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STUDIA UNIV. BABE§-BOLYAI,L MATHEMATICA, XXX, I, 1994

GENERIC CHAINS AND GENERIC DIRECTED SUBSETS
OF PARTIALLY ORDERED SETS

A. ABIAN' and 6. BONDARI’

Rocarved: Mars 20, 1994
AMS subject chassificanon; V6A9Y

REZUMAT. - Lanfuri genorice gl submulgiml dirijase gonerice tu muliinel pargial
ordonate. [n lucrre sunt daso clicva reuubiato privind muliimile pariial osdonate.
Abstract. It is shown that there are cases where no D-generic directed subset of a c.i.c
partially ordered set with x, < |B| < 2% can be a chain™.
In what followa (P,x), or simply P, stands for a nonempty partially ordered set
In order to avoid trivial cases we assume that P has no minimwm.
We recall [1] that a subset D of P is called a dense subset of P if and only if
for every x € P there exists y € D) such that y = x ()
In is shown {1] that # has either finitely many or else at least continuum many dense
subsets. In other words, there is no partially ordered set with y, many dense subsets.
As expected, by chain of P we mean a linearly (i e., simply) ordered subset of P. Also,
as usual, a subset ¥ of P is called a directed subset of P if and only if
forevery x € Vand y € Vithere exists 3 € Vsuchthat s s xand 2 s y )
Thus, V is directed if and only if every two eloments of ¥ have & lower bound. This is
customarily expressod by saying that V is directed if and only if every two elements of V are

compatible {3, p.53 and 8, p 5]

" lowa Swte University, Department of Mathematics, Ames, lowa 30011, USA

™ Throughout whix pager the symbol x, is used to denote "aleph”
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A chain C of P is called a generic chain of P if and only if C has a nonempty
intersection with every dense subset of P. Similarly, a directed subset ¥ of P is called a
generic directed subset of P if and only if V has a nonempty intersection with every dense
subset of .

We rocall [2] that an element m of P is called a molecwie of P if and only if

for every x € P and y € P if x s m and y s m then x and y are compatible. ¢t}

From Covollary | of [2} it follows that

P has a generic directed subset if and only if P has a molecule 4)

Many interesting partially ordered sets do not have molecules and therefore by (4) they
have no gonenic directed subsets and consoquently no generic chaini, as shown in the
foltowing:

Example 1. The countable (infinite) sot F of all finite dyadic sequences partially
ordered by oxtension has no molecules. Indeed, given any ﬂnftu dysdic sequence, say,
011010, there always exist two incompatible finite ¢xtensions, for instance, 011010110 and
011010111 of 011010. Thus & has no generic directed subset.

For partially ordered sets which have no molecules a restricted notion of & gene..c
chain, as well as a restricted notion of a generic directed subset, is introduced which serves
as the basic item in the construction of set-theorstical models for proving the independence
of, say, the Continbum Hypothesis or the Axiom of Choice from the ZF axioms {7]. This is
the notion of a D-generic chain, as well as a D-generic dirooted subset defined as follows [of
3 and 8, p.134].

Let D be a set (a list) of dense subsots of P. A chain C of P is called & D-generic

chain of P if and only if (' has & nonempty intersection with every dense subset belonging
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to D. Similarly, a directed subset V of P is called a D-generic directed subset of P if and only
if ¥ has a nonemty intersection with every dense subset belonging to D. Thus, a D-generic
chain or a D-generic directed subset of P need not have a nonempty intersection with every
dense subset of P. They are only required to have a nonempty intersection with the dense
subsets of P which belong to D.

Remark | Based on the Axiom of Choice, one can easily show that if D is a countable
set of dense subsets of P, ie,it D = {(D,,D,,D,,..,D,, ...} withn € wthen P always has
a D-generic chain. Indeed, since P is nonempty, none of the D/s is empty, so let d, € D,
Since D, is dense there exists d, € D, such that d, s d,. Again, since D, is dense there exists
d, € D, such that d, s d, = dy. Continuing in this way, one can easily establish (in ZFC) the
existence of the set M = {d,,d,,d,, ..,d,, ..} withd, € D,and d, = d,,, for every n € w.
Clearly, H is a D-generic chain of P.

However, if D is an uncountable set of dense subsets of P then P need not have any
D-generic directed subset. This is the case of the partial order F of Example 1. Obviously,
every directed subset of F' is a chain of F. Moreover, since there are continuum many (i.c.,
2%) dyadic (finite or infinite) sequences, it follows that ' has 2% chains. Furthermore, clearly,
the complement /- C of every chain C of F is a dense subset of F. Consequently, F has2*
dense subsets. Let D be the set of all the dense subsets of . Thus, |D| = 2™ and F has no
D-generic directed subset, as mentioned in Example 1.

Remark 2. From Example 1 and Remark 1 it follows that if D is a set of dense subsets
of a partially ordered set P such that |D| = 2% then P need not have a D-generic directed

subset.

In connection with Remark 2, let us observe that the condition
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X < |D| < 2% )
still does not guarantee the existence of a D-generic directed subset of P, as shown in the
following:

Example 2. Let E be the set of all finite sequences whose terms are countable (finite
or infinite) ordinals, i.e., the elements i, = w,. For instance (3, w, 0, w, 7, 0?, ®*, 7, w*+w+3)
is an olement of E. Let E be partially ordered by extension. For every ordinal 4 € w, let D,
be the sot of all the elements of E in each of which ¥ occurs (as a term). Clearly, every D),
is a dense subset of E. Let D be the set of all such D,'s, ie,

D={Dl|u€Ew) (6)

From (6) it follows that [D| = x, and we assume that (5) also holds (i.e., we assume
that the Continuum Hypothesis CH does not hold). Obviously, every directed subset of £ is
also a chain of E. Now, if E had a D-generic chain G, then from (6) it would follow that U
G is a countable sequence having all the uncountably many aiomo:m of w, as its terms. But
this is impossible. Hence E has no D-generic directed subset even though (5) is satisfied.

Lot us observe that the partially ordered set E of Example 2 has many pairwise
incompatible (i.e., without having a lower bound) elements. Indeed, {{(0), (1), ..., (w), ..,
(w”), ..}| = w, =y, is & subset of E of pairwise incompatible elements. This is because no
two distinct elements of {(0), (1), ..., (@), ..., (w®), ...} have a common extension. Therefore,
regudlﬁ of (5), it could have been expected, that E would not have a D-generic directed
subset G since the slements of G must be pairwise compatible, whereas £ has 100 many
pairwise incompatible elements.

We call a partially ordered set P a c.i.c. (cowntable incompatibility condition) partially

ordered set if and only if every subset of P of pairwise incompatible elements is countable

6
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[cf. 5, p.53 and 8, p.133].

Remark 3. From Example 2 and Remark 2 it follows that if P is not & c.i.c partially
ordered set then P need not have a D-generic directed subset even if x, < |D| < 2*.

In connection with Remark 3 the following natural question arises: Let M be a model
for ZFC+-CH is the following statement true or false in M ?

Let P be a c.i.c partially ordered set and D be a set of dense subsets of P )

such that x, < |D| < 2% Then P has a D-generic directed subset.

It has been shown [5, p.52 and 8, p.135] that there are models M in which (7) is true
and there are models M in which (7) is false. In other words, (7) is consistent with and
independent of ZFC+-CH axioms.

Statement (7) is the so-called Martin’s {5, p.54] denoted by MA. The significance of
MA is partly due to the that under MA it can be shown that infinite cardinals & with
X, < & < 2% acquire some properties similar to %, = w.

For instance, under MA it can be shown that for every cardinal & withy, <& < 2*
it is the case that (i) the union of k many subsets of reals each of Lebesque measure zero is
of measure zero. (i) the union of k many subsets of reals of Baire first category is of flrst
category. (ili) 2* = 2™ (iv) the intersection of & many dense open sets in any compact
HausdoifY space with a countable buse is dense.

Again, MA is widely used in Analysis, Topology and Algebra [4 and 6] for asserting
the consistency and independence of various statements in ZFC+-CH. This is usually achieved
by invoking MA in connection with a suitably chosen c.i.c partially ordered set # and
asseiting the existence of a suitably chosen D-generic directed subset G of P with
%o < |P] < 2% Very often the generic directed subset G tums out to be a chain. However,

7
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as shown Below, there are cases where it is impossible to have a generic directed subset G
which is a chain.
In ZF+-CH, we prove;
THEOREM. There exists a c.i.c partially ordered set P and a set D of dense subsets
of P with y, < |D| < 2 such that no D-generic directed subset of P is a chain.
Proof. Let S be the set of all finite subsets of i, and let P be the partially ordered set
(8, 2). Clearly overy two elements of S have a lower bound (namely, their set-theoretical
union) in S Thus § has no (nonempty) subset of pairwise incoinpatible elements. Hence S is
ci.c. Next, for every u € y,, let D, be the set of all elements of § each of which contains u
as an element, i.e,
D, = {X| X is a finite subset of ¢, and ¥ € X) 8)
Clearly, every D, is & dense subset of S. Let
D= (D] u€x} ' ®
Obviously, D satisfies (5). Let us assume to the contrary that § has a D-generic chain
G. From (8) and (9) it follows that |G| = x,. Let H be a subset of G of cardinality x, Since
|G| =%, and |H| = %, and G is a chain, H must have a lower bound B which must be an
element of G. Clearly, B2 U H and |UH| = y, which contradicts the fact that every element
of § and therefore every element of G is finite. Thus, our assumption is false and the

Theorem is proved.
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REZUMAT. - O iatice de N-cinse Schunek. In hucrars se domonsirenzi ci clasa @ a wiurer

x-classior Schunck cu proprietaiea P ({3]), ordonath prin incluziune, formeazll In raport cu

operatiile do compuncre (J4)] ¢i do imersectie o latice compiotll cu O i ).

Abstract. The paper proves that the class @ of all s-Schunck classes with the P
property ([3]), ordered by inclusion, forma respect to the operations of composition ({4]) and

intersection & complete lattice with 0 and 1.

1. Preliminaries. All groups considered in the paper are finite. We shall denote by x
a set of primes, by =’ the comploment 10 & in the set of all primes and by O_(G) the lasgest
normal »’ -subgroup of a group G. A group G is seid 10 be 8-sohabdle if every chief factor
of G is either a solvable n-group or & &’ -group. Particularly, for x the set of all primes, one
obtain the nation of solvable group. The following notions are well known in the formation
theory (see [4]):

DEFINITION 1.1. a) A class X of groups is called a homomorph if X is closed under
homomorphisms.

b) A homomorph X is a Schunck class if X is primitively closed, i.e. if any group G,

all of whose primitive factor groups are in X, is itself in X

* "Babey-Bolyai™ University, Faculty of Mathematics and Computer Science, 3400 Cluj- Napoca Romania
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c) Lot X be a class of groups and (G & group. A subgroup H of G is called an X-
covering subgrowp of Gif (YHE X, (il Hs K= G, K, AKand KK, € Ximply K HK,

Funther, we have respecting to a fixed set of primes x:

DHEFINITION 1.2, a) Lot X be a class of groups. The class X is a-closed if

GO C)EX=GEX.

b) A n-closed homomarph, reapectively a s-closed Schunck class will be called a -
homomorph, resp. & n-Sckweck class.

hgﬁ]hﬂm&%«mw%dmﬂofuﬁwsaumdmuXwiththc
D property, i.8. with the property thet in sny sn-solvable group, the X-maximal subgroups
colncids with the X-covering subgroups.

On the other side, in {3] are introducod the s-Schunck classes with the # property.

DEFINITION 1.3. A class X of groups is said to have she P praperty if for sny n-
solvable group G we heve:

Nmmvmnduhwnuof(}mx-‘m»ﬂm;ex

Exauphv 1.4. 8) The slase § of ali unit groups is & a-Schunck cless with the 7
property.

b} The class W, of eil s-solvable groups is » a-Schunck ohass with the # property.

The propenies of the s-Schunck classes X with the P property given in [3] are
connooted by the X-covering subgroups of x-salvable groups. This and the results from [1)
and {2] lsad to the idoos of & lattics siructure on the cisss of all x-Bchunck classes with the
P property.

12
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2. The lattice of x-Schunek classes with the P property. Lot us denote with @ the
class of all n-8chunck classes with the P property.

DEFINITION 2.1. If X and Y are two classos of groups, we define the composition
of X and Y: the class <X, ¥> of all a-solvable groups G such that G = <§, 7>, whers S is an
X-covering subgroup of G and T is an Y-covering subgroup of G.

In preparation for the main theorem we give some lemmas.

LEMMA 2.2. X and Y are two clasves of groups, hhen X C <X. 1> and ¥ C <X, ¥>.

LEMMA 23. ({2]) if X and ¥ are n-homomorpha, then <X, V> is a x-howomorph.

LEMMA 24. ([2]) if X and Y are a-Sohwnck chasses, then <X,Y> i3 a n-Sohunck
class.

LEMMA 25 [f XE Pand Y € P, then <X, V> € §.

Proof By 2.4, <X Y> is & n-Schunck class. We prove now that <X, V> has the P
property. Lot (G be a n-sclvable group and N & minimal normal subgroup of G such that ¥
is a »’-group. Since X has the P property, wo have G/N € X and se G/N is its owm X-
covering subgroup. Similarly, since ¥ has the P property, we have GN € Yand 50 G/N is
its own Y-covering subgroup. We obtain G/N¥ = < G/N, G/N >, where G/N is ite own X-
covering subgroup and G/N is also its own Ycevering subgroup. Furthermore, stace G is a
n-solvable group, G/N is & s-solvable group. It follows that GN € <X, V> 8

THEOREM 2.6. The chass P of ail 5-Schunck ckisses with the P property, ordered by
inclusion, forms respect to the operaiions af composition and inkersection a complere kutice
with 0 and 1.

