STUDIA

UNIVERSITATIS BABES-BOLYAI

MATHEMATICA

3
1994

CLUJ-NAPOCA

REDACTOR SEF: Prof. A. MARGA

REDACTORI SEFI ADJUNCTI: Prof. N. COMAN, prof. A. MAGYARI, prof. L A,
RUS, prof. C. TULAI

COMTETUL DE REDACTIE AL SERIEI MATEMATICA: Prof. W. BRECKNER,
prof., GH. COMAN (redactor coordonator), prof. P. ENGHIS, prof. P. MO.
CANU, prof. I. MUNTEAN, prof. A. PAL, prof. 1. PURDEA, prof. 1. A. RUS,
prof. D. D. STANCU, prof. P. SZILAGYI, prof. V. URECHE, conf. FL
BOIAN (secretar de redactie-informatica), conf. M. FRENTIU, conf, R. PRE
CUP (secretar de redactie-matematica), conf. L. TAMBULEA,

Tehnoredactare computerisatii: Marcela Topliceanu

STUDIA UNIV. “BABES-BOLYAL", MATHEMATICA, XXXIX, 3, 1994

The Formal Class Model;
an Example of an Ohject-Orlented Design

Pasesl ANDRE”, Dan CHIOREAN"", Corina CIRSTEA"® and Jean-Clauds ROVER®*

Reaumat: Lucrares doscrio principalole caracioristici ale modelului ou claso formele. Acest
madel orientat-oblect ou clase ¢ mogtenire nultipls oste strfns logat do tipurile abetmoie
asehﬂca.dacuommm Pentry acest madel osto prosontath coacopyie
eamenaii pakeindex, La sfirgit, cu ajutonil usui exemply sunt prozentate aspacts Is validares
§i implomeontares semi-awtomeatl a prolectiril in esdrul acssiul model.

Abstraet;

This paper deseribes the main featuros af the Formal Class Mado! Thia object-oriented model with
olasses and multiple inheritance ia closed 1o sbatmct daia types, but has a more operationl fiwvous.
Using this model we detail the design of the makeindex command. Laat, using the ahove exampie,
we ilusirate some foatures abous the validaticn and the implemeniation of the design.

Résuméy

Dans ce document nous déerivons los principalea caracteristiques du moddle des clesses formelica.
Ce modéle A objets, clasaes ot hérilage multiple est proches des types abstralis algsbriques mais aves
uns erientation plus opéeationolle. Nous peésentions Ia conception do ls commende makeindex dans
so modéle. Finalement nous itlustrons & V'aido de P'exemple quolques aapecia conosrment ia validation
ot Pimplantation semi-automatique de Ia conoeption.

1. INTRODUCTION

The professional dovelopment of large correst software systoms in 8 systematis, sructured and
moduler way is still a challenge for rescarch and practice in software euginsering. In rocent yesrs,
many sofiwase techaigues improved the techaivel standards in seftware engiusering, previding
better atrustusing teckaiques supporting abstraction sad reusability.

Objact ariontation aad formsl methods aro the main fruitful techaiques to produss high quality
softwere. Objost-Oriented Design noeds formal specifications to maeke proofs snd verification
sutomatiselly. Objest-Oriented Progremuming is & complele and consistent framewotk for
software development. Ineremenial development of olasses, rousability end sxtensibility are the
main kenoflts, Abstrastion and formal specification techniques were developed to reinforce safety
and rousability.

Weo proposs « wpifylag modei for Object-Orieated Desiga [1], based on aigebruic
spesificetions, whish unifios the major consepts of Objset-Orlented Programming. The sutcomes

* Equipe de Recherche en Tochnalogie o Objers IRIN - Faculté des Sctences et des Technigues Université de
Nantes 2, rue de in Houssinibre 44072 Nanies Cédes 43, FRANCE
* Lubaraiord de Corcetare in informaticd Faowliaiea de Matematicd i Informaitcd Universitaten "BABES-
BOLYAL" wtr. M. Kogdiniceame, 1 3460 Civg-Napoca, ROMANIA
* This work was supporied by GDR de Programmation de C.N.R.S., te France. A short version af this paper
was presented at ConT1'94 {1}

P. ANDRE, D. CHIOREAN, C. CIRSTEA, 1.C. ROYER

of suck & model are: desiganing consistent and complete libraries of classes, supparting revey
enginecring, application rowriting, comparing or reusing classcs coded in the same language orit
difforent languages, A last bouefit is the passibility of teaching Object-Oricnted Programmingins
ware shetmct way than by using Ohject-Oricnted Languagos. The main steps of the design in ew
farmal model are:

» 3 figst design of the class with copsistency and inheritancs chocking;

* the proof of abstract praperties;

* (ealing with rowriting;

< {ranalation 1o concreie languages.

This paper is oeganized as follows: Section 2 describes the nain goals and aspects of Obje:
Orientcd Design. Bection 3 presents the Formal Class Model regarding Object-Oriented Dosipy
Bection 4 is o survey of an sxample deaigned using this model. Section S presents verification
peoof tuchaiques supporied by the formal deaign. Section 6 describes an implementstion of
formal classes nsing o concrets laaguage like Eiftel, The conclusions are presented in Section 7.

Owur Formal Cinss Mode} vorifies the requiresnenta of the Object Core Mode! Group. Furthermes
i allows formal specificasions of methods end it has more gesers! rules.

3. OBJECT-ORIENTED DESIGN

Object-Oriented Denign is characterized by the development of reusable and robust componesy
naamed classes. A class definition mist be roadable, consistent and extensible. There aro presenty
difforent object-oriented methods described by OMG's Special Interest Group on Analysis and Duig
{SIGAD). There arc extromely differsnt views of many fundamental concepts concerning sk
sad design.

Ws aim at formally dosign epplications and implement them in Object-Orisnted Languages. Tw
class construction matst be based on an sbetrsct description of its instences. This allows
incremental development of classes and applications, a betisr reusability and consistency chockiy
An abstract deflnition of classes is indopendent from concrete languages, therefore swnl
implementation languages are possibie.

1.1. Formal specification

Formael epecifications are needed for a guality software devclopment. The main benefll w
shetraction {reinforces pousability, simplicity and gemerality), proofs (design, coneisiency wi
compietion proofs) and documentstion (fundamental to reuse and amlviain sofiware).

Whea integrated with object-oriented techaiques, formsl methods stiow precise specification of e
semantics of cissses. Of courss, in order 10 sisist deaign, various tools must be defined.

1.1. Correctness and Reusability

Object-oriontation shhances modularity of specifications enabling separate parts of a developms
10 be worked sepaenisly. These parts can be refined independenily, since the correctness of highim!
parts of a specification can be proved without knowing the internal deiails of the lowlewl
specifications that implement its operations. Reuse is sided by the ability to specify systems wig
‘inheritance, aggregation and genericity

In order to model the iransition from specifications to program implementation, classes and fomsl
specifications have to be related to u notlon of correctness. This is formalized in an algebraic twoy
and hence it enables formal reasoning.

THE FORMAL CLASS MODEL: AN EXAMPLE OF OBJECT-ORIENTED DESION
3. DESCRJPTION OF THE MODEL

In this section we present a formal way 1o describe a class. To differentiste botwesen classes from
conceete languages and clasaes from our model, we will name the Jast anos Farmal Classes.
Our mode! unifles major concepis of Objoct-Orienied [anguages. A Formal Class i an abstraction
of & concrete class in » language liks C++, Eiflel, CLOS or Somlitall, and also an algsbmic
flension, s Abstract Data Type (ADT), with sn objest onlentation. Algobraic sxioms deflac an
tract semantics of the behaviour, whows propertios can bo checked wsing term rowsiting, The
Bmcmmm.mmm It is an anawer to the requirements of Ohject-
Orientod Design. Concopiuatly, & Formal Claes apocifios the object description and hehavious.
Syntactically, it containe an aspect and & st of secondary methods. The sapect part is ag shetrect
dosceiption of the kermol behaviour of ahjocts, while secondary methods describe the remaining part of
the hehaviour. Secondary methods stlow ws 10 incremenially suiend the behaviour of a class, without
modifying the charactarization of obdecta,

3.1, Formal Classos

The information conversing & Pormal Clais is erbodded in & bow snd includes iia name, sspect
d secondary methods.

SClaaa namer
& < t- irect supercliasses>
|—gamments; <commancs for Lk 38>
ic secondary mthﬂdﬁ
@k! <dsseri gginn of an aspect>

_Shatsset styugture conetreints |
<name> 1 <Class name> — <Reaulting Type>
L __seguires: <precondition» : <conditions>

11 <name> 1 <comments fur the secondary method>
<name> : <Argument Typaer* — <Resulting Type>
sequires: <precondition>

vae: <Variable Name 1 Type;>*

J - <auigmp>®

RS

Figure 1: The genoric box for & class

We use the following votatiens: the term Self and those declared by var: ate variablos. Other
torme beginuing with an uppercase lotter are classes or prodefined types. Torms beginaing with a
lowercase fetier ate method names. Message seading is written as & function call:
<selecter> (<receiver> <,argument>*). The receiver is denoied by self (then there is
single dispatch).

A secondary method is desceibed by lis profite, axioms, and, if needed, preconditions. We use a
funictional tation for methods. Such a presentation is a set of axioms, impiich rewrite-rules (left
to right) of form: condition = wm(Self,...,2) == u, where condition is a conjunction of
equations havisg the form t == v where t, u, v are algebraic terms.

As in Object-Oriented Languages there are abstract classes and abstract methods. The
corresposiding keyword is ABSTRACT. The class being defined is named the class of interest or the
Cutrent Formal Class (CFC). When the resulting type of an operation is the CFC, the operation is
called a constructor, else it is called an observer.

P. ANDRE, D. CHIOREAN, C. CIRSTEA, J.C. ROYER
3.1.1. Aspeet

In this model, object characterization uses the concept of aspect. An aspect is & pair (abstract
structure, constraing). The shsiract structurs is a set of field selectors (partial or total observers of the
class). The constraint is a predicate on thess fleld selociors, which can be scen as a condition 10 crese
or to modify an ohjecs. This is the same kioa as a class invariant in Eiffel. Constraints implichly

the sxioms of the mathods. Both the precoaditions of fleld selectors and the constraint ae
writton using conditions, as in aigobealc axioms,

3.1.2. Methods

To define a keme} representation of & olm ita behaviour is split into two pasts: primitive sd
secondary methods.
Primitive methods are sssentisl for the description snd the manipulation of instances. Romovlm
primitive meothod chuses at least ons of the following:
* the set of deacribed instances is modified,
¢ some parts of an {nsisace can not bs accossed;
* instances can not be described of
Primitive methods are twofbld: primitive observers and primitive constructors. Among primitive
observers we distinguigh: the fleld sclectors, the semantic squality (equal?) and the description
method (describe). The set of fisld aeloctors is o family of cbservers which allows to distlaguish
betweon two instancos of the same clsss. In this senss we can say that an aspect charactc.zos a st of
objects without confusion. Semantic squality allows us to compare ohjects in sn absiract wy
(implementation independont). An objsct description s an external representation of the object.
Primitive construcions are:
* new, the generator of instances;
* copy, used 10 creste now ohjects fom the exiating ones.
In practice, designers construct methods using primitive methods, predefined objects and coniro
siructures. Secondary methods are extensions of the primitive ones, that is, every application ofs
secondary method can be reduced to applicstions of the primitive methods.

3.2. Relations

Instanciation, inheritance, structural dependency and ctientship are the main relations in Objut-
Oriented Programming. If there are no motaclesses, instanciation is s trivial relation. Clientship (s
use refation) is well-known. That’s why we do not discusa these two relations.

THE FORMAL CLASS MODEL: AN EXAMPLE OF OBJECT-ORIENTED DESIGN
3.3.1. Structura} Dependency

The resulting types of the ficld selectors (fsel;) are named the structuring typoes (T1) of the class.
The set of links between a FC and its struciuring types deflaes the Simictursl Dopendoncy Graph
(SDG). A well-designed class deflncs af loast ane instance and its insiances are flalialy geperated, so
we have a well-found induction on obiects. Because of the flsld selector proconditions (prec) there
is no general and static crterion to chock that. ln many cases procy are equivalent 1o true 50 & lass
is well-designed if and only if the 8DG Is without cycle.

A mare general and neceasary criterion, hmm.mmmymmu 8 CEC is woll-deaigned
ifand only if for al] £sely 71 we have ons of the following:

* 7y is8 predefined type,

» or T4 is a well designed FC which does net structurally depead an the CPC,

sar Ty is 8 FC which structurelly depends on tho CFC snd whoae field selector precondition is
not equivalent to true.

3.2.3. Inhoritance and Subtyping

In our model we wse imheritance more rigorously thap in concrote langusges. The instance
variables are not inherited. The inheritance rules are:

* Secondary methods arc always inherited and it is podsible to redofine thom,

* There Is no inheritance of primitive methods (field selogtars, new, #i¢) or constraints,

* An inheritance link between two clesses is possible if overy fleld ssloctor of tho supervines
exists in the subclass with the sams type or a subtyps of this typs. If there are constraints or
field selector preconditions, the rule implies stronger constraints and stroager precondisions
in the subclass.

- The inheritance graph (1G) must be without eycles. Inheritance implies subtyping. In order o
obtain strong typing we add the following rule:

« Mothods are redefined acoarding W o rule which is covariani only on the recelver type and the
resuiting type and other arguments are naveriant. This rulo is consistent with the previous
inheritance criterion and, as we can see in {3], it allows geaericity,

To avoid the increase of the complexity in method lookup, name clashes are solved by method
redefinition.

3.3. Other Features

313.1, Type Checking

The model fits well to dynamically typed languages but alse to strongly typed languages like
Eiffel. A first problem concerns some terms Hke head (tail (newFullPages(...))) which awe

meaningful but type erroneous. Our solution to this problem Is similar to [6] and described in [3].
This solution needs an additional parsing bofors the real type checking,

The type checking assumes expliclt declarations of varisble and method types. We do not handle
functions as objects. This avoids the need of a contra-variant réle [5] which would not be consistent
with our inheritance rules.

The primitive method proflles for CFC are:

fsely : CFC —» Ti for euch fleld selector
new<CFC» ¢+ Ty ... Tp - CFC
equal? 1 CFC OBJECT -9 Boolean
describe t CFC — String

copy t CFC — CFC.

¥. ANDRE, D. CHIOREAN, C. CIRSTEA, 1.C. ROYER

Aii cxpoession e having the type T is writlen e T. A type is cither a predefined type (which is s
class) of 8 FC. The main rule for typing & messags exprsssion is:
iet m(el ok);3f ojiCj, profile(m,Cl) = 81 ... 8k — 8,
and £or 813 3, €] ake 8j oxr Cj = Sj, then m{el ... ek): S.
The expression profile(m,T) stands for the profile of an operation or a8 method. If ¢} it
prodetined type thea misa fined operstion with s predefined profile.
The type checking al usas the following niles; ‘
* A cinss is well-typed if its secondary methods are weli-typed.
+ A method is woll-typed if its axioma arc well-typod.
= An axiom is well-typed if oll its squations are well-typed.
o An squation is well-typed if the left and right sxpressions arc well-typed and have the um
Type. .
if we use » simpls covariant redofinition rule, this chocking is safe. It means that the evaluationo
sach woll-typed expression built on well-typed classes doos not produce a type error. However, it
often useful 1o use & multi-covariant mile. Problenw may arise both in ocur functional model, ad s
side offoct languages like Eiffel {4]. Nose that it ls passible to use multiple dispatch; in this case o
extended type checking s still safe. With slagle dispasch an’ multi-covariant method we baw
defined sdditionsl check to ensuse typo safeness. Furthormore if such & problom occurs, 8 very st
principle ia so systomatically redefine methods which directly use a multi-covarisy

method

3.3.2. Genoriclity

As in [D] genericity can be simulated by inhoritance. We have defined a formal design for lists w
have studied its genericity. We showed in {3} how 10 create generic lists and how to use them. Uil
genericity mechanisms as in Ada, Eiffel or Modula are under study.

3.3.3. Sido Effects

Side effocts are not an essentia) concept in OOP, however they are fundamental in practice. Th
main goels of side offects are some optimizations and the reinforcing of object identity. But the pin
1o be paid is to loose the simple proof techniques of functional programming. The use of sids efficy
sliows g soR trensition from functional design to real implementation.

Introduclag side effects does not modify the inheritance and type checking rules. The modd
additions are:

* As in impemtives languages, we distinguish statemonts from expressions. Btatements my
produce side effects but expressions do not.
* There are additional primitive methods:
- modifyt ¢t CFC Ty ... Th ~+ CFC modifies the value associated to a fild
seloctor but proserves the ldentity of the receiver.
- aq? ¢ CFC OBJECT — Boolean tests the equality of two object identifiers. The
differences between equal? and eq? are classic in Lisp or Scheme.
+ Bids effocts are restricted to the receiver.
» Control structures as IF THEN ELSE, WHILE DO are possible.

The input data of the \makeindex command consists of items like “word 4*.

Jtemln .
jnlkerity fyem OBJRCT

apmments: class for ipput data
. agpest | itenin
§ :_apeindex

:_SEEUOENES sepateelnk
fuwor v

[page : Itemis -+ Integer
77 onsindex 1 this mathod Ezansforms an imput item in & simple output one

oneinden : ItemIn — Inden
oneindex(8elf) o= newlindex(woxd ~ word(Seslf),

Rages ~ agd(newknpeyPages(), page(Seif)))
Figure 3: The Itemin Formal Class
The TtemIn class le described by its sapect and the set of secondary methods. The field selecton:

word ; ItemIn -—+ 8tring, page: ItemIn —» Integer are necessary and sufficient 0
doscribe and distinguish the class instances. '

4.3. Using Constraints
In order to desgribe the pages of an Index, we miist tec 8 constraint (see Figure 4).
Tulifages

ages
copmants: class for nop empty liet ¢f pages
sspeat : fulllist
__Abstragt styucture nt
head ; FullPages — Integsx empty? (tail (Self)) orelse
tajl 1 FullPages — Pages hoad (Belf) < head(tail (Self))

Figure 4 : The sspoet of FullPages Formal Class
This consirint states that an instance of FullPages is sortod and without duplication. Th

instasice resuited from a call of newFullPages sstisfiss this constraint. Applying a seconduy
method 1o an instance of FullPages also preserves the constraing (seo Section 5.3).

4.4. Describing Socondary Methods

A simple secondary method is oneindex (see Figure 3). A mere complex one, where the axioms
coatain conditiots, is insert (see Figure 5).

FullPages

t; insert : insert a page in a full list of pages

insert : FullPages Integer -5 FullPages
vaz: X : Integer;
X < head(8elf) == true = insert (Belf, X) == add(Self, X)
X = head(Self) == true = insert (Self, X) == Self
X > head(Self) == true = insert(Self, X) == add(insertltail (Self),X),

head (Self)]

Figure $: The insert method of FullPages

10

P. ANDRE, D. CHIOREAN, C. CIRSTEA, 1.C. ROYER

i1 putword! : add an input item
putworxd! : BmptyOut ItemI: — Fullout
vaxr: X 1 ItemIn;
putvwerd! (Belf, X) == add(Se ane (X))
CLASS Fuliout
i1 putwordl t parxse a nsw input item
putword! : FullOut XtemIa — FullOut
wvar: X i Itemin: old, new i Out

1L word(X) < ward(head(Self))
add (8elf, omeindexiN))

dakai=8el e,
"HRILE not (empty? (data)) m word(X) > word(head(data)) Do
old i~ data
daka 1~ tail(data},
iR
1E empty? (data) ex word(X) < word(bsad(dats))
madify! (old, kail = add(data, oneinden(k)))
| modify! (data, head » modify! (head(data),
pages = insext! (pages{head(da’)), page(X))))
Bupy

ENDy
LRNR.

