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REZUMAT. - Asupra usor clase de funcili siolate. In lucrace sunt dwe condiqii suflcionte
pentru ca pentru o functie /€ A, sk aibk loc inogatitatea |2/ (#)ifz)-1] < | In discul unitate.
Asifol de functii sunt siclate.
Abstraet. For n a positive integer, let A, denote the class of functions
J@) =z+ a.,.z"' .
that are analytic in the unit disc U = {z € C: |z| < 1}. In this paper, cerain sufficient
conditions on a function f € A, are found such that |z/'(2)/f(z) - 1} < | in U. 1t is well-

known that in this case /s a starlike function.

1. Intreduction. Let H = H(l/) denote the class of functions analytic in U/ if [} €
H and /' is univalent, then the function f is subordinate to F, written /' < /', orf(z) < F(z),
if f(V) = F(0) and f(U)C F(U/).
For # a positive integer and a4 € C, let
H{a n) = {fE H. f@)=a+az"+a "'+ z€ ll}
and

A = {fE H f@z)=z+a 2" +a

"t
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P. MOCANU

with 4, = A.
The main result of this paper is given by

THECREM 1. Let n be a positive integer and let a > 0. [fg € A, and

z28'® 4,, ., naz
wm T .
then
G oy,
T
where
J@® = [—L IS""(W)W""W} @
o
If we set
e O, e, )
Ha,f,3) = (1 -a) ¥i0) a(f(z) ]. 3

then Theorem 1 can be restated in the following equivalent form
THEOREM 2. Let n be a positive integer and let o > 0. Iff € A, and

nazx

Ka,fiz) <1 +3+ 3

+z P
then f'(z)If(8) < 1 + 2z, ie.

<1, fors€U.

LU
TG

If we take k(z) = ze?*, then for f€ A4, and a > O the above result can be rewritten

in the following symmetric form

HAa,f,3) <« Ao, k,z) = J(O,f,z) < KO, k;z)

2, Preliminaries. We will need the following lemmas to prove Theorem 1.

LEMMA 1. Let q be analyic and urivalent on U except for at most one pole on dl,
and q'(C) » 0 at other points on dU. Let (0) = a and p € Hla,n). If p is not subordinate to
4. then there exist points 2, € U, G, E 0U and an m a n, for which p(Jz| < |z,]) C (1),

4



ON CERTAIN SUBCLASSES OF STARLIKE FUNCTIONS

0 plz) = 9E,) and
(i)  zp'(z,) =~ mLg'(€,).
More general versions of this lemma are given in {1, Lemma 1] and [3,Lemma 23]

LEMMA 2. Let n be a positive integer and let a > 0. Let P € HI 1 ,n) and suppose that

nag

P <l+z+ i = h(z). @
If p € H{\ i) sarisfies the differential equation
azp'(e) + Pe)pls) = 1 )
then p(s) < 1/(1 +3).
Proof. If we put g(s) = 1/(1 +1), then
e - q(lz) - ‘:Er(;)
Since
>0, forz € U,

Re{(l +3)A'(2)] = Rc[l *1+T__
we deduce that A is close-to-convex, hence univalent in U.
The domain M) is symmetric with respect to the real axis and we have

w = h(e?®) =1 = u+iv, 8€E(-xn,n),

where
r = r(8) = 2cos (6/2) + .2.% (6)
and

naoa

- 2 +
u = 2007 (02) + 22 -

v = wtan (8/2).

From (4) and (5) we deduce

Pa) = L - aZl@ ey
@) p(z) a P (z) 8)



P. MOCANU

If we suppose that p is not subordinate to ¢, then, according to Lemma 1, there exist
points z,£U and LEIU and an man, such that p(z)) = ¢(§,) and z,p'(z,) = mG ¢’ (C)

Hence from (8) we deduce
|G muco
q(C.) q(%,) T+6

If we set £, = ¢, then P(z,) = Re'*’?, with

P(z,) =

ma

ar,
3 cos (073)

where r is given by (6). This shows that P(s,) & MWU), which contradicts (8). Hence we

R = R(B) = 2cos (6/2) +
must have p < ¢. 0O
3. Proef of Theorem 1. Let g € A, satisfy (1) and let define

] H
1 Vs - 1 g .,
( ‘dw = .
ag*(z) Ig i @ ” 8(‘SI ’

It is easy to show that p € H[1,n) and it satisfles (5), with P(z) = 2g'(2)/g(s) Hence, by

P -

Lemma 2, we deduce that p(z) < 1/(1 +2). Since p(s) » 0, for 1 € U, we can define the
analytic function € A, by

J@®) = g [ pDT, )
which is given by (2). Using (3), from (9) we obtain
if @) P@) - AN

e ———

Fi6) “PB e

hence zf'(2)/f(x) < 1 + 1. ]
From (2) and (3) we easily obtain
/
Ja, [ z) = 28 (=)
“rD = S
and we deduce that Theorem 2 is equivalent to Theorem 1.
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4. Particular cases. From (6) we deduce

. 2yna, for 0<ans4
M(a,n) = min r(@) = 2+10;’ for na> 4. (10)
Similarly, from (7) we have
4u? na na
e (-1 +vim -2u+1, fi 2
A AR " Mk ¥
and we deduce
na
minp = 1+ i1

Using (10) and (11), from Theorem 2 we deduce the following particulsr results
COROLLARY § [ff€ A, a> 0 and
{Ha,f1)| <Mu,n), s€U,
where Ka, f.1) is given by (3) and Mia.n) is given by (10), then

<}, €14,

Example 1 If we take na = 1 in Corollary | we obtain

fEAmd(nl).‘%gl ‘;”(g)u(zu j%)‘_)_lq,
For n = | we geot
J€ A wnd |t “’+1<2-£§_‘?-:<1.
) (s

This last result was obtained in [2, Theorem 3]

bxample 2. If we take o = 1 and # = 2 in Coroliary 1 we obtain
fEA,nd’ ((;) ,,‘<2f_,tlf’(z)

COROLLARY 2 [ff€ A, a> 0 and

| Ka, f.5) - 1] <} +_".;.,:E i,

'@ _
T

lj<ti,z€U
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For n = 1 this result was obtained in [4,Theorem 3].

Example 3. If we take na = 1 in Corollary 2 we obtain

zf @,z , In z2f'(z)
SE A and(w- —ﬁﬁ_ e 1 n<._2__»7(z_)_ 1] <1
For n = 1 we get
IPEIN OB
fEAmd j(z) .2. _7(;5_ <1

Example 4. If wo take o = 1 and n = 2 in Corollary 2 we obtain

,u,....,z,;{x_))‘.z..:;(gz-. a
¥ 4

hpuﬁwlu,ifwem&dudnmﬂmwon
J@) = ot (5) = I. ~dw,
thon f€ A4, and | /7 (2)/f'(2)| & 2. Hence /= orf satisfles |zf'(z)/f(x) - 1| < 1, which s

oquivalent to

Rofa“"""«*> ! srre U

3”

5. Ocher oquivalent forim of Theorem 1. Iif we set
/(z)-[!;i‘lr.
z
thon (1) becomes
j'(x) . Amz
;(;i

md if weput §§ = 1/a,wododuoothtd&omngcqmvdmtfomof'l‘honm I

"THEOREM 3. Lot n v @ positive integer and ot B > 0. If / € H{1 ) satixfes

sf'(n) <fre 'Y
(6] T+7

F@)
Raﬁ_. .!. forz € U,
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H 1
Fiz) = %ff(w)w”-'dw - B!f(tz)l"“dt. (12)
z
Using (11), with a = 1/8, from Theorem 3 we obtain the following result
COROLLARY 3. [ff€ H[1,n], f > 0 and

£
¥ 5)

sB+.g,zEU,

then

F@) 1
h?lﬁ')’f’ Jorz € U,

where F is given by (12).
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P. SZILAGY!

If the functions £, depend on u and satisfy Caratheodory conditions, then many
existence results were obtained using methods like: variational-, continuation-, monoton
operators method etc.

Ourdays in many tehnical problems appear systems where the functions f are
discontinuous in the vansbles ,, ..,w, (1,2, 4,5, 6, 11).

Soms authors study such problems, substituting / by a multivalued mapping,
sonsidering instoad of f(x, n,) the jump of fin w, This way appear boundary value problems
-

Lu € M w)inwlg=0 “
{7.9, 12, 13]. The sclutions of (4) are not sliways solutions of the initial considersd problem
(1), but among the salutions of (4) there are often flunctions which are solusions of (1) seo.

For simplicity we shall study the solvability of the boundery valus prablem (1) in the
mwh]hsmw“xwhﬁmmtydﬂnfwwmmwh
variables w,, ... ¥, .

The used spaces ars:

L@ W) = (v = @, ...,0) % € LX), 1 = 1,...N}
with the seslar product resp. norm

¥ ~
®. Vam" Igu"""' "":‘w.l’) = I: w e, b))
‘ “~

KON -lve L'(a.l'n;: ELY), u|, =0, i=1, N k= 1,..,.!,
&
with the scalar rosp. oI

by - If; r ;;'. %’f«b. . [i;, T ’??ff*‘ ©

12



ELIPTIC SYSTEMS

LAQ,R) = {4 € LYQ,R")|w,(x) 2 0 ne. on Q}.
We shall assume that L,(Q, R') and hence also H/@Q R) is partially ordered by »
s vif and only if v-w € LYQ, ') If 4w € LYQ, ') and y = #, we denote
[u,u] = {w ELO. R ) yxus t'i}.
Mwmthutheeooﬁldmdk mn-omL'(a)mwmhobuimfum

afuy) = J;g .;'.”a !gga,.rt .«««I{;a.uv,m “L..N ()

and
N
aw. v} =Y amv) vvEHQON) ®

e

Wo say that & & M, (0, ') is a weak sclusion of (1) if /(v) € LYD) snd

am,v,) - Ij;(n)v,d: for all v & H)(Q) i = 1, . N ®)
u is called wask upper salution if £ («) € L}(R) and
afw,v)» f/‘(u)’v,dr for sl v, € H)(Q) N LQ). (10
Similary, w is wesk lowsr solutien if /(#) € LYQ) sd
an,v)s Ij,(n)v,dt for every v, € N} (Q) N LX) an

We shall impose the following Sypethesss on the operators L, snd on the funobions f;
o) &, &', & € L*(Q)
a,) The system (1) is strongly elliptic or weskly closed
a,) Thare exists » pasitive sonstant M, such that for the siliptic operstor L+ALS the
weak maximum and minimum principle is true in the semse that
am.v) s Mw, v »0Vy &1 Q) NLYW) (12)
implios that w(x) « 0 a.0. an £, and from
aw,v)+ u,(«,,},)lﬂ «0Vv €H®NLNO) 13
results that w(x) = 0 a.0. on Q.

13



P. SZILAGYI

Conditions a;, «; are obviously fulfilled if Lu contains only the function w,

n oM
Lu -E..... a,,, Ea,’.._’. vagu, =1, N (14)
k=1 l’ [ k=i ax‘
and there exists u > 0 such that
g:a.;(x)u,-u?:g: VxEQR VEER, i=I, N (19)
kiw) -}

For the maximum and minimum principle for elliptic sysiems see {8, 10].
) There exisis a positive conatant A, such that the functions
F=fO+Mi, tEW =1, N
are monolons increasing for every M a A, e g
F(')a F(@*) i€ ¢ ¢’ t=1, N
{.) There axist & finite or couniable number of surfaces 5, C I for which we have
& representation
S () E Wt = @ (), ) = (1, 00,,) E W) where o, & CH(R)
and
') > 9, () Vi en v;.
The Rumctions /- B — I are sontinuous en WINUS, . /s one-side limits oa 5, o
SW =Y S5y, SO - e )

oxist and are finite. e i
We assume slso
Y1) the Boundary valus problem (1) has & lower and an upper selution y snd & sich
hat y u ¥
LEMMA 1. {f conditions P,), B.,) and v,) are fulhbiod and M u man (M, M.}, ther
1° For every w @ (i, 7) we have F(x) = f(n) + Mu & LYQ, W),
PYuv€ [y i) andusvihen Fiu) « F)

i
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3° There exists a constam C, > O such that
F()l sy & C, Jor every u € [y,4]
(C, depends on M).
Proof. Sentence 2° results immediately from condition fi,.
From condition f, and i, we obtain that F(w): @ — ' is measurable and
F(y)s Fw)a F(#) Yue(yi]
Thus
~IF ) & F(4) & Fw) = Fg) & |[F(®)] i=1,..N,
F ()] ® 1F (@)} + IFGDL and |F )} « 20F, @I + |FDI).
But F (%), F(#) & L¥RQ), s0 F,(w) € L*(E}) and
LF 08y ® 20F GOy * 2UF (D = K 1= 1, LN,
50 1° and 3° ure proved with the constant C,’ -f;x,’.

LEMMA 2. Asnume that condiions o, o, a, B, B, and y, ave fdflled Lot

w € [y, ii] a fived fmction, M, = max (M,, M,}. Then the boundary valus problem
LuvMu = f(w)+Mwin Q, ul,,=0Ma M, (16)
Kas a wnique weak sohetion u € [y, ).

Proof From lemma | resulte that f(w) + Mw € L*(Q, I"). In this case the unique
solvabilty of the prablem (16) resulis fram conditions a,, @,, @, « is & wesk solution of (16)
and i & wesk upper solution of (1), thus

am,v) + M, ¥ ) = F ), 7). + MW, v,)

A, v) e ME.v) o FL),v) 0+ MW, v), Vv eH@N L)
From thess two we obtain

19



P. SZILAGY!

a(i-u,v) + M-, v) = (F(#) - F(W),v),,,x0 Vv e HE®)NLIQ),
which according to the maximum principle gives # - # = 0 a.e. on Q. In a simillar way we
obiain the inequality ¥ - % « 0, thus i = ¥ = «.

Lat A, & constant greater then A4, = max {M,, M;). We consider the family of the
boundary valus problems (16) whea w describes the intervel [, i ] and M € [M,, M,| W
denote by w,,, the solution of problem (16).

LEMMA 3. There sxists a positive consiamt C, dupending on 4, i and M, such ihat

I deam®C Yw&(y &), VMEMM)

Proaf. The scalflcienss of the opermtor L + M [ are from the apacel *(Q),
S(w) + Mw & LXO, '), then from the conditions a,, 0, a, results thet there exisis 4
consiant C > 0 such that for the salution w,,, of prablem (16) wo have

1udsnns ® CLIW) + MV ),
But from lemma | rosuite that
/(W) + Mwl,up, s CMV v & (!-3’).

