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STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XL, 1, 1995

HYPERBOLIC MEAN VALUE THEOREMS
OF NON-DIFFERENTIAL FORM

Gh. BANTAS' and M. TURINICI

Received: June 20, 1994
AMS subject classification: 26B05

REZUMAT. - Teoreme de medie de tip piperbolic in formi nedifcrentiali. in lucrare sunt

stabilite mai malte teoreme de medie pertru functii definite pe un dreptunghx

1. Introduction. Let / and J be nonempty intervals of the real axis (R). Denote fr.
simplicity K = I x J. By a (standard) rectangle of K we mean any subset A = [a,b] x [c,d]
of K, where [a,b], [c,d] are closed sub-intervals of / and J, respectively. In this case, the
points

A= (ac), B=(bc), C=(bd), D= (aad)

are called the vertices of A; correspondingly, the rectangle in question may be represented as
[ABCD].

Let (X,l ) be a normed space and £ K — X, a mapping. For each rectangle A of K
taken as above, denote

m(A) = f(4) - f(B) + f(C) - f(D). (1.1
This will be referred to as the yperbolic (Lebesque-Stieltjes) measure of A generated by this
function. Note that, when X = R, and
f(t,s) =ts, t,s ER

then, this hyperbolic measure reduces to

“ "Al. I. Cuza" University, Department of Mathematics, 6600 lagi, Romania



Gh. BANTAS, M. TURINICI

m(A) = ac - bc + bd - ad = (b-a)(d-c¢) (1.2)
(the usual Lebesgue measure of A). Finally, denote
R@) = 28 s 8y = 1m0 (13)
/ m(A) [ 4 S/ : :

These will be referred to as the variational quotients of f with respect to A.

Now, by a mean value theorem/property for fover A we mean an evaluation of R (A)
of S,(A) with the aid of some expressions depending on the objective to be attained. More
precisely, we may distinguish between

i) mean value theorems of non-differential (relative) form;

i) mean value theorems of differential form.

The second c;lass of such properties was investigated-in the bi-dimensional sett:~g we dealt
with - by Nicolescu [12, ch.19, §2], under the lines in Bogel [6,7]; see also Dobrescu [8]. The
first class of such results was only tangentially discussed until now in the paper by Nicolescu
[10]. It is our main aim in the present exposition to fill this gap, in a manner suggested by
the one-dimensional developments in this area due to the authors [4,5]; see also Aziz and
Diaz [1,2,3]. The imposed assumptions upon f are intended to be the largest possible ones;
details will be given in Section 3. All preliminary facts were collected in Section 2. And, in
Section 4, some aspects involving the real case (X = R) will be considered. Finally, it is worth
noting these developments are an essential tool to get mean value theorems under differential

form. A detailed account of these will be made in a future paper.

2, Preliminaries. Let again /,J be real intervals and K = I x J. We also give a normed
space (X,} 1) and take a mapping f: K — X It is our aim in the following to investigate this
function by means of the associated map A — mf(A).

4



HYPERBOLIC MEAN VALUE THEOREMS

We start with an invariance property. By a hyperbolic constant over K we mean any

map h : K — X of the form
ht,s) = (1) + ¥(s), (1,5) EK

where ¢ : I — X, ¢ : J — X are given functions. This term is justified by the statement
below. (The proof being evident, we do not give details.)

PROPOSITION 1. For each rectangle A of K and each hyperbolic constant h over K,
one has

m. (A) = m(B). 2.1
As an immediate consequence,
R, (A) = R(A) (hence S, (A) = S,(A)).

In other words, any property of R (A) (or S,(A)) may be also tranferred to the function
S+ h which, in principle, is no longer endowed with the properties of £ Some concrete
exﬁplw in this direction will be given in Sections 3 and 4.

We are now passing to an additivity property. For any rectangle A = [a,b] x [c,d] of
K, denote

int (A) = la,b[x]c,d[ (the interior of A)
This is of course related to the topological structure of the plane given, e.g., by the maximum
norm. By a division of the rectangle A we mean any finite decomposition A = UA_of A into
(s.tandard) rectangles of K with the family {int (A,)} being mutually disjoint. Among these,
we distinguish the divisions of A generated by corresponding divisions of the real intervals
generating A. Precisely, given finite decompositions
(@8] = Ultat,,). [e.d] = Uls, 5]

of these intervals, the considered division may be written as A = UA ;o where

i
S
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A[J = [’p tp]] X [s

), 8,,,), for all possible (/). These will be referred to in the sequel as normal

divisions of the underlying rectangle.

PROPOSiTION 2. Let {A,} be a division of the rectangle A. Then

m,(8) = 2 m(4,). 22)

Proof. Take any vertex, P, of an arbitrary rectangle in this decomposition, distinct
from the vertices of A. A simple analysis shows that P belongs to either two or four
rectangles in this family. (The proof being almost evident, we do not give details.) Let < be
the ordering in R? introduced in the usual way

,s) s(,,s,) ff t,=<t,s <5,

In the first case, the pbint in question is extremal in one rectangle and non-~wemal in
another. In the second case, the considered point is two times extremal and two times non-
extremal in the rectangles to which it belongs. Consequently, the contribution of AP) in
E m () is zero, by the definition of these expressions. In other words, only the vertices
of A are to be retained in this sum, and conclusion follows. B

Remark. A different proof of this may be given along the following lines (cf. Tolstov
[15, ch.2, §6]). Let ¥ be the set of all vertices for the rectangles in {A,}. The projection of
YV over [a,b), respectively [c,d] gives finite decompositions of such intervals. Let

A = U(A,;(.)) ET)
be the normal division of A induced by these. It clearly follows by the described construction
that a partition I' = UT"_ of the index set I' may be found so that, for each r,
{A,j; (i,j) €T} is a normal division of A,.

This, plus (2.2) being valid for normal divisions imply
mA8) =Y (m(8),(.HET} =YY (m(A); (. HNET} =Y m(A)
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and the assertion is proved.

Remark. Of course, the conclusion of this statement remains valid (via Proposition 1)
in case fis to be replaced by f+h, where h is any hyperbolic constant (over K).

Now, a useful semi-continuity result will be proved. For any pair of points P,Q in the
plane, we denote by PQ = {kP +(1-MQ;0sA < 1} the segment between these points
andby (PQ) = (AP + (1 -A\)Q; A € R} the line passing through P and Q. Let A = [ABCD]
be a rectangle in K, given by its vertices. l?enote

Jr(A) = ABU BC U CD U DA (the boundary of A).

Let P be a point of fr(A), distinct from the vertices of A. There exists a unique line passing
through P, which is orthogonal to the segment of fr(A), which contains P. This will be
referred to as the normal to A at the considered point, and denoted v,(P). (That P must be
distinct from the vertices of A in this construction is a consequence of the fact that, otherwise,
the normal in question would be not uniquely determined.) Now, call the underlying function
J: K — X, normally continuous at the point P € fr(A) (distinct from A,B,C,D) when its
restriction to v,(P) N A is continuous at P. We also term f, normally continuous onfr(A)
when it is normally continuous at any point P € fr(A) (distinct from the vertices of A).

With these conventions, let A be a rectangle in K. We also take a sub-rectangle A’ of
A in such a way that fr(A’) has at least a segment in common with fr(A).

PROPOSITION 3. Suppose that

H.1) fis continuous at the vertices of A

H2) fis normally continuous at each vertex of A’ (if any) lying infr(A),

distinct from the vertices of A.

Then, for each m > 0, there exists a sub-rectangle A’ -of A, interior 1o A, with
Ll g
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S,8") = (1-m)S,@). (23)

Proof. Without loss, one may assume mf(A) = 0 (hence S[(A) = 0). We have several
situations to discuss.

Case 1. fr(A’) has a single segment in common with fr(A) This, e.g., corresponds
to the choice A’ = [A’B/C’D’] where A’B’ C AB and C’,D’ € int(A); or, in other
words (by the adopted notations for the rectangle A)

A’ =(@’,c),B' = (b',¢),C'=(',r), D! =(a’,r)
with @ < a’ < b’ < b, ¢ < r < d. We now consider the sub-rectangle A, of X given by the
vertices 4, ,B,,C’,D’, where

A = (a@’,c+\), B’ = (b’,c+\), A > 0 small enough.
Clearly, A; is in A’ N int(A) for all such A. Moreover, by (H.2),

Sf(4) = f(4"), fB) = f(B) as A — O,
This, combined with
m(Ay) = m(A') as A — 0, (2.4)

shows

R,(Ay) —= R,(A") (hence S,(A,) — S,(A’)) as A — 0, (2.5)
As a consequence, any A, where ». > 0 is sufficiently small, may be taken as the sub-
rectangle A” in the statement.

Case 2. fr(A’) has two segments in common with fr(A). This, for example, may be
understood as the rectangle in question being represented in the formA’ = [AB/C/D’},
where

B’ =(p,c),C' =(p,q), D' =(a.q),a<p<b,c<g<d
Let‘ us now construct a sub-rectangle A; of A by the vertices A, B/,C’.D,, where

8
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A, =(@+h,c+]N), B = (p,c+)N), D{ =(a+\,q).
(As before, . > 0 is small enough). That A’ N int(A) includes A, is clear.
We also have, by (H.1) + (H.2),
fA4) = f(AD), fB)) = f(B'), fD) = f(D') as A = 0,.
This, in combination with (2.4) being valid in this context gives again (2.5). Hence, any A}
like before - where A > 0 is sufficiently small - is a candidate for sub-rectangle A” in the
statement.

Cases 3-4.fr(A’) has more than two segments in common with fr(A). (That is, either,
Jr(A") has three segments in common with fr(A) or else A’ = A). The argument we just
developed may be correspondingly modified to get a family of sub-rectangles {A;} of A/,
interior to A, which in addition has the property (2.5). So, as before, it will suffice taking one
of these as A”, to get (2.3). Having explored all possible situations, the conclusion
follows. &

Remark. The working conditions (H.1) + (H.2) must be taken in a relative sense only.
Because as results from Proposition 1, the statement above remains valid whenever /A fulfils
(H.1) + (H.2) for some hyperbolic constant A K — X (which, in particular, may be
discontinuous at any point of the rectangle A).

As an immediate consequence of this, we have

COROLLARY 1. Suppose that the underlying function f satisfies (H.1) plus

(H.3) f is normally continuous over fr(A).

Then, conclusion of Proposition 2 is retainable.
In particular, a sufficient condition for (H.1) + (H.3) is

H3Y [is continuous over fr(A).
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Of course, as already precised, these conditions may be put in an even more general
framework, via Proposition 1; further dgtails are not given.
Finally, a specific continuity property will be introduced for such functions. Given a
pair P, = (1,,s,), P, = (1,,5,) of points (in X), denote by [P,;P,] the rectangle [a,5] x [c.d],
where
a =min(t,t), b = max(#,4); ¢ = min(s,,s,), d = max(s,,s,).
Of course, the order of these points is not essential, here; i.e., [P,;P,] is identical to [P,;P,].
Let P be an interior point of K. We say the function f K — X is hyperbolic continuous ;t P
whenever
m([P;Q]) = 0 as Q — P,
or, in other words, for each ¢ > 0 there exists a 8(e) > 0 such that
Im ([P; Q1) < e provided | P - Qf < 8(e).
Likewise, the considered function is called hyperbolic continuous over a subset of K when
it is hyperbolic continuous at each point of that subset.
. The relationships between this notion and the standard continuity one are precised in
PROPOSITION 4. The following are valid:
A)  If the function f K — X is continuous at the point P € int(K) then it is
hyperbolic continuous at. t}ﬂs point.
B) Suppose the function f K — X is hyperbolic continuous at P € int(K). Then,
a continuous at P function g = g,: K — X and a hyperbolic constant h = hg:
K — X may be found so that f be represented as the sum g+h.
Proof. The first part is evident. For the second one note that the hyperbolic continuity
ot:fat P = (1,5,) may be also written as

10
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S@,.8) - fty,5) - fts) + f(t,s) > 0,888 —> 1,55,
Denote in this case
g, s) =f(t,5) - f(4,9) - f(t,5,), (.5) EK.
h(t,s) = f(t,,5) + f(t,s,), (t,5) EK.

That g,h satisfy the above requirements is clear. Hence the conclusion. B

Remark. This result does not admit, in general, a global counterpart. In other words,
if £ K — X is hyperbolic continuous over a part H of K then, a representation like f= g+h
where g: K — X is continuous over H and h: K — X is a hyperbolic constant (over X) is not

obtainable, in general. For an example in this direction we refer to Nicolescu [12, ch.19, §2].

3. Main resuits (inequality form). Let the notations above be maintained. Letting /,J
bé real intervals, for each rectangle A = [a,8] x [c,d] in K = I x J, denote
diam(A) = max (b-a, d-c) (the diameter of A).
This notion is related to the normed structure of the plane (given by the maximum norm). Let
also (x,] ), a normed space and f : K — X, a mapping. As a consequence of the
developments above, the first main result of the present paper is
THEOREM 1. Let A be a (standard) rectangle in K. Then, for each'e > 0, there is a
sub-rectangle A, of A with
diam(a,) <e, S.(A) = S/(A,). 3.1
Proof. Construct a (normal) division of A by
a=1<<.<t <t =bc=s5<s5<..<s  <s =d
with
max(t,, - 1,S,, —sj)“< e, 0<six n-j, O0<j<sm-1

11
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Here, n,m 2 3 are positive integers. Precisely, if we put
A, - t,t,0%I[s,5,],0sisn-1,0s<j<m-1,
the normal division in question is {A,}. In addition, we have the supplementary property
diam(A,) < e, for all possible (i).
It is clear, via Proposition 2, that
R(A) = )’; A R(A)

where, by convention,

- m(A,)

Y m(@)
Therefore, by the triangle inequality,

5,8) = A, 8,A,).
i

The second of this relation is a convex combination of {S (A, )}. Hence The conclusion. B

, 0<i=sn-1,0=<sj=m-1

Now, by simply adding to this the remark in Section 2 concerning the alternative proof
of Proposition 2, one gets
COROLLARY 2. Let A be a rectangle in K and {A,} be a division of A. Then, for
each e > 0, there exists an index r = r(e) and a sub-rectangle A, of A, so that (3.1) be valid.
Note at this moment that no property is required for the function f to get the
conclusion in the statement. Nevertheless, the obtained assertion is not very sharp because the
possibility that fr(A,) should have a nonempty intersection with fr(A) cannot be avoided in
general. It is natural to ask of whether is this removable. The answer is affirmative (via
Proposition 3). To state it, we need a new convention. Let A be a rectangle in K. Take eight
points systems {E,, ..., £} on the boundary of A, distincts from the vertices of A, according
to the condition:
) there exists a sub-rectangle A’, interior to A such that {E,, .., E.ﬂ} appears as the