Figurn 8 The putwoxd! method

4.7. Flat Versus Hierarchical Design

Skitl design mixes inheritance and conditional skuotirel dependency. An exampie of bad desipn
for Haets of pages is:

Figue 9 : Bad design for Pages

The foliowing dosign named “fist" is cormect becauss the genersl criterion from 3.2.1 is satisfled:

’ , ORJIECT
| _oemmenks; class for list of peges
aspect ﬁtt
[skelwack ghruetuse . senntraint

smpty? : Pages — Booleah
head : Pages - Integer
xeguites: empty? (Self) == false
tail : Pagee — Pages
roquires: empty? (Self) == false

Figure 10 : Flat design for Pages .

However we prefer the “hiersichicid” design because we can teuse the FullPages class and this
design allows a finer type vl =iy 4 complete comparison is out of this paper.

12

S. VERIFICATION AND PROOFS

5.1. Graph Verifications

As mentioned in 3.2.1., if there sre no preconditions for the field selectors, we must check that the
SDG is without cycle. We must also verify that the 1 is without cycle and that the inheritance
critorion ia trus. Both conditions are satisfied in our example.

8.2. Type Checking Applications

The following short example shows the idoa of typs cheoking. Counsider the insext axiom (ses
Figure 5):

X < head(Self) == txue = inasrt(Belf, X) == add(Self, X).

Assume add: FullPages Integer — FullPages and head: FullPages — Integer.
The condition is well-typed becasise both of its parts have the typs Boolean. The left and right terms
of the equation have the typs FullPages, so this axiom is well-typed.

To get & right resulting type, the add method is redefined in the subcldesss of Lisc. But this
method is multi-covariant, so typiag problems may ariss. In order 10 sxamplify this aspect, let us
assume that SFulllList is & subclass of TPullList, coresponding 1o sorted and without duplicstion
lists of elementa of type 3 and T respectively, whore 3 is & iubtyps of T sad instances of both 5 and T
can be compared using the relation “<”. The TFullList class can be obtained by replacing the type
Integer with the type T and the typs FullPages with the type Trulllist in the FullPages
formal class. The 3Fulltist oises is given below. The corresponding T1list, TEmpetyList, SList
and SEmptyList clnsses are also defined.

grul

Anherite |
comments: claas for nop empty 1ist of pages
fontures: add

t

sopeet: fyllliet
ot st [
head i 8Fulllisk -+ Integer | smpty? {tail (8elf)) orelse
tail 1 SFulllist — SList head (Salf) <

' ‘ :igmu {8010))
71 add 1 put a new page in the fyont of tha list

add 1 SFulllist 8 -4 SFullList
var: X 3 8

add(Self, X) =~ pew SFulllLisc(hesd = X, tail = Self)
Figure 11. The srullList formal class

Note that the add method is redefined by arulllist, whils the Ltnsert nwihod is luherited from
Trulllist. Then there is no problems, we can inhetit the insert method. But a method like
pb(self) = add({Self, newT(*)] in clsss TrullList will bo rejected by the type checking.
Because using pb with & SFulllList instence produce s type error. Thea a solution is 1o redefine pb
where add is redefined then redefined it in cless sFuliList.

13

P. ANDRE, D. CHIOREAN, C. CIRSTEA, J.C. ROYER
8.3. Proofs

The model allows proofs in an algebraic style. The basic principle is equational deduction or tem
rewriting. Methods are interpreted as algebraic axioms or rewrite rules. It is trivial for secondary
methods and simple for primitive ones [2). The original thing is the fact that the hierarchy of clais
Implics a hieearchy of axioms.

We define a call-by-valus siratogy where method selection depends only on the receiver class. The
type of an ekpression is given by its normal form. An equation ia in sormal form either if its typs ls
predefined, or if it is 8 new<CFC> on narmal form expressions. In the last case its type is simply cec.

Let m(el, ..., en). The staps of the svaluation strategy ars:

+ evaluate all the argument expressions to a normal form.

» the first evaluation, eval (el), gives the receiver class (if the narmal form is & predefined

sonstant and m is a predefined operation, then the computation is predefined).

+ select the method (m) to be applied from the inheoritence graph.

+ rewrite the entire expression.

Inductive proofs are also possible because we assume a well-found induction on instances, in ft
on normat form terms. Consider for example that we want to prove ' e following lemma:

(SelfiEmptyPages or SelfiFullPages) and Xilntegyer
=p insert (Self, X)iFullPages.

This means that if Self is a list of pages, inserting s now page produces a non empty, sorted list of
pages (it verifles the FullPages structure and construing),

Two cases have to be considered:

a) if Belf=newEmptyPages, the insert rule applied is the one in the EmptyPag :s cls
insert (8elf, X)==add (Self,X)==newPullPages (head=X, tail=5elf).

The FullPages instance obtained satisfies the constraint:
empty? (newEmptyPages) ==true.

b) Self=newFullPages (head=%, tail=Y),

XiInteger =» insert(Y,X) iFullPages

Now the insert method applied is the one in the FullPages class (see Figure S):

o if X<head{8elf) then insert(Self,X)=newFullPages (head=X,tail=Self) and th

constraint is true because head (Self)<head(tail (S8elf)) by hypothesis.

¢+ if X=head(Self) then insert (S8elf, X)=8Salf, so the receiver does not changs.

s if X>head(8elf) then

insert (Self, X)=newFullPages (head=Z, tail=insext (¥,X));
since tail=insext (Y,X) is & FullPages by induction hypothesis and £ is loss than X and all ¥
pages, then insert (S8elf, X} isa FullPages and satisfles the consiraint. QBED

6. IMPLEMENTATION

Rapid prototyping {s an ¢ssential tool for specifioation validation. The transition from FCs to
Object-Oriented Programming classes is quite natural and partially automatic. FCs are simple o
implement in concrete languages like CLOS, Smalltatk, Biffel or C++. Such a translation takes the
formal deseription as input and produces the class structure, primitive method code and secondary
method signature. In this stage, the concrete secondaty methods must be written by hand. However,
an automatic translation of secondary methods s possible because of the rewrite rules.

We experimented an sutomatic translator to Eiffel. The tanslation begins by associating an Eiffel
class (and a flle named <CFC> . e) to each FC. If the class is sbstract, the Eiffel class is DEFERRED.
The same holds for abstract methods. All the primitive methods must be specified in the Expor?
clause. Tor each superclass, an INHERIT clause, with DEFINE and REDEFINE clauses, must be
provided. The (re)definitions are nsed to avoid name clashes.

14

THE FORMAL CLASS MODEL; AN EXAMPLE OF OBJECT-ORIENTED DESIGN

Afier that, tho main taak is to define the FEATUREs. For each field selector which is new or
specinlized in the subclass, & private atiribute and an Eiffol routine which reads this atributc must be
defined. The fleld selector precondition becomes 8 REQUIRE clause of this routine.

We must also define # CREATE procedure whose argument types are the field selector types. The
new<CFC> is a functionsl call 0 CREATE. The consimint may become REQUIRE clause for
new<CFC>, or better, a clnss INVARIANT. The primitive aqual? is implomented by deep_equal
and copy by deep_clone.

Finally, for each secondary method we define an associsted Biffel routine whose profile is the
secondary method one, withous the receiver type. The tmnalation of axioms must cops with the
pointed Eiffel notation: <ssisctor> (<recaiver><,args>*) becames
<receiver>.<selector> (<args>*). The precondition is implemented by a REQUIRE clause.
Axiom conditions are uansiated into IF ... THEN ... ELSIF ... END conirol structures. The
result of & method is defined by tho special varisble RESULT. Noie that 8a1f bacomoes CURRENT ad
s message like m(Self, *) is transiated into m(*). We muat use some Jocal variables because
CREATE is a procedure, not s function. ‘

Strong typing is not 8 problem because our type checking is mars strict than the Biffel one.

7. CONCLUSIONS

We defined & minimal abstract model for Object-Oriented Design. This model is a8 formal
specification language, closed to algebraic abstract data types but with an operstional favour. This
allows us to adapt the rotions of consistency and complotion of algebreic specifications. However,
the model s ofien more concrete than algebraic specifications.

‘We defined rules for inheritanos, safe type checking and an abstract semantics based on term
rewriting. The inheritance rules allow specislization of the resulting type of a method.

The model is as powarful as the Biffol lungungs, excepting the aseociation types. Genericity can be
simulated by inheritance.

Some extensions are under study: mesaciasses (based on the ObjVLisp modsl), schemes, methods
s objects and association types, These sxtensions add difficultios to type checking.

Tho main features of our mode! are:

+ an object-oriented and formal model to abstinctly design applicetions, i.c. without the neod of &

particular Object-Orlented Language,

* rules and criterion to check graphes, types, method redeflnitions, inheritance links, ..

* & symbolic evaluator and proof techniqus,

+ a direct jmplementation in concrete languages.

APPENDIX

Forma! Classes
Ttenin ‘
HIK] t FOCo 88
H i .
R TN T ———— T
__Rage) Itenis -3 Iategey

$1 ensindexn 1 cyeate a ahpgo nguom

onsinden 1 ItemIn ~+ Inden
onnlnden (Self) == newlndeu(word = word(Self),
pages = add (neulaptyPages(),

|_pase(felf)))
In
’ —buberite fyemw List
uqm..m
o ShEEyash stypatuye T T

11 makeindax 1 built the indan table fyom the input list
wakeinden 1 In — Out .

1+ makeinden | built an empty table
makeinden 1 Rmptyla — Out

Fullln
1List In
: claas fox ® st
k: fulllist
. §betseet gtrusture [CTTITIINY
| head t Fylils -+ fvemIn

11 makeindex : built the table
makeinden 1 Fullln — Out

16

| makeIndew(Self) == putword(mekeindex(teil(Seif)), head(Self))

THE FORMAL CLASS MODEL: AN EXAMPLE OF ORJECT-ORIENTED DESIGN

ABSERACY Fages
inherise fyem List
|__commente: clasa for list of paqes
|____feasures: insert, add
aspess: list
stres l sonstraint

11 add : put a new page in the fromt of the liat
add 1 Pages Integex — Fulllages
ABSTRACT

11 insert 1 insext a new page in the list
iasexrt 1 Pages Integer — FullPages

147 1
EnptyPages
8
‘ ’ $8: olass fo ty list of 8
{__featuves: insert, add]
' -%’ ;i smptyliot
shstrpet strueture

15 add : put & new page in the froat of the list
add 1 EmptyPages Integexr — FullPages
var: X 1 Integer;
- nOW | 4 w X = felf)

11 insext 1 insert a new page in an empty list
insext : -EmptyPages Integer — FullPages
vax: X 1 Integexy

se 8 -

qeg
inhe _$xom Pﬁ-mut Pages
sssmentai slass for m.una
sspoph; fulllist

él__hgct astrusture) .
| __head : FullPages -+ Integer smpty? (tall{Self)) erelse
tail 1 FullPages — Pages head(Self) <«
)

1) add 1| put & new page in the front of the list
add 3 FullPages Integer — FullPages
vax: X : Integer;
il 11 [} - i1 = 8elf)

i1 insert 1 insert a new page in & full list
insert ¢t FullPages Integer — TullPages
var: X 1 Integesx)
X < head(8elf) == tyxue= insert(Self, X) == add(Self, X)
N = head(Self) == true= insert(Jelf, X) == Belf
X > head(Self) == true = insert (Self, X) ==
& insert 41 (8 X d(8e

17

P. ANDRE, D. CHIOREAN, C. CIRSTEA, J.C. ROYER

Index

inherita fyom OBJECT

cowments: class for outapt item

l!!t!“l : oneindex
[t: index

abstract SErucENES sonstraint
word i Index — String '
page i Index —» FullPages

ascondaxy aethods

7+ makeindex 1 built the table
makeindex t Fulllan — Out
makalndex{(Self) == putword(makeindes(tajl(Self)), head(Self))

Qug

inhexzits from List

gomments: class for output table

features: putword, add , .
, aspeak: list
abstract styuotuze | constzaint

77 add 1 put a new index in the freat of the list
add : Out Index — FullOut

ABSTRACT

i3 putwoxrd i parse a new input item
makeindex : Out ItemIam -+ FulloOut

ABSTRACT

Empt yOut

inhaxits from Emptyl st Out

commenta: class for empty output table

foatures: putworg, add ‘
agpest: emptylist

sbatract strusture i constraint
sesondasy

;s add 1 put a new index in the front of the list
add : EmptyOut Index — TullOut
vax: X : Index;
add(Self, X) == newFullOut (head = X, tail = Self)

RTINS A

17 putwoxd : add an input item
putword : EmptyOut Itemin — FullOut
vax: X : ItemIn;

_putword(Self, X) == sdd(Se}f, oneindew(X))

THE FORMAL CLASS MODEL: AN EXAMPLE OF OBJECT-ORIENTED DESIGN

Fullout -
inheritsy fyom Fulllist Out
comments: class for non empty output table
features: putword, add

2 £: fulllist

ahstyact struoture sangtyaint
head § FullOut —» Index ompty? (tail (Self)) oxelse
tail 3 FullOut -+ Out _word(head(Belf)) < word(head(tail(Self)))
[.

i1 add 1 put a new index in the fyoat of the list
add : Fullout Iandex — FullOut
add (Se [—_—T ad » i} = Self)
)1 putwoxd 1 parse a new imput item
putword 1 FullOut ItemIm — FullOut
vay: X : ItemlIn;
word(X) < word(head(Self)) == tyue =» putword(Self, X) ==~
add(8elf, oneindex(X))
word(X) = woxd(head(Self)) == true = putword(Self, X) ==
add(tail (Self), newlndex(word =~ woxd(X),
pages = insert (pages (head(Salf)), page(X))))
woxd (X) > word(head(Self)) == true = putword(Self, X) ==
o Self 8

Eiffel Classes

This appendix contains some Eiffel V2.3 classes resulting from a direct translation of formal
classes

STUDIA UNIV. “BABES-BOLYAI", MATHEMATICA, XXXIX, 3, 1994

CLASS lemin

EXPQORT word, pags, aneindex

INHERIT OBIECT

FEATIRE
- peivais fields
ward_privite : String;
prge_private : Injager;

-~ grosie redefinition
C%%Aﬁtn:m.p:mﬂ)u

ward_privete = m;
_privale (= p;
, ~- GTo8ls

-~ flald seloctors
word : String 18
m 3
RESULT 1= word_pelvats;
. BNIX; -- word

pags : Integer I8
po
RESULT :» page_private;

+ s simplo inden

oneindex : Index 18
LOCAL ¢ : EmptyPages;
po

e CRBATE;
RESULT.CREATE(word, s.add(page))
END; -- onsindex

END; -- Romln

CLASS Index
EXPORT werd, pagos
INHERIT OBIBCT
FEATURE
~- private felds
word_private : Sising;
pages_private | FullPages;

-~ crosts redofinition
CREATE (n ! Sudag, p : PuliPuges) I8
Do
word_private ;= m;
pegos_ptivaie 1= p;
BND; -- croato

-- flold sclecton

word ; Siring IS
DO
RESULT := word_private;
BND; -- word

pages : FullPages IS
(28]

RESULT ;= pages_privato;
END; -- pages
END; -- Index

DEFERRED CLASS In
EXPORT makeindex, add
INHERIT List

REDEFINDE add;
FEATURE

-- built an index table
makeindex () : Out IS

DEFERRED
END; -- makeindex

~- put an Itemln in frons of the list
add (i : Itemin) : Pullln 18
DEFERRED

END; -- add
END; -- la

€1.ASS Emptyln
BXPORY makeindox, add
INMERIT EmptyList

REDEFINE add;

-- put s emin in front of the lin
add (i : hemln) : Pullln 18
DO
RESULT.CREATE(, curreat);
END; -- add

-- oresiss an Index
makeindex () : EmptyOut IS
DO

RESULT.CREATE();
END; -- makeindox
ENL; -- Emptyln

CLASS Fuilln
EXPORT head, tall, makeindex, add
INHERIT PullList
REDEFINE hoad, tall, add;
In .
REDEFINE add;
FPEATURE
- private flelds
private_head : Jtemin;
private_tail : In;

-- creats redefinition
CREATE (1 : hemin;1:1n) I8
DO
private_head 1= i;
private_tail = {;
END; -- create

-~ fleld selectors

head : ltemIn I8
DO
RESULT := private_hoad;
END; -- head

tail : In 8
DO
RESULT := private lail;
END; -- tal))

-~ put an liemin in front of the : «

THE FORMAL CLASS MODEL: AN EXAMPLE OF OBJECT-ORIENTED DESIGN

add (i : hemln) : Fullln IS

po
RESULT.CREATE(, cutrent);
BND; - add

-- creatos an Index
maksindox () : PullOw 18
Do .
RESULT := private_tail. makeindox
. -ptword(privaie_hoad);
END; -- maksindex
END; -- Pullln

DEPERRED CLASS Pagos
EXPORT insest, add
INHERIT List

REDEFINE add
FEATURE

-~ piit & now page in from of the list
add(i : Jategen) : FullPages IS
DEFERRED

END; - add

-- insort & new page in the list
insent(l ; Intoger) : PullPages I8
DEFERRED
END; - insert
END; --.Pages

CLASS BmptyPages

EXPORT insent, add

INHERIT BanptyList
REDEFINE add
Pages
REDEFINE add

FEATURE

-~ pait & new page in fromt of the st

add(i : Integer) : FullPages I8
RESULT.CREATE(L, current);
END; -- add

-- inssst & new page in the ket
inseri(l : Imoger) : FullPagos I8
RESULT.CREATE(, current);
BND; -- insent
END; -- EmptyPages

CLASS FullPages
EXPORT hoad, tall, insert, add
INHERIT PuliLin
REDEFINE head, tall, add
Pages
REDEFINE add

FEATURB
-- ptivaie fislds
private_head : Integer;
privaie_tall : Pages;

-- field selector

head : Integer IS
Do
RESULT := private_head;
END; -- head

tsi) : Pages IS
po
RESULT := private_tail;
END; -- it

- put & pew pags in front of the list

addd(i : Intoger) : FuliPages IS
RESULT.CREATH(, curreat);
BNTY; -- add

-- insert 5 waw pags i the lint
insore(t : Intngor) : FullPages IS
1P 1 < private_hoad
THHN RESULT.Croale(], current); .
RSENFi= ,nm_hud
THEN RESULT = ousvent;
EBLEE RESULT.CREATE(puivate_heud,
privais_jail.inseri(l);

END;
END; -- {osont

INVARIANT

private_tail.ampty? crlse private_head.woed <
private_tall.private_head. word;
END;, -- FuliPages

DEYBRRED CLASS Om

-- put an index in front of the Hist
add (i : Index) : PullOwt IS
DEFERRED

BND; -- add

-- lasont & woud and its page
putword (i : hemin) : PullOw 18
DEPERRED

END; -- pstwerd
BND; - Ot

CLASS EmpiyOw
EBXPORT putword, add
INHBMIT BmptyLis
REDRFINE add;
Om
REDEFINE putword, add;
FEATURB
-- creste redefinition
CREATE IS
Do
ENI); -- creato

-- put an index in front of the list
add (1 : Index) : PuliOw 18

Do
RESULT.CREATE(, current);
END; -- add

-- Insort & word and its page

putword (i : hemin) : FullOw IS
Do
RBSULT := add(i.oncindex, current);
END; -- putword

2t

END; - EmpiyOut

CLASS FullOw
EXPORT head, wil, putword, add
INHERIT FullList
REDEFINE head, tail, add;
Ot
REDEFINE putword, add;
FEATURBE
-- private flalds
private_baad : lndex;
private. tail : Out;

-- cresis redefinition
CREATE (i : Index; 1 : Ou) I8
3 ¢
private_head i= §;
private_tail = 1;
BNI); -- create

-- fisld seloctors

. head : Index I8
bo
RESULT := private_hoad;
BND; - head

tall : O I8

‘DO
RESULTY ;= private_tall;
END; -- tall

-- put an index in front of the Hist
add (i : Index) : FullOut I8
po

RESULT.CREATE(, current);
END; -- add

-~ insert a word and its pags
putword (i : Itemin) : FullOut 18
LOCAL ind : Jodex;
DO
1F i.word < head.woed
THEN RBSULT := add(i.oncindesx,
curreat);
ELSIF {.word.deep_squal(hoad. word)
THEN ind. CREATE(l. woed,
hoad.pagos.insert(i.pago);
RESULT := tail.add(ind);
ELSE RESULT =
tail. putword(i).sdd(head);
END;
BND; -- putword

INVARIANT
private_tail.omply? orclso private_head.word <
private_tail.private.head. word;
END; -- PuliOut

22

(1

2]
(31
4]
(3]
i}
Y
(8}
191

(10]

{1

(12]

REFERENCES

Pascal André, Dan Chiorean Corina CIRSTEA and Jean-Claud. Rayer,
Object-Oriented Design With Formal Classes, in: ConTI'94: International
Conference on Technical Informatics, 1994, 16-19 November, Timigoars,
Roménia.

