-pass assembler.

THEOREM 3.3 For all symbols s € U, of program P in the case of s € u/(1)
val (MPD(g [} ug

Proof. "I‘he statement is the consequence of Definitions 3.1, 3.4 and 3.5, as well as
Theorems 5.1 and 5.2. O

As Uj c A, according to the Definition 4.2 the statement of the above theorem is
valid for every symbol s € A.

COROLLARY 5.1 For all symbols s € A of program P in the case of s € a(k)
val (MDD g J(D) g

We have dealt with values of all symbols of an assembly program. We note that
pd(s, kM) =0 inthe case of s € b(k),and for | () € E(s, k) pd(s, | ¥) =1,
the translation of labels can be donq with a two-pass assembler, and this is the reason, that
the most of assemblers has two passes. Thus, the most of assemblers unables to solve the
translation of symbols of higher degree of postdefinity [6], and it is the programmers’
responsibility to reduce the degree of postdefinity to 1, using modifications to the assembly
language program, or simply with rearranging of lines.
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REZUMAT. - Optimizarea functiilor d-convexe pe regele. In acest articol sunt introduse gi
studiate funcgiile d-convexe definite pe spatiul metric al unei refele. Sunt discutate unele
peoprietiti ale acestui tip de functii §i o metodi de rezolvare a problemei:

P f(z) - min,

unde f: N - R este o functie d-convexd.

1. Introduction. The actual period in the development of metric convexity is
connected with investigations of discrete structures and of some extreme problems on them
([2], [14], [15], [13], [10], [22]). At the same time a considerable part of the results on
convexity in discrete spaces is concentrated around metric convexity in graphs ([12], [16],
(18], [20], [21]). It is interesting to mention that notions like convex set and convex function
in graphs appeared previously in connection with some location problems ([3], (4], [5], [9],
[23]). Another concept which was the direct result of location problems is the network (see
(4], [5], [9]). In this article we deal with metric convexity (see [6], [7]) in networks and our
aim is to define and study convex functions for these kind of spaces. We also give a method
to solve the minimization of d-convex functions on networks. As we shall see, networks are
closely related to graph, although they are not discrete metric spaces.

For convenience, we define here networks as metric spaces and some necessary

notions related to them. Notice that we adopt definitions used in [3], [4], [5], [6]), (7], [9].

* "Babeg-Bolyai" University, Faculty of Mathematics and Computer Science, 3400 Cluj-
Napoca, Romania
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We start with a undirected, connected graph G=(W,A), without loops or multiple
edges. Toeach vertex i in W={1,...,n } we associate a point v, from X. Thus yields a finite
subset V={v,,...,v,} of X, called the vertex set of the network. We also associate to each edge
(i,j) in A a rectifiable arc [v,v;]<X, called edge of the network. Let assume that [v,v;] has the
positive length e; and denote by U the set of all edges. We define the network N=(V,U) by

the union N = . U [v, vl It is obvious now that N is a geometric image of G, which follows
naturally from(';r)le;mbedding of G in X. Let us suppose that for each [v,,v)] in U there exists
a continuous one-one mapping Qy:[v;,v;)]—[0,1] with Q,(v)=0, Qy(v)=1, Q;([v;,v}))=[0,1] and
if x,y€[v;,v;] such that x€[v,,y) then Q(x)<Qy(y). It is obvious that to each point x from [v,v]
corresponds a unique point, namely Q;(x), in [0,1}. Any connected and closed subset of an
edge bounded by two points x and y of [v,v] is called a closed subedge and is denoted by
[x,y). If one or both of x,y miss we say that the subedge is open in x (or in y ) or is open and
we denote this by [x,y) or (x,y] or (x,y), respectively. Using Q, it is possible to compute the
length of [x,y] as e([x,y])=|Q;(x)-Q;(Y) |e;. Particularly we'have e([v,vy)) =ey, e([v;,x])=Q;(x)e,
and e([x,v;])=(1-Q;(x))e;.

By analogy with graphs we introduce the notions:

The degree gy(v) of veV in N is the number of closed edges in N which contain v.

A path D(x,y) linking two points x and y in N is a sequence of edges and at most two
subedges at extremities. If x=y then the path is called cycle. The length of a path (cycle) is
the lengths sum of all its component edges and subedges and will be denoted by e(D(x.,y)).
If a path (cycle) contains only distinct vertices then we call it elementary.

A network N is connected if for any points x,y in N there exists a path D(x,y)cN.

An edge [v,,v;] in U is called isthmus if N\(v,v;) isn't connected.

Any connected subset N'cN is called subnetwork of N. Any network N'(V")=(V’,U’),

where V'cV and U’ is the set of all edges from U having the extremities in V’, is an induced
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network.
A connected network without cycles is called tree.
Let D*(x,y) be the shortest path between the points x,y in N. We define a distance on
N as follows: d(x,y)=e(D’(x,y)) for any x,y in N. It is obvious that (N,d) is a metric space.
The metric segment between the points x,y €N is the set
<x,y>={zeN|d(x,z)+d(z,y)=d(x,y)}.
It is clear that the metric segment <x,y> coincides with the union of all the shortest paths
between x and y.
A set McN is d-convex ([11]) if for any two points x,y in M we have <x,y>cM.
By neighborhood of the point xeéN with radius r we mean the set
B(x,r)= {zeN|d(x,z)<r}.
We also use as neighborhoods the sets By (x,r)={zeM |d(x,z)<r} , where xéeM and M is some
connected subset of N.

2. d-Convex Functions Our purpose in this section is to introduce the class of d-
convex functions defined on the metric space (N,d) of a network N=(V,U). This approach was
inspired by the papers [12], [17], [20], [21].

Let us consider a connected network N and a real valued function f:N——R.

Definition 2.1. ([16]) f is called dconvex on N if for any points x,yeN and any
2e<x,y> the inequality

d(x,z) o\, d(y,2)
feys G310 42100

holds.
One can state the following simple properties of d-convex functions on N. Note that

this results was already proved for the more general case of metric spaces ([17], theorems

1-4).
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Theorem 2.2. 1) For any d-convex functions f,g and any real number A 20, the
functions f+g and Af are also d-convex.

2) The pointwise supremum of any family of d-convex functions is also a d-convex function.
3) The limit of any punctually convergent sequence of d-convex functions is also a d-convex
function.

4) For any d-convex function f and any real number A, the sets {zeN|f(z)<A) and
{zeN|f(z)<A} are d-convex.

It will be needed the following preliminary results, which will establish links between
d-convex functions and constants. Further on we denote by d-C and I the family of d-convex
and respectively constant functions on N.

Lemma 2.3. If CcN is an elementary cycle, then any d-convex function, N— R, is
constant on C.

Proof. Let us consider the d-convex function f:C— R. What we have to prove is that
for any x,yeC, f(x)=f(y). It is easy to see that there exists the points z,,...,z,€C, n25,
satisfying the properties:

1. z €<z, ,,2,,>, i=2,...,n, where z,,,~z,.
2. z,=x and there exists ke€2,...,n , such that z,=y.

Let us assume that f(z,)=max{f(z)|i=1,...,n}. From the d-convexity of f results

d z,.,, z
dz,,, z,,)

dz,, z

f(z) = X zpr 200)

(z,,) + £( z,,) s

s Hzpr2) pipy o w2 ry p(q),

(2,4, 2,.) d(z,.,,2,.)
This leads to f(z,)=f(z,,)=f(z,.,). By iterating this method we obtain f(z,)=...=f(z,), thus
f(x)=f(y). Since x,y eC were arbitrarily chosen, we conclude that f is constant on C. B

The following definition refers to a class of networks, closely connected with d-convex

functions.
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Definition 2.4. A connected network N=(V,U), is called quasitree if there exists at
least one vertex veV such that g(v)=1.

We mention below some simple properties regarding quasitrees that will be of use
later.

Lemma 2.5. If N=(V,U) is a quasitree with at least a cycle, then there is a connected
subnetwork R=(V',U)cN, V'cV, U'cU, maximal with respect to inclusion, such that any
vertex veV' has gg(v)22 and all cycles in N are contained in R.

Proof. Let us consider the set

vi=viU( U (Dv,v)MY),

where V” is the set of all vertices in Vv,, vw%ch lie on some cycle of N. The subnetwork
generated by V', R=N(V’) is that one we are looking for. Indeed, from the way we define V,
any veV’ has gg(v)22. Consider now a cycle C in N. Then his vertices will be in V" and
hence CcN(V’)=R. Now, let us prove that R is maximal. We assume that there exists a
subnetwork R,;=( Vl’. U,')cN, having the same properties as R and RcR'. Consequently
VAV’ 21. We consider veV,\V and v,,v,€V’. From the way we define R it follows that
there exists a path D(v,,v,)<R. On the other hand, since R’ is connected, we deduce that there
exists the paths D(v,v,) and D(v,v,), which are not contained in R.

It follows that the union D(v,,v,)uD(v,,v)uD(v,v,) is a cycle of N not contained in R,
which is a contradiction. B

Remark. 1) Further on we refer to R as the root of the quasitree N.

2) If N does not contains any cycle, then any point from N can be viewed as R.

Lenu_na 2.6. The closure of N\R, cl(N\R) is a not empty forest and each tree T from
this forest satisfies |TR|=1 and TARcV.

Proof. This is the direct consequence of the previous lemma. Indeed cl(N\R) is a not
necessarily connected network, without cycles, that is, a forest. From the definition of

quasitrees results that N\R contains at least the vertex v of degree | and the edge incident to
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v, and therefore is not empty.

The fact that for any TcN\R holds |TnR|=1 is also clear, since |TnR |22 implies the
existence of a cycle not included in R. @

Lemma 2.7. If N=(V,U) is a quasitree and fed-C, then f is constant on the root R.

Proof. Considering Lemma 2.3 we can affirm that f is constant on any cycle in N.
Consequently if two cycles C,, C, have at least one common point then f is constant on
C,uC,. Taking into account the way we define the root of a quasitree and Lemma 2.5 it is
clear that any two cycles in R either has notempty intersection or there exists a linking path
between them. Our aim is to show that in this last case any fed-C is constant on the union
of this two cycles with the linking path. In order to get this consider two cycles C,,C, and a
path D(x,y) such that xeC,, yeC,, D(x,y)nC,={x}, D(x,y)nC,={y}. If there exists another path
D(x’,y’) linking C, and C, then C,uD(x,y)uD(x’,y")uC, will form a sequence of three or more
cycles that can be ordered such that each two consecutive cycles have notempty intersection.
This provides us that f is constant on C,uD(x,y)uD(x",y")uC,.

Suppose now that D(x,y) is the unique path between C, and C,. Then D(x,y)=<x,y>.
Assume that f(z)=a,, for all zeC,, f(z)=a,, for all zeC, and «,>a,. Then by d-convexity of

f for any zeD(x,y)\{x,y} we have

d(x,z) d(y, z) s d(x,2) ,, d(y,2)
F(2) = ey ) ate ) " maGny tMatyy <
On the other hand, for r>0, small enough, the set cl(B(x,r)) is a d-convex star. Let us consider

z,€C,ncl(B(x,)))\{x}) and z,eD(x,y)ncl(B(x,r))\{x}). Obviously x€<z,,z,> and f(z,)<a,. We

have

& (x) "(“ "))f( ) ¢ D () -

_d(x,z,) X d(x, z,) d(x,z,) d(x,z,)
Az’ D NGy SN ) Mz )

a,=a,,

which is impossible. The same conclusion can be drawn for «,<a,. Thus «,=a,=f(z), for any
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zeD(x,y). Thus fed-C is constant on R. B

Summing up the above lemmas we conclude this part with

Theorem 2.8. d-C=I if and only if N is a quasitree.

Proof. Consider a quasitree N=(V,U) and denote by R its root. Then any function
fIN—R, f(x)=a+d(x,R), with a €R, is d-convex and obviously not constant. Let us prove that
f is d-convex. We consider the points x,y eN. The proof falls naturally in three parts.

1) x,y €R. From Lemma 2.7 we have f(z)=a, for any z€R and the inequality in Definition 2.1
holds.
2) xeR and yeN\R. Then for any ze<x,y> we have

R ax, z) LAy, z -
a+d(z, R f(z)sd( ra )f(y) dx )f(x)

= (a+ d(x, z) , d()’.l) . d x,z) _
(e dn B Goxy dny - MR dny

~d(z,R=XX2) 4y B

If z€R, then the previous inequality is true. If zeN\R, then because z and y lies on the
same tree T from cl(N\R) and TnR={v} (see Lemma 2.6) we have
d(y,R)=d(y,z)+d(z,R), d(x,z)=d(z,R)*+d(v,x).

Therefore
d(z, R) s%{%%d(y,zyﬂﬂ)-d(z,k)«-
..d(z'R)(l-%g'_;g_ =d(z,R)—(&i)- <9(5:2) 4y, 7) =

x,y) d(x,y)
- d(z, R)=d(x,z)=d(z, R)+d(z, x),

which is obvious.

3) x,yeN\R. Then for any ze<x,y> we have
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f(z) s B%2) )+ BV 2) p(3) =

aCx y) d(x, y)
-a+d(z, R S jg":zg(a+d<y.m+7§{:—‘l(a+d(x,m -
- d(x z) L4y, 2)
dz, R <222 2TLd(y, R 7ﬁdur.la. (1)

At this point we have to analyze two cases:
i. <x,y>NR=@. Then x,y lies on the same tree from cl(N\R). There exists te<x,y> such that
for all ze<x,y>, d(z,R)=d(zt)+d(t,R).

Using this relation in (1) we have the sequence of equivalencies

(1) = d(z,t)+d(¢, R) s—(ﬂl(d(y,:)w(:,k)y

902 (a(x, r)+d(: R) -
-d(z,t) = —-%—%—d(y. £)+ J.hi)-d(x, t) -

d(x,y)d(z,t) <d(x,z)d(y,t)+d(y,z)d(x,t) )
Now we have to consider the possibilities: _
a) t=x(t=y): (2) is equivalent with d(x,y)d(z,t)< d(x,y)d(z;t);
b) ze<x,t>: (2) is equivalent with 2d(x,z)d(y,z) 2 0;
¢) ze<t,y>: (2) is equivalent with 2d(y,z)d(t,x) 2 0.
All these inequalities are true.

ii. <x,y>nR#e. For any ze<x,y> we have

£(2) smfuwg%:—‘%fu) -

d(x, y)
- d( x, z
d(z, B s?{ﬁd(y.m %(ilf—)ld(x.m. (3)

Since x and y lie on different trees from cl(N\R), the following relations hold:

If zeR, then d(z,R)=0 and (3) is true.

If z lies on the same tree with x (respectively y) then d(x,R)=d(x,z)+d(z,R)
(d(y,R)=d(y,z)+d(z,R)) and therefore
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(3) =d(z,R) < %((%;g—d(y, R +%(%:—;)ld(x, z) +-‘di—8:—3-d(z, R -
= d(x,2)d(z,R) < d(x,2)(d(y,R)*+d(y,z)) =
« d(x,z)(d(y,R)+d(y,z)-d(z,R)) 2 0,
which is true, because d(z,y) 2> d(z,R).
In order to prove the reverse implication we start by assuming that N is not a
quasitree. Then all vertices in N are of degree at least 2. This allows us to affirm that any
vertex is either on a cycle or on some path linking two cycles. But any d-convex function is

constant on this kind of networks (see proof of Lemma 2.7) and hence d-C=I1. B

3. Optimization of d-convex functions
In this section we give a method to solve the problem of minimization without
constraints, of a d-convex not constant function on a network. Many concrete problems are
of this type. This becomes obvious if we refer to important location problems as the
determination of centers and medians in networks (see [9]). On the other hand there are many
problems where the constraints either do not influence the solution or are equalities and
therefore can be reduced to problems or sequences of problems without constraints.

First we have to introduce two basic notions.

Definition 3.1. We said that a function f:N—R has a global minimum on N at the
point zeN if for any point yeN we have f(z) <f(y).

Definition 3.2. We said that a function f:N—R has a local minimum at the point zeN
if there exists a number r>0 such that f(z) <f(y), for any point y€B(z,r).

Let us recall (see [24]), that a metric space X is called A-convex, where Ac[0,1], if
for every x,yeX and every A€A, there exists a point zeX such that d(x,z)=Ad(x,y) and
d(z,y)=(1-A)d(x,y). The following theorem is proved in [1] (also see [17], theorem 10).

Theorem 3.3. Let the space X be A-convex and A €A. If a d-convex function f:X-—R
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has a local minimum on the d-convex set AcX, this minimum is also global.

It is easily seen that a network is a A-convex space and therefore Theorem 3.3 stands
also for d-convex functions on networks.

On the other hand, because of Theorem 2.8 we have to consider only the case of
quasitree, since this type of network is the only one which could be domain for a not constant
d-convex function. Considering also the fact that any fed-C is constant on the root of a
quasitree (see Lemma 2.7) we can state the following

Lemma 3.4. If N is a quasitree containing at least one cycle and f:N——R is d-convex,
then any point from the root is a global minimum on N.

Proof. If N contains a contains a cycle then the root of N contains this cycle and
therefore at least three edges. Taking in account Theorem 2.8, we can assume that f(z)=a, for
any zeR.

Suppose now that there exists a point xeéN\R such that f(x)<a. We denote by T that
tree from cl(N\R), which contains x. We also consider an interior point z, of some edge
included in R. If {v}=<x,z>NRNcl(N\R) then by the d-convexity of f we have

asf (v) SqELr (2) + Qs (x) 2 PE 2D op () H2 M) <,
which is impossible. I

It is easy to see that any minimization of a d-convex function f, on a quasitree, can
be reduced to the minimization of a function f on the tree obtained from N by contracting
the root R into a single point z;. The function f has the same values as f on the points from
N\R and f(zg)=a=f(z), where z€R. Then if S is the set of solutions for f(z)—min and §' is
the set of solutions for f(z)—min then clearly S'UR\{zz}=S. It is also important to observe
that f is also d-convex.