WodiansC, Y& (8], VMEM.M)

with & consiant C, convenienily choosen.

LEMMA 4. Lov o' w?, . ' .. & mancione sequence (inoreasing or decreasing)
from Hy (Q,B') for wikich there enists a conssant C, suoh that

W Mgamns C, A=1,2,.,

thon the soquence (u*), . is swongly comvergew in H)Q, 1),

For the prool ses {4},

THEOREM 1. Let y, i € H, (52, W') be one lower reap. wpper sohwion of e
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boundary value problem (1). Assume that the hypotheses a,, a,, oy, By, B, and v, are fulfilled
and (1) = J0) (or J () = (1) for every 1 € US,, then there exists o least ane weak
solution u € [y, w) of problem (1).

Proaf Following the method presented by 8. Carl in [4] a consiructive iterative
method may be given, salving an infinite sequence of varistional boundary value problems
(with Dirichlet date).

Wo chose sn M € [MM,] Lot u* = i and »' € H/(),B') the unique weak
sohntion of the problem

Lu'+ Mu' = f(u*) + Mu®ia Q, #*|, = 0. an
We have then

a V) + M@, ) 3 ([0, V), + MO V),

aw’,v) + Ml V) = (%), V), o, + M. V),

for every v € MJ() N LX). From these two wo have

a(u-u'v) s Mu' - u' v} m O Vv EHENLE)
Bimilarty

alg-w'v)+ Mw - '\ V)ms OV ye&N®NLIW
Using the maximum resp. mintmum principle we obtain

gew'asn'=§

In the same maaner the sequence w' w’ . % s bullt solving the boundary velue
problems

Lu* s Mu™ = f(n*) + Mu* in Q, w*| =0 k= 1,2, . (e)
it is obvious that

17
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k+l k

ususuts . su'lsu’=u (19)

According to lemma 3 the sequence (¥ *),,, is bounded

I heqm s G, ¥V EEN,
and then from lemma 4 results that tho sequence (v *), ¢, is strongly convergent inL*(Q2, ")
and weakly convergent in H, ((2, R'). From the strong convergence of (w *), ,, results that
there exisis 8 subsequence of (¥ *), ., convergent almost every-where. Let u(x) the limit of
the convergent subsequence. The sequence (w *), ., being monotone decroasing, results that
the whole sequence (¥ *), gy is convergent a.e. to v - ¥** is the weak solusion of problem

(18), thus

a(s® ', v) « M(u"' V) o,

- 20
- !):/,(u*)v,dx C M Ve Y v e H@E) 30

=
w'— win L2, R), u' - u (woakly) in H, (Q, R'), consequently

lim a(e',¥) + M, V) g g = @0, ¥) + M(n;.v)lw,.
We show that the limit of the right side of (20) oxists and is equal to

I f;f;(u) v, - M, V),

u (x) converges decreasing to w(x) a.e. on Q, / is continuous on B\US,, /() = /(1) on
S, thus f(w* (@) — f(#(x)) ne. on Q, sad from lemma I results tlm/
If,(u ‘EN | & L0 Mgy 1Vl s CE = 1,2,
whers C is a convoniontly chosen constant. Thus we can pase to limit in the right side of (20)

100, and we obtain

N
a(u,v) = i[; fvds ¥ vEH@QN),
which means that » 15 & wesk solution of problem (1).

18
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If £(f) = /(1) on S, then a similar constiuction of the sequence (W "),y is made,
starting with the element #° = u (lower solution) and continuing by

Lu'+Mu'=f(y) + My in Q, u'], =0,

Lu*'+ Mu*'= f(u*) + Mu"* in Q, w*'| =0 ¥3))
a

It is obvicus, that for both cases f(1) = £'(f) and f(1) = /() we may stant the
interaiive method with any #° € [y, ] The sequences built by the algorithm (18) resp. (21)
may converge to an element different from that obtained in the proof of theorem 1. The
following result holds:

THEOREM 2. a) {fin the theorem | (1) = [(O V1 E US,, then the solution of the
boundary valwe probdlem (1) obsined in the proaf of theorem ljtxnm:nalinthcumtbal
Jor all solutions w € [y, u) of problem (1) we haw w = u.

YLD =LOVIE US,. then the solution u obsained by algorithm (21) is
mirimal, that is w » w for any solution w € (i, w] of the problem (1).

Froaf a) Let w € [y, 4] a solution of (1), thon w is a lower solution too. Repeating
the construction from theorem 1 on the interval [w, 4] with the starting elomont ¥° = ¥ we
obtain again the same solution v obiained in the proof of theorem 1. This u, avcording to the

proof of theorem 1 belongs 0 interval {w,# ] thus w = w. The proof of b) is similury.

19
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REZUMAT. - Asuprs monotonisl glruiul fanast de derivatale de ordinul unu ale unul

aperstor de tip Faverd-Ssusa. In accasth hicrore se studinzh proprietuiea do monatonie &

sirului format cu prima derivath & wnul opeesicr ds tip Favand-Szasz, objinmt cu ajutoml

palinoamelor i Appell. fn folul acesta ss extinds un rezulist 8l lui D.D Siancu 6] relauv Ia

operaiorul lul Bernetein.

Abstract. In this paper one studies the monotonicity property of the soquence formed
by the firat order derivatives of an aperator of type Favard-8zasz The result obtained by the
suthor represents an extension of an eardier result eatablished by D.D. Suncu for the Bernstein

operator.

L Intreduction. The study of the monotonicity of & sequence of positive linear
operators and of their derivatives was the aim of & lot of papers O. Arumi [1], D.D. Siancu
[6), [7] have studied the monotonicity of the sequence of Bernstein polynomials and of the
sequence formed by their derivatives. The study has boen extended to other linear positive
operators, for instance to Favard-Sasez and Baskekov operstors. [2], [3], [5], [8]. The aim of

this paper is to study the monotoniscity of the sequence formed by the first derivatives of a

" Technical University of Chy-Napoon, Department of Mathematics, 3400 Clwj-Napoca, Romania



A. ClUPA

Favard-Szasz type operator obtained by A. Jakimovski and D. | ¢viatan [4] by means of

Appell polynomials.

One considers g(z) = E“.Z " an analytic function in the disk |z} <R R > | and
n=G

suppose g(1) » 0, a, € R for n = 0,1,... . Define the Appell polynomials p(x) (k = 0) by

glu)e = ;:p.(x)u*. (h
-0
To each function f defined in [0,2) we associate the operators P, defined by
¢ - &
(Pn/)(x) "é‘('i") gpk (”x)f(;‘]’ " ‘ ’ 2; [y (2)

The case g(x) = | yields the Favard-Szusa operators
SN = o= T & 13)
pord ”
B. Wood [9] has proved that the operator P, is positive in [0,%) if and only if
"E‘(,‘“ﬁ 0, n =01, B Wood slso swudied the monotonicity of the sequence (P,). He
proved:

THEOREM A Ler P, be positive in [0,9), 0 = l,z,...’. Mngp.(m)](;]
converges waiformly and absobuwely in [0.8), fir any b > 0 amd supypose [ is convex and
monotons nondecreasing in [0,%). Then

EPHE) -P  f)x)2 0, n=01_ for0sx<o

For the Favard-Ssasz operutors, {3,}, EW. Cheney and A. Sharma have proved in
their paper {2].

THEOREM B. lf the Anction [ is defined and non-concave af the first order on the
interval {0,), then the sequence of the Seasz-Mirakyan aperavors ((S,J)(x)}, =12 i

non-increasing on s interval.

S =S, Hx), x€E[0,®), ne=l2

1



ON THE MONOTONICITY

IL. The aim of this paper i3 to study the monotonicity of the sequence formed by the
first order derivatives of the operators P,
We will use the following
DEFINITION. A real-valued function fis called non-concave of the order & on the
interval L, if {x,,x,, .., x,,,;f] » O for any system of A+2 points of the interval 1
LEMMA [3]. Let [ be non-convave of the first cmd the second orders on the inwerval
[0,%). Then for any three points x, %, x, € [0, ®), x < x, < x, anid an arbitrary povitive
niumber o there holds
[x, vax,+ax +a flalx x. x,/]=0
We will prove the following theorem
THEOREM. Lo P be positive in [0,®), 0 = 01, umd assume thal the sequence
(£ 1))} converges wniformly and absolusely in {0.u) jor any a > O If the fusction [ ix won-
convuve of the first and second order on ihe ierval [0,), then the sequence formed by the
Sirst order derivatives of e sequence {(P [ W) is won-incrousing on this inkwrvad, i.e.
) = ¢ )x), x € 10,0, 0= 1,2,

Proof. First we note that p,(x) = p, (x), (p_ () = 0). By derivation of (P f)x),

~_.,./]

ALY = B 1Y) - W, 1Y) -
vt + v v+l o,
g YL ){‘ vl f] T el V‘:-.f} &)

First wo compute the first term of this difference, Ly taking accout of the assunied

we obtmin

&Sy - 2:;» (#x)

v-O

it follows that

convergence and of the expression of Appell polynomial p (nx) = E a _(.'_'.;{

=0 !
1)



A. CIUPA

We have

Y epnv) ;Y.,ﬂ;j" - E YP (nx)

o H o n

_Y,_‘f__}.,f}

2 EP,(nx) f. k+1 ;f1 E‘TE (E “(nx)'] [k k+1 ,f]

vl non n on

In this product, the coefﬁcwm of x" is:

.s.s*l ]* .

+] -
e 5] e B e

s s+l A s s+l .
mz "[*"“"'/]+"*‘CT§""~ nn f]

v -

- E n a .s .v+l
=0 x’(\”;;! i~k

Thus, we obtain

ge p(nx){i,l.l., ] 2 EWVTTE “[i,.ﬂ, ]

In the same way we compute the second term of (3) and we obtain:

AP Y (x) =

L B |-

¢ i

.y § s+l
2 -_-T‘—E o n+l'm'/

v-O v

e Wi L

- e 2t 5 3+l
& g?f“'h—m?.:.“'*[ ]

24



ON THE MONOTONICITY

Next, we will prove that

v n* ot A, [s s+ . (n-o]) ¥ s+1 (
§ Kev-Ry 2 L) [;;’T’ ] E g(l) [lHl n+1 'f]. ! @

v sk i=v

We consider the function F (x) = j'(x +.;l;) ~-f(x), # € N fixed, x € [0,00).

From the preceding Lemma, for a = ..!. we obuun{x +.l_,x,+._ x +_,f [xl, » ,,j] =0
n n

By using the recurrence formula for divided differences we obtain

1 . 1 1
/ (""'ﬁ) K ("‘:.) Mar ) -/ ( 37) Se) 1) S -Ste)
x,~x, x,-xl x,—xz x"’.
and thus it results that
Fie) - Fe)  FLe) - F(x)

X, - X, X, x,

»0, ie [x,x Fiao,

)' ’l
for any points x,,x,, %, € [0,0) x <x <x, .
It results that the function F, is non-concave of the first order.

Let a, = vibe & =T Vand

(ml)" FZv-iST

x-* ,k=UN,i«01 . Wehave

b n

va-iumii’- ax Y *i_vﬂ‘ ..‘.- /
Z‘:a“ ;.‘; L re iy U by |
w 0, n =01, . and F, is non-concave of the first order, we have:

Because
gl )]

F () . ‘F(f).._‘i.. a F ()
g(l) "{n+l] g(D) g(f=

and

l-. I-G

2 (””)-E Yok 5,

It result that

b )

n*vl kvi 1) (h+i
?:.: (n+1)' e =h [’( ?) ‘/( " )]

2
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Now we cun introduce the divided differences and we obtain:

O

2 n+«i n+l =n

| n*vl ki k+i | l,f
* 8(1;,};5 ?‘3 (n+l) k(v - k)l{ noon " ]
It follows that

v! - = nt k+i k+i 1
- , v+ fl=
g (n+1y g_:(a,g ki (v-k)! { I P f]

1 « v+l v+ ] v+l v*l* |
'-Img“’{”‘T"’T ] (ﬂ: [n*i'»ﬂ nﬂ'f}

Nouw, in the left side we use notation § = y-k and in the right side we note ¢ ~ sv and it

result:

5 ¥+l
77 (n+1) g ” [.........,/]

Eu“ SR /}

avy

and 50 we obtaia the desired i»oquamy (4);
M ¥ 8+ ]

'zm.nm’? N

Vo(nel)y y s+l
B oRE 73“~~v[m'7;7r"]"°'
Memark. Ivana Horova (3] has studied the monoionicity of the sequence(S, /)(x),

which can be obtained from the operators £, in the case y(z) = 1. Her result is

THEOREM C. Let [ be non-concave of the first and the second orders on e inrval
[0.9) Then the sequence formed by the frsi order derivatives of the Szoss-Mirakyon
PTUNS I3 ROA-THCrearing on this intervol, i.e.

26
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Y@ =S, Y x), x €[0,w0), n=1l2, ..
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REZUMAT. - Tesreme de funciil llnll'e“c ¢l incgalishgl variaglonle. Artcolul prezisi

teorome de functii implicite care se willacazh in rozolvares unor ecuaili generalizmic 4i ja

studiul senzitivisiii insgatitilor varistionale Totodutl se realizcnzh o loghnua intre tooremels

cais uliliveadh condigil de monotonie ¢i cele care wiilizeadh goneralizisi ale concepiului du tase

aproximare.

1. Introduction. In this paper we present an implicit function theorem for set valued
maps, based on a generalization of the concept of utrong aproximationintroduced by
S M Robinson [8) and used also by A L. Dontcov and W.W Hager |4).
We will use this implicit function theorem to discuss senaitivity of perturbed vanational
inequalities with monotonicity conditions. Monotonicity conditions for implicit function
theorems and variational inequalities were used by S Dafermos {2), W Alt and | Kolumbiéa [1}
and by G Kassay and 1 Kolumbin [5],{6]

In [1] W.Al and 1. Kolumbin showed that,in Hilbert spaces their theorems can be used

to prove the theorems of [7] and {8].