Proof. The result follows immediately from lommas 22, 23, 24 and 2.5. In the
lattice @, the class I of all unit groups is the O element and the class W, of all n-solvable

13
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groups is the 1 element. W
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REZUMAT. - Cliteva incgalithtl o identilyi pentru moedil. Lucrarca conjine rafinkiri ale
unor rezultale cunoscute referitoam la diverse tipusi do modii.

l.LetO<a,s .saandp,>0,i=1, ., 0

Denote P = Ep,, F(a,..,a ,p) =
int

Foreachk =1, . n-land1 € [a,, al let L) =F(, ., 1 a,,, .. a, p)ed g(t) =

= (T}:gll,al]/(ga‘l‘-] . (;(a',...,a_;p) - _};. ,z:;p’ - [ga‘h]

G, .4 ay,,, .., 4 P).
THEOREM 1. The functions f and g defined above are nondecreasing on {a, a,}.
Proof. Both functions are continuous on [a,.q,]

Moreover, on (a4, ,.4,) we have

-
S () -P i-lrqu'( @) 2 0

d
‘ l’.t(Pkl + ¥ p,.a,)

1ok+)

g’(l)-;: - 11 [ﬁI =0

miey \ 1

* University of Zagreb, Faculty of Testile Technology, 41000 Zagreb, Croatia

™ Technical University, Department of Mathematics, 3400 Cluj-Napoca, Romania















CERTAIN SUBCLASSES OF PRESTARLIKE FUNCTIONS

Let R(a,B) be the subclass of § consisting of functions Az) such that £+ § (z) € §°(B) for
0sa<1and0sf <1 Further let C(a,fi) be the subclass of S consisting of functions Az)
satisfying zf'(z) € R(a,p) for 0 s « < 1 and 0 = § < 1. Ka,B) is called the class of
functions a-prestalike of order B and was introduced by Sheil-Small, Silverman and Silvia
(7.
Let 7" denote the subclass of § consisting of functions of the form
J(z) "'g“»‘" (a, = 0) (1.11)
Further we denote R{a,f] and Cla,f} the classes obtained by taking intersections,
respectively, of the classes R(a,p) and C(a,p) with 7, that is
Ria,B} = R, By N T (1.12)
and
Cla,f} = Cla, )N T (1.13)
The class R{a,f] was recently studied by Silverman and Silvia [8] and Uralegaddi and
Sarangi [9] and the cless Cla,B] was studied recenily by Owa and Uralegaddi [2]
In order to show our results, we shall need the following lommas.
LEMMA 1 (8] Let the function Kz) be defined by (1.11). Then Az) is in the chass
R{a.B} if and only if
i;(n—ﬁ)(,‘(u,n)a_‘ I-f. (1.14)
The result is sharp. "
LEMMA 2 [2]. Let the function Rz) be defined by (1.11). Then Az) is in the class
ClaB) if and only if
g nin -PCla,ma =1 -§. (1.15)

The result is sharp.

21
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1. Integral Operators
THEOREM 1. Let the fiunction Az) defined by (1.11) e in the ckass R{«,B), and let

¢ be a real mumber swch that ¢ > -1. Then the function F(z) defined by

Fz) = S22 T gy an @
z¢ @
also belongs to the chass R{a B},
Proqf. From the representation of F(z}, it follows that
F(z) =2 - i;b_t", (2.2)
where
b'-(c")a_. 23)
c+n
Therefore

Y (0 - ) Cla,m)b, = z;(n—mcw,n)(“
neld .

1
c+n

)
- 2.4)
- I; (n-PCla,n)a s1-8,

since Az) € R{a,B). Hence, by Lemma 1, F{s) € Nja ]
THEOREM 2. Lot the mction F(z) = 2 —-ga.x"(a,- 0) be in the chass Ria f],

and iet ¢ be a real mmber such that ¢ > -1. Then the finction Lz} defined dy (2.1) is
wnivalent in |s} < r,', where

¢ i [P Cla, M)+ D e
r, i:f{ n(l-ﬁ(c*n) r" (nn2) 2.9)

The reswit is sharp.

Proaf From (2.1), we have

S(s) = i‘—-:-é'—;ﬁ(il (e>-1) (2.6)
- ;; (z:';)a,u @7

22
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In order to obtain the required result it suffices to show | f'(z) - H{ <1 in |z| < r
Now

I fi(z) -1 = !;.......T"(cc:l”) a,ls|*.
Thus | f/(z) - 1} < 1, if

- nie+n
.!-; v

}:_‘;__.?r_a___(” - )_C(;"") a sl @9

Thus (2.8) will be satisfled if

nlc *n)]:[""' < (n - ) Ao, n)
c+1) (t-p)

lgf*t< 1. en

But Lemma 1 confirms that

or if

n(l-§)c+n)
Therefore f(z) is univalent in |2} < r,’. Sharpnoss fullows if we take

f5) =5~ (”_“” i“’;"c"“)u (nn2). @i

In the same way, we can prove the following theorems using Lemma 2 instead of

i
2] <[("“P)C(“"’)(c“)r' (nn2) 2.10)

Lomma 1.
THEOREM 3. Let the function f(z) defined by (1.11) be in the chass Cla,B], and lot
¢ be a real number such thas ¢ > -1. Then the fuction Fiz) defined by (2.1) also belongs 1o
the class ClaB).
THEOREM 4. Let the function F(z) = —éa.s" (a, x 0) be in the class Cla.p),
and let ¢ be a real mumber such that ¢ > -1. T;l;:vrlnﬁnwdon/(x) defined by (2.1) is

univalent in |z} < r,. where

Yo (n-P)C(a,n)(c-rl)f
ri = inf [EREDE ]"‘ (n=2) @.12)

The result is sharp for the function

n
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.. (-Men) ;
Az) =z n(n-ﬁ)C(a,n)(c+r)z (n=z2) (2.13)

3. Modifled Hadamard Produet. Lot the functions £(z) (/ = 1,2) be defined by

J(3) =2 - I;awz" (a,,=0). 3.1
The modified Hadamard product of f(z) and f,(:) is defined by
TRV ORE -I;a..an« (3.2)

THEOREM . Let the functions f(z) (i=1,3) defined by (3.1) be in the class Rla,f]
with Osas .;. ,and 0 &P <1 Then £, » [z} delongs to the class Ria,y(a,B)], where

- (1-8y
A =1 : 33
e 200 -a)(2-9) - (1 -BY 0D

The result is sharp.
Proof. Employing the tochnique used oartier by Bchild and Silverman {6], we need t0

find the largest v = y(a,B) such that
i;ﬁ’l;(}'}g%:f’lamam st (0.4)
Since

g (o - )f(“:") a,, 1 (3.9)
}.;__..(%.T_(" “Bcen, . 0.6)

by the Cauchy-Schwarz inequality we have

f;ﬁ'_%__)_c.a%‘iﬂ Ja_“a", s 1. a7

Thus it is sufficient to show that

. \YI)C:‘; ”) Hi % —'—%T'—(”* )Cla.n) 919 (n=2) 38

that is, that
[ < 4-VG-B)
an,lan,l (‘ _ )(” Y (39)

24
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Note that

(l - P 310
¥4, 4,, S z’—'—_—ﬁ—)Tq%IT’S (n = 2). (3.10

Consequenly, we need only to prove that

(1 -ﬂ) (1 —Y)('i‘@ | | o
(""B)C(u,n) = d -H)("'Ys (nwe?) G.11)

or, equivalently, that

(n-1)(1-py
1 - : (n=2) 3.12)
B N TR I

Since

- (n-1Q-p

A(p) = 1 - (3.13)
Cle,my(n - By - (1 - pY

is an icreasing function of n(n 2 2) for 0 5 x & 5 and 0 = f§ < 1, letting » = 2 in (2.13),

we obtain

ys A(2) =1 - a- P)l 3 (3.14)
20-a)2-By'-(1-B)
which completes the proof of Theorem 3.

Finally, by taking the functions
f@y=z- 1B (a2 (.15)

3(1T-a)(2-P

we can see that the result in Theorem $ is sharp.

THEOREM 6. Let the functions f(z2) (i = 1.2) defined by (3.1) be in the class
Clp] with 0 5 @ = % and 0 s B < 1. Then f, » f(z) belongs 1o the chass Clay(a,B)],
where

. _ (-py
= | i .
e 41 -a)2- By -0 - By 019

The result is sharp for the fimctions

-
M= e

COROLLARY 1. For f(z) (i =1,2) as in Theorem 3, we have
Me)=z-Ffa a, 2" (3.18)
n*2

23

2! (i=12). 317
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belongs to the class Ria fi).
The result follows from the inequality (3.7). It is sharp for the same functions as in

Theorem 5.

THEOREM 7. Lot she finction fi(s) defned by (0.1) be in the class Riaf) with
0sas % and 0 « B < 1, and the pmction f{s) defined by (3.1) be in the chass Ria,x] with
0sas .},mo.w 1, then £, + f(5) € Rias, §, P, V)], where

o, .9 =} -m___a.(r_%ﬁg{(:{_‘;‘ SR (3.19)
The roswit is shavp
Proaof. Pracceding as the proof of Theorem 3, we got

o (n- 11 -M( -9
b B - - Ty (2 020
mmmwmn(n)ummmmmamnz)mo-a..;.,_o.pqmd

04t <}, letting n = 2 in (3.20) we obhain

EaB(2)=1 - (3132

which evidently proves Theorem 7.
Finaily the result is bost passible for the functions

M R 02

-x - 1~
FAURE mx‘. (3.23)

in the same way, we can prove the following theorem using Theorem 6 instead of
Theorem 3.

THEOREM 8. Lot the function f(s) defined by (3.1) be in the class Cla,p] with
Osas .;. and 0 « P < 1, and the function f(z) defined by (3.1) be in the chass Clax]
with 0 % o .% and 0 2% < 1, then £, + (1) € Cla,§(a,B, )], where

26
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- (1-p)(1-v)
=1 . 324
R 6 B Yo Y B B (S T 024

The result is sharp for the functions

I 2
0 o |

and

S(z) =z -

(3.2%)
[ ; 2

z
4(1-a}2-)

COROLLARY 2. Let the Amctions fz) (i = 1,2,3) defined by (3.1) be in the class
Rlap), with 0 & o _;_ and 0 = B <1, then £, + f, % /() € R{u, n(a, B)), where
o, ) =~ 1 - (- py (3.26)

it-ay@-py- -8y
The result is best possible for the functions

f@) =1 - TTT'-IT‘%TF)'" (=1,23) Gan

Proof. From Theorem S, we have f, * f(z) € Ria, v(u, p)], where y is given by

(3.3). We use now Theorem 7, we get /, * £, * /() € R{a, wla, B)], where

- (1-f)1-y)
> - l' - <
N = S E A - BT
A 5

4(1-0)'2-fy-(1-p'
This completes the proof of Corollary 2.
COROLLARY 3. Let the functions f(z) (i = 1,2,3) defined by (3.1) be in the claas

Cla,f3), with 0:(1:.%, and 0 &P <1, then [, » [, » f(5) € Clan(a B)], where

- (1-py
na,B) =1 . 328
“ 16(1 -y G -pY - (1 -pF 0
The result is best possible for the fimctions

R (BT

THEOREM 9. Lot the functions f(z) (i = 1,2) defined by (3.1) be in the class R{a. B,

(1 =1,2,3) (3.29)

with 0 £ a % ..;.,an(IOsﬂ'i 1. Then the fnction

”
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=

h(z) =z - z {a:l + a,,z_,,]z " (3.30)

n=2

belongs 10 the class Rla, w(u,B)}, where

(1-py
B =1 - . (3.31)
AL (S Yo e T
The result is sharp Jor the functions f(z) (i = 1,2) defined by (3.15).

Proof. By virtue of Lemma 1, we obtain

2{(»—?((“ n)]’ b;(n- }Cla,n) ,l]}sl (3.32)
(- )((a ") "”E).C.E("‘____”)
g b: )< I (3.33)

kit follows from (3.32) and (3.33) thas

gé - )f(a ”)I["”a:'z]s 1. (3.34)

Therefore, we need to find the largest ¢ = ¢(a,P) sush that

(n-9p)Cla,n) i [(n —p)(,‘(u,n) .
=% 4_51 1_5 ]‘ (nml), (3.35)
that is, that
200 - 1) (1 - By ' .
| I d i 2). 33
* emewa Y 039
Since

200 - (1 -pY
D) =1 - 337
Cla - ¥ 207 ‘
tsanmcruunsﬁmouonofn(na?)for()sas , and 0 « B < 1, we readily have

<l- a- P)’ , 3.38,
A P Te  T ( 030
which completes the proof of Theorem 9.

THEOREM 10. Lot the functions f{z) (i = 1,2) defimed by (3.1) be in the class Cla ],
with 0 < a = .; and 0 = B < 1. Then the fuction W) defined by (3.30) belongs 1o the

clasy (la,ga,B)], where

(1 - By |
pla,B)=1- . 339
¢ 30 - -BF ~ (1 -p) @32

28
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The result is sharp for the functions f(z) (i = 1,2) defined by (3.17).
THEOREM 11. Let f(z) € R{a,p) and fz) € Rla,x}, with 0 = a = % and 0 s p

< 1,051 <1, then f, * £,(2) € Cla,y{(a,p,x)), where

_ (1-H(Q-1

.l ] 3.40
R (B T T Y (TR oo
The result is sharp.

Proof. Since fi(z) € R{a,p) and £(z) € R{a 1), therefore

g(n—ﬂ) C(u,n)au s1-§ (.41
and
g(n—t) Cla,ma,,1-% 0.42)
It follows that
¥ 0-B)r-9ICa,mPa,,a,, « (1 -B(-D. e4)
We want to find the :argest ¥ = W(a,,5) such that
gn(n ~W)C@.ma, a1~y (.44
This will certainly be satisfied if
reop e ope é;%lﬁ?'")r o) 0.49)
or if
R o e e U
Since

) an -1 -$)(1 -v)
SR o W T T T e TR @47

is an increasing function of W(m = 2) for 0 « a « 5 anf 0 5 f,x < 1, lotting 7 = 2 in (3.47)

we get

“«1- (1-p(-v)
M (T R TR T (3.48)

which completes the proof of the theorem. Finally, the result is sharp for the functions f{z)

2
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(i = 1,2) defined by (3.22) and (3.23), respectively.
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A GENERALIZATION IN n-DIMENSIONAL COMPLEX SPACE
OF AHLFORS’ AND BECKER’S CRITERION FOR UNIVALENCE

Paula CURT’

Recarved: May 16, 1994
AMS subject classification: 32H02

REZUMAT. - O generalizare In spajiul complex n-dimensional a eriteriului de univalonil

ol lul Ahiors y) Becker. In acest articol se obgine varianta n-dimensionald a criteriului de

univalenih Ahfors ¢i Bocker.

1. Intreduction. In this note we obtain a sufficient condition for univalence. Pfalzgraff
[3] extend in € the theory of subordination chains and he obtained the n-dimensional version
of the generalized Loowner dlmmth oquation. In hia paper, Pfalzgraff used only normalized
subordination chains. Thers is no reason to use only normalized chains. From every
subordination chain, following a similar method with that used in complex plane, we obtain
a normalizod chain. On the othor hand, in order to avoid the passage t0 a normalized chain,
we obtain & version of Theorem 2.3 [3] for nenormalized subordination chains. Finally, we

present the n-dimensional generalization of Ahifors’ and Beoker’s criterion for univalance.

2. Preliminaries. Lot C' denote the space of n complox variables z = (z,, .., z,) with
the usual inner product, <:,>, and euclidian norm }-f.

Let 8" denote the open unit ball in C".

We denote by $#(C") the space of continuous linear operators from C" into C', i.e. the

nxn complex matrices A = (4,), with the standard operator norm:

* "Babeg-Bolyai” University, Faculty of Mathematics and Computer Science, 3400 Cluj-Napoca, Romania
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bAL = sup {1 Az) : 1zl = 1}, 4 € #(C)
The class of holomorphic mappings (f,(z), ..., /,{2)), z € B" from B” into C" is denoted
by H(B"). We say that f € H(B") is locally biholomorphic (locally univalent) in B if fhas a

local holomorphic inverse at each point in 8", or equivalently, if the derivative
.