Thus we can conclude that it will be enough to find a method to solve the problem

f(z)—min, when N is a tree. In order to get such a method we need the following result

Theorem 3.5. If N is a tree, f:N_-_R is d-convex and S is the set of solutions for the
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problem
P: f(z)-—min
then S contains either a single point, or S is a subtree of N.
Proof. Let us assume that |S|>1 and consider two points x,y€S. Then
o =min{f(z) |zeN}=f(x)=f(y).

On the other hand from the d-convexity of f, for any ze<x,y> we have
F(2) s s Gt (x)

It follows that f(z)=a, for any ze<x,y> and thus <x,y>cS. Clearly, for any two points from
§ the metric segment between them is also contained in S. Thus S is a connected d-convex
set of N, namely a subtree. B

Remark. If we recall the previous proof it follows that the global minimum points set
of is d-convex. Thus we recover a basic property of convex functions.

We are now able to give an algorithm to solve P.

Algorithm 3.6.

Step 1. Determine the set VM=min{f(v)|veV). Let S=0 and a=f(v), where ve VM.

Step 2. Determine the set UM={[v,v']eU|veVM} and if |UM|=k, denote the elements
fom UM by UM={u,,...,u,}.

Step 3. For j=1 to k perform Step 4.

Step 4. Solve the problem:
P min (£( 7, (x)) | x€0,1]},
where 7, =@ . Let a;=min {f (T, (x)) | x€[0, 1]} and §; be the set of solutions for
P

If a>a; then a:=a;, S =7;'/( S;) and go to Step 5.

If a=aj then §: =5 U 7;,/( S;) .

Step 5. End algorithm with a as minimal value of f and S set of solutions for P.

Remark. 1) The problem P; from Step 4, in the previou~ algorithm is a classic
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minimization problem of a convex function on [0,1]). Indeed for any A€(0,1) and any
x,y€[0,1] we have

FOT, (A (1-07) o (2,) Sgre2 8 () 2N (1) =

(Q,(z)-Q,(z,))e(u)) L (Q,(2,)-Q, (22) e(x)) _
R OR RO O AN CX CA RN CA T CARAR

e CNLp(7, () X RECAY f(7, () -

= (1-)£ (T, () *M (T, (%)) -

Taking also into account the analytic expression of f °T,,, we can usc an appropriate
technique of one dimensional minimization (see [8], p. 117-1:30).

2) The complexity of Algorithm 3.6. is O(nO,), where O, is the complexity of the
method used to solve P,

3) There are situations when the difficulty of the problem will be increased by the
determination of f o u» OT this determination is technically impossible. In this case we
propose the substitution of Step 4 with

Step 4'. Solve the problem:

P min {£(z)) | z&u,}.
Let a;=min { f( 2) | z€u;) and Sy be the set of solutions for Py

If a>a; then a:=ay S:-S,’ and go to Step 5.

If a=a; then S:=SUS;.

For solving P/ we propose the following approximation algorithm.

First we make the assumptions that u=[v,,v/], f(v)<f(v/) and €=e(u)/p, where p is
fixed in order to obtain a satisfactory diminution of the error € in finding the solution.

Algorithm 3.7.

Step 1. Set x:=v;, y:=vj; xold:=x; yold:=y; §;=0; z is the middle point of . If
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f(x)=f(y)=f(z) then S;:=u; and go to Step 6.
Step 2. Repeat:
If f(z)>f(x) then yold:=y and y:=z.
Otherwise, if f(z)<f(x) then perform Step 3 and if f(z)=f(x)
then perform Step 4.
until ((d(x,xold) <€) and (d(y,yold)<€)) or (d(x,y)<€).
Go to Step S.
Step 3. z':=z; z":=z;
Repeat:
Assign the middle point of [x,z’] to 2’ and the middle point
of [y,z"] to z",
until (f(z')>f(z)) and (f(z")>f(z)).
xold:=x; x:=z; yold:=y; y:=2".
Step 4. Assign the middle point of [x,z] to z'.
If f(z')=f(z) then §;:=S;U[x,z]; xold:=x; x:=z.
Otherwise yold:=y; y:=z.
Step §. §;":=§/u[x,y];
Step 6. Stop algorithm.
Remark. The previous algorithm is a combination of the bisection method and

Fibonacci’s technique.
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Rezumat. - Comunicatiile de grup - o solutie pentru o gestiune a reelelor cu grad ridicat
de sigurantd. Lucrarea de fagd prezinta o solutic pentru construirea unor aplicaii de
monitorizare gi gestiune a regelelor de caleulatoare care sa fie tolerante la erori, cu un grad
ridicat de sigurantd. Pentru accasta se propune utilizarea comunicatiilor de grup, intr-o variama
derivata din modelul folosit de sistemul 1SIS.

1. Introduction. The Simple Network Management Protocol (SNMP) helps network
managers locate and correct problems in a TCP/IP network. Managers run a SNMP client on
their local workstation and use the client to contact one or more SNMP servers that are
nnning on remote machines. Implicit in the SNMP architectural model is a collection of
ntwork management stations and network elements. Network management stations execute
minagement applications which monitor and control network elements. Network elements
ue devices such as hosts, gateways, terminal servers, and the like, which have management
igents responsible for performing the network management functions requested by the
network management stations. The Simple Network Management Protocol (SNMP) is used
o communicate management information between the network management stations and the
agents in the network elements.

All implementations of the SNMP must support the next five operations:

GetRequestPDU Fetch a value from a specific variable
GetNextRequestPDU Fetch a value without knowing its exact name
GetResponsePDU Reply to a fetch operation

SetRequestPDU Store a value in a specific variable

“"Babey-Bolyai" University, Faculty of Mathematics and Computer Science, 3400 Cluj-
Napoca, Romania
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TrapPDU Reply triggered by an event.

The first four operations are used to obtain or to set the value of the variables
maintained by the SNMP servers and, in general, are less critical in tfme. For the Trap
operation the time is very important because this operation is triggered by the occurrence of
some specific event (for example a network card stopped functioning at time T). In fact the
Protocol Data Unit (PDU) for the Trap operation contains a field that indicate the time of the
event's occurrence.

The implementations of SNMP - servers or clients - are based on UDP (User
Datagram Protocol) as a transport protocol. UDP provides connectionless communication
among application programs. This make the protocol simpler and therefore with a greater
performance as speed in comparison with a connection oriented protocol (like TCP -
Transmission Control Protocol). The greatest disadvantage of UDP is that it is unreliable: it
is possible to loose datagrams or these can arrive out of order or just after a great amount
of time.

For these reasons we consider that the first four operations of SNMP can be
implemented very well using UDP but an UDP based implementation of the Trap operation
can be very inefficient and unreliable.

Other problems that should be mentioned here are the crash of the network
management application or of the site which is running this application or the failure of the
underlying network. These problems affect the availability of the network management
service.

Another aspect that we want to mention before trying to evaluate different solutions
is that the configurations of the sites that are being monitored and that are emitting SNMP
Traps are sometimes difficult to modify. For example, a Novell Netware server running a
SNMP server have only the possibility to send traps to a specified IP address, it cannot send
this trap to a group of sites and cannot be modified very easy to do that (that modification
implies the rewriting of the entire SNMP.NLM provided with the system, and this is nota
trivial task). .
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2. Different solutions. The User Datagram Protocol (UDP) is unreliable if we
consider an interetwork environment, but works very well in a local network environment
(that is the principal reason for choosing UDP as transport protocol for the implementation
of NFS - Network File System). This thing suggests the use of a proxy - a site which is in
the same local area network as the monitored server. So, instead of instructing the server to
send traps to a network management station, possibly situated outside the server's LAN, the
server should send all the traps to this special site named proxy. The name was chosen
because there is a great similarity with the proxies used by SNMP for the network objects that
doesn’t support directly SNMP (see [Stallings1993]). ]

Now that the traps sent by the servers arrived at the proxy, it is its responsibility to
deliver the traps to the management station. A first approach can be to use a reliable
transport mechanism (like TCP) to deliver the traps but this solution is still unable to
overcome errors like site crashes and network failures. To achieve availability the network
management station must be replicated. It is still possible to have the proxy responsible for
sending copies of the trap to each of the network management station replica but it is
important to remember that the ordering in time of such traps is very important. Also, the
contents of the group of replicated management stations can vary in time (because of site
crashes or network partitioning).

These are the reasons for choosing a model for collective communications in the

implementations of the proxies and the management stations.

3. The proposed Model. The system is composed by a set of processes P = { p,,
P» - Pa | €ach one having a disjoint memory space. The processes represent the proxies and
the network management stations. It is presumed that this set contains all the processes
needed and it is known in advance. The processes failures follows the model fail-stop, which
means that after the apparition of a failure the process stops all its activity (that means, more
precisely, that in case of a failure a process stops immediately sending or receiving messages).

The network can be partitioned due to link failures, messages can be lost, delayed, duplicated
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or delivered out of order. The processes are structured in a set of process groups G = { g,,
€2 --» &u }. Each process group has a name, a set of component processes and a unique
special process x which is named proxy (so each group is composed by a proxy, a number
of network management stations and all their replicas) :

Vg €G, g={PiPa-sPu} P

Vg €G, 3!'p € g, p will be denoted proxy(g; )

X={xeP | 3g e Gst x=proxy(g)} < P the set of proxies .

-Any process can join or leave a group in any moment. A process take notice of a
change in the contents of a group (to which it belongs) by using the notion of view. A view
of a group is the list of its members. A view-sequence for a group g is an array: view, (g),
view, (g), ..., view, (g) with the following properties:

view, (g) = 0,
Vi: view; (g) < P,
view; (g) and view;,, (g) differs by exact a process.

A process take notice of a failure of some processes in the same group just by using
this view-sequence. This model suppose that there alWays exist the possibility of direct
communication between two processes. The transport level can offer two types of
communications: multicast messages and point-to-point messages.

It is defined further the relation in time between different events (like sending and
receiving messages) using the model proposed by L. Lamport in its very important paper
"Time, clocks, and the ordering of events in a distributed system” (see [Lamport 1978]).

DEFINITION 1: The process execution is a partially ordered sequence of events, each

n

event corresponding to an atomic action. By ” -p ” it will be denoted the acyclic order
between two events that occur in process p.
The following notations will be used further in this paper:
send,, (m) the event of sending the message m by the process p to one or more

processes globally designed by dests(m).
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rcv, (m) the event of receiving the message m by process p.
rcv, (view; (g)) the event by which process p take notice about the group g contents

(group g including process p).
deliver,, (m) the event of delivering the message m received before by process p.

If a process is a member of multiple groups then it must be indicated also the group
to which a message is sent, received or delivered. The notation deliver, (m,g) means the
delivering of message m to process p as a member of group g.

DEFINITION 2: The transitive closure of the relation “~p” will be denoted “~" and
it will be an ordering relation having the following properties:

If 3pe P sothat e “~p” e then e -¢.
Vm: send, (m) - rcv, (m). .

Two distinct events a and b are concurrent if and only if we don’t have neither a -
bnor b - a. For the messages m and m’ the notation m - m’ will have the significance of
seend(m)- send(m’).

Many models represent the relation - using timestamp vectors.

DEFINITION 3: Let VT(p;) be the timestamp vector for a process p;, an array of
length n (where n=} P | ) indexed by the process identifier. The rules for computing the
limestamp vector are the following four:

VT(p;) is initialized with O when the process p; starts.

For every event send(m) from p, to p; the component VT(p,)[i] is incremented by 1.

Every message sent by process p, in multicast mode will contain the updated
timestamp vector.

When a process p, deliver a message m recc;ived from process p; which contains the
timestamp vector VT(m), will modify its own timestamp vector following the
next rule:

Vije {1, 2, ., n}: VT(p)Ij] := max ( VT(p)Ijl, VT(m){j] ).
So, the timestamp vector contained in a message counts the number of messages,

ulculated relative to each sending process, that causally precedes the message m. The
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timestamp vectors are compared using the following rules:
VT, < VT, if and only if Vi: VT, [i] s VT, [i]
VT, < VT, if VT, < VT, and 3i: VT, [i] < VT, li]

It can be easily proven that m - m’ if and only if VT(m) < VT(m’).

The systems that implement group communication usually support three types of
events ordering:

Causal ordering - which is the order defined before and represented using timestamp

vectors.

Forced ordering - which means that a given sequence of events is occurring in the

same order at every member of the group.

Immediate ordering - which means that every event is occurring in the same order at

every member of the group, relative to every other event in the system.

It is obvious that the second order is stronger than the first and the third order is
stronger than the second (and, of course, the second and the third orders are more difficult
to implement, requiring more message exchanges between the processes).

ISIS system [Birman1991] supports all the three operations through three types of
protocols: CBCAST, ABCAST and GBCAST and also the model proposed by Ladin-Liskov
[Ladin1992] supports causal, forced and immediate operations. For our purpose it is
sufficient the causal ordering and a protocol very similar to CBCAST protocol. In the fourth
section we will indicate how this solution can be implemented using ISIS system version 2.1.

The protocol implements the following causal order:

(1) vm, m, x € X: send,(m) ~ send,(m’) = V p € dests(m) N dests(m’):
deliver(m) —p deliver(m’).

The protocol for implementing causal ordering (given in formula (1) ) in our case is
described by the following rules:

Before sending the message m, the process x; € X is incrementing VT(x;)[i] and

insert the updated timestamp vector in message m.

The process p, # x; (p, € X) which receives the message m sent by the process x;

containing the timestamp vector VT(im), delays the deliver of m until the

following condition become true: Vijef{l2 ..,n} VTm)j] =
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VTGl + 1if j=i and VT(m)[j] < VT(p)lj] otherwise.
When a message m is delivered the timestamp vector VT(p,) is updated according to
the rules mentioned in definition 3.

Theorem: The protocol described before is correct - that means it respect the two
properties of safety (it respect the causal order) and liveness (it will not infinitely postponing
the deliver of any message).

Proaf: Because the processes sending messages are members of X (the set of proxies)
and the processes tecelving messages are from P \ X it result that messages sent by different
proxies are not causally related. That means that for two distinct messages m, and m, sent
by & process x; (in this order) and arrived at process p, will have the timestamp vectors in
the following relation: VT(m,) <« VT(m,). Applying the second rule of the protocol we will
have that message m, will be delivered only afier the deliverance of the message m, and so
the safety is proved.

For the proof of liveness let suppose that it exist a message m sent by the process x,
and that it cannot be delivered to process p,. From the rule 2 of the protocol we will have
one of the following relations true:

@ VIl » VTpI] + 1.

3 3je(1,2,..,n) VTm)j) > VT(p)lj] where j » i.

The relation (2) means that m is not the next message to be delivered from x; to p,.
Because the number of messages preceding m is finite results that exist a message m’ sent by
%, received by p, and not yet delivered which the next message to be delivered (so m’
utisfies the negation of (2)). If m' is also delayed we will obtain a contradiction.

Let consider now the relation (3) as being true. Let n = VT(m){j]. The n-th
tansmission from process x; must be a message m’ which satisfy m’~ m and which was
either not received by p, or it has been received and delayed. We can now repeat this
reasoning for m’ and because the number of messages transmitted before m’ is finite and the
relation - is acyclic it will result a contradiction.

4. Finul remarks. The model proposed solve the raised problem in all its aspects

offering a reliable solution for network management using SNMP Traps.
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First of all it does not require any modifications on the monitored servers due to the

use of proxies.

M. IURIAN

The groups includes only the proxies and the network

management stations

The replication of the network management stations and the use of a special protocol

for collective communication make the solution reliable and performant.

For implementing the proxies and the network management applications it is possible
to use ISIS the toolkit for distributed programming developed at Comell University by a team
lead by K. Birman [Birman1990). The advantages of ISIS are the different types of groups
organizations (peer-to-peer,
protocols for group communication [Birman1993). The presented model can be implemented

client-server, diffusion and hierarchical) and the variety of

using the diffusion type of group organization and the CBCAST protocol.

[Birman 1990}

[Birman1991)

[Birman1993)
[Ladin1992)
{Lamport 1978}

[Stallings1993)
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REZUMAT. - Un model de reprezentare a oblectelor complexe cu identitate de obiecte.
Durad ces domidres anndes, les sysiémes de bascs de donndes orientés-objet ont émergé et
sont en passe de devenir les principaux systémes commerciaux des années 1993. Ces sysiémes
fournissont sux utilisateurs des possibilités de modélisation plus varides que les systémes
relationnels.
A partir de constructours tels que les constructeurs de n-uplet, ensemble, tableau, liste,
ot on imbriquant arbitrarement ceux-ci, de tels sysiémes supportent la notion d’objet
complaxes svec identité d'objet.

Cet article présente un modle de représentation d'objets complexes avec identité
d'objot au moyen des graphes.

On définit les notions de gmphe des types et graphe de composition d’objets pour
mettre en évidence les connexions intor-objet.

Mots elés: Objets complexes, Valeurs structurées, Types structurés, Identité d’objet,
Graphe des types, Graphe des types avec héritage, Graphe de composition d’objets.

1. Introduction

Des nouveaux domaines d'application émergent depuis quellques années. Ces
domaines tels que: Ia conception assistée par ordinateur (CAO), la production de documents
incorporant textes, images et graphiques, le génie logiciel, nécessitent la gestion d’une grande

variété de types de données ainsi que les liens entre ces données (souvent imbriquées). Ces
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* Université de Craiova, Département de I'Informatique, 1100 Craiova, Romania
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données sont généralement appelées Objets complexes.

