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STUDIA UNIV. BAEES-BOLYAI, MATHEMATICA, XXXVIIL, 4, 1993

ON PRIMITIVE n-SOLVABLE GROUPS
Rodica COVACI'

Received: July 10, 1993
AMS subject classification: 20010

REZUMAT. - Asupra grupurilor primitive x-rezolubile. Lucrarca continc uncle proprietti

ale grupurilor finite primitive, in particular ale grupurilor primitive n-resolubile. Rezultate

similare cu unele rezultate ale lui O. ORE date in [4] pentru grupuri primitive resolubile sunt

obtinute pentru grupuri primitive nt-resolubile §i subgrupurile lor normale minimale.

Abstract. The paper contains some properties of finite primitive groups, particularly
of primitive groups, particularly of primitive n-solvable groups. Similar results to some of O.

ORE given in [4] for primitive solvable groups are obtained for primitive n-solvable groups

and their minimal normal subgroups.

1. Preliminaries. All groups considered are finite. We shall denote by x an arbitrary
set of primes and by n’ the complement to x in the set of all primes. A group G is said to
be n-solvable if every chief factor of (G 1s either a solvable m-group or a «/ -group.
Particularly, for z the set cf all primes one obtain the notion of solvable group.

Of special interest in the formation theory are the so called "primitive groups”, which
we define below.

DEFINITION¢1.1. a)Let G Be a group and W be a subgroup of (G. We define:

core,W = N {WE /g € G},

where W* = g'Wg.

* "Babeg-Bolyai" University, Faculty of Mathematics, 3400 Cluj-Napoca, Romania



R. COVACI

b) A maximal subgroup W of G is caled a stabilizer of G if core; = 1.

c) The group G is said to be a primitive group 1if there is a subgroup W of G which
is a stabilizer of G.

The following BAER’s theorems ([1]) will be useful in our considerations:

THEOREM 1.2. 4 solvable minimal normal subgroup of a finite group is abelian.

THEOREM 13. If S is a stabilizer of a finite group G and N = 1 is a normal
subgroup of G, then: a) CiN) N S = 1; b) C4(N) = 1 or C4(N) is a minimat normal subgrou)
of G, where

‘W N={gEG/VYnEN, gn=ng}

THEOREM 1.4. If the group G has a maximal subgroup with core 1, then the
Jollowing two properties of G are equivalent:

(1) There is one and only one minimal normal subgroup of G; there is a prime

common divisor of the indexes in G of all maximal subgroups with core 1,

(2) There is a = 1 normal solvable subgroup of G.

2. Primitive groups. We first give some properties of finite primitive groups.

THEOREM 2.1. Let G be a primitive group and W a stabilizer of G. Then:

1) for any normal subgroup K = 1 of G, we have KW = G;

1) for any minimal normal subgroup M of G, we have MW = G;

iil) there is not a normal subgroup K = 1 of G such that K < W.

Proof. i) L.et K = 1 a normal subgroup of G. Since W is maximal in G we have KW
= W or KW = G. Suppose that KW = W. It follows that K s W¥ and so K* < W* for any ¢ €

'G. This implies K = coregW = 1, hence K = 1, contrary to hypothesis.



ON PRIMITIVE a-SOLVABLE GROUPS

it) Follows immediately from: 1).

iit) Suppose that there is a normal subgroup K = 1 of G such that K < W. By 1), KW
= (. But from K < W follows KW = W. So W = @, in contradiction to the fact that W is a
maximal subgroup of G. B

THEOREM 2.2, If G is a primitive group, then any abelian normal subgroup A = |
of G is a minimal normal subgroup of G.

Proof. Let W be a stabilizer of G. By 2.1.1), G = AW = WA. We have that A N W is
a normal subgroup of G. Indeed, if x € G and a € A N W, let us prove that x* ax € A N W,
If x =wb, with w € W and b € A, then

x'ax = (wb)' a(wb) = (b'wa(wb) = b (w'aw)b.
Since A N W is normal in W, we have w'aw € A N W and so w' aw € A. Using that 4 is
abelian, we obtain

x'ax = b'b wlaw) =wlaw EA N W.

Further, A N W = 1, since if we suppose that A N W = 1, then, A N W being a normal
subgro(np of G with A N W < W, it follows a contradiction with 2.1, ii1).

Since A = 1 is a normal subgroup of G, there is a minimal normal subgroup M of G
such tqhat M < A. We shall prove that M = 4. Leta € A. By 2.1. 1), G = MW. So a = mw,
where m € Mand w € W. It follows thatw =m*a € AN W =1andsow = 1. Hence a =

meM R

3. Minimal normal subgroups of primitive n-solvable groups. The main purpose
of this paper is to give some results on minimal normal subgroups in primitive x-solvable

groups. These results are a generalization of some ORE’s theorems from [4] given for

5



R. COVACI
primitive solvable groups.

THEOREM 3.1. Let G be a primitive n—;olvab{e group. If G has a minimal normal
subgroup which is a solvable n-group, then 'G’ has one and only one minimal normal
subgroup.

Proof. Let N be a minimal normal subgroup of G such that N is a solvable' n-group.
By 1.4, G has one and only one minimal normal subgroup. B

-Theorem 3.1. has the following two important corollaries:

COROLLARY 3.2. If G is a primitive n-solvable group, then G has at most one
minimal normal subgroup which is a solvable n-group.

COROLLARY 3.3. Ifa primitive n-solvable group G has a minimal normal subgroup
whxy'c‘h“ is a solvable n-group, then G has no minimal normal subgroups which are x' -groups.

THEOREM 3.4. If G is a primitive s-solvable group and N is a minimal normal
subgroup of G which is a solvable n-group, then C5(N) = N.

Proof. By 1.2., N is abelian. Hence N s Cg(N).

Let W be a stabilizer of G. Using 1.3. b), we obtain that C4(N) = 1 or C4(N) is a
minimal normal subgroup of G. If Co(N) = 1, it follows that N = 1, contrary to our
hypothesis. Hence Cy(N) is a minimal normal subgroup of G. From this and from N= 1, N

< C4(N), we conclude that N = Co(N). B
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ON CERTAIN IDENTITIES FOR MEANS
J. SANDOR’

Received: December 29, 1993
AMS subject classification: 26D07

REZUMALT. - Despre citeva identititi pentru medii. Demonstrind identititi valabile pentru
mediile logaritmice, identrice, aritmetice, geometrige, exponentiale, etc., in aceasti lucrare
obtinem metode comune pentru deducerea unor inegaliti{i speciale relative la aceste medii.