Df(z) = (—«-——)
oz,
inj ksn
is nonsingular at each point s € B".

Let us denote by M the class of mappings:
M= (h€MB"), h(0) =0, DhO) =1, Re<h(s),z2>n0,2E B"}

A mapping v € HB ") is called a Schwarz function it §v(s)} = 5|l forall z € P

If 1,8 € HB"), we say that fis subordinate to g (in B") if there exists a Schwarz
function v such that £z) = 2(Wz2)), 2 € B, and we shall write / < g to indicate that / is
subordinate to g

A subordination chain is & function L. B" x {0, 00) — C' such that for each ¢ m 0,
L0 € H(B), 1(0,0) = 0 and there oxist Schwarx functions v = {V(I,l.f) such that 1.(z,s) =
LWz90,0,0x 95, s E R forall 0 s s st <oe

An univalent subordination chain is & subordination chain 1 = L(s,/) such for each 7
= 0, 1{.,) is univalent in "

A subordination chain L = [(5,1), € B, ¢t » 0 ic called a normalized subordination
chain if DI(04) = &'f for t = 0.

We shall neod the following theorem to prove our results.

THEOREM 1 [3). Let (3,0) = ¢'z + ... be a function from B* x {0,9) into € such thai:

() Foreach t = 0, L(-, 1) €E HB")

(1) 14z,1) is a locally absolutely continuous function of t locally uniformly with respect

n
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w0z E B

Let h(z,1) be a function from B" x [0,®) into C" that:

(iii) For each t = 0, h(*,) EM.

(iv) For each T > 0 and r € (0,1) there is a number K = K(r,1) such that
Vh(z, ) = K(r,T) where |z} s rand O st s T

(v) For each z € B, h(z,t) is a measurable function of t on [0,%).

Suppose h(z,1) satisfies:
oLz, 1) _
ot

Further, suppose there is a sequenice {1,}

DL(z,0)h(z,t)ae. t 20, ¥z ERB" (1)
> 0 increasing to  such that:

4 ’IN

lime ™ f(z,1,) = Hz) @

locally uniformly in B".

Then for each s = 0, L(*,8) is univalent on B".

3. Main resuits. Using the following change of parameter
0(1) = argay(1), 1° = log |a,(1)| €))
we shall pass from a nenormalized subordination chain L(z,f) = a,()z + ... to & normalized
one.;
L, t7) = L(e"""’z, ‘) “4)
We next present a version of Theorem 1 {3} for nenormalized subordination chains.
This version ts not the most generally possible. The condition for the first coefficient of the
function /(z,1) appears too strong, but it is sufficient for our purpose
THEOREM 2. Jer L.(z,8) = a(0)z +..., a (1) = 0 be a function from B" x [0,) into
C" such that:
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(i) Foreach t » 0, L(-, 1) €E KB").

(1) 1{z.9) is a locally absobutely continuous function of t locally uniformly with respect
oz €N

Let h(z.t) be a function from B" x [0,%) into C such that:

(iti) For each t » O, M-, 1) € HB").

(iv) For each 51 € B* Mz, ) is a meuswrable function on [0,%)

(v) Foreachin O MO)=0and Re <Mz0),2>=0,V:€EB"

(vi) For each T > 0 and r € (0,1) there is a number K = K(r,7) such that
fhz, ) s K(r, T) where s} s rand O st s T

Suppoose h(z,1) safisfes:
aL(s, 1)
ot

Further, suppose:
(0) la ()] —= = where 1 —+ »_a (1) € C'[0, )

= DI (s, t)h(s,0)ae. ta 0, VzED" 5)

(b) There is a sequence (1.}, 1, > O, {, — o such that
h —-IT"""" ) ®)
n—.o': al 1

bocally wniformly in B".
Then for each s a 0, L(:s) is wnivalent on B

Proof. We shall show that L,(s,¢°) from (4) satisfles the requirsments of Theorem 1.
It is obviously that L(s,1°) € B ") for each ¢ € [0,%) and L,(z.1") is a locally
absolutely continuous function on [0,%) locally uniform with respect to z € 8" Using the
change of parametor (3) relation (1) becomes:
oL(s5,1%) . dr [I.)L(u o0, l)(ze""")(—l d(:{('l)) . alL(e ”(;“:"z, ‘) ]

EYR e
Next, applying (1) and since DL(z,4°) = DL{e "z t)e *" we have.

34



A GENERALIZATION IN n-DIMENSIONAL COMPLEX SPACE

Lzt .
_(.)i'(_l__l = DL (z,1°)h(z,1°) where, h,:B" x [0, @) — (™" is the function defined by:
art
h(z,1°) = .;7‘7 h(ze 0 q)eno - ii%(;gz )

The condition () and the properties of function A imply that the function A, satisfies
(i), (iv), (v) from Theorem 1.

Further, we shall show that A (-,1%) € M for each ' € [0, ). It is obviously that
a/(1)
a‘z t;

Re<h,(z,r'),z>-_;.’.ch(u"‘“nz), 26> n 0 for all £ € B then A (-, 1) € M.
’.

h(0,f) = 0. Using (1) it follows that DA(0,¢) = and Dh(0,r) = I Since

By Theorem 1 it follows that ﬁmcnon L,(x, ') is univalent in B" for all 1 € {0,%) and
0 1{-1) is an univalent function in #".

Next, using Theorem 2 we shall obtain the #-dimensional generalization of Ahlfors’
and Becker’s univalence criterion.

THEOREM 3. Let f € HB "), f(0) = O, DF(0) = | be hocally univalemt in B and
Jet c € C\ {-1) with |c| = 1.

y

b1 -1 - 1) DJGE)'D f(2) (2. )4 s 1,V EH" @)

then f ix an univalent fanction in B

Proof. We shall show that (8) enables us 10 imbed f as the initial element Az) = 1(2,0)
in a suitable subordination chain.

We define:

L(z.1) = f(e'z) + Ti_c(e'-e*‘)l)f(ze ‘)(z),tE[0, ).z € B" ©)
e'(1+ce™)

Since a,(¢) = :
+C

we deduce that a,(1) » 0, |a,()| — % when 1 — = and
aft) € C'([0, o))
It 1s easy to check that:
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L(z,1) = a,(Nz + (holomorphic term), thus lim L0
e A

= z locally uniform with respect to #'
and thus (6) holds with F{z) = z.

Obviously L(z,¢) satisfies the absolute continuity requirements of Theorem 2.

From (9) we obiain:

DL(z.4) = TLe'Df(ze-') x

[l+¢e YA (l - 2')(Df(ze )) Df{ze)(ze, )] (10)

If we let, for sach fixed (z,1) € B" = [0, w), E(z,1) the linear operator defined by:
-1

E(z, )= -ce ] - (l -¢ "’)(Df(ze")) l)zj(ze")(ze", ) (1)

then (10) becomes:
DL(z,1) = T%e'l)f(ze")(! - E(z,1)) (12)

Next, we shall show that for each z € B” and 1 € [0,%), / - k{z,0) is an invertible
operator.

For t =0, E(z,0) = I, we have I - E{z,1) = (1 + ¢)f and sin{ce 1+¢ = O it follows that
I - ¥(z,1) is an invertible operator.

For 1 > 0, since E(,1): B - g(C.C)is holomorphic using the weak maximum
modulus theorem [2] we obtain that |£(z, )| can have no maximum in B" unless J#(z,0)] is
of constant value throughout 8"

lfz=0mdl>0werhavc

VEQ, 0} = lee ™1} = |c|le ¥< 1 (13)
Also, we huve
VE(z, 08 < max §Ew, ) (14)
[ % B3

Let now ¥ ~ ¢*w, where fwl = 1, then ul = ¢* and s0:

Ew,t) = —chulP 1 - (1 - §ul*YDf(W))' D2 f(4) (4, ) (13)
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ON A FAVARD-SZASZ TYPE OPERATOR
Alssandra CIUPA® and loan GAVREA’

Received: May §, 194
AMS subjoct classification: 41436

REZUMAT. - Asupra unwl opersier de tip Favard-Sisase. {n lucrare so introduce un
oporator gencralizat de tip Puvard-8zaez. Se studiazh proprietitile de aproximare & unel funciil
JE L,{0,) prin girul de operatori P, ¢l so di ovaluarca ordisului de aproximare cu ajorul
modulului de continuitato de ordinul dol.

1. Following s method given by LL. Durrmeyer {2] and M.M. Derriennic {1}, SM.
Mazhar and V. Totik [6] have obtained the following Favard-Szasz type operator:

M) = WE ([ F0w, (0], )

k9
whore p,,0) = ¢ 8L and f € L]0, %)
Similarty, we will modify a sequence of Favard-8zesz type operstors, which are
introduced by A. Jakimovski and D. Leviatan {4}. Lot g(z) = }_; a, 3" bo an analytic function

in the disk 2] < R R > 1, and suppose g(1) » 0. Define the Appell polynomials

px), & = 0 by:

gu)e = Fp,(x)u k (y
r
To each function f defined in [0,%) associate the operators:
e ™ k
ELN@ - 2 z;pxnx)/(-;) (1.2)
We suppose p(x) = 0 for x € [0,»), k=0,1,2,... If @, 2 0, n € N, this supposition is satisfied,
because
( ) i xk-v
x - 1 .3
Py 2, a, Ty (13)

" Technical University, Department of Mathematics, 3400 Cluj-Napoca, Romania
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A. Jakimovski, D.Leviatan [4] and B Wood [7] have studied the properties of this sequence
of operators.
For S € L{0e), wo replace f(%) into L, by ?,,%Y [Ponfd wher
dfx) -gafx‘, a, » 0 and so we obtain a class of positive linear operators:
P - 2 o) [pnt)e (e 1.4
CN® = = Fopil ’)?ZTSL""" Ye "f(1) (14
Next, we will denote by E the class of functions of sxponential type, which have the
property that | 7(¢)} « e*, for each 7 a O and some finite number 4.
The following lemma is sssontial to study the sonvergence of the sequence ¥ f.
LEMMA 1.1. For all x » 0, we have

(Po)(x) =1 (1.9

(ra)(x)-u“(‘“)u) "g P ).j.;‘l (1.6)

Pe,)) < ¥? *“( «%f(‘;})+?(’ “’;‘? ‘M) *2) an

where e (x) = x', 1 € (0,1,2)
FPron/. Next, we will use the propersies of the gamma function and the values of the
operator Z,, defined st (1.2) for the test Aincion v, We heve
- - H -, i
(Pe)® mgm(nr)m[a(m» o

But, using (1.3), we have

I'p,(m)r"d: - f.;a,ném I‘(»:y-'r-'dz -

& [ 1

| 1 1 1
= Tk -i+1) = - .
LT =) IR LR AR URE-LO

Therefore,

Pe,) () = ﬁ%gp.(nx) - (L)) =1
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Similarly, one calculates (P e,) (x). By making use of

Lept) = EnTpm £ = x e L 2L,

one obtains (1.6).

To calculate (P ¢, )(x) we will use

- e ™ pg( x) 2
(P.e)(x) g(l)”?; e e o

[ 4

ﬁ mpk(nl)ﬂd-_lfza,ﬁr(k i+3) = __?Ea(k i+ 1) (k-i+2) =

n° -0 ind

But

'
.._§(k+l)(k+2)2a ~_.T(k+l)zia + A i-1)a -

[ )

| 2 / ) B
= —;;(k +1)(k+2)d (1) - ;—;(* +1)d, (1) + —n—,d. ().
Replacing in (P ¢,) (x) and using (1.8), we obtain

4 o I
» - 4-28 MY, 187+ 4g7() N, 1 4.
(Pe,)(x) = x +n( ﬁg_m.) _".i( Qe A, x)
where we have denoted

A(n,x) = __mz P )d,, (1) -2k + e} (1))

21y
But A(n,x) i8 negative, because

4 (1y- 2(Ix+l)d,(l)-£l(1-l)a 2(‘:+1)£m-£1(l—2k Ia,

i=2 il
and 50 we obtain (1.7).

We wiil prove that the cxpmuon “TA(" x) i3 bounded. Taking account that
d(x)-Eax d(x)-}:tax"andd,‘ (1:)-Ear(l~l)ax’2
i=-0 is2

and using the Lagrange theorem, we have
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|df (1) -, (@) = |d ()|, where n € (0,1), or

d/(1)-a, =d (m)sg"(msg”(1) =M,
d,,’(l) Mea, M-a
dy 4 a,
Similarly, we have:

One results that

i (1) - o () = |di" (B)), where § € (0,1), or
(1) -2a,=-d'®sg” ®sg’() =M,
d:“) M +2a, M 2a,
mdwwoobtdamn 00 < a
By mddus‘nu of this sstimations we obtain:

PR - u,*k‘+ e™ - . Ml*at .
'K".')‘(mgm(ﬁ') a ,g(ﬁ gl’.(m‘)(k l)——;—;—-

M,+2a, 2(M,+a) 1 g'(h)
- +* ‘ + L
a, - [ (35w H
THEOREM 1.1. f f € L [0, @) N E, then lim(P_f)(x) = f(x), the conmvergence

being uniform in sach compact (0.4).
Proaf. According to Lemma 1.1 snd noticing thet the expresion
a1

e«
P
o &5
is bounded, one results that lim(P ¢ ) (x) = ¢(x)}, 1 € (0, 1,2}, where ¢,(x) = x' are the

A-o-

test functions. In aocordance with the Bohman-Korovkia theorem, we obtain the desired

result.

2. In this section we are concomed with the estimate of the order of approximation of
a function / € C[0, a] by means of the linear positive operator P,. We will use the second
order modulus of continuity, defined as

W, ([ R) =sup(| f(x+6)-2f(x)} + f(x-0)] . Ot =M, x-1, x+E[a, b]}

a
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Proof. Let f, be the Steklov function attached to the function £ We will use the

following rosult of V.VJuk [S} if f € C[0a] and h€E (o, b ;"), then
1 -Sh & Julfih) and 1AL = -;-;%m,(f;h)-
Since (P, ¢,)(x) = ¢, we can write
P () - J() = PAS-£)(O + KPS () - £(0)] +
« LA = S00)) & 20 - 40 + WPL) () - i)
By making use of the relation (2.1) for the function f, € C*[0, a], it results:
P4 @) - 100 = U WPE- P + 2 L VP02 )
In according with a results from [3] and [$], we obtain:
e ‘-w vy s-m +g 11 ..m +T-—;w,(f h)

and so results that
PA) @) —/.(x)t-( RN h))JP(:—x)’(x) ‘
B T AT

By inserting into it A = J(P,(/ - ) (x) we obtain

HPLY® -£,00)] = .“;ma +-’{!%m,(/ k) *7 w, (f; )

now we can write that

9

L4

PN -1 = -w,(f k) *..m 33-'--;;«»,(/ ) um,(/ hy =

- 210 Jes h)(a +.,;)
and so the theorem is proved.