12
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projection over fr(A) of the vertices of A’. 3.2)
Suétg systems will be termed admissible in what follows. Now, let again (X,l I) be a normed
space 'and f K — X amapping. As a completion of Theorem 1, the second main result of this
paper is
THEOREM 2. Suppose that f satisfies (H.1) plus
(H4) f is normally continuous over at least one admissible eight points
system fr(A).
Then, for each e > 0, there is a sub-rectangle A, interior 1o A, with the property (3.1).
Proof. Let the ambient rectangle A be represented as [ABCD]. Take. also an admissible
eight points system {E,, ..., E;} in fr(A) (given by.(H.4)). So, there exists a sub-rectangle A,
= [MNPQ] interior to A, such that {E,, ..., E,} appears as the projection of ¥V = {M,N,P,Q}
over fr(A). This, e.g., may be understood as
" MQ N (ABUCD) = {E,E,}; NPN (ABUCD) = {E,, E,}
MN N (AD U BC) = {E,,E}}; PQ N (AD U BC) = {E E}.
Now, the admissible system {E,, ..., E;} generates a normal division {A,, ..., Ag} of A. (Here,
A, is the above sub-rectangle and, e.g., A, = [AEME,), A, = [E,E,NM), etc.) This gives at

once

R(A) =Y nR()

. =0
where, by convention,

u,-m_(Aﬁ,Osiss.
m(A)

So, by the triangle inequality,
8
$/(8) = 3 uS/(8) (3.3)
As an immediate consequence of this,

13
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S,(A) = ‘l)l‘l‘a‘.): S,/(A). (3.4
We have two cases to discuss.
a) Relation (3.4) is holding with equality. Then, again combining with (3.3),
8
SI(A) = g p,Sf(A,)r
wherefrom

,2.03 m(S,A) - S8 = o.
But, p, ..., p are strictly positive. Therefore
S,(A)=S,(4),0=ix8
and from this, conclusion is clear.
b) Relhation (3.4) is holding strictly (with < in place of ). If one ha-pens that
S,(A) < S,(4,), then we are done (by applying Theorem 1 to the same function f and the
rectangle Ay). Otherwise,
S,(A) < S,(4,), for some i € {1, ..., 8}
By (H.4) plus Proposition 3, we must have that for each 1} > 0 (small enough) there exists
a sub-rectangle A™ of A, interior to A, with
S,(a7) = (1 -M)S,@).
Choose m > 0 in such a way that (1 - M)S,(A,) = S,(A). (This is possible, by the
strict inequality above.) Combining these, yields
5,4) = S,
and this, again with Theorem 1 gives conclusion in the statement.
Now, a) + b) are the only possible situations in this discussion. Hence the result. I
As a direct consequence of this, we have
COROLLARY 3. Let the rectangle A in K and the function f. K — X be such thut

14
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conditions (H.1) + (H.3) are accepted. Then, conclusion of Theorem 2 is retainable.

In particular, a sufficient condition for (H.1) + (H.3) is (H.3)'. A natural question
appearing in this context is that of determining to what extent ar:: these statements valid when
(H.3Y is to be substituted by its weaker counterpart

H3) f is hyperbolic continuous over fr(A).

To give a partial answer, we note that, by Proposition 4, one has at each point P in fr(A),
the representation f = g, + h, where g;: ,K — Xis continuous at P and A, K — Xis a
hyperbolic constant. Hence the functions in this representation are depending on the points
in fi{A). But, if this dependence would be removed (i.e., the underlying functions remain
unchanged when P describes fr(A)) it follows By Proposition 1 that, in fact, (H3) is
necessarily fulfilled under (H.3)"; and so, conclusion of Theorem 2 is retainable, in view of
Corollary 3. Summing up, hyperbolic continuity conditions (over fr(A) or, even, the all of
A) 'imposed upon f are - generally - insufficient for the truth of such results. This, in
particular, applied to the statement of Lemma 1 in Nicolescu [10], shows we must delete the
word "hyperbolic" (as a weaker form of continuity for f) to retain its conclusion. But then,
the result in question reduced to Corollary 3 above.

Remark. From a methodological viewpoint, the developments above may be viewed
as a bi-dimensional counterpart of the contributions in this area due to Bantag and Turinici
[;1]; see also Aziz and Diaz [1].

Now, it would be of interest to determine of whether or not is (H.4) removable; or,
in other words, to what extent can we diminish the cardinality of an admissible system (of
points in fr(A)). The answer is affirmative: it is based on a few remarks about the associated
sub-rectangles in the division of A. Let {E‘ , ..., 4} be an admissible eight points system infr(A)

15
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generated by a sub-rectangle A’ = [MNPQ] of A (and interior to A). We associate to each
vertex of A’ its closest projections over Jr(A). This generates a decomposition of our system
into four groups of such projections. For example, under the notations encountered in the
proof of Theorem 2, these groups may be depicted as
U ={(E,E}, U, ={E,E}, U ={E E}, U = {E, E}.
Now, let us call a four points system {G,,G,,G,,G,} in {E, ..., E}, admissible provided
GeU,1sis4
There are 2* = 16 such admissible four points systems generated by an admissible eight pc;ints
system. However, for symmetry reasons only 4 systems from these are essential. For example,
taking AB as a basis, the systems in question are
{E,.E,.E, E}, {E,,E,,E,E}, {E, E, E E} {E,E,E,E}.
Now, given any admissible four points system G = {G,,G,,G,,G,}, there exists a division
A=A UAUAUAUA,
of the rectangle A, where A, is the above one and (for 1 < i < 4) the vertices of the sub-
rectangle A, lyung in Jr(A) and distinct from those of A are necessarily in G. (For example,
to verify this for G = {E,.E, E, E}, it will suffice putting
A, = [AENE)), A, = [E,BEP], A, = [ECEJQ], A, = [EME,D],

the remaining situations are treatable in a similar way.) As a direct consequence, the argument
used in Theorem 2 is also applicable to this larger setting. We thus proved

COROLLARY 4. Suppose that f satisfies conditions (H.1) plus

H4Y f is normally continuous over at least one admissible four

points system of fr(A).

7#en, Jor each e > 0, there is a sub-rectangle A, interior to A, with the property (3.1).

16
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Conceming the further reduction of this number, call the two points system {E, E,}
of f((A) (distinct from the vertices of A), admissible, when EE, are an opposite segments
of fr(z}) and the normals to E, and E, are identical (e.g., E, € AB, E, € CD and EE, is
parallei to AD or BC). Suppo'se now (H.4Y is to be replaced by

H.49)" fis normally continuous over an admissible two points system of fr(A).
Let A, and A, be the division of A generated by E,E, (in the usual way) and assume

(H.5) S,(A) < S,(8), for some i € {1,2}.

By Proposition 3, there must be a sub-rectangle A of A, interior to A, withS (A) < Sf(Af );
this, plus Theorem 1 give us immediately conclusion-of Theorem 2. Therefore, condition
(H.4) - or its variants - has a relative character (fro;n a cardinality viewpoint). This forces us
to ask of whether or not is this condition effective in such statements. We conjecture that the

answer i3 negative.

4. The real case. In the following, the choice X = R will be considered, from an
equality perspective. Precisely, let /, J be real intervals and put K = I x J Let f K = Rbe
a function and A, be a (standard) rectangle in K. As a counterpart of Theorem 2, the third
main result of the paper is

THEOREM 3. Suppose that

(H.6) [ is continuous over A.

Then, for each e > 0, there is a sub-rectangle A, interior to A, with the properties
diam (A,) < e, R.(8) = R.(4,). @“4.1)
Proof. Let us construct an equi-distant division of A by
a= t°<tl<...<t"_l<t;‘-b, p=1,-1<e 0sisn-l

17
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cms,<s <. <s, ,<s =d, o=s,-5<e, 0<j<m-1
(Here, n,m = 3 are fixed positive integers.) Denote for simplicity

A(t,s) = [1,t+p] x [s,s+0], astst

o CSSSS

o
Of course, A(z,, sj) is, for 0 < i < n-1, 0 < j < m-1, nothing but A, alluded to in Theorem 1.
Denote also
@, 5) = R(A(t,8)),astst ,csss5
It is clear that
R.) = g A, 00, s) 4.2)
where (M) are again as in Theorem 1. Two situations are now open before us.
Case I. The set {¢(,s), 0si=n-1,0=j=m-1} consists of e ctly one
element. As a consequence,
R(A) = R(A(,,5,))
and conclusion is clear (because A(f,,s,) is interior to A and its diameter is inferior to e).
Case 2. The set {¢(t,,sj); 0<isn-1,0=<j =< m-1} has at least two distinct
elements. Hence
min (9 1,5)) < max {$ ()} @3)
On the other hand, by convexity arguments,
min (§ (,5)) < R(4) = max (§ (.5} (44
Suppose one of these relations holds with equality; e.q., the second. We have, by (4.2)
’y: A, R(B) -(,5)) = 0.
As (A ;0=<si=<n-1,0sxj s’;n-l} are stricly positive,
R(A) = ¢(t,s), 0si=sn-1,0=j=m-l],
absurd by (4.3). Hence, both inequalities in (4.4) are strict. Suppose

18
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min (91, 5)} = $(0,.5,), max (6(0,5)) = $(,.5,)
for _some p,u € {0,..,n-1}, q,v € {0,..,m-1}. Denote for simplicity
A = [a, t_]x[c,s,.,], andletx = x(t), y = »(t), 0 < T < 1 be a continuous path luing in A’
with

@) (x(x),y(¥)) € int(A’) Cint(A), 0 <z <1

@)  (x(0),y(0) = @,,s), (x(1),y(1)) = @,s,).

The composed function (from [0,1] to R)
Y@ = ¢(x(®),y(v), 0st=1
is continuous, by (H.6); and, in view of the assumptions we just made,
W(0) < R(A) < y(1).
Hence, by the Cauchy intersection theorem, there must be some point v, in ]0,1[, with
Y(t,) = Rf(A); or in other words,
R(8) = R (A(x(x,), ¥(x,).
It is now clear that A, = A(x(i:o), M) has all the properties we need. This ends the
argument.

As an immediate application, the following "weak" counterpart of Theorem 2 is
available. Let (X,] ) be a normed space and £ K — X, a mapping. Let also A be a rectangle
in K.

COROLLARY 5. Suppose that

H.6) fis weakly continuous over A.

Then, for each e > 0, there is a sub-rectangle A, interior to A, such that (3.1) be fulfilled.

Proof. By the Hahn-Banac!: theorem, we may find a linear continuous functional x°
over X, with

19
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Ie*l = 1, xY(R(8)) = S,(8).
The function g: K — R given by

g(t.s) = x*(f(1,5)), (1,5) €E K
fulfils, by (H.6)", conditions of Theorem 3. So, for each e > 0, there exists a sub-rectangle
A, interior to A, with

diam (A,) < e, R (A) = R(4,).
But, evidently,

R(A) = x'(R(8)) = S,(A);

and, moreover,

R(,) = [*®R M) = 5,,).
Combining these facts yields the desired conclusion.li

Remark. As already precised in Section 2, the continuity condition (H.6) is relative in
nature. Because, as results from Proposition 1, conclusion of the above theorem is retainable
whenever (H.6) is to be admitted for some function f-h where h: K — R is a hyperbolic
constant (which, in principle may be discontinuous over A).

Remark. These results are methodologically comparable with the statements in this
direction due to Nicolescu [11]. And from a dimensional viewpoint, these may be deemed as
direct extensions of the ones obtained in Bantag and Turinici [4]; see also Aziz and Diaz
[2,3]. The idea of the argument goes back to Bogel [6] and, respectively, Pompeiu [13,14].

Further aspects of the problem may be found in the survey paper by Nashed [9].
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REZUMAT. - Asupra unei inegalititi folosite in teoria ecuatiilor ce diferente. Sunt

stabilite cdteva noi inegalititi cu diferente finite legate de o inegalitate folositd in teoria

ecuatiilor cu diferente. -

Abstract. In the present paper we establish some new finite difference inequalities
related to a certain inequality used in the theory of difference equations. The inequalities

established here can be used as tools in the qualitative analysis of certain new classes of

difference and sum-difference equations.

Introduction. In a recent paper [4, p.250] Mate and Navai used the following
inequality while extending the well known results established by H. Poincaré in [9].

LEMMA. Let u(n) = 0, p(n) = 0 be real-valued functions defined on integers and let

¢ 2 0 be a real constant. If

wg) s c+ Y pe)uls),

sun+l

then
u(n) = c exp ( E p(s)).
s=n+l
Finite difference inequalities of this type are most useful in the qualitative analysis of

various classes of difference equations..In the past few years, many papers on finite difference

* Marathwada University, Department of Mathematics, Aurangabad 431004 (Maharashtra) India
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inequalities of the above type and their applications have appeared-in the hterature, see [1-8,
10] and the references given therein. In view of the important role played by such inequalities
in the study of difference equations, it is natural to expect that some new finite diftference
inequalities of the type given in Lemma, would also be equally important in certain new
applications. The main purpose of the present paper is to establish some new finite difference
inequalities of the type given in Lemma, which can be used as tools in the analysis of certain
new classes of difference and sum-difference equations for which earlier inequalities fail to
apply directly. An application to obtain a bound on the solution of a certain sum-difference

equation is also given.

2. Statement of results. In what follows we let N, = {0, 1, 2, ..} and use the
notations m, n, p, q to denote the elements of N,. Let R denote the set of real numbers and

R, =[0,%). For n>m, n.mENoandanyﬁmctionh:M,—-R,weuseﬂleulalcmvmﬁasE h(s) =0

-
m s=n

and Hh(s) = 1. Throughout, without further mention, we assume that all the sums an¢

s=n

products converge on the respective domain of their definitions.
Our main results are given in the following theorems.
THEOREM 1. Let u(n), An), g(n), h(n) be functions defined on N, into R, and ¢ =z 0
be a real constant.
Q) If
u¥n) s c?+2 i: [f(s)u’(s) + h(s)u(s)], n € N, hH

s=n+l

then

© ® -1
uny s c[[ 1 +7(0] + Y As) [T (1 + 7)) n €N, )

t=n+l sen+l| t=n+l
) If
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uin) s c?+2 Y [f(s) u(s) [u(s) > g(z)u(r)) + his)uls) |,

n€N,, &)
pon et b
u(n) = CE [1+/(0)+80] + E h(s)* II [(1+/()+g()), nEN,. @
@iii) If -
ul(m) s c?+ 2‘& [j(s)u(s) ( 2 g0 u(t)] + h(s)u(s)|, n € N,, )
then

©

umzcY 1/ + T g(t)] > h(s)l'[ 1+ £(0) +E |,

] el o] el
THEOREM 2. Let u(m,n), m,n), g(m,n), h(m,n) be functions defined for mn € N,
into R, and ¢ 2 0 is a real constant. |
) i
ul(m,m)sc®+2 i i [f(s,D)u*(s,0) + h(s,Du(s,?)], m,nEN,, 0

s=m+]l t=n+l

then
u(m,n) < $@m,m T |1 + f:f(s.r)], mn €N, ®
where o -
dmm e+ T T hG.0) ©
Y
u¥(m,n) s c?+2 i:. .2.:1 [Fs, £) u(s, 1) (u(s, 1)
. z.j i g0x, ) u(x, ) + h(s, u(s, ], m,n € N,, (10)
then o
u(m n) s ¢(m, n)l’[ 1 *'El[f(s 1) +g(s,n]|, m,n€N,, an
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where §(m,n) is defined as in (9).
i) If
ummsci+2Y, Y |fGs0u(s [ Y Y sy u(xy)) + h(s,1) u(s,t)], m,n€N,, (12)

som+l ton+l xug+] ymge]

then

f: i g8(xy)

xmg+l  ywte]

um) = o(mm)y T 1 + 3 S0

som+1 ten+l

where ¢(m,n) is defined as in (9).