1. Introduction. Let /=/(a,b) =l(b /g @) -0 for geb;I(a,a)=a(a,b>0)

e
dencie the identric mean of the positive real numbers a and b. Similarly, consider the
logarithmic mean L = L(a,b) = (b - a)/log(b/a) for a » b, L(aa) = a. Usually, the

a+b

arithmetic and gecmetric means are denoted by A4 = A(a,b) = , and

G = G(a,b) = ‘/c—l; , respectively. We shall consider also the exponential mean
E = E(a,b) = (ae®-beb)/(e“-e?®) -1 fora= b, E@aa)=a.

These means are connected to each others by many relations, especially inequalities
which are valid for them. For a survey of results, as well as an extended bibliography, see e.q.
H.Alzer [1], J.Sandor [6], J.Sandor and Gh.Toader [8]. The aim of this paper is to prove
certain identities for these means and to connect these identities with some known results. As
it will be shown, exact identities give a powerful tool in proving inequalities. Such a method

appears in [6] (Section 4 (page 265) and Section 6 (pp.268-269)), where it is proved that
log LWab) _G-L
I(a, b) L
where G = G(a,b) etc. This identity enabled the author to prove that (sce [6], p.265)

O)

" 4136 korfeni, nr. 79, Harghita County, Romania



J. SANDOR

Ls I (f__; G)-e“’ - L @)
and

L <@L (i.e.log.tl.z 1 -%) ®)

In a recent paper [9] it is shown how this inequality improves certain known results.
In [10] appears without proof the identity
I A-L

log — = —— 4
¢ = T @

We will prove that relations of type (1) and (4) have interesting consequences, giving

sometimes short proofs for known results or refinements of these results.

2, Identities and inequalities. Identity (4) can be proved by a simple verification, it

is more interesting the Way of discovering it. By

logI(a, b) = blogb —aloga | _ b(logh-loga) ,;0.; |
b-a b-a
lt fouows that logl(a’ b) = L(:’ b) + loga - l N and by Symmetl'y, |08](a,b)- L(a,b)+
+ lng-l (@a=b)ie.
1 b I a
log~ =2 -1 and log> =2 -1 5
oga 7 and log 7 "I 6

Now, by addition of the two identities from (5) we get relation (4). From (5), by

multiplication it results:

1 I _G? A
log—-log— = — =22 +1; 6
g logy = - 2% ©)
and similarly:
1 I _b-L
log —/log— = 7
og—/log = —— 0]

An analogous identity to (1) can be proved by considering the logarithm of identric
mean. Indeed, apply the formula (*) to a —» V;, b— Vb_ After some elementary
transformations, we arrive at:

8



ON CERTAIN IDENTITIES FOR MEANS

o 20 B) | sloim

1(a, b) L ’ ®

3
] denotes the power mean of order 1/3. (More generally,
a*+b*

3 3
where M = 4,,(a,b) = (["_;_’/’7

1/k
one defines A, = A(a, b) -'( ) ). Now, Lin's inequality states that

L(u,v) s M(u,v) (see [S]), and Stolarsky’s inequality ([11]) that/(u,v) = A4,,(u,v).

Thus one has 32
PR » (2O oo,y
by the above inequalities appliéd tou =a'® v=>5'""and u = a?? v = b3, respectively.
Thus
P(Va, b) = L** (@, b ©)

This inequality, via (8) gives:

L¥(a?3,b2) s I(a, b)-e®/ ML -2 (10)
or X

log W 22 - ..6__%2_1&1._ at)

This is somewhat similar (but more complicated) to (3).

Finally, we will prove certain less known series representations of log _2_ and log é .

with applications.

First, let us remark that

I__

A(a,b)

lo, =lo = lo, 5 et

8G(a,b) g ab g L a

Put z. = b-a (withb >a),ie t = l*z,wheret-.gE(O,l).Since
b+a 1-z ' b '

Mz o1z (a1 and logl/(\/l—z’)=-..log(l~* 2) =

2{N1 -2 N1 +z | - 2?2 2
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l 2 1 4 . N uz u’ N . .
= ..z.z +1.z +.. (by log(l -u) = ~u = T-) we have obtained:
A(a,b) < 1 (b-a\* ™
log~—— 7 = 1
ey 5 (..;(av’ b> . Ay; 24 (»«‘ "'a) ( 2)

In a similar way, we have

A a+b (logh -loga 1, 1+z 1 23 2!

-l | ~1=__log—wi~1=_actanhz -1 = 2o+, +.
A 2 ( b-a ) 2z s g Z o 75
implying, in view of (4),

(a,b) _ i b-aVt :
1 13
BC@b &HTT (b+a) 13

The 1dentmes (12) and {13) have been transmitted (without' prooi) to the author by
Hl. Senffert (pamcular letter). We note that parts oi’ these relations have appeared in other
equivalent forms in a number of places. For (13; see e.g. [4] (Nevertheless, (4) is not used,
and the form is slightly different).

Clearly, (12) and (13) imply, in a simple n.wrer, certain inequalities.

-2 2 4 L2 . o0 2 1
By < i v <INzt yuli
Y5373 7 e My
we get
y +(b-a)i’73(h+a)2<logé <1 +(b-a)/12ab (14)
lmprovmg, the mequahty I>G.
R 2 'y el ]
Onthesameimes since i<.i, + 2 +...<.1.(z +7% 4, )-".f_' & one obtains
. 2 2 4 ?. 2 1-z2
.’;(b - ap/(b +a)2<|og_C_<(b - a)/8ab " (15)
& J

_ 3. Applications. We now consider some new applications of the found identities.
a) Since it is well-known that log x < x-1 for all x > 0, by (4) we get
AG <L (16)
discovered by H.Alzer {1]. By copsidering the similar inequality logx > 1 - 71‘. (x>0), via
(4) one obtains

10



ON CERTAIN IDENTITIES FOR MEANS

4 <
= >2 17
7* )

~ e

due to H.J.Seiffert (Particular leiter).
b) The double-inequality G(x,1) < L(x,1) < A(x,1) for x > 1 (see the References from
[5]) can be written as
2.x—l < logx < x -1
x+1 J;‘
Let x = .é > 1 in (18). By using (4) one obtains:
: I-G _ A-L _I-G
e < < 19
I+G L ﬁ‘(‘;“ (19)
These improve (16) and (17), since 2-(/-G)/(I+G)>1-G/I and