Remarks: 1. Let us denoting by

= d' (1) s 1 .
n = s B Gy 2 s B ’J((n)("“k )
k

g &= n
In accordance with the notices from the proof of Lemma 1.1, we have

t My+2a, 2 Mz+a ¢ g kel
B(n,x) s s 20 nx)|x -
n? a, na, g() gpk( ) n
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Next, applying the Cauchy inequality, we obtain

3 + - - ke ty:
gm("r) x-‘”l sjgp,(nx) Jgp,(nx)(x- n ) =

enxg(l)J_':; *';}'i (l + & (l)g+1:;3 (l))

Therefore, we can write that

| M,v2a, 2 Miva |y g7 (1) +3g'(1)
. el — I+
H(u,:r):s:'-f Y +n a " ?( g
and so we obtain
» ¢ M +2
(Par-xPy(ys2X o 3 (81D - 487Q) ) L PG
» n Al gh T a,

+__2_M‘+a,l_{+ P fy, 87+ 38°C) = C(n,x)
) " » g“i '

Choosing A, = yC(n,x) , we cbtain the following ordor of approximation:

ENE -1 = 2y Jaisimpfs 2
. P Al M N

1

2 If f € ([0, a], from the relation (2.1) we obtain

R O R T T TITEE YO R R Vg X VR S T8
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RRZUMAT. - Selutli periedics pentrw o scusfie intogrull din biomatematich vie

principinl Wi Loray-Schander. Rozuliatele stabilitc In accasth lucrare se referk la oxistonn,

uniciiates ¢l aproximarca monoton-esativil & solujitlor periodice netrivisle peniry scuajia

intograli (1). Demonstinfiilc s¢ bansazd pe peinciphl de continuere al lui Losuy-Schauder ¢l

po tehnlcs itorafiilor monotone.

Abstract. The main results of this paper concern the existence, the uniquencss and the
monotone iterative approximation of periodic nontrivial solutions for the delay integral
equation x(f) -L/(:,x(:))ds. The proofs are achieved by the Lersy-Schauder

continuation principle and the monotone iterative technique.

1. Introduction. The delay intogral equation
5(1) = ["Sta. x(s))ds (1)
is a model for the sproad of certain infectious disoases with a contact rete that varies
seasonally. In this equation x(/) represents the fraction of infectives in the total population at
time #, t© is the loangth of time an individual is infective and (1, x(7)) is the proportional of
new infectives per unit of time.
In [1-4, 6-11] sufficient conditions were given for the existence of nontrivial w-

periodic continuous solutions to Eq. (1) in case of a w-periodic contact rate

* "Babeg-Bolyai® University, Faculty of Mathematics ond Computer Science, 3400 Cluj-Napoca, Romania
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S +w,x) = f(t,x), f(1,0) = 0.
The tools were Banach’s fixed point theorem, topological fixed point principles, fixed
point index theory, monotonicity technique.
In {7] we used the Leray-Schauder continuation principle (in Granas’ approach) to
prove the existence of positive continuaus solutions x(r) for Eq. (1) on a given interval [-t,7],
when it is known the proportion ¢(7) of infectives for x s 1 & 0, i.e.

x(1) = ¢(t) forxat1s0 Q@)
Cloarly, we had 10 sssume that ¢ satisfies the following condition
4= 4@ - [/, 00 ds. 6)
Under condition () the problem (1)2) is equivalent with the initial values problem
W = . x(0) -t ~%,%(1-%)) (xOatuaT 4)

(O =) forsurs0.
We made uee of the following hypotheses:
(i) 7(¢.x) is nonnegative and continuous for s« /' & Tuu;x-o.
() (1) is continuous, 0 < @ = ¢(7) for -t u 1 = 0 snd sstisfies (3).
(iii) there exists an integrable function g(/) such that
Je.x)ng() frxsiaTondxma

L:g(.v)da ag forOsral
(iv) there exists a positive function Ax) such that 1/A(x) is locally intograble on {a,%),

J(.x) s A(x) forOsraTandxna

T < L.(l/h(x))dx.
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THEOREM A [7]. Suppose that (i)(iv) are satisfied. Then Eq. (1) hay at least on-
continuous solution x(¢), x(f) = a, for -«  t < 1, which satisfies (2).

Approximation schema to solve (1)~(2) uader assumptions (i)-(iv), based on the
monotone iterative method of Lakshmikantham (see {5]), were described in [8] for the cases
where (7, x) is nondecreasing or nonincreasing with respect to x.

In this paper we shall use a similar technique based upon the Leray-Schauder
continuation principle, to establish a new existence result for the periodic solutions of Eq. (1).
Finally, the monotone iterative technique if used to prove the uniqueness of the solution and
to approximate it, in case f(#,x) is nonincreasing with respect to x.

In [4] (see also [6]) the following conditions are used:

th)) S, x) is nonnegative and continuous for -0 < ¢ < w and x = 0.

(h) f{t,0) =0 for -w < ¢ < o and there exists w > O such that
S(t+rw, x) = f(t,x) for - <¢f<wand x= 0.

(h,) there exist 0 < a < R and a nonnegative locally integrable function g(/)
with period w such that

S, x) mg(t) fr0stswandasxxR,
and

I‘lg(s)ds xqg forO0stsw

(h) fe.x) s Rk forO0srsweandasxs R

One of the rosults in [4] is the following theorem whose proof is bused on Schauder’s
tixed point theorem.

THEOREM B {4] If (h))(h,) are satisfed, then Eq (1) has af least one positive and
continuous solution x(t) with period o and
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as .i:i;o x(1) s ‘::lg. x(1) = R.

Let us remark that for & given function f(r, x) satisfying ¢h;) and (h,) could exist
severs! intorvals [a.R] such that (h,) and (h,) hold. If thess intervals are disjoint, then
Theorem: P ensures that the corresponding solutions are distinot. Fouxnmpl‘o, iff(t,x) = xh
for - < (< = and ¥ » 0, we may take abitrary @ > 0, @ > 0 and R > a. Clearly, in this case,
any nonnegative consiant is a solution.

Assumption (h,) is essential for the domain invariance in Schauder’'s fixed point
theorem. We shall replace (h,) by another condition which guarantos that the Leeay-Schauder

boundary condition is satisfied.

Weo shall see that there are casss whers our main existence result, Theorem 1, applies
and Theorem B doss not, snd conversely.

2. Main caistonce resuit. Wo use instead of (b)) the following hypothesis:
(h,) shere axists & positive function A(x) such that 1/A(x) is integrable for a «
x 2 R ond a sumber b such that a < d < R,

JU.x) 8 h(x) frOstswandasxsi &)
[fumG)de s ©

sad
JU.x) <bh frO0astswmdbursR m

THEOREM 1. Supposs that (h,)-(h,) and (h,) are sonighed. Then, Bq. (1) has at least
one conlinuous solwtion 1) with period « and

as inf x(f)<band wp x(1)<R ®)

—ah €4 <» ~m<{<n

Proof. Let E be the real Banach space of all continuous and w-periodic functions x(/),
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f(x’(.v)/h(x(s)))dr si-t,sw for ;&¢I +w
'm(l/k(u))du sw for 1, 8184+
)
Since x(4,) < &, by (6), we deduce that x(#) <R for all 4, = 1 % 1, + w, equivalently for all

—o < ¢ < » Therefore, §x§ < R, s contradiction. Next, suppose (11). Let 0 = ¢, s w be such
that x(4,) = min x(¢) = & Thon, by (9) and (7), we obtain

Sstae

b= x(1)~(1 -N)a+ kf J(s,x(s))ds <
<{1 =AYb +Ab=b,

(12)

again a contradiction. Thus, H is an admissible homotopy on (/. On the other hand, the
mapping /K0,°) is essential (its fixed point index A/RO,"), U, K) equals 1) because H(0,)ma
and the constant function @ belongs to U/. Consequently, by the Leray-Schauder principle,
1.’} is cssential 100. Theretire, thers exists at least cae fixed point of A1) in U, that is
a continuous solution with period @ for Eq. (1) satiefying (8). Thus, Theorem 1 is proved.

M:.M:mﬂumumdmmm}mmmmm
« locally integreble function §(/) with period w such that

J.x)aH{t) for Ostaw andbsxs R

Ll(.v)do*ib for Osisw
Indeed, under this more genorsl assumption, the strict inequatity (12) also holds.
Remark 2. Here is an exampile for which Theorem 1 applies but Theorem B does not.

Letvs=w~=1and et f(1,x) = A(x) (- <t <) where

h(x) = 3x for 0= x sl
= -4x+9for | s x =2
=] for 2sxx3

“3x-8 for 3axsx$
52 -x+2 for 3= x.
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Conditions (h,)-(h;) and (h,) are fulfilled witha =1, b =2, R=3, g(!) = | and Mx) = h(x),
but for any R > 0 there is no @ < R such that (h;)~(h,) be satisfied.

Remark 3. For & given function f(/,x) satisfying (h )-(h,) there could exist several
intervals [a, K] such that (hy) and (h,) hold. If theas intervals are disjoint, then the
corresponding solutions by Thearsm 1 are distinct. Hees is an sxample: Let ¥ and 4,(x) be as
in Remark 2 and let

J@.x) = g(h(x) for -~ <g<w 4(n-1)mxadn n=112, .,
where h_(x) = 4(n - 1) + A (x - 4(n - 1)) and g,(1) i» any continuous nonnegative function
with a period > 0 such that
f"n(')d' nifr0stsaw
It is casy to see that ifw'::): g1 s (4(n-1) + 1), all the sssumptions of Theorom 1
are fulfilled for a=4(m-1)+1, b=4(m-1)+2, R=d(n-1)+3, g(1) =(4(n-1)+1)g(0)
and A(x) = max g(1)h(x). Therefore, for each nonnull netwrel number » so that

ddlse

4 - 1) + 1 = (w max g(1))", Bq (1) has st least one contimuous solution x (1) with
Ost6w
period w, such that
4n-1)+1 2 inf x(1)<4(n-1)+2
~mL<t<.

and

“wg xf{t) <4n-1)+3
For example, in case g,(f) = l,uwhl&uﬁmmlhofnlmwm
x{t)w4(n-1)+9/5 ne=}2 .
Notice that none of these constant solutions can be obtained by means of Theorom B.
Ixample 1. Let us give another function which satisfles the assumptions of Theorem 1:
J(t,x) = g ()h(x), -~-®» <y<ow xa0,

kX ]
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where A(x) = (x - 1/2)(x -2)(x -3) + 3 and g,(?) is a continuous function with period
w = f"(i/h(x))dx
£
and satisfies the following conditions
O0sg()sifor0sisw,

L:,,(s)a: a2 1a((11+J19)/6) for 0 s 1 5 .
For this function we take v = 1, @ =1, =26, R=27 andg(#) = A((11 + /19 )/6)g(1),
whore A((11 + /19 )/6) > 1 is the minimum of Kx) for 1 = x = 2.7.

3. Uniqueness and monctons lterative approximation schema. Under the
assumptions of Theorem 1, denote by A the completely continuous operator from
Pe{x€FE, Oax(t)for 0=t s o) imbo P,

Ax(1) = L’f(.,x(.))d., w<f<w xEP
Also define the following sequence of functions in P :
V() =R, vit)=~Av, (0),n=12

THEOREM 2. Let (h,)-(h,) and (h) hold and suppose that f(1, x) is nonicreasing in
x for a & x o R and there exists a & (-1, 0) such that

. (. vx) s Yf(1,7) 13)
Jorall t€ {0, w), yE (0, )l x & [a R)withyx E [a, R} lf
A(R) (N sR fr0sssw, (14)

then Eq. (1) has a wnigque continuous solution x'(f) of period o such that a % x'(1) s R for
0 < 1 s w. Moreover,
asv()sv(f)s. . sv, (s sx°()=..

sv, (s vt s v(i) s v(1) = Rfort € [0, w], (15)
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v (1) = x*(1) uniformly for 0 & 1 s w as n —> .
Proof By Theorem |, there exists at least one continuous solution x{/) of period w for
Eq (1), such that a = x(7) s R for 0 = 1 s . Now let x(/) be any solution of this type for Eq.
(1). Since f(¢, x) is nonicreasing in x for a s« x = R, from
asx({)sR=v(1)for0 s s w,
we get
as AR () sx()for0atsw
It follows that
as AR s x(1) s AX(R) (1) for 0 s 1 s @
By (14), this yields
a s A(RY1) s A(RY (1) a x(1) s AX(R) (1) s Rfr 0 s 1 s .
Finally, weo obtain

asv(sv()s sv, (s «sx(t)s .

(16)
sv, (s sv()sv(l)~Rfor 0 s (s .

By the complete continuity of A7, the sequonce (v,,.,(¢)),,, contains & subsequence
uniformly convergent to some x.(/) in K and, similarly, (v, (1)), ., comains a subsequonce
convergeing uniformly to some x'(f) in X From (16), we see that the entier sequencos
Vot (D, and (v, (4)),,, converge uniformly 1o x.(7) snd x°(¢), respoctively, for 0 = 1 =
w, and that

agsx{t) s x(1)sx"({)s R for Ot Qan
Obviously, we have

x(1) = A x'(1) and x*(¢) = Ax(1).

Now we prove that under assumption (13), we have indoed x (¢) = x*(/) forall O s 1 s @,
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To this ond, let
Yo = min (x ()/x"(4)).
From (17),w|mthu0<a/R‘y,:“:. Wo show thet v, = 1. Suppose y, < 1. Since
x (1) » max{a, y,x'(¢)) = y,max{a/y,,x"(1}} » a for 0 ¢ 1 s w, by (13), we get that
x°(t) = Axf1) s A(y, max {a/y,,x"}(1) =
s Yo A(max (aly, . x ")
One has x°(1) & max {a/y,,x ()} s R snd so,
A(max (aly,,x"})(1) & Ax*(1) = x ().
I follows x*(¢) & yox (f) for 0 = ¢ s @ Hence y," 5 y, of, equivalontly, a « -1, &
contradiction. Thus, v, = | as claimed. Consequently, 5 (1) = x(¢) = x*(7) for O ¢ s w and
the proof is complets.
Remark 4. A sufficiont condition for (14) ia that
AMaX}) s R for 0stse (18)
Indesd, from @ s A(R)(1) & A(a)(1), we got that
AXa)(1) s A(R)(1) s Aa)?r) s R,
whence (14).
If in Theorom 2 we use (18) instoad of (14), then we have in addition thet for any
continuous function x,(7) with period w setisfying @ & x{) « K, one has
x{0) —~ x°(¢) vniformly for O st s @ (19)
sn— wherex = Ax . # = 1,2, . Indeed, in this cass, from a & x,(¢) « R, we obtain
a s vis) s x(1) s Ha) « R = vi)

asv(r)sx(r) s vit)s Ma) s R =v(r1)
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and, in general,
asv()avt)a.. & v o ()=
5 x 1) & vy 1) 5.5 v (1) & v(0) = R,
n=12, ... Since v(1) — x*(1), it follows that x (1) — x'(¢), ss claimed.

Remark $_1If f(1, x) satiefies (h,) then (18) holds. Indeed, from f(s,a) s R/x for any
I, by integrating, we obtsin (18).