Le modéle relationnel [CODD.70] ne permet pas de modéliser efficacement ces types
variés de données ainsi que leur imbrication. Dans ce modéle, les données sont représentées
sous forme de relations “plates”, c’est la contrainte de premiére forme normale. Les attributs
d’un n-uplet étant nécessairement des valeurs atomiqurs (entiers, caractéres, réels, booléens),
il est difficile de représenter un objet complexe dans son ensemble.

D'autre part, le probléme du dysfonctionnement entre langage de manipulation des
données et lagages de programmation [ATK1.87] constitue un inconvénient supplémentaire
de ces systémes.

Plusieurs tentatives d’extension du modéle relationnel ont été effectuées au cours de
ces demnicres années [MAKI.77). [SCHE 82), [ZANI.85), [ABIT.86), [BANC.86).

Bien que ces modéles généralisent le modéle rel‘lﬁonnel. ils ne permettent pas de
fournir le partage d'objets par référence [KOSH.87). Nous disons qu’un objet est partagé
s'il est utilisé dans la construction d'un ou plusieurs objets. Cela signifie que I"espace des
objets posséde une structure de graphe orienté. Un modéle autorise le partage d’objet, s'il
fournit la notion d'identité d’objet [KHOS.85).

Le rest du papier est organisé de la maniére suivante: la Section 2 présente un bref
apergu sur les concepts utilisés pour le modéle 02, Ia Section 3 décrit le modéle & objets
complexes avec identité d’objet, la Section 4 présente les définitions pour le graphe des types

et le graphe de composition d’objets, nous concluons ensuite Section 5.

2. Le modéle O2: un bref apercu

Nous présentons dans cette section le modéle d’objets complexes utilisé dans 02, qui
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est un systéme de bases de données orienté objet.

Bien que les solutions soient indépendantes de tel ou tel modéle (manipulant des objets
complexes), nous utiliserons les notations du systéme O2 [LECL.88], [LECL.89], [ADIB.93],
[BENZ.90]), [BENZ.93].

Dans le systéme 02, deux types de concepts coexistent: les valeurs et les objets. Les
valeurs possédent un type, qui spécifie leur structure, et sont manipulées par des primitives
prédéfinies. Les objets ont leur propre identité et encapsulent des valeurs ainsi que des
méthodes définies par I'utilisateur. Les objets sont associés & classes.

Les classes sont identifiées par un nom unique. A chaque classe est associé un type
tinsi qu'un ensemble d’objets.

Les types sont récursivement définis au moyen des constructeurs ensemble, liste et n-
uplet et & partir de types de base tels que integer, string, etc. Certains types peuvent avoir
leur existence propre et n’&re pas associés & une classe.

L'exemple suivant illustre la construction de types ainsi que le lien entre classes et
types.

add class Film

type tuple ( nom: string
année: integer
metteur-en-scene: Personne
acteurs: set (Personne))

add class Personne

type tuple ( nom: string
pays: string
profession: string)

L'’ensemble de tous les objets (instances) d'une classe est appelé extension de la

clase. Gérer une extension, pour une classe c, revient a créer, automatiquement, une hiérarchie

()
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d’héritage (ou relation de sous-typage) et les données et traitements (souvent appellés
méthodes) sont encapsulés. Dans le modéle O2, la notion d’heritage multiple est définie

[LECL.88], [LECL.89], [BENZ.93], [ADIB.93].

3. Modéle & objets complexes avec identité d’objet

Dans le systtme O2, chaque objet est identifié par un unique identificateur et
représenté par un couple (i, v) ou i est un identificateur et v une valeur. Nous rappelons, igi,
qu‘un objet peut étre composé d’autres objets ou des valeurs. Un type est associé & chaque
valeur.

Nous avons considéré les ensembles suivants:

- Un ensemble fini de domaines D,, ..., D,, n 1 (par exemple I'ensemble Z de
nombres entiers). Notons D |’'union des domaines D, , s D, . Nous supposons que les
domaines sont disjoints.

- Un ensemble dénombrable et infini A , qui s’appelle univers d’attributs. Les
éléments de A sont des noms pour les champs de la structure.

- Un ensemble dénombrable et infini I d’identificateurs. Les éléments de I seront
utilisés comme d’identificateurs pour d’objets.

Les valeurs sont construites, récursivement, de la maniére suivante:

Définition 1: Valeurs

Soit A un univers d’attributs et D un domaine de valeurs atomiques. Une valeur simple
est prise dans I’un de types prédéfinis que sont les entiers (integer), les valeurs réelles (real),
les valeurs logiques (boolean), les caractéres (char) et les chaines de caractéres (string).

(1) Tout élément de D est une valeur (dite atomique).
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(ii))  Un identificateur d’objet est une valeur.

@) Siv,, .., v, sontdes valeurs et a,, ..., a, des attributs de A alors
v = tuple(a,: v,,...,, &, : V,) est une valeur structurée de type n-uplet.

@iv) Siv,, .., v, sont des valeurs distinctes alors
v=get (v;, .., V,) est une valeur structurée de type ensemble.

(v)  Siv,,...v, sont des valeurs alors v= list(v,,..., v,) est une valeur structurée de
type liste.

Notons V [’ensemble des toutes les valeurs.

Les objets sont récursivement construits de la maniére suivante:

Définition 2: Objets

() Un objet est un couple o = (i , v) ou i est un élément de I (un identifiant) et
v est une valeur.

Gi) Sii,i,,..,i,sont des identificateurs d’objets et a, , ..., a, sont des noms
d’attributs & condition que a; » a, pour tous les j, k de 1 a n, alors
o=(i,tuple(a, : i, ..,a,:1i,)) est un objet & valeur n-uplet.

@ii) Sii,i,,.., i, sont des identificateurs d’objets, alors
o=(,set(i, ..,i,)) estun objet & valeur ensemble.

Gv) Sii,i,, .., i, sont des identificateurs d’objets alors
o=(i, list(i,, ..., i,)) est un objet & valeur liste.

W) Si nous notons O I’ensemble d’objets, alos O =1 X V.

1l existe un atome particulier qui est noté nil et qui dénote un objet indéfini. Par abus

de langage, si la valeur d’un objet est un atome, nous disons qu’il s’agit d’un objet atomique.

Une valeur composite se construit en utilisant les constructeurs n-uplet (tuple) ,
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ensemble (set) et liste (list), appliqués récursivement. Si un objet a une valeur composite nous
parlons alors d’objet composite ou complexe.
La figure 1 présente le diagrame pour la construction de valeurs composites pour des

objets.

[l
tuple
A

Figure 1. Construction de valeurs composites.

Les types sont récursivement construits de la maniére suivante:

Définition 3; Types

Soit A un univers d’attributs et T un ensemble de types atomiques (integer, real,
boolean, string, char, etc).

(@) Un atome est un type (dit atomique).

(i)  Les noms de classes sont des types.
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Git) Sit,, .., sont des typeseta,, ..., a, des attributs de A, alors
t = tuple (a,: t,, ..., 8, : t) est un type de structure n-uplet.

(iv)  Sit, est un type alors t=set(t,) est un type ensemble.

(v)  Sit, est un type alors t=list(t,) est un type liste.

(vi) Notons T I’ensemble des types.

De maniére simple, un type t, est considéré comme un sous-type d'un type t,, si toute
instance de t, peut aussi étre une instance de t,.

Considérons tout d’abord un cas particulier trés simple de sous-typage qui utilise les
entiers. Notons n ... m le sous-type du type integer correspondant a |’ensemble des entiers
de n & m bornes comprises.

On définit récursivement la relation de sous-typage p sur des sous-types de la fagon
suivante:

Définition 4: Sous-types

@) n.m<p.qsietseulementsipsnetqam.

@)  Sit,...t,u,..,u, sont des types et a,, ... , a, sont des attributs alors

tuple (8, : ¢, , .., a, : t,) <tuple (a, : u,, ..., &, : u) si et seulement si
t,<upourtoutientre letnetn s m.

@ii) Sit,, t, sont des types alors set (t,) < set (,) si et seulement si t, <t,.

@iv)  Sit,, t, sont des types alors list (t,) < list (t,) si et seulement si t, <*t,.

Exemple

Soit le type t, avec la définition suivante:

t, = tuple (

nom: string,
adresse: tuple (
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numéro: integer,

rue: string,

ville: string,

code-postal: integer)
téléphone: integer)

t, est un sous-type de t,qui est:

t, = tuple (
nom: string,
adresse: tuple (
numéro; integer;
rue: string,
ville: string))

set (tuple (nom: string, age: integer)) est un sous-type de
set (tuple (nom: string)).

list ( tuple (nom: string, age: integer)) est un sous-type de list (tuple (nom: string)).

4. Graphe des types et graphe de composition d’objets

Le type t, associé & une classe c refléte partiellement la hiérarchie de composition des

objets de cette classe, c'est-a-dire les liens que possédent ceux-ci avec d’autres objets

[ADIB.93], [BENZ.90], [BENZ.93).
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Un type t peut étre représenté par un graphe orienté étiqueté, dont la définition suit:

Définition S: Graphe de type GT (t)

@ GT@®=N,,E)ou

(ii) N, est I’ensemble des sommets étiquetés. Chaque sommet représente un type
et est étiqueté au moyende f : N, = T U { tuple, set ,list }eta :N,—~ C
ou C est I’ensemble des clases.

(i1i)  Si t est associé 4 la classe identifié par ¢ alors t € N, et a(t) = c. Sinon, a (t)

n’est pas définie.
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(iv)  Sit est un atome alors t € N, et § (t) = atome.

v) Sit,.t,EN, ett=tuple(a :t,, .. ,a,:t)alorstEN, et f(t) = tuple.

(vi)  Sit, €N, et t=set(t,) alors t € N, et B(t)=set.

(vii) Sit, €N, et t=list(t,) alors t E N, et p(t)=list.

(viii) E, est I'ensemble des arcs orientés et étiquetés au moyendey : E, = Aou A

est I’ensemble des noms d’attributs.

(xi) Sit=tuple(a, t,...,a,:t)alors (t, t)EE et y (t, t) = a pour toutide 1 a n.

(x)  Sit=set(t)alors (t, t,) € E ety(t,t)n’est pas définie.

(xi) Sit=list (t,) alors (t, t,) EE, ety (t, t,) n"est pas définie.

La totalité des liens entre tous les types présents dans le systéme est donnée par le
Graphe des Types GT.

Définition 6: Graphe des types GT

() GT=UgGT(®) =N, UE).

La figure 2 illustre cette définition.

La relation d’héritage entre clases induit une relation de sous-typage entre types
[LECL.89], [ADIB.93), [BENZ.93]. Dil 4 la caractérisation syntactique de la relation de sous-
typage, si t, est un sous-type de t’, et s’il existe un arc (t’, , t’,) étiqueté par | dans GT
alors il existe un arc (t, , t,) étiqueté par | dans GT avec t, sous-type de t’,.

Définition 7: Graphe de type avec héritage GTH (t)

On ajoute 4 la définition S la ligne suivante:

(xii)  Sit, est un sous-type de t, alors (1, ,t,) EE, ety (t, , t,) n"est pas définie. Cet

arc en pointillé représente le lien d’héritage.
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Figure 2. Graphe des types GT.

Définition 8: Graphe des types avec héritage GTH

Le graphe des types avec héritage GTH est défini comme suit:
() GTH=UgGTH ().

Exemple

Soient les définitions suivantes:

add class Film-de-Pub inherit Film
type tuple (metteur-en-scene: Publicitaire)

add class Publicitaire inherit Personne
type tuple (agence: string)

add class Marin inherit Personne
type tuple (bateau: string)
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La figure 3 présente le graphe des types avec héntage.

Fim o . .. ...._-_ Filmde-Pub

tuple tuple
ﬁm e e
.
string intc.c.r/_’ mn- ‘::: set '“"'“;'I':"

nom  pays  profession u]l(m

)

string sul:lng st!lint suing

Figure 3. Graphc des types avee héritage.

Etant donné un ensemble d'objets, a nouveau, les liens entre ces objets pourront étre

représentés par un graphe orienté. Nous appelons ce graphe: Graphe de Composition
d’Objets GCO.

La définition d’un tel graphe suit:
Définition 9: Graphe de composition d’objets GCO

Soit I un ensemble d'identificateurs d’objets. Le GCO est défini pour les
objets/valeurs par:

i G=(M.E)ou

(1)

V, est I'ensemble des nceuds chaque naeud représente une valeur et cst étiqueté
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par a -V, = let §:V, >V U {tuple, set, list}.
(iii)  Si v est associée a I'objet identifié pari alors vE V, et a (v) =i,
(iv)  Si v est une valeur atomique alors v € V, et f(v)=valeur.
v) Siv,.v,EV,etv=tuple(a, :v,,..,a; :v,)alorsvEV, etf(v)=tuple
(vi) Siv,..v,EV,etv=set(v,..v,)alorsvEYV, etf (v)=set
(vii) Siv..v,EV,etv=list(v,..v)alorsvE YV, etf (v) = list.
(viii) E, est I'ensemble des arcs étiquetés au moyen de y : E; — A, ou A est
I’ensemble des noms d’attributs.
(x) Siv=tuple(a, :v,, ..,a,:v,)alors
(v, vy)EE ety(v,v,)=a,, pourtoutk de 1 a n.
(x) Siv=set(v,,..,v,)alors (v, v,) EE,
et y (v, v,) n'est pas définie, pour tout k de 1 a n.
(x1) Siv=list (v, .., v, alors (v, v) EE
et y (v, v;) n’est pas définie, pour tout k de 1 a n.
Exemple
Soit les objets :
o, = (i, , tuple (Nom : lonesco, Conjoint : 1, , Age : 35 , Enfants : set (i,)))
0, = (i, , tuple (Nom : Magda , Conjoint : i, , Age : 33 , Enfants : set (i,)))
0; = (i , tuple (Nom : Chrétien , Conjoint : nil , Age: 10, Enfants : set (nil))).
Si O = {o,, 0, 0,}, alors dans la figure 4 nous présentons le graphe GCO
correspondant.
Le GCO peut étre vu comme une “instanciation” du graphe des types GT.

L’extension d’une classe ¢ est une valeur de type set (c), les nceuds correspondant
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T
Nom Conjoint Enfants
I S
tuple
%\

N@/i;ﬁlKMm
ade 4 b ok
|

Figure 4. Graphe de composition d’objets

4 ces objets seront présents dans le CGO. Le CGO décrit les connexions inter-objet d’un

ensemble d’objets donné.

§. Conclusion

Nous avons présenté ici les concepts d’'un modéle & objets complexes avec identité
d’objet.

Dans les SGBDOO le concept d’objet est fondamental. Nous avons défini le concept
d’objet complexe & partir d’objets atomiques et de constructeurs qui s’appliquent
récursivement independamment du type des objets.

On représent souvent les liens entre les objets au moyen d’un graphe.
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Nous avons construit le graphe des types GT, le graphe des types avec héritage GTH

et le graphe de composition d’objets GCO.

Le graphe des types et le graphe de composition d’objets jouent un rdle prépondérant

dans la mise en ceuvre des stratégies de regroupement d’objets sur disque dans un systéme

de bases de données orienté-objet.
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"REZUMAT. - Specificarca obiect-orientata in dezvoltarea software. Specificarca formala
joacd un rol important in dezvoliarea de sisteme informatice largi §i complexe. Pe de alta
parte, programarea orientatd obiect s-a dovedit in ultimii ani ca fiind un instrument cu beneficii
clare in dezvoltarea de produse informatice. Scopul acestei studiu este de a  propune o
metodd  de specificatic orientatd obicct bazatda pe  descompuncrea, abstractizarea si
incapsularea sistemului, oferind §i posibilitatca reutilizarii.

1. Introduction. We propose an object-oriented specification method which will
support widespread reuse and respects the following principles: a specification, in general,
must be formal, understandable, as well as abstract and implementation-independent. Reuse
of the software components is possible in the same problem or for other similar problems.

The design of a component influences its potential for reuse, but a good design is not
always sufficient. The expression of the design is equally important. The specification of a
component must be achieved such that the implementation and use of that component meet
the following conditions:

- understand easily, but exactly which is the component functionality;

- choose freely among multiple, efficient implementations;

- certify that an implementation satisfies the specification requirements.

e
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2. Specification Features. Object-oriented features can be successfully used to
describe abstract entities, and this is exactly what a specification must do - to study the
abstract behavior without any constraints about computer architectures. That's why, object
oriented concepts like data abstraction and encapsulation (components will be considered
classes) will be used in this specification method, as well as inheritance and polymorphism
to support software reuse.

The idea of this method is based on Eiffel [4). The principal reasons for choosing
Eiffel are:

- it is an object-oriented language, so it offers data abstraction, encapsulation,
inheritance and polymorphism;

- it has a set of assertions which can express the conditions that an operation has to
satisfy.

We shall shortly overview which are these assertions, which in this case will be
specified in conditions.

- Preconditions will be specified through a requires clause and represent the
conditions under which the operation will function correctly.

- Postconditions will be specified through an ensures clause and represent the
conditions assured after performing the corresponding operation.

If the precondition of an operation holds before an operation is invoked, then the
postconditions will be guaranteed to hold when the operation completes, assuming a correct
implementation of the specification. ’

In addition we suppose that each parameter of an operation has one of the following
modes: conserves, uses, produces or modifies:

- the conserves mode indicates that the parameter value will remain unchanged during

the operation performing (like the invariant assertion in Eiffel);
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- the uses mode indicates that a parameter value is used by the operation and that the
initial value is not modified;

- the produces mode indicates that the obtained value is relevant or that the parameters
has a value only after performing the operation;

- the modifies mode is used when a parameter has an input value that is modified and
returned by an operation.