Pascal André, Dan Chiorean and Jean-Clauds Royer, The Formal Class
Model, in: Joimt Modular Languages Conference, Uim, Germany,
(1994).

Michel Augeraud and Jean-Claude Royer, Une interprétation du conoept
de classe on termos de type abstnait, in: Journdes du GDR Programmation
avancée et oulils pour l'intelligence artificisls, pages 13-27, Nancy,
France, (1992) Rapport du GRECO ds Programmation.

Pascal André and Jean-Cleude Royer, [a modélisstion des listes on
programmation par objets, in: Pierro Cointe, Christisn Queinnec and

Beomard Serpstte, ods. Journndes Francaphonss des Langages Applicatifs,
Collection Didactique, 11 (1994) 259-285.

Wiltiam R. Cook. A Proposal for Making Eiffel Type-safs, in: The
Computer Journal, 32 (4) (1989) 305-311.

Luca Cardelli aad Peter Wegner, On Understanding Types, Deta
Abstraction and Polimorphism, in: Computing Surveys, 17(4) (1985) 471-
522.

Joseph A. Goguen, Claude Kirchner, Héléne Kirchner, Aristido Megrelis,
José Meseguer, and Timothy Winkler, An Introduction to OBJ3, Rapport
de recherche 88-R-001, Rapport du Ceatre do Recherche vn Informatique
de Nancy, (France, Vandoeuvreles-Nancy, 1988).

Leslic Lampont. LATEX User’s Guide and Reference Manual (Addison-
Wesley Publishing Company Inc., 1986).

Kevin Lano and Howurd Haughton, eds., Object-Oriented Specification
Case Studies. Object-Oriented Series (Prentice Hall, 1993).

Bertrand Meyer, Object-Oriented Software Construction, International
Sieries in Computer Science (Prentics Hall, 1988),

Jean-Claude Royer, Un exercice de spécification formwlle de preuve ot de
conception & objets, Rapport de recherche 30, IRIN, Faculté des Sciences
¢t des Techniques, Université de Naates, 1993.

Pierre Cointe. Metaclasses Are First Classes: The ObjVlisp Model. 'In
ACM OQPSLA’87 Proceedings, 156-167. ACM, October 1987

23

STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXXIX, 3, 1994

DISTRIBUTED PROCESSING IN EXTENDED B-TREE
Florian Mirees BOIAN" and Alesasdru VAMCEA'
Dedicated to Professor Bevar Groge on his 65° anniversary

Recgived: February 10, 1995
AMS subject classification: 68Q22, 65Y03, 63Y10

REZUMAT. - Procesarea distribulth tn B-arborl extingl. in accasth lucrare sc aratit ci

structura de B-arbore este o structurll de date foarte indicatll peatru procesasea sa atr-un modiu

distribuit tn care comunicarea se face prin transmitere de mesajo. {n acest context se propun

uncle tehnici de procesare distribuith in B-arbori, tohnici inspirate de algoritmii clasicl de

mapare a taskurilos Intr-un sistem distribuit. Nu poats fi stabilith o tohnich optimil in cazul

general, problema in acest caz fiind o problemd NP-hard.

1. Preliminaries

A B-tree was formally defined in [Knuth76]. We denote by m the order of the B-tree,
and we denote by e the number of keys from the current B-tree node. By p, with possible
subsoripts we denote pointers to B-tree nodes. Finally, by K, with possible subscripts, we
denote value(s) of key(s) from B-tree. If p is a pointer to a B-tree node, we denote by S(p)
the B-subtree having the root in the node pointed by p.

Definition 1. The possession of S(p) is defined as the total number of keys from S(p).
We denote this number by Z(p).

Let 8 =K, ,K,.,.. K,,, be the word of the r succesive keys from a particular node of B-
tree. Let p,, Pis1» Piezs --» Piir D@ the neighbour pointers for the keys from a. By S(a) we denote

the B-subtree which has in its root only the keys from a and the descendents S(p,), S(p..,),

S(phl)n ey S(pioy)‘

* "Babeg-Bolyai” University. Faculty of Mathematics and Computer Science, 3400 Cluj-Napoca, Romania

FM. BOIAN, A. VANCEA

Definition 2. An Extended B-tree [Boian89] is a B-tree having in its nodes the

following information:
1) T i i ¥ ¥]

z0p0 l K1 ! zlpl {1 K2 Il z2p2 ll ll ze-lpe-1 ! Ke | zaepe
L
T T ’)

where z{' =Z(p), i = 0,1,.*..,n.

An example. In figure 1, an extended B-tree is presented. In each node, only the
values of keys are presented. For leafless nodos there are two arrows near each key: one on
the left and the other on the right. On the left of each row, in brackets, the value of

possession appears, and on the right, the value of the pointer (here is the number of the node)

appears.
(39)|8
* 097 *
—t
l'——J 1
(11)]3 (27) |7
1 4
| * 041 » * 1857 % 233 % 549 *
| i }
: T 1
I (5)|s (5)16 (6)]9 by oy
(5)}1 b — b (7) |4
¢ l { 1 (6)]2
000 011 017 023 031 }| 103 109 127 137 149 || L
I | |
f l‘W l 1 l
! 047 059 067 073 083 | | 167 179 191 197 211 227 | |
i 4 I
{—
283 353 401 449 461 467 487 |
I
|

S

599 677 773 829 883 999

Figure 1. An extended B-tree

26

DISTRIBUTED PROCESSING

For example, 8(7) has the nodes 7, 6, 9, 4, 2, and Z(7) = 27. If a = "157 233", then
S(a) is S(7) without the key "549" and without the node 2, and Z(a) = 20.

Extended B-tree transformation. The operations with B-tree are presented in
[Knuth76}. In [Boian89] and [Boian8%a} we have described some ideas to implement an
extended B-tree. In figures 2, 3 and 4 three pairs of transformations are presented: rotate
left/right, transform a node into two or viceversa and the transformation of two nodes into
three or viceversa. In these figures, we denote by lewer case (a, b, ..., h, i) the sequences,
possibly empty, froin consecutive keys (from the same node), and by an uppercase (C, E, G)
a key from a node.

When a transformation is applied, the possessions for new nodes must be computed
only from the old ones, without considering the other nodes from the B-tres. In the following,

for the four usual transformations, the new possessions are:

a| B g a| C g

pl p2 —— p2
] Ip1
l T 1 1 """‘l) T
| bl c| al £ | | b |a| B} ¢
L U | } [{ i

(I) (II)
Figure 2. Rotate left / right

a -] a C e
pl ' p2
— | |p1
{ tm —
| bl c|d b | a
L [| —
(1) (II)

Figure 3. Transformation between one node - two nodes

27

DISTRIBUTED PROCESSING

computing system the work to be done must be partitioned among the available processors
and for this to be an efficient action this work needs to be balanced.

Therefore, having at our disposal a distributed computing system, we consider that an
adequate B-tree nodes distribution onto the available network configuration is of an extremely
importance.

There are many wayé for assigning the B-tree nodes to the available processing
elements. We present below some of them, called sowrce initiated schemes, which we
consider well suited solutions for our problom of obtaining good distributed execution
efficiency. In the following, we will identify the necessary activity at each B-tree node with
a process, having then the correspondence “s node" - "one process” for simplifying our
discussion.

The nature of the transformations that are taking place in a B-tree suggests a message
passing distributed modetling. For example, the necessary messages for the cases described
in figure 2, 3 and 4 are given below. Except create and remove, ail the other romaining
actions can be executed in parallel:

i). rotate left to right (fig.2, I to HI);
p, to p, sends "E";
p; to p, sends "d";
P, to p, sends "C";

it). rotate right to left (fig.2, Il to I):
Pa to p, sends "E";
P, to p, sends "d";
po to p, sends "C";

iii). divide a node from two (fig.3, I to IT):
Create a new node p,;
p; to p, sends "C";
p, to p, sends "d";

29

F.M. BOIAN, A. VANCEA

iv). join the nodes p, and p, into p, (fig.3, I to I):
Po to p, sends “C";
p; to p, sends "d";
Remove the node p,;

v). divide the nodes p, and p, from three (fig.4, I to II):
Create a new node p,;
Po 10 p, sends "E,
Pi to p, sends "C",
Py to p,; sends "d”;
P, to p, sends “G";
Pa to p; sonds “h";

vi). join the nodes p,, p, and p, into p, and p, (fig4 10 I):
p; to p, sends "h";
Po to p; sends "G";
p; to p, sends "d";
P, to p, sends "C";
Ps 10 Py sends "E”;

Source initiated achemes are charscterized by the fact that the work splitting is
porformed only when an idle processor (called the sowrce in this context) requests some work
to do. Hence, the schemes presented hore are sll demand driven achemes. In all such schemes
when a processor runs out of work it generates & request for work. What differentiates all the
following different load balancing schemes is the way in which is mads the selection of the
target for this work request. This selection should be such as to minimize the total number
of work requests and to balance the load among processors with fowest possible work
transfers. The basic load balancing algorithm is the following [Gra91]:

30

DISTRIBUTED PROCESSING

while (not terminated)
while (work not available)
determine target;
send request for work to target,
receive message if any,
if (message is work request) send s reject;
if (moasage is a reject) reset flag to indicate
that a fresh target has to be detormined and
another request for work bo generated,
service work requests and temniination messagos,
end-while
do werk until exhausted and at the same time service
work requests,
end-while;

In the Asynchronous Round Robin (ARR) schemes each processor maintains an
independent variable cownt. Whenever & processor runs out of work it reads the value of cownt
and sends & work request to that particular processor. The value of cownt is incremented
(modulo P) each time its value is read and a work request sent. Initially, the value of count
is set to ((p+1) modulo P) where p is the processor identification number. Since each
processor has a counter of its own, work requests can be generated by each processor
independent of the other processors.

Giobal Round Robin (GRR) considers the variable cownt stored in the processor 0 of
a hypercube. When & processor needs work it roquests and geta the value of this variable and
the processor O inorements the valus by 1 modulo P befors responding to another request. The
processor nesding work is sending now a request to the processor whose number was supplied
by pracessor 0. This algorithm ensures that the work requests are uniformly distributed over
sll processors. A potontial drawback of this scheme is the possible competition for reading
cownt.

In the Nearest Neighbowr scheme, a processor running out of work sends a work
request to its nearest neighbours in & round robin fashion (for example, on a hypercube a
processor will request ita logN neighbours). Thus we have locality of communication for both
work requests and actual work transfers. For networks in which the distance between any two

processors is the same this scheme is the same as the Global Round Robin. In a way, this

k)

FM. BOJAN, A. VANCEA

scheme can be considered an adaptation of ARR for networks that are not completely
connected. A potential drawback of this scheme is that lacalized concentration of work takes
a longer time to globally balance the load among gl| processors.

To avoid competition for reading cownt in GRR, in GRR with message combining all
the requests to read the value of cowns at processor 0 are combined at some intermediate
pracessors. Thus, the total number of requests that have to be solved by processor 0 and its
neighbours is greatly reduced. This technique is basically a software implementation of the
Jetch&add operation [8ki91]).

In the scheduler based load balancing scheme a processor is designated as a scheduler.
This processor maintains a list of all possible processors which can danate work. Initially this
list contains just one processor which has all the work. Whenever a processor goes idle it
sends a request to the scheduler. The scheduler thon enquires the processors in the list of
active processors in a round robin fashion till it gets work from one of the processors. This
processor is then placed at the tail of the list and the work received by the scheduler is
forwarded to the requesting processor.

Let’s notice that the performence of this last scheme can be degraded significantly by
the fact that all messages (including messages containing the actual work) are routed to the
scheduler. This poses an additional bottleneck for the work transfer. We can improve this
scheme so that the poll be still generated by the scheduler but the work be transferred directly
to the requesting processor instesd of being routed through the scheduler.

3. Conclusions and further reasearch

We presented in this paper some proposals on efficiently distribute the nodes of a B-
tree on the processing clements of a distributed computing system. It's difficult to say in the
general case which is the best strategy to use, taking into account the fact that the distribution
of processes among processors in the general case in known to be NP-hard [Tao92].

As further research we hope to have access at some pasallel architectures and make
experimental evaluations of these load balancing techniques for a large number of B-tres
applications and compare the performances with those theoretically estimated. Also, we want

to determine more exactly the most efficient contents of the notion of process in this context,

32

DISTRIBUTED PROCESSING

this paper making the simplifying assumption "one node" - “one process", not necessarily the
best choice.

REFERENCESR
[AKI®0] 8§.G.AKl - The Design and Anabusis of Parallel Algorithms, Prentice Hall, 1989

{Boian89] Boian F. M. - Sistom de figiors bazat pe B-arbori, In Lucrarile celui de-al Vil-lea colocviu nafional
de informatiod, INFO-1ASI, 1989, pp. 33-40.

{Boian89a] Boian F. M. - Chutare rapidll in B-sbori, In Lucrdrile simposionwlui "Informatica §i aplicatiile
sak", Zilkle academice Clujone, Cinj-Napoca, 1989.

[Graf®1] A.Y.Grama, V.Kumar, V.N.Rao - Experimental Evaluation of Load Balancing Techniques for the
Hypercube, in Parallel Computing '91 (D.J.Evans ot al.editors), Elsevier Science Publishers, pp.497-512.

{Knuth?6] Knuth D.E. - Tratat de programarea calculatoarelor, vol 11, Sonare gl citutare. Ed. Tehnicl,
Bucuresti, 1976.

[Kri89] Krishnamurthy B.V. - Paralle! Processing. Principles and Practice, Addison-Wesley, 1989,

ISki91} D.B.Skillicorn - Models for Pmctical Paraliel Computation, Mernational Journal of Puralle!
Programming, vol.20, no.2, pp.133-158, 1991,

[Tan93] A.8.Tancnbaum - Modern Operating Systems, Prentics Hall, 1992,

(Tae92} Tao L., Zhae Y.C., Narehari B. - Efficient Heuristios for Task Assignment in Distributed Systems, in
Procesdings of 1991 Intervational Corderence on Parellel and Distributed Systoms, December 16-18, 1992,
Hsinchy, Taiwan, pp.134-141.

{Tou93} Tout W.R., Pramanik 8. - 4 Distributed Load Balancing Scheme for Data Parallel Applications,
Prooeodings of the 1993 Int. Conforonce on Parallel Processing, pp.11-213 - 11-216.

33

STUDIA UNIV. BABES-BOLY Al MATHEMATICA, XXXIX, 3, 1994

COMPLEXITY METRICS FOR DISTRIBUTED PROGRAMS
Moniea CIACA®
Dudicated to Professor Sever Groze on his 63* anniversary

Received: March 13, 1995
AMS subject classification: 68Q15, 65Y05

REZUMAT. - Metricl ale complexitkii programelor distribuite. in lucrare se propun cdteva

metrici ale complexitiifii programelor distribuite, metrici bazate pe diversele dependenie de

executie ce apar la nivelul unui program. Fiind bazate pe mai mulie tipuri de dependenti,

metricile pot exprima complexitatea unui program distribuit din mai multe puncte de vedere.

1. Introduction

Metrics for measuring sofiware complexity have many applications in software
engineering activities including analysis, testing, debugging, and maintenance of programs,
and management of project.

When we intend to measure some attributes of some entities, we must be able to
capture information about the attributes and therefore we must have some representation and
model of the entities such that the attributes can be explicitly described in the representation
or the model. To measure the complexity of a concurrent program we must capture
information about not only control structure and data flow in every process but also
syncronization structure and interprocess communication among processes.

This paper presents some graph theoretical representations for distributed programs and

detines some metrics for measuring complexity of distributed programs.

* "Babeg-Bolyai” University. Faculty of Fconomics, 3400 Clyj-Napoca, Romania

M. CIACA

2. Definitions

A nondeterministic parallel control flow net (CFN) is a 10-uple
(VoN, PP uA oA AppAppsit) where (V,AcAnApmAp;) 18 & simple arc-classified digraph such
that ALVEY, ANV, A CPaV, A, CViP, NCV is a set of elements, called
nondeterministic selection vertices, PyCV (NNPp=P) is a set of elements, called parallel
execution fork vertices, P,CV (NNP=®, and P,NP,~P) is a set of elements, calied paralkl!
execution join vertices, sV is & unique vertex, called skrs vervex, such that in-degree(s)=0,
tEY is a unique vertex, called fermination versex, such that out-degree(t)=0 and tws, andvfor
any V&YV (vms, vmi), there exists at least one path from s to v and at least one path from v
to t. Any arc (v,v,)EA, is called sequential comirol arc, any arc (v,v,)EA. is called
nondeterministic selection arc, and any arc (v,v,)EAL,UA,, is called parallel execution arc.

A usual {deterministic and sequential) control-flow graph can be regarded as a special
case of nondeterministic parailel control-flow nets such that N, Py, P, A, Apy, and Apare
the empty set.

A nondeterministic parallel definition-use net (DUN) is a T-tuple (N, X, D, U, I,
8, R), where No=(V,N,Pp,PLA A ApnAppt, t) is & control flow-net, I, is a finite set of
symbols, called variables, DiV—->P(Z,) and P1V-->P(X,) are two partial functions from V
to the power set of X, E. is a finite set of symbols, calied channels, and 8:V-->X and
8:V-->X are two partial functions from V te I.

A DUN can be regarded as a CFN with the information concerning definitions and
uses of variables and communication channels. A usual (deterministic and sequential)
definition-use graph can be regarded as a special case of nondeterministic parallel definition-

use nets such that NP, PLA LA WA ppApsEsS and R are the empty set.

36

COMPLEXITY METRICS

The above definitions of CFN and DUN are graph-theoretical, and therefore, they are

independent of any programming language.

3. Process dependence net

Program depondences are dependence relationships holding betwoen statements in a
program [Ferrante91]. Based on the DUN of a distributed program, we can formally define
five kinds of primary program dependences: control dependence, data dependence, selection
¢kpond¢{occ. synchronisation dependence, and communication dependence [Cheng92),
[Cheng93].

Informally, a statement u is directly control-dependent on the control predicate v of
& conditional branch statement (e.g., an if statement or while atatement) if whethor u is
executed or not is directly determinated by the evatuation result of v, a statement u is directly
data-dependent on a statement v if the value of & variable computed at v has a direct
influence on the value of a variable computed at u; a statoment u is directly selection-
dependent on a nondeterministic selection statement v if whether u is excouted or not is
directly determined by the seloction result of v, a statement u is directly synchronization-
dependent on anothor staternent v if the start and/or termination of execution of v directly
detormines whether or not the execution of u starts and/or terminates; a statement u in a
ﬁwun is directly communication-depondent on another statement v in another process if the
value of a variable computed at v has a direct influence on the vealue of a variable computed
at u by an interprocess communication,

If we represent all five kinds of primary program dependences in a distributed program
within an arc-classified digraph such that each type of arcs represents a kind of primary

37

M. CIACA

program dependences, then we can obtain an explicit dependence-based representation of the
program. Such a representation is called process dependence net {Cheng92], [Cheng93).
The pracess dependence net (PDN) of a program is an arc-classified digraph
(V,Con,Sel,8yn,Com) where V is the vertex set of the CFN of the program, Con is the set
of control dependence arcs such that any (w,v)ECon if and only if u is directly weakly
control-dependent on v, Sel is the set of selection dependence arcs such that any (u,v)ESd
if and only if u 18 directly selection-dependent on v, Dat is the set of data dependence arcs
such that any (u,v)EDat if and only if u is directly data-dependent on v, Syn is the u't of
synchronization dependence arcs such that any (u,¥)ESyn if and only if u is directly
synchronization-dependent on v and Com is the set of communication dependence arcs such

that any (u,v)&Com if u is directly communication-dependent on v.