Conversely, if /(7. x) is constant in 1(f(1,¥) = A(x)) snd satisfios all assumptions
of Theorem 2 and (18), then (k) is fulfitied. Indesd, for any x, & {a, K], we have A(R) =
s A(x,) = A(@) & R Honce, h(x,) = v*A(x,) 1 RA.

The next theorem completes the results in [4).

THEOREM 3. Lot (h)<h,) hoki and supipose that 1(1, 5) is nowicreasing in % for
a5 x & R and thore exisis o € (-1, 0) suoh that (13) is sotigfied. Then Bq. (1) has o wwigue
continuons solwion X'(1) of period « sch that a & X'(f) % R for 0 « ( u w. Moreover, (19)
holds.

The proof is similar with that of Thearem 2, 50 we omit the details.

Example 2. Suppose that /{1, x) satisfies (h,)-(b,) sad

J6.%) = g(NHON) for ~@ <y <wand | s xu3,
whore g(1) is & contimons function with period w such that
0sg)ey) Mr0sisw

L:g(s)ds !l for0srsw
The assumptions of Theorem 3 are fulfilled witht =1, a =1, R=3 and « = -1/2.
We conclude with a simple examplo of functions which satisfy all assumptions of

»
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Theorem 2, but not (h,).

Example 4. Suppose that /{1, x) setisfies (h,)-(h,) and
f(t,%) = M(3/x)? for ~-@o <y<wand | = x = 3,

whmMiomymMmhﬁ<M< 5ﬁ0—112. All assuymptions of Theorem 2 are

satisfiod with t = 1, a= 1, b= 2.5, R = 3, provided that Mw = 2 - 5430 /18, while (h,)

does nat hold. Thersfore, there are cases where Theorem 3 fails snd Theorem 2 applios.
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CONJUGUEES
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REZUMAT. - Awpre perechilor de canashint Pinslor - prolesiive conjugats. In scessl

ot cate siudintl sciutin do conjugars peniii conswiunile praiective Plasler.

Introduction. La rélation de conjugaison n #46 introduits par Nordes [7] pour les
connexions affines. Vodomicov {10} ot puis Gawcarsewiax [2] ont génératied cetto rélation,
fondent une théorie globale (en utitisant is thiorie des espaces fibrds). R Miron 4], V.
Crucesns {1} D. Opria (8] Faeur [S], (6] ant développé I'éude de la rélation de
conjugsison ontre los connenions: mstriques, lindaims, projectives, tangonticlics, do type
Carten ot Finslor. Dane cotts note nous diudions Ja sbletion do conjugelson pour fes
connexions Fineler projectives.

Définitian de ia nilation de conjugslson pour les commesions Hinduires.

DEFINITION 1,12} Deux connexions V of ¥ définies sur un ospace fibeé principet
P(M.G) somt dites M-conjuguses, o k-G — G eat un ondomorpliieme du groupe 0, 'i) existe
un sspace fibré riduit LM H') do PMG) de groupe struciursl B = (g € G: h(g) = g) tel
que pour toute section 0. U — P, on a0’ @& = th « o'm, o) @, @ sont lee formes do
conexion do V ot de ¥ {1tk est I'endomerphisme de I"aigdbre de Lie induit par 4). Pous le
groupe Gunmmmmwhwm:

" Universiy of Craiova, Facully of Mothematics and Computer Science, §100 Craiova, Romania
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- la - conjugsison définie par un tenseur de type (1,1). (plus general une e-densité de
type (1,1)) (y X

- Ia - conjugaison définie par un tenseur de type (2,0), (plus general une s-densité de
type (2,0)) (c*).

DEFINITION 2 ) Les connexions V ot ¥ sont e-conjugudos si entre leuss
coefficients (dans les bases Jocalos) éxiste les rélations:

o= almly, @y 8).

b) Les connexions V ot V sont w-conjugudes 1i entre feurs cocfficiants éxiste les

rélations:
Yo =~ RE,. (ci, -~ §).

Définition ds la conncuion Fineler prajective. Sait § = (EaM) un fibed vectoris!
lindaire (b s flbre type F = R) dosé & wne connexion nonlindsire N définie par la distribution
horisonisle H:s € E —~ HE (donc T.E = NE® V,E), wnlm (U,) = (U, = a/ax,
Uy = 8/dy) In base nsturetic ot {X,) = (X, =/, u, = 00y} in bose adapide dame T, (a3 ~ |,
o ¥ 0 4 = 1, ). La wansformation de is cans looale sy £ est de ia forme;

¥ wxtxt L xt), y e fixt, )y ()
Une connesion lindaire V o’appelle d-conmexion si elle conserve par parslidlisme des
distributions / et . Les cosfMicients looals d"une telle conmoxicn par rapport & la base X sont
notés par [ (x, ») ot par rappors & In base {U,) par vilx, ).

DEFINITION 3. 9 Uns d-connexion lindsire sur £ 3°appelle quasi-projective normale

M=wl, w&R @)
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Cette définition a un caractéro géomdtrique si st seulement si ls fonction f(x' . x") des

formules (1) est do la forms.
ax"

—tm———

ax'
Prof. Stavrs P. [9] montre que une sransformation sV — ¥ de type:

fi(x' . x") =A™, 00 A=

¥, = V. + o(X)'AY + oY) hX, (svec los motations usustios) ®
conserve la classs des dconnexions lindsires quasi-projeciive normate.
Les coefficients de type Weyl J;, qui sont invarianis & les ransformations de type (3),
, sssenticls restent: ‘
L= n e {re o 1) @
On définissont comme dans ie ons clasiquo les coefficlents J,, ot J, = J,, (le demier est

_
pour W' = —1

symétrique).

DEFINITION 4. Soit V wne connexion quasi-projective sonmale, avec les cosfficients
locals y.,. sssacide a I'spplication de sonnexion homogens K (pour y > 0); la connexion
projective normale généralisde, sssooide & V, noide par ¥, oot une conneuion lisdeirs dont
les coefficients locals Y7, (dane os bases natureties) sont définie per:

ol R NE) -
VL0 Vamy s Wey e, Ve,

., » »,
¥a*0, Yo =0, yi=0in-1)-J,

Connexloms Finsler - prajostives conjugnées. Ainsi qu'il résulte de la définition 4,
une connexion Finsler projective sst une connexion lindeire donc se peut appliquer, pour ia
rélationdcluwmlm\h“ﬂnid‘on 2

Pour ¢-conjugaison, d’'aprés la rélation :,',-c;':;,c," o les exprossions des
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coefficients ; données par les formules (5), s’obtient les rélations:

j;,. = ¢y -’,:Uf + ;;.{'Tco'J“c," +yile/e,, (6)
;Jklhcoh + "{l cai‘lu coh + y-"'k‘ "()0 -y 62, "
c,“J,;L'oj + T'i’:’-rc:.lnc“’ vyiele) =0 ]
‘;;‘{'TJM = c'.‘li;b "'hh M %rc:‘,,hckh + y-xcjoc:: )

(c;') "tr (E; ¢y
C=(eg)= el |, C- Sl Cc-Cak
0 .0 ¢S 0 .0c

Pour ¢ - conjugaison, d’aprée la rélation :;, - -c““;,",c" ot los uptmiomducooﬂldonu;

données par les formules (3), a’vbtient les rélations:

ST MG, v y"c’“-5ﬁ+_;'__§.ryc".[”5“, (10
-y, =Ml r y e, ¢ ;’.!:Tc"{“au, (1)
—;_’:T],, “CUSIE, ey e™E, ;{chwﬂc‘“, )

A, - .”..}:'Tc“‘JME“ +yte® i, -0 (13)

Le tenseur de y-conjugmison ((c**) satisfuit los conditions: ¢'*-C,_ = 2-8, .
Romargue. Los réiations de g-conjugaison (6)(9) et les réiations de y-conjugaison

(10)-(13) sont caraciérisédes pasr ies coefficients J de type Weyl.
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REZUMAT. - Puncie fixe comune pentry aplicatll slab compattbile. In lucrers osto deth

o tooremnil de punact fix pentry perachi de aplicatis sla compoithile, car extinds uncio xaulteie

sle lui Ding, Divieosra-Besan, Jungek i Kang-Cho-Jungok. Apol, acest reaniial ssie ontins

poniry gisusi do aphicagh.

Abstract. In this paper, first, we present a common fixed point theorom for two pairs
of weak compatible mappings, which extends the results of Ding, Diviccaro-Sessa, Jungck and
Kang-Cho-Jungck for nom-proper maps. Bocondly we extend our result for sequence of

mappings.

Introduction. In {6], the concept of compatible mappings was introduced as a
goneralization of commuting mappings (AS=S4). The wsitity of compatibility in the context
of fixed point theory was demonatrated by exsending a theorem of Park-Bae [12]. Jungek [8],
oxtened & ;u-ult of Singh-Singh [ 18] by employing compatible mappings in lieu of commuting
mappings and by using fous functions, s opposed to three. Most recently Kang-Cho-Jungek
[9] extened the result of Ding {3], Divicoaro-Sessa {4] and Jungok [7] by employing
compatibility in leu of commuting and weskly commuting mappings respectively.

In this paper, we extond the result of Ding {2}, Diviccaro-Sessa (4], Jungck [7] and
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Kang-Cho-Jungck [9] for two pairs of weak compatible mappings which are not necessanly
proper.

Sessa [16) goneralized commuting mappings by calling mappings 4 and S from a
metric space (X.d) into itself & weakly commuting pairs, if K ASx, S4x) s K Ax, 5x) for all x
in X (see also {17]). Subsequently, hungck [6] defined the following:

DEFINITION 1.1. Let A and § be mappings from a metric space (X d) into itself. Then
the mappings 4 and S are said to be compatible Iff

lim d(ASx , SAx ) = O,

whenover (x,] is a sequence in X such that lim Ax_ = lim Sx_ = § for some § in X

Howsver, since slementary functions which are not 'proper’ are not compatible (see
exampie 2.5{8]}, it is desirable to introduce a less restrictive concept-a concopt, we shall call
weak compatibility of mappings. This new class of mappings includes in its domain all the
mpﬁaﬂamum&iu&onwnpm“mu«uuﬂy *proper’.

DEFINITION 1.2. {13,14]. Lot A and 5 bo mappings from a metric space (X.d) into
itself. Then the pair {A.5} is said to be S-weak compatible, iff the followings lmits exist and
sasisfy

0} tim d(SAx,, ASx,) = lim, d(ASx,, Ax,)

Gi) tim (S Ax,, Sx,) « lim d(ASs_, Ax_),
whenever thore exists & sequence (x,} C x such that lim Ax_ = lim Sx_ = & for some & in X

Clearly two compatible maps 4 and 5 are S-weak compatible (as well as A-weak
compatibie), but the converse is act true. Observe example 2.8 of this note. It can also be
seen that two weakly commuting mappings are compatible, but the converse is false.

Examples supporting this fact and other related results can be found in [6,7,8 14].
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In order to add validity and weight to the argument that our concept of weak
compatible maps is visble, meaningful and potentially productive gensralization of compatible
maps, & series of propositions has been given. The following proposition help us to recognise
the weak compatible pair of maps.

PROPOSITION 1.3 Ewery compatible pair of maps {48} is A-weak (S-weak)
compatible.

Proof In case, the pair of maps (A4S} is compatible we have that
limd(ASx, ,S4x ) = 0, whenever ﬂmo_ existsa a sequence (x,} in X such thet
lim Ax = lim Sx_= ¢ for some ¢ in X. Then lim #(ASx , SAx ) s lim d(5Ax, Sx ) is
obvious. Now

lim d(ASx , Ax,) = lim d(ASx_,SA) + im d{SAx , 8x ) + lim d(Sx,, Ax )
ie, im d(ASx , Ax ) s lim d(54x_ Sx ), as desired. Similar conclusion can be drawn in
favour of S-weak compatibility of the pair {4.S).

The converse of above assertion is not true. However, the fallowing propositions show
that the definitions 1.1 and 1.2 are equivelent under some conditions.

PROPOSITION 1.4. Let A and S be self-maps of a mewic space (X d). Let A.S are A-
weak (S-weak) compaiible and let lim d(SAx ,Sx) = O0(lim d(AS5x ,Ax ) = 0),
whenever there exisis a sequence (x,) i X such that lim Ax = tim Sx_ = t for some t in X.
Then A.S are compatible.

Proof. Since 4, § are A-wosk compatible and lim d(SAx, , Sx ) = 0, it follows
that  lim dASx_ , SAx) = 0. Therefore, the maps AS are compatible and
hm, J(ASx,, Ax,) = 0. This completes the proof.

As a direct consequence of Propositions 1.3 and 1.4, we have the following:
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PROPOSITION 1.S. Let A S be selpmaps of a merric space (Xd). Let
lim d(SAx,,Sx,) = O (lim d(ASx,, Ax,) = 0) whenever there exists a soquence {x,} in
X uch shat tim, Ax, = Vim Sx_ = 1 for some 1 in X Then AS are compatible iff they are 4-
weak (S-weak) compasible.

By recalling that a mapping £X — Y between topological spaces is proper iff /'(()
is compact in X when C is compact in X, we can say:

PROPOSITION 1.6. Suppose that A and 5 are continuous selfinaps of a metric space
Xand thot 8 is proper. lf Ax = Sx implies ASx = SAx, thon the pair (A.S) is A-weak (S-weak)
compatible.

Proo/. By sulficiont condition of Theorem 2.2 of {8], the pair of maps (A.S) is
compatible. Hence by Proposition 1.3, the pair {A4,.5) is A-weak (S-wesk) compatible.

PROPOSITION 1.7. Lot A and § be contismous selfmape of a mewric space X and that
S bo praper. Lot Ax = Sx implivs ASx = SAx. M&SWMWW)IMA-M
(S-woak) companible.

PROPOSITION 1.8. Sppose thar £ ard § are comtinuons selfnape of a mewrk: space
and ihat S is proper. If A = Sx impliea x = Sx, then the pair (A.S) is A-weak (S-weak)
compatidle.

Proaf By eorchtary 2.6 of {8}, the pair of mape (4,5) is compatible. The pair (4,5}
is therefore A-weak (S-wesk) competible by Propositios 1.3,

PROPOSITION 1.9. Suppose 4 awd S are continuous selfnaps of a metric space, the
pair {A,S} is Aweak (S-weak) compatible and 3 is proper. [f Ax = Sx implies Sx = SAx (Ax
= ASX), then the pair {A.S} is compatible.

Proof If Ax = Sx implies Sx = SAx (Ax = ASx), then the continuity of A4 and § and
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A-weak (S-weak) compatibility of the pair {4,5} says that d(ASx, S4x) = 0 which implies ASx
= SAx and therefore the pair {4,8} is compstible by sufficient condition of Theorem 2.2 of
(8}

PROPOSITION 1.10. Suppose A and § are comtinuous selfimaps of a metric space X,
the pair {A.8) is A-weak (S-weak) compatible and S5(A) is praoper. [f Ax = Sx implies x = Ax
(x = Sx) and A(S) is ingective map, then the pair (A.S} is compasible.