These modes are only specification notations and should not be confused with
parameter passing mechanisms. They are included in the specification only to increase the
understandability of it.

The interface of a class describes what the component provides and these are the only
data and operations which are visible to other components.

The reuse of the component in defining other components of the same system is
achieved using inheritance, specified by an inherits clause. Reusing this component in another
system is easy to achieve since the specification of a component is encapsulated.

In order to understand this method of specification, the following example will be
considered:

Specification of a generic Stack

class Stack(Item)
Type content: sequence of Item
interface |

init, empty, push, pop, top
end;

operation init
paramet_ers:(produces c:content

}

ensures ¢ = []
end_operation

operation empty
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parameters:{conserves c:content
produces b:Bool

}
ensures (b =c = [])
end_operation

operation push
parameters:{modifies c:content
uses i:Item

}
ensures ( not empty ) A (c=c+[i])
end_operation

operation pop

parameters:{modifies c:content
produces i:Item

}
requires (not empty)
ensures (c=c-[i])

end_operation

operation top
parameters:{conserves c:content
produces i:Item

)
requires (not empty)
ensures (not empty)

end_operation

end_class --class Stack

This example shows a way of specifying stacks regardless of the elements type. A
stack component must provide operations as creation (init), a test: is the stack empty?
(empty), the classical operations push, pop and top. Instead of defining these operations as
procedures or functions, the parameters and their mode are specified separately, between
braces. Then, the preconditions and postconditions are described.

In general, a specification of a component will be:
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class <class_name>

inherits <class_name> /! the class from each
//inherits

Type ... /| user defined types

interfac /| operations exported

<opl>,<op2>,...

end;

operation <name_op>
parameters:{[conserves <var>:<type>,..]
[uses <var>:<type>,..]
[produces <var>:<type>,..]
[modifies <var>:<type>,..]
}
[requires (condl) [A (cond2) ...]]
[ensures (condl) [A (cond2) ...]]
end_operation
/| the same format for each-
/| operation
end_class

The complete syntactic definition of the language is given in Appendix A.
It's easy to observe that this specification method is not intended to suggest any
implementation method. The purpose of specification is, on the contrary, to give more choices

of implementation.

3. Conclusions. The specification method described above meets the criteria regarding
formal specification, and also offers flexibility and security. The idea of this specification was
found in (2], but lacks in information regarding the operations specification. The model
proposed has added some techniques in order to give a more clear specification for each
operation included in a class.

The purpose of it is to fit between the object-oriented analysis and design and an
object-oriented implementation.

This study represents more an idea which can be applied with fruitful results,
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especially in reusing software components.

The specification method is implementation independent. Any object-oriented
programming language can be used for implementation, but this is not a requirement: this
kind of specification can be used for any other language without object oriented features,
transforming these class definitions in user defined types and the operations in procedures and
functions. The dezadvantage of such a language is that properties like inheritance,
polymorphism and encapsulation are not available and the programmer has to find a way to

“translate” the given specification using the language facilities.

Appendix A: Syntactic Definition

The syntactic definition is given in extended BNF (Backus-Naur Form). The following
notational conventions are used:

- the keywords are bold;

- <> item enclosed in angle brackets are required

- [] item enclosed in square brackets are optional

- {) items enclosed in braces may be repeated zero or more times
- // everything that follows up to the end of line denotes comment

<class_description> i1:= class <class_name> [[<formal_type_ parameters>])
<inheritance_declaration>
Type <type_definition>
<interface_declaration>
<operation_description>
\ end_class

<class_name> ::= <identifier>
<formal_type_ parameters> i:= <identifier list>

<identifier_list> :1:= <identifier> (, <identifier>)

<inheritance_declaration> ::= inherits <class_list>
<class_list> 31:= <class_name> {, <class_name>}

<type_definition> 3:1= <identifier> : <type>
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<type> i1:= Integer | Bool | Sequence of <identifier> |..."

<interface_declaration> i1:= interface <op_name> {, <op_name>}
end
<op_name> 3:i1= <identifier>

<operation_description> i1:= <operation_item> {, <operation_item>)
<operation_item> :3= operation <op name>
parameters: {([conserves <var_decl_list>]
[uses <var_decl list>)
[produces <var_decl_list>)
(modifies <var_decl_list>]
}
[requires <condition_list>)
(ensures <condition_list>)
end_operation
<var_decl_list> i11= <var_list> 1 <type>
<var_list> t1= <var_name> {, <var_name>)
<var_name> i1:= <identifier>
<condition_list> 31= <condition> { A <condition>)
<condition> 1= <bool_exp> | mot <bool_exp> |
<bool_exp> V <bool_exp> |<bool_exp> A <bool_exp>
<bool_exp> 11= <exp> <rel_operator> <exp> | <op_name>""
<rel_operator> ti= < | > | = | <> | <= | >=
<exp> 1i1= <var_name> | <constant> | <exp> <operator> <exp>
<operator> ist= ¢ | - | « | /
<constant> 1i= <number>
<number> 3= <digit>{<digit>)
<digit> 3= 1 | 2 |3} 41 5|6}7})8}|9}0

* It can be completed with other types, when it is nccessary

" Note that an operation which returns a boolean value can be considered an boolean expression
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Rezumat. Clasificatori supervizati cu decizie nuantatd. In acest articol sunt prezentate o
seric de generaliziari ale unor algoritmi de instruire clasici. Sunt prezentate citeva din
problemele generate de acegtia. Apoi se construicste un algoritm de clasificare supervizati
nuan{atii bazat pe o gencralizare a algoritmului Fuzzy n-Medii. Sunt studiate proprietatile sale
¢l sunt trecute in revisud cdteva avantajele obtinute prin utilizarca sa.

1. Introduction

Let us consider a set of objects, X = {x!, ..., x’} ¢ R, classified with a fuzzy clustering
algorithm of the type Fuzzy n-Means, and the fuzzy partition P = {A, ..., A,} coresponding
to the cluster substructure of the set X (see [2,3]).

We rise the problem of including an extra-object x° ¢ X in the cluster structure of X. Of
course, this would mean to determine the membership degrees of x° to the fuzzy sets
members of ‘the partition P. These degrees will provide sufficient information in order to

classify the object x° with respect to the elements of X.

The algorithms that solve this kind of problems we be called fuzzy decision supervized
classification algorithms. Supervised classification because the classification of the extra-
object is realized using not only the data set X, but also the fuzzy partition obtained by
classifying the set X. Fuzzy decision because, unlike the traditional classifiers, where the aim
is to state in which classical subset the object may be included, now we are interested in the

membership degrees of the object to the fuzzy sets members in the given fuzzy partition.
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The simplest approach is the classification of the extended set X u {x°} using one of the
common fuzzy clustering algorithms (see, for instance, [3]), and the comparation of the
produced partition to the partition P. Although, this method is very costly considering the
neccessary execution time, because it supposes the classification of the objects of X, set that
in the real applications may be quite large. Also, this is not supervised classification, because

the information provided by the fuzzy partition P is not used.

The alternative approach is to keep unchanged the membership degrees of the objects in X
to the sets of the fuzzy partiton P, and to determine the membership degreess of x° as a
consequence of the minimization of an objective function similar to those used for the

algorithms of the type Fuzzy n-Means.

Also, we will present in this paper some more straightforward algorithms of this type. These
algorithms are fuzzy generalizations of the well-known k nearest neighbours and nearest

prototype.

2. The algorithm of the k nearest neighbours

The algorithm of the k nearest neighbours is one of the standard methods of the supervised
classification and it has been especially remarked because of its simplicity. The method is
based on the evaluation of the memberships of an unknown object to the classes of the given
set using the distances between this object and its k nearest neighbours, and the memberships
of these neighbours. The method presented here is a developmg.m of the simpler variant that

attributes an object to the class that contains its nearest neighbour.

Let us consider a set of classified objects, X = {x', ..., X’} < R* and the fuzzy partition P =
{A,, ..., A,} corresponding to the cluster substructure of the set X. Let us consider x° ¢ R
an object that needs to be classified with respect to the fuzzy partition P.

The classification of the object x will be realized by examining a number of k objects from

X which are the nearest ones to x* (the most similar).
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Even if by this method will be produced n new fuzzy sets on X u {x°}, denoted A, and
having the property A,(x}) = A(x)) for every i=1,...,n and j=1,...,p, the new fuzzy sets will
also be denoted by A,

In what follows we will consider a dissimilarity measure on X u {x°} (see [3,5]). Let d be

a metric in the R? space.

The dissimilarity between the object x° and a certain object x! of the set X may be defined

as
D(x°, x)) = d*(x’, xJ), j=1,....p ()]

and may be interpreted as a measure of the “non-ressemblence” between the objects x° and

x.
Let o be a permutation of the set {1,...,p}, so that

D(x°, x°®) < D(x°, x°?) s ij. ?)
In order to determine the membership degrees of the object x’ we will need to take into
consideration with differnt weights the membership degrees of the k nearest neighbours (x°?,
j<k). The more similar x°? is to x°, the greater weight its memberships should be given. This
remark leads us to the following empirical rule for computing the memberships of x°:
£ Agxed)

PreLy et ®
1
7 D(x%x°Y)

The obtained algorithm is called the algorithm of the k nearest neighbours:
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S1 Be given X, P, k.

S2 Computes the dissimilarities with respect to the relation (1).

S3  Determines the permutation o such that the condition (2) be verified.
S4

Computes the membership degrees of the object x° with respect to the relation (3).

Remark. The membership degrees computed in this way verify the relation

Y Aa(x9=1
El

Remark. An alternative to this method is not to take into account all the objects in X, but
only a subset of them, namely the most representative ones, eventually those having the

membership degree to one of the classes at least 0.8.
3. The algorithm of the nearest prototype

Let us consider a set of classified objects, X = {x',...x?} c R? and the fuzzy partition P =
{Aj,..., A,} cormresponding to the cluster substructure of the set X. Let x° € R? be an object
that needs to be classified with respect to the fuzzy partition P.

In what follows we will suppose that the clusters of the set X have a hyperspherical shape.
Moreover, we will suppose that in order to identify the optimal fuzzy partition P, the Fuzzy
n-Means algorithm has been used. We consider the clusters as being represented by puctual
prototypes. We will denote the prototype of the class A; with L', L' € R As stated by the

Fuzzy n-Means algorithm, the expression of the prototypes L' is given by
p . .
Y Ay
L= @
p .
Y ()’
Al

The unknown object x” will be classified with respect to the distance between it and the

prototypes L' of the classes members of the partition P. We will consider that the membership
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degree of the object x° to a certain class is as larger as the object is nearer the prototype of
that class.

In this case we will also use the same notation A, to denote the extended fuzzy sets, defined

over X u {x°).

In what follows we will consider a dissimilarity measure over X u {x’}. Let d be a metric

in the R? space.
The dissimilarity between the object x° and the prototype L' of the set A, is defined as
) D(x’, LY) = (di(x°, L)),

where d, is the local metric induced by the metric d and by the fuzzy set A;. The dissimilarity
D may be interpreted as a measure of “nonresemblance” between the object x° and the

prototype L'. Using the definition (see [S]), it may be written as:
D;}(x% L) = (A((x%)) d*(x", LY. &)

The inadequacy between the memberships A;(x°) of the object x° to the n classes and the

prototypes L' of these classes may be written using the function J(A,(x%),...,A,(x%) given by

£Y DGOLY
Al (6)
=Y (AL PUO,LH.
»1

So our problem may be reduced to the determination of those membership degrees A;(x°)

which minimize the objective function J. This result is stated by the following

Theorem. The membership degrees A,(x°), i=1,...,n, are a minimum of the function J if and
only if
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1
= d%(xO,L% Q)]
a1 dP(xOLY

A(x0)=

The proof of this theorem, as the proofs of all the theorems in this paper, are very similar to
the proofs of the minimality theorems presented in [2,3]. For this reason we will not give here

any explicit proof.

The algorithm obtained using this theorem will be called the algorithm of the nearest
prototype:

S1 Be given X and P.

S2 Determine the prototypes L' using the relation (4).

S3  Computes the distances d(x’, L) from the object x° to the prototype L' of the class A,
S4 Computes the membership degrees of the object x° with respect to the relation (7).

Remark. The membership degrees A(x°) computed using the relation (7) verify the initial
supposition: the smaller the distance from x° to a prptptype is, the greater the membership

degree of x’ to that class will be.

Remark. The computational effort is more reduced at this method as compared to the
previous one, if we take into account the fact that generally the number of classes is very
much smaller than the number of object: it is enough to compute n distances as compared to

p distances for the previous case.

Remark. The geometrical locus of the points x° characterized by equal memberships to the
classes A; and A, i,j=1,...,n, i#j, is the median hyperplane of the segment L'L’ (which contains
the points equally distanced from L' and LY). As a consequence, this algorithm presents the
problem of the inequal clusters, considering that a point x0 from the outer part of a greater

class has many chances to be captured by a smaller neighbour class.
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Remark. In order to overpass the problem of inequal clusters, when producing the fuzzy
partition P the adaptive version of the Fuzzy n-Means algorithm may be used (see [2]). The
local adaptive distance defined for that algorithm may also be used to determine the
membership degrees A;(x°).

4. The Restricted Fuzzy n-Means algorithm

Let us consider a set of classified objects, X={x',..,x’} c R? and the fuzzy partition
P={A,...,A,] comesponding to the cluster substructure of the saet X. Let x° ¢ R* be an
object that needs to be classified with respect to the fuzzy partition P.

Let us suppose that the partition P has been produced using the Fuzzy n-Means algorithm.
Our aim is to develop an algorithm that should compute the optimal fuzzy partition P
corresponding to the set X = X u {x°}, by using a mechanism of the type of Fuzzy n-Means,
with the difference that the membership degrees of the objects in X to the classes A,, i=1,...,n
may not be modified.

In what follows we will consider a metric d in the Euclidean space R?. We will suppose that
d is norm induced, so
d(x, y) = (x-y)" M (x-y), V x, y € R*, where M is a symmetrical and positively defined

matrix.

Let us remember that the objective function of the Fuzzy n-Means algorithm is

a p
ABL)=Y Y (ALx))d*(x/LY, ®

1
where L' is the pointly prototype associated to the fuzzy class A,.

So, the objective function we will have in mind in this case is

< = A 4 . o
XBL:Y. ¥ (A(hPdw,LY, ©

*1 /0
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with the mention that A,(x}) are kept constant for each i and for j=1,...,p.

The classification problem reduces to the determination of the fuzzy partition P and of the
representation L that minimizes the function J. The main result with this respect is given by

the following

Theorem. (i) The fuzzy partition P={A,,...,A,} is minimum of the function J(., L) if and
only if
1
A:( x°)=——
= d(x%Lh (10)
=1 ‘{2 (X O’Ll)

(i) The set of prototypes L={L',....L"} is minimum of the function J(P, .) if and only if
P
Y (axhyx/
L= ‘:’;— (1)
Y (4
7o

With this result, the optimal membership degrees of x° tc; the classes A, will be determined
using an iterative method in which J is succesively minimized with respect to P and L. The
process will start with the initialization of the prototypes L' to the values corresponding to the
optimal positions computed for the function J. The resulted algorithm, the Restrictive Fuzzy
n-Means Algorithm, is the following:

S1 Be given X and P.
S2 Determine the initial positions of the prototypes L' as the optimal positions computed
for the function J.

Determine the membership degrees A(x°), i=1,...,n, using the relation (10).

£ 8

Determine the new positions of the prototypes L' using the relation (11).
S5 If the new prototypes are closed enough to the former ones, then stop, else go back
to the step S3.
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In what follows we propose to determine the geometrical locus of the points x° for which the

membership degrees to two classes A;, and A are equal. Let us denote
Ay(x®) = Ap(x) = a. (12)

Firstly, let us denote by L", i=1,...,n the protptypes corresponding to the fuzzy partition P over
X, as they have been computed using the Fuzzy n-Means Algorithm. Thus,

E (AL X))/
L=f (13)

Let us denote by a2 the following value:
2 d A
a;=y_ (Ax))>
1

Then, between the prototypes L' and L" exists the relationship

2
a;

x0-L'=(x°-L*)———— (14)
al(A ,(Al’Q)2
The relationship above may be written under the form
2
Ax®LY=dxO Ly —— (15)
"(A,(A'Q)2
or
2
dx°,L*)=dx°,L" l+w]- (16)
a;

The relation (10) which computes the membership degrees may be rewritten as follows:

1
A(x%)- a*(x°, L’)

>l

=i dz(x°L*)

an
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(ii) The set of prototypes L={

From the relations (12) and (17) it results that
d(x® L") = d(x°, L2).

By relating to (16), it results

1+_£..

, 2
dXO’L ") = all =K, (ls)
dx°L*%) 1.4

2
a,'l

where

~

<1 ifa:>a-
K{=1 ifaf-‘=a- (19
>] ifa§<a.

~ -

(S

»

So, we have obtained the following

Theorem. The geometrical locus of the points x° having equal memberships to the classes A,
and A, is on a hypersphere with the center in the point

C=L“2 K2 'L‘i' 1
K*-1 K*-1

and with the radius

K
\K2-1|

r=dL*" L™
where K is that stated in the relation (19).

At a more careful analysis of this hypersphere’s equation, we may do some interesting

remarks.

Remark. This hypersphere “catches” inside itself the prototype
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L" of the class having the largest index o 2.