4. Dependence-based complexity metries

We will further use the following notations of relational algebra:
R’ : the transitive elosure of binary relation R.
O-(R) : the selection of binary relation R such that oy, (R)={(v,,v;)|(v,,¥;)ER and v;=}
Oes(R) : the selection of binary relation R such that oy ee{R)={(v,,¥,) |(v,,v,)ER and v,€8).
Op1en(R) : the selection of binary relation R such that oy,es(R)={(v,v,) |(v1sv:)ER and v,E€8).

Based on the PDNﬂ(V,Con.ZSel,Dat,C'om) of a distributed program, we can define the
following dependence-metrics for measuring the complexity of the program, where |A| is
the cardinality of set A, D,€{Con,Sel,Dat,Syn,Com}, D ;=ConUSelUDatlUSynt JCom, and

P is the set of all statements of a process p;

38

COMPLEXITY METRICS

|Dp}/|Dy] is the proportion of a special primary program dependence to all primary
program dependences in a program, and therefore, it can be used to measure the degree of
concurrency of the program for a special viewpaint. For example, the larger are |Canl/|D, |
and |Dat|/|Dy| of & program, the less concurrent is the program. The larger is |Sel|/|Dy|
of a program, the more nondeterministic is the program. The larger are [Syn|/|D,] and

[Com |/|Dy] of a program, the more concurrent is the program.

|SelUSynUCom |/|Dy | is the proportion of those primary program dependences
concerning concurrency to all primary program dependences in a program, and therefore, it

can be used to measure the degree of concurrency of the program from a general viewpoint.

Dt /IDy*| is & metric different from |D,}/|Dy] in that {D,}/|Dy| only concemns
direct dependences while |D,"|/|Dy"| concems not only direct dependences but also indirect

dependences.

[(SelUSynUCom)* |/|D'| : the difference between this metric and |SelUSynU

Com|/|Dy| is similar to the difference between |D,}/|Dy| and |D,*|/|D,*}.

max/min{|o, (D)[VEV)/|V]| expresses the proportions of the maximal/minimal
number of statements on which a statement is directly control, data, nondeterministic
selection, synchronization, or communication dependent, respectively to the total number of
statements in & program. The larger is the metric of a program, the more complex is the
program. In particular, the larger is max/min{|o;,(D) [VEV}/|V|, where D, E€(Sel, Syn,

) 39

M. CIACA

Cam}, of & program, the more complex is the concurrency in the program.

max/min{|a, (D) |VEVY/|V| expresses the proporions of the maximal/minimi
number of statements on which a statement is somehow directly dependent, to the tonl

number of statements in a program.

maz/min{|0,.(D,") |[VEV}/|V| exproases the proportions of the maximal/minimd
number of statements on which a statement is directly and indirectly control, dan,
nondeterministic selection, synchronization, or communication dependent, respectively, tothe

total number of statements in a program.

max/min{} o, (D,)IVEV)/|V| expresses the proportions of the maximal/miniml
number of statements, on which a statement is somehow directly and indirectly dependent,

to the total number of statements in & program.

The following metrics can be used to measure the degree of interaction among
processes in & program. The larger is the maximal/minimal value of such a metric of a

program, the more complex is the concurrency in the program:

Oya(SynUCom)|/|V] is the proportion of the number of statements of other
(tl

processes on which a process is directly dependent, to the total number of statements in s

program.

40

COMPLEXITY METRICS

|0y (SynUCom)' |[/[V| is the proportion of the number of statements of other
processes, which a process is directly and indirectly dependent on, to the total number of

statements in a program.

|01 (BynUCom)Noyy e, (SynUCom) |/|V| is the proportion of the number of
statements such that two processes directly depends on each other, to the total number of

statements in a program.

|oiyen (S8ynUCom) Nopen(ByntUCom)' [/[V| is the proportion of the number of
statements such that two processes directly and indirectly depends on each other, to the total

number of statements in a program.

Some of the above dependence-based complexity metrics can be used to measure the
concurrency complexity of a distributed program in various aspects and some of them can be
used to measure overall complexity of the program. Some other complexity metrics similar
to the above metrics can also be considered. For a further discussion we refer the reader to

[Conte86] and [Fenton91].

REFERENCES

[Cheng92] J.Cheng - Task Dependence Net as a Representation for Concurrent ADA
Programs, in J. van Katwijk (ed.) "Ada: Moving towards 2000", Lecture Notes in Computer
Science, Vol.603, Springer-Verlag, June 1992, pp.150-164.

41

M. CIACA

[Cheng93] J.Cheng - Slicing Concurrent Programs, Proc Ist International Workshop on
Automated and Algorithmic Debugging, May 1993,

[Conte86] S.D.Conte, H E.Dunsmore and V.Y Shen - Sofiware Engineering Merrics and
Models, Benjamin/Cummings, 1986, 396 p.

[Fenton91] N.E Fenton - Sofiware Metrics: A Rigorous Approach,Chapman&Hall,1991,33%.

[Ferrante87]]. Ferrante, K.J. Ottenstein and J.D. Warren - The Program Dependence Graph
and its use in Optimization, ACM TOPLAS, Vol 9, No.3, July 1987, pp.319-349.

STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXXIX, 3, 1994

DIVIDED DIFFERENCES AND CONVEX FUNCTIONS
OF HIGHER ORDER ON NETWORKS

Marie-Eugenia IACOB’
Dedicated to Professor Sevar Groze on his 65° amiversary

Received: November 16 1994
AMS subject classification: $2-02

REZUMAT. - Diferente divizate ¢i functii cenvexe de ordin superior In retele. fn acest

articol vom introduce diferentole divizate pe n puncis, pentru orice functie reald, definitd ps

o submultime conexA a unei refele. Este expusii o teoremi de reprezentars 2 acestor diferento

divizate genoralizate. Ultima sectiune este dedicati functiilor convexe de ordin n, definite pe

refele gi studinlui unor proprietifi ale acestui tip de funcyil.

Abstract. For any real function f defined on a connected subset of an oriented
network, we are interested to find a way to introduce divided differences on n points. We give
a reprezentation theorem for the generalized divided differences and some properties resulting
from this theorem.

Next we introduce the concept of convex real function of order n, defined on network.

Some properties of these functions will be studied in the last part of this paper.

1. Notations and definitions
First we introduce the concept of network (see [1}, [2], [3]). We consider a directed
connected graph G = (W,A) without loops. To each vertex i € W = {1,...,n} we associate a

point vER’. Thus yields a finite subset V={v,,...,v,} of R’ called the vertex set of the

* "Babeg-Bolyai” University, Faculty of Mathematics and Computer Science, 3400 Cluj-Napoca, Romania

ME. JACOB

network. We also associate to each arc (i,j))EA a rectifiable arc [v,,v,JCR’, called arc of the
network, which has the orientation from v; to v;. Let assume that [v,v;] has the positive length
e, and denote by U the set of all arcs. We define the network N=(V,U) by the union
N= U(vv]
Ghea
It is obvious that N is a geometric image of G, which follows naturally from an embedding
of Gin R
Suppose that for each {v,,v] in U there exists a continuous one-one mapping T,;:[0,1]-[v,v]
with Ty(0) = v, T(1) = v, and T([0,1]) = [v,v] C R’.
Lot Q; bo the inverse of T;. To each point x from {v,,v;] corresponds a unique point Q)
in [0,1].
Any connected and closed subset of an arc [v,v;], bounded
by two points x and y of [v,,v;] and having the same orientation as [v,,v)], is called a closed
subarc and is denoted by [x,y]. if one or both of x, y miss we say that the subarc is openin
x {or in y) or is open and we denote this by [x.,y) or (n,y] or (x,y), respectively.
Using Q,; it is possible to compute the length of [x,y] as
e(bey]) = [Qyx) - Qo
Particulary we have e([v,,v)]) = ¢, e([v,x]) = Qyx)ey and e([x,v;)) = (1 - Q,(0))e;.
Definition 1.1 A chain L(x,y) linking two points x and y in N is a sequence of arcs
and at most two subarcs at extremities. The length of a chain is the lengths sum of all is
component arcs and subarcs. If the chain L(x,y) contains only distinct vertices then we call
it elementary.
Definition 1.2. A route D(x,y) starting from x and ending in y (x,y € N) is a chain,

which has the same orientation for all the component arcs and subarcs. This also is the route

44

DIVIDED DIFFERENCES AND CONVEX FUNCTIONS

orientation.

Let L’(x,y) be one of the shortest chains and D"(x,y) one of the shortest routes
between the points x,y in N. We define in N a distance as follows:

d(x,y) = e(L’(x,y)) for any x,y in N.

It is obvious that d is a metric on the oriented network N.

2. Divided differences

Qur purpose in this section is to extend in a natural way the divided differences on
n points of real functions (see [7], [8], [4]) for the functions defined on networks.

In order to define the divided differences of a function f on n points we will consider
the notion of metric segment.

Definition 2.1 The metric segment between two different points x,yEN is the
followihg set:

<x,y> = {2EN | d(x,2) + d(z,y) = d(x,y)}.

Remark. Another way of stating definition 2.1, in geometric language, is to say that
the metric segment <x,y> coincides with the union of all the shortest chains between x and
y.

So, it is easy to see why the above remark leds us to the following notion.

Definition 2.2 The metric oriented segment between x,yEN is the set:

<xy>, = (zEN | 2ED"(x,y) and d(x,2)+d(z,y)=d(x,y)},
where D’(x,y) denote a shortest route linking the points x,y&N.

Remarks. 1. Following the definition 2.2 the oriented metric segment is the union of

all shortest routes from x to y which have the length d(x,y). Thus we can see that <x,y>,

45

DIVIDED DIFFERENCES AND CONVEX FUNCTIONS

The same reasoning applies to the case of any permutation of points x,,x,,x,. M

Definition 2.3 Let ACN and consider the real function f:A—~R. We choose the points
X;,...X,EA pairwise distinct and such that there exist x,yEA and a shortest route
D'(x,y)C<x,y>, for which is fullfiled the condition x,,..X,ED'(Ly). We call divided
differecence of function f on points x,,...,x, the number:

[Kl,...,x‘;fj - [x,,....)(.,‘,fj - {xnt-"'x.-,;ﬂ

Jw(x.,x,)

where for any zt€D"(x,y)NA,zmt, we set

£ o KO-fz)
{z..f] W

The following divided differences reprezentation formula holds:
Theorem 2.1 Given f:A—R (ACN) and the points x,,...,x, under the conditions stated

in definion 2.3, then

" 5 fix)

1 oK f] =

M e, ?.:, P 0% X))
Pu(Xp- %) = d, (x4, (%,)0 (XK,). 4 00,x).

, where

Proof. We shall prove (1) by induction. For n=3 we have:

fx)-f0) f)-fx,)
Doxfl-Ioxf] d, 06x) 4 ()

[x,%,x,,f]=

d, (x,.x,) d, (x,.x,)
- flx,) B AP N A
d, (x d, (k%) d(x,x) d, () d,(x,x,)
()

+*
d,‘y(xgixl)dxy(xgtxg)
Using lemma 2.1 it follows

Xy, %,%5,f] = i)

kel Pk(x,;xpxg)A
Assume (1) is true and prove the property holds for n+1 points, that is:

47

M.E. 1ACOB

8+l f(xk)

T B Kp Ky
According to definition 2.3 and using the induction hypothesis we have:

Mo} - o) o fx) |
[xl,m’x"vﬂ duy(xmloon plﬂ(xl""'xl'l) g‘ pk(xl’m’x')

v 1 [_ fix) .
000.x)| 400 d 0x,x)

+ f{; ! -
d,,06,x,)...d, (x,x,,)

- 1 + .+
dv(x,,x,)dv(x,.x,), . .dv(x,,x .)]

Xy Xpeisf] =

+] -
f("')(AN NN N

- 1 .
d"(x.,x,)...dv(x.,x._l))

flx,.,) l

) A
Taking in account lemma 2.1 under the transcription
d,, 00, x)+ 00,8,)=d, (x,,X,.,),. k=2, .0 and

d, (%) = - d,, () k=1, n+1j=1,. ntl,

we conclude:

48

DIVIDED DIFFERENCES AND CONVEX FUNCTIONS

I O N
(%1% d_0x). 4, (x,X)

[x,,...,xm;fj

fix M, (xx,,)
NN X
i £,)0, (%,.%,,.) £(x,.,)
dx (X.,Xl) a (X.,Xn_Da (xn'va) d &.ovxz) d (xuﬂ'x)
SRy

| U Pg("p -r nol)
Theorem 2.1 is an analogue for networks of a similar result conceming the usual

divided differences ([7), [8], [4]). A immediate consequence of this characterisation theorem
is: '
Theorem 2.2 If f, g are real function defined on ACN, oER and x,,... X EN satisfy
the conditions stated in definition 2.3, then:
Xy X £HE) =[xy, Xuf] + [Xy,...%,8]
x,,..x;af] = afx,,...x.f].

Proof. The above relations follow directly from (1).8

3. Functions of order n on networks.

The last part of this paper is devoted to define and study the functions of higher order.

Definition ;3.1 If x,,....X,EN are n points (n>1) pairwise disctinct, we call this points
a metric sequence if the following conditions are fullfiled:

a. There exist x,y&EN and D’(x,y)C<x,y> »& such that x,,....x,ED(x,y).

b. dy(x,,x,) <0.

c. E d(x,.x,,,) = dix,x).

k=]

M.E. IACOB

d. d(x,.,, %)Hdx, X, =d(x,4.X.0), k=2,..,0-1.

Remark. One can easily seen that any subsequence of {x,,..x,} is also a metric
sequence.

Theorem 3.1 If { is a real valued function defined ACN and x,,...,x,EA is a metric

sequence, then

(-1 (x)
d(x, x,)...d0cx,)d(x,.x, . ,)...d(x,.x)

3} [x,,-.-,x.;ﬂ-g

Proof. Since x,...x, i3 a metric sequence it follows
-d(x,.x),dack j>k
3) d (%) = e, x).dack j<k
Using (3) in (1) we obtain (2).

Definition 3.2 A real valued function f defined on ACN is called convex, notconcave,
polynomial, notconvex, concave of order n on A if for any metric sequence x;,... X,,,€A the
following inequalities holds respectively:

(X Xuisf] >, 2, =, 5, <0,
All these functions are of order n.
Remark. If we take a=1 for notconcavity in definition 3.2 we recover the usual ¢-

convex functions in metric spaces ([10]).-

Definition 3.3 A real vaiued function f’A-R is d-convex on A ACN if

d(zy) oy , 40(02)
@ f@»s &(x’y)f(X) d(x,y)ﬂ(”’

for any points x,y,z in A such that zE<x,y>, (which is the same with saying that x,zy is

metric sequence).

M.E. IACOB

Using definition 2.3 and (5) we obtain;

) O S § L WO A
6) X Xgesf] = kel 0,
et d(thl'xi)
for each i€(1,...,m} and under the assumption that

X if i+n+1sm

ien+l?

Kt ™

Kiper- if 1+0+1>m

It is obvious that (6) implies:

Ko Xirmersf] ® [X;,. %], VIE(L,..,m}.
Thus we can write the following sequence of inoqua\slities:
[y X iif] % [X5. X f] = .. 8 [KXy,. X f]
% [X,,....X,.1.f]. This clearly forces the equality:
(D X Xpersf] = g X f] = = [X,,. X 6]

Using (7) in (6) yields [x,,...X,.,;f]=0. Since the metric sequence was arbitrarily
choosen we can conclude that f is polinomial of order n on C.H

It is ovious that

Corollary 3.1 A n order real function is polinomial on any union of elementay
adjacent circuits.

Corollary 3.2 Any real valued function f, defined on a set ACN which containsa
elementary circuit C cannot be convex or concave of order n, whatever the natural number
n is.

For usual d-convex functions we sate now a stronger result. The proof is adapted from
9], p. 127.

Theorem 3.3 Any real valued and d-convex function, defined on a elenientary circuit

52

DIVIDED DIFFERENCES AND CONVEX FUNCTIONS

C is constant.

Proof. We consider the d-convex function f.C—R, where CCN is a elementary circuit.
We want to prove that f(x)=f(y) holds for any pair x,yEC. It is easy to see that there exist the
points z,, ... , 2EC (na$5) satifying the conditions:

1. €<z,,,%,,,>,, 1=2,....n, where z,,,=z,,

2. z;=x and 3kE(2,...,n} such that z,=y.

Assume f reach the maximum value on the set {z,,...,2,} in z,. Since f is d-convex we

have:

d(z,.,.z,) d(z, ,.z)
A d(zp-vzm)f(z’_l) dz .. m;f(o) = '

. 0t
d(z o rl) d(z

9y 12 o) = tiz,),

p—l’zp*l)

which leds us to f{z,)=f{(z,,)=z,.,). Repeated application of this reasoning enable us
to write f(z,)=.. =f(z,), and thus f{x)=fly).

Since x and y was arbitrarily chosen we conclude that f is constant on C.

Definition 3.5 We call the elementary circuits C,,C,CN adjacent if C,NC,wJ.

Corollary 3.3 Any d-convex function defined on the connected set ACN is constant
on the union of all adjacent circuits in A.

Proof. This corollary is the direct consequence of theorem 3.3 and definition 3.5.0

We mention now some elementary properties of functions of order n.

Theorem 3.4

1. Given the real number >0 and two real functions convex (notconcave, polynomial,

53

ME. IACOB

notconvex, concave) of order n f,g defined on ACN, then f+g and af are also convex
(notconcave, polynomial, notconvex ,concave) of order n.
2. The limit of a punctualy convergent sequence of canvex (or notconcave) functions of order
n is notconcave of order n.
3. The limit of a punctualy convergent sequence of concave (or notconvex) functions of order
n is notconvex of order n.
4. The limit of a punctualy convergent sequence of polynomial functions of order n is also
polynomial of order n.

Proof.

1. This follows from theorem 2.2.

2. Let us consider a metric sequence x,,....X,,,&N and f;N—R, convex (or notconcave)
of order n, for each i€EN. If fFN_R, f(z) = {‘:‘: f(2) then

X, X, s f]=
5 (174 _
o d0o X)) d(xx, d(x,x,). dGxx)

w2 (-1 4im f(x,)
j—o

?-} AN O M

a+2 - +2-k
lm 5 (-1 £(x,) _
e bt d0x,X)). 0 X,)d0XX,). d(X X))

= lim [x,,..x

i~sm

n~2;fl] = 0
For 3. and 4. one can use a proof similar with that made for 2. @

The technique we use here to introduce divided differences and function of higher

order allows us to make other natural extensions to networks of some types of generalized

DIVIDED DIFFERENCES AND CONVEX FUNCTIONS

convex function, for example cvasiconvex function of order n ([5], [6]).

REFERENCES

[1] Dearing P.M., Francis R.L., Lowe T.J., Convex location problems on tree networks, Oper. Res., 24(1976),
628-634.

[2] Hooker J., Nonlinear Network Location Models, Ph.D. Thesis, Univ. of Microfilms Int., Apn Arbor, 1984.

{3] Labbé, M., Essay in network location theory, Cahiers du Centre d'étude et de Recherche Opérationelles, vol.
27, nr 1-2, 1985, pp 7-130.

[4] Popoviciu, E., Teoreme de medie din analiza matematich ¢i legiitura lor cu teoria interpoldrii, Dacia,
Cluj, 1972. .