(x>1) (18)

(I -)WIG < I/G - 1. Let us remark also that, since it is known that ([1) /-G <4-
L, the right side of (19) implies

I1-G
VIG < ‘L<L, 20
Yy (20)
improving VIG < L (see [2] ).
c) For an other improvement of (16), remark that the following elementary inequality
is known:
x!
e">1+x+...2..(x>0) (21)
This can be proved e.g. by the classical Taylor expansion of the exponential function. Now,
4.1
I

2 2
let x=A/L~1 in (21). By (4) one has I=Ge*"' > (G 5 (.‘;.‘ - 1) =% G(l +_27] Thus we

”

have:

G'A<E'T(L +A*)<L-1, (22)
since the left side is equivalent with 2LA4 < L2+ A%, This result has been obtained in
cooperation with H.J.Seiffert.

d) Let us remark that one has always log.{ 'log.bl_ < 0, since, when a = b, I lies
a
between a and b. So, from (6) one gets

11
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G*+12<24-L, (23)
complementing the inequality 24 L < A% + L%,

¢) By identities (1) and (4) one has
2G+4 ’3“'103 I‘(J;:\,b_) (24)
L 1(a,b)-G(a,bd)
In what follows we shall prove that
I'oa.b) )
I(a,b)-G(a,b)
thus (by (24)), obtaining the inequality

< 2G + 4

L 3 (26)
due to B.C.Carlson [3]. In fact, as we will see, a refinement will be deduced.
Let us define a new mean, namely
S = S(a,b) = (@a®b?) = (a*-bb)an @7

which is indeed a mean, since if @ < b, then a < § < b. First remark that in [6] (inequality
(30)) it is proved that

A?s I(a% b?) s S*(a,b) (28)
(However the mean S is not used there). In order to improve (28), let us apply Simpson’s

quadéature formula (as in [7])

® _ . .
[fenas = 222 [1(a) + 4f(222) + 1) | - L2 f8), £ € (@.b), 10 the
J 6 2 ;) 2880 7 U
function f(x) = xlogx. Since f¥(x) > 0 and fxlogxdx -2 ;a log I(a?, b?) (see
[6], relation (3.1)), v.e can deduce that
I*(a?,b%) s S A* (29)
Now, we note that for the mean S the following representation is valid:
I@?*b?)
S(a, by =~ >__7 30
(a,b) CRD) (30)

This can be discovered by the method presented in part 2 of this paper (see also [6]).

12



ON CERTAIN IDENTITIES FOR MEANS

By (29) and (30) one has
I(a% b?) < AY1%(a, b) 31)
which is stronger than relation (25). Indeed, we have/(a%b?)sA*/I*(ab)s
< I%a, b)/G*(a,b), since this last inequality is
Pz 4G (32)

due to the author [7]. Thus we have (by putting a — J; ,b— ﬁb_ in (31))

IGab) . AGab) 33)
I(a,5)G(a.8)  12(Ja,{b)I(a;b)

giving (by (1)):

4
2G + 4 23 +log 4 ('/;’ﬁ) 23, (34)

L I*(Ja ,\b)-I(a, b)
improving (26).

f) If a < b, then a < I < b and the left side of (5), by taking into account of (18),

implies
1-8<p.(lza\ oL 1-a 1 _, (35)
I I+a L [al a
Remark that the weaker inequalities of (35) yields
b  a
_—t_>2 36
77 (36)
similarly, from (5) (right side) one obtains:
a b
_t_>2 37
77 37

g) For the exponential mean E a simple observation giveslog /(e %, e ®) = E(a, b),

so via (4) we have

a ,b .
E-4=4€%¢") (38)
L(e%e®)
Since A4 > L, this gives the inequality
E>A (39)

due to Gh.Toader [11]. This simple proof explains in fact the rieaning of (39). Since

13
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I3 > A%G (see [6]), the following refinement is valid:

i

g>A*2 108?; (ehe’) 5 4. “

where thé last inequality Bolds by (e =+ 8%)/2 > o2, i'e. the Tensen-convexity of e*

1.

i 2
3,
4.
s.
6.
7.
8.

9
10

11

12.
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A GENERAL MATRIX INEQUALITY FOR COMMUTING MATRICES
B. MOND® and J.E. PECARIC™

Received: December 9, 1993
AMS subject classification; 26D07, 15A45 ~

REZUMAT. - O inegalitate matriciali generalii pentru matrici care comuti. in lucrare se

aratii cii o serie de incgaliti{i cunoscute pentru numere reale au un analog matricial.

Introduction. In this paper,‘ve show that many known inequalities for real numbers
have analogous ;natﬁx inequalities in the case of commuting matrices.

We make use of the following notation: S(J) denotes the totality of all Hermitian
matrices ;Jvhose spectra are contained in the interval JA = B means 4 - B is positive semi-
definite, while 4 > B means 4 - B is positive definite.

J=JxJyx.. xJ where J,,..,J, are intervals in R Ifx = (x,,..,x,),
X, €J,i=1,.,mwe wite ¥ €J. Similarly, ifd = (4,,..,4,), 4, € S(J),
i=1,..,m, wewrte /TG 5(.7)

If4,€ S(J), i =1, ..., mare pairwise commuting Hermitian matrices, then there
exists a Her;nitian matrix // and m polyn;;%iPAis })‘ MHG=1,.,m with'real coefficients,
such that e

A =pH)(i=1,. ,m)
(see [1, p.77)). Therefore, for f J - R,

f(A) = f(p,(H), .., p,(H)) = F(H) 1)

* La Trobe University Bundoora, Department of Mathematics, Victoria, 3083, Australia.

™ University of Zagreb, Faculty of Textile Techriology, 41000 Zagreb, Croatia
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Let Aj, j=1,..,n be _eigenyalues of H and let u,,(j =1, ..,n) be eigenvalues of
A (i =1,..,m). Then
pijspl(xj)e‘li’jnls---an; i.l""vm (2)

On the other hand, there exists a unitafy matrix U such that ([1, p.71])
f(4) = F(H) = U diag[F(},), ..., F(\)]1U”®

. 3
= U diog [f By s Bay)s oS (tygs o )1 U ©
This leads to the following
THEOREM 1. Let f:J = R be a continuous function such that
f(¥)=0, VXeJ. @

If AeS (.7 ) and all A, are pairwise commuting Hermitian matrices, then
fd)=0. ©)
Proof. From (4), it follows that every diagonal element in the diagonal matrix in (3)

is non-negative. This gives (5).