Proof If Ax = Sx implies ¥ = Ax, then the continuity of £ and § and the 4-weak ($-
weak) compatibility of the pair (4.5} says that d(ASx, Sx) « O and 50 ASx ~ Sx = Av. The
injectiveness of A4 implies ¥ = Sx. Then calling corotlary 2.6 of {8} the pair {A.S) is
compatible.

As a direct consequence of Propositions 1.3, 1.9 and 1.10, wo aleo have:

PROPOSITION 1.11. Let 4 and § be continuous self-maps of a mesric space X and
that S be proper. Then A and S are compatible (f they are A-weak (S-weak) compatible,
whenever either of the following conditions hoki:

(8,) Ax = Sx imphies Sx = SAx (Ax ~ ASx),
(8)  Ax = Sx implies x = Ax and A s injoctive.

An analogous proposition holde if A is proper inetead of S is proper.

Next, we give some properties of wesk compatible maps in metric space for our main
theorem.

PROPOSITION 1.12. Lot A and S be continmuous maps from a metric zpace (X.d) imo
itself. Let S be proper map. Then she pair {A.S) is A-weak compatible (ff Ax = Sx implies
d(ASx, SAx) & KSAx, Sx) and KASx, Ax) = KSAx, Sx).

Proof. Suppose that {x,} is a sequence in X defined by {x,) =xw =12 . and Ax =
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Sx. Then lim_Ax, = lim Sx = Sx , lim ASx = AS and lin S4x = Sx. Since the pair {45}
is A-weak compatible, we have
d(ASx,SAx) & d(SAx,Sx) and d(A5x, Ax) = d(SAx,Sft).

Hence the necessity of the condition follows.

To prove sufficiency lot there be & sequence {x,} in X and suppose that
) lim Ax = lim Sx = ¢ for some s in X

Then M = (Sx_: n € N} U (1} is compact, so that S'(A) is compact since § is
proper. Consequently, (x,} has & subsequence {x, ) which converges to an element § € X.
Since A and S aro continuous, Ax, —» A3 and S¥, — 5§ Then (b,) implies
()  Ax,Sx,— 1= 4§ - Sy
and d(ASE, SAR) s d(SAE, S§), d(ASE, A§) s 4(SAE, S§) by hypothesis.

By continuity of 4.5 and (b,) we have that ASx, — AS% and SAx, — SA%. Thercfore,
lim d(ASx , SAx ) = lim d(SAx , Sx,), tim d(ASx , Ax,) = ﬂm,d(:%x., Sx,) as desired.

Remoark §.13. Proposition §.12 shows thet woesk compatible maps do not necessarily
exhibits the commutativity of maps st their considence points in contrast 10 weak commuting

and compatible maps.

3. Commen fined polnts of four mappings: Throughout this section, suppose that
the function ¢: [0,8)° —= {0,) satisfles the following conditions:
(i’) ¢ is non-decreasing and uppor semi-continuous in each co-ordinate variable.
(") For oach 1 > 0, w(r) = max{¢(1,0,440), HOL.4.0.0), §(141,0,20), §(4.1,1,20,0)} < 1.

Our main result is the following theorem:

THEOREM 2.1. Let A B S and T be mappings from a complete meiric space (X,d) into
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itself. Suppose that one of A.B.S and T is continuous and satisfying the conditions:

Q1D AX) S TX) and BX) & S(X);

(22) The pairs (A8} and (BT} are S-weak and T-weak compatible respectively;

(23) d(Ax, By) = ¢(d(Ax, Sx), d(By, Ty), d(Sx, Ty), d(Ax, Ty), d(By, 8x)) forallx,y in X,
where ¢ satisfles (i) and (ii’), then A B.S and T have a unique common fixed point in X.

Let x, be an arbitrary point in X Sinoe (2.1) holds we can chooss x, in X such that
y = Tx, = Ax, and, for this point x,, there exists & point ¥, in X such that ), = Sx, = By, and
30 on. Inductively, we can define a sequence (y,} in X such that

Vin = Txy = Ax, and y, = Sy, = Bx,  forn=013,. Letd =d(y,y,.,)

The following lemmas will shorten the proof of our theorem.

LEMMA 2.2({11)). Suppose ¢: [0,0)* — [0,®) is non-decreasing and upper semi-
continmous from the right. It y(f) < ¢ for every t > 0, then lim_¢*(¢) = 0 where ¥'(1)
denotes the composition af W({) with itself n-times.

Using lemma 2.2 and condition (2.3) Kang et al. {8] have established the following
lemma:

LEMMA 2.3([9)). limd_= O and {y,} is a Cauchy sequence.

Proof of theorem 2.1. Since (y,} is a Cauchy sequence in the complete metric spsce
X, it converges to some poit E in X Consequently, the subsequences
(4x,,.}, {Sx,.}, {Bx,,,} and (Tx,_ ,} conveige 1o . Suppose that S is continuous. Since, the
pair {A,5} is S-weak compatible

d(ASx, ,88x,) & d(ASx, ,SAx,) + d(SAX,  SSx,)
ie,
(24) d(ASx, ,S8x,) = d(ASx, ,Ax, ) +e,
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where 8, — 0 as #n — %. Again, i.e,
(25) d(ASx, ,Tx, ) s d(ASx, ,Ax, ) + a wherea, — Oasn — .

By (2.3), (2.4) and (2.3), we have

d(ASx, A%, ) & d(ASx, ,Bx, ) + d(Bx, , Ax,)

« ¢ (H(ASx, ,85x), KBx, ,, Tx, ). d(S8x, . Tx, ),

d(ASx, ,Tx, ), &Bx, . S8x, )+ d(Bx,,, Ax,)
a ¢ (d(ASx, . Ax ) +a , d(Bx, , Tx, ), &SSx,,Tx, ),
d(ASx,  Ax,) + o, d(Bx, , S8, ) + d(Bx, , Ax,).

Latting n > e and using S-weak compatibility of the pair (4,5}, we obtain
d(S%.%) = lim d(SAx,,5x,) « lim d(ASx, , Ax,)

« ¢ (Hm_d(ASx, , Ax.), 0, d(SK.§), lim d(ASx, , Ax, ), d(8, SE),

u lim d(ASx,_, A%, ),
since ¢ is upper semicontinucus, sand s0 we arrive at conmdtcuon Therefore,
lim d(SAx, , ASx, ) « lim d(ASx, ,Ax, ) = O s,

$§ = lm_SAx, = lim ASx, = lim Ax = §.
By (2.3), we aiso obtsin
KAY, Bx, )a¢(d(A8, %), K(Bx, . Tx, ) (K, Tx, ) d(A§,Tx, ), d(Sx,, ,S8))
Letting n — e and using the fact that 5§ = §, we have
d(AR, §) = $(4(AE,§),0,0,d(48,§),0),
So that 4§ = §. Since A(x) C T(X), § € T(X), there exists a point 1} in X such that & = Ak
- T8, Now
&E, B) = KA%, BB) u $(0, KB, TE), ASE, T¥), d(A8, T8), K HE,L))

which implies that & = Bn. Since, the pair {B,7) is T-weak compatible, and B = 7 = &,
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d(T'Bn, BTn) = d(B1n, By), &TBv, Tn) s &B Ty, By), and hence
KTE, BE) % d(BE,E), d(TE,B) s d(BE,E). Moreover, by (2.3) we have
AE, BE) = d(AE, BE) = ¢(d(A8, S8), d(BE, T%), A SE, TE), KA., T%), A%, $8))
= ¢(0,d(BE, §), d(BE, k), d(BE, k), d(BY. §)),
so that E = BE. Therefore, & is a common fixed point of A.8.5 and 7' Similady, it can be
prove that & is 8 common fixed point of A B.S and 7, if 7 is continuous instead of §.
Now, suppose that A is continuous. Then we have that AAx, , ASx, — AE
By (2.3) and S-weak compatibility of the pdr {A.5), we have
d(AAx,,Bx, )« §(d(AAx, SAx, ), d(Bx, , Trx, ). d(SAx,, Tx, ),
d(AAx,, Tx, ), d(Bx, ,S54x))
s ¢ (d(AAx,,ASx,) + d(ASx, ,SAx, ), d(Bx, ,, Tx, ),
d(SAx,, Sx,) +d(Sx,, Tx, ), d(AAx,, Tx, ),
d(Bx,_,,5x,) + d(Sx, ,S4x, )
s ¢ (d(AAx, ASx,) + d(ASx, Ax, ), d(Bx, , Tx, ),
d(ASx,, Ax,) + d(Sx, ), d(AAx,, Tx, ),
d(Bx, _,,Sx, )+ d(ASx, , Ax,)).
Letting n — o, we obtain
d(AE,§) = ¢ (d(AE,8),0,d(A4E k), d(48,§), d(A8,8)),
so that & = AE. Since A(X) C TUX), there exists a point &’ in X such that & = AE = T¥/ .
Agein using (2.3) and S-weak compatibility of the pair {4,5), we have
d(AAx, BE') = ¢ (d(AAx, ,SAx,), d(BY , T¥' ). d(SAx, T¥ ),
d(AAx,, T¥ ), d(BY SA4x, ))
< ¢ (d(AAx, ASx,) + d(ASx,, Ax, ), d(BE T¥'),
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d(ASx,, Ax, ) + d(Ax,, 1§ ), d{AAx, , T ),
d(BY ,8x, ) + d(ASx, , Ax,)).
Letting 5 —» =, we have
(5, BY ) = ¢(0,d(B¢ T8 ), d(E, 1% ),d(8, 1Y ), 4(BE . §¥))

which impties that & = BY . Since B and I are T-weuk compatible and /¥ = 8§ = &,
d(TBY BTY ) « d(BTY ,d(TBY , T¥ ) s «(BTY¥ BY ), and hence
#(TE, BY) « d(BY.§), #(T%,8) s d(BY.8).
Morsover by (2.3), we have
KAx,  BY) s ¢MAx,  Sx, ), ABY, TE), KSx,, T®), KAx, T%), KBE, Sx, ).
Letting # — ®, we havo

d(8, BE) & ¢(0,4(B8, T8), 4(. T8), (¥, T§), (5§, §))

u ¢ (0, (BE. %), I(BY.§), 4(BE.8), (8. §)),

so that § = M and thus 7§ = B = E. Since BX) C S(X), there exists a point 1 in X, such
that § =~ 5§ = Sn. Again using (23), we have '

d(An.§) = d(An, BE) u ¢(H(4n,.8),0,0,4(4n.§),0),
5o that An = § Since A and S are S-wesk compeiible and A = Sy =
d(SAn, ASn) & d(ASW, An),d(54n, Sn) s d(ASy, Av}), and hence
d(S, AY) & d(AR,8), 4(S8.§) = d(A8.8).

Moreaver by (2.3), we have

d(AY, ) = d(AY, BY) u $(H(AY,5%),0,4(58,8), 4(48,¥),4(E, §E))

s $(A(AL,§),0,d(A8,8), d(A8,.8),d(48,§)).

’2
*1
=A(0y=0. Again, |Bx - Ix| = ‘f(':‘ﬂ -+ 0 iff x>0 and TH(O)=1{0)=BI{0)y=RO)=<0

Case L. WhenOxsx s 1, |Ax - Sx| = -+ 0 iff x — 0 and S4(0) = 3(0) A5(0)

X+
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Case 11. When 1sxs2, neither |Ax-Sx| = ._...1. nor |Bx-1x|= xq) tends to O

Case 111, When x = 2, [Ax - Sx| as well as | Bx - T'x| tend to 0 iff x—+» Then
as x—o, Ax=Sx which implies d(SAx, ASx) s d(ASx, Ax), d(§Ax, S5x) s d(ASx, Ax) As
x—+, By=T% which implies J(1'Bx, Bfx) s d(B1x, Bx), d(TBx, I'x) s d(BTx, Bx). To
see these, merely let x, = x for all #. Hence the pair {4,5) and (8,7} are S-weak and 7-weak
compatible respectively.

Butifx, == nforn € N, then lim_Sx_= lim Ax = 1, lim Tx = lim Bx = | whereas
lim | S4x - ASx | =1/2w0, lim |TBx - BTx | = 2/3 » 0. Thorefore, the pairs {45} and
{B, T} are not compatible. However, if x, = 1 for n € N, when
lim |SAx, - ASx | =lim |ASx -~ Ax | = 1/2, 0 =tim |SAx - Sx | <lim |ASx - Ax | = 1/2 end
lim |7Bx ~Blx | =lim |BTx -Bx |=2/3, 0=lim [TBx - Ax | <lim |BIx - Bx | =2/3
Here, none of the four maps is proper. Finally, we see that the pairs {4, 5) and (B, 7) are not
even weakly commuting, for

IS(4) - A4 = —5— T = |SA4) - AN4)| and
8

< e = |TH(100) - BT(100)|.

{ 1(100) - B(100)| = ~5—f 5

]
Further, let ¢ (¢, ,¢ {,,4,) = max (-]..:_t_, lt, -1, ¢, -1, }. now we shall discuss

1 2’} 4
3

different possibilities in the following manner:

Case LIfOsxx1,0sys2then d(Ax, By) = 12521 o 12x -yl
242x+y+xy  2+[2x +y]

X -

y
2

d(Sx,1y) _ ‘P(

- _ ¥y - \ R
l T+ d(3%. Ty) ¥ ‘2‘” $(d(Sx, 1))

1 +ix

Case2. lfxx{, 0xyx2 then d(Ax, By) = 2x-y =(1-2 |- -*)=
(x+1)(y+2) y-2 x
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= d(By,Sx) - d(Ax, Ty) s ¢ (d(By, $x)).

y-2x x

Case . IfOsxwl, yx2 then d(Ax, By) = W - (l -m) -
(l - _{’_5) = d(Ax, Ty) - d(By, Ty) s ¥ (d(4x, Ty)).
- yl- -2 Y-
¥+ ya3 y3 x+l
|d(By, Sx) - d{Ax, 1y)| = » (max {d(By, &), d(Ax, 1y)}|

Cane 4. lfx = |, yn 2, then dAx By) =

Therefore, all the assumptions of Theorem 2.1 are satisfied and 0 is the unique
common fixed point of 48,5 and 7.

3. Common fixed peint for sequence of mappings. In this section, we extend
Theorem 2.1 for sequence of mappings. In the sequel, we need the following definition.
DEFINITION 3.1. For /. (Xd) — (X.d) donoie F, = (x € X:x = f(x)}.
The main result of this section is prefaced by the following:
THEOREM 3.2. Lot A B.S and T be mappings from a oamplfn metric space (X,d) ino
itself. [f the invquality (2.3) holds for ol x and y in X, then (F,NF)NE =(FNF)NF,.
Proof Let x € (F, N F,) N F,. Thea
d(x, Bx) = d(Ax, Bx) = ¢ (d{Ax, Sx), d(Bx, Tx), KSx, Tx), KAx, Tx, d(Bx, Sx))
= ¢(0,d(Bx,x),0,0,d(Bx, )
a ¢ (0,d(Bx, x), d(Bx, x), d(Bx, x), d(Bx, x))
< w(d(Bx,x)).
By Lemma 2 of [2] we have Bx = x. Thus (F, N F,) N F, C (F, N F,) N £, . Similarly,
we have (F, N F ) N F,C(F,N F) 0 F,. Finally, we have the following;
THEOREM 33, Let $,T and ([}, g0 be mappings fom a complete metric space
(X.d) into itself such that:
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(3.1) one of 8,1 or [, (or some f) is comtinuous,

(3.2) £(X) C S(X) N T(X) for each i € N,

(3.3) the pair (£.8) and (f, 1) are S-weak and T-weak compatible respectively for each €N,
(3.4) d(fx./,,3) % $(dUx, S5),d(S,,y, T9). d(Sx, Ty), d(fx, 1y}, d( ]y, 50))

Vi € Njor cach x and y in X, where ¢ satisfy (’) and (i"), then S, T and ([} ., have a
unique common fixed point in X.