,m,n€N,, (13)

3. Proofs of theorems I and 2. Since the proofs of (1)-(vi) resemble one another, we
give the details for (ii) and (vi) only, the proofs of the remaining inequalities can be
completed by ‘following' the proofs of (ii) and (vi).

(i1) Define a function z(n) by

swn+l tag+]

2m)=(c+ef+2Y [f (s)uls) (“(S) + Y gnu(t)| + h(s) us) ] (14)

where ¢ > 0 is an arbitrary small constant. From (14) and using the fact that

u(n +1) s yz(n + 1), n € N,, we observe that

2(n) - z(n+1) s 2y/z(n+1) [f_(n»«l)(ﬁ(ml + i gz + h(n+1)l. (15)

ten+2

Using the facts that yz(n+1) >0, yz(n+1) syz(n) for n € N, and (15) we

observe that

m _ W - 2(n) -z(n+1) < z(n) - z(n+1)
’ Vz(n) +yz(n+1) 2yz(n+1)

s f(n+1) (\/z(n+l + i: g0z (@) ] + h(@m+1). (16)

t=n+2

Define a function w(n) by
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vin) =\z() + Y gz () . a7

ten+l

From (17) and (16) it is easy to observe that
v(n) - [1 +f(n+1) + g(n+1)]v(n+1) < h(n+l1). (18)
Now tﬁhlﬁplying (18) by H [1+1() + g®]", for an arbitrary m € N, then setting n =

t=n+l

s and taking the sum over s = n, n+l, ..., m-1 we obtain

v [T [1+/@ +g01" = vem) + 3° hOTL 11 +70) + O™ 19
ten+l sun+] =3
From (19) we have
v = vem [T 11 +/0) +g01 + 3° A& [1+/0) + ). 20)
t=n+l s=n+l t=n+l

Noting that lim v(m) = lim Jz(m) = c + e and letting m — % in (20) we get

vn) < (c +e) Hl (1+/() +g®)] + E; h(s) Z-:l [1+1() +g(n]. @n

The required inequality in (4) now follows from (21) and using the facts thatu{n) < yz(n)
and z(n) = wW(n) and by taking e — 0.

(vi) Define a function z(m,n) by

som+1 ten+l xmg+l ymt+]

z(mpn) =(c+e)*+2 i: i: [f (s,0) u(s,f) [ i zw: gx.y) u(xy)| + h(s,0) u(s,) ], 22)

where ¢ > 0 is an arbitrary small constant. From (22) and using the facts that
u(m,n) < Jz(m,n) formne N,, we observe that

[z(m,n) - z(m+l,(r)] - [z(m, n+1) - z(m+1, n+1)]

< 2z(m+1,770) [f(m+1,n+1)(f: Y gGo)Vely)

xem+2 yen+2

+ h(m+l,n+l)] 23)

Using the fact;ﬂlat Vz(m,n) >0, Jz(m,n+l) s Jz(m,n) ,Jz(m+1,n+1) =< z(m+1,n),
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Vz(m+1,n+1) = {z(m,n+1) for mn € N,, we observe that (see, [7, p.379])

[z - emetm | = L2 —znel,m))
Vz(m, n) +\/z(m+l,n)]

and

[[z(m,n) - Jz(m+1,n) ] - [Jz(m,n+l) - Yz(m+1,n+1) ]

< [ z(m,n) - z(m+1,n)] - [z(m,n+1) - z(m+1, n+1)] .

- (24)
[Jz(m+1,n+l) +z(m+1,n+1) ]
From (24) and (23) we observe that |
[z m - vzt | - [z ney - Vz@met, mon) |
sf(m+1,n+1)[ iz Ezg(x,y) Vz(xy) | + h(m+1,n+1). )

Now keeping m fixed in (25), set n = ¢ and sum over ¢ = n, nt+l, ..., g-1 to obtain

(Ve m -vzetm ) - [ Ve -t )

< i [f(m+l,t)[ 2.: i gx,y) Vz(x,y) ] + h(m+1,1) ] (26)1

ten+l T\ xeme2 y=ped

Noting that lim yz(m,q) = lim yz(m+1,4q) = c + e, and by letting ¢ — « in (26) we gdk

g—>m ladd

[Jz(m,n) - Yz(m+1,n) ]

t=n+] x=m+2 yei+l

< f: Ej(mﬂ, t) [ i: 2-: 80, ) Vz(x,y) ] + h(m+1,1) ] (27”

Keeping n fixed in (27), set m = s and sum over s = m, m+1, ..., p-1 to obtain

N s il Sl [f(s,r)[i: f:g(x,y)-Jz(x,y‘)')+h<s.r)]. o

som+]l tep+d xug+l ympel
i
i
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Noting that lim Jz(p, n) = c +e, and by letting p — o in (28) we get

po®

Vel = o m,n)+ T f:f(s,r)[ Y Y gt Ve ] 29)

son+l  tenel xeg+l yetel

where 'oib.(m, ny=c+e+Y Y h(s,t). From (29) it is easy to observe that

s=m+l t=n+l

T E Breo|£ Esen D) oo

Define v(m,n) by

vim,m) =1+ Y fj f(s,t)( ij E ¢(x 5 ] 31)

sem+l  ten+l =+l

~
QR
N

From (31) and (30) it is easy to observe that

[v(m,n) - v(m+1,n)] - [v(m,n+1) - v(m+1, n+1)]

sf(m+l,n+l)[ i i: g(x,y)] v(m+1,n+1). (32)

From the definition of W(m,n) given in (31) we observe that v(m+1, n+1) < v(m+1, n) form,n

€ N,. Using this in (32) we observe that

[v(m,n) - v(m+1,n)] _ [v(m,n+1) - v(m+1, n+1)]
v(m+1,n) v(m+1,n+1)

< f(m+1,n+1) i: i 8g(x,y). (33)

x=m+2 y=n+2

Now keeping m fixed in (33), set » = ¢ and sum over f = n, ntl, ..., ¢-1 to ‘obtain
- [vemm) - vem+1,m)] _ [v(m,q) - v(m+1, q)]

v(m+1,n) - v(m+1,q)
< }’: f(m+1.t)[ f: i g(x.y)} (34)

Noting that lim w(m, q) = lim v(m+1 q) = 1, and by letting ¢ —  in (34) we get

g g—=»
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v(m,n) - v(m+1,n) < z.: f(m+1,1) f: f: g(x,y)]. (35)

v(m+1,n) Pyt come2 yoitl
From (35) we have

v(m,n) s v(n+1,n) [l + zw: f(m+1,1) f: }E g(x,y)]]. 36)

f=n+l tme2 yers)

Now keeping n fixed in (36), set m = s and sum over s = m, m+1, ..., p-1 succesively to

obtain

s=m+l t=n+] xugt]l y=p+]

om,ny = vipmy [T |1+ 3 f(s,t)[ 3> g(x,y)]]. o7

Noting that as p — ®, v(p,n) = 1, and letting p —  in (37) we have

. (38)

v(m,n) < f[ 1+ i: f(s,t)[ i i g(’h)’)]

som+l t=n+l xugel ywte]

The desired Minequality in (13) now follows by using (38) in (30), the fact that

u(m,n) s \/z(m,n) and by taking e — 0. This completes the proof of (vi).

4. An application. In this section we present an application of our inequality given
in Theorem 1 part (i) to obtain bound on the solution of the following sum-difference
equation

YA = p) + X k. 90 .56, n € N, (9)

s=n+l

where p:N,—= R, k:N,*x Ny— R, F:N,*x R = R. We assume that

1P < %, |k, ) F, 1) < 2Lf@I¥©)] + ho)], o)
where £ h and c are as defined in Theorem 1. From (39) and (40) we obtain
Yo s e+ 2 ¥ LS@YOF + hOlye) 1. @
Now an application of the inequality glveln in Theorem 1 part (i) to (41) yields
vl =TT 11 +70) + > "‘”.ﬁ. [1+f®), n €N, @)

The inequality (42) gives the bound on the solution {(n) of equation (39) in terms of the
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known functions.

_ Finally, we note that the inequalities established in Theorem 2 can be extended very

easily to functions of several independent variables. We also note that there are many possible

applications of the inequalities established in Theorems 1 and 2 to certain new classes of

difference and sum-difference equations. However, the discussion of such applications is left

to another place.

10.
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PROBABILISTIC POSITIVE LINEAR OPERATORS
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REZUMAT. - Operatori liniari pozitivi probabilistici. Pentru un sir de operatori
probabilistici se indic# un algoritm de tip Casteljau. Se prezint# apoi céteva aplicatii.
1. Introduction. For every x in an interval ] of the real axis let us consider a sequence

of independent and identically distributed random variables _(Y,,‘)

nxl"’

Letp,20,i=1, .., n,
such that p,, + ... + p,,= 1 foreachn 2 1.

For a continuous function f on the real line let us denote

Lfe) - Ef(’Zj; P Y,‘] )
provided that the expectation is finite.

Many classical positive linear operators (in particular Bemnstein, Szdsz, Gamma,
Weierstrass and Baskakov operators) are of the form (1). The probabilistic positive linear
operators have been e;ctensively studied; see [1], [3], [7], [8] and the references therein.

Our approach is based on a recursive algorithm related to Casteljau’s algorithm. It
t;llows us to deduce some properties of L, from those of L,. Finally we shall generalize a
result from [7] concerning monotonic convergence under convexity. Other results of this type

are to be found in [4] and [13].
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2. The algorithm. Let fbe a given continuous function on R. Forx € Iand ¢,, .., ¢,
€ R denote
o, ....t) = f(p b, +..+p.1)
L, =BG, ot V), k=1, -1,
Then we have
Lfx)=ERYS, . .Y)=ERX, . Y,)=. =
= Ef5() = LfA() . Q)
Examples. (a) Let p,=1/n,nz1,i=1,.,n Let (X,),,, be & sequence; of

independent and on [0,1] uniformly distributed random variables. Let ¥, =

Kax)? O<sxsl,

where I, denbtu the ihdicator function of C. Then L_f(x) coincides with the Bernstein
operator B f(x); see [1].
Forx€[0,1], f€C[0,1), k=1, .,m1, ¢, .., 1, € {0,1} we have
Lo, ....t) = f((t,+...+1 )n)
L@, ) = A-050, .., 1,,,0) + x50, ...1,.1)
Lfx) = (1-2)£50) + xf5(1)
It follows that the computation of L_f(x) by means of (2) is equivalent to the
computation of B_f(x) by means of the Casteljau algorithm [9] (see also [11] and [14])).
(b) In the case of the Szasz operator (see [7]) we have forx 20, k=1, .., n-1, {, =
01,..,

ft, . t) = (4 + ... +1,)n)

£ nty) =e™ Y iy, by )X

J=0 :

Sf0) = e™ Y ()l

7=0
34
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(c) Let p,,= 1/n and let ¥,* be uniformly distributed on [x-1, x+1]. Then L_f(x) is
the operator of Petari¢ and Zwick [12). We have for k=1, .., n-1,

L@, ....t) = f((@t,+..+1)n)

x+1
@, ) = (12) f 5@, ot Dt
x-1

x+1

L f() = (1/2) f ()t
Remark 1. Let p,, = 1/n. Denote g," = f:lnd
&) = Ef(n-k)um + Y, n+...+Y)n), k=1, .., n-1

Then £, ... 1,,) = &°((1,+ ... + ¢ )(n-k)). -

Consider again the above example (c) and express L f(x) by means of a divided
difference (see [12]); we deduce

Lfe) = Ig.txu) By (w)du = )[g,tz(u) By'(u)du = ... =
- ’[g.,‘(u)B * (u)du

where B/, is the B-spline function [9] of degree j-1 corresponding to the equidistant points
¥l=t,<f<.<f=x+l,j=1,.,n

In particular, L_f(0) = I f(u) BY,(4) du. This means that the probability density of
X +..+YVn is the.spline function B_,. The characteristic function of the same variable
is

@{f) = ((n/t) sin (t/n))"

It follows that the Fourier transform of By, is @ (see also [5]).

3. Applications. For M > 0 denote

Lip@; 1) = {f € C): | f6) -fO)] < Mlx-»|, x,y € I},
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The following lemma can be proved by induction and we omit the details.
LEMMA 1. (i) If f € Lip (M;R) then
5@, ..t ,,)ELip(Mp, , ;R), k=0, . ,n-1

(ii) If fis increasing, then f(t,, ...t _,_,, ") is increasing, k=0, ..., n-1.

THEOREM 1. Let M\N > 0. If L, transforms the functions from Lip(M;R) [the
increasing functions) into functions from Lip(N;]) [increasing functions], then the same is true
Joreach L, n> 1.

| Proof. Let x,y € I, f€ Lip(M;R), n > 1 and ¢ = |x-y|. Then, by (), /(. ... 7, °)

isin Lip(Mp, ,_,; R), hence LAa.,..,t_,,, ) isin Lip(Np, k> 7). This means that the
function ¢ — Ef (AR S Y.\l isin Lip(Np, ,,:1) foreach k=0, .., n-1.

Let F, be the distribution function of ¥,". Since f; = f;”, we have

Lfx) =EfY, .. 1) = EFQY, .. Y1) =
- J"Ej{,’(tl, ot W YIYAF(1) . dF(1,) <

P LE/{(:,, ot ¥))AE (). dF () + Ngp,, =
n[:f]’(tl, ot )dF(t)..dF,(t,_,) + Ngp,, =

= Ef(YS, .., Y5) + Ngp, .
By repeating this argument we obtain finally
Lf®) s Ef(Y)) + Nq(p,,* . +p,;) = EfL(Y)) + Nq.
By virtue of (2) we have L f(x) = L f(y) + Ngq. It follows immediately that
|L,f(x) =L f(»)| = N|x-y|, hence L f € Lip(N;I).

The assertion concerning increasing functions can be proved similarly.
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4. Monotonic convergence. In what follows we put p, ., = 0, n = 1 and we shall

suppose that

(Po 1> 5Py o) majorizes (P,., 1s s Py, o) 3)
‘(Concenling majorization, see [10]).
THEOREM 2. Under the above hypothesis we have L f = L_,, f if f is convex.

Proof Let x € I If fis convex then the function

n+l

(qp seey u#l) - Ef quY"'
i=1

is convex and symmetric, hence it is Schur-convex [10; 3.C.2]. Now from (3) it follows that

n+1 n+l

Ef\Y. p. Y| = Ef|Y P, X7
i=1

i=1

This means that L_f(x) = L_,, f(x) and the proof is finished.