Remark. This may be the main problem of the method and it indicates a dependency with
respect to the dimensions of the classes. Although the effect seems to be even more important
than to the traditional Fuzzy n-Means algorithm, the experiments done with this algorithm

on test examples show that the effects have simmilar dimensions.

Remark. The problem may be solutioned in the same way the problem of the inequal sized
clusters (see [2]) has been solved for the Fuzzy n-Means algorithm, namely by using an

adaptive metric, with respect to which all the clusters having equal dimensions.
Remark. The center of the hypersphere is always outside the segment L™ L"2,

Remark. The hypersphesg intersects the segment L™ L™ in the point

v=L“"_l+L'i2_A_,_.
K+ K+1

which is the more distanced by the center of the segment the more distanced by 1 is K.

Remark. The hypersphere is entirely situated on one side of the median hyperplane of the

segment L™ L"2,

Remark. Moreover, for K = 1, the hypersphere degenerates to the median hyperplane
specified above.
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REZUMAT. - Asupra medianel unui spatiu special. In lucrare se formuleaza urmitoarea
problemi: fic R? planul vectorial definit peste caimpul numerelor reale cu norma yxj= |x' |+ |x*}
Considerdm poligonul M ¢ R?, topologic echivalent cu cercul euclidian si ale carui laturi sunt

paralele cu una din axele sistemului de coordonate din R’ §i multimea de puncte S = (x,, x,,

s Xg) © M, care are ponderile p(x,), ..., p(x,) pozitive. In acest articol ne propunem si

formulim un algoritm, bazat pe d-convexitate, pentru un punct x, € M care minimizeazi

functia f(x) = ¥, POA(X,X).

“The following problem is formulated in [1]. Let R be a vector plan on the field of real
numbers with norm |x|=|x!| + |x?|, M c R? is a poligon, egual topologically with an
euclidian circle, andevery side of it is parallel (see figure) to one axis of coordinate system
& R%LS = {x,,x;,...,%,} ¢ Mleasdpshaig epudy te pie wis p(xl),p(xz),...,p(x,,,).

It is required to find a median in M, i.e. such a point x, € M that minimizes the
function

f@x) = Y p@x)d(x,x),
XEM
where d(x,x,) represents a distance between points x and x, calculated following a curve of a
minimal length in space M c R? that connects these points.
This problem is solved in [1] using complicated algorithm having however advantage

of linear complexity.

. In this paper the other algorithm for indicated problem is offtered; it is based on d-
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convexity theory and follows from algorithms developped for finding a median in [2]. The
maximal parallel to axes segments (by inclusion in M) through any point of local unconvexity
[4] (see point x,, on the figure) of a polygon M and set a S are drawn. So, a polygon M is
transformed to figure that is divided into parallelograms with sides forming a grid in M; the
last is denoted by graph G = (X, V), where X is the set of vertices (nodes), and V is the set of
edges. The points x,, x,, ..., X,, represent o subset of vertices of G. Denote the other vertices

of Gby x_,,,x

‘w1 Xmuzs -2 X Hence, we obtain the new set of points X of a polygon M.

Now we assign a new positive weight to every point x € X. If x; € X\S, then we to x,
the weight g(x) = 1, (i = m+1, ..., n), if x, € S then g(x) = p(x;) + 1, (i = 1, ..., m). The new
problem is formulated in the following way: to find such a vertex x, € X of graph G that
minimizes the function

o(x) = Z q(x;)d(x,x)).
1€X

According to norm |x| in R? and to results of [2], d(x,x)) of this new problem is the
same distance that participates in definition of the function flx).

Applying the reasoning that was presented in [2], we obtain that graph G satisfied the
cpnditions indicated in this paper which permit to solve a new formulated problem by the
same algorithm, since it is not necessary to know distances d(x,x,), i = 1, 2, ..., n.

The essence of this algorithm is the following.
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Fa L % P Fe

i
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Fig. |
Let s be the number of horisontal and vertical strips in which polygon M is devided.
Denote these strips by F,, F,, ..., F, ..., F (on the figure the examples of strips are indicated
by horisontal sides and s = 22).
Put in correspondence to any vertex of graph G a sequence from 0 and 1 of length s
according to the following conditions: 1) to point x, it is put in correspondence sequence

6'= (61,63,.16),-.,63), Where ] =0, = 1,2,...,5; 2)topoint x, i = 1,2,...,n itis put
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a sequence €' = (},€5,...,8),..,6,), where & = 0, if an arbitrary chain of a graph G
connecting the vertices x, and x; intersects a piece F; even number of time, and s) = 1,
otherwise. So, we construct a function a: X — {g!,6? ..., ¢, ..., 6"}, which as it follows from
[2] is one-to-one.
Further construct a new sequence r = (r}, r..r.., r*) of elements 0 and 1 in
correspondence to the conditions:
1) r,=0,if
a . 1 a
z g(x,) (1 "3}) > 5‘2 a(x),
1 i=l
2)r=1,if
a . 1<
Y ax)(1-6)) < 52 q(x),
1 1
3yr;=0o0rr=1,if
J.] . 1 a
Y q)(1-e) = 23 qlx),
1 ~1
If virtue of [2] there exists an index i,,! < i, < n such that r = % If x, is such a
vertex of a graph G for which we have a(x,) = €0 = r, then x, = a_, &0 minimizes the function
@(x). Moreover the following statement holds:
THEOREM 1. The vertices of graph G = (X,U) that minimize the function @(x) are

the vertices which give the minimal values for the f(x).

Proof. Consider the function
a

0.(‘) = E q'(",) dx’ xj)p
#1
where € is an arbitrary positive number, and g ‘(x,) = p(x,)) if x, € S and ¢*(x;) = p(x) + ¢
if x, € X\S.

It is obvious that the function @(x) satisfies conditions 1)-3) if and only if the function
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@(x) also satisfies these conditions. Therefore by virtue of [2] the vertices of a graph G =
(X,U), that minimize functions @(x), @.(x), are the same.

Nowe extend the function @.(x) that is defined on the set X, onto the wholepoligon
M c R® preserving the same notation for it. Evidently, it is easy to do this operation by virtue
of definitions for distance d(x,x;) between points x,x; and nomm |x| of the space R®. By the
same way transform the function f{x) by

ax) = an: plx) dx, x),
i
where p(x;) = 0 for i = m+1, m+2, ..., n, that is for x ¢ X\S. Observe that for any x ¢ M we
have the relations @.(x) = fix) = n-€ > 0. Hence if € - 0 for any x ¢ M we obtain (@Q(x) -
fix)) - 0. It follows from this that point x, ¢ M minimising the function @.(x) will minimize
the function flx) (the inverse statement generally does not hold). The theorem is proved.

This theorem permits to reduce the solving of the initial problem to finding the median
for function ¢@.(x). So, we obtain that in case € = 1 algorithm of finding the median for the
function @(x) is the same for finding the median for the function f{x).

Note. As it is proved in [3], the set of arguments minimizing the function @(x), is d-
convexe. Hence applying in addition the results of {2], we oftain that the set of medians of
the function @(x) may represent one of the following possibilities: a) case when we have
asingle sequence r, respectively, one point x, = a’'(r), 2) case when we have two sequences
r, and r,, respectively, one segment u = [x' = a-1(r,), ¥ = a-(r,)] c U that is parallel to one
of the axes; 3) case when we have four sequences r,,r,, ry, r,, we obtain respectively one
paralelogram that divides poligonul M c R? having vertices x '=a’(r), x 2=a™\(r), X'=0-1(ry),

=a-1(r,).
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One can prove that this property remains valide for the function f{x), but in this case,
if My and M, are the sets of respective median for ¢ fx) then My c M,

Direct realization of expounded method by one algorithm gives the possibility to
obtain the complexity o(n?), where n is the number of strips, and it is equal to the sum
compiled from the number of given points m and the number of the edges of a polygon k.
This complexity is determined by the mode of representation of a grid obtained as a result
of polygon’s division.

Indeed, the further calculations may be reduced to finding the median of two trees: one
that is determined by the horisontal strips and the other determined by the vertical strips. To
every strips corresponds an edge of a tree. Two edges have one common vertex if the
respective strips have the common border. The weigts of this vertex equals to the sum of
weights of vertices on grid that belong to this border.

For example for polygon pictured on fig.1 the horizontal tree is H,, the vertical tree

is H, (fig. 2).

P(z4) P(zs) P(z
Fn

Fig. 2a
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ON MEDIAN FOR ONE SPECIAL SPACE

Finding the median for every tree maybe executed
with the optimal (linear) complexity [2]. Information about
the median of every tree determines the median of a polygon.
In order to obtain the algorithm with optimal complexity for
computing a median it is sufficient to oftain the trees H, and
H, with the optimal complexity.

It is possible to do this job without complete
description of a grid obtained from the initial polygon.

It is obvious that the number of edges of constructed
trees is O(n+k). For computing the weights of vertices of
these trees the optimal method for point locating may be used
((31,[6D).

The median of any tree determines the set of strips.
The median of the whole space is determined by the
intersection of the union of horisontal strips with the union of

vertical strips.
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REZUMAT. - Conditii optimale pentru programarea neliniarda multiobicctiv cu functii

ablectiv pseudo-monotone §i simetric diferentiabile. In aceastii lucrare se prezintd condiii

de optim de tip Weber pentru o clasd de probleme de programare neliniard multiobiectiv cu

functii pseudo-monotone §i simetric diferentiabile, precum §i o conditie de optim si o teorema

de dualitate slabd pentru o problema de max-min cu functii obiectiv simetric pseudo-convexe

gl restrictii simetric quasiconvexe.

1. Introduction. In this paper for a class of nonlinear multiobjective programming
problems with symmetrically differentiable pseudo-monotonic objective functions we present
optimality conditions of Weber type [24].

We establish also a sufficient optimality condition and a weak duality theorem for a
max-min problem involving symmetric pseudo-convex objective functions and symmetric

quasi-convex constraints. In this aim, we transpose some of the results of Weir and Mond

[25) to this symmetric pseudo-convex max-min problem.

2. Symmetric (generalized) convex functions. In this section we will briefly
summarize some basic definitions and properties of symmetrically differentiable functions.
Beyond this, some results concerning the so called symmetric pseudo and quasi-concave
(convex) functions are considered. These classes of functions are generally nonlinear
nonconcave and nondifferentiable. For further details we refer Minch [12). Various properties
of the usual pseudo and quasi-concave (or pseudo and quasi-convex ) differentiable functions

have been presented by Mangasarian [10], Martos [11], among others. Interesting results was
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obtained in the pseudo-monotonic case, from which we refer a Dantzig-Wolfe decomposition
method for quasimonotonic programming [15}, linearization procedures for pseudomonotonic
programming [1], [2], [13], [16], optimality and duality properties [9], [19], [20], [22]. Some
applications of these classes of functions in the max-min programming are given in [17], [18].

Another extensions of the quasi-convex and pseudo-convex functions are given by R.
Pini and S. Schaible [25], and S. Komlosi [7], by using the generalized monotonicity. Also,
G. Giorgi , A. Guerraggio [5], G. Giorgi and E. Molho [7] and G. Giorgi and S. Mititelu [6],
present several observations on generalized invex functions and their relationships with other
classes of generalized convex functions including the quasi-convex and pseudo-convex
functions.

In (23], we considered symmetric invex functions and we extended some of the Giorgi
and Molho [7] results for this more general class of generalized convex functions.

First we recall that for a real function f of one real variable the symmetric derivative
of f at x is defined as:

f(x) = lim (f(x+h) - f(x-h))/ 2h,
h-->0

provided this limit exists (see, e.g. [12]).
This idea was extended by Minch [12] to functions of several variables.
DEFINITION 2.1 (Minch [12]) Let x be an element in an open domain A in R® and
let f:A --> R. If there exists a linear operator f(x) from R" to R, called the symmetric
derivative of f at x, such that for sufficiently small h in R®
f(x+h)-f(x-h) = 2 f(x) h + u(x,h) | h}},
where u(x,h) is in R and u(x,h) --> 0 as |}h}} --> 0, then f is said to be symmetrically
differentiable at x. If f has a symmetric derivative at each point x in A , then f is

symmetrically differentiable on A.
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The notions of symmetric gradient and symmetric derivative are analogous those of
ordinary gradient and directional derivative. For convenience we shall denote the symmetric
gradient of a symmetrically differentiable function f at x by £(x).

Minch [12] shown that f is symmetrically differentiable at x in A , then symmetric
gradient is of the form:

fi(x) = (D*f(x;e"),....Df(x;e"),
where e',...,e" is the natural basis for R” and D*f(x;h) denote the symmetric derivative of f at
x (in A) in the direction h (in R"), that is :

f(x+th) - f(x-th)

(2.1) D'f(x;h) = lim ---m-cmmomemeeeee |
t—->0 2t

Let f:A-->R and g:A-->R be symmetrically differentiable functions at x§A. From
Definition 2.1, it follows easily, that:

i) f+g is symmetrically differentiable at x and
22) (f+g)(x) = £(x) + g¥(x);

ii) if f and g are continuous at x and g(x) is not equal with zero, then f/g is
symmetrically differéntiable at x and
fi(x) g(x) - f(x) g*(x)

2.3) f/g)(x) =
g(x)

The following definition generalizes the pseudo-convexity concept.

DEFINITION 2.2 (Minch [12]) Let B be a subset of A and x’ a point in A. The
function f is said to be symmetrically pseudo-convex or s-pseudo-convex at x’ (with respect
to B) if f is symmetrically differentiable at x’ and for all x in B,

f'(x’) (x-x’) > 0 implies f(x) > f(x).

The function f is s-pseudo-convex on A if it is s-pseudo-convex at each point of A.
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The function f is s-pseudo-concave if -f is s-pseudo-convex .

Analogous to the ordinary notion of differentiable quasi-convexity it can be considered
the notion of symmetrically quasi-convex function.

DEFINITION 2.3 (Minch [12]) Let B be a subset of A and x’ a point in A. The
function f is said to be symmetrically quasi-convex or s-quasi-convex at x’ (with respect to
B) if f is symmetrically differentiable at x’ and for all x in B ,

f(x) < f(x’) implies that f*(x") (x-x") < 0.

The function f is s-quasi-convex on A if it is s-quasi-convex at each point of A. Also the
function f is s-quasi-concave if -f is s-quasi-convex.
Examples:

1. The function f:R--->R defined by

f(x) =x,forx <1,

f(x) = 1, for x § [1,2],

f(x) = x-1 , for x > 2,
is a s-quasi-convex function but it is not s-pseudo-convex.

2. The function f,:R--->R defined by

fi(x) =x,forx <1,

f,(x) = 0.5 (x+1) , for x § (1,3],

fi(x) = x-1, for x > 3, R
is both s-pseudo-convex and s-quasi-convex but it is not pseudo-convex.

3. The function f;:R--->R defined by

fy(x) = x , for x < 1,

fo(x) =0, for x = 1,

f,(x) = 0.5 (x+1) , for x ¥ (1,3},
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fy(x) = x-1, for x > 3,

is s-pseudo-convex but it is not s-quasiconvex.

Next, it will be assumed that s-pseudo-convexity ( or s-quasi-convexity) at a point is
with respect to the definition domain of the function unless otherwise stated.

DEFINITION 2.4 (Minch [12]) Let B be a subset of A and let x’ be a point in A. The
function f is said to be s-pseudo-monotonic (s-quasi-monotonic) at x’ (with respect to B) if
is symmetrically differentiable at x’ and both s-pseudo-convex and s-pseudo-concave ( s-quasi-
convex and s-quasi-concave).

Since , if f has an ordinary derivative at x , then f has a symmetric derivative at x and
they are equal, the following property holds.

PROPOSITION 2.1 (i) If f is pseudo-convex (pseudo-concave) then f is s-pseudo-
convex (s-pseudo-concave).

(ii) If f is differentiable quasi-convex (quasi-concave) then f is s-quasi-convex (s-
quasi-concave).

(iii) If f is pseudo-monotonic (differentiable quasi-monotonic) then f is s-pseudo-
monotonic (s-quasi-monotonic).

It is easy to see that the converse assertions of those stated in Proposition 2.1 are not
true.

Next-we give some useful properties of the symmetrically quasi and pseudo-convex
functions.

PROPOSITION 2.2 (Tigan [22]) Let f be a symmetrically differentiable and
continuous function. If f is a s-quasi-convex function on a convex subset B of A, then f is
quasi-convex on B.

PROPOSITION 2.3 If f is s-pseudo-convex and continuous on a convex subset B of
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A, then f is quasi-convex on B.
PROOF. Let x’,x” be two points in B such that f(x’) < f(x"). Suppose there exists x’
in the interval (x’,x”) such that f(x")>f(x"). Then, since f is continuous, there exists
XO=tx+(1t)x" ,0<t' <1,
such that
f(x®) = max { f(x) | x § [x'x"] }.
Therefore, by s-pseudo-convexity of f, because f(x')<f(x") it follows that
x'-x") f(x") < 0,
so, we have
(24) (1-t)(x"-x") £(x°) < 0.
Also, the inequality f(x”) < f(x°) implies that
2.5 x"x% f(x" = - t'(xx") fx° < 0.
But (2.4) contradicts (2.5). Therefore f is quasi-convex on B.n
CONJECTURE 2.3.1 If f is s-pseudo-convex and continuous on a convex subset B

of A, then f is s-quasi-convex on B.

3. Multiobjective symmetric pseudo-monotonic programming. Let f, (k1 =
{1,2,...,p} ) be arbitrary objective functions defined on the open subset D of R" and let X be
a nonempty subset of D. Then we consider the following multiobjective programming

L/

problem:
VP. Find
(3.1)  Vmax (f,(x),...,f,(x))
subject to x ¥ X.
If f, (k | 1) are s-pseudomonotonic objective functions then VP is said to be a

symmetric pseudomonotonic multiobjective program. In (9.1), “Vmax” means that efficient
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points are regarded as optimal solutions to VP.