2. Lefinitions and preliminary results. Let us recall that the distance from a point x to

* "Babey-Bolyai® University, Facully of Mathematics and Computwer Science, 3400 ( Tuj-Napooa, Humania



A. DOMOKOS

a set A in a metric space (X,p) is defined as:
dx, Ay=inf{p(x,y) . y € A}
and the excess ¢ from the set 4 to the set (' is given by:
e(C,A) = sup{Kx,A) : x € ('}.
We denote by H(a,7) the closed ball centered at a with radius r and by B, the closed
unit ball.
DEFINITION 2.1. Lot XY bo linear normed spaces.
a) We say that the set-valued map X:F~X is psoudo-Lipschitz around (3.x,) € grafX with
modulus A if there exist neighborhoods V of , and U of x, such that
(N U C Xy + Ay, - niBy
forall y, , €V
b) We say that the set-valued map X Y~X is quasi-Lipschitz around (3yx,) € grafl with
modulus A if for every neighborhood U of x, there exists & neighborhvod ¥ of y, such that
(EGN U] N [E(,) + My, - i) » @
for all 0, € V.
DEFINITION 22 Let X Y,Z be linear normed spaces.
8) We say that the map /- X < ¥ —= Z is lipschitz in y uniformly in x areund (g ,) if thers
exist neighborhoods {/ of x, and } of y, and 1 w O such that
Nxyy) - Axy)l s Liy, -
forallx€ Uand y,y, E V.
b) We say that the map g - X -~ Z strongly approximates the map £/ X * ¥ — Z in x at (x,)4)
if for every & > 0, there exist neighborhoods U of x, and V of y, such that

Nx,p) - gx) - Ang) - g6 s el - xl,

¥



IMPLICIT FUNCTION THEOREMS

for all x,x, € Uand y € V.
We will use the following lemma [3}:

LEMMA 23, Let (X,p) be a complete metric space, let © © X=X be u closed-valied
maplet 8, € Xr and N be such that 0 = h < 1, KB, WE)) < r(1-N) and e(P(x)N
BEr).B(x))) & M@, 5 for all x,x, € B(E,r).

Then @ has a fixed point in B(§,,r) It @ is single-valued,then the fixed point is uniqus.
A L. Dontchev and W W Hager proved in [4} the following implicii function theorem:

THEOREM 2.4. Let X be a Banach space, ket Y and £ be normed lincar spaces.
Consuder a map fFX<Y—>Z, a vet-valwed map V' : X-Z and the (posvibly se.-valued) map X
Y=X defined by E(y) = {x E X 1 0 € fx,y) + F(x)} Let x, € Xy, € ¥V x, € X)), et U, be
a neighborhood of x,, ket g . U, — £ be a map ket Z, be a neighborhood of 3, = g(x,) -Kx,.0,).
Suppove that:

1) fis Lipschisz in y uniformly in x arowsd (x,.).,) with modubus 1.
1) g strongly aqpproximates fin x at (x,y,)
i) there exists a (possibly set-vabued) map W - Z,~X, with the following progerties:

-%, € W(z,)

-MH(z2) iy a closed set inchuded in (g + 1)), for all £ € 2,

W is peewddo-Lipschitc arownd (2,x0) with moshilus y.

Then, for each y, > v, the following pruperties hold:

1) X is quazi-Lipschitz around (4,.x,) with modulus v,/.

2) If W(z) = (g + F)'(x), for all 2 € Z, then X iy peeudo-Lipschitz around (y,.x,) with modulus
nl.

NI W)= (g + F)'(@), for all 2 € Z, and, in addition, the map z-W () U/, is single-valued

k1
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n X, thea there exist neighborhoods I/ of x, and ¥ of y, such that the map y-Z() {/is

mngte-valued and Lipschitz in J” with modulus v, /..

3. Implici¢ function theorems.

THEOREM 3.1. Let X be a Banach space, Y, Z be linear normed spaces, let [ X x

Suppose that:
i) there exist neighborhoods U of x,, V of y, and L x 0 swch thot
Ax.y) - Ayl s Loy -yl for all x € U, y € V.
tor ane > 0
il) there exists a map g, - X -+ £, awd r, > 0 yuch that
Ux) - gux) - Lx) + gl s ¢ bx, - xl,
Jor ol x, %, € Kx,r) and y € Bx,r). '
101) shers exisis a (posvibly sei-valued) map W, - Z < Y~X with lhc, Sollowing propertics:
Xy € W 5,000, where 1, = g0 - A¥u)
- W (2.y) is a chosed set included in |g, + F(- )] (x)
- there exist neighborhowds 74 of 3, Y, of yy. X, of xg and y, > 0, P, - O such th:
(VN X (5,0)) = v0s, - 50,
(W, (xoya)} Ko W.60)) % vi(hs - 10 4 PL1Y - D) ()
forddlsz, 1, €2 and y, € Y,
Y, ¢ <1
Then there exist y, > 0, @ > Q, & > 0 such that

Wﬁ Blxg )N {(x,} + iy - yollly] » O,

n



IMPLICHT FUNCTION THEOREMS

for all y € B(y,.b).
Proof. Let e 2: 0, r,, and g, given by the assumptions. We can choose a number r,, >~
0 such that r,, s r,, B(x,r.)) C INX, By,r,) C Y,
It x € B(x,r,,) and y € B(y,, r,,) then
18.00) - Ax.p) - 2 = MR.(x) - Ax.y) - 8ux) + Axppulk =
s 48.0%) - Axp) - g% - Axe t UAxY) - Axuyall =
sefpe-xlt Lily-ylds(ed Ly,
We can choose a number r > 0 such that r = r,, and g(x) - Ax,y) € Z,, tor all x € B(x,r) and
Y € Byr)
Lety - O such that y /(1-y,¢) ~ vy
Leta -~ r, 0 < b <an {rr/f2v(). + B)}}
Lot @ 0 X < F-X defined by ®(x,y) = W, (g,(x) - Ax.))y) I x € D(xy) then x € X(y).
Let y € B(y,.b) Then
Hx, D3 y) 5 Py Y Blxa), Dix, 1)) = (P, y ) X, dx,y)) s
= V(W) - Axw bt B - vl = v (L BOWY -yl
SO - vl - v
Let x,x, € B, y(L * B - yol). From (£ t POy - v, s Y.+ )b - /2 we have
(0, N Bt PO - 7o) Bx,0)) 5 (D, D X Bx,p)) =
* YD) - ) - Ax) b RO = v € Bx, - x)
We apply Lemma 2.3 with &, = x,, A~ vy, ¢, 1 = y(/. t Bl - vl and we obtain » fixed
point for @(-y) in Hx,r). Hence, for all y € H(y,.b), there exints an x € Bx, (/. 1+ B
-y} such that x € dx(x,y) This means that x € X(y) and |2 B, [{x} ¢yt
BOL - vlB,| =

i3
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COROLLARY 32 If we replace property (V) from [heorem 3 | with
max {e(W(z N, W), e(PE NN, WE )b s v,0z - 20+ By - yl), for all
S € 2, y €Ty, and we ke W (z,y) - g, 1t FO]'(R), then

(XN Bix,a2)) C XY + vl + B - yolBy

for all y &€ B(y,.b).

Proof. For all x € B(x,a) we have x € @d(x,y) if and only if x € XE(y)
We have shown in Theorem 3 | that X(V) ) B(x,w/2) » B, for all y € B(y,.b). Let y € H(y,b)
and x € l(yﬂ B(x,a2). Then x € d(x,y) and

Hx (x,p,)) s AN X, Oxp) 5 v (L ¢ B -yl s

s y(l 4 POV - yl(d - v, e)
Because of r = w1 + B0y - vl ~ /2, x,x, € Hx,a) for all x, x, € Kx,r) and hence

e(D(x, VN Bxr), Bx, ) s (W, p ) X, Bny) =

ey, e by -l
We apply Lemma 23 wath B, = x, A =y w, r = y(L. + By - nl and we obtain a fixed point
for d(-4) in Bix, (Lt B0y - vl) This incann that for y € H(3,,b), there exists x € X(y, N}
Ayt By - y,B) and this completes the proof

COROLLARY 33 [fin thecrem 3 1 W, = (g, + FCy)) is vingle-vabued, then Xy
H(x ) X)) by vingle-valued and

) - Xl = (Lt POl - vl for all y € B(y,.b)

Proof In the proot of Theorem 3 | we can apply Lemma 2.3 with &, = x, A = y,¢,
v - a and we obtain for all y € H(y,.b) 8 unique tixed point for O(-y) in M(x,.) In this case

X, (v)1s Lipschitz at v,

i4
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4. Application to variational inequalities. Let X be a Hilbert space, let ¥ be a

normed linear space, let K be a closed and convex subset of X and let h - X < ¥ -» X be a

mapping.
Let us consider the following problems:
V1,.() find x € K, such that
(h(x,y), w - x) = 0, for all « € K,
and the equivalent generalized equation.
GE(v) tind x € K, such that
0 € Alxy) + Nulx),

whete
(X EX (", u-x)s0, for all «€EXN} if vEK
Nx) =

&, it x¢kK

THEOREM 4.1, Suppose that:
1) x, 15 a Sotution for G, (y,) (or for VL)
W) there exist neighborhoods U of x,, V of y,, ad 1. > O such thai

ba(x.y) - Bixy )l & Ly - v\, for all x € U, y &V
i) there exists a neighborhvod Y, of y, amd B > O such that
(Mx, ) - e, ), e - x) w BlIx, - X prall x v, X v e Y,

tv) h( ) is hemicomtimeous for all y € Y,

then, for all © > O there exists a neighborhood U, of x, V, of v, amd y
fiw all y €V, there exists a unigue solwtion x(y) € U, of GE(v) (or VI(v)
and (3 - x4 = yky - yol.

f'rouf. Let Fxy) = bx,y) + Nx)

O such tha:

From assumption i) and from the maximal monotonicity of N, (-) tollows that /4 ) s

5
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maximal monoton for all y € ¥, Let ¢ > 0 and g, : X' — X defincd by g,(x) = ¢ x. In this
case W,(-)) = (8, + F(- )" is well defined and single-valued.
Let x, = W (z,.)), x, = W2, Then z, € x; t h(x,y) + Nulx,) and
z, € ex, + h(x,y) + Ndx,). The monotonicity of N.(') inplies:
0% (1, - ex, - Mx, ) - 5, + 61y + MK )), Xy - ) = (2, - 25, X, - X)) -
<o (X, - X, X, - %) - (M) - BOa), X, - x) & Bs, - 3k -6l -
- ¢ Ix, - %8 - Pix, - x,), and hence
Ix, - %0 = (14 + B, - 5,l, for x, = x,
Let x, = W (g0 )0), X = W (5.0), 2, = x, Then z, - ¢ x, - Mx, ) € Nx,),
2 -8 x - Mx,y) € Ndx) and hence
0 (z-ex-Mxy)-zot€x,t MIGYIX - X)) = (2 - 2,5 - %) - € (X - X, - x;)
Ax.y) - Mx.y)x - %) - (Mxp) - Bxgy)x - x0) & 47 - 2,0l - x b -
o bt LAY -y - X - Bl - gl Then
Ix - x 0 = (1(e + XNz - 2.8 + LDyl when x » x,.
We can use Thecrem 3.1 and Corollary 3.3 with = 0, M(x,y) = Mx,y) + Nx), g(x) = s x,
W (zy) = [g + FCO'@), v, = HetP) 1o completes the proof.
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RELUMAT. - Asuprs inegaliiliil gonorslisate a lui Minty. S¢ duu condipii necesure
sficiente pentry inogelitaton generilial a ki Minty din 1970. Sc objin astfel entinderi ale
woromelor hwi Kirssbeaun, Ortinbaum ¢i Minty.

Abstract. Some necessary and sufficient conditions for the generalized Minty’s
inoquality are given. One obtains in this way, exiensions for the theorems of Kirscbraun,

COrinbaum and Minty.

1. Intreduction. The well-known theorem of Kirssbraun {8] states that a noa-
expansive funciion from R 10 itself, with domain a finite pointset, can be extunded 1o a larger
domain including any arbitrarily chosen point so a3 to be nonexpansive. More precisely, we
have:

THEOREM A (Kirssbraun [8)). Lot (x,.3)), ... (x_.y.) € B = B be such thl

be-xhsly -yl 15ijsm ()
Then for eack y € I there exists x € R® such that
Ix-xhsfy-y 1sism (2)

This theorem was rediscovered by Valentine [13) using different methods In 1962
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Minty [9] proved the same fact for a monotone function:
THEOREM B (Minty [9])). Let (x,.y), .., (x,.y,) € R x R such that
<x,—xl,y,—yj>a(), Vi, fexm 3)
then for each y € R” there existy a point x € R” such that
<x-%,y-y>20, 1lsism @

In the same year, Gronbaum [3] gave a common generalization of these two theorems,
namely:

THinREM C (Grinbaum (5)). Let (x,,y), ... (x,.y,) € X < K satisfng (3). Lt
recly a, B be given, a® + 3 > 0. Then there exists a poit 3 € R” such that

<x+tar,y+Pr> a0, laism )

In 1964 Debrunner and Flor (3} improved Minty's theorem by showing that the desired
value ¥ € M” in formula (2) could always be choson in the convex hull of the given x,, . v,
several different proofs of this fact have been given (see [10],{2]). It is easy to see that sn
immediate consequence of Kirszbraun’s theorom is that any Lipschita funotion defined on 4
subset of a Hilbert space can be extonded 1o the whole space so ns to satisfy the same
Lipschita-inoquality.

In a paper from 1970, Minty [11] gave a unified method for proving all the above
results. This result leads to a geneulization of Banach’'s theorem {1} oconceming the
extensibility of Lipschitz-Holder continuous functions. His proof is based on the classical
minimax theorem of J. von Neumann [12). In their recent paper [ 7] the authors gave a genensl
saddie point theerem which convers a lot of special cases known in the literature The proof
of this result is u simple application of the well-khown separation theorem of convex sets in
finite dimensional spaces

k1]
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In this note we give two extensions of Minty’s theorem [11] by using different proofs.
First we show that this result is an easy consequence of our Theorem 2.2 (section 2). Then
by‘ Theorem 2.2 we deduce a necessary and sufficient condition for the generalized Minty’s
inequality [11] (Theorem 2.3 in section 2) and as well, a generalization of Minty’s theorem
[11] by relaxing the convexity assumption (Theorem 2.4). Another extension of Kirszbraun’s
theorem has been given by Karamardian [6] whose proof is based an the fixed point theorem
of Kakutani. We show (Theorem 2.5) that by the well-known Ky Fan’s minimax inequality
[4] which has been published in the same volume as Karamardian’s paper [5], one can obtain

a similar generalization of Minty’s theorem [11).

2. The Kirszbraun’s function. First we reproduce the theorem of Minty [11}. Let X
be a vector space over the reals and ¥ be a nonempty set.