Applications.
THEOREM 2. Let f - J — R be a continuous convex Junction. Then fis also a matrix
convex function of several variables on the set of commuting matrices A€S (.7 ).
Proof Let A € (0,1), X, y € J. Further, let g(x, 7 ) be defined by
g(x,y) =M(x)+ (1 -MfQ) -fAxr+(1-N)y)
Since the function fis convex, we have that
g(x,y)=0 ©
which, by Theorem 1, for x — (x, y), implies
g(A.B)=0 Y
where Z, Be S(i), ie,

16



A GENERAL MATRIX INEQUALITY

A+ (1 -N)B) s Af(4) + (1-1)f(B) @®
which is the definition of a matrix convex function of several variables (see, for example,
2D

We can now use known results for matrix-convex functions obtained from (8), and
give corresponding results for the commuting case. Moreover, we can use directly, known real
inequalities to obtain more general results.

THEOREM 3. (Jensen’s inequality). Let Cﬂ,wj,j‘- 1,..,n, i=1,.,m be
commuting matrices such that E/' (Cﬁ, -,C,) € S(.;), j=1,..,n and
wES(0,°),j=1,..,n. {ff:j—» R is a continuous convex function, then

f[,; iw,C',] x5 2ws€) ©

n J=1 n J=1

where W, = zn:w,.

i=]
Proof. Let us consider the function

g(Xy, s X, Wy, W) = Wl.j-zlef(xj) -f[%gwji;].
We have
g(:?l, e X W w,)z0
and (5) gives (9).

Remark. The above result for m = 1 was obtained in [3]. Similarly some of our
subsequent results will reduce to those found in [3] for m = 1. However, here we only give
results that cannot be obtained by the method of [3].

We now list operator inequalities but only give references to the corresponding

discrete inequalities.

THEOi!EM4. Let Cﬂ., w,j=1,..,n,i=1,.., mbecommutable matrices such
1

z";w,c’?, € SWJ)

w 1ol

that C. € S(J),j=1,..,n,

17
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%,5t0'~,'w', <0,7i=2,.,n, W,>0. (10)
s ‘TSR s a convex function, ‘then' the reverse' inequality in (9) holds.
Now let us consider an index set function
R =W, f(4,(Cyw)) - X, 1€y
wheré” |
W, - T v 4,(Ciw) =:_‘_~;-7J..§w,.6,.

THEOREM 5. ‘Let f be a matrix convex function on J, T ond K are two finite
nonempty subsets of N such-that TN K= ¢ , w = (W,).zp, andC = (Cervk;jed. .m
is a set of commitablé matrices such hatC € S(J), w, € S(R)(IETUK), W, > 0,
A(C;w) € S(J) (1 = T,K, TUK).

IfW.>0and W,> 0, then

F(TUK) s F(T) + F(K) . an
S W, W <0, we have the reverse inequality in an.
THEOREM 6. If w,> 0, i =1,..,n, I, = {1, .. k}, then
F(LysF(, ). sF({)s0, (12)
but if (10) is valid and A . (C;,w) € S(J) then the reverse inequalities in.(12) are valid,

Theorems 4-6 in the real case are obtained in [S), [6], [4].

" 'THEOREM 7. [7]. Let the conditions of Theorem 3 be satisfied. Then'

[y =
fL_LE w‘,C,.] =SS Shaasha.s sk,

Vopiimk. , s, (13)
- L wIC),

n i=1 TR st

where

18
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. l ; W' Ci * o *M‘: I‘l
‘,;":.________ E v;(w‘_‘rg,'"’.u-"v)f l(l "I
' n-1 w 185, <..<i,%n o ¢ W,l + .+ W"
k-1§ "~

THEOREM 8. (8]. Let the canditions of Theorem 3 be Julfilled. Then
(._.2 w,C ] Py Y PPy T:'*'E wf(C), (4

iw} n I=}
where - -
wC+..+w(C
l :. I '
f;, N Z (W )f | DR
. ”+k- Isiys.sisn v, A +W‘ ) ‘
(k -1 )W g -

THEOREM 9. [9]. Let the conditions ijheorerfl :3 be fulfilled. Then
f(.W.EwC] f s f s.s f =LY wsC) @)

w i=1 /—‘:’l.ﬂ ~k.n - —1,n n =1
where 1< ks n-1, and TR
‘‘‘‘‘‘ | - -
= w .. —(C + .. +( .
!]‘_" W: E'_l I (k ( 5y ., ))

THEOREM 10. [10,11]. Ler the conditions of Theorem 3 be fulfilled and let
" ‘. Uy -
q,.i =1, .k, with Q. =Z,‘ q,, be-also strictly positive operators permutable with{C "
e {‘l

aﬁd { WI}, then

Ew ] W ﬁ? [ Zl,,]

n sl k el

s__ wa(C) " (16)

THEOREM 11. [l ,13). Let the conditions of Theorem 3 be fulfilled and let

C: .__..Ew, ,,tG[OI] i=1,.,k-1. Then

" [ Ew “)'s‘]'n_ls < f

s

—'71-,‘- 2 w,l.‘.w,.f((-:““ Sy e S
n (AP
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+ 5' L. t)s ..]_. 2 wjf(é‘-i),
* W, S
where
- 1 " -
foi= 7: ,.._g,;..w" - w, f(C,(1-14)

k-1 _
+3C (-6, )4..1,+Cr ).
o ot

THEOREM 12.[14]. Let q,, A,€ S(R™), i = 1, ..., n be commuiable matrices, and

let the function g be defined by

gx) = z": ...l.f[q,xA, + (r-x)z": Ak]
k=1

i=1 i

where q>0,i=1,.,n, withz":(l/qk) =1, rER,q,:}A, +(r-x)2":,4,e S(T),
i=1,..,n, forall x from an intervc:l flﬁom RIff: T—R isaconvex;?:nction and if
x| < |yl(xy>0,y€EJ), then

g(x) = g(»). (13)

The function g is also convex.

Remark. Using the substitutions: 1/q, = w, [E w, = 1] , 4,4, = X, r =1, wegetthat

i=l
(18) is also valid if
g =YX w f[xX + (1-0F w, X,
inl k=

Remark. For some further generalizations of some of the previous results, see [15] and

the references given there.