Proof. By Theorem 2.1, 8, 7, f; and £, have & unique common fixed point 5. We prove
that z is the unique common fixed point fo!r ST and f, and for $,7 and /.

Let w be a second fixed point of £ and S. Using the inequality (3. 4) we have
d(w,z) = d(f,w, f,3) 5 ¢(d(f,w, W), d( [z, Tx), d(Sw, T5), d(f,w, T5), K /,2, Sw)) =
$(0,0.d(ws),d(w,3),d(w 5)) 8 ¢ (0,d(w, 5),d(w,5), d(w 2), d(w ,3)) <p(d(w.3)) and by
Lemma 2 [2] it follows that w = 5.

Thus z is the unique common fixed poimt of £, S 7 By Theorem 32
(Fy 0V F) OV F = (F, 0 Fy) N F and thus 3 is the unique common fixed point for 5,7 and
/- By (3.4) and Theorem 3.2 it follows that z is the unique common fixed point for £, 5 and

I.ViEN
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REZUMAT. - iafluenta variatiel divrue ¢ donsititl atmssferics asupra periondel nodale

u satelijilor artificlatl Utilisdndu-se modehd! sermoferic TD seniru descricres distribugiel

densitiyii stmosforei terostre, se studiazll dfectul separat al variatiol diume a densitigli asupra

porioadei nodale a satelifilor anificisli. 8o im In considorass diferiie casurl particulare (ovbite

inijial cinulare, noglijarea rotajiei atmosferel, orbito initiel polure).

1. Introduction. Lots of papers deal with the analytic study of the perturbed orbital
motion of artificial satellites in the torrestrinl astmosphers. Almost all thess papers resort to
a much too simple law to describe the atmospheric density distribution. In this way important
effocts are neglected. A profitable way to avoid such shoricomings consists of expressing the
distribution of the density by means of the TD thermospheric model with its variants TD 86
[10, 12] and TD 88 {11, 13]. This modet offers a much more complote image of the density
dependence on various factors.

The TD model oxpresses the density as

7
p- XJ,: b3, )
where the factor X, foatures the general depondence of the density on solar and geomagnetic
activity, the term h,g, expresses the altitude-dopendence of the mean density, while the other

terms allow for vanous effects of density distribution (see below).
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(1) only the first order difference will be determined;

(1) only satellites moving in quasi-circular orbits will be considered.

2. Equations of motion. Let us describe the perturbed motion of an artificial satellite
by means of the Newton-Euler equations written as (e.g.{2])
dpldu = AZip)r*t,
dglh = (ZIp) (r *kBCW/(pD) + r*T(n(g+A)p + A) + r’BS),
dkidu = (ZIp) (-r*qBCWI(pD) + r?>T(r(k + B)Yp + B) - r’4S), 4
KVdu = (Z/p)rBW K pD),
dildhi = (Zipn)r*AWlp,
dtidu = Zripp)™?,
where Z = (1 - r*CQ/Aup)'?)"*, u = Eanth’s gravitational parameter, r = geocentric radius
vector of the satellite, p = semilatus rectum, ¢ - ¢ cos w, k ¢ sin w ( ¢ = eccentricity, w
= argument of perigee), (2 = longitude of ascending node, i = inclination (C' = cos i, D = sin
i), u ~ argument of latitude (4 = cos v, B = sin w), S, 1, W = radial, transverse, and binormal
components of the perturbing acceleration, respectively.
Consider the orbital parameters
z=z(W)EY = {p g, k Q,i}, (%)
and write them as z = z, + Az, with z, = z(u,), u, being the initial position. The change of
z in the interval [w,u] is given by
Az = L“(az/du)du, z€Y, (6)
the integrands being provided by equations (4). According to hybothesis (1), the integrals (6)
will be estimated by successive approximations, with Z ~ 1, stopping the process after the
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first order approximation. In such a way, the elements z € ¥ will be considered constant (an
equal to z,) in the right-hand side of equations (4), and these ones will be separatel
integrated.

In the following sections, for sake of brevity, we shall no longer use the subscript "0
to mark the initial values of z € Y and of functions of them. Every other unspecified inde
"O" constitutes a simple notation and does not refer to the initial 4. In fact, every quanti
which does not depend on » (explicitly or through A and B) will be considered constant ove
one revdgtion of the satellite and equal to its valus for v = «,.

Observing hypothesis (ii), hence using expansions to first order in ¢ and & (as
throughout of this paper), the orbit equation in polar coordinates leads to

r*=p*l -nAdq-nbk). ]

In the same approximation, and considering as unique perturbing factor the diumal
variation in the atmospheric density distribution, the components of the perturbing acceleration
will be written as (cf[2, 3, 6})

§ = -(iplp,MBgq - AB),

T = ~(Wiplp,B(1 +24q +2BK) + (4p) "p,8Cw, ®

W = -(up)p0ADW,
where 8 = satellite drag parameter and w (constant) = angular velocity of rotation of the
atmosphere with respect to the Earth’s axis.

By virtue of the considerations made above, we shall separately have in view the first
flve equations (4). Because wo take Z ~ | for the analytic calculation of the integrals (6), we

shall write these equations omitting in advance the factor Z. 80, with (7) and (8), and
introducing the abbreviations

12
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b = p*y's,
x=Cw, )
y=-p7
the mentioned equations acquire the form
dpidu = pb(2(x +y) - 2(3x +y)Aq - 2(3x +y)Bh)p,,
dqlche = (2(x + A + ((x +2y) - (Sx+2y) A )q - 2035 + )4 Bh)p,,
dkidu = B2(x +)B - 22 +y)ABg + (-4x + (3x +2) A% )k)p,, (10)
dQ/du = b(x/C)(-AB + 3A’Bg + 34B%)p,

dildu = b(Dx/C)(-A*+ 3A%q + A Bh)p, .

3. Expression of the density. In order to write equations (10) in a suitable form to
perform the integrals (6), we must express p, as function only of » (through 4 and ).
The TD model [10-13] gives g, under the form
& = (@, + )sin(f - p)cos ¢, ay
where ¢ = latitude, ¢ = local time (in hours), the constant 4, and the phase p, are given in the
model, while 7, has the expression
/= (F, - 60)/160, (12)
with I, = radio solar flux on 10.7 cm wavelength averaged for three solar rotations.

Taking into account the fact that

sin{u - Q) = CBlcos ¢, 13
cos{a - Q) = Alcos @, (13)

where a = right asconsion of the satellite, and introducing the notation
L=Q-a,-p+=x, (14)
where ag = Sun’s right ascension, one obtains for g, (see also [1, 2])
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g, = (af, +1)(CBcosl +AsinlL), (IS‘

or, keeping the notations used in [3]
& =G, A+ GB, (mﬁ
where we abbreviated
G,=(af, +1)sinL,
G, =(af +Ccosl. (
Now we have to express A, in terms of v only. The TD model gives

h, -f:k‘jexp((lzo—h)aj), (1
where k", - 10k, ; (k‘j - numodcjulooomwm tabulated in the model) are at most of or
unity and were introduced in order to assign to X the part of the small parameter o (
Section 4 below); A = height (in km); B, = 0, B, = (40 /)" in the TD 86 model, B, = (29 )’
in the TD 88 model (j = T.3).

Consider for h the expression
h=r-KR+aRiinp, (l‘))r

with R = mean equatorial terrestrial radius, ¢ = Earth’s flattening. Replacing sin ¢ = DB and

(7) in (19), and observing hypothesis (ii), we derive the following expunsion to first order in
q and k& (see [2])
exp((120 -h)B) = A(1 +eRD'B A*+ BpAq + BpB#), /=073, (20)
where we abbreviated
A = exp(B(120-p+R-eRD?), y =TT 2N
Replacing (20) in (18), this expression becomes
hy = K, +K A"+ K, Aq + KBk, (22

in which we have introduced the notations
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3
Ko= Y koA,

j=0

3
K, = g k;eRDAB,, (23)

3
Ko=Y b ABp
j*0

Making n = 6 in (2) and using (16) and (22), we get
Ps = X(K G A+ K,G3 K,GB +K,GAB +
+ (K,G, A + K G, AB)q + (K G, - K, (3, A* + (24)
+ K,G,AB)k).
In this formula X, and all coefficients of A", 4"B are constant over one revolution of the

satellite, as we have already mentioned.

4. Variation of the nodal perlod. In order to estimate the difference A7, between the
real (perturbed) nodal period and the corresponding Keplerian one, difference caused by an
arbitrary perturbing factor (in our case the diurnal variation of the density) featured by & small
parameter o, we shall use a method due primarily to 1.D Zhongolovich (for the principle see
eg |3, 6]). According to this method, and observing hypotheses (i) and (ii), the respective

difference can be written as

AT, ~ Y1, 2%

with
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1 = (312) ()" f‘(l -24q -2BK)Ap du,

I = -2p(plp)? f‘(l -3A4q - 3Bk)AAq du,
(26)
I, = ~2p(p/p)"”? f‘(l ~34q - 3Bk)BAk du,

1= f‘(a(r ‘COKpp))ac)odu .
In these formulae, as specified in Section 2, the luincript *O" for p, q, k, C was dropped. The
factors Az, z € {p, ¢, k}, under integrals in J,, /,, I, are given by (6).
To obtain AT, we proceed sccording to the following steps:

(a) Replace (24) in (10), and perform the calculations observing hypothesis (ii),

obtaining in this way the integrands of (6) as functions of » only.

(b) Perform the integrals (6) for p, ¢, k, obtaining the changes Az, z € {p, ¢, k}, in
terms of » and constants of integration.

(o) Replace Az, 2 € (p, ¢, k), obtained at the step (b)'in (26), and perform the
calculations observing hypothesis (ii), obtaining in this way the integrands of the first three
formulae (26).

(d) Perform the integrals (26) (for the fourth one, use (4) and (10), and consider X,
to be the small parameter o), then perform the sum (25).

After all these calculations we obtain

AT, = aX(p)O(xH, + 3+ f +(xH, +yJ,+ f; )q +
+ (cHy+ i, + £)6),

where b, which appeared in (10), was replaced by its expression (9), and we used the

@7

abbreviating notations
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H = (4K, + K )G,
H, = -(128(4K, + 3K, - 4K,)C, -
- (51K, + 23K, - 28K,,)G, )16, (28)
H, = -((140K,, + 81K, + 28K,,) G, +
+ 12n(4K_+ K, - 4K,,) G, )16,
and
J, = (4K, + K, )G,
J, = (128(4K, + 3K, + 4K_n )G, +
+ (88K, + 7K, - 24K, )G )16, (29)
J, = -((232K,, + 129K, + 28K, )(5, -
- 12n(4K, + K, +4K,,) G )16
In (27) x and y are given by (9), while S0 n=T.3, are constants of integration (ot
combinations of such constants) obtained at the step (b) Their expressions (see also |3}]),
which depend on the Earth, atmospheric model, and satellite orbit at ¥ w,, are very long and

will not be reproduced here.

8. Particular cases. Supposs that the orbit is initially circular (¢ & - 0) Imposing
this condition to equation (27) and taking into account notations (9), we obtain
AL, = nX(pYu)O(CwH, - 28111, + f), (30)
where p stands for the radius of thoe initial orbit and we used the well-known relation
T, = 2np*? n ' (true for circular and quassi-circular orbits), 7, denoting the Keplerian period
corresponding to w = w,
Suppose now that we neglect the atmospheric rotation (w = 0). In this case, taking into

N7
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account (9), equation (27) becomes
AT, = xX (P, + 1 + (3 g + (W, + k). onJ
If the initial orbit is circular and the atmospheric rotation is neglected, equation (27)
reduces (o
AT, = aX(pWd(R) + ). (n)J
If the initial orbit is polar (C = 0), one obtains again oxpression (31), with th
supplementary condition of initially circular orbit, one recovers (32).
A mention must be made hero. Imposing supplementary conditions to describe
particular cases, the imegration constants £, » = 1,7, also change their expression,
according to the restrictions we imposed. However, by abuse of notation, we kept the sam
symbols in formulas (30)-(32) for thess integration constants.

REFBRENCES

1. Helall, Y.E, Portwbanions in the Periges Distance Due to Atmosphoric Drag for Arifcinl Eark
Soswhites, Bull. Asiron. Inst. Canchosl., JU(1967), 129334

1. Mioc, V., Drag Perturbations in Artificiel Snteiitie Ovbisel Mosion Brased en e Tolal Denaity Mod),
Astron. Nachr., 313(1991), 127-132, ‘

3. Misc, V., Radu, E., Acroduanic Drag Pertirbations in Arsificial Sueiies Nodal Peried Aswen
Nache., 313(1991), 337-304.

4. Mios, V. Radu, B, Pertwbed Motton of » Satelise in the Anosphore Bured on the Tom! Denslly
Modei, Bull. Astion. Inst. Caechosl., 43(1991), 798-304.

9. Miao, V., Radu, E., Evelusion of Saillite Orbits in an Adnoaphore with North-South Anmweivy, Rom,
Asron. 1., H(1992), 149-15).

6. Misc, V., Radu, B, Some Awodymamic Effects in Artifivial Saieilite Motion, Rom. Avteon. §., 3(199),
193.463.

7. Minc. V., Radu, B, Efficts f Amospharic Density Svmidiurnal Veriation on Artificial Seietie
Dynwmics, Remn. Astvon. 5., 3(1993), 173-179.

8. MincV., Radw, B, Blaga, C., Efbcts of Ammospheric Denaity Diurvied Visriastion an Avsificial Sowilin
Motion, Babey-Bolysi Univ. Fac. Math. Res. Sem., 13(1991), Ne. 4, 67-7%.

9. Miog, V., Radu, E., Mircea, L., Crisica, A., Rapid Asrodymamic Effects in Artificial Samliive Nodel
Period, Rom. Astron. |, 4(1994) (lo appewr).




10.
I

12

13

THE INFLUENCE OF ATMOSPHERIC

Sehnal, L . Thermospheric Totl Density Aodel 1D, Bull. Astron. Inst. Ceechosl,, I9(1988), 120-127.
Sehnal. L.. Comparison of the Thermosphere Total Density Model T1) 88 with CIR4 86, Adv. 8pace
Res., 10(1990), 627-631.