[51 Popoviciu E., Sur une allure de quasiconvexite d'ordse superieur, Rev. d’Anal. Num. Theor.l' Approx., 1982,
11(1-2), 129-137.

[6] Popoviciu, E., Sur quelques proprictés des fonctions quasi-convéxes, Preprint nr. 2, 1983, Itinerant seminar
on functional equations approximation and convexity, Cluj-Napoca.

[7] Popoviciu, T., Introduction 4 la théorie des différences divisées, Bull. Math. de la 80oc. Roumaine de

: Science, 43, nr. 1-2, 1941,

[8] Popoviciu,T., Los fonctions convéxes, Actualités scientifiques et industrielles, 992, XVII, Paris, 1945.

[9] Soltan, V.P., Introducere in teoria axiomatici a convexitigii, Stiin{a, Chiginku, 1984,

[10] Soltan, V.P., Some properties of d-convex Functions, I ¢i H, Amer. Math. Soc. Transl., (2), vot 137, 1987,

55

STUDIA UNIV. BABE$-BOLYAL MATHEMATICA, XXXIX, 3, 1994

DETECTING DEADLOCKS IN MULTITHREADED APPLICATIONS

Simona Daniela TURIAN®

Received: February 8, 1995
AMS subjact classification: 68003, 68010, 68060, 68090

Dodicated to Professor Sever Groze on his 65* anniversary

REZUMAT. - Detectarea impasulni in aplicaiil cu mai multe fire de execujie. Este
prezentatii o modalitate de descriere a aplicatiilor cu fire de executic multiple, bazata pe retele
Petri. Folosind acest model gi rezultate din teoria retelelos Petri se di un algoritm de detoctare

a impasului intr-o astfol de aplicajie.

A threads package

We introduce a specification of a threads package, which will be referred further in

this paper for describing and analysing a multithreaded application. This package is an

extension of the 'C’ lanﬁuage and is suggested by the threads library from Windows NT (see

[3]). So, for developing multithreaded application we will use "C’ enriched with few data

types and functions, which are listed beilow.

The new data types and constants are:

typedef BYTE *PThreadID;

A handie for the thread

typedef FARPROC *PThreadFunction;

The function which cortaing the code of a thread

typedef int TCriticalRegion

Data type for a condition variable

typedef void far * TEvent

Data type for an event

The functions which are interesting for our purpose are presented bellow:

* PThreadld ThreadCreate(TThreadFunction ThreadFn)

* "Babeg-Bolyai* University, Faculty of Mathematics and Computer Science, 3400 Cluj-Napoca, Romania

S$.D. IURIAN

The call of this function try to create a new thread. The returned value is a handle for
the new thread and could be used in the future to refer it. The parameter ThreadFn
indicates the code which will be executed by the new thread.

- void EnterCriticalRegion(TCriticalRegion RC)
A thread bas to call this function if it needs to enter the critical region RC (see (2))
If the critical region RC is not available, the thread will wait for the other thread

. which executes RC to release it.

- void ReleaseCriticaiRegign(TCriticalRegion RC)

A thread call this function if it finished the execution of the critical region RC. The

critical section RC become available to another thread.

Also, it can be defined other function which permits to stop the execution of a thread,
to resume the execution of a stopped thread and for synchronize multiple threads by waiting
for the ocurrence of an event.

Writing a multithreaded application as a Petri Net

In this section we will discuss the synchronisation mechanisms and the creation and
termination primitives which were introduced until now in terms of Petri nets. The analogies
will be used to write a multithreaded application as a Petri net. The resulting Petri nets can
be used to analyse the properties of a multithreaded application.

An application with a single thread can be written as a Petri net by associating to any
instruction a transition and introducing a place between any two consecutive transitions, an
initial place before the first transition and, (if any) & final place after the last(s) transition(s)
A place define the state of the application (in fact, of the thread) and a transition represenl

an action to be taken. At the beginning is marked just the initial place of the Petni net, with

58

DETECTING DEADLOCKS

a single token. At any moment, the marked place indicate the point where the execution of
the thread is arrived.

The Petri nets can be used as an abstracting mechanism. Most of the instructions are
irrelevant for our purpose. The only interesting operations are the threads synchronisation
primitives and the control structures, if the different branches contains such synchronisation
primitive or are creating new threads. So, we will ignore the uninteresting operations: the
assignments and the calls of "C’ library functions. Varshavsky, in {5] presents a possibility
to descn"be a sequential program as a Petri Net.

We will associate to a multithreaded application a Petri net in which the places may
contain zero or a single token (this is a condition/event system, see [2] for details). Reisig,
in [2], defines the notion of invariant in a Petri net. This i8 a vector I for which M*I=0, where
M is the incidence matrix associate to the Petri net. It i1s shown that, for each case C of the
Petri net and for each invariant I, the scalar product C*I is constant.

In order to write a multithreaded application as a Petri Net we need to define the
configurations of transitions/places which corresponds to thread control primitives and have
to be added to those described in [5].

ThreadCreate

In terms of Petri Nets, a thread can be viewed as a linear sequence of places and
transitions. Each thread has a start place. The start place of the main thread will be marked.
The start place of the others threads will be initially not marked.

If a thread creates a new thread, it will be created a new execution sequence
corresponding to the newly created thread. This situation is depicted in figure 1a. If a thread
executes the function ThreadCreate, the first place of the new iLicad nnd the next place of the

39

DETECTING DEADLOCKS

TCriticalRegion rcl, rc2;

main()
{
int Thread2ID=ThreadCreate{Thread2);
while (1)
{
EnterCriticalRegion(rcl);
EnterCriticalRegion(rc2);

ReleaseCriticalRegion(rc2);
ReleaseCriticalRegion(rcl);
// do something;

}
}
int Thread2()
while (1)
{
EnterCriticalRegion(rc2);
EnterCriticalRegion(rc1);
ReleaseCriticalRegion(rcl),
ReleaseCriticalRegion(rc2);
// do something;
}
}

It is obvious that there is a situation which represents a deadlock: when the main
thread enter the critical region rcl, and the second thread enter the critical region rc2 at the
same time. Then, the main thread wants to enter the critical region rc2, which 18 owned by
the second thread. Also, the second thread waits for the releasing of the critical region rcl
which is blocked because of the main thread, and so on.

Generally, the deadlock is not as easy to detect. For detecting deadlocks there are two
strategies: the posthumous way and the use of the invariants. The posthumous way consist of
describing the application and executing it until it seems to be appeared a deadlock. After
this, the problem is solved and the method is reitered.

In order to present the invariants method we will rewrite the previous example.

61

S.D. IURIAN

int Thread2()
while (1)
{
EnterCritical Region(rcl);
EnterCriticalRegion(rc2);
ReleaseCriticalRegion(rc2),
ReleaseCriticalRegion(rcl);
/f do something;
}
}

Now, it is "obvious” that there could not appear a deadlock. For showing that we will

enuncigte a few evident propositions related to the flow control in the new application:

I

The catical region rcl is either free or is accesed by Threadl, or is accesed by
Thread2 (it follows from the definition of a critical region).

If the critical region rcl is free, then Threadl and Thread2 are executing the code
from the beginning of the corresponding loop.

If the critical region rcl is accesed by Threadl (respectively Thread2), then Thread2
(respectively Threadl) is executing the code from the beginning of his while
instruction, or is waiting for releasing the critical region rcl.

The critical region rc2 can be requested only after the critical region rcl is accesed.
If the critical region rc2 is accesed by a thread, then this thread execute something
between EnterCriticalRegion(rc2) and ReleaseCriticalRegion(rc2), and the other thread
execute the code from the beginning of his while instruction or is waiting for the
releasing of the critical region rcl.

These propositions are named invariants, because they are true at any moment of the

application’s execution. In a deadlock situation (from the definition), a thread A is suspended

waiting the releasing of a critical region RC which is accessed by the thread B (A=B). The

62

DETECTING DEADLOCKS

thread B must be waiting for the releasing of the critical region RC’ (RC’=RC) by the thread

A. But the two threads cannot be simultaneously in a critical region (it follows from the

above propositions), so a deadlock cannot appear.

To show formally that a multithreaded application is deadlock-froc we may use the

next algorithm;

1.

2

Writing the multithreaded application as a Petri net.
Computing the Petri net invariants.
Qenoming all possible cases for the Petri net.
For each generated case:
Verifying if the case can be obtained from the initial case
If so, verifying if it represents a deadiock situation
If so, trying if that case verify the invariants. If all invariants are verified, then
it is possible to appesr a deadlock situation. If there is at least an invariant
which is not verified by the case, then the multithreaded application cannot
lead to the localised deadiock.
If there is at least a case, representing a deadiock, which can be obtained from the
initinl case and is verifying the application invariants, then there is possible to appear
a deadlock in the execution of the application. If there is not such a case, then the
application cannot lead to & deadlock situation.
For our example, the above steps are detailed further.

The Petri net for our initial application is depicted in figure 2.

63

DETECTING DEADLOCKS

No. | p pll p12 pI3 pl4 rel w2 p21 p22 p23 p23
1 1 1t 1 1 1t o0 o0 o0 o 0 o0
2 1 0o o0 -1 o0 - o 1 0 o0
3 (-1 1 0o o o 06 1 0 o0 1 0
4 i1 1 0 1 e 1 4 0o 1 @ 1

The 11 columns represents the 11 places. The meaning of an invariant is that the
sum of the tokens from the corresponding places, multiplied by the number, is constant. In
other words:

ptpll+pl2+pl3+pl4 = constant

p+p21-p13-rcl = constant

-ptrc2+p23-pl1 = constant

p+pll+pli+rol-rc2+p22+p24 = constant

By taking into account the initial case for the Petri net (that shown in figure 3) we
can compute the real value of the constants from the above relations. So, because in the
initial case, p=1, rcl=1, ro2=1 and the others places have no tokens (for those, the value is
0) we obtain the following relations:

ptpll+pl2+pl13+pld = |

ptp2i-pl3-rcl = 0

-ptre2+p23-pll = 0

prpl1+pl3+rel-re2+p22+p24 = |

A case which represent a deadlock is <p12, p22>. For showing this we can
construct the resource allocation graph (ses [4]) and finding a cycle in this. For that case,
it is very easy to see that the invariants are satisfied. Unfortunately, the verification of the
invariants is 8 condition necessary but not sufficient for a case to be attained by starting
from the initial case.

We can conclude that in our application it may occurs this deadlock.

65

bollt S ol o

$.D. IURIAN

REFERENCES

Krishnasmurty, E.V., "Parallel Processing. Principles and Practice”, Addison-Wesley Publishing
Company, 1989

Reisig, W., "Petri Nets. An Introduction”, Springer-Verlag, Berlin, 1985.

Richier, 1., "Advanced Windows NT*, Microsoft Press, 1994,

Tanncshaum, A., "Modern Operating Systems”, Prontice-Hall, 1992

Varchaveky, V., “Seif-Timed Control of Concurrent Processes”, Kluwer Academic Publishers, 1990.

STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXXIX, 3, 1994

A STUDY OF THE PROPERTIES
OF THE FUZZY RELAXATION ALGORITHM

Horia F. POP’

Dedicated to Professor S8ever Groze on his 63* anniversary

Received: February 1, 1995
AMS subject classification: 68P99

REZUMAT. - Un studiu ssupra proprictitiior Algoritmului de Relaxare Fuszy. Ung
dintre problemele cele mai dificile ale instruirli supervizate este tratarea datelor neseparabile
liniar, Problema a fost doar partial rezolvatii prin utilizarea algoritmilor de instruire nuantath.
Una din posibilitijile de abordare a problemei cste gencralizarea pentru cazul nescparabil 8
unor tchaici de instruire nuan{atii care functioncazit bine in cazul separabil. In cele ce
urmeazit vom studia prorietitile Algoritmului de Relaxare Nuanata {1,2). Acesta permite o
generalizare favorabild datelor neseparabile liniar.

1. Introduction

In [1,2] it has been proposed a new training method that ailows the use of fuzzy sets in
order to develop the training. Based on this method a series of algorithms representing

generalizations of some well known classical algorithms have been given.

There have also been proposed robust variants of the fuzzy training algorithm. These
robuat algorithms are capable of learning a training set consisting of two fuzzy linearly
non-separable classes.

In this paper we study the fuzzy relaxation algorithm proposed in [2]). We approach here
the convergence of the algorithm for the case when the constant b from this algorithm is a

certain real number.

* "Babeg-Bolyai” University, Faculty of Mathemuatics and Computer Science, 3400 Cluj-Napoca, Romania

HF. POP

By this modification the fuzzy relaxation algonithm becomes capable of separating two
fuzzy linearly non-separable classes.

2. The Fuzsy Relaxation Algorithm

Let X = (x',..,x"}, x) € R’ a data sot and {A,,A,} & fuzzy binary partition on X. We will
consider the vectors y', obtained from x' by adding a (s+1)-th component equal to 1.

We consider the sign normalization {2]

y i A0S,

-y if 4,(»>05.
We will denote by Z the set of normalized vectors and will consider A, and A, as fuzzy
sets on Z.

zZ =™

The Fuzzy Relaxation Algoritm [1,2] produces (in certain jiven conditions) a unitary
separstion vector v satisfying
vizab>0,)

where b is a real positive number.

The correction rule used by the sigorithm is (see [2))

b-vMzh

o viec(A(s "))’—-W—l kif A(z*>0.5 and v¥zteb, 0
vt otherwise.
Instead of using the separation condition (1), as it appears in [2], we will use here a
slightly different separation condition, namely:
vizabbER ()
As we will see in the next section, the separation condition (1°) allows the algorithm to
work in the non-separable case. '

68

A STUDY OF THE PROPERTIES

3. Study of the properties of this algorithm

Firstly, let us introduce some important notations:
EvA)=min{ v 2|2EZ)
E(A) =sup (E(v,A){IMl=1, vER") 3)
V) ={viiV=1,Vz>bVIEZ)
The following theorem shows a link between E(A) and the linear soparability of the fuzzy
sets A and A:

Theorem 1. Let X be a data set and A a fuzxy set on X. The following statements are
oquivalent:

) E(A) >0,

(i) A and A are lincarly separablo fuzzy sets.

Proof. For the first part of the proof, let us see that E(A)>0 implies that thero exists a
certain v so that E(v, A) > 0. Let us denote the quantity E(v, A) by b. From the definitions
(3) we may deduce that vz a b > 0 for all z € Z, and from here, the linear separability
of A and A.

Conversely, if A and A are linear separabls, thon there exists a vector v so that v¥ z > 0
for all z € Z. Let us denots

Vvl
Thus, we have that E(v’, A) > 0, and from here it ocours that E(A) > 0. OJ

The following theorem shows a condition for the existence of the set V'(b) of solution
vectors:

Theorem 2. Let X be a data set, A a fuzzy set on X and b a real number. The following
statements are equivalent:

(i) b = E(A),

(i) V') = 2.

H.F. POP

Proof. For the first part of the proof let us suppose that b=E(A). It implies that for all the
unitary vectors v, E(v,A)sb. Thus, for each unitary vector v, there exists at least a zEZ
such that v'zsb, and from here we deduce that V'(b)=0.

Conversely, let us consider the unitary vector v as fixed. Thus, there exists at leastaz€
Z such that v’ z < b, and from here we have that E(v, A) = b. As the vector v was
previously considered fixed, this propriety is valid for all the unitary vectors v. Thus, we
canclude that E(A) s b. []

The following proposition gives a few properties of the se V'(b):

Propesition. Let X be a data set, A a fuzzy set on X and b a real number. The following
statements are valid (Int V denotes the interior part of the set V, and Fr V denotes the
border of the set V)

OIVE)={viivi=1,Vzvz>b}=V0)

@FVE)={vilvi=1,Vz vizaband 3z vi z=b}.

Preof. (i) Let us consider the family of sets
M={v|ivi=1,viz>b},z€Z
Thus it is clear that
Vi)=N (M, |z€E€Z)
But, M, is an open set, and thus, V'(b), being a finite intersection of open sets, is an open
set.
(ii) Let us denote
M=(viivi=1,Vz vizabandIz:viz=0b}.

Let us consider a v' in M. So, we may split the set Z into Z, and Z, so that

VYz>b VzEZ
and

&Yz=b VzeEZ,

70

A STUDY OF THE PROPERTIES

Let us chose an e so that the sphere S(v", 8) verifies the property
YveES(V,e), ¥VzEZ,vz>b 4)
Due to the first part of this proposition, such an - does certainly exist.

The hyperplanes (v')' z = b for z € Z, split the sphere into a finite number of distinct
regions. Important for us atc‘only two of these regions, let us denote them R, and R,, that
verify

YVvER,YzEZ,viz>b %)
and

VVER, YVzEZ, viz<b (6)
From the relations (4), (5) and (6) it is clear that every v in R, is inside V'(b) and every v
in R, is outside V'(b), and that proves that M = Fr V'{b). This concludes the proof. {1

From this proposition we may deduce the following

(forolary. Let X bs a data set, A a fuzzy set on X and b a real number. The following
equivalences are valid:

() vE Int V'(b) e E(v, A) > b,

(i) vEFr V') e E(v, A) = b.

Proof, Is very easy as is based on the definition of E(v, A) and the Proposition above. O
Let us denote by R(b) the separation vector produced by the Fuzzy Relaxation Algorithm
(as modified in this paper) under the condition v' z > b, when this separation vector does
exist.

The following theorem presents & convergence condition of the sequence (V") prodced by

the Fuzzy Relaxation Algorithm. It represents a generalization of the convergence theorem

given in {4]:

71

HF. POP

Theorem 3. Lot X be a data set, A a fuzzy set on X and b and ¢ two real numbers. Let
(v*) be the ssquence of the vectors produced by the Fuzzy Relaxation Algorithm under the
condition v¥ z > b. If 0<c<2 and b<E(A), then the sequence (V") is convergent.

The proof of the convergencs theorem as it has been stated in [3,4] is applicable even for
the supplemsentary conditions imposed 1o b. Moreover, the proof of the theorem from [34]
is based, evon if not clearly apecified, on a condition similar with b < E(A).

Theorem 4, On-the notation from the Theorem 3, if b < E(A) and the sequence (v*) is,
finite, then E(R(b), A) > b. '

Proof. Since (v*) is finite, there exists a certain N » 1 such that for all the i's withi a N,
v=v". S0, V=v*l= =R(b), and that implies (R(b))* 2' > b for every i, and thus
R(b)EV'(b). Finally, we have that ER(b), A) > b, and that concludes the proof. O

Theorem 5. On the notations from the Theorem 3, if b < E(A), 0<c<2 and the sequence
(v*) is infinite, then E(R(b), A) = b.

Proef. Let us remember that
R(®) = lim v".
We must show the following:

() for every i, R(b)" =' a b;
(ii) thore exists at loast an i such that R(b)" £ = b.

For the first part, et us consider the correction rule (2). Since R(b) is the limit of the
sequence (V"), it results that the correction rule do not modifies its value. So, we have the
cases:

(a) There exists a certain i such that R(b)" z' = b. It results that

72

A STUDY OF THE PROPERTIES

R(b) = RY) + c((Afe '))'.".:i"i‘%’_‘_'z
: !

where A(z') > 0.5, and, from here,
c-RO)'2)=0
and, finally,
RBY 2 =b.
(b) For the rest of the i's, we have that R(b)' Z' > b, and the correction rule lets R(b)
urmodified.

So, for all the i's R®) 2 a b.

For the second part, if we had R(b)T ' > b for all thei’s, we would have that R(b)" ¢ €
Int V'(®) = V'(b). Since every vicinity of R(b) contains at least an element v of the
sequence (V*), it results that there exists a v € V'(b). Thus, v is a stop point and (V') is &
finite sequence, and that contradicts the hypothesis.