THEOREM 13. [16). Let A,w, j=1,..,n be commuting matrices such that
AjE S(J), wE (0,0),j=1,.,n,J=[m M]. Let f:J = R be a continuous convex
Sunction and let I J ® - R be continuous and increasing in its first variable, J an interval

in the range of f. Then
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F

% Y wf(4), f(_l ”. W, A,.]) <

5 t=l W,, iw
19

mexsM M-m M-m
Remark. Inequality (19) is a generalization of corresponding results from [3).

{max F(M"‘f(m>+ x-m f(m,f(x))]}l.

Let JC R and suppose M:J— R is continuous and strictly monotone. Let
A= (A,,..,A,) be an n-tuple with elements from S(J), w = (w,, ..., w,) an n-tuple with
elements from S’(O, ) such that W, = 2": w,> 0, and let all matrices 4,, w, be commutable.
Then the quasi-arithmetic M-mean of /; xlvith weight w is
M(Aiw) =M .F:,_gw,M(A,.) . (20)
We now give generalizations of some resul"ts for three quasi-arithmetic means obtained
in [3]. (We use analogous real case from [4, pp. 248-253]).
LetK:J,—= R, L:J,— R, M:J;— R, f:J,xJ,— J, becontinuous functions, M
increasing. Consider the inequality
J(K(4,w),L(B;w)) =z M (f(4,B);w), @n
(here f(4,B) = (f(4,.B,), ....,f(A,B,))) where A = (4,,..,4,),B =(B,,...,B)),
w=(w,..,w), are n-tuples whose elements4, € S(J,), B.€ §(J,), w,E S(0, ),
i =1,..,n, are commutable metrices.
THEOREM 14. If the function
H(s,0) = M(S(K™(s), L7 (1))
is concave, then (21) holds. If H is convex, then inequality (21) is reversed.
THEOREM 15. [16] Let ¢(u,v) be a continuous real-valued function defined on
J*(J = [m,MY)), nondecreasing in u, G increasing and convex with respect to F. Let A and
w be n-tuples of operators, A, € S(J), w, € §(0,»), all permutable. Then

21
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¢ (G, (4;,w), F (4,w)) =

{ max ¢[G1(8G(m) + (1 - 8)G(M)), F(OF(m) + (1 - G)F(M))]}I. @2)

0€(0,1}

The quasi-arithmetic mean (26) can be generalized as follows:
Let¢:J—= R bea stn'ctl'y positive function, F': J — R a strictly monotone function

AE S(JY,w € §(0,®). Then define, for permutable 4,,w,

i

D w,6(4)F(4)
F(4;¢) = F| 2 — @)

3 w,9(4)

i=l

THEOREM 16 [17]. Let K,L,M be three differentiable strictly monotone functions from
the closed interval J to R; let ¢,y be three functions from Jto R,, f:J*— J and let
A,BE S(J) . Then

S(K,(4;9).L(B;v)) = M,(f(4,B);x), 249
where f(A,B) = (f(A,,B)), .., f(A,,B,)), holds iffor all u,v,s,t € J the following

inequality holds.

Mo f(u,v) -Mof(t,s)\ x0f(u,v) <
( M’ of(1,s) ) xOf(1,5)

K(u) =KD\ 90 110, o, (L) = L(s)\ (V)
( K (0) )¢(r)f'("s)( L'(s) )w(s)f’("”'

Remark. For some special cases of theorem 16 see [3].
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A NOTE ON CERTAIN NEW INTEGRODIFFERENTIAL INEQUALITIES
B. G. PACHPATTE’
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REZUMAT. - Notd asupra unor noi inegaliti{i integrodiferentiale. Scopul acestei note este
de a stabili doudl noi inegalitati integrodiferentiale.
Abstract. The object of this note is to establish two new integrodifferential inequalities

involving a function and its derivatives by using a fairly elementary analysis.

1. Introduction. In a paper published in 1932, G.H.Hardy and J.E Littlewood [3]
proved the following integrodifferentizal inequality:

(]f’ 2ds] < 4[If2a’s If” 2ars), )
where fis a real-valued, twice continuously differentiable function on [0, ®) and such that
fand f” are in the space L%(0, ). Due to its importance in various applications, this result
has attracted a great many authors over the years and a number of papers related to this
inequality have appeared in the literature. An excellent survey of the work on such
inequalities together with many references are contained in the recent paper by W.D.Evans
and W.N Everitt [1]. The main purpose of the present note is to establish two new integral
inequalities involving a real-valued function and its first and second derivative which claim
their origin to the well known Hardy-Littlewood inequality given in (1). The analysis used

in the proof is elementary and our results provide new estimates on this type of inequality.
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2. Main results. We first introduce some notations which will be used to formulate
our results.

Plt.f (1)) =t f 2(1),

Q,[6.f(1)] = 1°/*(1),

RILLS (1.1 (D] = 12 [(a* Y1 (1) + 120" *(1)],

SLLLW L (0. (D] = 1= (1 +a+2)f2(1)

1 (2t + o+ 2) 1 1) 1 1 (),

AL L0, F (D] = t°[(a+ 1) f2(1) + 1/ 2(1)],

B, L6,/ (1), f" ()] = 12 [ (2 +a+ 1)) + 1" ()],

C, U S(O.F (1.1 (D] = ir“*'(ua +2) (1)

t“"(4t ra+2) 1)+ = t“"f" 20,
where o 2 0 is a real constant and £(1) lsaml-valued ﬁmcumdeﬁnedml—[o, o) andf’ (1), f” (1)
are the first and second derivatives of the function f(¢) for t € 1.
' Our main result is given in the following theorem.