DEFINITION 3.1 A point x* # X is said to be efficient solution for VP if and only if
there does not exist another point x'# X such that :

f(x") > f(x"), for all k I and

£ (x’) > f,(x") for at least one k' { L.

The set of all efficient solutions to VP is denoted by E(X).

DEFINITION 3.2 A point x” { X is said to be weakly efficient solution for VP if and
only if there does not exist another point x'# X such that :

f(x) > f(x"), forall k § L.

Clearly, every efficient point for a multiobjective program VP is weakly efficient but
not conversely

As it is done e.g. by Bitran and Magnanti [3] (see, also [24]) we will relate the
problem VP under the assumption of symmetric differentiability to a linear approximation at
a point x*#X of that problem, namely

P(x%). Find

Vmax ( f%(x) x,..., £3(x°) ),

subject to x § X.

The following Theorem 3.1 gives a fully symmetric relation between VP and P(x’).
A similar result has shown to be true by Weber [24], who, however, restricted to the
differentiable pseudomonotonic case, and which generalized a result obtained by Tigan [21]
for the linear fractional multiobjective programming.

THEOREM 3.1 Let f, (k { I) be s-pseudomonotonic and continuous functions. A point
x" } X is efficient for the symmetric pseudomonotonic program VP if and only if x’ is
effncient for P(x").

PROOF. First, let x” § X be efficient for VP. Then, there is no x’ ¥ X such that:
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f(x) > f(x"), for all k § I and

f(x') > f(x") for at least one k' § L.

Let suppose there is x’ { X, such that
(3.2) fax) > fix(x"), forall k § I and
(3.3) f(x’) > f,%(x") for at least one kK § L

But since f, (k { I) is s-pseudoconvex and hence it is s-quasi-convex, it results from
(3.2) and (3.3) that

f(x) > f,(x"), for all k $ I and

f(x) > f (x") for at least one k' § I.

But this contradicts the fact that x" is an efficient solution for P(x").

Conversely, let x’ § X be efficient for P(x"). Then there is no x’ in X such that
(3.4) fo(x) > fix(x"), for all k § I and
(3.5) f,s(x) > f,5(x") for at least one k' { I.

By s-pseudo-concavity of f, (k { I), from (3.4) and (3.5), we conclude that there is no
x’ in X such that

f(x) > f,(x"), for all k § I and

f(x’) > f,(x") for at least one k' } I,
i.e. x" is efficient for VP.n

THEOREM 3.2 Let f, (k { I) be s-pseudo-monotonic and continuous functions. A point
x" § X is weakly efficient for the symmetric ;)seudo-monotonic multiobjective program VP
if and only if x” is weakly efficient for P(x").

PROOF. The proof of this theorem is similar to that of Theorem 3.1 .n

4. Optimality conditions for symmetric pseudoconvex minimax problems. In this

section, we consider the following minimax problem:
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MP. Find

Min Max ({(f,(x),...f(x)}
x

subject to

gx) <0,
where f:R" —->R, (i=1,2,...,r) and g:R" -->R™ are symmetric differentiable functions (see, e.g.
(1.

The principal purpose of this section is to establish a sufficient optimality condition for
problem MP involving symmetric pseudo-convex objective functions and symmetric
quasiconvex constraints. We also define a dual problem to MP and establish a weak duality
theorem. In this aim, we transpose some of the results of Weir and Mond [25] to the
symmetric pseudo-convex maximin problem MP.

If the general minimax problem MP has a finite optimal value, then it may be
expressed as following equivalent problem:

EP. Find

min q
subject to

f(x) <qe

g(x) <0,
where

f(x) = (£,(x),....£(x))', g(x) = (8)(x),....8a (X)),

e=(L1,..,1){R*and q IR

The main result of this section is:

THEOREM 4.1: Let f; (i=1,2,...,r) be s-pseudoconvex and g s-quasiconvex. If exist

X € R, q €R, v € R, u" € R, such that :
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@4.1) v f(x") +u’ g'(x") = 0,
“.2) vV (fx)-q"e)=0,
4.3) u’ g(x) =0,

4.49) vi>0, vve=1, u' >0,

where f = (f,,...,f) and e = (1,1,..,1) } R", then x" is an optimal solution for problem MP.
In this theorem f* denotes the symmetric gradient of the function f.
This theorem generalizes a similar result obtained by Weir and Mond [25] in the case of

pseudo-convex objective functions and quasiconvex constraints.

PROOF. Suppose that (x°,q") is not optimal solution for EP. Then there exists an
feasible solution (x,q) for EP with q<q’. Thus

fix) <q<q,i=12,.r
and hence

vifi(x) < v, q,i=12,...r
with at least one strict inequality, since by (4.4), v' is not the nul vector. Hence, by (4.2),

v f(x) < v R(X0) , i=1.2,.0
with at least one strict inequality.

Since f is assumed s-pseudo-convex, then, for each i=1,2,...,r and v, > 0, vf; is s-
pseudo-convex and R

(x-x")' (v', (x) <0, i=1,2,...r
with at least one strict inequality.

Hence

(x-x")' (v"* f(x")) < 0.

Then it follows from (4.1) that
4.5) (x-x")' (u" g*(x") > 0.

From (4.3), since x is feasible for EP, it results
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o', gi(x) - v gi(x) £ 0, i=1,2,..,m.
But symmetric quasiconvexity of g implies
(x-x")' (u°; g*x")) <0, i=1,2,..,m
and hence
(x-x") (" g'x")) <0
which contradicts (4.5).
Thus (x*,q") is optimal for EP and x is optimal for MP.n

In relation to MP, which is equivalent to EP, we consider the following dual program:

DMP. Find
max z
subject to
(4.6) v, f(y)-2z) 20, i=12,...r
@7 vVify) +u'g(y) =0
4.8) u'gly) 20
4.10) v>0,vve=1,u>0,z}R.

THEOREM 4.2 (Weak Duality) Let (q,x) be a feasible solution for EP and let (y,v,u,z)
be a feasible solution for DMP. If f is s-pseudo-convex and, for all feasible (q,x,y,v,u,z) the
function u'g is s-quasiconvex then q > z.

PROOF. Suppose q < z. Then

f(x) <v,i=12,..r

and, therefore
v (f(x)-2)<0,i=1,2,..r

with at least one strict inequality, since by (4.10), v is not the nul vector. From (4.6)
vi fix) < vi fi(y), i=1.2,...x

with at least one strict inequality.
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Since each f; is s-pseudo-convex, it follows
x-y) (v; f(y) <0, i=1,2,...r
with at least one strict inequality.
Therefore
(x-y)' (vV' f(y)) <0
and from (4.7)
@4.11) (x-y) (u' g'(y)) > 0.
From feasibility of x for EP and from (4.8) and (4.9)
u'g(x) -u'g(y) <0
and since u'g is s-quasi-convex
(x-y) (u' g(y)) <0

which contradicts (4.11).n

5. Conclusions. For a class of multiobjective programming problems with
symmetrically differentiable objective functions we present optimality conditions of Weber
type.

We generalize also some results of Weir and Mond [25], establishing a sufficient
optimality condition and a weak duality theorem for a max-min problem involving symmetric
pseudo-convex functions and symmetric quasi-convex constraints.

Finally, we note that some of Webers results [24] conceming the linearization
techniques for finding efficient solutions of pseudo-monotonic multiobjective programming

with linear constraints can be extended to the symmetrically pseudo-monotonic case.
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REZUMAT: - Citeva aspecte ale planariti{ii grafelor. Prezentim un algoritm de testare a
planaritatii grafelor hamiltonienc. Slgoritmul este dat §i pentru testarea grafelos 4-convexe si
3-convexe.

1. Introduction. The aim of this paper is to present an algorithm (and its Pascal
language version) for testing the planarity of hamiltonian graphs. For a certain planar
hamiltonian graph we will build a planar representation of it.

In the first part some theoretical results will be presented. These results will lead us
to the fundamental idea applied in the algorithm. As some known results show us, the
algorithm may be used in order to test the planarity of 4-connected graphs and 3-connected
graphs with at most an articulation set having the cardinal 3.

Among different theoretical results, the notion of bridge of a subgraph is widely used.
Thus, the concept of overlapped bridges plays an important role for the theory of plane repre-
sentation of graphs [3].

The bridges were very used for the investigation of planar graph cycles. Important
results have been obtained by Tutte, Thomasson, Nelson.

The concept of bridge was also successfully used for studying the propeﬁies of graphs
with respect to connectedity. |

In the scientific literature the "bridge method" is used as a method to prove different
graph theory theorems.

2. Basic concepts. In this paper we will only talk about finite, undirected graphs, with

no loops and with no multiple edges.

" "Babey-Bolyai” University, Faculty of Mathematics and Computer Science, 3400 Cluj-Napoca, Romania
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Let us denote MxM by M®, and let G=(V,E) such a graph. The graph G’=(V’ E’) is
a subgraph of the graph G=(V.E) if V’'CV and E’CE. Thus, we will write G’CG. We remark
that MCN means MCN and M=N, M and N being finite sets.

If WCV, then the graph (W,ENW®) is a subgraph of G=(V,E), namely the subgraph
induced by W. We denote this subgraph by G(W).

If E’CE(G), then G-E’ denotes the graph produced from G by eliminating the edges
from E’. So, G-E’=(V(G),E(G)-E). '

If WCV(G), then G-W is the graph produced from G by eliminating the vertices from
W (obviously, if x is eliminated from W, so will be the edges incident to x). So, G-W=(V-
W.EN(V-W)?),

If W={x} we write G-x instead of G-{x}. Similary, if E’={e} CE we write G-e instead
of G-{e}.

If HCG (H is a subgraph of G) we may write G-H instead of G-V(H).

If eEV?-E, then the graph produced from G by adding the edge e is GU{e} or GUe.

Let x and y be two vertices of G, not necessarily distinct. By x,y-chain we mean an
alternant sequence of vertices and edges x,,€,,X,,€,,...,X;,€,.X;.;, Where x=x,, y=x,,, and ¢=(x,
%, )EE(G), lsisk. The x,y-chain may also be denoted by W=xx,..x,,, or
W=[x,,X,,-...Xp 1]

The chain above is an elementary x,y-chain if all its vertices are distinct. The
elementary x,x-chain has the length equal to zero and is made up only by the vertex x.

In what follows, when we will say cycle, we will mean an elementary cycle.

If p=x,..x, is an elementary chain, P=x;, Q=x; and lsisjsk, then the P,Q-segment of
u is the elementary P,Q-chain x;...x;, and we will approach it as a partial chain of p, with the
limits P and Q. This segment will be denoted by u[P,Q], and u[P,Q}-{P,Q} will be denoted
by u(P,Q).

3. The bridges of a subgraph H. Let H be a subgraph of the graph G=(V(G),E(G)).
Definition 3.1 An H-bridge in G is a subgraph of G-E(H) which is either an edge (with its
limits), linking the two vertices of H, or a connected component K of G-H,

with all the edges (and their limits) of G incident to K.
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The H-bridges from the former category will be named singular or diagonal bridges
of H, and the others (non-singular) will be named regular bridges.

In the figure 3.1, B,, i€{1,2,3,4}, are regular H-bridges, and By is a singular H-bridge,
where H is the cycle represented by the dotted line.

—
Ba \\
Bs
7/

Pigura 3.1

Definition 3.2 If B is an H-bridge, the vertices from V(B)NV(H) are named supporting
vertices of B, and the vertices of V(B)\V(H) are named inner vertices of B.

We notice that the H-bridges B, i=1,...,5 from figure 3.1 have 1,1,3,0,2 supporting
vertices respectively, and 1,4,3,3,0 inner vertices respectively.

Definition 3.3 The kernel of an H-bridge is the subgraph induced by the inner vertices of B.

We remark that the kemnel of a singular bridge is the empty graph.

Lemma 3.1 If B, and B, are two H-bridges, B,»B,, then the kernels of the two
bridges do not have common vertices, i.e.
(VB )\V(B)N(V(B)\V(B,)=2.

Proof: If B, or B, are singular, the lemma holds because in the former case
V(B,)\V(B)=J and in the latter V(B,)\V(B,)=02.

Let us suppose that B, is a regular H-bridge, i1=1,2, and that the kernels of the two
bridges have at least a common vertex. From the definition 3.1, the kernel of B, is a
connected component K; of G-H, i=1,2. Then it would result that K,=K,, and, moreover,
B,=B,. This contradicts the hypothesis and concludes the proof.

Remark 3.1 Two H-bridges may have in common only supporting vertices.

4. Overlap graphs and circle graphs. In what follows we will consider only the
bndges of the cycles.
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Let B be a bridge of a cycle C in the graph G, having the supporting vertices a,,...,a,,
s22, which are on C in this cyclic order. The s segments of C, denoted by Cg[a,,a,,,], 1siss-1
and Cg[a,.a,], are named segments of C with respect to the C-bridge B.

Definition 4.1 Let B and B’ be two C-bridges in the graph G. B and B’ are parallel if and
only if there exist two vertices x and y on C so that all the supporting vertices
of B are included in the segment C[x,y] and all the supporting vertices of B’
are included in the segment Cfy,x].

In figure 4.1, the C-bridges B, and B, are parallel, where C is the cycle represented
by the dotted line.

Figura 4.1

Remark 4.1 If B or B’ has at most a supporting vertex, then B and B’ are parallel.

Remark 4.2 Let us suppose that the C-bridge B has at least two supporting vertices. These
vertices subdivide C into segments with respect to B. Then, B and B’ are
parallel if and only if either B’ does not have supporting vertices or there ex-
ists a segment of C with respect to B which includes all the supporting vertices
of B’.

Definition 4.2 Two C-bridges B and B’ overlap if and only if B and B’ are not parallel.

The pairs (B,, B,) and (B,,B,) from figure 4.1 are examples of overlapping C-bridges.

Definition 4.3 Two C-bridges B and B’ are crossed if and only if there exist four vertices P,
Q, R, S in this cyclic order on the cycle C, so that P and R are in V(B) and
Q and S are in V(R’).
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An example of crossed bridges is the pair (B,, B,) of C-bndges from figure 4.1,
Lemma 4.1 Let C be a cycle of the graph G and B and B’ two C-bnidges. The
following statements are equivalent:
(1) B and B’ overlap;
(2) B and B’ are crossed or they have exactly three supporting vertices
each, and those are identical.
Proof. (1) ==> (2)
Let a,, ..., a,, s>=2 the supporting vertices of B,, on this cyclic order on C (because
B and B’ overlap, each of them has at least two supporting vertices). We denote a,.,=a,. Let
Cola,.a;,,], 1<=i<=s the segments of C with respect to the C-bridge B.
Case (a). Let us suppose tflat there exists a number k n {l,..s} so that
V(B )N(Cy(ay.a,.,)*D.

Cd aw, akw}// \\._
N\

/

R e g

Let x€V(B’)N(C,(a,,a,.,). Because B and B’ overlap, there exists a supporting vertex y of
B’ in C-Cy[a, a,.,] (otherwise, all the supporting vertices of B’ would be in C[a,, a,.,]. and
thus B and B’ would be parallel). Then, a,, x, a,.,. y are on C in this cyclic order (see fig,
42) and a,, a,,, € V(B) and x,y € V(B’). From definition 4.3 it results that B and B’ are
crossed.

Case (b): Let us suppose that there is no k in {1,...s} so that V(B )N(C,(a,.a,.,)=Q.
1e. for every k in {1,.s}, V(B")N(Cy(a,.3,.,)=D, Let us denote by S, the set of supporting
vertices of B and by S, the set of supporting vertices of B’. From our supposition we have
S C S,
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If Sg. C Sp then there exists an | in (1,...,8} so that a, & Sg.. With no lack of generality
we may take | = 1. Then let i be the lowest index for which a; € Sg., and let j be the greatest
index for which a; € Sy, with i and j in {2,...,s}. Thus, there exists a segment of C with
respect to B’, namely Cg.[a;a], that fulfills V(B)(Cy.(a,,8,.), and we are in the case
(a). So, B and B’ are crossed.

Let us now suppose that S,=Sg.. Let us denote p = |Sy|. If p=2 then B and B’ are
parallel. It results p >= 3. If p=3 we may apply the lemma. If p >= 4, then B and B’ are
crossed.

(2) => (1) Let us firstly consider the case when B and B’ have exactly three supporting
vertices each, and these are identical.

It is obvious that there exists no segment of C with respect to B that should contain
all the supporting vertices of B’. From the remark 4.2 we deduce that B and B’ are not
parallel, so B and B’ overlap. '

Q P
d p,R]

AdR,P]
R s
Figura 4.3

In the other case B and B’ are crossed, i.e. there exist four vertices P,Q,R,S in that
cyclic order on C so that P and R are in V(B) and Q and S are in VR’) (fig. 4.3). Let us
suppose that B and B’ are parallel. So, there exists a segment of C with respect to B that
contains all the supporting vertices of B’. Let Cg[x,y] be this segment.

So, Q,S € Cy[x,y]. It results that C[Q,S] € Cy[x,y] or C[S,Q] S C;[x,y]. But, C[Q,S]
contains the vertex R of B and C[S,Q] contains the vertex P of B. So, between the supporting
vertices of B there exists at least a supporting vertex of B, and this contradicts the definition
of the segments of C with respect to the C-bridge B.

Definition 4.4 Let C be a cycle of the graph G. We consider the C-bridges as the vertices of
a new graph O((i:C), that will be called overlap graph of G with respect to C.
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There exists an edge between two vertices B and B’ of O(G:C) if and only if
B and B’ overlap.