Finally, we have that R(b) € Fr V'(b) and that E(R(b), A) = b. That concludes the proof. O

3. Concluding remarks

It is certainly interesting to study what happens in the case b » E(A). Even if we haven’t
proved yet, the experience enables us to consider the following

Conjecture. On the notations from the Theorem 3, if b = E(A) the sequence (v*) is
convergent and E(R(b), A) = E(A).

Let us notice that we did not introduce any restriction with respect to b > 0. Consequently,
the theorems presented above are valid for the case b < 0, with the single condition that b
< E(A). So, we may assure the output of a ‘separation’ hyperplane for the case of linear
non-separability, i.e. when b < E(A) < 0. This is a remarkable property of the Fuzzy

73

H.F. POP

Relaxation Algorithm.

Other interesting problem is whether there exists a modality to compute directly E(A) and
whether there exists a certain v such that E(v,A) = E(A). Thus, the Fuzzy Relaxation
Algorithm would be able to produce the optimal separation hyperplane with respect to
E(A).

REFERENCES

i D. Dumisscscu. A fuzzy training slgorithm. Studia Univemsitati- "Babey-Bolyai”, Ser. Math. 35,
(1990), -12.

2 D. Wp. Fuzzy teining procedures, |. Fuzzy Sets and Systems 56 (1993), 155--169.

3. D. Dumsitroscu. Principiile matematioe ale teoriel clasificdsii, Editura Academiei Romdne, Bucureyti,
1995,

4. D. Dumitsescu. Fuzzy sois and their applications for clustering and training, to appear.

s D. Dumitoscu, Horla F. Pop. Convex decomposition of fuzzy pastitions, 1,I1. Fuzzy Sets and
Systoms (1993). 10 appoer.

6. 1. Siansky, and G. N. Waseel. Pattern Classificrs and Trainable Machines. Springer Verlag, New
York, 1981

STUDIA UNIV. BABE§-BOLYAI, MATHEMATICA, XXXIX, 3, 1994

LOGICAL GRAMMARS AND UNFOLD TRANSFORMATION
OF LOGIC PROGRAMS

Doina TATAR’

Dedicated to Professor Sever Groze on his 65* anniversary

Receivad: June 28, 1994
AMS subject classification: 6850, 68033, 68127

REZUMAT. - Gramatiel logics ol transformiri “unfold” ale programelor logice. In
articol este utilizatd nofiunca anterior definith tn [12] do "gramatich logicll” peotru a
demonstra faptul ck transformiirile "unfold" ale programelor logice conduc la programe cae
sunt echivalente cu cele originale.

Abstract. The previously defined notion of "logical grammar” [12] is utilized to
demonstrate that unfold transformations of logic programs produce programs which are
equivalent to the original one.

1. Introduction. The two principal papers which we are based in this note are."
Logical grammars as a tool for studying logic progremming” {12] (where we propose a
new semantic for operational behavior of logic programs, which is based on the
framework of formal languages), and "Unfold /fold transformations of logic programs” by
J.C.Shepherdson [10]. In a way, this paper is the first certificate (besides those from [12])
that this new approach for semantic of logic programs is better matching for some
connected discussions.

We start by looking at the unfold transformations : the origin of those goes back to
Burstall and Darlington,who introduced them in the context of recursive programs. In [10]
the definition of unfolding for a logic program is:

* “Babeg-Bolyai" University, Faculty of Mathematics and Computer Science, 3400 Cluj-Napoca, Romania

D. TATAR

Definition 1.1 Let P be a logic program and
C:Asp@1),8

be a clause of program P (where t stands for a tuple of terms) and
D, : p(t,) « §,

D, : p(t) + §,
bo all the clauses of P whose heads p(t,),....p(t,) unify with p(t) with mgu
8,,...,8,. Then the result of unfolding C w.r.t. p(t) is the program P’ obtained by replacing
C by the r clauses

C,: A9, « 50,586,

C,: A8, « 58,50,
Here A is an atom, p is a symbol of predicate and 8 is the rest of a clause.
In [8] is obtained the resuls:
Theorem If P’ is the logic program obtained from P by unfolding, then a goal G success
with the answer substitution 6 from P’ iff the goal G success with the answer substitution
0 from P.
In the noxt section we will present the logical grammars [12] and will
prove that the unfold transformation preserve the meaning introduced by those.

2. Legical grammars The language considered here is essentially that of first-order
predicate logic without function symbols. Let:

» P be a set of predicates.

* C be a set of constants.

¢ V be a set of variables.
An atom over C U V is of the form

p(u,,...u), n=0

where p € P with arity n, and each u;is an element of SC U V.

If the arguments u, are not interesting in a particular context, then we will denote

an atom simply by p. Let A be the set of atoms over C U V, and, if

76

LOGICAL GRAMMARS AND UNFOLD TRANSFORMATIONS

P’C P, let A, be the set of atoms with predicate symbols from P’. In some recent papers
[13], the set of predicates is considered as divided into two disjoint sets:the set EDB of
extensional predicates (or extensional databases predicate) which represent basic "facts,”
and the set IDB(of intensional! databases predicates) representing facts deduced from the
basic facts via the logic program. Particularly ,the set EDB can be the empty set (as,for
simplicity,in most of the following demonstrations).

Deflinition 2.1 A logic program P is & sequence of Horn clauses, that is,
clauses of the form:
P GG
where p'and q,,...,q, are atomic formulas in first-order logic, the comma is the logic

operation "and”, and the sign « is "if" or reverse of the logical implication.

We refer to the left (p) and right-hand side (q,,...,q,) of a clause as its head and body. A
clause is logically interpreted as the universal closure of the implication qa..Aq, —= p. If a
clause has no right-hand side we will call it a fact or a unit clause. Lot us observe that this
definition considers only the class of positive logic programs (all stoms in afl clauses are
positive).

From the properties of IDB and EDB predicates it follows that a predicate from the set
EDB cannot occur in the head of clauses, but a predicate from the set IDB can ocour in
the set of facts.

Definition 2.2 A goal G consists of a conjunction of atoms, such that a successfully
terminating computation corresponds to a demonstration of this goal by refutation (SLD-
refutation), and is denoted by:

-« fpnly
Over the course of time, we may want to "apply” the same IDB for many quite different
EDB’s. In this context, and because IDB is the "core” of logic program, the properties of
the IDB merit careful study. Recent papers have addressed the problems of studying and
optimizing logic programs from various points of view. ([2], {3], [4]). In {12] our tool is

D. TATAR

the logical grammars:

Definition 3.3 The logical grammar GL associated with a logic program P and the goal G
is the system:
GL = ([N'IT»XG’F)

where:

o Iy = Agg U {X,) is the set of nonterminals.
» I = Ajpp U (A} U {False,True} is the set of terminals.
* X, = is the goal G.
» F is a finite set of production rule, of the form:
)p—q.q.mal
where p € IDB and p +- q,,....q,, is 8 clause in the program P.
or
byp— A
where p is a unit clause in the program P
We assume in the following that substitutions, composition of substitutions, and
the most general unifier o = mgu(g,h) of atoms g and h are defined as in logic
programming. ({1}, (2], 3).
For a logic grammar GL we define the rewriting relation " => " as follows:

Deflnition 24 fFRE€ A" and Q € A”, then:
a
R-GLQ

if exist an stom h € I, and a production rule in F:
g— h.h,
such that:
R = R,hR,,0 = mgu(h,g)
and

Q = oR,)o(h))...o(h,)oR,)

78

LOGICAL GRAMMARS AND UNFOLD TRANSFORMATIONS

(here the variables of the production rule are renamed to new variables, so that all the
variables in the rule do not appear in R).

Let => * denote the reflexive and transitive closure of the relation =». If 0 is the
composition of all substitutions in every direct derivation, let denote it by ® *

Definition 2.5 For a logical grammar GL = (L,,1;,X,.F), the generated language is L(GL),
where:

L(GL) = {(R,8)| X, =° *RR € A"}, 6 = 0,..6,, k is the length of derivation for R,
and 6, is the substitution in the step i} U {Q}.

We have some possibilities for the pair (R, 8):

< if X, (or the goal G) is a ground formula, (not containing the variables) then the
substitution 6 is the empty substitution, and R is True or False, depending on the fact that
G is a formula deducible or not from the set of clauses P (by refutation).

- if X, contains variables, and the computation is succesfully terminating, in the
pairs (R,0) we have R € I';, and the number of pairs represents the number of solutions. If
EDB = ¢ ,then R = A. Let denote the last situation
by R= [] ,the empty clause, like usually in logic, and let 8 be the answer substitution.

- if the program P is not terminating for the goal G, then L(GL) = {2}, where Q ¢
IDB U EDB.

For the purpose of simpler manipulation, let us denote the logical grammar GL with
the symbal initial X, by GL,, and the pairs in the logical language
L(GLy,) by the triplets (P,8,X,). Let us, furthermore suppose EDB = ¢. Then the definition
(2.5) becomes:

L(GLxo) = {([1L8.Xo)|X, =° * [} U {Q)
In [5] the "succes set " for a logic program P is defined as:

succ(P) = {G(t,,...t,]t,,....t, are terms in a standard Herbrand interpretation, then
they are grounded terms, and the goal G(t,/cdots,t) is deductible from P} or,
equivalentely,

succ(P) = {G(t,,...,t,|t,.....t, are terms in a standard Herbrand interpretation and
there exists a SLD-refutation of G(t,,....t,) from P}

79

D. TATAR

The set succ(P) is not completely adequate as operational semantics since it hides
one of the fundamental aspects of logic programming: the ability to compute substitutions
A more adequate definition is [12] the following:

succ’(P) = ((G(1,,....4).0)1,,....1,} are non-ground terms, and Gq(t,,....t,) has a SLD-
refutation with computed answer 8).

In {12} we proved the connection between the set succ’(P) and the logical
grammars.

Definition 2.6 Let U, be a nonstandard Herbrand interpretation (which admits non-ground
terms). We denote by 1., and we will call them the total la. uage of a logical program P,
the following language:

L, =U,. LGL,)

Conformally with the previously definitions,

L, = {(([1.8,3)|G is an arbitrary gosl, G =** [}} U {(Q,G)| P is cycling for the goal G}
U {(False,G)|G has not a SLD-rofutation from P}. In {12] -ve demonstrated that this
language L, represents a sound and complete semantic for P

Lema If G =° G’ and (G’,0) € succ’(P) then (G,08) € succ’(P).

Theorem (of soundness) Let P be a logic program and G a goal. If ({},6,G) € L, then
(G,8) € succ’(P).

Theorem (of completeness) Let P be a logic program and G a goal. If (G,8) € succ’(P),
then ((J0.) E L, .

For a logic program P let denote by GL, the associated logic grammar like in definition
2.5).

We can define two kinds of equivaience of the logic programs:

Definition Two logic programs P, and P, are strong equivalent if VX, we have L(GL,)=
L(GL},) (or, in the formal languages terminology, if GL,, and GL,, are equivalent for
every goal X,).

80

LOGICAL GRAMMARS AND UNFOLD TRANSFORMATIONS

The equivalence of two programs in the following is the strong equivalence,
therefore the equivalence for same goal.
Definition. Two logic programs P, and P, are equivalent if Ly, = Ly, where L,
is defined like in definition 2.6.

The consequence of the introduced notion is the possibility of the definition for
some transformations about loglc programs, such that the obtained programs are equivalent
with the initial programs,

The main result of this section is the following theorem;

Theorem If P’ is a logic program obtained from P by unfolding, then P and P’ are strong
equivalent.
Proof It is enough to prove that, if’

QRE A", , Q =g *R

(4

then
Q -, * R
where GL, and GL,, are the logic grammars associated with the programs P and P’. Let
observe that ,in accordance with the definition 1.1 and 2.3, in GL, there exist the
production rules:
1. A~ p(1)S
2. p(y) — 8,

p(t) — S,
and in GL, these became

3. A8, — $,8,86,

A8, - §.0,50,
Also, conformaly with definition 2.4, if Q =»4,, * R where a rule 1 followed by 2
is utilized, then Q =», . R by a single rule 3. The grammar GL, has the same generative

power like GL ., thus P and P’ are strong equivalent.

D. TATAR

REFERENCES

1. KR Apt, M.H.van Emden: "Contribution to the theory of logic programming”, J. of ACM, vol.29,
1982, pg.841-862.

2. KR Apt, D. Pedreschi: Studies in pure Prolog:termination, CWI Report CS-R9048, September,
1990,

3. XR. Apt, D. Pedreschi: Proving termination of gencral Prolog programs, CW1 Report CS-RY9111,
February, 1991.

4. 8.Debmy, P Mishra:"Denotational and operational semantics for PROLOG", The Journal of Logic
Programming, vol.3, ar.1, 1988, pp.33-6].

S. M Falaschi, G.Levi, M.Martclli, G Palamidessi:"Declamtive modelling of the operational behaviour of
logic languages”, Raport Univ.di Pisa, TR-10/1980.1.Guessarian: Some fixpoint techniques in
algebraic structures

6. P.A Qardner, J.C.Shepherdson:"Unfold/fold transformation of LP", Festschrift in Honour of Alan
Robinsen, Oxford University Press,London, 1990.

7. C.J. Hogger: “Derivation of Logic Programs”, Journal of ACM, April, 1981, pp. 372-393.

8. T.Przymusingki:"On tho declamtive and procedural semantics of logic programs” J.of Automated
Reasoning, vol$, 1989, pp.167-205.

9. 1. Shioya: "Logic hypergraph grammars and context-free hypergraph granunars”. Systems and
Computers, vol.21, nr.7, 1991.

10. J.C.Shepherdson:"Unfoldfold transformations of LP ", Mathem. Struct.in Computer Science(1992),
vol.2, pp.143-157.

11. D.Tatar:" Utilizarca gramaticii sintactice asociata unei scheme de recursive in studiul programelor”,
Studii ¢i cercotari matematice, nr.4, 1988, pp.337-347.

12. D.Taar:"Logical grammars as a tool for studying logic progmmming”, Studia Univ."Babes-Bolyai",
Mathematica, 1993(to appear).

13. A. van Gelder, K. A Ross, J.S.8chlipf:"The Well-Founded Semantics for General Logic Programs”,
Journal of ACM, July, 1991, pp. 620-651.

14. M.H.van Emden, R A Kowalski:"The semantics of predicate logic”, J.of ACM, oct.1976, pp.733-742,

STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXXIX, 3, 1994

LOGICAL GRAMMARS AS A TOOL FOR STUDYING LOGIC
PROGRAMMING

Doins TATAR’

Dedicated 10 Professor Sever Groze on his 65* anniversary

Received: March 11, 1995
AMS subject classification: 68050, 68033, 68T27

REZUMAY, - Gramatici logice ca instrument in studiul programiril logice. Articolul
definegte o noudl semanticl operajionald a programelor logice, semantici bazatli pe limbaje
formale §i pe interpretéiri care pot contine atomi cu argumenic variabile. Este demonstrath
corectitudinea gi completitudinea acestei semantici. In acest mod, anumite rezultate bine
cunoscute n teoria limbajelor formale pot fi utilizate in studiul programelor logice.

Abstract. The paper defines a new operational semantics for logic programs, which
is based on framework of formal languages and on interpretations containing possibly
non-ground atoms. The soundness and completness are shown to hold. Thus, some folklore

results in formal languages can be utilized for improvement of logic programs.

1. Introduction. In recent years there has been a great deal of intereat in logic
programming languages. The first step in this development was the seminal paper by van
Emden and Kowalski [14],in which they outlined declarative and operational semantics of
Hom Clause Logic (HCL) as a programming language. Apt and van Emden [1] built upon
the former work and defined the fixpoint semantic of HCL.From one point of view,any
attempt at formulating a semantic for a program P in a logic programming language (as
PROLOG) is simply closed,as programs are statements in the HCL fragment of first-order
logic. On the other hand, from a computational point of view, this semantics is not

completely adequate, as thev ignore several behavioural aspects of logic programs. These

* “Babeg-Bolyai" University, Faculty of Mathematics and Computer Science, 3400 Cluj-Napoca, Romania

D. TATAR

include issues such as termination, the answer substitution, the search strategy, etc. This is
the reason for which many authors attempt to define new semantics for logic programs:
(5], [6], [10], [13].

In this paper we propose a new semantic for operational behaviour of logic
programs, which is based on the framework of formal languages. Several direct
correspondences that can be made for transforming and optimising logic programs are
pointed out. In non-monotonic logic programming this
framework is very useful also. We think that an deeper connexion between
these two fields, apparently so different, can be to benefit by logic programming:the
formal languages(tree-languages) and the rewriting systems are very intensively studied

since many years.

2, Preliminaries.
The language considered here is essentially that of first-order predicate logic without
function symbols. Let:

* P be a set of predicates.

¢ C be a set of constants.

* V be a set of varigbles.

An atomover CU V is éf the form

p(u,,...u), n=0

where p € P with arity n, and each u; is an element of C U V.

If the arguments u, are not interesting in a particular context, then we will denote
an atom simply by p. Let A be the set of atoms over C U V, and if P’C P
let A, be the set of atoms with predicate symbols from P’. In some recent papers {7}, [9],
[13], the set of predicates is considered as divided into two disjoint sets:the set EDB of
extensional predicates (or extensional databases predicates) which represent basic "facts”,
and the set IDB(of intensional databases predicates) representing facts deduced from the
basic facts via the logic program. Particularly, the set EDB can be the empty set (as, for

simplicity, in most of the following demonstrations).

84

LOGICAL GRAMMAR AS A TOOL

Definition 2.1 A logic program P is a sequence of Horn clauses,
that is, clauses of the form:
P* Qisla
where p and q,,...,q, are atomic formulas in first-order logic, the comma is

the logic operation "and", and the sign <« is "if" or reverse of the logical implication.

We refer to the left (p) and right-hand side (q;,...,q,) of a clause as its head and body. A
clause is logically interpreted as the universal closure of the implication g, A...Aq, — p.

If a clause has no right-hand side we will cail it a fact or & unit clause. Let us observe that
this definition considers only the class of positive logic programs(all atoms in all clauses
are positive).

From the properties of IDB and EDB predicates it follows that a predicate from the set
EDB cannot occur in the head of clauses, but a predicate from the set IDB can occur in
the set of facts.

Definition 2.2 A goal G consists of a conjunction of atoms, such that a successfully
terminating computation corresponds to a demonstration of this goal by refutation (SLD-
refutation), and is denoted by:

- f,.00,
3. Logical grammars
Over time, we may want to "apply” the same IDB for many quite different
EDB’s. In this context, and because IDB is the "core" of logic program, the properties of
the IDB merit careful study. Recent papers have addressed the problems of studying and
qptimizing logic programs from various points of view. ([2], [3], {4], [7]) Our tool is the

logical grammars:

Definition 3.1 The logical grammar GL associated with a logic
program P and the goal G is the system:

GL = (Iy, I+, X,.F)
where:

83

D. TATAR

o Iy = Ape U {X,} is the set of nonterminals.
o I = Apge U (A} U {False, True} is the set of terminals.
* X, is the goal G,
« F is a finite set of production rule, of the form:
P Q.G mal
where p € IDB and p « q,,...,q,, is a clause in the program P.
or
b)p—=A
where p is a unit clause in the program P.
We assume in the following that substitutions, c..mposition of substitutions, and
the most general unifier o = mgu (g,h) of atoms g and h
are defined as in logic programming. ([1], [2], [3], [12)).
For a logic grammar GL we define the rewriting relation " =» " as follows:

Definition (3.2) If R € A" and Q € A’, then:
R=" Q
if exists an atom h € [, and 8 production rule in F:
g— h.h,
such that:
R = R,hR,,0 = mgu (h,g)
and
Q = o(R,) ofhy)...o(h,)o(R,)
(here the variables of the production rule are renamed to new variables ,s0 that all the
variables in the rule do not appear in R).
Let =» * denote the reflexive and transitive closure of the relation =+ If 6
is the composition of all substitutions in every direct derivation let denote it by

ap® *

Definition (3.3) For a logical grammar GL = (I,1;,X,,F) the generated language is
L(GL), where:

86

LOGICAL GRAMMAR AS A TOOL

L(GL) = {(R9) |X,=* *RR € 4 ‘,r , 8=20,.80, is the length of derivation for R,
and 0, is the substitution in the step i1}U {Q).
We have some possibilities for the pair (R,0):

- if X, (or the goal G) is a ground formula, (not containing the variables) then the
substitution @ is the empty substitution, and R is TRUE or FALSE, depending on
the fact that G is a formula deducible or not from the set of clauses P (by
refutation).