Let

A=A ER|A-~(A,. ., 1), N a0, f: A o= 1l
A function ¢: X~ Y x Y — R is called Kirszbraun function (;—lﬁmction) if
(a) for each y,,y, € Y the function ¢(-,,,y,) is convex on X,
(b)  for any sequence (x,,»,), .., (x,,y,) in XxY, any y € Y and any A € A_ we have
T AN 0,55, » K5 A (5,-x,0,-7)

Y NLY il

where x . = 11:1 A x, and & is a positive constant which muy depend on the sequence

o),

If Xis a finito-dimensional space, then ¢ is called a finite-dimensional K-function if
it satisfics the ubove definition with av replaced by 1 + dim X

THEOREM 2.1 (Minty [11]). () Let ¢ X<V =Y -+ R be a K-pmction and

3y
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v, X, 8,) € XXV such that
$x,-x,y.y) S0 forall | si jzm (6)
and let y € Y. Then there exisis x € co{x,, .., x} suh ithat
¢(x,-x,y, %0 fwrall |l sism, 0
where co M denotes the convex hull of M G X.

(B) The same sistement holds if X is fAnite~dimensional, and ¢ Is a corresponding
ﬁmve-tﬁmmlbnal K-function.

In the following we shall prove Theorem 2.1 using another method based on a recent
result of the authors ({7}, Theorem 1). Let 4 and H be nonompty sets and @: A > 5 — Rbe
& given function. For each & € B and b > 0 define the sets

Ub,8). = {a€ 4| ¢la, b) +8<0).
The function ¢ is said to be weakly convex-like in Hs firse variable, if for every finite sels
ta, ,a,) C Aand (b, .5} C B the inequality

max I; hgla,b) a |:£ max wa,b)
holds for all A &€ A, The function ¢ s said to be weakly concave-like in ity fret voriable if
- is weakly convex-like in its first vanable.
THEOREM 22 ({5], Theorem 1). Suppose shat @ is weakly concave-like in its frst
variable and the following condition is satigfled;
{f the sysiem {({N(b,8)| b€ B, 8> 0) covers A, then it comaing a fnike subcover. (8)

Then the pollowing two assertions ore equivalent: there exists a € A swoh that

Wa.b) = 0 forall b€ B, o)
sup ¥ wea. b) w0 (10)
WEA ja)

Jor vach finite set (b, b} OB and p € A,

4



ON THE GENERALIZED MINTY’S INEQUALITY

Proofof Theorem 2.1. Let A = cofx,, .., x, }, B={(x,y), ,(x, vy )} &GXxVand
@a,b) = -¢(x, - a,y,y), where b= (x,y), | ism Thetunctiony being concave ii:
its first variable it is also weakly concave-like in its first variable. Since ¢ is concave in its
first variable and the affine hull of A is a finite-dimensional space, then ¢ 18 continuous in
its first variable on 4. Now, since 4 is cmpact, then condition (8) is satisfied. On the other
hand the inequality

sup f: u/q)(u,b) =0
s€A o1
follows easily by (b) and (6). Then we have the assertion by Theorem 2.2. W

Remark 2.3, Condition (6) is not necessary for (7). To see thus, consider the following
simple example. Let X' =R and ¢ Rx Y <Y — R the K-function given bye(x,y,,y,) = x.
Then for wbitrary (x,,y)), .. (x,,y. ) €E RxY and y € ) the inequality¢(x,~x,y,y) =
=x-x#0,1 s /i s m holds for x = max{x, ..x } while the inequality
*(x, - x/,y,,yl) =XX % 0, t s/, j<m fails provided the et (x, ., x ) contains more
than one element. On the other hund, it can be shown that under some additional hy pothesis
on ¢, conditions (6) and (7) are in fact equivalent. Suppose ¥ is also u vector space. Let

w: A< Y —» R be convex in its first variable and suppose

;;-:n AAylx, -x AR 2’2:: Ay(x ~x,y)
for each (x,,»), ..(x.»,) € X~V und A € A_, where x stands for i)‘,",' Then
*(x.y,.7,) = $(x,y,~y,) is a K-function. Suppose further that for each (x,)'/) 'E XxY we
have

w(t,}f)sﬂnw(--x,»-y)no (1)
and

| =

Y(x,y) > 0 -w( -;-) >0 (12)

N
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Then conditions (6) and (7) are equivalent. In fact, by Theaiem 2.1 we have only to

prove that (7) implies (6). Supposing the contrary, there exist /., /,€ {1, ..., m} such tha
Y.y )
ap(x A A A )> 0 Take y: = "0—5_]: By (7) there exists x, € X such that

-
+ 3

Ylx, - x,, ¥, __..5}_ % 0 for each 1 = i s m. Then for i - i, and i — j, respectively, we
obtain
\p[x, - X, W hleo (13)

and

Plx -x,, s 0 (14)
SR
Taking into account {11), the last inequality yields
R
Y T
Thus, by (12) and the convexity of ¥, y) we obtain the followinu contradiction
LTRE T P 4 1 e/ S A
o A % X%, '4’ %,
3 T “3 T °x r "T'
It is vasy to soe that Kirszbraun’s theorom (Theorsm A) follows from the case

= 0.

0<w =0
wx,») = P - DI, Minty’s theorem (Theorom B) is the cass where w(x,)) is a bilinear
form and Qrinbaum’s theorem (Theorom C) is contained in the case
wix, ) = k(e - A) + &,<x, y> with nonnegative &,, &, Since in all of thess particular
cases the function y satisfles (11) und (12), then these theorems give necessary and sufficient
conditions for the existence of x satisfying the dosired properties. As we could ses, in case
of the move general Theorom 2.1, this is not true. However, Theorom 2.2 allows us (o give
the following churacterization of (7) which is also a generalization of Theorem 2.1.
THEOREM 23 Let ¢ XxY > R be comvex in its frst variable omd
L), L L) € X< Y. Then the following two assertions are eguivalent:

there exists x € X such that
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$(x,-x,5) 0 (1%)
Jor each ). € A,
“e“i{itlm.' gxl¢(x,—x,y,) 0 (16)
In the following we state & generalized form of Theorem 2.3, in which the convexity
of ¢ in ita first variable is relaxed.
THEOREM 24 Let ¢: X< Y = Rand (x,,3),...(x,.y,) € X<V Suppose that
the following assertions hold:
Jor each finite set (a, .. a4} C A and each swbset ((x“,y,‘), ‘..,(x‘.',y,')) of
& 0), (6, 0,) we have

4
max 3 A¢(x-a.y )= inf max ¢(x -a,y)

tajsp oo »EA 1ajep
Jor sach ) € A, @
Jor vach y & Y, the restriction of §(-, y) w each finite dimensional subspace of X is
lower semicontinuons; (19)
Then assertions (15) and (16) are equivalent.
Progf. Take @ A*{(x,.2)....(,.0.)) = R @, d) = $(x-a,y), whee
b . =(x.y). | %ism Then ¢is weakly concave-like in ite first variable. Since by (18)
@ is lower semicontinuous in ia first variable on A and 4 is compact, then (8) also holds.
Now the conclusion follows by Theorem 22.
Next we give an examplo for a function ¢ satisfying (17). A function £/ B —» R is said
1o be Ky Fam ocomvex Hke if for each A € [01] each x,,..¥ € R und each
a,.a, € colx,, . ,x )} there exists a, € co(x,, ..,x, } such that f(x,-a,) & Af(x,~q,) +
+(1-Nf(x-a) Il sisn ltilu;ywmdlumhmmmnoﬁon is Ky Fan convex
like, where a, can be chosen as max (a,a,) if f is increusing and win {a, a,) if T is
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decreasing. Now consider the function ¢ defined on RxY with real values given by
(., ) = J (%) +g(y), where £ R -+ R 15 a Ky Fan convex like function and g: ¥ — Risan
arbitrary function. Then ¢ satisfies (17) for each {(x,,y), ... (x,,y,)} € X<V Indeod, let
{a,,a,, . a)CA=co{x, %}, NEA, and {(x,l,y“),...,(x,’,y,’)) C{x, ) 0L
Since /is Ky Fan convex like, then there exists a € A such that

k
Jx,-a)s Y Af(x-a) 1 xjsn

i=l

Therefore,
ma gx [/(x,-a,) + gO)] = max [f(x,-&) + g0,)] »
= inf max [f(x, d) s0))
sEA lejup

80 ¢ satisfles (17).

Finally we give another extension of Theorem 2.1 (Minty's theorem) whhh proof is
based on Ky Fan’s minimax inequality [4)].

Let X be a vecior space over the reals, 1 be & nonompty set, ¢: X Y« ¥ -+ Rand
o, ) . (x,,p,) € XY be given.

THEOREM 2.5. Suppose that for each y,), & Y, the restricion of §(- . y,, y,) to sach
Sivite dimensional subspace of X is lower semicontinnons aid the inequalities

0a i MASUE, 5,5,y - tf; e, x, ¥, M,
rnt - ™
hotd for each y € Y and L€ A, where x: = Y\ x, and k is a positive constant which may
dependon (x,,y), ... (x_,y.). mnﬁroadoly‘e Y there exists x &€ co(x,, ... x_) suchihl
*x-%,y.)) a0 foreah laiam
Poof Llety€ Yand h: A < A — Rbesuch that

h(k’“) -i:kv’[x; _:“j -yp )

il

It is oasy to verify that (A A) = O for each A € A, A(-, ) is guasicononve for each y € A,
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(since it is linear) and Ay, °) is lower semicontinuous on A, for each A € A, Then by Ky

Fan’s minimax inequality {4] it follows the existence of an element y, € A, such that

hh,p,) s O foreach hE A,

Now the asserton follows if we put instead of ) the vectors

i

{1

¥ 3
13

(1,0,..,0),(0,1,..,0), ... (0,0, . 1) E A
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REZUMAT. - Aspra user problome do birecuronil gonoralisati pentry conesiuni
waivice somisimotrics. In hucram sunt siubiliic mal mulie propriethii ale comsxiunilor
Soit L, une variété differentiable & » dimensions, do classe C™ et g une métrique
riemanienne susr L, de composantes g, dans une carte locale (w,y). Nmunlku\lnourpu'v
la conaexion Levi-Civita, correspondant & g de coéfficients {;‘} dans Ia carte locale (v, ¢).
Soit dans I, une connexion 1 semi-syinédtrique {1), (6) de codfficients:
A P R o
Nous svoas:
T;-w*bj—w/b: (2)
8,0 6)}
ol T,=T,- T, ot par la virgule on & noté la dérivéé covariante par rapport & D.
Nous allons noter par R, les composantes du tenseur de courbure pour la connexion
D, par R, = R, lo tensour de Ricel, par R = g“R_ sa courbure scalsire, par Ty, le tenseur de

courbure D-concirculaire [4), par Z,, le tensewr de courbure [-coharmonique [4), par W,

" “Bobey-bobmi” untvereity, Facully af Mahematics and Computer Science, 3406 Chy/-Napoon, Romania
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le tenseur de courbure D-projective [S] et par (', le tenseur de courbure /)-conforme.
DEFINITION 1. §’il existe deux tenseurs covariants ¢, et a, et un tenseur A, tel
que:
Raon= 9 Rura, Au @
on dira que L, est D-biréccurrente généralisé.
Si dans (4) nous appliquons une contraction par / et & nous obtenons:

R, =9 Rra A, ¢

A=A, ©

DEFINITION 2. Une varniété L, doude d'une D-connexion pour inquelie on a (3) est
nomée Ricci-D-birdccurrente généralisée.

De (4) ¢t (S) on a.

PROPOSITION |. Une variét L, dowée d'une D-connexion semi-symétrique méirique
Debiréccurrente généralisée est aussi Ricci-D-birécowrrente gdn;mksh avec lvs mimes
lensenrs @, et a, el A, donde e (6) La réciprogue n'ust pas en général vrale.

Si dans (5) nous multipliqons contracté par g* nous obtenons:

K ~¢ R+a A M

A=A " )
DEFINITION 3. Une variété [, doude d’une D-connexion pour iaquelle on a (7) et
nommée de courbure scalaire [-birécurrenie généralisée.
De (5) et (7) on a:
PROPOSITION 2. Une wariété 1., dowée d'wwe D-commexion Ricci-D-birdccwrrente

)
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généralisée est aussi de courbure scalaire D-biréccurrente géndralisée avec A donné de (8).
Soit maintenant 7, le tenseur de courbure D-concisculaire.
DEFINITION 4. §’il existe deux tenseurs covariants ¢, et a, ot un lenseur B, tel
que:
T n* 9, Tu*a, B, ®
on dira que L, est concirculaire D-birdocurrenie généralisde.
De:
Tur R e (8,88,8) (10)
par dérivation covariante deux fois st tenant compie de (3) et (7) il en rdsulte:
PROPOSITION 3. Les varidids L, D-birdcowrremes gindralisdes somt omssi
concircukiires D-birdcowrrentes généralisées avec lex mdmes lensewrs @, i a,, ¢t B, downd
o
B,L-A,‘.—-R;’i_ﬁu,.o‘.—g,o‘.) an
Pour la rédciprogque, de (10) par dérivation covariante deux fois et tenant compie de (7)

ot {9) il résulte (4) avec:

i ] A
A= By e (12)

PROPOSITION 4. Une varidwd L, concirculaire D-birdocwrremnse généralisée est D-
birdccurrents gindralisée si olle est avec cowrdure scaluire D-birdocurrente générolisée ¢t
AL, domnd e (12).

De (9) par contraction en / ot & on obtient:

Tpnm®, T,0a, B, 13)
od T ,=T,, B.=8,  Doncona:
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PROPOSITION 5. Dans une variété L, concirculaire D-biréccurrente généralisée, le
tenseur contracté du tenseur concirculaire de courbure est aussi D-biréccurrent généralisé
avec les mémey tensewrs @, eta, et B =B, .

Le tenseur:

E=R-—g, (14)
sera nommé tenseur I-Einatein.

DEFINITION $. 8°il existe doux tensours ¢, a,, ot un tonseur N, tel que:

E =9 Era N, (15)
on ira que L, est D-Binstein birdocurrents géndvalisde.

De (5), (7), (14), ot (15) il résulte:

PROPOSITION 6. Une warién L, Ricoi D-birdocsarents gindvalisie est omssi D-
instein birdccwronss gindvaliste avec N=A S5, ot une veritw L, D-Einsion
biréccurrente géndrolisée esi Ricci-D-birdocowrronte générolisde »i elle ont de cowrbum
soalairs D-birécourrente yéndraiste ot A, N+ Ay, (

De (10) par contraction en / ot £ et de (14) il rdeulte:

T,~Tu-£, 0
et de (13) et (16) it résulte (15) avec N= B, .
Done:

PROPOSITION 7. Une varidsd L, concirculaire D-birdocurrente génidralisde est ausi

Soit:

Lim R L (A8 R - g ) ()
I sensweur D-cobarmonique de courbure (4).
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REZUMAT. - Proprietitfi de separare tn spaiil eu lmitl ol spatil pretopologies. Bunt dale

camcioriziirl explicite als propristljilor do separare In spatii cu limith, psoudotopologige ¢

pretopologice.