Sehnal, L, Pospitilova, L., Thermospheric Afodel TD, Astron. Inst. Ceechosl. Acad. Sci. Proprint No.
41 (1986), 1-6.

Sehnal, L., Pospifilovd, L., Thermospheric Model TD 88, Astron. lust. Caechosl. Acad. Sci. Preprimt
No. 67 (1988), 1-9.

Segan, 8., Ammospheric Drag Effects from the Motion of the ANS Satellite, Bull, Obs. Asiron. Bolgrade,
Na. 139 (1988), 39-60.

Scgan, 8., The Mution of an Artificial Swellite in the Obkite Amosphere, Bull. Astion. Belgrade, No.
145 (1992), 101-102.



STUDIA UNIV. BABE§-BOLY AL, MATHEMATICA, XXXIX, 1. 1994

ON MEASURE OF THE AMOUNT QF INFORMATION
CONSIDERED AS A GENERALIZED MEAN VALUE

lon MIHOC"

Received: Jume 30, 1994
AMS subject clasufication: AT

REZUMAT. - Asuprs misuril cantitiili de informagie considerstl ca 4l o veloare medis
gonerstisath. In aceasth lucrare se proziih unsle proprietfi ale misurlrii camiuMii de
informatie aocieill unci vriabile alestonre gencmliznie, respectiv, distribujisi de probabithale
genemlizate ssociash acesiols. '

1. Intredustion and netatioms. Lot (13, 7) be a probability space, that is, 0 an
srbitrary set, calied the set of clementary events, X a o-aigebra of subsets of (2, containing
0 inolf, the sloments of K being called events; and P o probability measure, that is, &
nonnegative and additive set function, defined on K, for which A(QQ) = 1.

Let

»

Ay - O-w‘,p,,...,p,,):pluo,i-m,ﬁp,-) “.n
be the set of all probability disuibutions associsted with a discrete finite random varisble X
Lot @ = (p,p,. ... p,) be afinite discress probability distribution, thatis, @ € A,
DEFINITION 1. {8] The amount of uncertainty of the distribution @, that is, the
smount of uncortainty concerning the outcome of an experiment, the possible rosults of which
have the probabilities p,p,, ..., p,. is called the entropy of the distribution @ and is usually
moasured by the quantity

N

H®) = H(p,.p,....p,) = HX) = -X p,log,p, (12)

i
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In conection with the notion of uncertainty we also have to mention the concept
information. If we receive some information, the previously existing uncertainty will b
diminished. The meaning of information is precisely this diminishing of uncertainty. Tl
unoertainty with respect to an outcome of an experiment may be considom;i as numerically
equal to the information fumished by the occurrence of this outcome; thus uncertainty ¢
also be measured. To speak about information or sbout uncertainty means essentialy the sam
thing: in the first case we consider an experiment which has been performed, in the secon;]
case an experiment not yet performed (7).

Also, if X is a random variable assuming the distinct values x,x,, .., x, wilh
probabilities p, 2, ... Py We can say that }(P) is the information contained in the value
X and we may write f/(X) instead of H(P).

Let us consider @ = (p.p,....P, ) E M, Q = (4,4, . 4y) E A,

Let us denote by #*() the direct product of distributions @ and (), that is,

P20 = (P4 ..P Ay Pyt - Pyvily) E Ay (13)

Then we have from (1.2)

H(@+(Q) = IK®) + QD) (14)
which expresses one of the most important propristies of entropy, namely, its additivity: the
entropy of a combined experiment consisting of the performance of two independent is egual
10 the sum of the ontropies of thess two experiments.

Rényi [6] introduced a generalization of the notion of a random variable.

DEFINITION 2. An incomplete randoin variable X is & function X = X{w) measurable
with respect to the measure on X and defined on a subset Q, of Q, where Q, € K and
PQ)>0.
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The only difference between an ordinary random variable (X is an ordinary or
complete random variable if P(Q,) = 1) and an incomplete random variable is thus that latter
is not necessary defined for every w € 2. Therefore, for an incomplete random variable we
have 0 < P(QQ,) < 1.

DEFINITION 3. If 0 < P(,) = 1, then the random variable X, defined on the Q,, is
a generalized random varisble. The distribution of a generalized random variable X will called
a generalized probability distribution.

In this sense, the ordinary distribution can be considered as a particular case of a
latter.

We denote by

w(P) = f;p, (1.5)
the weight of the distribution €. '
Using the above definitions it follows that:
- if w(P) = 1, then @ is an ordinary distribution;
-1t 0 <w(P) < 1, then @ is an incomplete distribution;
10 < w(@) = I, then @ is & generalized probability distribution.
Also, we denote by
Ay ={(prpy P B 0,0 = TR, 0 < wP) = 1} (1.6)
the set of all finite discrete goncralizcd. probability distributins.

DEFINITION 4. [6] The measure of the amount of information of order a of the

generalized probability distribution @ has the form

N
Y

i=}

1
H@®) - 1 >
(@) T og, m , >0, aml, PEA amn
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If @ is an ordinary distribution, that is, ® € A, then (1.7) reduces to
N
1’1,,‘(60)-_._’._1032 I;p,-“ ,a>0,a=l, €A, (18)
1"’(1 in
and H(P) will be called Rényi’s information of order a of the ordinary probability
distribution @.

It is worth mentioning that

‘ 1 1
lim H(®) - H(P) -  log, —, 19
lim H (@) = H(®) Wﬁ§” % (19
whero H,(P) is Shannon’s information or information of order 1; respectively, that
N
lim H,(P) = H(®) = —)’; plog,p,, (1.10)
a-ei '

where H,(P) = H(®) is Bhannon’s measure of entropy of the probability distribution
P, 0 E A,
DEFINITION 3. [3] The information generating function sssociated to the Rényi

information of order a has the following form

[ 2
» %
};p,‘ .
Gw) == ,6>0, awl, wER (.11
if @ € A, respectively, the form
vy Y
Gy =¥ p'| ,a>0,aml,u€R (1.12)
)

if @ € A, where k = log,e.

For these information generating functions we have the following properties

GiW),.q = 10g,(G1) = H(P) (1.11a)
lim (log,G (1) = H,(®). (1.11b)

if @ € A, respeciively,

d{ ., . .
2 (Gl o= tog, Gl = H(®) (1120)
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. d Y .
lim = (Gl o = H(®) = H(®), (1.12b)

it @ € Ay

1. Generalized measures of the amount of information. In this section we define
a new measure of the amount of information when @ € A,,

DEFINITION 6. {2] The measure of the amount of information of order % and of
lype {§§ + a,}, associated to the generalized probability distribution @, respectively, to a

generalized drandom vanable X, has the fqrm

H:""”(P) - " loﬂz 1=t (21)

% n-a

[ L -y
Yo

where
a>0,amnnal, pranl i=TN (2.1a)
Kemark 1. If we denote by
pl >
g = — i=TN, Y q-1, (2.20)
oo inl
) Y7
i~l
a2 aEe(-1,0) U (0, ) (22b)
n
and suppose
a>0,amn, nal,f+ranl,i=TN (2.20)

tespectively, @ € Ay, then we obtain a new form for (2.1), namely,

N
H,(®) = H,(X) = -1 10, [E q, 1] 22)
o i=t
DEFINITION 7. The information generating function of order = and of type {p +
n
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a,} can be defined as follows

ku
N T —
Gf,pw"(u) = [E q,.-p,.“.] , W ER (23
e i=l
where
. o-n
a* = L, € (-1,0) U (0,®);, a >0, amn, nal, (2.33)
n
respectively,
pra =i, i=TN;, PEA,, k =log,e. 23

This information generating function has very important properties, namely,

d (s} - LiBra) - )
'3?(('; (u))L_0 log Gy (1) = H, (©); 24
N
lim HY (@) = tim H_(P) = -Y q,-log,p,. @9
[t I 1 a'—0 It

THEOREM 1. For the amount of information H (@), when 0 < a < n, we have i

Sollowing double inequality
HQ) = H'7®) s HY (@) - H (9, 24
w
where
N
H'(Q) = -Y ¢, log, 4, @n

inl

is Shannon's measure of information or the information of order | of ordinary (or complete)
probability distribwtion @ = (q,.4,. .. 9,), that is, Q € A, and

N
H' @) - —I; q, log,p, 23
is Rathie’s measure of information of order {§ + a,},.[5]

’

Proaf. The first inequality follows immediatly if we take into account that
N

oo
~ p clogp,
H""®) - L4 low,p, - ‘*‘—-w'—‘-'!'; . (28)

)

i=)
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as well as the inequality of Gibbs

N N
H'(Q) = -Y g, log,q, s -Y, q,"log,p, = HP e, (2.9
il i=1
The second inequality follows if we apply Jensen’s inequality
N N
Yo re)ssY ¢x] (2.10)

i} i=}

where-Ax) is a convex function on an interval (a,4), x,x;, ...x, are arbitrary real numbers a
N

< x,< b, i = T,N and g,,q,,...4y are positive numbers ¥ ¢, = 1.
i=1

Indeed, by putting

e,
q,=~;'—--,i-l,N (2.108)
" pe
Y
1=t
x=p,.i=TN, (2.10b)
respectively,
Sx) = lﬂa,(l',“'). i-TN, (2.10¢)
we can derive from (2.10) a new inequality
N N
Y - tog,p, = log, |} 4 0) @11)
it i
a-n

Now, it we have in view that 0 < a < n, that is, a" = < O, from (2.1) and

n
(2.11) we obtain just the double inequality (2.6).

3. The measure of information as a generalized mean value. In what follows we
are concerned with the others properties of measure of the information of order .:; and of
type {f + ). associsted to a generalized random variable X, that is, @ € A,

If we denote by J the interval (0,1}, then the set A, can be written as

Ay =J" ={(p.py Py) PES I =TN 0<w®=1) an

DEFINITION 8. [1] The mean value in the set ./ is defined by

9
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M:J¥N—=J 32
N
Y /(P wp)
M(®) = M, [P}, = ¢! | T ()
Y /(p)

iel
where:
1° @(#) is continuous and strictly monotonic if 1 € J,
2° A1) is positive and bounded function in J,
Th?l mean value is called the mean value of the set /¥ constitued wich the weight
function f and wich the representation function .
DEFINITION 9. [1] The genoralized measure of the amount of information in the
Daroczy’s sense has form
H (9), = ~log, M [P}, 34
where M [P] represents the weighted mean associated to the generalized probability
distribution @ and if are satisfed the following conditions:
0,) M [P], depends only by the probabilities p, i = TN,
0,) () is continuous and strictly monotonic on the intervat J,
0;) A1) is a positive and bounded function in J,
o)if PE A, , RE A, and
CeR=(pr, ..pry.....Py....PyT) E A, 3.9
then
M[@+R) = M[P] -MIR]. 3.6)
THEOREM 2. The measure of the amowunt of information of order % and of type

(B +a), HPN®) has the following form
¥
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HY™(®) = Hr M (@) = -log, (M, [P]}, (a.7)
where .
N R
M0 =Y q-p’ (38)
i=1
and
a = 27" wre(-1,0) U (0, ®) (3.8a)
n
pea,
4= o i =T w(@) = 1. 0 € &; (3.80)
Beu
g », |
N
w@®) =Y psl PEA, (3.8¢)

ie1

More, the weighted mean associated M [ @) satisties all conditions from the Definition
9, that is, the measure (3.7) is a particular case of the amount of information in the Daroczy’
SHSC.

Proof. The representation (3.7) follows imediatly from (3 .8a), (3.8b), (3 8¢) and from

the following representations

N
10& q, 'p:“.
H'“@®) - ——[-——-]'!?, - H @) 39)

u+]
T i
=%

> Bra o’ o
2;1'. P,
Mte) = | 2L

) YN

is}

(3.10)

when the woight function A7) has the form
SO =" pranl, i=TN a1

In the next, we will examine the following equality
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§
«’

N N
Y re)yew)| | Lehpe

¢ | o — (312){
Y ) 2.:’)’ '
i=} te
where
@) =4, 1€ J=(0,1], (3.13)H
fW =" 1€, praali=TH, (.14

In fact, from (3.12) it follows

Y re)ew)| Lre) e

-t} i=l - 7t -

N N
Z;f(p,) Y.s)

Yy

i1
(3.120)’

1
N

) DY T

f= Pta, .
ok | [ —) = (1)

i=1

and, from hore, if we have in view (3.13), we obtain
Q") = () (3.130)

and, respectively, just the equality (3.12).

Now, we must to verify that the weighted mean M (@], as, the functions ¢ and f
fulfiil all conditions from the Definition 9.

Thus:

;) M_[P], when i and g, are fixed such that f + @, = 1, i/ = TN, dependends only
upon the probabilities p,.p,, .., py

¢,) Because the representation function ¢ has the form (3.13) it follows that, for a -

LY
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A Y
s : = E
1= — =T N, Y =1 (3.15¢
Boa, s=1
r

Also, we obtain o

ML (01 M, K] - [[z ‘,’.p’..»] b ,)r .

NN -

- [):UI‘: (4,1 (pr, )] = M_[0«R],
that is, just the equality

M_[®»R] = M_[@P]-M_[R], (},lé)Q

which expresses one of the important properties of entropy, namely, its additivity. Ths

completes the proof of Theorem 2.

COROLLARY 1. The measure of the amount of information H (X)), where Xisa

generalized random variable (respectively, the distribution of the random variable X is g

generalized probability distribution), satisfies the additivity property, namely

HI™ @ «R) = HI (@) + H () @1
W "n' a ‘

where
PEA, REA, A P+RENAL,,.
This property is a consequence of the relations (3.14a), (3.14b), (3.15a), respectively,
of (3.16).
COROLLARY 2. Suppose the conditions (3.8a) - (3 8¢) are satisfied. Then

N
lim He (@) = -log, | ¥ p*
i=]

a’ -l

where
N
M0 - I]»’ (3 180)
i=
iy fust geometric mean of the generalized probability diswibution € = (p,p,, ..py), that is, 0

€ Ay while the probabilities q, i = TN are taken as weigis and we have w(()) = |
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COROLLARY 3. The measure of the amount of information H (@) verifies the

Jollowing limit rekation

lim HYr (@) = ~log, | ¢.19)

at~s -} z (l'

where i=1 ;:
M., [P] = lim M_[0] = (3.19%
][ ] et q[ ] F )

=,

represents the harmonic mean associated 1o the generalized probability distribution @.

COROLLARY 4. [fa” = | then we obiain

H""(0) = ~log, M,[0] (3.20)
where
N
M®) =Y q:p. PEA, QEA (3.20a)
fid]

iv fust the aritmetic mean associated 10 the generalized probability ® and probabilities
q,, i = TN are rken ay weights.
COROLLARY 3. [fa” = 1, that is, a = 2n, n a 1, then in the following conditions

ta, =1, i =T N, the mean M\[@), defined by (3.20a), can be written in the form

N
E;@) =Y p'. if0€a;, (321
i=1
respectively, in the form
. | & 3
E () = Ypl. f 0€A,. 322

These measures reprosints just the Onicescu’s informational energy (4).
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