- if X, contains variables, and the computation is succesfully tepninnting, in the
pairs (R,0) we have R € I';, and the number of pairs represents the number of
solutions. If EDB= ¢, then R = A. Let denote the last situation by R=[], the empty
clause, like usually in logic,and let 6 the answer substitution,

- if the program P is not terminating for the goal G, then L(GL) ={Q}, where Q &
IDB U EAB.

Example
Let P be the program:
domains
lista = symbol*
predicates
m(symbol, integer, lista)
consec(symbol, symbol, lista)
clauses
consec(U,V,X):-m(U,1, X),m(V,I+1,X).
m(U,1,U.X).
m(U,I+1, V.X):.-m(U,1X).
If the goal is: G=consec (c,X,a.b.c.d.ml)
then the derivation is:
consec(c,X,a.b.c.d.nil) =" m(c La.b.c.dni)m(X,I+1,a.b.c.dni)="""" m(c I, b.c.d.nil)
m(X,I’+2,a.b.c.d.nil)=sP" 11 m(C,I",c.d.nil)m(X,1"+3,8.b.c.d.nil)=*"""D

m(X,4,2b.c.dni)=>">* m(X3b.c. dnil)=>** m(X,2,c.dnil) = m(X,1,d.nil)=s""*,

87

D. TATAR

The substitution in variable X only is:
6 =0,8,.6, =(X/d)
and the pair ([1,8) € L(GL).

4. Remarks about soudness and completness of logical grammars

For the purpose of simpler manipulation , let us denote

the logical grammar GL with the symbol initial X, by GL, and the pairs in the logica
language L(GLA;.) by the triplets (P,8, X,). Let us, furthermore suppose EDB=¢. Then, the
definition (3.3) becomes :

LGLy) =~ {(11.6,.1) | X =°«[}} U {3}

In [6] the "success set " for a logic program p is defined as:
succ(P) = {G(t,,....t,|t,,....t, are terms in a standard Herbrand interpretation, the.. they are
grounded terms, and the goal G(t,,....1,) is deductible from P}
or, equivalently,
suce(P) = {G(t,,....t)It,,....t, are terms in a standard Her“rand interpretation and there
exists a SLD-refutation of G(t,,...,t,) from P}
The set succ(P) is not completely adequate as operational semantica since it hides one
fundamental aspect of logic programming: the ability to compute substitutions. A more
adequate definition should be the following:
succ’(P) = {(G(t,,...t,)0)|t,,....t, are non-ground terms, and Gq(t,,...,t,) has a SLD-
refutation with computed answer 8},
Let us remark that in [6] two other models (8-model and C-modet) are introduced
by permitting that t,,....t, are not necessanly ground terms.
In the sequel we will see the connexion between the set succ’(P)and the logical

grammars introduced in paragraph 3.

Definition 4.1 Let U’ be a nonstandard Herbrand interpretation (which admits non-ground
terms). We denote by L, and we will call them the total languaée of a logical program P,

the following language:

88

LOGICAL GRAMMAR AS A TOOL

L, =V, LGL)

Conformally with the previous definitions,
L,={([).8.G)|G is an arbitrary goal, G =° * []JU{(Q,G)|P is cycling for the goal G} U
{(False,G)|G has not a SLD-refutation from P}. Let prove that this language L,

represents a sound and complete semantic for P.

Lema 4.2
If G=" G’ and (G’,0) € succ’(P) then (G,08) € succ’(P).
Demonstration
We denote shortly for (G',8) € succ’(P) by P — G’6, where " — " is logical
implication and G’0 is the conjunction of atoms of the goal G'8.
Suppose G ='A,,.. A, A, and
G'= A0, ,A,, 0B, 0,.B_0, A, 0, A, such that the rule
A —B,.. B, was applied in the rewriting G = G’, with o =mgu(A,,A).
By logical means of applied rule results that B, A..AB, = A
and by syllogism we have sequently :
P — G0, and G'0 — A 00A..AA, ,08AA00A..AA, 00
Results that P — Gof), such that (G,08) € succ’(P).

Theorem 4.3 (of soundness)

Let P be a logic program and G a goal. If ([1.8,G) € L, then (G,0)€ succ’(P).
Demonstration Let G = A,,.. A, and assume that ([1,0,G) € L,
We prove by induction on the length n of deduction of ([],8,G) that (G,0)€ succ’(P). If
n=1 then exists a unit clause A, in P such that A, =*'[].
Then (8,,A,) € succ’(P).
Let G =* * [] be a deduction of length n. Then it can be detailed as:

G =" G, =" .. =" [}

or

D. TATAR

G =" G=Y »]
where G, =" * [], 8" = ,..8, is a deduction of length n-1.
Suppose that G = A, A,,.. A,
and G, = A,0,..A,0, B,o,..BUA,,0, A,
where 0 = mgu(A,,A), A « B,,.. B_ is a clause in P. (That means
G =°G,, 6, =0).
By induction hypothesis and, on the other hand, from G =* G, and lema (4.2) we obtain
(G,0,,8°) = (G,8) € succ’(P).

Theorem 4.4 (of completeness)
Let P be a logic program and G a goal. If (G,8) € succ’(P), then
{18, €L,

Demonstration By induction on the length of a logical implication of GO from P.

8. Applications
For a logic program P let denote by GL, the associ~*ed logic grammar like in
definition (3.3).

We can define two kinds of equivalence of the logic programs:

Definition (8.1) Two logic programs P, and P, are strong equivalent if ¥X, we have
L(GL,,‘) - L(GL,‘) {or, in the formal languages terminology, if GL,,| and

GL,,. are equivalent for every goal X,).

The equivalence of two programs in the following is the strong equivalence, therefore the

equivalence for same goals.

Definition 5.2 Two logic programs P, and P, are equivalent if I‘n = LP,
where L, is defined like in definition 4.1.

The consequence of the introduced notion is the possibility of the definition for some
transformations about logic programs, such that the obtained progfams are equivalent with

the initial programs.

90

LOGICAL GRAMMAR AS A TOOL

Definition 5.3 [11]. A logic program P is said to be "constant-free”, if the atom
in left side of each clause contains no constants.

Theorem 5.4 Every logic program P can be transformed into an
equivalent "constant-free" program P', if the below procedure C is not failing.
Proof: Let observe that a program P is "constant-free” if associated
logic grammar GL, is such that in every production rule, the atom in left
side (a nonterminal atom) contains no constants. We will apply the following procedure C,
while remains a production rule with an atom containing constants in his left side.
Procedure C: Let a = x; be a constant contained in the nonterminal atom
p(x,,...x,) in one of his occurs in left side of a production rule.
Rule C1. Replay every production rule of the form:
p(¥s-Ya) — hy by
such that y, = a by a new production nile
' Pia0is-¥51 » Yipuseons¥) = Ofhy)..o(hy)
where o =[(y/a)}]. or o = mgu (y,a)
Let observe that we can have, in another rule with nonterminal p in left side, the
case y, = b and b is not a. Rule C1 introduces in this case the new nonterminal p;,
O1--¥ 1Y pi- Yy Then, the rule C1 cannot introduce a failing situation for the procedure
C.
Rule C2. Replay every production rule of the form:

q = L. p(yi ¥ A
by a new production rule:

o(q) =* o(L,)...0(P (Y1 ¥ 1Y p1s oY))
where o = mgu(a,y), if o does exists. Unlike rule C1, if yj=b and b is
not a, then o does not exist and procedure C fails. Theorem $.4 results by induction on
the length of a successful derivation. It is enough to prove that, if’
QREA"),, Q= +GLR
then
Q =GL, *R’

D. TATAR

where P’ is the logic program obtained by successfully application of
procedure C ,and Q',R’ are obtained from Q and R by replacing & non constant-free
predicates p by their corresponding predicate (p;,).
If the length is 1,then Q' = * GL, R’ is true, by once application of rule
C,orC,
Suppose that, for every derivation of length n, we have implication
verified. Let Q -v’a' R be a derivation of length n+1, and let point out
the last step
Q =, T=R

By induction hypothesis, we have Q' =, T LT =>q, R by utilising
a rule $ C, containing the non constant -free predicate p in left hand-side ,then T = TppT,
and R = T}h,..h,T,. By induction hypothesis T' = T',p,) T",,
where T°, and T’, are corresponding to T, and T,. Then:
'p T, = T oh).ah)T’,
and R’ = T",0(h,)..o(h)T’, is corresponding to R .
T o, R by utilizing a rule of the form C,, then T = . qT,,
R=T\,..p(¥,-.-¥o)-- 1. 15 By induction hypothesis T’ = T°,0(q)T’, and thus

Another syntactical improvement of a logical program is the elimination of the
predicates that have the equal arguments.

Definition 8.8 [11] An atom is "loop-free" if all the arguments are

different. A production rule is "loop-free" if the nonterminal atom in the left hand side of
this production rule is "loop-free". A logic grammar is "loop-free” if ail his production
rules are "loop-free”. A logic program P is "loop-free" if GL, is “loop-free". Fortunately, 1
similar with (5.4) theorem can be proved by induction:

Theorem 5.6 Every logic program P can be transformed into an

equivalent "loop-free" program P’

92

LOGICAL GRAMMAR AS A TOOL

Also, in a logic grammar, as well as in context-free grammars, we can remove

useless predicates, without affecting the generated language.

Definition 5.7 [12] A nonterminal atom p is productive if exists a
derivation |
P=*Q Q€4
A nonterminal atom p is deductible if exists a derivation:
X,=«P, PEA,,,

such that P contains p.
A logic grammar GL is reduced if every nonterminat atom is deductible and
productive. A logic program P is reduced if the associated logic grammar GL is reduced.

Theorem 4.8 Every logic program P can be transformed into an equivalent

reduced program P’

Proof: By application of the algorithms for obtaining a reduced context-free grammar, to
the logic grammar GL,.

REFERENCKS

i. KR. AptM.H.van Emden : "Contribution to the theory of logic programming * J. of ACM,
vol.29,1982, pg.841-862.

2. KR Apt, D. Pedreschi: Studies in pure Prolog:termination, CWI Report CS-R9048, September,
1990,

3. KR. Apt, D. Pedreschi: Proving termination of genoral Prolog programs, CW1 Report C8-R9111,
February, 1991.

4, S.Debmy, D.Waren: "Functional Computation in Logic Programs", ACM Transaction, vol.11, 1989,
pg.451-481.

5. 8.Dcbray,P.Mishra:"Denotational and operational semantics for PROLOG", The Journal of Logic
Programming, vol.5, nr.1, 1988, pp.33-61.

6. M. Falaschi, G.Levi, M. Martelli, G.Palamidessi: "Declarative modelling of the operational behaviour
of logic languages" report Univ.di Pisa, TR-10/1980.1. Guessarian: Some fixpoint techniques in
algebraic structures

7. H. Gaifman, H Mairson,Y.Sagiv.M.Y.Vardi:" Undecidable Optimization Problems for Database
Logic Programs", Journal of ACM, July, 1993, pp. 683-714.

8. C.J. Hogger: "Derivation of Logic Programs”, Journal of ACM, April, 1981, pp. 372-393.

93

D. TATAR

9. J.Minker:"Perspective in deductive databases” J.of Logic Programming, vol.5, 1988, pp.33-61.

10. T.Przymusinski:"On the declarative and procedural semantics of logic programs” J. of Automated
Reasoning, vol3, 1989, pp.167-205.

11. 1. Shioya: "Logic hypergraph grammars and context-free hypergraph grammars”, Systems and
Computers, vol.22, n..7, 1991

12. D.Tatar:* Utilizarea gramaticii sintactice asociata unci scheme de recursie, in siudiul programelor”,
Studii si cercetari matematice, nr.4,
1988, pp. 337-347.

13. A. van Gelder, K. A Ross, J.S.Schlipf.."The Well-Founded Semantics for General Logic Prograns”,
Journal of ACM, July, 1991, pp. 620-651.

14. M.H.van Emden, R.A Kowalski,"The semantics of predicate logic”, J. of ACM, oct. 1976, pp.
733-742.

STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXXIX, 3, 1994

MODELLING DISTRIBUTED EXECUTION
IN THE PRESENCE OF FAILURES

Alexandru VANCEA®

Dedicated 10 Professor Sever Groze on his 65* anniversary

Received: February 10, 1995
AMS subject classification: 68010, 65Y05

REZUMAT. - Modelarea exccutiel distribuite in prezenta cliderilor. Pe misura

rispandirii tot mai accentuate a sistemelor distribuite si a utilizAri lor de ciitre nespecialigti,

atributul tolerantei la erori (fawlt tolerance) in prezenia unor cideri ale unor servere devine

o cerint3 absolut esenfiald pentru un sistem de calcul distribuit viabil. Lucrarea prezinté o

clasificare §i 0 modelare matematich a celor mai fispandite tipuri de céderi ale serverelor. O

astfel de modelare constituie un prim pas pentru ¢ abordase sistematich a posibilitifilor soft

de transformare automatd a unor cideri grave in cAderi mult mai pufin grave la nivelul

cfectelor executiilor, activitate care ar asigura practic tolerania la crori ale acelor sisteme de

calcul distribuite.

1. Introduction. One of the onginal goals of building distributed systems was to
make them more reliable than single processors sysiems, That is, if some machine goes
down, some other machine takes over the job. There are various aspects regarding this
concept.

Availability refers to the fraction of time in which the system is usable. Availability
oan be enhanced by a design that does not require the simultaneous functioning of a
substantial number of critical components. Another way for improving availability is
redundancy: key pieces of hardware and software should be replicated, so that if one of

them fails the others will be able to take up the task.

A main aspect related 10 reliability is fawlt tolerance [Tan92). That is, what happens

* "Babeg-Bolyai" University, Faculty of Mathematics and Computer Science, 3400 Cluj-Napoca, Romania

A. VANCEA

when a server crashes and then quickly reboots ? In general, distributed systems can be
designed to mask failures. If a system service is actually constructed from a group of
closely coopersting servers, then it should be possible to construct it in such a way that
users do not notice the loss of one or two servers, other than some performance
degradation. The challengs is to arrange this cooperation such as not to add substantial

overhead to the system in the normal case, when everything is functioning correctly.

3. Types of fallures. Distributed computing systems give algorithm designers the
ability to write fauit-tolerant applications in which correctly functioning processors can
complete a computation despite the failure of others. It is well established that th
complexity of writing such applications depends upon the type of faulty behaviour that
processors may exhibit. For exampie, while simple stopping failures are relatively easy to
tolorate, tolerating completely arbitrary behaviour can be much more difficult. To assist the
designers of such applications, fransiations were developed that automatically convert
algorithms tolerant of relatively benign types of failure into ones that tolerate more severe
faulty behaviour [Bazzi93]. We give below a hierarchy of the most commonly considered
failures, from the most easy ones to the most severe:

1). crash fadlures - in which the incriminated processors fail by stopping
prematurely. Before they stop they behave comectly and after they stop they take no
further actions.

il). send-omission failures - the processor fails by intermitently omitting to send
some of the messages that it should send, but the sent messages are always correct.
Because these processors can fail and yet continue to send messages, their failure is more

96

MODELLING DISTRIBUTED EXECUTION

difficult to detect and deal with than crash failures.

ili). general omission failures - the processor may stop or it may intermittently fail
to send or receive messages {Pervy86) and the sent messages a-e always correct. The
identity of faulty processors is uncertain: did the sender or the receiver of an omitted
messags fail 7

iv). arbitrary failures - processors subject to arbitrary failures can take any action
[Lamport82]. They can siop, omit to send messages, send spurious messages and falsely

claim t0 have received messages they did not actually receive.

3, Protocole, histories and preblem specifications.

Definition. A distributed system is a set D of n processors joined by bidirectional
communication links. Processors do not share any memory, the communications being
made through message passing. Each processc has a local s7ate and we denote by () the
set of local states.

Processors communicate with each other in synchronous rounds. In each rournd, a
processor first sends megssages, then receives messages and then change its siate. Let M be
the set of messages thai may be sent in the system and let O & M be the value that
indicates "no message” and let M'=MU{Q}. Thus, if p sends no nessage to q in a round,
we can say that p sends O to q, elthough no m=ssage 15 civall: sent

Befnitien. Proceasors run a prfocol P, which specifies the messages to b sent
and the stata transitions. A protocol consists of two functions, 2 messuge function and a
state-transition fanction. The message function is defined ne mf NxDx{) ~ 34, where N is
the set of positive integers. If processor p begins round i in state s, then P specifies that it

97

A. VANCEA

send mfy(i,p,8) to all processors in that round. The state-transition function is st NxDx(M'f
—~> (). If in round i processor p receives the messages m,,...,m, from processors p,,...,p,
respectively, then P specifies that it change its state to sty(i,p,m,,...,m,) at the end of round
i.

The code below illustrates the execution of a protocol P:

siwe = initial state;

fori=1 to o do

message = mby(i.p.siato),
i message » O then send message to all pr essors,
fereach oD
#f received some m from q then get[q]=m
else get[q].=03;
state = st{i,p.get),;

This definition of protocols appears restrictive in a sense. For example, every
processor 18 required to brosdcast a message in every round. A protocol’s state transition
function depends only on the messages that it just receivr 1 and not on its previous state.
Furthermore, processors are required to run forever and never halt. These restrictions were
made for simplifying the presentation and they do not restrict the applicability of the
results.

Histortes describe the executions of a distributed system. Each history is a 4-tuple
including the following elements: the protocol being run by the processors, the sequence of
states through which the processors pass, the messages that the processors send and the
messages that the processors receive. Formally, a history consists of a protocol and three
functions. The functions define the states through which the processors pass and the

messages sent and received by the processors in each round. A state-sequence function

sseq:Nx/)-->() identifies the states of processors at the beginning of each rc.und. sseqfip) is

MODELLING DISTRIBUTED EXECUTION

the state in which processor p begins round i. A message-sending function msf NxDxD--
>M" identifies the messages sent in each round. msfli,p,q) is the message that p sends to ¢
in round i or O if p sends no message to ¢ in round i. A mess.ige-receiving function
mrf:NxDxD-->M’ identifies the messages received in oach round. mrfli,p.q) is the message
that p receives from ¢ in round i or O if p does not receive a message from ¢ in round i.
Let mrf{i,p) be an abbreviation for the sequence mrf(i,p,1),..., mrf{i,p,n).
H=(P,sseq,msf,mrf) is then a history of protocal P.-

A system is identified with the set of all histories (of all protocols) in that system.
A system can also be defined by giving the properties- that its histories must satisfy. If § is
a system and H=(P, sseq,msf,mrf)ES, then H is a2 history of P running in S.

Protocols are run to soive particular problems. Formally, such problems can be
specified by predicates on histories. Such a predicate, called & specification, distinguishes
histories that solve the problem from those that do not.

Protocol P solves problem with specification X {or solves Z) in system § if all
histories of P running in § satisfy X That is VHES {H is of the form (P,sseq,msf,mrf) =
H satisfies I].

4. Correctness and fatlures. A processor executes correctly if its actions are
always those specified by its protocol. Considering a history H = (P,sseq.msf,mrf),
processor p sends correctly in round i of H if

Yq€D [msfli,p,q) = mfy(i,p.sseq(i,p))].
Processor p receives correctly in round i of H if
Yq€D [mrfli,p,q) = msfli,p,q)}.