Abstract. In this paper, an explicit characterizations of the separation properties for
the topological categories of limit spaces, pseudotopological spaces, and pretopological spaces
are given. Furthenmore, the relationships among various forms of the separation properties as

well as some invaniance properties of them are investigated.

Intreduction. There are (see [1]) various ways of generslizsrions of the separation
axioms of topology 10 an arbitrary topologioal category For exmmnple, there are four various
notions of 7, and each equivalent to the usual 7, one notion of 7, which is equivelent to the
usust 7,, and cight various notions of 7, (Heusdorff) and each is equivalont to the usual T,

In this paper, we have shown the fullowings:

1. To characterise separstion propertios in topological cetogories of limit spaces,
pesudotopological spaces, and pretopological spaoes.

2. To investigate the relationships amony the various forms of the separation properties
in above mentioned calegories.

* Ereiyes University, Department of Mathematics, 38039, Kaywerd, Twhey.
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3 To determine the invanance propeities (1.¢. closed under tormation of products,
subspacces, and quotiont spaces) of each of the separation properties in above categories.

4. Nel’s | 7] result has beon extentod

Lot & and B be any categories The functor {/:£—+H 13 said to be topological tf 1t 13
concret : (i.¢ faithiul and amnestic (1 e if Lf~id and fis an isomorphism, then £id)), hui
small (e sets) fibers, and for which every U-source has wn initial KfY or, equivalenily, fur
which oach U-sink has a fiaal Lif1 [5] p. 125 or [6] p. 279

ML [6] p. 279, that un vbject X of £ called indiscreto (resp. discrete) iff every map
from an £-object 10 X (resp. every map from X 1o an £-object) is an L-morphism.

Lot X be a nunempty sot uad X° ~ XX be the cartesian produdt of X with iself, and X' V, X!
be two distinot copios of X* identifiad song the diagonal. A polt (x ) in X* ¥, X* will be
denoted by (1)), ((5.0),) f (x.p) is 18 she fiest (reap. the second) component of X' V, X*
Cloaity (v p}), = (x,v), ¥ x  »

L1 DEFINITIONS. The principal axis map A4 X° VAX‘,—«- X? is given by A(xy),
= (kx) snd Ax.y), = (x.x.y). The shewod axis map S X* ¥ X’ = X ia given by S(x),
s (xgy) and S(xy), < (rxy) and the fuld map, VX X X s given by
Viey), = (xp) for ¢ = 12 Now that sy =a, &8 =x, a¢d af = a ., when
8, X' -+ X is the Ath projection & = 1,23 and Ro=m+m NV X=X

Lot /K — Sem, the category of sets, be topological and X an object in A with [/X=¥

1 7 DEFINITIONS

L Xis T, iff X does not contain un indisccete subspace with (at least) two poinis [9)
p 316

2 Xis T, it¥ the initial Lift of the Usomce (td: BV B -=U(R'V B'Y =B} B
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and V . B2V, B*— UD(B*) = B*} is discrete, where (B ¥, B?Y is the final lift of the
U-sink {i,,i,: U(X?) = B*—~ B*V,B*} and D(B*) is the discrete structure on 5 [1} p.
338.

3. Xis i:, iff the initial lift of the U- source {4 : BV, B — (X’) = B’ and
V :B*V,B* — UD(B?) = B?} is discrete, [1] p. 338.

4. X is 7, ift the initial lift of the U- source {S: BV, B? — (KX') = B’ and
VBV B — UD(@B?) = B} is discrote, [1] p. 338,

5. X is Pre !, iff the initial lift ofthe U-source (S : B!V B*— LAX?) = B®) and
the final of the (-~ sink (i,,4,: U(X?) = B — B'V B*} agree [1] p. 338.

6. Xis Pre T, iff the initial lift of the /- sources (8 : H*V, B — ((X*) = B} and
{A BV B — U(X*) = B} agroe [1] p. 338

7. Xis 77 Wt Xis T, and Pre?; |1] p. 338,

8 Xis T, iff Xis 7, and Pre7, [1] p. 338

9. Xis KT, iff Xis 7; and PreT, [4]

10. Xis LT, ¥ X is T, and Pre 7} [4]

1. Xis MT, ff X is 7, and Pre 7] (4]

(2 Xis NT, ff X is 7, and Pre T, [4].

1.3 Remark. | ov the category of topological spaces, TOP, we have:

1. All of the 1,’s in 1.2 are equivalent and they reduce 1o the usual 7, (sve {1} p. 338
and [9] p. 316).

2. All of the 7 's in 1.2 are equivalent and they reduce to 7, the HausdorfY condition.
This foliows from past (1) and {1] p. 338

Let A be a set and X be a function which assigns 10 each point x of 4 a set of proper
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filters (i.e a filter & is proper iff d does not contain the empty set, (7 i.e d » [D]) (the "filters
converging to x") is called a convergence structure on A4 ((4,K) a filter convergence space)
iff it satisfies the following two conditions.

1. [x] € K(x) for each x € A (where [x] = { BC 4 | xE€ B }.

2. D a € K(x) implies B € K(x) for any proper filter § on A. A map f: (4X) -
(B.L) between filter convergence spaces is called continous itf a € K(x) implies fa) € L(Ax))
(where Aw) denotes the filter gensrated by { AD) | D € a ). The category of fliter
convergence spaces and continous maps is denoted by FCO (sec (8] p. 334). A filr
convergence space (A4 X) is said to be & local filter convergence space if a N [x] € K(x)
whenever a € K(x) [7] p. 1374, a limit space if « N B € K(x) whenever a, f € K(») (7] p.
1374, a pseudotopological space if a filier u € K(x) whenever all the ultrafiiters containing
a beloags 10 K(x) {7) p. 1374, a pretopological space if the intorsections, N, of all filters in
K{x) belongs t0 K(x) [7} p. 1374 These spaces are the objects of the Ml subcasegories,
LFCO Lim, MT, and PrT of FCO.

14 Asource { /: (AK) — (A,K) i €1} is an initial Lifk in Lim, PsT, and P/T iff
€ K(x) precisely when fa € K (f(x)) for all x € K(x) and { € I (7] p. 1374,

1S An epi sink (i i, (B' K)-+(B*V,B? L)}, where i, i, are the canoniosl
injections, in Lim, PsT, and PrT is & final 1if} off for any filter a on the wedge and any point
7 in wedge, o D iy, for some a, € K(w), w € B*-A, and ip ~ sfor k=1 or2aDiq,
Y iya, for some a,, a, € K(u), 4 s on the diagonal. This is a special case of [7] p. 1374

Separation properties. We now give the characterizations of esch of the separation

properties defined in 1.2 for Lim, PsT, and PrT and investigate some of their invarance

b1
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properties.

2.1 THEOREM.

1. (A.K) in Lim, PsT or PrT is ’i'—o or 1, iff for each distinct pair of points x and y in
A, [¥] & KO) or [y] € K(x) [3] and [9] p. 318.

2. All objects of Lim, PsT, or PrT are T, The proof is similar to [3] .

3. (A K) in Lim, PsT or PrT is Pre f, iff for any pair x and y in A {f K(x) N K(y) »
{31}, where D is the empty set, then K(x) = K(y). It follows from [3] since the initial lifts
in FCO, Lim, PsT, and PrT are the same.

4 (AK)inLim, PsT or PIT is T-', or NI, iff for any x = y in A, K(x) N K(y) = {[$D}}.
it follows from (1), (3), and Deflinition 1.2,

5 (AK) in Lim, PoT, or PrT is KT, iff (A.K) is Pre I_‘,I It follows from parts (2) and
(3) and Definition 1.2

2.2 THEOREM. Lot a,,, oy, wnd vy be proper filkers on A

L ifa=na, a,, Uy a,, Unga,,, then ais proper (If either (8) a,, U w, or
() a,, U a,, is proper.

2. There exists a proper fler fon APV, A suchithat m B = a8, 0 =a,  and

e
2,0 =a, W) Y (a) fails, then o, = «, , (il) if (b) fuils, then a,, = «,, . (i) {f nelther
(0) nor (b) fails then a  Na, Cu,, .

For the prool see [2] p. 103.

23 THEOREM. X = (4,K) in Lim, PaT or PYT iv Pre T, (ff for any x = y in A, K(x)
N Ky) = {[D]).

Prouf. Supposs X is PreT; . We show that if x « y, then K(x) N K() = {[D]}. If K(x)
N K(y) » {{D]), then there exists a proper filter a € K(x) N K(). Letu,, = [x],
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a, = o =q,, and z =(x,)),. Note that «, Uu,, =« is proper. If  further
a,, Ua, = [x] Uauis improper, then by 2.2 there exists a proper filter $§ such that
n, P =[x} x, P = a==n,p Note also that since case (i) of 2.2 holds, there exists an
element W of B in the form W = ({x} = U),, {x} € [x}, UE a 1.e W lies in the first
component of the wedge. Since X is Pre7; , it follows that B D i,f8, for some B, € K'(x,y)
(e nf € K(x) and nf8 € K(y)). and ifx,p) = (x,y), Hence if N € i,f,, then
N D i, M for some M € f§, and consequently M D i, M D i, (G < H) = (G~ H), for some
GExP and HE n, P Notethat WN(G~H) = {(x,x)} orDisinfsince ) is a filter
Since fi is proper, § = [(x.x)] and consequently [x] = a_ B = a, a contradiction since a U
[x] is improper. Hence a U [x] must be proper and thus « C [x] Since u € K{y), it follows
that |x] € K(y). Let B - [(xp),) and z = (xy),, and note thata B = [x] € K(x),
x, B = [x] € K(y), and x, B = [y] € K(y). Howsever, f} 2,0 for any b € K*(x,y) since x
= y. Therefore, K(x) N K(y) = {{D]} forall xm yin 4

Converscly, we show that if the conditicn holds, then X is PreT; i.e for any filier
on the wedge and any point z in wedge, (1) B D 1,a, for somea, € K'(w), w € B7-4,
and iw =z fork=1or2 or pDra Niu, for some u,a, € K'(w), u is not on the
diagonal, iw = 5 ip iff (I) n, B € K(n, 2), n, P € K(xn,,z), and x, 8 € K(x,,5), by 1],
12, 1 4, and 1.5, By [4], (1) implies (11). To show (II) implies (I) note that if P is improper,
thon clearly P D im P since i1, ) is improper. Assume 8 is proper If z = (x,y),, x » y, and
®, BEKx),», PEK(y), and n HEK(y), then we apply 2.2 witha,, = 5§, a, = x f,
and @, =a B If (8) of 22 fuils, then by () #,p=n,p and consequently
AP € K(x) N K(y), acontradiction If (b) of 2.2 fails, then by (ii) a8 = =, B. Note that
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(b) of 2.2 fails means that there exists an element W of f§ in the form W = (U, = U),), e
W lies on the first component of the wedge Let f§, = m'r, B U AR, B and note that
np=n, BEK(x) and = =x,,BEK(y) and consequently B,EK'(x,y). We claim that
ilt}l-u{:ullﬁUx;:nzlﬂUu;;x,‘B-ﬂo. We first show that /B CB,. If WE P, then
WD (V,xV,), for some V,€ x,p and V,€ n, p==xp Since (b) of 22 fails,
x,BU=, B is improper and consequently YN/ = @ for VEx B and UER,B. Clearly,
VNV En pand UNUEx =58 (since they are filters), and oconsequently
NV )N UNY)NRQUNY) =((VNV) = (UNT,)), E B, since
wWarpynwynr)=a But WOF -V)DWVNr)~UNY))€p, and
consequently W € @1, ie if CPB, We now show that B, C/ip,. If W € f, then
WOWxV) vUNV)=V) forsome UER B VE =&, B =a p We further may
assume that & NV = & since =, U=, B is improper. Thus W D (U= V), and
consequently ({/ < V), € i\p,. Therefore W & 4 . This shows that /3, = i, Butby 33
of [2) p99, BCPieip CP.

If neither (a) nor (b) of 2.2 fails, then by (i) x, B N x,,8 Cx, B Sincen U= P
ts proper ((b) of 2.2 holds) and is in K(x) N K(y), we get a coutradiction. Hence My case
(1) of 22 holds snd in this case P D /P, If z = (x)), then x P € K(x), 5, p € K(x),
ad n P E K()y) We apply 22 If (@) of 2.2 fails, then by (i) =, 8 = x,p Let
p,~n'x,pU u;'unﬂ and clearly §, € K'(x, y). By an arguinent similar 1o the one used
above, one can easily show that /B, C B If case (ii) or (iii) of 2.2 holds, theaxn,,pUx, B
is proper and is in K(x) N K(), a contradiction. Finally, if ¥ - yi.ez = (x,x), = (x,x), then
x,f, 7,8, and 5,8 are in K(x). If case (i) o (ii) of 2.2 holds, then we have B D (B, or § D

0§}, for some P, € K'(x,x), respectively (see above cases for the proof). It case (iii) of 2.2
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holds, then we have 8 D/ B, or f D 4,3, for some f§, € K'(x,x), respectively (see above
cases for the proof). It case (u1) of 2.2 holds, then we have a8 M B C n, B Note that
B N oAy € Kx) smce X s o Lim, PsT, or Prl. Mt we et
B,=®, %, p U Ry (%, B VR, B)Uny,x, B, then by [2] p.99, B, C f and x, B, = %, € Kix),
Ry = n, P N ay,P € K(x), and x) B, = 7, € K(x). Let f = u,"n“ﬁ U n,’lnuﬁ and note
that P, € K'(x,x). We will show that g, =ip Nif If W € g, then
WOWWUx(NNF)), v (UNV)=N), forsome UE = 8, VE », BN x P andNE
n,f8. Since all of these uce filters, U NV € a,p and V' N N € 5,8, and consequently
WOWUNYY~(NOFY) v UNY)<(FON)),. Since((UNVY(NOV)EP, WELB Ni ,
mnce ((UNV)<(NOF), €48, (UNF)X(NO) v(UNY)=(VNN)), &I 8 NiB,, ad
WNV)<(VNN)),E i) This shows B,C i 0 iB. On the other hand, if
WEiP, NI, then WIWUAV)v(UV), for some UEx B VERH Noe tha
N=UUVEA fN&, B and  x,(0)N%,(N)N&G(F )= (NOY)) v ((UNN)* V), =
(U~ V) vU~F),EPR, and consequently W € f#, This lbm;s (lI) implies (1) which
completes the proof.