Remark 2. The above proof is suggested by Theorems 3.7 and 3.8 of [6). From
Theorem 2 with p,, = 1/n we obtain the inequality contained in [7; Theorem 3] (see also [2])
and proved there by means of a martingale-type property and the conditional version of

Jensen’s inequality.
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REZUMAT. - O clasi de operatori integrali de tip Favard-Szasz. in aceastd lucrare se

considerii un operator de tip integral, in sensul lui Durrmeyer [2] si Derriennic [1], care se

obtine plecind de la un operator de tip Favard-Szasz (4), introdus in 1969 de ciitre Jakimovski

gi Leviatan [4]. Autoarea di unele estimiri cantitative, exprimate cu modulele de continuitate

de primele douii ordine, pentru aproximarea functiilor cu ajutorul operatorului L, definit la (6).

Abstract. This paper one considers an ) integral type operator, in the sense of
Durrmeyer [2] and Derriennic [1], which is obtained by starting from a Favard-Szasz operator
(3), introduced in 1969 by Jakimovski and Leviatan [4]. The author gives some quantitative

estimates, in therms of the first and the second order moduli of continuity, for the

approximation of functions by means of the operator L,, defined at (6).

1. This paper is motivated by the works of J.L. Durmeyer [2], A. Lupag [6] and M.M.
Derriennic [1], which have obtained and studied a modified Bernstein operator
" 1
BNW = (r+1)Y d, () l[b,,,(r)f(r) dt,
k=0
SO [ o
where fis Lebesque integrable on [0,1].

S.M. Mazhar and V. Totik [7], similarly modified the Favard-Szasz operator and they

* Technical University, Department of Mathematics, 3400 Cluj-Napoca, Romania



A. CIUPA

have defined another class of positive linear operators

S N@ =nY e ‘""” ‘[ ‘””*f(r)dt @

k=0

for functions f € L, [0, )
By using a similar way we will modify an operator introduced by A. Jakimovski and
D. Leviatan [4]. Let us remind this operators. One considers g(z) = E a z" an analytic
n=0

function in the disk |z| <R, R> 1, where g(1) = 0. It is known that the Appell polynomials

Dix), k = 0 can be defined by

gwe” =Y p,()ut, @)
k=0
To a function f: [0, ®) — R one associates the Jakimovski-Leviatan operator
(P)x) = —EP,,( )f @
&(1) i

The case g(z) = 1 yields the classical operator of F avard-Szasz

SN0 = ey & sk )

k=0

B. Wood [9] has proved that the operator P, is positive if and only if
a
1 20,n=0,1, ...
&)
Now we will modify the operator P,, as follows: for a function f, Lebesque integrable

in [0,), we replace f (ﬁ) into P,, by a positive linear functional
n

A(H -.__'L“e‘"’t“"f(t)dt Az0 )
k T(A+k+1) ’
and so we obtain the operator
k*kOI
¢ f)()-ﬁzp,,( ) T 1)1 rf@ar. ©)

For g(z)=1 and A=0 the operator defined at (6) becomes the operator S, .

We suppose that this operator is positive, therefore 20,n=0,1,.. We denote by

g()
E the class of functions of exponential type, which have the property that | f(£)| s ¢#, for

each 7 = 0 and some finite number A.
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The following lemma is essential to study the convergence of the sequence (L_f) to
the function f.

LEMMA 1.1. For all x = 0, we have:

(Le)(x) =1

= + +1+ (1)
(Le)® =x (x 1 g(l)) 10

L =x2+ ;\+2+g(1)) [)\»,1 x+2)+ 2+ 8D 8”(1)*‘8’(1),
(Le)) =x ( 5 0102+ @r3) £ 1

where e(x) = x', i € {0,1,2}.
Proof. We will use the properties of the gamma function and the values of the operator

P, defined at (4) for the monomials e, e,, e,

(Pe)(x) =1

Pe)) =x+ 18D ®)
n g(1)
-l SH8MY, 1 g"M+g'()
Fue) () = x n(l 7o) g(l)) n g
For instance, let us calculate (L e,)(x). We have:
Aokt -nt gh+k+1 = 1 +k +
Afe,) = le (MR gy ;(x k+1)

and so we obtain

(L,e)x) =

(nx) — ()\+k+1) = _(7»+1) (P.e)(x) =

k=0
=x+—_[r+1+8 g'()
n g()
THEOREM 12. If f€ C[0,®) N E, then lim (L _f)(x) = f(x), the convergence

n—sow

being uniform in each compact [0,a}.

Proof. According to Lemma 1.1, we havelim (/. e, )(x) = ¢(x), i € {0,1,2}

n—+w
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uniformly on the compact [0,a], so if we invoke the Bohman-Korovkin theorem, we obtain

the desired result.

2. Estimate of the order of approximation. In this section we are concened with the
estimate of the order of approximation of a function f € L, [0, ®) by means of the linear
positive operator L, We will use the modulus of continuity defined byw(f; 3) =
= sup | f(x”) -f(x’)l,' where x/ and x” are points from [0,a] so that |[x” -x’| < &, 8
being a positive number. By using a standard method we prove .

THEOREM 2.1. If f € L,[0, a], then

L f)0)- 1+ [2e+ L{anr+2)+@r+3) 8D . 3”(1)*3'(‘)) L
LN~ = J (( 02+ EL . Lf 2

Proof. Because L e, = ¢, and L, is positive, we can write

I(Z, f)(x) -f@)| = —EP.(nx) | 4,(f) -f () 4,(e,)| =

k-o

Loko

).'3 PnY) o [e™ | f() - f(¥)| dt =

(1) k=0 C(A+k+ 1)!

n A+k+l

“nt gk |4 _ .
(1)§p,(nx)(l bm e ™Mk |y xldr)w(f,b).

By making use of the Cauchy inequality, we obtain

‘[e”"l"" |t -x|dt sJJe""t""‘dt Jl!‘e""t”(r-x)zdr -

_T(A+k+1) Jx,_h k+eh+1 | (k+h+1)(k+h+2)
n

n A+k+l 2

. n
It results that
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I(L,f) @) -f@)| =

A+1D(A+2) +k(2k+3)+k2 o kAl 2 ‘
e L ’J " i e fo(f30),

We use again the Cauchy inequality and we get

i L1 e &) L g7 (1)+g'(1)
N -f®)] 5|1 ‘an‘ ((x D2 @A EL o ) o(f; 8)

By inserting into it 8 = L , we obtain the desired result. -
Next we will give sgme approximation theorems in different normed linear spaces. In
order to establish the next results, we need some deﬁniﬁons_.
The second order modulus of continuity of f € C, [0, ®) is
o,(f;0) = sup 1f(e+2h) -2f(c+h) +f(O)l,, t = 0
where Cg[0,) is the class of real valued functions defined on [0,0) which are bounded and
uniformly continuous with the norm | £l = ) :gp’) | fG)].

The Peetre K-functional of function S € Cyis defined as

K0 = inf {17 g, + thgle}
lecn
where C; = {f € C,| /',/" € C;}, with the norm 171c; = Ufle, + IS I, + 1/" I, It is
known the following inequality;
K(7:0) = Afo, (V7 ) + min(1, 0171, ©)

for all 1 € [0,), the constant A being independent of 7 and £ We will also use

LEMMA 2.2. If z € C}0,%) and (P,) is a sequence of linear positive operators with
the property P.e, = e,, then

P, -2 = 11 (P,0-07) 0+ L1120 -x7) 0
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The proof is analogous to the proof of theorem 2 from [3].
THEOREM 2.3. If f € C[0,a), then for any x € [0,d] we have

L@ -fo)l s a3 (3 +ﬂ)wz(f; h),
a 4 h

= |2X f1) O+ 80, g"M)+g'()
where h J27 L [(x DE-2) + A3 EL L]

Proof. Let f, be the Steklov function attached to the function £ We will use the

following result of V.V. Juk [5].if f € Clab] and he€ (o, b ;“) then
TEAD _.u)z(f hyand IS | < ihlw (f: h). Since L,e, = ¢,, we can write
(LN -] = |L,(f-£)@)] + L, L)) -£,0)] + | £,0) -f(x)| =
s 20/-A0 + (L, 1,) ) - £,
For the function f, € C*[0,a] we use lemma 2.2:

L 1)6) - £, = 1A 1, ¢ -7 () uf’ (L, (- %)) (x)

According to result from [3] and [5], we have

AP AL AP Al EEAT AP _m ﬁl w, (f: h).
a 2 a 2

By making use of this inequality and choosing 4 = m we obtain
LS - £, = 20110+ 22 2w, (fih) « 2w, (Fih)
and therefore we get
(L) -1 = 20710 + Z07uh + %(% - 1)% (/i)
Here we use the inequality || f - £l =< %wz (f; h) and we obtain the desired result.
Remark. If we consider g(z) = 1 and A = 0, we obtain, for the operator due to SM.

Mazhar and V. Totik [7], the estimation

ISE N -] = 22 1p0 2(3 . 3) w, (f1h),
a 4 h

44



A CLASS OF INTEGRAL OPERATORS

2

where h = 2X . > -

n n
THEOREM 2.4. For every function f € C, [0, ®), we have

- L[ 1 o 1vh ey s x40 8 (1), 87 (D)+g’ (D) ,
) f(x)lsg{x 5[@ D2+ @ EL - £ O }llfllc_

Proof. Applying the Taylor expansion to the function f € C,, we have
(LNHx) - f0) = f @)L, -x))(x) + %f” (E)(L,(t-x)*)(x), where & € (1, x)

By using lemma 1.1, we can write successively

(LN -1@] < - (x 1+

g' M)\, ¢ .
5 ) 1N,

+l -o-1 + +2) + + gl(1)+gll(1)+glg) 4 l + +gl(1) "N, +
7,-{2" -n-[a 1)(A+2) + (2A+3) ]}Ilf I, n(x 1 g(l))llf I

g(1) g(1)

e e v sy s on ey 8D L 87 () +g' My g7
e seenan e £9 L LCED i <

|3 P P +7) + + gl(l)_,,g”(l)"gl(l) TN Y L
57{x 3[0 Dar2)+@ren £0 . £ O }(llf Ie, + 1771,

Remark. If we take into it g(z) = 1 and A = 0, we obtain
- ]
(S, ) ) - fx)] = ;(x +DIfl;
result obtained by S.P. Singh and M K. Tiwari [8].

THEOREM 2.5. If f € C,[0, »), then we have

LN - f@)] = 24(0,(f; 1) + L @IS, ),

el L e e noien) + oh+3n 8D, 87 () +g'(1)
where h \IE.,.{x 3[(x D02+ @ E L 1 }

A(x) = min (1, h*) and A is a constant independent of h and f.

Proof. We will use the theorem 2.4 and the K-functional. For f € (C4[0,%) and
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z € C: [0, ), we have

L NE) -f@)] = |[LNE) - L,)E)] + |(L,2)E) - 26)| + |z(x) - f(x)] =

< 2||f-z||c'+%{x+%[(k+1)(1.+2)+(2k+3) i’((ll)) . g”“;(’]"f'(l) }uzllc,.,

Because the left side of this inequality does not depend of the function z € C;, it

result that

(L, N&) - f@)| = 2K(f; A(x, n)),

where

e i Naran 8 ), 87 1)+g'(1)
A(x, n) E{x 2[(1 D042+ @9 EL L ]}

By making use (9), we obtain
(LN -1 = 24{w(/: VG ) + min(1, A, M)A, ) -
= 24(w,(f; ) +min (1,h*) | fI,)

x+1

Remark. For g(z) m 1 and A = 0, we have A(x,n) = and we obtain a result due

to S.P. Singh and M K. Tiwari [8]:

x+1

(S, NE) - f()] = 24 |w, | f;

. x+1
+min|l,____ |-
( 2n )llfIC,
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L)

REZUMAT. - Puncte fixe comune pentru functii compatibile de tipul (A). fn. aceastat
lucrare vom da uncle teoreme de punct fix pentru functii compatibile dg tipul (A) extinzdnd
uncle rezultate din [4]-[7].

Abstract. In this paper, we give some common fixed point theorems for compatible

mappings of type (A) extinding some results from [4] - [7].

Rhoades [8] summarized contractive mappings of some types and discussed on fixed
points. Wang, Li Gao and Iseki [10] proved some fixed point theorems on expansion
mappings, which correspond some contractive mappings. Rhoades [9] generalized the results
for pairs of mappings. Recently, Popa [4] -[7] proved some theorems on unique fixed point
for expansion mappings.

The purpose of this paper is to prove some fixed point theorems on expansion
mappings extending some results from [4], [5], [6] and [7] for compatible mappings of type
(A).

Let R, be the set all non-negative reals numbers and y: R} — R, be a real function.

Throughout this paper, (X,d) denotes a metric space.
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DEFINITION 1. y: R} = R, satisfies property (h) if there exists 4 = 1 such that for
every u,v € R, with u =2 Y(v,u,v) or u = P(v,v,u), we have u = hv.
DEFINITION 2 ([6]). ¥: R} — R, satisfies property (u) if y(%,0,0) > 0, u > 0.
DEFINITION 3 ([1]). Let S,T: (X,d) = (X,d) be mappings, S and T are said to be
compatible if
lim d(8Tx,,TSx,) = 0

whenever {x,} is a sequence in X such that li.T. Sx, = lim Tx_ =t for some ¢ in X.
DEFINITION 4 ([2]). Let S,T: (Xd) — (X,d) be mappings, S and T are said to be
compatible of type (A) if
~ lim d(TS,,SSx,) = 0 and lim d(STx,,TTs,) = 0

whenever {x,} is a sequence in X such that lim Sx, = lim Tx = for some ¢ in X.

Remark. By ex. 2.1 of [2], it follows that the notions of "compatible mappings" and
"compatible mappings of type (A)" are independent.

LEMMA 1 ([2)]. Let S, T: (X,d) — (X,d) be compatible mappings of type (A). If
one of S and T is continuous, then S and T are compatible.

LEMMA 2 ([1]). Let S and T be compatible mappings from a metric space (X,d) into
itself. Suppose that lim Sx = lim Tx =t for some t in X. Then lim TSx =St if S is
continuous.

LEMMA 3 ([2)). Let S, T: (X,d) — (X, d) be mappings. If S and T are compatible
of type (A) and S(f) = T(1) for some t € X, then ST() = TT(f) = SS(t) = TS(1).

LEMMA 4 ([7]). Let (X d) be a metric space, A, B, S, T four mappings of X satisfying
the inequality

f d(Ax, By) =z $(d(Sx, Ty), d(4x, Sx), d(By, Ty)) (1
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for all x,y in X, where  satisfies property (u). Then A, B, S, T have at most one common
Jfixed point.
THEOREM 1. Let 4, B, S and T be mappings from a complete metric space (X,d) into
itself satisfying the conditions:
(1°) A and B are surjective,
(2°) One of A, B, S, T is continuous,
(3°) AandS as well B and T are compatible of type (4),
(4°)  The inequality (1) holds for all x,y in X, where ¢ satisfied property (h) with
h>1
If property (u) holds and ~ is continuous, then A, B, S and T have a unique common
fixed point.
Proof. Let x, € X be arbitrary. By (1°) we choose a point x, in X such that
Ax, = Tx, = y, and for this point x,, there exists a point x, in X such thatBx, = Sx, = y,.
Inductively, we can define a sequence {y,} in X such that
Ax,, =Tx, =y, and Bx, ,=8x, =y, .. )
By (1) and (2) we have
d(y,,y,) =d(Ax,, Bx,) = (d(Sx,, Tx,),d(Sx,, Ax,),d(Tx,, Bx,))
= Y(d(,,0,), 403 2), 40 01).
i’hen by property (h), we have
d(y,, ) = h-d(y,,y,), where h> 1.
Thus d(y,,y,) = %d(yo,yl). Similarly, we have
Ay, Vo) = (%)"'d(yo,y,).