Processor p makes a correct state transition in round i of H if

A. VANCEA

sseq(i+1,p) = stp(i,p,mrf(i,p).
Processor p is correct through round i of H if it sends and receives comrectly, and makes
correct state transitions up 1 and including round 7/ of H. Let

Correct(H,i) = {(pE€D | p is correct through round i of H}.
We assume that all processors are initially correct, so Carrect(H,0)=D. Then let
Correct(H), the set of all processors correct throughout history H, be Ny Correct(H). If
A Procesaos is not correct, it is fwity. Formally,
Foudiy(H,i) = D - Correct(H,i) and

Faulty(H) = D - Correc(H).
The following examples of formal specifications illustrate these definitions: X, sp-cifies
that "in round 7 processor p does not send correctly to ¢"

X, = X,(P,sseq,msf,mrf) = msf(7,p,q) = mi(7,p.sseq(7.p)).

I, specifies that through round 10 at ieast 6 processors are correct

X, (H) = |Correc{H,10)| 2 6.
Informally, a specification X is a state specification if it depends only on the state-sequence
function and, 1n a certain way, on the set of correct processors. Formally, Z is a state
specification if

VH,H, [(E(H,) A sseq,~sseq, A Correct(H,)Correci(H,))=>2(H,)}.
Informally, a state specification X is failure-insensitive 1f it does not depend on ihe states
of the faulty processors. Formally,
this means that
YH,.H, [(E(H,) » YIEN VYpECorrect(H,)[sseq,(i,p)=3seq,(i,p)])=+Z(H,)].
Individuai processors may exhibit failures, that is to deviate from correct behaviour.

100

A. VANCEA

nothing at all:

ViEN VYq€ED [msf{i,p,q) = mf.(i,p,sseq(i,p)) v msf(i,p,q) = O},
The system S(n,t) corresponds to the set of histories in which up to t processors are subjest
to send-omission failures and all other processors are correct.

While crash failures are relatively easy to tolerate, intermittent send-omission
failures are more difficult to identify and compensate. If processors may omit to send
mossages and later function correctly, then the correct processors may have more difficulty
agrecing on the identity and timing of failures than they would if only crash failures
occured.

4.3. General Omission Failures. A more complex type of failure, called a general
omission filure [Peny§6], occurs if a processor intermittently fails tc send and receive
messages. Processor p may commit such failures in history H=(P,sseq,msf,mrf) if it always
makes correct state transitions, always sends to each processor what 1is protocol specifies
or nothing at all, and always receives what was sent to it or nothing at ali:

ViEN VqED [maf(i,p,q) = mffi,p,sseqi,p)) v inst(i,p,q) = QJ;
VIiEN VqED [mrf(i,p,q) = msf{i,q.p) v mrf(i,p,q) = Q).
The system G(n,t) corresponds to the set of histories in which up to t processors are
subject to general omission failures and all other processors are correct.

General omission failures are more difficul: to tolerate than send-omission failures.
In addition to the uncertainty regarding the timing of failures, there may also be
uncertainty as to the identify of the faulty processors: if an omitted message is detected, it
may be difficult io tell vhietiier it is the sender. or the receiver that is at fault. Furthermore,

102

MODELLING DISTRIBUTED EXECUTION

faulty processors may be sending incomplete information, as they may have omitted to

receive message from correct processors in previous rounds.

4.4. Arbitrary Failures. Crash failures considerably restrict the behaviour of faulty
processors. Omission failures place fewer restrictions on this behaviour. In the worst case,
faulty behaviour may be completely arbitrary. Processors may fail by sending incorrect
messages and by making arbitrary state transitions [Lamport82]. Processor p is subject to
arbitrary failures in history H=(P,sseq,msf,mrf) if it may deviate from P in any way. It
may do one or more of the following:

- fail to send correctly: IEN IqED [msf(i,p,q) = mfy(i,p,s8eq(i,p)),

- fail to receive comrectly: HEN IqED [mrf(i,p,q) = ms(i,q,p)], or

- make an incorrect state transition: Ji€N [sseq(i+1,p) » st(i,p,mrf(i,p))].

The system A(n,t) corresponds to the set of histories in which up to t processors commit
arbitrary failures and ali other processors are correct. It is clear that arbitrary failures are
more difficult to toierate than the other kinds. Faulty processorns may actively try to
confuse the correct ones, they being able even to "cooperate” to make fauit-tolerance even

more difficuit to achieve.

8. Conclusions. As distributed systems become more and more widespread, the
demand for fault tolerance is one of the main request from a distributed computing system.
Such systems will need considerable redundancy in hardware and the communication
infrastructure, but they will aiso need it in software and data.

To achieve the goal of a fault tolerant distributed system we have first to

103

A. VANCEA

distinguish between the types of failures a system may exhibit and try to model these
failures and the behaviour of the system in the presence of these failures. The ultimate
goal, based on the ideas from [Bazzi93], will be to develop translations from one type of
failure to another, translations destinated to ease the system tolerance to failures. The

model presented here may be a basis for developing such a scheme of translations.

REFERENCES
[Bazad93] R Bazzi, G Neiger - Simplifying Fault-Tolerance: Providing the Abstraction of Crash Failures,
Technical Report GIT-CC-93/12, Georgia lnstitute of Technology, 1993.
[Hadzllacos83] V Hadzilacos - RByzantine agreement under restricted types of failures (not telling the truth is
differens from telling lics), Techwion! Report 18-83, Aiken Compusation Laboratory, Harvard University,
1983, Ph.D. disertation.

[Hadailacosti4] V. Hadzilacos - Issues of Fault Tolerance in Concurrent Compulations , Technical Report 11-
84, Aiken Compwiation Laboratory, Harvard University, 1984, Ph.D. disertation.

{Lampor$2] L Lampost, R Shostak, M.Posse - The Byzantine generals problem, ACM Transactions on
Programming Languages and Syatoms, 4(3), pp.381-401, July 1982.

[Perry®6] K.) Poity, 5. Toueg - Distributed agrecment in the presence of processor and communication faults,
IEEE Transactions on Software Engineering, 12(3), pp.477-482, March 1986

104

STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXXIX, 3, 1994

ANIVERSARI

PROFESSOR SEVER GROZE AT HIS 65™ ANNIVERSARY
by
Gh. Coman’ and M. Frenjiu’

Professor 8. Groze was bom on November 29, 1929 in Telciu, Bistrita-Niskud.
After finishing secondary school in 1948, he studied at the University of Cluj. In 1952,
after his gradugtion, he weas appointed as assistant at the Department of Mathematics,
University of Cluj. From 1960 he worked as an assistant professor at the Pedagogical
Institut of Baia-Mare. In 1972 he retumed at the University of Cluj-Napoca. In 1980 he
became full professor of this Faculty. In all this period, Professor 8. Groze gave many
courses and seminars on algebrs, analysis, goometry, numerical analysis, computer sciencs,
etc. His courses were held at & high scientific and pedagogical level. So, he is remarked as
an eminent mathematician and a distingused pedagogue, at the same time, with true love
and devotion for his students.

Simultaneously with his pedagogical work, Professor Groze has developed an
appreciated research work in geometry, numerical analysis and computer science. But, the
prefered topic is numerical analysis in which he received his Ph. D. degree in 1971, In

these topics he has written a lot of books for students and research papers.

* "Babeg-Boiyni" University, Faculty of Mathematics and Computer Science, 3400 Ciuj-Napoca, Romania

STUDIA UNIV. BABES-BOLYAL MATHEMATICA, XXXIX, 3, 1994

Professor S. Groze is also a very good organizer. So for several years he served as
Vice-Rector of the Pedagogical Institut of Cluy (1962-1964), Dean of the Faculty of
Mathematics, Physics and Chemistry of the same institut (1964-1966, 1968-1972), Rector
of the Pedagogical Institut of Baia-Mare (1966-1968), Vice-Dean of the Faculty of
Mathematics, University of Cluj-Napoca (1977-1981), etc

Also, Professor 8. Groze was the head of the Computer Science Group of the
Faculty of Mathematics and Physics.

Professor S. Groze 13 never less than generous to his collaborators and working
with him is, first of all, a great pleasure.

Now, on celebrating his 65-th birthday, we wish him Many Happy Return of the

Day and a long life in health and happiness

LIST OF THE SCIENTIFICAL WORK

of Professor Sever Groze

1. Despre o generalizare a contactelor nomogramelor cu transparent. Studia
Univ.Babeg-Bolyai, Series I, Fasc.1, Math.-Physica, 1961, pp. 169-174.

2. Sur un classe de transformations des nomogrames de 1’order trois, Mathematica.
vol.7, (30), 2, 1965,pp. 233-246.

3. La décomposition d’une projectivité sur une conique ¢t son application a la
meilleure transformation projective d’une echelle situé sur un circle. Revue

Roumaine des Mathem. pures et appliq., Tom XI1I, nr 8,1967, pp.1065-1073.

106

STUDIA UNIV. BABE§-BOLY AL, MATHEMATICA, XXXIX, 3, 1994

10.

11

12.

13.

Sur la transformation projective d’'un nomograme ayant deux echelles sur un

circle et 1a troisiéme sur une courbe quelconque. Revue Roumaine des Math

pures et appl., ar. 2, Tom XV, 1970, pp. 245-254.

Critorii pentru ca o nomogramil cu puncte aliniate s3 aibk eroare minimd. Studia
Univ. Babeg-Bolyai, Fasc.}, 1970, pp.65-73.

Metoda lui Steffensen aplicath la rezolvarea ecuatiilor operagionale neliniare definite
in spatii supermetrice. Studii §i Cerc. mat., 5, Tom.23, 1971, pp.711-717.

Asupra metodei coardei in rezalvarea ecuafiilor aperagionale definite In spatii
supermetrice. Studii gi Coro.mat. 5, Tom. 23, 1971, pp. 719-725.

Asupra rezolviirii ecuagillor operationale definite in spatii L-supermetrice. Studia
Univ.Babeg-Bolyai, Series Math.- Mech., Fasc.1, 1971, pp. 81-85.

Asupra diferentolor divizate generalizate. Anal. §t. ale Univ. "AlL.Cuza" lagi,(Serie
Noult), Sectiunes I, Matematica, Tom XVII, 1971, Fasc.2, pp.375-379.

Principiul majorantei ¢i rezolvares ecustiilor operationale neliniare definite in spatii
supermetrice prin metoda aproximagiilor sucoesive. Anal.St.ale Univ. "A.LCuza",
lasi (Serie Noua), Sectiunea I, Matematich, Tom XVIHI, Fas. 1, pp.75-79.

Sur la methode de Newton dans les espaces L-supermetriques. Studia Univ.
Bebey-Bolysi, Series Math.- Mech ,Fasc.1,1972, pp. 55-59.

Asupra conditiilor de convergentil la metoda coardei in spatii supermetrice Studia
Univ. Babey-Bolyai, Series Math.-Mech., Fasc.1, 1973, pp.55-59.

Asupra rexolvilrii ecuaiilor operafionale neliniare printr-o metoda analogh cu a
hiperbolelor tangente. Studia Univ. Babey-Bolyai, Serie Math - Mech., Fasc.2, 1973,
pp.47-30.

107

STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXXIX, 3, 1994

14,

15.

16.

17.

8.

19.

20.

21,

22,

23,

108

Principiul majorantei in rezolvarea ecuatiilor operationale neliniare. Studia Univ.
Babeg-Bolyai, Serie. Math.-Mech., Fasc.1,1974,pp.69-74.

Principiul majorantei §i metoda coardei. Stud. Univ.Babes-Boiyai, Mathematica, 4,
1975, pp.50-54.

Application of Iterative Methods for Solving Operator Equations and Improving
Convergence Condisions. Revue d’ Analyse numerique et de theorie de
I'approximation. Tam.6, Nr.1, 1977, pp. 15-21.

Metode convergents de ordinul k in spatii supermetrice. Studia Univ. Babes-Bolyai,
Mathomatica, 2, 1977, pp.23-28.

The Method of Chords for solving Operator Equations dependent on one Parameter.
Revue d’ Analyse numerique et de I’approximation. Tom 8, nr.2, 1979, pp.181-185
The Principle of the Majorant in Solving Operator Equations which depend on
Parameotor. Revue d’ Analyse numerique et d’ Approximation. Tom 8, Nr.2, 1977,
pp.177-180.

On Steffenson’s Method for Solving Nonlinear Operator Equations defined in
Frechet Spaces. Studia Univ. Babey-Bolyai, Mathematica, XXV, 1, 1980, pp.62-66.
Rezolvarea ecuatiilor operationate neliniare in spafii Frechet printr-o metodi
analogdl cu a parabolelor tangente. Studia Univ.Babeg-Bolyai, Mathematica, XXV],
3, 1981, pp.24-28.

A Method analoguos to the Chebyshev Method for Solving of the Operator
Equations. Studia Univ.Babes-Bolyai, Mathematica, XXVI, 2, 1981, pp.72-75.
Succesive Approximations in Uniform Spaces. Proceedings of the Colloquim on

Approxim. and Optim., Cluj-Napoca, 1984, pp.105-110.

STUDIA UNIV. BABE§-BOLYAI, MATHEMATICA, XXXIX, 3, 1994

24,

2s.

26.

27.

28.

29.

30.

31

3.

3.

34,

A Combined lterative Method in Fréchet Spaces. Itinerant Seminar on Functional
Equat., Approximation and Convexity, Cluj-Napoca, 198S. pp.79-85.
Steffonsen’s Method in Fréchet Spaces. Research Seminars, Preprint Nr.4, 1985,
pp.68-75.

A Method Analoguous to the Method of the Tangent Hyperbolas in Fréchet Spaces.
Lucrdirile Simpozionului "Informatica §i aplicatiile sale”, Cluj-Napocs, 1985,
pp.78-83.

On modified Method of Chords for Operator, Equations whith Parameters and
Applications. Research Seminam, Preprint Nr.2, 1986, pp.29-36.

An Algorithm Corresponding to the Method of Chords in Fréchet Spaces. Studia
Univ. Babeg-Bolyai, Mathematica, XXVII, 3, 1987, pp.37-45.

A Method Analoguos to the Chebyshev Method for the Solving of the Operator

Equations Definited in Fréchet Spaces, Studia Univ. Babes-Bolyai, Mathematica,

XXXII, 4, 1987, pp.33-36.

On the Solving of Operatorial Equations Defined in Fréchet Space by a Modified
Chord Method. Studia Univ. Babes-Bolyai, Mathematica, XXXII, 1987, pp.37-40.

A Class of Iterstive Method in Fréchet Spaces. Research Seminars, Preprint nr.5,
1987, pp.28-36.

On the Stoffensen’s Method in Frechet Spaces. Research Seminars, Preprint nr.9,
1987, pp.134-142.

On a Method Ansloguous to Steffensen’s Method. Research Seminars, Preprint nr.9,
1988, pp.17-26

The Principle of the Majorant in Solving on Nonlinear Operatorial Equations in

109

STUDIA UNIV. BABES-BOLYA[, MATHEMATICA, XXXIX, 3, 1994

35

36.

7

38,

Frechet Spaces. Res.Seminars, Preprint nr. 9, 1988, pp.27-32.

On the Convergence of 8 Method Analoguous to Method of Tangent Hyperbolas in
Frechet Spaces. Research Seminars, Preprint, nr.9, 1989, pp.41-50.

On the Method Convergente of k-order in Frechet Spaces. Research Seminars,
Preprint nr.2, 1989, pp.50-67.

On the Convergence of Class of Tterative Method in Frechet Spaces, Revue
d’Analyse numerique, Vol XIX, 1990, pp.45-49.

The Principle of the Majorant and the Method Anal~quous to the Chebyshev
Method for the Solving Operatorial Equations which Depend on Parameters. Studia
Univ. Babes-Bolyai Mathematica,Nr.3,1990,pp.45-50.

A Combined Iterative Method for Solving Operator Equations in Frechet “paces.
studia Univ. Babeg-Bolyai,Mathematica, Nr. 3,1990, pp.25-30.

ihe Prnciple of the Majorant in Solving of Nonlinear Operatonai Equations which
{zepends on One Parameter, Defined in Frechet Spuces. Bul.$t.al Univ. Baia-Mare,
seng B Vol.VILL, 1991, pp.89-96.

{n the Convergente of Three Order Method in Frechet Spaces, Studia Univ.
HBabeg-Bolyai,Mathematica, XXX V1 pp,34-39

e Principle of the Majorant in Solving of an Operatorial Equation Defined in
Frechet Spaces by a- Convergence of the Three Order Method. Research Seminars,
Proprint ne.5, 1992, pp.125-132.

Consequences of Theorems Concerning the Convergence of Chord Method in
riechet Spaces. Studia Univ. Babeg-Bolyai, Mathematica, XXX VIII, 1993,
5p.50-64.

L+ the {hord Method in Frechet Spaces. In curs de aparitie, Studia Univ.

sog-Belvai, Mathematica.

STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXXIX, 3, 1994

BOOKS AND UNIVERSITY LECTURES

1. Aritmetica. Litografia Univ.Cluj-Napoca,1971.

[V

. Bazele informaticii. Litografia Univ.Cluj-Napoca,1977 (in colaborare).

3. Bazele informaticii. Culegere de probleme. Litografia Univ. 1976 (in colaborare).

4. Rezolvarea numericl 8 ecuatiilor operationale. Litografia Univ.1981 (in colaborare).

5. Bazt?le informaticii. Culegere de probleme pentru laborator. Litografia Univ.1982.
(in colaborare).

6. Programare $i informatica. Litografia Univ.1982 (In colgborare).

7. Bazele informaticii 1 (Ed.1). Litografia Univ.1983 (in colaborare).

8. Bazele informaticii I (Ed.2). Litografia Univ.1986 (in colaborare).

9. MATH-1, Scientific Program Library for Roumanian Personal Computer,
Cluj-Napoca, 1987 (in colaborare).

10. Elemente de informaticl pentru licee. Litografia Univ.1988 (fn colaborare)

11. Bazele informaticii. Limbajele BASIC 3i PASCAL. Litografia Univ.
Babes-Bolyai, 1992. (in colaborare).

12. Bazele informaticii 1. Lit Univ.D.Cantemir, Cluj-Napoca 1992 (in colaborare)

1'3. Elemente de informatich pentru licee (Ed.2). Editura "Microinformatica” 1992.
(n colaborare).

14. Elemente de informatici pentru licee (Ed.3). Editura "Microinformatica", 1993
(In colaborare).

15. Bazele informaticii - Culegere de probleme. Lit.Univ. Babeg-Bolyai, 1993

i1

in urmatoarele serii:
matematica (trimestrial)
fizica (semestrial)
chimie (semestrial)
geologie (semestrial)
geografie (semestrial)
biologie (semestrial)
filosofie (semestrial)
sociologie-politelogie (s2mestrial)
psihologie-pedagsogie (socmestrial)
stiinte cconcmice (semoastrial)
stiinte juridice (semestrial)
istorie (semestrial)
filologie (trimestrial)
teologie ortodoxa (semestrial)
educatie fizica (semestrial)

In the XXXIX-th year of its publication (1994) Studia Universitat's Babeg-
Bolyai is issued in the following series:

mathematics (quarterly)

physics (semesterily)

chemistry (semesterily)

geology (semesterily)

geography (semesterily)

biology (semesterily)

philosophy (semesterily)
sociolcgy-politology (semesterily)
psychology-pedagogy (semesterily)
economic sciences (semesterily)
juridical sciences (semesterily)
history (semesterily)

philology (quarterly)

orthodox theologie (semesterily)
physical training (semesterily)

Dans sa XXXIX-e annéa (1994) Studiq Universitatis Babeg-Bolyai parait dans
les séries suivantes:

mathématiques (trimestriellement)
physique (semestriellement)

chimie (semestriellement)

geologie (semestriellement)

géographic (semestriellement)

biologiz (scmestriellement)

philosophie (semestriellement)
sociologie-politologie (semestriellement)
psychologie-pédagogie (semestriellem>nt)
sciences économiques (semestriellement)
sciences juridiques (semestriellement)
histoire (semestriellement)

philologie (trimestriellement)

théologie orthodoxe (semestriellement)
éducation physique (semestriellement)