THEOREM 1. Let a = 0 be a real constant and f be a real-valued continuous function
defined on I such that f' and f" exist and continuous on I such that J 0.[t,f(1)])dt <=,

‘[R [e.f' (1), f" (D)di < @, !S [0, £/ (), f" (1) ]dt < .
Then i , i :

[!Pu[t,f’(t)}dt] <4 ( ‘(Q.,[t,f(t)]dt] ( ‘[Ru[t,f’(t),f” (x)]dr]. @

Proof. Let a be a real constant such that 0 < a < «. Integrating by parts we have the
following identity

j’{t“"— _;t"’z "2(0)dt = -jf(l).;it([l“"- %I“" }/’ (l))dt. (3)
From (3) we observe that
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‘{P.,[t,f’(t)]dt - % ! (122 2(0) + 122 0() 1" (1) + (@ +2) 0" f(0) ' (1) ]dt

'!(”f(’))(”[’f” (1) + (0+1)f'(’)])d’- )
Squaring both sides of (4) and using the elementary inequalities
(¢, +c, )2 < 2(c,2+czz) , €6 S .;_(c,2 +c22) , (¢,,c, reals) and Schwarz inequality, we

observe that

a 2
[ ‘[ P..[t,f’(t)-]dt]

. 2
<2 _ali[‘[[ta.zf/z(’) + 12 () f7 (1) + (a+2)*'f (1) f' (t)]dl)

+ (j(t;f(t))(t;[tf” () +(a+l)f (t)])dt]z
< °[%[1 [r“f”(v) 12 (£ )

*(as2)re (20 + f'?(r))]dr)’

+ [j(r;fm)(t;[rf” (1) + (a+1)f’ (’)])d’]z

I 1

1N (2t+a+2) f1 (1) +

19]
19]

<2 “_lt“"(uan)f’(t) + 12 2(1)]?(11
a 2

+2(‘[Q“[t,f(t)]dl][‘[t“[tf”(t) +(a+l)f’(l)]2dl]
l ! v / 1 z

s Ej(éu[r,m),f (DS (1) dr

+4(1[Q¢.[l,f(l)]df)[!R‘,[!,f’(l),f”(t)]dt : (%)
Now by letting a — ® on both sides of (5), we get the desired inequality in (2). This

completes the proof.
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A slightly different version of Theorem 1 is established in the following theorem.

THEOREM 2. Let a, f, f',f" be as defined in Theorem | and such that

!Q.,[t,f(t)]dt < w,‘[B‘,[t,f’(t),f”(t)]dt <w,
J'Ca[t,f(t),f’ (1), f" (1)]dt < ©. Then

® 2 ® ®
(JAa[t,f(t),f’(’)]di] s 4[JQu[l,f(')]d') [!B.,[',f’ (1), f" (1d:|. ©)
Proof. Let a be a real constant such that 0 < @ < «. In view of the hypotheses we
have the identity (4) obtained in the proof of Theorem 1. Integrating by parts we have the
following identity:
jﬁ [1“" - %l“’z]f‘(l)dt = -21[1“" - % t“"]f(t)f’(x)dt. )]

dt
From (7) we observe that

:f(a*fl)t“f’(t)dt . %h(wﬂﬂ'*f’(:) e 2052 () (1))
-2 [ =L () (Dt @®
From (4) and (8) we observe that
:[A.,[t,f(r);f’ () 1dr
< 2 [l O O+ @0 s @
+ (a+2) 12 (0) + 2022 (1) f () ]dt
- i(t;f(t))(t;[tf” )+ reasyr ) ©)

Now by following ex:cily the same arguments as in the proof of Theorem 1 given below the

N

identity. (4) with suitable changes, we get the desired ineduality in (6). The proof is complete.
Finally we note that, in the special case when a = 0, the inequalities in (2) and (6)
reduce to the inequalities which we believe are new to the literature and are of independent

interest.
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REZUMAT. - Asupra unor inegalitiiti liniare. Lucrarea contine o nou#i demonstratie a unei

teoreme a lui Tiberiu Popoviciu, precum si aplicatii 1a studiul unor inegalititi.

1. Let X be a real linear space and S a connected topological space. Consider a linear
functional b on X and also a family 4 = {a, : s € S} of linear functionals on X. For x €
X let us denote by v, the function v (s) = a,(x), s € S.

Suppose that

(1) There exists x, € X such that a,(x,) > 0 for all s € §.

(2) If x € X and a,(x) > O for every s € S, then b(x) > 0.

(3) For each x € X, v, is continuous on S.

Under the ébove assumptions we have

THEOREM 1 ([6], [7]). For every x € X there exists s € S such that b(x)/b(x,) =
a,(x)a(x,).

Related results and many applications are given in [6]-[9]. In this note we present

some more applications.

2. Letn=2, X=([0,1] and

* University of Zagreb, Faculty of Textile Technology, 41000 Zagreb, Croatia

™ Technical University, Department of Mathematics, 3400 Cluj-Napoca, Romania
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S = {(’p HL)ER" O0st <. <t s, -1 == 1"—1”_,}.

Fors = (#,,..1)€ Sletal(x) =[4,..1:x], xEC[O,1].
Here [1,, ..., 1, ; x ] denotes the divided difference of the functionx on #,, ..., 1,.

Let Oswu <..<wu s1 be fixed and consider the functional
b(x) = [u,, ...,u";x], x € C[0,1]. Denote «x,(f)=t"',¢t€[0,1]. Then
b(x,) = a,(x,) =1, s€S. Condition (2) is satisfied: see, for example, [2,pp.244-246].
Clearly condition (3) is also satisfied.

By‘ applying Theorem 1 we obtain an altemative proof of the following result of
T.Popoviciu (see also [3]).

THEOREM 2 ([S]). Given 0 s u, < ... <u, s 1, for every x EGO, 1] there exist
n equidistant points 1, < .. < in [0,1] such lhai [, .,u x] =[t,. ., 1,;x].
3. Let pu be a probability measure on [0,1] whose support does not reduce to a single

point. Let
1 1

b(x) = !x(t)dp(t) -x \{tdp(l)), xE€C[0,1].
Let §= {(tl,tz,‘t_,‘)em: Ot <t,<lsl, ;-1 =1 —t,}.
Denote a,(x) = (1,4, 4;;x], x€EC[0,1], s = (1,4,,4,)ES.
Let x, € C[0, 1] be a strictly convex function. From Theorem 1 we deduce
THEOREM 3. For every x € C[0, 1] there exists s = (tl, L, l,) (S b such that
1 1 1 1
[‘[x(l)dp(l) -xr[zdp(z)))/[Jxo(:)dp(t)-xo[!zdp‘(:) ]=[:,.rz,:,;x]/[t,,rz,:,;xo].
This is an ilksprovement of a result of H.Alzer [1]. Related results involving probability
Radon measures on compact convex subsets of locally convex spaces are to be found in [6]
and [8].
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4. In the above setting, instead of the given functional b let us consider

1

b(x) = Jx(t) (% -4 +12)dt, x€C[0,1].