Then by a routine calculation we can show that {y,} is a Cauchy sequence and since X is
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complete, there is a z € X such that lim y, = z. Consequently, the subsequences {Ax,,.,},
{Bx,,}, {Sx,,.,} and {Tx,,} converges to z.

Now, suppose that A4 is continuous. Since 4 and § are compatible of type (A) and 4
is gonﬁnuous by Lemma 1 A4 and S are compatible. Lemma 2 implies 4%x, , — Az and
SAx, ., —> Az as n — », By (1), we have

d(A%x,, ,Bx,) = Y(d(SAx,,,, Tx,),d(SAx,,,,, A*x, ), d(Tx, , Bx,))).
Letting n tend to infinity we have by continuity of ¢
d(Az,z) = y(d(4z,2),0, 0).
By property (u) follows d(Az,z) > d(Az,z) if Az » z. Thus z = Az. By (1) we have
d(Az,Bx,) = ¥ (d(Sx, Tx, ),d(Sz, Az),d(Tx,,, Bx, ).
Letting 7 tend to infinity we have by continuity of
G d(Az,z) = ¢(d(Sz,2),d(Sz,2),0).

2 h d(Sz,z) which implies z = Sz. Let z = Bu for some u € X.

a3

By definition (1) we ha#

Then we have by (1)
d(A%s,,, . BEFs ¢(d(SAx,,,, Tu),d(SAx,, , A’x, ), d(Tu, Bu)).

Letting 7 tend to infiriEwe

have by continuity of

0= d(Az,Bzr;}?ﬁ‘fﬂ?(d(Az, Tu),0,d(Tu,Bu)) = y(d(z, Tu),0,d(z,Tu)).

By definition (1) we have 0 2 A -d(z, Tu) which implies z = Tu. Since B and T are
compatible of type (A) and Bu = Tu = z Lemma 3 Bz = BTu = TBu = Tz, moreover by (1),
we have

d(Ax,,,,Bz) = ¢ (d(Sx,,,,, Tz),d(Sx,,,,, Ax,,,),d(Tz, Bz)).

2n+1?
Letting » tend to infinity we have by continuity of ¢
d(z,Tz) = ¢(d(z,1z2),0,0).
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From property (u) it follows that d(z, Tz) > d(z, Tz) if z » Tz. Thus z = Tz. Therefore, z
is a common fixed point of 4, B, S, T. Similarly, we can complete the proof in the case of
the continuity of B.

Next, suppose that S is continuous. Since 4 and S are compatibly of type (A) and S

is continuous by Lemma 1 A and S are compatible. Lemma 2 implies S%x, , — Sz and

2n+1
ASx,,,,—> Sz as n — . By (1), we have
d(ASx

Bx,) = y(d(S%x,,,,, Ix,),d(S%x,,,,, ASx, ), d(Tx, , Bx,)).

2n+1?

n+1?

Letting n tend to infinity we have by continuity of

d(8z,z) = ¢v(d(Sz,2),;0,0).
By property (u) we have d(Sz,z) > d(Sz,z) if z =Sz Thusz = Sz. Letz = Avand z = Bw
for some v and w in X] respectively. Then by (1) we have

d(ASx,,,,,Bw) = ¢ (d(S%x,,,,, Tw),d(S*x

2n+1°

1> ASx, ), d(Tw,Bw))
Letting 7 tend to infinity we have by continuity of v

0 =d(Sz,z) = 9(d(Sz,Tw),0,d(Bw,Tw)) =y (d(z,Tw),0,d(z, Tw)).
By Definition (1) we have 0 = h-d(z, Tw) which implies z == Tw. Since B and T are
compatible of type (A) and Bw = Tw = Tz by Lemma 3 Bz = BTw = TBw = Tz. Moreover,
by (1), we have

d(Ax,. ,Bz) = ¥ (d(Sx

2n+1?

Tz),d(Sx

2n+1?

Ax, .),d(Bz,1z)).
Letting n tend to infinity we have by continuity of ¢
d(z,Tz) = d(z,Bz) = Y (d(z,7172),0,0).
By property (u), it follows that d(z, Tz) > d(z, Tz) if z » 1z. Thus z = 1z. Further, we have
by (1)
d(Av,Bz) = ¢ (d(S\), Tz),d(Av,Sv),d(1z,Bz)) and
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0 =d(z,z) = y(d(Sv,z),d(z,Sv), 0). By Definition 1 we have 0 = h -d(Sv, z) and thus
Sv = z. Since A4 and § are compatible of type (A) and Av = Sv=1z by Lemma 3 Az = ASv
= SAv = Sz. Therefore, z is a common fixed point of 4, B, S and T. Similarly, we can
complete the proof in the case of continuity of T.

From Lemma 4 it follows that z is the unique common fixed point of 4, B, S and T.

DEFINITION 5 ([3]). ¥: R} — R, satisfies property (B) if for every u,v € R, such
u = Y(v,u,v) we have u = hv, where y(1,1,1)=h = 1.

DEFINITION 6 ([7]). ¥: R} — R, satisfies property (B") if for every u,v € R, such
that 4 = Y(v,v,u), we have u = hv, where P(1,1,1)=h 2 1.

CORdLLARY 1. Let AB,S and T be mappings from a complete metric space (Xd)
into itself satisfying:

)] the conditions (1°), (2°), (3°) of Theorem 1,

) The inequality (1) holds for all x,y in X where  satisfies property (B) and

B ) withh = 1.

If property (u) holds and < is continuous, then A,B.S and T have a unique common
Jixed point.

THEOREM 2. Let A,B,S and T be mappings from a complete metric space (X,d) into
itself satisfying conditions (1°), (2°) and.(3°) of Theorem 1. If there exist non negative reals
a,b,c,d with a+b+c+d > 1 such that

d*(Ax,By) = a-d*(Sx,Ty) + b-d™(Ax,Sx)-d*"(By, Ty) +
c-d*?(Sx,Ty)-d?(Ax,Sx) + d-d*(By, Ty)-d**(Sx, Ty) )
wherekz1,q=0,mz0,p20andq=sk p<k m=<khold for all xand y in X, then A.BS
an‘c‘i T have a common unique fixed point if a > 1.
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Proof. Let
Y1, 1,,1,) = [a RS Y ARY NP TR ARV o S BTN -t,""’]m.
Let u, v such that u = ¢ (v,u,v), then
az[avkebumv " gyt and
a =z a\;*+ bumvk™+ cu?-vtr+ dvt
Thes (a +d)-t*+ b-t™+c-t?-1 s 0 where = V/u.
Let g:zt): [0,00) - R (g the function g,(7) = (a +d)t*+bt™+ct?- 1. Then &/ (®) > 0 for
t>0,g0)<0and g(1p»=a+b+c+d-1>0. Letr, € (0,1) be the root of the equation
8 (") = 0, then g,(¢¥) <0 for 7 <r,. Let u,v be such that # = y(v,v,u), then
uzfavts byrmums cvre dutt "
Similarly, we have
@+c)t*+ bt "+ dt*e-1<0

where t = v/u. Let 8 [0,%) — R be the function g,(r) = (@ +c)t*+ b-t*™+di**- 1. Let
r, € (0,1) the root of the equation g,(f) = 0, then g,(r) < 0 for # < r,. Thus g,(¥) < 0 and g,(¢)
<0 for t <min {r,r,} =r, r € (0,1). Then (v) <r and u > (1/r)v. Thus h=(1/r) > 1 and
uz hvwithh>1,

On the other hand we have y(%,0,0) = a"* 4 > u. By Theorem 1, it follows that 4,B,S
and T have a unique common fixed point.

COROLLARY 2 ([4]). Let (X,d) be a complete metric space and f. (X,d) = (X,d) a
surjective mapping. If there exist non-negative reals a,b,c,d with a+b+c+d > 1 such that

d*(fe,fy) = a-d(x, fx)-d*(x,y) + b-d"(y, fy)-d""(x,y) +
c-d?(x,fx)-d**(y, fy) + d-d*(y), @

where k = l,q:O,sz,szar:l;sk, msk,pskforeachx,yianithxuy, and
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ifd > 1, then f has a unique fixed point.

CORROLARY 3 ([5]). Let (X.d) be a complete metric space and f (X, d) = (X,d) a
surjective mapping. If there exist non-negative a,b,c witha < 1 and c > 1, then f has a unique
fixed point.

THEOREM 3. Let S, T and {f}},c,, be mappings from a complete metric space (X,d) into
itself satisfying the conditions:

(1°)  {f}.ey are surjective,
2 SorTorfis continuous,
(3°) S and {f} ey are compatible of type (A) and T and {f}.cy are compatible of
type (A).
(4°)  The inequality
d(fx.f.,9) = $(d(Sx, Ty), d(fx, Sx),d(f,.y, T¥)) ©)

hold for all x and y in X, ¥ i € N, where  is continuous, satisfies property (h) with h > |
and property (u), then {f} .y, A and B have a unique common fixed point.

Proof. 1t is similar to the proof of [7, Theorem 4].

COROLLARY 4. Let 8, T and {f}  be mappings from a complete metric space (X,d)
into itself satisfying the conditions (1°), (2°), (3°) of Theorem 3 and

d*(fx.f,y) = a-d"(Sx, Ty) + b-d*(fx,Sx) + c-d*(f,,y,1y). ©)

wherek=1,0=<b,c<1,a>1hold forall xand y in X, ¥ i € N, then S,T and {f} <\ have
a unique common fixed point.

We conclude this paper with the following example, which shows that "surjectivity
of 4 and B" is a necessary condition in Theorem 1.

| Example 1. Let X = [0,0). Define 4,5,B and T: X — X given by Ax = kx + 1, Sx
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x+1,Bc=Tx =1 forxin X and 2 = k > 1. Note that the following mapping satisfies

properties (h) and (u):

V(. 0, 1) = k-max{1,,1,,1,}, where k> 1.

Now, d(Ax, By) = kx = k-max{x, (k-1)x,0} = k-max{d(Sx, Ty),d(A4x,Sx),

d(By, Ty)} = v(d(Sx, Ty),d(Ax, Sx), d(By, Ty)), for all x,y in X, where 2 = k > 1.

Consider a sequence {x,} C X such that x, — 0. Then it is to see, by routine calculation, that

AS and B,T are compatible of type (A). Moreover, 4,B,S and T are all continuous. Therefore,

we see that all the hypothesis of Theorem 1 are satisfied except surjectivity of 4 and B, but

the mappings 4,B,S and T have no fixed point in X

10.
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REZUMAT. - O metodd de rezolvare a sistemelor de ecuatii neliniare in spatii finit

dimensionale. in aceasti hucrare se apliéa ideea lui Seidel §i metodg SOR pentru forma

iterativ a unui sistem de ecuatii neliniare i se dau conditii suficiente, care asiguri convergenfa

girului iterativ.

It is well known to obtain solutions for a linear and nonlinear system of equations one
kind are the iterative methods (see [1] pages 177-188, [2] pages 40-49 and 127-166, or [3]
pages 82-106 and 322-363). For the linear case the simplest method of such type is known
as Jacobi’s method. For the nonlinear case this method appears, too as Jacobi’s theorem.

Let us consider the function f:D C R" — R", where D = J, and let us transform
the system of equations f(x) = 6,. in the iterative form x = ¢(x) (see [4] pages 21-22).

THEOREM (Jacobi). Let us suppose that D’ is a domain, and¢ : D’ C R" — R"
a Fréchet differentiable map. If A C D' is a closed convex subset such that ¢(A) C A, and
there exists a € (0,1) with property: i ?ﬂ *)

Jj=1 'y
then the system ¢(x) = x has a unique solution in A (see [5) page 81).

< a for everyx € A and fori = T,n,

For the linear system of equations transformed in the iterative form there exist other
methods, which increase the rapidity of convergence for the iterative sequence obtained by

the Jacobi’s iterative method, like the Gauss-Seidel, and more, the successive overrelaxation
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methods.

In the case of nonlinear systems of the form f(x) = 0,. , it is known the so called
Seidel-SOR method, which combines Seidel’s idea with the successive overrelaxation. The
existing result in this direction is the following:

Let us consider the function f:D C R"— R”", f=(f,,....f,). We suppose it is
known the k-th term »* of the iterative sequence, and we want to find x**!. If we suppose that
the first i-1 components of ¥**! are determined, than let’s consider x, to be the solution of
the equation: £, (x;™", ..., x5, x,, x5, .., x,}) = 0. We can calculate this approximative valuex,
by one of the methods of solving nonlinear equations in one variable.

Then hwe obtain the i-th component like: x;"' = x,* + w-(x/ - x,'), where ® € R" is
a factor of relaxation. We consider the decomposition f(x) = ID(x) - L(x) - U(x) for the
Jacobian of £, where D(x) is the diagonal matrix formed by the diagonal elements, L(x) is the
lower triangular matrix, and U(x) is the upper triangular matrix. We note:

B(x) = 0™ [Dx) - w-L(x)],
Cx) = o' [(1-w):D(x)+w-UR)], Hx) = B'C.

Now we are ready to announce the theorem obtained by the local linearization around
the solution x” of the nonlinear system of equations:

THEOREM (Seidel-SOR). Let us consider the function f:D C R" — R" and let us
suppose that x° is a solution of the system f(x) = ©,.. If we suppose the following conditions
hold: i) f is continuously differentiable in a neighborhood V(x*) C D of x", ii) D(x") is not
singular, 1iii) the spectral radius p(H(x")) <1, then there exists a sphere
S(x*r) = {x ER"|Ix-x"| = r} C V(x*) such that for every x € S(x*,r) the iterative
.;equence {x*},cv generated by the Seidel-SOR method is unique defined and converges to x',
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k. x° is an attractive point for f (see [6] pages 89-95).