24 THEOREM. X = (B.K) ne Lam, BT, or BeT s 15 | L1, or MT, (§f for any distinct
pit of pornits x and y e B, K(x) (1 K(y) = {1¢]).

Froaf. Combine 2 1, 23, and Definition |.2.

2.5 Remark (1) For the cawgorios of Lim, PsT or PrT, we have T, = T, implios 1,
sad 1) = L7, = M1, = 1, = N7, implies K7} but the converse of each implication is not
tue, in general

(2) We ilwo have some relationships among our notions 7, 's and Nelt s 7, {7] In
Lim, PsT, and Prl his 7518 equivalent to our NT,, 7. LT,, MT,, snd i and his 7', implies
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our K7,
(3) If (4,K) is an indiscrete (with at lest two points) i.e V x € 4, K(x) = F(X), the
set of all filters on 4, then (4,K) is clearly K7, but not any of other 1, 7,, T,, and 7‘,
However, in TOP we know that every 7, topological space is both 7, and 7, space.
Let (4,1) and (X K) be objecta of Lim, PsT, or PrT.
26 THEOREM. Let [ (A, L) —= (X, K) be the initial lif (see }.4). If (X.K) is
L, f), 1, MI',, KT,, and NI, then (AL) is LT, 7‘2, 1y, MI,, KT,, and NI,
respectively.
Proof. It follows easily from 2.1, 2.4, and f is being initial.
2.7 THEOREM. Lot [ : (A, L) — (X, K) be the initial lif and (X.K) be T, i or
1, then (AL)is T,, 716, or 1), respectively iff 1 is mono.
Proof if fis mono, then the result follows easily Suppose (4,L) is 7,. T,, or T, but
Jis not mono i.e 3 x w yin 4 such that Ax) = Ay) Note that Alx]) = [Ax)] = [Ay)] € K(X»))
N K(Ax)) implies {x} and {y] are in L(x) N L(y), which is a contradicuion since (A4,1) is

1, 1, o 1.
2.8 COROLLARY . Suppose (X.K) is "T," space for i = 0.1 2 Then every subspace of

(XK) (e f (AL) - (XK) is mono and initial) is "1 space for | = 0,12,

FProaf 1t tollows from 26 and 2.7

2.9 THEOREM. The cartesian product (X = (TIX | ¢ € 1} K)in"1," for k0,12,
iff each (X, K) is “1," for k = 0,1.2.

Proof Suppose (XK) is "1,", k = 0,1,2 Then it is easy to see that each (X, K) is
isomorpiic 10 some slice in (X, X) and consequently by 28 (X, K) 15 "T," (A = 0,1,2) for all

i
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Conversely, suppose each (X, K) is 7, but (X,K)1s not 7, 1 ¢ by 2.1, I v w yin Xsuch
[x] € K(p). It follows that 3 j € [ such that x, = y, 1n X and a(|x]) = [x] € K () - p), a
contradiction. Hence (X,K) must be 1. The proof for 7, and 7,:, 15 similar. Suppose each
(X,K)is 7, Foreny x wyin X, let a € K(x) N K(y). Note that a.a € K(rx  x) N K(ny
- y). Since x » y, I j € [ such thatx, » y in X, In particular, by 2.4 and 2. |, ma = |§] which
implies o = [¢] Hence by 2.4 and 2.1, (XK) » 1] Note that 7, is equivalent to
T, NI, MT,, LT,

Suppose each (X,K) 18 K7, and for any x w y 1in X, K(X) N K(y) » {{¢{}. Then thers
OXists & pr;)per filter § € K(x) N K(y) and conse quently i € K(x) N K{y) V /. Since each
(X.K)is Kt Kix)) = K(y,) for all i Let « be in K(x). Thon nu € Kfx) = K(y,) for all i and
consequently a € K(y). By titerchrnging the role of x and y, we got K(y) C K(x) if K(x) N
K(y) = {[¢]} Hence K(x) = K(y) and by 2.1, (X.K) 18 KT,

We now generalize Nel's, [ 7], result for full subcategorios K7,b, T £, and 7 ,E, where
L= Lim, P, o PrT (objects of these subcategocies are KT,: T, and T, limit spaces,
pseudopological spaces, and pretopological spaces). Nel has showed that & full subcategory,
HLim (objects of HLim are HausdortY limit convergonce spaces) of Lim is a cartesian closed
inttally structured category

210 LEMMA. Fach of subcawegories defined above are cartesion clowed initiilly
structured cotegories.

Proaf It follows eastly from 2.1 and the results 1 13, 1 14, and 2.5 of 7).

Let (X.K) be in Lim, PsT, or P\T and a /' be nonempty subset of X Let ¢ (X K)

(A/#,1.) be the quotient map that idenifying /10 a point, *

211 LEMMA Lot aoand B be proper flers on X Then qu U ¢f ix proper ifY cither
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a U B is proper or o U [IF] and p U [F] are proper.

Proof Suppose ga U gft is proper. We show that if « U [F] 1s improper, then « U
{3 is proper. Suppose it is noi proper i.e there exist {/ in « and ¥ in f such that 1/ "V V' = ¢.
Since a U [F] is improper, 3 W € « such that W N} = ¢ Note that UN WE s and U N
W = U 0 W) in ga. It follows easily that ¢ = g(U/ N W) N ¢(V) € ga U ¢, a
contradiction. Similardy, if § U [/] is improper, then « U i is proper

Conversely, suppose a U § i proper, but ga U ¢f is improper. Then 3 U € ga and
AV E gff such that ¢ = U NV D ¢(U,) N ¢(F)) for some U, € w and ¥V, € B. It follows that
¢= U/, NV, EaUBpP, acontradiction. Suppose u U [#] and B U [})] are proper. Suppose
alsotht gqu U gp < [¢] ThenF U E gqaand IV E ¢gf such that ¢ = U NV D U N
V) for some U, € o and ¥, € P But this i3 a conuradiction since /, N M wgmw V, N F
and (U, N 1) =" =V, N F).

212 THEOREM. If (X K) ins Lim or PsT is “1,", then (X} 1) is "1,".

Proof Let a and b be any distinct pair of points in X7/ and « be in Liu) N I{#) If
o I8 1mproper, then we are done. Soppose « is proper ¢ is the quotiem map, [7), implies 3

f, € K(x) and 3 b, € x(y)mmmuaqmp) u‘w(ﬂh,) and gx, @ gy, = b,

1
P J

where 7 < |, _mand f== 1, & Note that ¢( ﬁﬂ) U g ﬂb) is proper und by 2.11, either
(I.ﬂﬁ) U { ﬂb) is proper or ( ﬂﬂ) U {F] and ( ﬂb) U [#'] are proper If the first case
holds, then lhou exist 5 and 7 such that fi, U b, is proper and consequently is in K(x,) N K(y,),
a contradiction since (X,K) is 1), LT, MT,, T,, and NT, (x, = y) If the necond case holds,
then it is easy (0 soe that there exist 5 and 7, and points &, ¢ in /- such that B, U (] and 8, U
[} are proper. It follows thut P, C {o] and b, C |c|, and consequently [d] € K(x,) and |¢] €
K(y) Wd=x, 00 cmy, then we get a contradiction since (X.K) ix "/, Ifd  x and ¢ =y,
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then a = gx  qd =" =gqc b a contradiction since @ = b. Hence the second case can not
occur, either. Thus « must be improper. By 2.1 and 2.2,, we get the result.

Suppose (X,K) is K1, and for any a = b in X/F, let o € Lia) N () with ¢ & a ¢
is the quotient map implies 3 B, € K(x,) and 3 b, € K(y)) such that §§, U 8, is proper or §§, C
|d] and 8, C [¢] for some ¢,d € I (ses above argument). If the first case holds, then f§, U b,
is in K(x,) N K(y,) and by 2.1, K(x,) = K(y)). Hence L{a) = L(b). If the second case holds and
x,=»dory wc, then [d] € K(x,) N K() or [¢] & K(y) N K(c), respectively. Since (X.X) is
KL, K(x) - K@ or K(y) = K(¢), and consequently L(a) = I(b) since g =" =gc If x, < d
and 3, - ¢, thena — gd =" = gc ~ b, a contradiction 0 a » b,

Note that 2.12 holds tor (X K) in PcT where the finite intersection is replaced by the
intersections, N,, of all filteis in K(x).

213 THEOREM If (X.K) is 1, or 1, then (XIFL) is T, or T,

We only prove for 7| since the proof for 7 is similar. By 2.1, we nead to show that
for any distinct pair of points a and b in X/F, [a) & L(b). Suppoo; [a] € L(d) for vome a »
band am” w b Since ¢ is quotient ([7] p. 1375), 3 a € K(x) such that [a] D ¢ga and ¢« ~
b By Lemma 3.16 of |2], we get [a] D a and consequently [a] € K(x), a contradiction (X is
1,). Suppose a =" w» b. Then '] D qux for some « in K(x) and x ~ ¢gx = b. By Lemma 3.16
of (2], @ U [£] is proper and consequently 3 € } such that a C [d]. Hence [d] € K(x), s
contradiction. Suppose a » * = . Then there exist x, € Fand , € K(x), = 1.2,._m such that
la] O q(f\' B,) and qx, = " = b_ 1t follows oasily that 3 & € (1.2, #) such that ¢f, C [a]
By L.emma 3.16 of (2] p. 106, we get B, C [a} and consequently [a] € K(x,), a contradiction.

2 14 Kemark Let (X.K) be in Lim, PsT or PrT and R be an equivalence relation on

X Then Theorems 2,12 and 2.13 hold for a quotient space (X/R 1.). Howsver, in TOP these
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results do not hold, in general.

Lad
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REZUMAT. - Solutl aproximative continue pentru ecuatli diferentinle cu argument
inthrelat de tip nestral prin metoda lul Picard modificntdi. Rezotvares nuinericd a ecuajiilor
difercnfiale cu argument intdrziat prezinth o deosebith imponangd. Procedeele cunoscuts pnd
acum, cum ar fi metoda colocatiei, metoda seriilor de puteri sau metods pagilor nu sum
suficient de eficiente. [n aceastd fucrare se prezintd o etodd de tip Picard sinplificatd pemng
resolvarea numerica a urnmbtonrei problome:

YO = JU ), 480D, Y (8), K, b)
MO =@ V') = ¢ (0, 1E s a], asa~b

uide o s g(1) <1, jar ¢ € C'(Jaa], B), s> 1 Dind un numar satural dat. Metoda preseiaid

este o varisnld simplificuld a metodet aproximaiilor succesive a lui Picard, aplicatd problemwei

de imai sus.

Abstract. Numernical solutions of neutral deluy differenual equstions has become
imcreasingly important. Collocation procedure with polynomial spline, power series and
method of steps in the independent variable makes it soems a slow and memory consuming
process. A simplified version of Picatd’s Method, it is not necessary to store and mauipulate
all the coefticients of the k th approximation in order 1o the (k+1) th approximation. We

consider the following first order initial value (Cauchy) problem tor neutral delay difterential

T dkdeniz University, Faculty of Avts and Sciences, Depariment of Mathematics, PK310, Antalva
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equations (NSSEs).
V) = S K HR), Y (8, €la, b
WO =60,y (1) = ¢’ (1), 1€ [a,a], asu b
The tunction g is called the delav argument and it i8 assumed to be continuous on [a,b] and
satisfles the inequality « s g(r) < 1. Also initial function ¢ has property ¢ € ' *"Y([u, a}, i),
where m > 1 is given nalural number. We pressent an efficient procedure for computing
continuous approximate solution to initial value problem for neutral delay differential

equations  The method is a simphfication of Picard’s method of succesive substitutions.

1. Introduction. In recent years, there has been a growing interest in the numerical
treatment of NDDEs. This type of equation 1s a differential equation in which the highest
order derivative of the unknow function appears in the equation evaluated both at the present
tme ¢ a3 well as at some past time ~t. Besides its theorical interest, the study of NDDE: has
some tmportance in applications. For example, NDDEs appear in problems conceming
neiwork containing lossless transmission lines. Such networks arise in high speed computers
where lossiess transmission lines are used to interconnect switcing circuits. See for more
detail [4] and the reference cited there 1n Also such type of equations appear in many flelds
of application such as, physics, engineering, biology, medicine, economics, etc.

The purpose of the present study is to extend and generalize some results from the
ordinary case to the neutral one. Consider the following first order initial value problem for
NDDEs.