Condition (2) is satisfied by virtue of an inequality of Levin and Ste&kin [4]. Theorem

1 shows that for every x € C[0,1] there exists s = (#,,4,,%,) € § such that

1 1
‘[x(:)(-;. -1 +12)dt / ‘[x.,(r)(% 1 ,z)m = Uty X ) a1y, ).
Similar results can be stated for many known functionals b which are strictly positive

on strictly convex functions.
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ON THE HALLENBECK AND RUSCHEWEYH TYPE
OF DIFFERENTIAL SUBORDINATION

Teodor BULBOACA"

Received: December 10, 1993
AMS subject classification: 30C45

A Rl‘.TlkaT - Asupira subordondrii diferentiale de tip Hallenbeck- -Ruscheweyb. in. lucrare
sunt date conditii suficiente asupra lui g si y, pentru ca |mpl|caua (1) si aiba loc.
1. lntrodué}tion. Let H(U) be the space of functions which are analytic in the unit disc
U. ¥f f.g € H(U), we say that fis subordinate to g, written {z) < g(z), if g is univalent in U,
A0) = g(0) and AV) < g(V).
We denote by S°(a), a < 1, the class of functions'fz) = z + a,2> + ... which are
analytic in U and satisfy
Re (1 2/ ()If () > o, = € U
and S(f, is called the class of convex functions of order a; furthmore,§ CuS§ C(fO.\),
represents the clas;‘p‘f:' ponvex‘functions in U |
In [1], Hallenbeck and Ruséheweyh proved that if A(z) = g(z) + .;.z (z)1s convex
and univalent in U, where ¢ € H(U), Rey 20, y=0and p € H(U), then
N p(z) + ;~p( 2) < h(z) implies p(z) < q(z). )
A natural problem is to find conditions on h, or on q for whlch the lmphcatlon (1) is
true for some negatnve values of Re y. In our paper we determme sufficient conditions on q

v

and y, where Re y may be negatxve S0 that the lmphcauon (1) holds.

" "Aurel Viaicu"” University, Department of Mathematics, 2900 Arad, Romania
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2. Preliminaries. We shall need the following definitions and iemmas to prove our
main results.
We denote by s*(a), a < 1, the class of functions fz) = z + a,2 + ... which are
analytic in U and satisfy
Re zf'(2)If(z) > a, z€U
and S *(ao) represents the class of starlike functions of order o in U.
LEMMA A [5]. If f € §°(a) where a € [-1/2, 1) and F(z) = %:[f(l)dt, then

F € §*(d(a)) where

al2a-1)
2(2%+a - 1)

: 1 "
o(a) = ) -1, for «=1/2 (1)
1

32m2-1)

-1, ;% «»1/2 and o= 0

1, for a=0C

and this result is sharp.

LEMMA B [6]. The function d(c) is continuous, positive, increasing and convex on
[-172, 1).

LEMMA C. Let g be a convex (univalent) function in U; if f € H(U) and

Re fi(z)/g'(z) >0, z€U

then fis univalent in U.

Note that this lemma represents the criterion of univalence (close-to-convexity) of
Ozaki and Kaplan [7], [2].

We say that a function L(z;¢), z € U and ¢ = 0 is a subordination (or a Loewner)
chain if L(-; 1) is analytic and univalent in U for all ¢+ 2 0, /(z; *) i1s continuously

differentiable on [0, +») for all - € U/ and L(z;s) < /(=;f) when 0 s 5 < 1.
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LEMMA D (8, p.159). The function L(z;t) = a,(t)z + ... witha,(f) = O for all t 2 0 is

a subordination chain if and only if

ez olL/oz
aL/ot

>0

Jorallz€ Uandt=0.
LEMMAE [3]). Let f€e HU) and let g &€ H(U ) be univalent in U withf(0) = g(0).
If A=) is not subordinate to g(z) there exists points z, € U and §,€ dU, and m = 1 for

which f(|z| < |z,]) C g(U), f(2,) = 8(&,) and z,f'(z,) = mEg'(E, ).

3. Main results.
LEMMA 1. Let h € S(«) with a € [-1/2, 1) and q(z) = _z.j'h(l)dt. Then

q € S°(d(a)), where d(a) is given by (2) and this result is sharp.

~a’ (=
Proof Ifwelet P(z) =1 + ki (')) , then P(0) = 1 and a simple calculus shows that

q'(z
L =P/(2) zh” (2)
P+ =1+2_"" = H(). 3
(2) PO+ 1 1 ) ) 3)

From h € S “(a), using the above relation, we obtain

P'(z) _ HE) < 1+(1-2a)z '

P +1 1+

Since Re (H(z) + 1) > a+ 12 0, - € U, by using Theorem 1 from [4] we deduce that

PE) +

the differential equation (3) has a solution P € H(U) with P(0) = 1 and according to
Lemma A we have &
Re P(z) > 8(a), =€ U *
ie. ¢ € $°(8(a)), and this result is sharp.
THEOREM 1. Let h € S “(a) with a € [-1/2,1) and ¢(z) = %:{h(i)d!. Suppose

that Re y =z -d(a) and y = 0, where d(«) is given by (2).
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If p € HU) with p(0) = q(0), then p(z) + _izp’(z) < q(z) + _;.:q’(z) implies
p(2) < q(2).

Proof. Since q(z) = %:{h(t)dt satisfies the conditions of Lemma 1 we obtain
q € S¢(8(a)) and by Lemma B we have 8(ct) =2 8(-1/2) = 0, hence ¢ € S €.

If we denote L(z;1) = yq(z) + (1 +1)zq’(z), then L(z,'i) is analytic in U for all ¢

2 0 and is continuously differentiable on [0, +) for all z € U.

He have also

%_[l(o;t)=q’(0)(1+t+y), for t20. @)
Since ¢’(0) = 1 and Re y2 -8(a) > -1 for a € [-1/2,1), from (4) we deduce that
_";i_‘(o;z)wmrau:zo. )

A simple calculation yieldé that

. YN
e =00 _Rety+ vyt + 241 ©)
aLTot 77C2)

From ¢ € $€(8(a)) and Re y 2 -8(a) we have

/
q°(z)
combining this with (6) we conclude that
ALY
“oL7at
‘:rom (5) and (7), according to Lemma D we deduce that L(z;7) is a subordination

oy (o
Re Jy + (1 +1)(1+“1 (“)) >Rey+8w) =20 forall zE U and 1 € 0, and

Re >0, z€eU, t=0. )

chain.

If we let G(z) = L(z;0) = vq(z) +z2q'(2), l_ience

/ oyl (-
Re S ) LRpefy 1+ 2 )¢ ®)
q'(z) q'(z)
From q € $°(8(a)) and Re y = -8(a), by using (8) we obtain
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T
Re (’/(') >0, -eU
7'() |
and because ¢ € S, according to Lemma C we conclude that G is close-to-convex, hence

thvalent, in U.