The purpose of this work is to apply the Siedel’s idea and the SOR method for the
iiératiye form ¢(x) = x of the nonlinear system of equations and to find sufficient conditions
which assure us the convergence of the iterative sequence. First we rewrite the system
J(¥) = 0, in the nonlinear rela:;ation form:

We suppose that we can form the function ¢*: D/ C R" — R " in the following way:

$106) = x, + 0 ($,(x) - x,),

620 = x, + 0 (0,(91(), %y, .., %,) - X,), ...,

$/(x) = x,+ 0 (@10, ... $/1(%), X, 2, %)~ X)),

01 = x,+ 0 (0,41, ... 0140, %,) - x,)
for every x € D', where w € R’ is the factor of relaxation. For 4 » &, 4 C D’ closed,
convex set, let us consider the numbers:

fori =T n:

a, = sup ||1 —w+w-_(}1:’i(x)| |x € A,
fori,j=T,nandimwmj
a, = sup |w-%(x) | |x € Af.

s
For i = T, n we generate the numbers:

i-1 n
M=% a;M+3 a,
0 J=1 J=i

w'ith convention: E a M =0
-1
THEOREI\jd 1. If we suppose that: i) ¢:D’ C R"— R" is a Fréchet differentiable
Junction, ii) there exists a closed convex subset A » B, A C D’ such that $*(A) C A,
iii) for this set A, max {M,|i =T, n} < 1, then for every x" € A the iterative sequence
x*! = @°(x *) exists and converges 10 the unique fixed point of the function ¢.
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Proof. We consider the norm:
Ixl, = max {|x,| |i = T,7)
on R", and we apply the Banach fixed point theorem to the function ¢°. For everyi = T,7
we obtain:
19:0) - ;)| =
= 13, =%, + 0 (S 0N s 110DV V) = S B1N b1, .,) = 0, X))} | =
= 10,-2) (1 ~©) + 0 (B @I0) - 110N Y ,) ~ 410, 2 914X, X, )} | =
= 10, 2)(1 - ) + o-di,@)]
where
U= (@10), s (), X, %) + E@I0) - 6109, o914 0) ~ 971()Y, = X, .Y, - X,),
with € € (0,1), and
|, x)(1 - @) + m}: X ) @;0) - 40 + wE 2 (u)(y x)l <

J

99,

s):lw b W)l 19/0) - /@) + 101 -@) + 02 ()| -ly, - x| +
/ J
+2 |w (u)I O, -%)| =
Juitl xJ
s(Ea M+ a,+ Y a)ly-xl.
Jmisl
Consequently

19°0) - ¢° N, = max {|$;0) - ;)i =T, n} =
s max{M|i = T/n}-ly-xI,,
with max {M||i = T,7n} < 1. So ¢ is a contraction and we can easily see that the fixed

point of ¢° will be a fixed point for ¢, too.

For w = 1 we obtain the Seidel’s method for the system of nonlinear equations in the
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iterative form. In this case we define the function ¢*: D/ C R" — R" in the following way:
$/(x) = ¢,(),
$:0) = ¢,(6:(%), %, ..., x,), ...,
) = 6,10, . 11, %, )
$,(0) = ,(4:(x), ... (), x,),
and for A w &, A C D’ closed, convex set,we consider the numbers:
o, - .
a, = sup IFx_j.(x)l |x € A, fori,j=Tn
and we generate the numbers:
M, 'gau'Mj +2":atf' for i =T,n
with convention: i a, M = 0.1 l g
THEOREI\jd l2 If we suppose that: i) ¢: D' C R" — R" is a Fréchet differentiable
function, ii) there exists a closed convex subset A w @, A C D' such that ¢'(A) C 4, iii) for
this set A, max {M|i = T,n} <1, then for every x" € A the iterative sequence
¥ = §°(x *) exists and converges 10 the unique fixed point of the Junction ¢.
Example. We solve the following nonlinear system of equations:
7sinx = x2+ yz + cosz
9siny = xz% + ycos(xyz) + 1
8sinz = xsinz? + y2cos(xy)
for x,y,z € [-1,1]. We transform the system in the following iterative form:
x = arcsin[(x? + yz + cosz)|7]
y = arcsin[(xz2 + ycos(xyz) + 1)|9]

z = arcsin[(xsinz2 + y2cos(xy))|8]
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and we solve it using Jacobi’s theorem, Theorem 2 and Theorem 1 with w = 1.1. If we
consider the initial point x° = (0.5, 0.5, 0.5) then we obtain the solution with accurate to two,
three, four, five decimal places by making 4, 3, 3; and 5, 4, 4, and 6, 5, 5; and 7, 6, 5
iterations, respectively.

Remark. We can obtain theorems like Jacobi’s theorem, Theorem 1 and Theorem 2
by using other norms on R”. One problem is to find such a norm, for that the conditions on

the system are larger.
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REZUMAT. - O solutie numerici pentru Fcuatin diferentiald de ordinul m folosind functii

spline. Se construieste un procedeu numeric folosind functii spline ‘polinomiale pentru

rezolvarea unei clase de ecuatii diferentiale neliniare de ordin m cu conditii initiale. Se

estimeazii eroarea gi se investigheazii stabilitatea metodei propuse.

L Introduction. In the last years, the probiem of approximating the solution of non
linear differential equations by spline functions has been of growing interest. Many authors
[1]-[6] have proposed various methods to approximate the solution by means of spline.

Recently, J. Gyorvari and Cs. Mihalyko [3] gave a spline algorithm to solve
numerically a differential equation with initial conditions. In this paper, using the idea of 7.
Fawzy in [1], [2] an improved algorithm is constructed using spline fuinctions and in addition,
the stability of the proposed method is given.

Consider the differential equation with initial condition

z™(x) = f(x,z(x),z'(x), ..., z2™(x)), x € [0,8], b >0 (1.1)
zN0) = 2", j=TmT
where f € C"([0,5] xR') and r E N.
We assume that f satisfies the following Lipschitz conditions

| /90, w) - fOCe, )| 5 Lu-v] (12)
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x€[0,8), uvER, q=0,r
The differential equation (1.1) can be reduced to a system of m differential equations
of first degree as follows:
One denote: y,(x): =z(x), y,(x): =z'(x), ..., y,_,(x): =z (x)
Then (1.1) is equivalent to
y'(x) = F(x,y(), x € [0,5] (13)
Y =(Yp»-rYuy):[0,5] = Rand
F(2,y09) = 040, ., Yo a1, M),
One have F@(x, y(x)) = (3 9x), ..., % (x),f @(x, y(x))) so the Lipschitz conditions
for f holds for F too:
|FO@,u) - FOx,v)I < Liu -v| (1.4
x €[0,8), uvER,q=07
One consider for the system (1.3) the initial conditions
N0) =y,
On [0,5] we define an uniform partition by the knots
A:0=x<x<.<x <x =b n€N

with the step h = x,, - x,, k = U,7-1 and one denote y,” = y(x,), k =T.n, j =TT

IL. The first approximation process. Let y be the exact solution of Cauchy problem

for the system (1.3). By integrating from x, to x we get

¥x) =y, + J‘F(:, wH)dt, x € [x,,x,,] 2.1
and for x: = x,,, we get .
Ve = Vi * j F(1, Mt))dt 2)
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This equality may be approximated with

T

Va= Pa [FC. @)t @3)

where *

rel 'U)
WO =Y €-xy 2 ! € Pl 23)
N
which corresponds to the Taylor expansion
1)

Y@ - 2 @- x.)' y; .2 &) (t-x )", 2.4

J=0 (r+1)!
‘e [xi'xhl]’ xl’ < E‘ <x bl

Now, we assume that the function fhas the modulus of continuity w,(h) associated to
the above defined mesh of points.
One will also use: 3, = ¥, 7' = Yo, » Ja D=y,

LEMMA 2.1 The inequality

1 = Veal s -7 (1 + ¢ h) + c 0 (h)h
holds for k = U, ni-1, where c, and c, are positive and independent of h.
Proof.

W= Vel = -y, + L j Y@ -y (hdt <

X

YOE) (v

sy, - y.I+L!IE-_(t x) + L )”'+E_(t—x)’|dts

s by, y,l LE lyk gL 'h"*-L h~

V) = 2)|“’(") eyl + Lhly, -yl +

o, (h) =

LE 1FO0, ) - FOw 30 g
a0 ¢+2) (r+2)!

SN Lic L

==yt + 1y, -yl U’*I)’t -yl-Le E @+2)! (r+2)l w (Hh" =
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s Iy, -y (1 +¢ch) + co (W)h™.
THEOREM 2.2 The convergence of the approximate value y,,, o the exact value y,,,
is given by the inequality
Wi = Yeul s ;o (M)A,
Proof. One apply succesively Lemma 2.1:
e = Vel = 1= %0 (1 +c,h) + cjo0, (B)h "™

Wit = Yeal (1 + k) = 1y, =y 0= (1 +c,h) + e, (B)h ™2 (1 + c,h)

1y = Veal (1 + SoB) < My, =y, 0= (1 +c By + o (W) R "2 (1+c h):
Adding the inequalities above one obtain

— k e AV 1
=Tk = cy0 7Y (1 + o = con(ynr L2 1
q=0

c, h

0

k+1 n

Because (1 +c h)*! = [l +%] s (l +%] < e’® = cosnstant, (1+ ! s
bounded, so 1y,,, - J,.,I = ;o (WA

THEOREM 2.3 The error for 3,5V is given by the inequality

s - i le, o)™, g = T7
Proof Iy&" - 58N = VFO(x, 1, ¥0,) = FOx L)l =
= L'WYy~ Vpal = 00, ()R

So, one obtained the approximative values y,,,, ...,y, € B corresponding to the
mesh of points 0 = x, <x, <. <x =b.

In x, one obtained the following approximations for the solution of (1.3):
Y=y, Y8y for  y®, q=T,7+T which correspond in (1.1) to
(z,'z’ s 2™ D),
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T aT 7 .aT SN, = . T/ Temel) = (D)
One denote: z,:= ¥, 1, 2 =Y, 50s Ze = Vems 2k - =Vioms 2k = Yem

THEOREM 2.4 The convergence of the approximative value z,5) to the exact valuez)

is given by the inequality

12 - 22| s c,0 ()h™, j = T, rem+1

Proof. This is a direct consequence of Theorems 2.1 and 2.3.

IIL The second approximation process. One obtain the following sets of approximate
values:

Z9: 29,2 q =0 rm

which correspond respectively to

ZD: 2@ 9 2P q =T,rm

We are going to construct a spline function S, interpolated to the set Z on the mash

A and approximating the solution of (1.1).

THEOREM 3.1 For a given mesh of points
A:0=x<x <.<x<x,<.<x =bx, -x =h k=0n"1

and for the given sets of values Z @. 29 2@, ..,29 q =T,r+m there is a unique spline

Junction S, interpolated to the set Z on the mesh and satisfying the following conditions:

@) SA(E', x) =S,(x) € C™[0,d]
(i) 520, =27 for ¢ =0, 7om, k =U,n
(iii) Forx, s x=sx,, k=0,n-1

rem ()

rem+1

z .
SA(x) - Z k—' (x "xk)’ + E ap(k) (x _xk)P"’m-
ISEwA Pt

Proof. From the continuity condition (i), for x = x,,,, using (ii) we get

W, ) =
S i) = Sen(x,,) = 2.

G.D
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- Substituting from (3.1) in (iii) we get the following linear system of equations:

reme+l _ rem-t Z'(J’O .
2 ne rm” :k)hl’-l - ptrml |7 (0 E "" h/t , I = U,'w-m 3.2
o T
for the unknowns a, , p = T, 7+*m+1. One denote
rem-1 500
® _ ptrml 3O _ %
FP=h [z,‘., Yy - h]. (33)
T
The system (3.2) has always (for 2 = 0) a unique solution because its determinant is
1 h#! h™m
Crﬂn*l 1 Cr‘bn‘.*p. l! hP’l Clr‘Zm'l. 1! hr'm
D =| C2.2° Clnp 2V B Caogm-2! B
Cloma(rem)! . CLr (r+m)! h?™ . Cy, . (r+m)! ™"
rem l(r*m)(r*m*'l) rem
IT t p1e2e-som | = g2 IIn=o0.
=0 t=0

So D, » 0 and the system (3.2) has always a unique solution for 4 > 0 i.e. the spline
function approximating the solution of (1.1) exists and is unique determined.
The coefficients are determined as follows.
One replace the column p in D, by the column
(FO,F®, . F®)

and we denote the determinant obtained by D,”. Then, the solution of system (3.2) will be

Df
ap(k). T’ p= |,r+m+|.
By factorising D, in terms of Fom,. ,F® we get
w. 1 W F® 4
a° = -z 2 opF, (€X)

where 1/h7" is a factor put in front of the sum so the coefficients c,, be independent of A.
Now we shall discuss the convergence of the spline function to the solution.
A
LEMMA 3.2 The inequalities |a,f")| s h_‘; o, (h) hold p = T, r+m+1 where A, are
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constants independent of h.

Proof. One estimate

rem-t ;U")
|F®l = b= 50 - 3 ——h'|.
, o J
One have the following Taylor expansion for z“(x), for x, = x < x,_, .
rem-1-t kzm) : ("")@m)
z9(x) = —_ X))t (x-x)"™" t =T, rm.
0= % S Eon) o)
and for x = x,,:
remel-t o U+1) z (r*m)
zkg)l - E k. hj + (gkl) hrom-t, t -U—,r+m.

A | (r+m-t)!
Using (3.5) and the t-th equation in the system (3.2) we get’
rem-t | z, U+) z‘(.l*')l
|F0| < hrrml |zh1-zk01| +E — k
j=0 J:
. 1z0mg,) - 2o

t-r-m-1 . rem-t
o < BT o ),

with ¢, > 0, ¢ = U,7+m, independent of h, so
o, (h)

F®<¢ Lt =0, rm

One substitute '(3.6) in (3.4) and one obtain

(k) l r+m (k) rem
a —_ cF, — c,c ‘o(h) - =
A= D) E ;o () ] ;

—w  (h) E c, ¢, =4 TQ, where 4,:= Y ¢, ¢, is a cosstant mdependent of h.

1=0

THEOREM 3.3 Let z be the exact solution of (1.1). If S, is the splme Junction
constructed in Theorem 3.1 then there exists a constant E independent of h for which the
inequalities

|z@(x) - S,(x)| s Ew (W) h™"%, q =T, 7+m

hold for any x € [0,b].
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Proof. Using the Taylor expansion previously constructed for z )(x) and condition (iii)

in Theorem 3.1 we get

|z@ O |"""°' 0 y z""E,.)
z9(x) - 5, (x)| = — (x-x) + —_— (xx,)" T -
S 2 I o
ME-Q PA 5 U+9) -("”‘) r'uEﬂ-q (k)
- CxY - R Y gl e (e x|
= T Y (rem-g)! = rrm s

rem+l-q I zk(m) - -k W)l

“ X

| z(*m (E (’ "")' rem-g-1
hi+ hrma 4 E q'c pmm ;‘1’ hpremee <

J! (r+m-2)!

sc, o(mh"m.

Taking E = max {c,"; ¢ = U, m+r}, the theorem is proved.
THEOREM 3.4 If we denote by S the function
s&@) = £x, S,(), S, ..., S(x)), x € [0, 5] and if S, is the spline function defined
in Theorem 3.1 then for any x € [0,b]
15.70) - S{™)| = Mo (B) "
where M is a positive constant independent of h (i.e. the spline function verifies the equation
while n — © or h — 0).
Proof. |5,7() - 5" = |5,70) - 2™ @)| + |x () - S )| =
= /6, 8,00, .. SV @) - e, 209, ., 2P| + |2 0) - S, ()|
< LK|S,(x) - z(x)] + LK|S'(x) -z/(x)| + ...+
+ LK|S,"@) - 2@ + 1270) - 57| =
s LKEo (h)h™" + LKEw (hB)h™"" + ..+ LKEw (h)h™' + E® (h)h " =
= (LKEh™ + LKER™"' + . +LKEh + E)h" o (h) < Mw (h)h",
where M > 0 is independent of A.
‘ Remark. If f€ C=([0, 5] x "), as the error is O(h"™™) we may choose r € N
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suitable so that the method is available.