Definition 4.5 If C is a hamiltonian cycle, the graph O(G:C) is called overlap graph or circle
graph of G with respect to G.

Remark 4.3 If C is a hamiltonian cycle all the C-bridges are diagonals of C.

Figura 4.4

In fig. 4.4 are represented two graphs with their overlap graphs. The overlap graph
0(G,:C) is an example of circle graph.

Let us consider a hamiltoniah graph G and a hamiltonian cycle C of it. Let G’ be a
geometrical representation of G in the plane such that C is represented by a simple closed
Jordan curve C’ and all the diagonals of C are represented by simple Jordan curves situated
in the finite region of C’. The number of the intersection points of the Jordan curves that
represent the diagonals of C equals the number of edges in the circle graph O(G:C). If C’ is
chosen as a geometrical circle, and its diagonals are represented by straight line segments,
then we have a second definition of a circle graph:

Definition 4.6 The vertices of a circle graph are chords of the geometrical circle, and two

chords are linked by an edge if and only if they intersect in a point interior to

the circle.
& #
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4.1 Parallel bridges.

Lemma 4.1.1 Let C be a cycle of the graph G and B, B’ two C-bridges. If B and B’ are
parallel then |V(B) N V(B’)| <= 2 and the common vertices, if they exist, are
supporting vertices.

Proof. From the remark 3.1, two C-bridges may have in common only supporting
vertices. If [V(B) N V(C)] <=1 or |[V(B’) N V(C)| <= 1, the statement in the lemma is true.
Now we suppose that both B and B’ have at least two supporting vertices. From
remark 4.2 it results that there exists a segment of C with respect to B that contains all the

supporting vertices of B’. Let this segment be Cy[x,y], where x, y € S;. Then, we have V(B)

N V(B’) C {x,y} and so [V(B) N V(B’)| <= 2 and that concludes the proof.

Proposition 4.1.1 Let C be a cycle of the graph G and B and B’ two diagonals of C.
Obviously, [V(B) N V(B’)| <= 1. If [V(B) N V(B’)} = 1, B and B’ are
parallel.

Proposition 4.1.2 Let C be a cycle of the graph G and B and B’ two diagonals of C. If
B and B’ are crossed

then |V(B) N V(B’)| = 0.
Because |V(B)|=|V(B’)|=2, the statements above are (almost) obvious.
We state the following remark:

Remark 4.1.1 Let us denote by &'the set of C-bridges from a graph G. We define the
binary relation r as:

B r B’ <==> B is parallel with B’, forall Band B’ in &

The relation r is not an equivalence relation on & Even if r is reflexive
and symmetrical, it is not transitive.
As we see in fig. 4.1.1, B, r B, and B, r B,, but B, r B, fails (B, and B, are crossed

C-bridges).

-

e e
e s s e

Figura 4.1.1.
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4.2 Connected overlap graphs. We know that any C-bridge with at most a supporting
vertex is parallel with any other bridge. This implies that any bridge with this property is an
isolated vertex of the overlap graph O(G:C). Consequently, if O(G:C) is connected with
|[V(O(G:C))| >= 2, then every C-bridge has at least two supporting vertices.

Lemma 4.2.1 Let C be a cycle of the graph G, K a connected subgraph of O(G:C) and x and
y two vertices of C. Let us suppose that K has a supporting vertex on each
of the segments C(x,y) and C(y,x) (1). Then there exists a bridge B of K with
a supporting vertex on each of the segments (2).

Remark A rigorous statement would be:

(1) C-bndges from G, considered as vertices of K, have supporting
vertices on both of the segments C(x,y) and C(Y,x).

(2) There exists a C-bridge B, B C G, B € V(K), with at least a vertex
on each of the segments above.

In what follows we will use for simplicity, the same style of statement.

Proof of the Lemma 4.2.1: Let a’, a" be the supporting vertices of K on C(x,y) and
C(y,x). Let us suppose that a’ and a" are supporting vertices of the C-bridges B’ and B",
where B’ and B" are from V(K). But, K is connected, so there exists an elementary B’,B"-
chain [B’=B,,...,.B;=B"] in O(G:C). Because B" has a supporting vertex on C(y,x), there exists
an index i such that B, has a supporting vertex in C(y, x). Let us denote by i the smallest
index with the above property.

If i=1 then with B := B’ the lemma is true.

lf'i>l then B,, has no supporting vertex in C(y,x). Because B, , and B, overlap (they
are succesive vertices in the elementary B’ B"-chain from O(G:C)), there results that B; has
a supporting vertex in C(y,x) (otherwise B, and B, , are parallel). With B := B,, the lemma is
true.

For sets K of C-bridges (or subgraphs of O(G:C)), we define the segments of C with
respect to K.

Let K be a set of C-bridges with at least two distinct supporting vertices, a,, ..., a,, §
>= 2, on C in this cyclic order. Then the s segments denoted C,[a, a;,,], 1<=i<=s-1 and

Cila,.a,] are called the segments of C with respect to K.
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Let K and K’ be two disjoint sets of C-bridges.
K and K’ are parallel if and only if either one of them has at most a supporting vertex,

or both of them have at least two supporting vertices, and a segment of C with respect to K

contains the set of supporting vertices of K’.

K and K’ overlap if and only if they are not parallel.
K and K’ are crossed if and only if there exist four vertices P, Q, R, S in this cyclic

order on C, so that P and R are in K and Q and S are in K’.

Lemma 4.2.2 Let C be a cycle of the graph G. If K and K’ are disjoint sets of C-bridges, the

following statements are equivalent:
(1) K and K’ overlap;
(ii) K and K’ are crossed or they have exactly three supporting vertices
each, and these coincide.

The proof is analogous to that given for the lemma 4.1.

Theorem 4.2.1 Let C be a cycle of the graph G. Let K and K’ be two connected
subgraphs of O(G:C), not connected by any edge. Then, K and K’ are
parallel. ]

Proof: We prove the theorem by reduction to absurd. We suppose that K and K’
overlap. From the lemma 4.2.2 we have two cases:

(i) K and K’ are crossed;

(ii) K and K’ have exactly three supproting vertices each, and those coincide.

Case (i): K and K’ are crossed. Then from definition, there exist four vertices P, Q,

R, S in this cyclic order on C, so that P and R are in K and Q and S are in K'. From lemma

4.2.1 there exists a bridge B in K having a vertex P’ on C(S,Q) and a vertex R’ on C(Q,S)

(see fig. 4.2.1).

132 Figura 4.2.1.
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From here it results that K’ has the vertex Q on C(P’,R’), and the vertex S on
C(R’,P’). From lemma 4.2.1 there exists a bridge B’ in K’ having a vertex Q' on C(P’R’)
and a vertex S’ on C(R’,P’). So, P’,Q’,R’,S’ are four vertices in this cyclic order on C, with
P’and R’ in B and Q’ and S’ in B’. It follows that the C-bridges B and B’ are crossed, and
so they overlap. Then, (B,B’) is an edge that connects K with K’ in O(G:C), and this
contradicts the hypothesis.

Case (i1): K and K’ have the same supporting set with three distinct vertices, x, y and

If K is an isolated vertex B of O(G:C), then x, y and z will be the supporting vertices
of B.

If K has q >= 2 C-bridges B,, ..., B,, because K is connected every bridge B in K has
the property that there exists a B in K, B’ = B, so that B and B® overlap. But they cannot
be crossed, so they have the same set of three supporting vertices, namely {x, y, z}.

Using the same logic for K’, we have proved that all the bridges from KUK ’have the
same set of three supporting vertices, {x, y, z}. But then the subgraph of O(G:C) induced by
the bridges from KUK’ is complete. There results that K and K’ are connected by an edge
of O(G:C), and that contradicts the hypothesis.

In order to give a characterization of connected overlap graphs, we need the following
definition:

Definition 4.2.1 A 2-separation (G,, G,) of the graph G contains two subgraphs G, and
G, of G having at least three vertices and fulfilling the following
conditions:

) G=G, UG,
@) | V(G) N V(G | =2
(i) | E(G,) N E(G,) | = 0.

Theorem 4.2.2 Let C be a cycle of the graph G. Then the overlap graph O(G:C) is not
connected if and only if there exists a 2-separation (G,, G,) of G so
that:

@) {xy} = V(G)) N V(G,) C V(C),
1) Clx,y] € G, Clyx] C G,
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(ii1) neither G,, nor G, is a segment of C.

Proof: (<==) We suppose that there exists a 2-separation (G,, G,) of G satisfying the
properites (i), (ii), (iii). Because the subgraph G; is not a segment of C, with i=1,2, there
results that G; contains a C-bridge B,, i=1,2.

Let us suppose that

Sm N V(C(x,y)) = 2. *

Then Sy, € {x,y}. Let us prove this. If B, is singular, this is obvious. Otherwise, B,

is a regular C-bridge. Let us suppose that there exists u in S, such that
u € {xy} (**)

From (*) and (**) we have that u € V(C(x,y)). But, from (22) we have C[x,y] C G,.
So, u € V(G,). Let v be an interior vertex of B,. Obviously, v € V(G,). From (1) we have
that v &€ V(G,). We have obtained so far that

vEV(G,) and v&V(G,)
u€V(G,) and uEV(G,)

Since B, is connected there exists an elementary v,u-chain in B,. From the definition
of the 2-separation, |[E(G,) N E(G,)| = 0. So, the edges of the elementary v,u-chain are either
edges of G,, or edges of G,. In both of the cases there exists an edge in E(G,) (of the
elementary chain) with the property that an extremity of it is not in V(G;), i=1,2, and that’s
impossible. So, S5, € {x,y}. But then B, is parallel with any other C-bridge in G, so it is an

isolated vertex of O(G:C). From the hypothesis (*), the statement to be proven is valid.
Let us now suppose that
Sp: N V(C(x,y)) = 3.
By rationing in the same way we will conclude that O(G:C) is not connected.
Let us now suppose that
Ss N V(C(x,y)) = D,
and
S, N V(C(x,y)) = @.
If B, and B, are members of the same component K of O(G:C), then from lemma
4.2.1 it results that the component K contains a C-bridge having at least a supporting vertex
on each of the segments C(x,y) and C(x,y). Similarly we have that there exists an elementary
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chain with an extremity in V(G,) - {x,y} and the other extremity in V(G,) - {x,y}, with the
edges are either edges of G,, or edges of G,, and that is impossible.

Consequently, B, and B, are in different connected compenents of O(G:C), and so
0(G:C) is not connected.
(==>)Let us suppose that O(G:C) is not connected. We consider two cases:

(a) G contains a C-bridge B with at most a supporting vertex. Then B is a component
of O(G:C), namely an isolated vertex. (B is parallel with any other C-bridge).

Let us consider that B does not have supporting vertices. Let us denote

G=(V(B).E(B)U{(x,y)})
and
G,=G-{(x,y)}-B,

where (x,y) is an edge of the cycle C. Then, (G,,G,) is a 2-separation of G that satisfies (1),
). ).

R
Figura 4.2.2.

Remark: The property (3), especially the fact that G, is not a segment of C, is less obvious.
But O(G:C) is not connected, B being an isolated vertex in O(G:C). So, there exists a C-
bridge B’ in G, B’=B. Froxﬁ definition of G, we have that B’ is a subgraph of G,, and so G,
is not a segment of C (see figure 4.2.2).

If B has a single supporting vertex, namely a, we chose an edge (x,y) of C so that
x=a.

Let us denote

G =(V(B)U{x,y },EB)U{(x.y)})

and

G=G-{(x,y)}-(B-{x}).
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Then, (G,, G,) is a 2-separation of G satisfying (1),(2),(3).

(b) G contains only C-bridges with at least two supporting vertices. Let us suppose
that O(G:C) has p connected components, with p >= 2. Let these be K, ..., K. From Theorem
4.2.1 we deduce that K, and K, are parallel. There results that all the supporting vertices of
K, are on a segment of C with respect of K,. Let this segment be Cy,[x,y].

Case (1). (x,y) € E(G). We denote with B the diagonal of C determined by (x.,y).

(1.a) Bis in K,. Since K, is a connected component of O(G:C), we have that K,={B},
seen as a set of C-bridges, or K is an isolated vertex (B) in O(G:C). So, we chose G,=C[x,y]
U { K; | K; has all the supporting vertices on C[x,y], i=2,...,p} and G,=G(A), where
A=(V(G)\V(G,))U{x,y}. Thus, we assured that in G, there exists at least a C-bridge B.

(1.b) B is not in K,. We will show that B is an isolated vertex in O(G:C). We will
supose that there exists a C-bridge B, so that B, and B are crossed. Let x,, y, supporting
vertices of B,, with x, € C(x,y) and y, € C(y,x). But, then x € C(y,,x,) and y € C(x,,y,).
From the lemma 4.2.1 there exists a bridge B, of K, having at least a supporting vertex on
each of the segments C(x,,y,), C(y,,x,). So, B, and B, are crossed, and thus B, is in K,, and
x, is supporting vertex of K, on the segment C,,[x,y]. This is a contradiction, and from here
we have that B is parallel with any other C-bridge, and thus it is an isolated vertex in O(G:C).
We chose G,=C[x,y] U { K | K| has all the supporting vertices on C[x,y], i=1,...,p} and
G,=G(A)\(x,y), where A=(V(G)\V(G)))U{x,y}.  Case (2). (x,y) & E(G). We chose G, the
same way as in the case (1.b) and G,=G(A), where A=(V(G)\V(G,))U{x,y}.

Remark. We denote by S,; the set of supporting vertices of the component K,, i=1,...,p. From
the lemma 42.1 we have that Sy; CC[x,y] or Sy, € C[y,x], i=1,...,p. This assures that
G=G,UG, (if K; & G,, then it is certain that K; € G,, i=1,...,p).

5. A planarity criterion for hamiltonian graphs. Any graph G=(V,E) may be
represented in a plane in the following way:

(1) For each vertex x in V a point ¢(x) of the plane is assigned, such that distinct
points of the plane are assigned to distinct vertices of the graph.

(2) For each edge e-(x,y) a Jordan curve ¢(e) of the plane is assigned, with the limits

¢(x) and ¢(y) such that no interior point ¢(e) of the Jordan curve is the image of a vertex of
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G, and two distinct Jordan curves ¢(e) and ¢(e’), e = ', with e.e’ in E, have at most a single
common point, and three distinct Jordan curves. ¢(e), ¢(e’) and ¢(e"). € = €'= " = e, with
e, €', " in E, does not intersect in a common intenor point.

An interior point common for two Jordan curves is called intersection vertex of G. The
image of G obtained in this way is called the planar representation of G. If G has a planar
representation with no intersection points, G is called a planar graph, and its representation
is called plane representation, or plane graph.

Let G be a planar graph. We suppose that G contains a cycle C with two overlapped
C-bridges, B, and B,. Then, the bridges B, and B, may not be represented either both inside
C, or both outside C, without having some intersection points. Thus, it results that a bridge
is represented inside C, and the other outside C. Consequently, in G the intenor vertices of
B, and the interior vertices of B, are separated by the cycle C, if B, and B, are regular
bnidges.

Remark 5.1 In a plane 2-connected graph, the border of any face is identical with its
contour. A hamiltonian graph obviously is 2-connected (it has no articulation
points).

Lema 5.1 Let C be a cycle of the graph G, so that O(G:C) has no edge, and CUB is
planar for each C-bridge B. Then, G has a plane representation so that C is the
contour of the infinite face.

Proof. We will do an induction on the number of C-bndges. Let G be a graph which
has a cycle C and only one C-bridge B, so that CUB is planar (obviously, O(G:C) has no
edge). Then, CUB is planar and there exists a plane representation of G such that C is the
contour of the infinite face.

Let us suppose that the lemma is true for any graph G and any cycle C in G which
has k C-bridges, with 1 <= k <= m. Let G’ a graph and C’ a cycle of G’ having m+1 C’-
bndges with the property that C’UB’ is planar for each C’-bridge B’, and O(G’:C’) has no
edge. Since O(G™:C’) is not connected, from the theorem 4.2 2 there exists a 2-separation (G,,
G,) of G’ such that:

(M) {xy} = V(G,)) N V(G,) C V(C'):

(2) Cx,y] € G, and C'[yx] C G,,
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(3) neither G, nor G, is a segment of C’.
From (3) we have that G, contains at least a C’-bridge, i=1,2. (*). As we saw in the proof of
the Theorem 4.2.2, for every C’-bridge B, in G, and for every C’-bridge B, in G,, we have
that Sg, € C’[x,y], Ss; € C’[y.x].

We know that C, = C’[x,y] U (x,y) is a cycle of G, U (x,y), and C, .= C’[y,x] U
(v.x) is a cycle of G, U (y,x). Each C’-bridge in G’ is either a C,-bridge in G, U (x,y), ora
C,-bridge in G, U (y,x) (see fig. 5.1). (**)

X
C.
C:;|IIH|II!I'l
N
C’ [x,y] —— c’ ly,x]
Y
Figura 5.1

From (*) and (**) it results that the cycle C, has at least a C,-bridge, i=1,2. So, the
cycles C; have at least m bridges, i=1,2.

We denote G,° = G, U (x,y) and G,’ = G, U (y,x). For each C,-bridge B,® from G,",
we have that C’UB,’ is planar (from the hypothesis), so C,UB,° is planar.

Since O(G’:C’) has no edge, we have that O(G,%:C,) has no edge.

Similarly, C,UB,’ is planar for each C,-bridge B, from G,’, and O(G,.C,) has no
edge.

From the induction hypothesis, we have that G has a plane representation so that C,
is the contour of the infinite face, i=1,2.

Let G° be the plane representation of G?, i=1,2.