Yy = U000, M #(0), ¥ (8(1), 1€]a, b)

HO = ¢(0). Yy () = ¢'(. 1€ [, a), a s a<b (an
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CONTINUOUS APPROXIMATE SOLUTIONS

Where £ [a, b] x (' fa, b] » ([, b) » Cla, b) = R

The function g, called the delay function and 15 assumed to be continuous on the
interval [a,b] to satisfy the inequality a = g(1) s ¢ and ¢ € C"'({a,a),R), where m > 1 is a
given natural number. For the qualitaive behaviour of the solution y, in particular the
presence of jump discontinuites, which can occur in various denivatives of the solution, even
if £ g and ¢ are analytic in their arguments, the reader is referred for example to Bellen [1],
Driver [3]

Denote the jump - discontinuites by {E,} which are the roots of the equations g(§) =
E ;. §, = a1s the jump - discontinuity of ¢. Since in this paper g does not depend on y (no
state - depend delay), we can consider the jJump - discontinuities to be known for sufficiently
high order derivatives and they are disposed in the form

E,<§~ <§ -&- ~§
The notation used in this paper is taken trom |3 and [2] Assume the following

conditions (A) satisfied:

Condition A:
Ay For any x = ("{u,b) the maping ( — f(1,x(1), x(*), x'(*)) 1% continuous on |a,b].
A, The Lipsciutz. condition holds:
W x (0, p (D, () = S 300, y (0. 2,01 =
LA N R TN N EA 2w * bz 2l 12
with /a0 0«1, <1, d>1 for any r € [ab], for wllx  x,, v, v, € Cla, b}
2,2, € 'fa, b] Here
C'la,b], i =0, 1,2 denotes the space of all function of class (" from la.b] in to K and
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el = Sup{lx(s):s € [a, 1]} (13)
Function f(1, W#), (-), ¥’ (")) has continous partial denvatives with respect to its
arguments of all orders up to the (n+1) th inclusive in the neighbourhood of a point
[gj 1% ‘gm]. Then Taytor formula neighbourhood of # will held
AU WY ) = plf + s’ ¢ v df ¢ ™ f (14
Since the all orders of partial derivatives are assumed to exist, each one of then must
have a maximum vatue M, > 0 on the consedering interval. The following procedure yields
1o an approximating function u —~ R, m € (™'([a, b], R) which is defined on each
subinterval

[6.E,] (=01, M)

2. Description of the metod.  aszder ihe first interval [E", gl] The proposed method

tor the appruximate solution of (i 1) can tecursively detined as follows:

Hy= o), 1€ a, bl ama<b @y
Uy = fU. 901, 9(), ¢'() ()
u - '.ulllu‘.\', B, = #~ ¢ <,y =~ L2 M

i

whete u,, 18 the tenn of degree /1 i the expanston of f(6, 2% (1), 4V ¢), 0w’ Y ) s 4
POWCT seties in ¢ And
e A (24)
is & polynonual in ¢
THEOREM 2.1 Let condition (A) hold, then there exist an wnique approximating
solution of the problem (1.1) given by (2.4) which 1s ickentical 10 first nt1 terms of the series
repr exentution of the soluiion of (1 1) by Picard’s method on each of the interval [gj 3

I
)
11



CONTINUOUS APPROXIMATTE SOLUTIONS

The proof follows by induction. First let us show that defined initial function ¢ and
linear terms in (2.4) are equal to the correspondinng terms computed by Picard’s method.
YD = 60, 1€ ju,g] (2.9)
SACERIOR [/(s,yﬂ-.(s).y,,,.(-).y,:-‘(-»dv @6)
E s <1<, and I'=§, -§
convergence of the Picard sequence {y,} to a solution (¢) of (1.1) is guaranteed with
Condition (A). Thus the solution of (1.1) computed by Picard’s method can be wnitten in the
form
W) =Pt Pttt rptte @n
on the interval [‘gu, §l]. Here p{i = n) are depends on the particular form of fand its partial
dertvatives with respect to all argunients of all orders up to (#+1) th. The first approximation

10 the solution of {1.1) by the Picard’s ieration

‘

URE G f S 900, 6(), ¢ (D el 28)
Integration of power series expcnsum. of f(v. ¢(s), (), ¢'(")) In 8 we cun obtain
YO =) rcp o+ 29
The term (1) remains mvariant in all successive approximation y (1), w ~ 2, 3, ‘The
eijunlity
*W) =y, = p, (2 10)
follow trom (2 5) and (2.7).
Evaluation of equaiion (2.3) with y = | it follows,
u, el (2.1
which is & result of companson of (2.8) with (2.9)
LEMMA 2.1 Assume tht the function f(1, 2(1), 2°), 2/ () is arselytic: im all argumerts

3



and has continuous partial derivatives of any orders. Then it can be expanded is a power
serie of 1. The term of degree k of the argument z(1):

)y =z vz vzt vzt (2.12)
of the function f contributes only to the values of erm of equal or higher degree in the
resulting expansion of the function as a power series in . The proof of the Lomma 1s simply
a modification of Lemma 1 of [5].

From Lemma 2.1 and invariance of the form ¢(t) it follows that
¢, = p, 2.13)
Thus it is easily seen that the equality
uo=pt (2.14)
is satistied for j = 0, 1. Assume that (2 14) holds for j =0, 1, 2, .. »-1 Substitution of the
solution W(7) in equation (2.6) followed by the expansion of f(x, /%), (), ¥'(*)) as a power

sories in & results In

W) = 6D+ [(d» +dy rdst v 4+ d_ s" ' vds"+. )ds (2.19)
Af\er integration we obtain
W) = p,+pi+ p}(‘ +otpi” (2.16)
where
d,,
P~ 400, p, = -+ k=12 @17

The constants o (n = 1,2, ) in (2 15) depend only on the coefficients p, i « »-1
of Mr) and the particular form of f(2, 10), X-). ¥’ (). Then (»-1) iterations carried out using
oquations (2.1)(2.3) result in the expression

A U R AN R 21y
where the terms #, satisfy (2.14) by the inductive assumption. The variable ., is by
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CONTINUOUS APPROXIMATE SOLUTIONS

definition, the term of f(z, y" (1), y"'(*), »" ""!(*)) as a power series in f Lemma | and

the inductive assumption (2.14) guarantee

u ,=d " (2.19)

n-1 w-l
Substitution of (2.19) in (2.3) yiolds

d
u, =Ly (2.20)
n

and the desired result
u =pi” (2.21)
follows by direct comparison of (2.20) and (2.17). This completes the proof of the theorem.

Above processes can be repete on each consecutive interval [g, gm].

3. Accuracy and Ervor analysis of the method. Using equations (2.1)(23),
computed polynomial
vy -_f;p,u G
is & truncation of the infinite series '
o = gp.t' G2

which represents the exact solution of equation (1.1) in the interval & = 7 < § . Picwrd

sequence {)y,} genorated with (2.5)-(2.6) can be written in the form

L]

=Y pt+ Y qr (33)

-9 =t}

where the ¢, depend on the number of iterations m, the particular form of the function
S A0, ), y/(*)) and the initial function ¢(r). Following recall [6] the estimation of the

errof is:

XD -y O = (e wr_ g 9;}’1] 1 - 0] 0.4)
k>0 !

where & = max {k,, k,} and the particular form (3.3) of ¥’ can be written in the following

LJ
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form:

) (31 .I,)k w
by -um g < e - Ly -emn | X g0 (35)

k=0 k'

This is a bound on the error of the truncated series (3.1) whicl 1s computed using

IR IRS

equations (2 1)-(2.3). Here the symbol § | denotes the norm [w(1)| = ' :r::uf' W0l The
inequality (3.5) leads to reducing the magnitude of the error and there are twc; techniques,

a) Computation of a polynomial of degree higher than m and

b) Reduciion of the length of the interval. Since the limited capacity of machine.
coctﬁcicnlg of higher powers of ¢ tend to cause underflow or overflow in the computer. Also
efficiency becomnes the limiting factor when dealing with nonlinear equations. The number
of machine operations required 1o compute the term grows with square of the degree of the
resulung polynomial. Clearly the emror term (3.5) in the approximations w“?(7) vanishes &
T — 0 If the computed polynomial #“(¢) represent the solution within the interval
EsishsE  where h - I'N (Nis sufficiently large positive intoger) then the eror in
the approximate solution #'™(¢) can be made arbitrarily small within the interval §, s s §,,.

The procedure can be repeated on the consecutive 1ntervals 1o times to obtain the
solution on the complete inteival. The procedure desciibed 15 usually caled analytio
continuation. Thus the approximate solution #(f) on the complete interval is given as a set of
polynomials of degres m.

The evor bound given by inequality (3.5) may be extended to the case that Lipuchitz
condition (1.2) is satsfied for y,(¢) and y,(#). In this case the Lipschitz constant depends on
r and / where r is the radius ot the ball: «(0,7) = {x fx ~ x,§ & r}) in which the polynomial
repiesent a solution of the equation Thus the inequality

ree Lyt - ¢l
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CONTINUOUS APPROXIMATE SOLUTIONS

must be satisfied. The convergence of the iteration (2.1)-(2.3) to the solution of (1.1) is

guaranteed and the error bound (3.5) holds.

4. Conclusions. The most imporiant advantage of the method lies in the fact that it
is an efficient procedure to compute continuous approximate to initial value problems in
ordinary ditferential equations, delay differential equations and neutral delay differential
equations. The analytic condition schems described in the procedure represents the solution
in the furm of piecewise polynomial funoﬁpns of desired degree. This atlows the possibility

of a stable differeatiation algoritm.
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ON THE USE OF INTERPOLATORY POSITIVE OPERATORS
FOR COMPUTING THE MOMENTS OF THE RELATED
PROBABILITY DISTRIBUTIONS

Lucia CABULEA’
Deadicatad 10 Frofowsoe M, Hulazs on hie 63* anniversary

Neceived: Uctober 16, 1993
AMS subjpect claasiffossion: 65U03, 41436, (K05

REZUMAT. - Asupra utiiafiril operatorilor Hulari poscitivi do tip interpelator pestra
caleulul momenteler distribagiilor probabllistice avecinte. In partes Intaln a lucrdrii am
introdus unele podagii gl definitii ale momewsior de ordinul » relulive L un punct dat, cele
oxtinsre, cenizale §i facioriale. Cu gjutonl diferenfutor lui sero ¢ nunerelor Jui Stiring de

spea & doua mn dat fonnule explicie pentru momentul urdinar §i cel fucional de un ordin dat.

Prin folosirea relagiilor de mourentd peniru difereniele hui 2610 suu pentru nusrele Jut Stirling,

s pot calculs (n mod succesiv aoeste Momens.

Abstract. It is known that the theory of approximation by moans of linear positive
operators 18 connected with the theory of probability, as there has been illustrated in
concrete case already by S N. Bemstein [1] in 1912 1n a paper by ] P King [6) there has
been proved that if we have a sequence of linear pusitive operators (1), where
L. Cla, b} = Cla,b), such that (I_e¢ )(x) = L (1,5) = | for x € [a,b], then therv exists
& sequence of independent rendom varisbles () such thw (L_ f)(x) = E[/(V )] Mowover 1. f— /,
uniformly on [a,b], for each /€ ([ad), if and ordy if K[Y. ) > x and Var(Y, ] = 0 as m —
o In the paper [14] D.D. Stancu has used probabilistic methods for constructing and

investingating linear positive oporators useful in constructive approximation theory of

functions. In the same paper he started from the Newton interpolation formula for representing

"M Decembrie” University, 2500 Alba-Iulia, Romartia



a linear interpolatory positive operator by means of the factorial moments of the related
probability distnbution and the finite ditferences of the function involved on the equally
spaced nodes used by the operator

By means of such representations we deduce explicit formulas for the ordinary
moments of the corresponding discrete probability distributions.

In the first pant of the paper we introduce some notations and definitions connected
with the moments of an order » with respect to a given point, the ordinary, the central and
the factorial moments. By means of differences of zero and of Stirling numbers of the second
kind we give explicit formulas for an ordinary and a fuctorial moment. If one uses the
recurrence relations for the differences of zero and for the Stiring numbers, one can calculate

successively these moments.

1. It is known that with the distribution of & random variable there are associaied
ceriair numbers called the parameters of the distnbution, which have an imporiant role in
many problems from mathematical statistics These parametors are ropresented by various
types of moments of the considered random variable and by some functions of them, as well
as by the order parumters, formed by quantiles of & certain given order p € (0,1), and some
functions of them.

Let (€2, B, P’) be a probability space. Suppose Q is a fixed sample space, B is & Borel
field of subsets of (2, while 7 is a probability messure on Q. Let X be a random variable on
€2 with cumulative distribution /.

We shall consider a single-valued function . R — R, integrable with respect to /|
The following Riemann-Stieltjes integral
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ON THE USE OF INTERPOLATORY OPERATORS

EIR0) = [0 db () ()
represents the expected value of the random \:mable £(X), if we require that the inequality
[lgwtdr ) < =

is satisfied. N

One can see that £[g(X)] is just a weighted average with weights determined by /.

If Xis a discrete random vaniable then the corresponding distribution F(x) = XX =
x) = pdx) i3 a step function with a finite or countable tnlinite number of jump points {x,} on
the real axis, at which jumps {p(x.)} occur. The jump of F,(x) at x, is given by

pilx) = Fux) - Fux, - 0)

The function p(x) represents the discrete probability function, which 18 characterized
by the fact that it is positive if x coincides with & point of the sequence {x,}, is zero when
we have no jumps at x and in addition we have

pr(x‘) - |
&

In this discrete case we can write

K =Y pix,),
7
the sum being extended to atl those A for which we have x, = x
Consequently, the expected value (1) can be expressed by the forinula
E{g(X)) = Y gx,)p,(x,)
k
if the random variable X has a continuous probability density function p, then the
expected vaiue of g(X) is given by the fullowing formula
ELRUO = [t gto) e,

under the assumption that this integral is absolutely convergent

L]
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The central moment of second order, that is the mean quadratic deviation of the

random variatle X from its expected value v,, represents the variance of X. We have

Vear[X] = p.zaux v, -,

u, being the standard deviation of X.

3. Considering now that we choose the factorial powser of X
X)) = X¥ = X(X-1). (X-s+1),

wo arrive at the factorial moment of X, namely

e

v, = £l - f XL (x),

In certain kind of problems, involving discrete random variables, it is often convenient

to determine the moments v, by first evaluating the factorial moments

Vi = }; xp (s,
By using the Newton interpolation formula, corresponding to the funetion
J(x) =e(x) =x" = (r EN) andtothenodes 0, I, 2, .., r, we obtain the standard monomial
¢, in terms of the factorial powers ¥ and the finite differences of order j, with the step A =

I and the starting point &=0, namely
4 (A"ﬁ )(0)

-I*z' pbt.

Consequently, if we introduce the Stirling numbem of the second kind

g . MO
J '-j'r‘

by means of the differences of zero A0’ = (A¢,)(0), we can obtain relutions botween the
otdinary moment v, and the factorial moments of the random vanable X:
A /2; v, 2 Vur “‘T
For the calculation of the differences of zero one may use u recurrence relation due

LX)



to E.T. Whittaker and G.Robinson | 16}:
N = N0 RN
By dividing this relation by j! we obtain the following recurence relat.on for the Surling
numbers of the first kind:
U M A

which is suitable for constructing a table of their values. In [4] can be found such a table for

r= 20128, j = 2(1y

4. By using the Macluurin expansion we can represont the factonal powers in terms
of the ordinary powers and ot the Stirling numbaers of the first kind:
- 1 . i - ] in ()
s, il Do .;T(x ),_”,

and we obtain

¢
v E et
X - .Y’ X

i}

Consequently, the factorial moments can be expressed by means of the ordinary

moments and the Stirling aumbers of the flrst kind according to the following formula

5. The factorial moments can be computed by using the corresponding factorial
moment generating function, defined, if the expected value of the random variableg(X) = 1*

exists, by the following formula

ren

g = E[¢¥] = J 1 dr (x).

It is eanily seen that the factorial moment of order j is given by

Vi ™ &),
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In the discrete case we get

g =Y 1 opx).
k

6. For the computation of the moments of some important discrete random variables
we can use certain representations of interpolatory linear positive operators.