IV. The stability of the method. A change in one of the calculated values fromy,

to u, will lead us to solve

X1

0, =+ J'F(t u'(0)) dt. @n

Let e, := |u, - y,l, the introduced error.

THEOREM 4.1 If any of the calculated values y, is changed into u, then the
inequality |u -y} = c,e, holds for any i =¥+, n and t = U, 7+T.

Proof. Substracting (2.3) from (4.1) and proceeding as in the proof of Lemma 2.1 we
get

e, se(l+ch)=(l+ch)*e < e""ek < ce,

where c is independent of h. Also, for ¢ = 0,7 we get

=(g*1) _ = (e*D) - = - -
12,7 = y ) = | FO%x,u) - FO%x,y) = Llu,-y|l < Lce, s c,e,

$0
1 -y < c,e,, t =T, 7T
As we did in paragrapf II., we shall denote
—;, 1';“, v - '7);.2 ;k(m-l) 17 ‘7"( ). o uhm —k(m...l) “;::m)
So

v -2 s lu, -yl s ce, for t =T, m-T
19,9 -9 s 4u,"" -5, """ s c,e, for t =m, mar+l.
and thus the theorem is proved.

THEOREM 4.2 If any of the calculated values y, is changed into u, and

consequently, the spline function approximating the solution of (1.1) is changed from S into
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s, then for any x € [x,,x,,], i = k,n-1, the inequality
|s(x) - S(x)| = c,qe, holds.
Proof. Consider the interval [x,x, ] where i = X, n+I. Then, analogously to the

spline function S, introduced Theorem 3.1, the new spline function due to the variation ofy,

to u, will be
—U) rem+1
5,(x) = ):_(x x,) + 2 b (x - x ) 4.3)
and will satisfy the condmons
(')(xhl) st*l( ol) vlf;): n-l(x ) - v © (44)

fori =%, n-2.

Then the linear system corresponding to (3.2) will be

rem+l

2 1C, 0 h7 = G, t =T F+m @.5)
where
rem=-t ‘7 G+
GO = h 159 -Y L_h/|, t =0, 7m 4.6)
=
and corresponding to (3.4) we get
0 o
b, h — Cpe G, @7
rem 5 0) rem+l

l5.6) - 5@1 = 133 —-@-xY + 32 87 =y -

rem ) rem+l

E_(x x) - E al(x -x)y"™| s
J=0

rem ';'U) - EIU)l reme+l

h'!+ E ‘b(f) (’)lhponm.
0 7

From (3.4) and (4.7) we get
1 rem

lb:') - a;i)l < F§cpl |G,‘0 ~ F'(')l
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From (3.3) and (4.6) we get
_ remet o U+ _ rem-t 70
IG‘(I) _ F‘(l)l = fptrml Iv’f;) 2 h/’ _z”(’l) + E _h/| <

J-OJ

rem-t I;,‘(I’O _z-(l'f)l
S— =y 1 i
sh""llv101-210||+h"m‘ - h’! <
j=0 J:

rtm-t j
< htrmt [c.ek + Yy c.ek%) s c,e hm!
=0 :

and so we get
rtm
b(!) (l)l < — EC,CP,C ptrm1
Using Theorem 4.1 we get

rem rem+l r+l

|sl(x) - S,(x)l 2 C.Ck___ + E hi’"”" E c9cpt¢kh t-r-m-1

rem+l 4l

= c.e, +cek2 Ech‘sce
J

which is a bounded multiple of the mtroduced €ITOr.
THEOREM 4.3 Under the assumptions of Theorem 4.2 the inequalities
|5°0) - $x)| = c, e,
hold for any t =0, m and i = K, n-1.
Proof. Following the same procedure as in Theorem 4.2 one obtain the requested

inequalities.

Conclusion. As any variation of the calculated error is a bounded multiple of the

introduced error, the method is stable.
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REZUMA‘l: - Preconditionarea pentru indeplinirea conditiilor de aproximare in metoda

multigrid algebricd Se prezintsi o metodi de preconditionare pentru sistéme liniare simetrice

si pozitiv definite. Folosind un operator de interpolare se dovedeste ci se realizeazi

indeplinirea conditiilor de aproximare, care de obicei cauzeazi cele mai multe dificultiti in

utilizarea algoritmilor algebrici multigrid [4], [17]. Astfel se obfine convergenta V-cicluri de

tip multigrid pentru sistemele simetrice generale pozitiv definite. Lucrarea se incheie cu

prezentarea mai multor exemple numerice pentru ecuatiile Dirichlet, precum §i Poisson si

Helmholtz anisotropice.

Abstract. In the last years a lot of papers ([1], [2], [3], [15], [20]) presented various
preconditioning techniques for the improvement of the condition number of symmetric and
positive definite M-matrices arrising from the discretization of elliptic partial differential
equations. All of these techniques essentially use the "geometric" information offerend by the
continuous problem ("good" properties of the partial differential operator, special types of
regular discretizations etc.). Thus, even the ideas are quite general we cannot apply these
methods for arbitrary systems.

In this paper we present a method of preconditioning for arbitrary symetric and
positive definite linear systems. We don’t obtain an improvement of the condition number of

the system matrix (which is very hard in this general approach) but using a special

construction of the interpolation operator we prove the fulfilment of the approximation

* University of Constanfa, Department of Mathematics, 8700 Constanfa, Romania
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assumption (which usually causes the most troubles in the algebraic multigrid algorithms, see
[4], [17]). Thus we obtain the convergence of the V-cycle type algebraic multigrid for general
symetric and positive definite systems.

At the end of the paper we present numerical examples on Dirichlet, anisotropic

Poisson and Helmholtz equations.

1. Introduction. In this section we shall use the notations, definitions and results from

[17]. Let A be an n by n symmetric and positive definite matrix. For b6 € R" we consider the
system

Au = b, 0))

with the (unique) exact solution u € R*. Let ¢ = 2 be an integer and C,,C,, ..., C, a sequence

of nonvoid subsets of {1, ..., n} such that

{1,.,n} =C,DC,D..D Cq, )
ICl=n,m=1,.,q, 3)
'n-nl>n2>...>nq>l, 4)

where by |C,| we denoted the number of elements in the set C,. Furthermore for
m = 1,2, ..., g-1 we consider the linear operators
LN K= — K-, IR — R 5)
and the matrices 4™ with the properties
L7 = (), AV = A, A™ V= [T (6)
Form =1, ..., g-1 we define the coarse grid correction operators 1™ by
Tm=l = I0 (A™) LA )
anti the smoothing process of the form
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U, G ugy+ (I -G")(A")'b", (8)
wh.ere I, is the identity and
| A"u"™=5p" )
are the systems correspondin_g to the coarse levels.

Remarks 1. The sets C,, m = 1, ..., q formally piay the same role as coarse grids in
the classical geometric multigrid ([3]), I%,, I are the interpolation and restriction
operators, respectively and A™ the coarse grids matrices.

2. The form (8) of the smoothing process includes the classical relaxation schemes (-
Jacobi, Gauss-Seidel, S O R, I L U - decomposition). -

3. With all the above defined elements we consider a classical ¥ - cycle type algorithm

(with at least one smoothing step performed after each coarse grid correction step) looking

like (e.g. [18])

m=1
m=2
: . (10)
m=q-1 L ]D
m=q a
Qhere we suppose that on the last grid (m = q) the system (9) is solved exactly.
We introduce the matrix
D,_= diag(A™), m = 1,..,q-1 (11)

and define on each level the inner products
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<u”,v"> = <D u”v"> <yt yv"> =<A"y" v">, (12)
<y",v"> = <D]'A™u" A"v™>,
along with their corresponding norms |-|,, i = 0, 1,2, where <-, -> is the Euclidean inner
product and | -] the Euclidean norm (on the spaces R™ ). We shall denote bye ” = v™ - u "
the error on each level m = 1, .., g-1. We know the following result concerning the
convergence of the above defined V' -cycle.
THEOREM 1. ([17]) Assume that the interpolations I,,,,, m = 1, .., q-1 have full
rank and that theré exists a constant d > 0 independently on m and e™ such that
. IG";e"Ifs le™l} -84 T e}, m = 1,..,q9-1. 13)
Then d < 1 and the V - cycle (10) to solve (1) has a convergence factor (in the energy norm
i -1,) bounded above by ﬂ
COROLLARY 1. ([17]) If there exists constants o, > 0 independently of m and e"
such that
IG"e "l = le ™I} - ale ™, (14)
IT"e "1} = Ble ", (15)
Jor everym =1, ..., g-1 then we have (13) with
o= ap (16)
Remarks 1. Properties (14), (15) are called the smoothing assumption (SA) and the
approximation assumption (AA), respectively ([17]).

2. (SA) is fulfilled by the classical relaxation schemes (see [4], [12], [17]).
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3. The condition (AA) causes the most troubles. There are two weaker forms, namely

(AA) IT"e "l s BAT"e ", an

- (AAY min{je” - I e™'] + 0% e™ € R} = B,le "I}, (18)
where the positive constants' 8, and 8, are also independently on m and e™. Following the
result from [17] (AA,) implies (AA,) with 8, = B, and one of them with the smoothing
assumption (14) ensures the convergence of the two grid algorithm (m, m+l). For the
multilevel case (g = 3) it is necesary that (i 5) holds. This is, in fact; our principal aim in the

present paper.

2. Preconditioning - the two level case. We present in this section the method of
preconditioning for a pair of two consecutive grids (m, m+1) where m € {1, ..., ¢g-1} is

17, C,, 4,4, instead

arbitrary fixed. In order to simplify the notations we shall write n, p, 1",

ofn,n,, I, 17", C, A", A™" respectively. We shall suppose also that the coarse grid

m+1?
C, satisfies

C,={n-p+1,n-p+2, .. ,n} (19)

Accordingly to (19) we consider the block decomposition of 4

4, B
A=
t Az

where A4,,4, are symmetric invertible matrices of dimension n-p and p, respectively, with 4,

(20

positive definite. Let A_l be another symmetric and positive definite matrix of dimension n-p.

81



C. POPA

We consider the Cholesky decompositions of 4, and Il
A =L L, Zx = le:‘ @n

and we define the matrix Z, (of dimension n) by

= =

L O

Z-ll

0 I

2

(22)

where 1, is the identity on R”. We shall also denote by /, the identity on R™” and by u =
[u,,u,] a vector u € R” for the descomposition
R = R7QK (23)

We precondition- the system (1) in the following way

(A 44) (A" u) = Ab. (24)
Thus the system (1) becomes
A= b, 25)
where
#=(A)'u, b =Apb, (26)
and
-1 R
A-;'A-AJA, @27

with the (7-p) x p matrix B given by

B=LL'B. (28)

Remark. 1t is clear that u is the solution of (1) if and only if u from (26) is the
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solution of (25). We also observe that the preconditioned matrix A from (27) is symmetric

and positive definite. Thus we can define for A the inner products from (12) and the

associated norms. These norms will be denoted by |||*|||,, # = 0,1, 2. Accordingly with

[13] and [14] we shall define the interpolation I” by

Then 1, has full rank and from (21) and (28) we obtain
Ly L'B
I

2

Iil

4

PROPOSITION 1. ) The coarse grid matrix 4, is given by
A, =4,-B'A’B
and is independent on the matrix .Zl of the preconditioning.
(ii) The coarse grid correction operator, T, is given by

I A'B
o o |

(iii) If € = [e,,e,] € R is the error after the correction step then

eI} = <4e,e> =<4, &> =2 A, (A)IEF,
where A, ( ;4.,) is the smallest eigenvalue of .;i_l.
Proof. (i) Firstly we observe that from (29), (6) and (27) we obtain
e [0i4,-B'4'B] = [0i4,],

with 12 given by

(29)

(30)

@31

(32)

(33)

€D
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7 -1

A,=4,-B'A"B.

- - |-4'B
A =I7AL = [0 4) I‘ -4

2

But, using (21), (35) and (28) we have
4, = 4,-B'LY L) L) LL" B = 4,- B(L,"YL,' B = 4,- B'A."'B,
which ‘gives us (31).

(ii) Using (7), (34) apd (31) we obtain

-1

n -1 p- n -1 . -AIB :
T=l-L4 A= 1-[J 4705 4) = 1-| IO 1] -

2

/, O 1, A'B
o o

“lo g,

0 -4"'B

o 1,

which is exactly (32).
(iii) If € = [e,,&,] € I is the eror after the comection step we have ([8])

I’4e = 0.

[OiAP]E_l
2

A, =0=¢=0,

From (39), (36) we obtain

=0

thus

because 4, is invertible. Then (33) is obvious.
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We shall make now the following assumption: there exists a constant ¢ - 0
independently of the dimension n of the matrix A such that
HI;'EH <c. (42)
Then we obtain the following result conceming the fulfilment of (15) and (17).

THEOREM 2. For every vector e = [e,,e,] € K we have

min{a, 1lsisn-p}
HITelll} < I 7elll; 3)
'min 1
and
max{a,, 1 si<n-p}-min{a,, 1 <is<n-p)
| Te|||} = c? : Hlelll3. (44)

min{a,,n-p+1 sisn}-h_ (4)

where we denoted the elements of the matrix ;1-, by a,.
Proof. We denote the vector
e=Te (45)
by € = [e,,e,] i.e. the error after the correction step. From Proposition 1 (iv)
g =0, (46)
thus, using (33) and (46),

- - - A (A
1E112 2 A A)he 12 = A (A) 121 = mn(4))

}Hle'lllz. a7

min{a , l<i<sn-p

i’

But a simple calculation using Cauchy-Schwarz inequality (see also [4], [17]) yields fore,
using also (46),

1N < [Hel, e, (48)
Combining (47) with (48) we get (43).
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For the.second assertion, .(44), we firstly observe that
AT = T'4, (49)
which follows from (7) and the symmetry of A. Then we have
_ — - - =1 o, )
[11e1113=111Te|||3=< D" ATe, ATe > < \DTID "T'D |- ||le|||; = p(EE ") || fe] |13, (50)
where D = diag(A4) and E is the matrix given by
_1 _ .1
E=D?T(D). (&2))

But from (32) and (51) we obtain

I, D'*4B(Dy"
_[n 0747 By )
O o
then
,+KK' O
EE' = (53)
o o
where KX is the matrix
- l — - - —-l
K=D4"B(D)? (54,
Then, using (42), it results that
P(EE') = p(1,+ KK') = 1 +o(KK") < 1 + |KI* < 1 + ID,1*14,”" BI-I1D, | =
a,lsisn-
ljl&x {a, stsn. -p} o2 55)
min{a,, n-p+1 sis<n}
and from (50) and (55) we obtain -
- max {a,, 1 <i < n-p) )
N Telll; = 112111 < c||lelll;. €

min {a,, n-p+1 si<n)

Now, using (43), (44) is obvious.