In order to obtain a plane representation of G’ with no intersection points, we
represent G,’ in the infinite face of G,° and then we erase the curve ¢(e) that represents the
edge e=(x,y)

(see fig. 5.2).
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o(x)

)
Figura 5.2.

Lemma 5.2 Let C be a cycle of the 2-connected graph G so that O(G:C) is bipartit
and CUB is planar for each C-bridge B. Then G is a planar graph.
In order to prove this lemma we mention here the following theorem, presented in [3]:
Theorem 5.1 If J and J’ are closed polygonal lines from R? there exists a homeomorphisn
¢: R —> R? 50 that ¢(J) = J" and the image through ¢ of a segment is also a
segment.

Proof of Lemma 5.2. We will use the Theorem 5.1, with the aim of placing the plane
representation of some planar bridges into a well-determined region of R The fact that the
image through the homeomorphism is also a planar graph may be deduced from the injectivity
of the homeomorphism.

We denote by M, U M, = V(O(G:C)) the parts of the bipartit graph O(G:C). Let G;
be made by the cycle C and the bridges from the set M,, i=1,2. Since it does not exist any
edge between the vertices from M, of O(G:C), any bridge of M, is parallel with any other
bridge of M;. So, O(Gi':C) has no edge, i=1,2. From the Lemma 5.1, the graph G, has a plane
representation G,” so that C is the contour of the infinite face. Is known that there exists a
plane representation G, of G, where any edge is represented by a line segment, C being the
contour of the infinite face. (*)

Let B,, ..., B, the C-bridges of M, We know that CUB, is plane, and from the
definition of C-bridge, and having in mind that G is 2-connected, C is the contour of a certain
face in any plane representation of CUB,. We represent B, in the exterior of the
representation of the cycle C.

Let us suppose that we have represented B;, 1 <= i <= k-1 <= p-1, in the exterior of
the representation of C, with no intersection points. Let us prove that CUB,UB,U...UB, is
planar.
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Let us first show that CUB,UB,U..UB, is 2-connected. We suppose that
CUB,UB,U...UB, is not 2-connected. There results that this graph has at least an articulation
point. We have two cases:

(a) There exists an articulation point x on the cycle C. There results that there exists
1, 1 <=1<=k-1, so that B, has only one supporting vertex, namely x. But then x is an articu-
lation point in G, which leads to a contradiction.

(b) There exists an articulation point x in the kernels of the C-bridges B, 1 =1, ..., k-1.
From the lemma 3.1 the kernels of the C-bridges B,, 1 =1, ..., k-1 have Ro common vertices,
and thus x is a member of only one C-bridge. By eliminating this articulation point we do not
affect the other C-bndges, and the cycle C. So, it is an articulation point in G, contradiction.

Let K={B,,..,B,,} the set of C-bridges already represented in the plane, with no
intersection vertices. Since B, is parallel with any other bridge in K, there exists C,[x,y] (a
segment of C with respect to K, with the limits x and y) containing all the supporting vertices
of B,.

From the hypothesis of the lemma we have that CUB, is planar. From lemma 5.1,

CUB, has a plane representation such that C is the contour of the infinite face.

Figura 5.3.

Because CUB,U...UB, , is 2-connected planar, we may conclude that the border of the
finite face that touches C,[x,y] is a cycle. So, from the theorem 5.1 we may represent B, in
the finite face of CUB,U...UB,_, which touches C,[x,y], without having some intersection

points (see fig. 5.3), and thus CUB,U...UB,, is planar.
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To conclude, CUB,U...UB, , = G, is plane, and there exists a plane representation G,
of G, so that all the bridges of M, are represented in the exterior of the cycle C. (**)

From (*) and (**) we conclude that G=G,UG, is a planar graph.

The following result is intuitively obvious:

Proposition 5.1 Let G be a planar graph with the cycle C and let B, and B, be two C-
bridges. If B, and B, overlap then B, and B, cannot be represented in
the same region of C.

Lemma 5.3 Let G be a 2-connected graph. If G has a subgraph H so that O(H:C)
is not bipartit, then G is not planar.

Proof. By reduction to absurd. We suppose that G is planar. Then H is also planar.
Because O(H:C) is not bipartit,, there exist two C-bridges both interior or exterior to C,
connected by an edge of O(H:C). Thus there results that two overlapped C-bridges are
represented in the same region of C, and that contradicts the proposition 5.1.

Before formulating the plananity criterion for hamiltonian graphs, we make the
following remark:

Remark 5.2. We notice from fig. 5.4 that B is a planar C-bridge, but CUB is not planar.
The condition "CUB is planar for each C-bridge B" is present in the
hypotheses of the lemmas 5.1 and 5.2.

Figura 5.4.

Theorem 5.2 (Planarity criterion for hamiltonian graphs)
Let G be a hamiltonian graph and C a hamiltonian cycle of G. Then,
G is planar if and only if O(G:C) is bipartit.
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Proof. (==>) We prove by reduction to absurd. We suppose that O(G:C) is not bi-
partit. Since G is hamiltonian, G is a graph at least 2-connected. From lemma 5.3, taking
H=G there results that G is not planar, and this contradicts the hypothesis.

(<==) We have that O(G:C) is bi-partit. C being a hamiltonian cycle, all the C-bridges
are diagonals of C and O(G:C) is a circle graph.

Let G’ the plane representation of G, and C’ the plane representation of C, so that C’
is a geometrical circle and the diagonals of C are represented by line segménts (see section
4). Then, CUB is planar for each C-bridge B. From lemma 5.2 there results that G is a planar
graph.

6. An algorithm for testing the planarity of a hamiltonian graph. Building of a
plane representation.. The Theorem 5.2 suggests a simple algorithm for testing the planarity
of a hamiltonian graph. If the given graph is planar, the algorithm will allow us to build a
plane representation of it.

Algorithm 6.1:
St Determine a hamiltonian cycle C in the graph G.
If there are no hamiltonian cycles in G, then
Message: "the graph G is not hamiltonian”
STOP
EndIf
S2  Buid the circle graph O(G:C)
S3  If O(G:C) is not bipartit then
Message: "the graph G is not planar”
STOP
EndIf
S4 Let M, and M, the parts of the bipartit graph O(G:C). The vertices of G are
represented on a circle in the plane, in their order in the cycle C. The diagonals from
M, are represented by line segments, inside the circle. The diagonals from M, are

represented by circle arcs, outside the circle.
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6.1 Testing the planarity of 4-connected graphs and 3-connected graphs. We give

here two known results that will help us to extend the applicability domain of the given

algorithm.
Theorem 6.1.1 (W.T. Tuttle) Each 4-connected planar graph has a hamiltonian cycle.
Theorem 6.1.2 (C. Thomassen) Let G be a 3-connected planar graph with an

articulation set of cardinal at most 3. Then G has a hamiltonian cycle.
From the results above, the next consequences are straightforward:
Consequence 6.1.1 Let G be a 4-connected graph. If there are no hamiltonian cycles in G,
then G is not planar.
Consequence 6.1.2 Let G be a 3-connected planar graph with an articulation set of cardinal
at most 3. If there are no hamiltonian cycles in G, then G is not planar.
So, we may use the algorithm 6.1 in order to test the planarity of 4-connected graphs
and of 3-connected graphs with an articulation set of cardinal at nost 3. The only modification

in the algorithm is the message from the step S1: "the graph G is not planar".

7. An implementation of the algorithm 6.1. Even if in this paper we only discuss
about undirected graphs, in order to implement the algorithm 6.1 we chose a representation
useful for oriented graphs, either.

Let G=(V,E) be an undirected graph, with |V|=n and |[E|=m. We suppose that
V={1,..,n} and E={1,...,m}. We establish an arbitrary orentation for the edges of the graph
G and we obtain an oriented graph G’=(V,E.alpha,omega), where

alpha: E —> V, omega: E --> V and
for each e in E, alpha(e) represents the initial extremity of the arc e and omega(e) represents
the final extremity of the arc e.

We define the enumeration types edge and vertex in this way:

edge =-m .. m;

‘vertex = 1 .. n,

We use the array NODE: array [edge] of vertex;
in.order to store alpha(e) in NODE[-e] and omega(e) in NODE[e], for every e in E [I].

We will also use the arrays:
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FIRST: array [vertex] of edge;
NEXT : array [edge] of edge;
in order to chain all the arcs incident to a vertex of the graph, the sign of an arc playing the
role of direction indicator.
Remark 7.1 Any supplementary information concerning the vertices and the edges (labels,
markers, and so on) may be memorized in arrays having the lenght n and m, respectively.
This is one of the main advantages of representing a graph by adjacency lists, as compared
with a representation by using incidence matrix. The great majority of the algorithms based
on incidence matrix request that this matrix must be inspected element by element. From here
it arises the imposibility to reduce the complexity of the algorithms at a value smaller that
O(n?). [3]
Remark 7.2 The introduction of the graph in the memory of the computer may be simply
realized by stating the extremities of each arc. Then, in order to complete the arrays FIRST
and NEXT, we use the following algorithm (linear time):
for vi=1 to n do.
FIRST[v]:=0;
for e:=m downto 1 do
begin
NEXT[e]:=FIRST[NODE[-€]J;
FIRST[NODE[-e]]:=e;
NEXT({-e]:=FIRST[NODE][e]};
FIRST[NODE[e]]:=-¢;
end,
Considerations regarding the source text of the program
1. The following result is well known:
Let G be an undirected graph, with no loops and no multiple edges, with |V|=n and |E|=m.
If n >=3 and G is planar, then m<=3n-6. [5]
In the function Introduction we verify if the inequality mentioned above is fulfilled.

If m > 3n-6, we display a message concerning the nonplanarity of G, and the execution of

the program stops.
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2. Let G=(V,E) be a hamiltonian graph, with |V|=n and |[E|=m, and be C a hamiltonian cycle
of G. Then O(G:C) has exactly m-n vertices.

It is easy to show that a bipartit graph with p vertices has at most p*/4 edges.

In the function GraphCon, which builds the overlap graph O(G:C), each time a new
edge is added we verify that the number of edges of O(G:C) is not bypassing [(m-n)?/4]. In
the case of an affirmative answer, the graph O(G:C) cannot be bipartit, and thus G is not
planar.

Remark 7.3 At the function GraphCerc a varnable of the type set of byte has been used.
This is the cause of the restriction for the order of the graph to be n <= 87.

So, for the given graph with more than 87 vertices is necessary to rewrite the code of the

function GraphCerc where the variable CycleHamilt is used, and, obviously, its type will be

changed.

Remark 7.4 Obviously, the program may be optimized. For example, the variable succ
from the procedure Colouring may be put as global variable, in order to avoid

the repeated allocation in the Heap, caused by the recursive call.
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REZUMAT. - Un algoritm de simulare sccventiala orientata pe cvenimente pentru
evaluarea performantei sistemelor distribuite. Determinarea performantelor de executic ale
sistemelor distribuite reprezinta o activitate de cercetare in continua dezvoltare, atat in ceca ce
priveste criteriile de performanta principale care ar trebui adoptate cat si natura algoritmilor
care trebuie utilizafi intr-un astfel de studiu. In lucrare se susfine efectuarea de analize de
performanta prin aplicarea unor algoritmi care sa simuleze secvential executia aplicatiilor care
se ruleazd intr-un sistem distribuit. Lucrarea prezinta un astfel de algoritm orientat pe
evenimente (event-driven) care funcfioneaza intr-un mediu distribuit in carec comunicarea se
face prin transmitere de mesaje.

1. Preliminaries. The actual development of distributed software systems creates new
requirements for both programming languages and operating systems. Even if distributed
computing had become a very active research area in the last few years, the complexity
imposed by the probability features involved in the functioning of a distributed computing
system makes it very difficult to accurately determine the execution performances through a
simple (static or dynamic) analysis. We find many situations in which one can derive only
some lower bounds and upper bounds with a large difference between them, making (almost)
meaningless the whole study.

Taki_ng into account the inherent difficulties posed by a real-time study of a distributed
execution with the actual hardware and software possibilities, we claim in this paper that

sequential simulation of a distributed execution is still an important and effective method for
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evaluating the performance of a distributed system.

It is very hard to find simulation models for distributed systems. There are many
studies involving queue’s models, but it seems finally not to be a very good choice because
in distributed systems is little central control and generally the nodes have equal importance.

Sequential discrete event simulation can be made in two forms: event driven and
time-driven. In the event-driven simulation events which appear in the physical system are
simulated chronologically and the simulation clock is advanced after the simulation of an
event to the time of the next event to be executed. In the time-driven simulation the clock
advances by one tick in every step and all events scheduled at that moment in time are
simulated.

The simulation considers buffered communication and takes into account only
communications between adjacent nodes made through message passing. The communication
between non-adjacent nodes can be transformed into communication between some pairs of
adjacent nodes by the distributed path choice algorithm [Duan87].

We start our discussion from the method presented in [Ping87] which implements for
every node a so called synchronization management module (SMM). Every module exchanges
its status information by reading and writing some boolean flag variables in order to
implement the synchronization of interprocessor communications. The SMMs of the different
nodes have the same structure, the only difference between them being the values of some
parameters which depend on the node information. In each time phase of an operation each
module will perform one of the following actions:

(1) Asking phase: try to send a message to an adjacent node;

(2) Responding phase: accept messages from adjacent nodes;

(3) Closing phase: neither send to nor accept message from an adjacent node;

The choice is made accordingly to the values of two status variables (buffer_full and
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send) which indicate respectively whether the node’s communication buffer is full or not and
whether the current node needs or not to send a message to another node during the current
fraction of time.

During distributed systems simulations the following assumptions are frequently
involved [Lan84]:

(1) When a message is to be sent, the probability to be the sender node is equal for
every node; also is equal the probability of every other node to be the target node;

(2) The frequency at which a node sends messages follows a negative exponent
dostribution;

We mentioned that we consider only communications between adjacent nodes, so
assumption (1) is changing in:

(1a). When a message is to be sent, the probability to be the sender node is equal for
every node; also is equal the probability of every one of its adjacent nodes to be the target

node;

2. Event-driven sequential simulation. The basic intuitive algorithin for the event-
driven sequential simulation is constructed as following:

a). Input the interconnection structure of the distributed system for which the algorithm
is used; set the initial status and time for each node;

b). Select the node for which the current time is the smallest;

c). Simulate t?e activity of this node for one or more phases and update the data
structure;

d). If the number of the sent messages is not adequate go to (b), otherwise output the
simulation result;

The simulation is based on the assumptions mentioned above. Two kinds of stochastic
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variables are involved in the simulation system: one of them follows uniform distribution and
the other follows negative exponent distribution. The function F(i+1) = (a*F(i)+b) mod m is
used to generate a pseudo stochastic number, function for which the following theorem is
known [Lan84]:

Theorem 1. The period of the pseudo stochastic number generator F(i+1)= (a*F(i)+b)
mod m is m, if and only if

i). bmod m = 0 and m mod b = 0;

ii). for any prime number p such that m mod p = 0, we have

(a-1) mod p = 0;
iii). if m mod 4 = 0 then (a-1) mod 4 = O;

In general, m = 2*, where k is a positive integer.

The function 6 = max {F(n), 1}/m is used to generate the stochastic real number
which follows a uniform distribution in the (0,1)' interval. From this, we obtain:

a). Negative exponent distribution with mathematical expected value 1/A: n = -(In
8)/a;

b). Uniform distribution in the set {1,2,....k}: 1=4k*3 |

Let A, be the joint probability of the following probabilities:

(1) the probability of node i to send a message to another node per phase;

(2) the probability that the communication buffer of node i to be full;

Let N be the number of nodes and let R = | R_,,/R... |, where Rou and R, indicate
the upper and lower bounds respectively of the node’s speed, 0 <R, s R.... -~

In order to simplify the simulation process we can assume that:

(a) the ratio of node i's speed to R,,, is 1+i*(R-1)/N, and it does not change in the
running process;

(b) all A, have the same value, where 1 < i < N;
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(c) the communication buffer is large enough for never be completely full, so, no
closing phases will be encountered during the simulation process;

These assumptions have no inherent effects on the validity of the simulation results.

Because the nodes speeds are different, the nodes upper bounds of one phase’s length
will be different. Let upp,; be node’s i upper bound of one phase’s length and status(S) and
ctime(S) be the current status and the current time respectively of node S. By n(S) we denote
the number of phases for which node S has successively requested to communicate.

With these considerations the general form of the simulation algorithm is as follows:
begin

initialize the interconnection structure of the distributed
system, R, A and other functional parameters;

while (the number of sent messages is not enough) do
select a node S with min(ctime(S));

case status(S)=0 :
{ 1 - simulate the environment in which the algorithm works
according to the negative exponent distribution, compute the
length t of the interval between ctime(S) and the moment at which
node S wants to send the next message; according to the uniform
distribution select the target node;}

ctime(S)=max(ctime(S), ctime(S)+t);

{ where t is the response time of node S‘’s last communication }
{ 2- record related information }

status(S):=1;

case status(S)=1 : ({ simulate the responding phase )}
n(s):=0; status(S):=2;

case status(S)=2 : ({ simulate the asking phase }

if n(S)=S then status(S):=1 else
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begin
if (the communication request has been
succesfully answered) then
begin
compute and record related information;
status(S):=0;
end
else n(S):=n(S)+1;
end;

if status(S)=0 then
ctime(S):= the time of node S at which the
communication is established

else
ctime(S)==ct1me(S)+uppusﬂ
endcase;
endwhile; v

output the simulation results;

end.

The performances and precision of such an algorithm are now under practical research

on the Sun network stations at UBB Computing Centre and the results will be reported

comparatively to some other related algorithms in a future paper.
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