In [14] and later in [7}, by starting from an idea of W. Feller (2], there wers presented
probabilistic methods for constructing linear positive operators useful in the theory of
approximation of functions.

Let (¥,) be a sequence of one-dimensional random variables and let /&, , be the
distribution of ¥,. For any real-valued function /, bounded on the real-axis, such that the mean
value K[| f(y, )] exists, one defines a lincar positive operator 1.} by means of the formula

E[f(V,)] = L) = [f(y)df.,m

We shall use the notations ‘

Lix) = (L %) = LUS@); %),
It is evadently that we have 1 ¢, = 1.
It we further assume that (L e, )(x) = x and that
Var(Y ] = L ((¢-xp;x) = G, (x) =~ 0
a3 m — o, then we say that L_ is an operator of Fellar type.

in the paper [14] D.D. Stancu has proved that, if /is a bounded uniformly continuous
roal-valued function on the real axis, then the order of approximation of /by means of L.
can be evaluated by using the modulus of continuity of the function f, according o the
followir.y ineguality

o - 1] < 1 +p 0w ) (/z 7_‘.:]

m
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where

B, =supo(x) for x € /.

7. An important method for constructing concrete linear positive operators useful in

constructive function theory is given by L/ = E[Y_], where
Y, - %[xﬁx,* Ryal

under the hypothesis that (X)) is a sequence of independent and identically distributed random
vaciables.

Now let us present several illustrative examples.

(i) If X, has & zero-one distribution, then ¥, has the binomial distribution

bk, m x) = ('z)x LT} ald

and we obtsin the Bernstein operator B,, defined by

CHTED > (‘;’ )x*u —xr'*/(-‘.‘.). ¥ & (0,1).
-0 m v

(i) Lot us assume that X has & Poisson distribution with the parameter x. In this cae

Y., has also s Poisson distribution but with the new parametor mx and we obiain the Mirakian-

Favard-Szass operator L defined by

@, ) ?: ) ome -:-’-)‘xe (0, =),

(iii) By using the Pascal probability distribution one can arive at the Meyer-Konig and
Zeller opecator, defined by the formula
M) = g("‘;*)x*(l —x)"'"/(_.;%), x € [0, 1]
(iv) In the paper [12] DD. Stancu has introduced and investigated & parameter-
dopendent linear positive oporator S, defined for any function /- [0, 1] — R, by the
formula

L ]
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(/) =% w"fff(x)f(i). (c = 0) @
k=0 m
where, by using the factorial powers, we have

m) xlk ~u)(l __x)lu-k,-ul

Wk () = ( k T 3)

with the notation for factorial powers
x"Mag(x-h). (x-(n-)h), x*"= |
The same author has deduced this operator in [14], by starting from the Markov-Polya
probability distribution.
(v) We mention also the Baskakov operator, defined by

.0 F ("4 i ) oo

kel
which corresponds to a variant of the negstive binomial distribution [4].

8. By starting from the Newton interpolstion formuls, D.D. Stancu has obtained
representations in terms of finite differences of the function f of the linear positive operators
of interpolatory type.

This reprosentations has the following form

- - k - |
LI =Y ¢, 0= =1©0) + F = -v,0) (4, 7)©),
gn,k fm j g;-ﬂ' M( 1|=f()
where
Vi) = g kVgq  (x).
In the case (i) of the binomial distribution, the factorial moment generating function

g(t} - zt"b(k;m,x) = (1 -x+x),
o
s0 that we get immediately
90 = mU - x +ixy /.
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Consequently, the factorial moment of the binomial distribution will be

7
VU' = X7,

Therefore we obtain the following representation of the Bernstein polynomial

IR I LA,
B(x) E(j)x (A%/)(()),

j=0
Now if we tuke f(x) = m "x’, where r € N,, we have

(A’, f) ©) = (N, ¢,)(0) = MO

=
It follows that for the ordinary moments of the binomial distribution we obtain the

following explicit expressions

viomp) =Y (';' )p'-w )
j=t \-
o
vim,p) = EMU'p’S]" (5)
=1

by using the differences of zero and respectively the Stirling numbers of the second kind

In the case of the Markov-Polya probability distribution
alt clgin ko

KX =k)=P (h,a b o) -("’) —_— 6
L APy R ©)
we can Use the represantation in terms of the differences of the function f on the nodes 4w,

given in {14} for the Bernstein tvpe polynomial 5./ of DD Siancu.

(S» /> ) = g (':' ) iﬁi}j—'ﬁ’ (A::_' /') (0),
whore
x e gr v a) (e +(j - Dav)
I (b eyt +20) (1 + (g - Da),
while a = cHlath) and x  ai(ath).
By wking f(x) = m 'x' we vbain the following explicit expression for the ordinary
moment of the Markov-Pulya probability distribution

L1
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, N ~{m aa+c). (a+r(j-1)c) AN 7
v,(m,a.b,c) E(])((,+b)(a+b+c)w(u+b+(j-l)c') | "

If we use the factorial power notation and the Stirling numbers of the second kind, we

~1

can give the following more compact expression for moment
» Ui -]
vim,a, b, c) = m‘“___f_.__,_,-S " )
e
In the paper [10] T Srodka established a recurrence relation for the ordinary moments
of the Markov-Polyai distribution, while in [15] D D. Stancu has obtained a recurrence

relation for the central moments of this distnibution.

If we take ¢ = -1 we obtain the hypergeometric distribution, defined by

PX = k) k j\m-k ‘

N
n

whete N - atb, p - a/N, ¢ - B/IN, max{0, m-N } = k s min{m, Np}
The proceding formulas permit us 1o see that 1n this case the ordinary moments are
given by

L m) (N _ mYNpt
K E(/)"ﬁnr""" Y

it
formulas which are due to J. Riondan {9}

If we use the notations
a p b C Ly
as e TtaaTh
then the Markov-Polya distsibwtion (4) can be wnitton under the form
{2, o) L im- b s
PX=k) = (’") AR, W
k U"' -y
We assume now that p and ¢ depend on m in such & way that for w —~ = we have p
=0,y > 0and mp —~ % According to a result from W. Feller |2}, we obtain as a limiting

case the negative binomial distribution

Hy
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m+k-1|

P(X=k) = ( X )l”"Q",
where m = A and K € N,

If we take into account this limit case, the formulas (7) and (8) permit us to deduce
the following expressions for the ordinary moments of the preceding negative binomial
distribution

v, - ,2,: ("' *j‘ ') ~(%)’A/0' - II:‘:(m aj- 1 (%)’4’,’.

We conclude this paper by making the remark that if we take the parameter ¢ to be

Z€10 In thg formulas (7) and (8) then we arrive respectively st the formulas (4) and (5) for

the binomial distnibution.
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REZUMAT, - Perturbatil orbitale relativiste Intr-un chmp gravitafional sferic post-

newionian. So studinzh migcarea de tip eliptic a unni corp de probi tas-un cAmp gravitajion

post-nowionisn sferic, pe busn worici clasice a perturbagiilor. Se deterninh perturbajiiie

relstivisie do ondinul tnidi In eincl clomente orbitale independenmte, pe duraia unei perionde

nodale.

1. Introduction. Lot Af bo 4 mass generating a spherical gravitutional tield, und let p
= GM (G = gravitational constant) be its gravitational parumeter Consider a test orbiting M
in this fleld. Using standard post-Newtonian coordinates (4, x), its relative motion 1 descnbed
by the equation (e.g. 6], see also {7})

Vi = e/ + (ule ) (2B + Y)W/ Ve =y s 20 DI L ()
where dV4ls = acceleration of the test body, r = radial coordinate, ¢ = speed of hight, B =
post-Newtonian parameter describing the amount of nonhinearity of the gravitational field, y
= post-Newionian parameter describing the space curvature (3 and y are the so-calied
Eddington-Robertson parumeters {8)).

Introducing the new radial coordinate

r'=r+apkic?, )

* Astronomical Observatory, 3400 Cluj-Napocw, Romania



where a = gauge parameter [2], equation (1) becomes
dVide = —pxir® + (We){2(B +y - 2a)(pir*)x
=y o) (Fr)x o+ 3alxV)riix +
c 2y + 4 - @[V, )
where the primes for 7, x, V were dropped.
After all, the equation of motion can be wiitten as {6]

Vidt = -puxir®+ a,,, “
and the motion of the test body muy be treated pectusbatively. In other words, although the
mation in the post-Newtonian field 1s unpenturbed, we shall consider a,, 1o be & perturbing
acceloration undergone by the test body moving in the Newtonian fleld.

Let us describe the relative motion of the test budy by means of the Keplerian orbitl
olements {y € ¥, «}, all ime-dependent, where

Y ={p.q = ecosw k = ¢snm €, ), {9)

and p = semilatus rectum, ¢ = eccentnety, w = argument of pv;'ioonm, Q = longitude of

ascending node, 1 = inclination, ¥ - argument of latitude. Since the motion will be treated

penturbatively, we shall estimate analytically the flst order deviations of the eloments (9)

from their nitial values, over one nodal period, regarding these difforences as relativistic

perturbations.

1. Basle equations. Since the nodal period was chosen as basic time interval, let us
describe the motion by means of Newton-Euler equutions written with respect 1o w (e g {1,
5h

dpldu = AZiwyr* 1,
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dyldu = (ZIw){(r*kBCWI(pD) +r*T{r(q + A)lp + A} + r*BS},

dkidu = (ZIp) {-r*qBCW/I(pD) + r?T[r(k+B)Ip + B] - r'48},

dA/du = (ZIn)r*BW/(pD),

dildu = (ZIp)yr*AWip,

dt/du = Zri(up)'?, (6)
where Z = [1 -r2CQ/(up)**}", A = cosu, B =sinu, (' =cosi, D) =sini, S, 1, = radial,
transverse, and binormal components of the perturbing acceleration, respectively.

Since the perurbing acceleration i{i a relativistic one, the elements (5) have small
variations over one revolution of the test body. Consequently, they may be considered
constant and equal to their initial values y, = y(v,) = y(u(1,)), ¥ € ¥, in the right-hand side
of equations (6), und these ones can be separately integrated So, we can writey = y, + Ay,
where the first order variations are found trom

.
Ay = !(dy/dum, yEY, M
with the integrands provided by (6). The integrals are theretfore estimaied by successive

approximations, hmiting the process to the first order approximation.

3. Perturbing acevleration, The components N, 7. W of u,, have respectively the
exprossions [6]
§ o= (uet) [ui@’ (L -€?) (1 ~ecosv) [(2B +y - 3u)
+(y+2)e? + 2(B - 2a)econv - (2y +2 - a)e ‘costv),
= 2(p/e?)[u/@®(1 -e*P J(1 +ecosv)(y + | ~ w)esiny, )
W=0,
where a = semimajor axis, v = true anomnaly

9s
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Using the weil-known formulae
p=all -e?), 9
Vo= - w, (10)
the definition of ¢ and &, and the orbit equation in polar covrdinates
ro=pl(l+ecosy), (i)
expressions (8) acquire the form
S = (BNl priNL, ~ LAq < LBk +(L,+1 A")q* +21,ABqk +
+(Ly+ LBYRY, (12)
T = (W/(e'r’) 1 (Bg - Ak),
W =0,
where we abbreviated
Lo=2f 4 y-3a,
1L, = 2P - 4a,
Ly=y+2
Ly=-2y-2-a,

Ly 2y+2-« (13)

4. Variations of orbitat elements Lot us introduce (12) in (6), then use (11) in the
equivalent form
ro=pl{l + Aq + Hk) (14)
Alio observe, by the fourth and the sixth equations (6) that Z = | (becauss W = 0) After
performiug all calculauons, the squations of motion become

dpldu = 2(;1/(‘))1,‘(”([ Ak),
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daldu = (pic’pU B + (1, +2L)ABq +
+ L, - (L, +2L)A )k +
(L + LYB + (L, + 1,)A'Blq* +
+ (20,4 - 2(L,+ L)A ¢k +
(L~ LB+ (L, + L)B A%} (15)
/v = -(UACPIL A + (L, - (L, + 2L )8 )¢ +
+ (L, +2L)ABk +
(L, - LYA (L, + LYA|q’ +
+ {208 -2L, ¢ LB gk +
(R, + LYA (L, + LYAB AR,
Wiy = O,
il = O,
ke = p* Pt + Aqg + BA)?

So, the expressions in the nghi-hand side of equations (19) comamn only explicit
tuncuons of ¥ ( through A and #) and quantities considered constamt over one revolution of
the wst body (according to the considerations made in Section 2)

Portormung aow the integrals (7) with the intogiands provided by the st five
equations (15) considered separmely, we obtain the first order relativistic vartations of the
otbital slomenis (5) over one nodel period

Ap = 0,

Aq = R I, 21 A,

Ak = m(pic’p 2L, 1)), (16)
AL =0,

97



8. Comments. Observe that, in a first order approximation, the shape and dimensions
of the orbit are not atfected over one nodal penod. Indeed, taking 11nto account the definition
of ¢ and 4, and the second and third formulae (16), we easily get

Ae¢ = Agcosw, + Aksinw, = 0. (n
By (9), (17), and the first formula (16), follows iumediately that Aa = 0, wo.
Taking again into consideration the defimtion of ¢ and &, and the second and third
formulae (16), we obtain
Aw = (Akcosw, - Agunw,)/e, =
- x(phe pN2L, - L), (9
o, by (13)
Aw = 2a(pAc p N2y - B+ 2), (19)
which means apsidal motion. ‘

Considering the sphoncal Einstein post-Newtonian gravitational fleld ( = y = 1),
formula (19) becomes

Aw = oapHc’p,), 20)
that ix, the well-known pericentre shift

The last two exprossions (10) show that the position of the orbit plane remsins
unchanged. Indeed, due 10 the post-Newtonian conservation of the angular momentum, the
motion is planar.

Another remark 10 be made 15 that an initially circular orbit will come back after one

nodal period to the same circular shape and the same radius.

"
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As a final remark, if the integrals (7) are performed between the imual («,) and current
(¢) positions, the variations of the orbital elements (5) can further be used to determine the

relativistic perturbations in the nodal period (e g. 3, 4]).
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Teaching of Mathematics in Secondary and in Faculty ([ 1], [41], [45]. [46], [49}, {51},
[54), [55]. [58], [59), [61], [66], {70}, [72], [73], [77], (78], [80), [84], |88, [90], [94)]).

Professor M. Balazs has taken part in about 100 conferences presenting lectures in
Bucharest, Cluj, lagi, Timigoara, Oradea, Baia Mare, Tg. Murey, Budapest, Debrecen,
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