It remains now to see under what assumptions A _, (Z,) from (33) and ¢ from (2) we
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constants which not depend on the dimension of the matrices 4 or A. In that sense we have
the following result.

PROPOSITION 2. Suppose that there exists a constant y > 0, independently on the

dimension n of A such that
Mady) = v, AL )=y (57)
Then-(42) holds with ¢ > 0 given by
¢ = JAL (58)
Y

where by IS|_ we denoted the number
Isi, = m:lx; Is,| (59)
Jor an arbitrary matrix S = (s,) .
Proof. From (30) we have
A'B=L)'@MB
Thus
14, Bl < ALY UL N 1B (60)

But, because ITI and L, are Cholesky factors, we obtain

G = fpd™) = L 61)
W
and

IL') = Jp(Al") s % {62
Y

For |B} we can write (using the symmetry of A4)

1B = Vo(B'B) = 1B'BI_ = [IB'I"1BI_ = I4I, ©63)
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Then, introducing (61)-(63) in (60) we obtain (58).

We shall denote by B,, the positive constant

p - L mex{a, lsisnp)@,lsicnp) | )

Y min {a,, n-p<isn}

where m € {1, .., ¢-1} is the arbitrary level considered at the begining of this section.
Accordingly to (44), (57), (58) and (64) we obtain
I Tellly = B, Illelllz, 65)
i.e. the approximation assumption (15) (on the level m). Defining g > 0 by '
B = max{f_,1 <m=xqg-1}, (66)
from (65) it results for every e " € R,
HIT=e~I1li s Blllelz (V) m =1,...q-1, ©67)

where ™ is the same matrix with T from (38) (on the level m).

3. The smoothing assumption for the preconditioned system. We obtained in (67)
the approximation assumption for the preconditioned system with respect to the norms
{11111, i = 1,2 defined with the inner products from (12) for the preconditioned matrix 4.
Thus, it is necessary that the smoothing assumption be also fulfilied with respect to these
norms. This is the aim of the present section.

We shall mentain the notational conventions from the above section. Firstly we
observe that a relaxation step of the type (8) can be written in the form

u,,=M?'Nu,+M'b, (68)
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where
A=M-N (69)
isa spljtting of the matrix 4 with M invertible and
p(MN) <1, (70)
(indeed, it is sufficient to define G = M'N and from (68) we get (8)). Suppose that relaxation
(68) satisfies the smoothing assumption (14) (on the level m) with a constant a,, > 0, i.e.
(V)eer |
IM'Nel; = lel; - a,lel; M)
We shall define now (only for theoretical pumo;e!) for tﬁe preconditioned system (25) a

similar relaxation, i.e.

i =M"'Ni,+M"b, (72)
where the matrices M and N are given by
M = AMA;, N = A NA, (13)
We denote by e, e respectively the errors
e=u,-u (74)
and
€ =i, - i (75)

THEOREM 3. (i) M is invertible, A = M - N and
p(M'N) < 1. (76)

) If
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i =(B) 0y )
then
i, =@)'u,,. (78)
(iii) The relaxation (72) satisfies the smoothing assumption with the same constant a.,, i.e.
IIMTNENI = (121 - e dlEN] (79)
Proof. (i) The first two statements are obvious. For the third, using the well known
equalit-y p(4B) = p(BA) (see é.g. »[19]) we obtain
p(M™'N) = p(B)' M N(AY) = p(M~N) < 1
(ii) It results t;y simple computations using (68), (72), (73), (25) and (26).
(iii) From (26) and (77) we have
T B)e, (80)
Then, it is sufficient to observe, using (73), that
<AM’'Née, M'N& > = <AM™"Ne,, M™Ne >,

<Ae

old’e—old>-<Ae €u”

old* “old "~ *

-1 -

<D4é,,Ae,> = <D e, Ade,>
and the prof is complete.

Remark. From the assertion (ii) of the above theorem we obtain the following usefull
fact: computing Em with (72) and a given approximation #, . 18 the same as computingu_

with (68) and u_, given by

» 81
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and calculate
“,=@)'s,,, (82)
In this way, the relaxation proces (72), for the preconditioned system (25), can be carried out
using a classical relaxation of the type (68) for the initial system and the relations (81)~(82).
Like in the previous section we can now define

a=min{a_,lsmsq-1} (83)

Then, over denoting G = M " N from (79; by G™ and e by e™ we obtain
HIG=e=1[i = [lle=lI[} - a-llle=llf3, (V)m =1,...q-1, (84)

i.e. the smoothing assumption (14).

4. The convergence of the algebraic multigrid algorithm. Accordingly to the
Theorem 1 we obtain that the V - cycle type multigrid algorithm defined in section 2
converges to the exact ;zolution u of (1) and the convergence factor, in the energy norm of the
preconditioned matrix A4 is bounded above by

p=Vi-op (85)
w_ith a and P from (83) and (66) respectively.

We have the possiBility (see the next section) to obtain y from (57) independently of
the dimension and the spectrum of the matrices A and A Thus, the constants a,, and §,, from
(64) and (79) will depend only on the coefficients of the matrices A" and 4™ (4" is 4 on
the level m). But, unfortunately, in the general case, a and B, and so p from (85), will
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depend on the number of levels used in the V' - cycle. It is very hard, even in particular cases,
to find a theoretical value of the factor p. The only way is to use an accurate coarsening
process and to define an efficient interpolation such that the coarse grid matnces keep the
properties of the initial matrix.

In our case an encouraging aspect comes to helps us. Indeed, from the relation (31)
it results that the coarse grid matrix 4, obtain with the Galerkin approach (6) and 1] from
(29), don’t depend on the preconditioning. More than that, 4, is the Schur complement of A,
obtained with Gaussian elimination. But there exist results (see e.g. [9]) which say that, for
example, 4 is (weakly) diagonally dominant, 4, keeps this property a.s.o. In this way we can
controle the coefficients of A4, their signs, absolute values, positions (i.e. the sparsity of the
matrix). Thus, defining interpolations like in (29) the only problem is to properly choose’ 4,
(and El) for that the ’extra work’ and the computational costs be not too expensive.

Remark. Choosing A, means, from (19) and (20), choosing the coarse grid C,. Some
facts related to this aspect can be found in the papers [4], [17], [16]. Concerning the (spectral)
condition of the preconditioned matrix A denoted by k(z ), we can easly obtain some precise
informations. Indeed, from (27) we have

k() = 1A1147') = k(A) IAA I-I(A)7 A, (86)

From (20) and (57) we obtain

1A Al < _"_'_’-_'!, 1A A = _“ﬂ. (87)
Y Y
Ti1en, (86), (87) and similar arguments with 4 instead A get
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- Al-IA.
k(d)—Y sk(A)sMi'_;'
14,0-14,1

with k(Z ) the spectral condition number of 4.

k(4), (83)

Then, for an accurate and realistic y in (57), k() is of the same order with k(4) and

the convergence in the norm '||| +|||, will not deteriorate the results.

5. Some particular cases.
L Z, = A,. Then A = A thus no preconditioning occurs. Condition (57) will hold if;,
for example 4, is strictly diagonally dominant, i.e.

n-p

v,=a,- E la,| >0,i=1,.. np. (89)
Jol, i

Then, we can take y from (57) to be (from Gershgorin’s theorem, [19])
Yy=min{v,i=1,. . n-p} (90)
The interpolation operator will be given by (see also [13]).

-Al- lB
I - . ©1)
I

2

The following result gives us a way for constructing /," without inverting the matrix
A,. Firstly we have to observe that, the matrix 4 being positive definite (and symmetric) we
can perform the Gaussian -elimination algorithm without pivoting ([16]) and making 1 on the

diagonal of 4,, for the first n-p columns. After that we obtain a matrix A of the form (in

block notation)

0

92)

JZ'
T o

~
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or elementwise

1 612 &’IS &l.u-p al,n-rl ~lu ]
o1 &, .. 4, &, ., .4,
A=0 0 0.1 . S - 93)
00 0.0 4, . .4,
00 0.0 -

For k=1, ..., n-p we define the matrices H, of dimension (n-k) x (n-k+1) and H of dimension

p xnby
-4,, 1 0.0
H =|4,,01.0 (%4)
q -G, 00 .1
an
H=H_H_ . . H. %)

Observation. The first column of H, (without minus sign) is the k - row of the matrix [ 4, i 5]
from (93) without the 1 on the diagonal.
THEOREM 4. With the above considerations we have
I)=H. (%)
Proof. 1t results from (94) and (95) that the matrix H has the structure
H=[HAil], 97)
where I, is the identity on R” and A is a p x (n-p) real matrix. We observe that the first
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column of H, is given by

a, = ala,,

k=2, (%8)
Thus, in block notation,
HA=[0i4V], (99)
or elementwise
a,-(aa,)a, .. a,-(a,al)a,
H A =0 a,-(a,a))a, .. a,-(a,a )a,|. (100)
0 a,-(a,a,)a, .. a " (a,a)a,
Frum the symmetry of 4 it results that the matrix fi“’ from (iOO) is the same with the square
matrix of dimension (7-1) x (n-1) obtained after the first step of the Gaussian elimination by
neglecting the first row and column. Recursively we obtain that
H_H__ . .HA=[0id). (101)
But, from (101), (20) ;nd (97) it results
HA,+ B' =0, (102)
which gives us
H=-B'A", (103)
COROLLARY 2. jhe interpolation operator 1, and the coarse grid matrix A, are
given by
I'=H'H' .H,, (104)
A =H_  HHAH'H'  H, (105)
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Remark. We observe that for the construction of I,” (or 1) we must perform the
Gaussian elimination only on the matrix 4, (i.e. only for the n-p rows of A).

18 ;, = diag(d,,d,, ...,d, ,) where we suppose that

n-p
d>0,i=1,.,np. (106)
Then
- - 1 1 1
L =L = diag@’,d;,....d.},) (107)

and the interpolation 1’ is givén by

-
[ LB (108)
! .

2

n
P

In order to obtain the product L, B (with L, the Cholesky factor of 4,, from (21)) we
make a Gaussian elimination (Without pisoting and making 1 on the diagonal) on the first n-p

rows of A. In this way we obtain the matrix

. |, B
A= (109)
‘ 4
where
A =LA (110
is an (LU) - decomposition of 4, (Jl i; upper triangular with 1 on his diagonal) and
B=L'B (11)
Then, if D, = diag (L)) = diag (7,,. 7, ...1_, ) it is obvious that
L' =D"4 (112)
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Then elements of the matrix I, can be recursively obtained by the formulas
a,=1,a,=1+ giu-d,,’,, i=2,.,np (113)
(where d, are the elements of A)). Then we have
L'B=D"B (114)
The constant y from (57) can be taken as

y=min{v,d,i=1,., np) 115)

1%

I 4, = A, + R, where
- R (116)
is an incomplete Cholesky decomposition of 4, iif A, is supposed to be an M - matrix, cf.
[11]). The factor I.:l is obtained during this decomposition. We know from [11] that
p=p(4 R)<1 (117)
From (116) we obtain
| A4 =T1-4A"R (118)
Thus, if A € C is an eigenvalue of 4, 4,, 1-A will be an eigenvalue for 4,"'R, and
(using (117))
M-Il s|1-Asp (119)
From (119) it results that for every eigenvalue A of .Z;'Al
l-ps |\ s1+p (120)
In particular
1-p < p(4,4,) < 14, 4] = 14,114, (121)
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and
- A A
Aa(A) = —_ < ML 1AL (122)
1471 1 1-p
Thus, y from (57) can be taken as

. . . IAII-
Y = min |min{v,,i = 1, ..,n-p}, S (123)

: P

Remark. Relation (123) tells us that the number 1-p must not depend on the dimension
of the matrix A4,. Thus, the EU4ewmpo§iﬁon (116) must not be ’too incomplete’, i.e..the
matrix R, must not have too much nonempty entries, the ’ideal’ case being

R =0, (124)

i.e. our particular case 1.

6. Nummerical examples. We considered the following plane problems:

.. -Au = fin Q
Dirichlet {  u =0 o0naQ
u _ du -
. - = ‘— T — - Q
Anisotropic Poisson ¢ ax?  ay? Jin
u =0 on dQ

Helmholtz

Au +k* = f in Q
u = 0 on dQ

with Q = (0,1) x (0,1) C R, discretized by a classical 5-point stencil finite differences (see
e.g. [8]). We used two different initial (finest grid) discretizations (corresponding to meshsizes

h =1/14 and h = 1/32) and a 5 - grids V - cycle algebraic multigrid (see section 1). We
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applied the preconditioning methods from cases I and II (section 5). As relexation we used
the classical Gauss - Seidel method ([19]). The stopping criterion of the multigrid algorithm
was
[Hu¥-ulll, = 107 (125)
where u is the exact solution and «" the corresponding approximation (N is the minimum
number of iteration such that (125) holds).
In tables 1-4 we indicated the worst norm reduction factor per iteration step, p,

computed with the formula

e/
P = sup u, =1,..,N-1 (126)
el
for Dirichlet and anisotropic Poisson problems and
Mm
P = sup Ie I,j-l,...,N-l (127)
le’l

for Helmholtz equation (¢/ = « - u is the error at the j-th iteration of the multigrid algorithm).

Remarks 1. For coarsening we used the algorithm presented in the paper [16].

2. In the case of Helmoltz equation the algebraic system is symmetric but not more
positive definite. But following the results of Mandel ([10]), the condition (35), with M(I,)
not depending on the dimension of the initial matrix A, ensures the convergence of the two
grid algorithm even in the indefinite case.

3. Some improvements in order to avoid the fill - in process appearing sometimes in
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the coarses grids matrices were presented in [7].

4. The values of e (table 2) and k* (tables 3 and 4) were selected accordingly to
similar examples solved in papers [17] and [5] respectively.

Acknowledgement. The author thanks to Mr. Gabriel Golubovici, Departement of

Mathematics, Univ. of Constanta, for his help preparation of numerical examples.

h ~1/14 1/32
o for case | : 0051 0078
| pforaasell | 019 04
‘ Table 1. The Dirichlet problem
h 1/14 1/32
g=10" 0.052 __0078
p for case I £=10" 0.052 0078
g=10% 0.054 0.079
g=10" 019 041
o for case II g =107 02 ’ 0.41
g =10° 023 042
Table 2. The anisotropic Poisson p problem
E=4 0.054
B= 0,058
p for case I k’=2i 0.09
=30 037
=4 021
B= 027
p for case II = 048
=30 " 0.74

" Table 3. The Helmmoltz problem, h = 1/14.



PRECONDITIONING FOR THE FULFILMENT

E=19 0,077
pforcasel E=55 - 034
=100 0.83
B=19 0,56
p for case II — E =355 0.8
=100 0.97

10.

11

12.

13.

14.

13.

Table 4. The Helmholtz problem, / = 1/32.
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