“f/vi;lout loss of ‘ge;lérality we can assume that the functions p(z) and ¢(z) satisfy the
conditions of the theorem on the closed disc U. If not, then we can replace the functions p(z)
and ¢(z) by p,(z) = p(rz) and ¢q,(z) = q(r z), where 0 < r < 1. These new functions
satisfy the conditions of the theorem on U. We would then prove that p (=) < q,(z) for all
0<r<1and letting r — 1~ we obtain p(z) < q(z).

. Suppose that p is not subordinate to ¢. According to Lemma E, there exists points z,
€ U and §, € 9/ and 1 2 0 such that p(z,) = ¢(&,) and z,p'(z,) = (L + 1)E,q'(E,).
Then

() + 2P (2) =g (E,) + (1 + 1)Eq (&) = L(E,; 1)
and because L(z;7) is a subordination chain we get
LE:N & GU) e
w(z,) *+ z,p'(z,) & G(U) which contradicts the assumption; hence p(z) < q(z) and the

proof of the theorem is complete.
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REZUMAT. - Asupra unei conjecturi. fn lucrare se imbunati{este un rezultat obfinut recent
de H.H. Gonska i C. Cottin.

1. Introduction. Let Lip,,(c,[0,1]) be the set of real-valued continuous functions
satisfying inequality:
LfGx) =fO) < Mx - y|*
for all x,y € [0,1], with M > 0 and a € (0,1] independent of x and y.
Let Lipy(c,[0,1]) be the set:
Lipa(a,[0,1]) = { € €[0.1], w(fiy s i}
aE(O,Z]. Here w, is the well-known modulus of smoothness of order two.
Lindvall [4] and Brown/Elliot/Paget [2] proved the following result:
Let f€ Lip,(a, [0,1]). Then B, f€ Lip,(a,[0,1]).
This result was generalized in 1991 by G.A. Anastassiou, C. Cottin and H.H. Gonska [1].
They proved: ’
For Bernstein operators B, one has, for all f€ C[b,l] and $20,
,(B,f:8)< 16, (f:8) £ 2°w,(f;8)

Here ®,(f; *) denotes the least concave majorant of w,(f ;). The constants 1 and 2 are best
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possible.
In [3] C. Cottin and HH. Gonska prove that if f€ Lipy(a,[0,1]) thenB, fe
€Lip, s(,[0,1]). They posed the following problem (Problem 3.6):
Is it true for the classical Bernstein operators B, that:
JELipy(c,[0,1]) implies B, f& Lip\(a,[0,1]), 0<as2 ?
In this paper we show that for. a€[0,1] and f€ Lgp;,,(a,[o,l]) implesB, f€ Lipa(@,[0,1]).

If € Lipy(c,[0,1]) and fis convex or concave then B, f€ Lipy(a,[0,1]).

2. Results.
THEOREM 1. Let f€ Lipy(,[0,1]), a €(0,1). Then B f€ Lipy(a,[0,1).
Proof. Let E = {(0,0,0),(1,0,0),(1,1,0),(1,L,1)} C R’ and ¥ = conv E. We observe that
we have:
= {(x2) €E[0IP | x 2y =2}
Let B, (g) be the Bernstein polynomial which is attached to the function g, g € C(V) and the
simplex V.

v For each g € C(V) we have:

g k j+k k
Blemna) s T ) 0 x)ﬂg(’*” 17;) )
i'j*k*p-n

If g(x,y.2) = g(x), V (x, ,z) € V we know that

B, (gxyz2) =B(gx) = 2( )x (1-xyg (n)

i=0
Using this observation we have:

B(fu) - 2B,(fv) + B(fw) = B, (gu,vw) @
where g:V — R, g(u,v,w) = fu) - 2v) + fiw).
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For h € (0,)2) and x € [h,1-h] let u=xth, v=x, w=x-h. From (1) and (2) we obtain
B (fx+h) - 2B (f.x) + B,(fx-h) =
-y " h“f(x—h)"(l-x-h)"( f(i *f“") - 2f(£*.’£) R f(_k)) .
n

injeopen 1JIEID! A n n

= 2 ",U_::TI]' hiv (x'h)k (A-xhy (f(i?:k) —f(!%k) -f(—l%lf) +f(-§) ) .
From (3) we have :

3)

B (fx+h) - 2B (fx) + B(fx-h) = B, (ux+hxx~h) “)
where u(x,y,z) = fx) - Ax-y+z) - Ay) + A2).
If f€ Lipp(c,[0,1]), a €(0,1] , then

lu(ey.2)] = | (/(x) - 2f("_;”)’+ﬂ:>) - (f(x—y+z) - 2f(i‘;__’.) w))
Ax) - °f(f3-) + £ + | fxy+z) °f(-"_) + )

sufz5]) - bsly
o) o]

f:z__zll ‘< (ﬁ) it follows that:
2 .2

|urp2)) < 2M("—;i)° ©

<

< +

<

Because

-

From (4) and (5) we obtain:
|B (fx+h)-2B (fx)+B (fx-h)| = |B, (u;x+hxx-h)| s B, (|u|;x+hxx-h) s

< 21\/[ B (e ;x+h) - B (e; x-h)

2

| - sam
Using the fact that the function #:[0,1] — [0,1], A(¢) = £ is concave on the interval [0,1].
With this the theorem is proved.

THEOREM 2. Let f€ Lip,; (a,[0,1]1), « € (0,1]. If fis a convex function or a
corcave function then B, f € Lipy (a,[0,1]).

Proof If f€ Lip,; (a,[0,1]) and fis a convex function we have:
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u(ey.2) = (D2 fopen) - ) 2 M(:_ )
and

u(ry.2) s f(x)- 2f(£_§_) of(2) s M(_’f;.:)
s0

u(x.y.2)| = M ("—;—) ©

Vi In the same way it shows ’t‘hayt if fE€ Lip,; (a, [0,1]) and f1s a concave fu.nction u
satisfies inequality (6).
From the inequality (6) we obtain the inequality:
| B,(f;x+h) -frZB”,(‘f;x) +B (fix-h)| = ) (lu lix+hx,x-h) s Mh*.
With this the theorem is proved.

THEOREM 3. If f€ Lip,, (2,10, 1) then B, J € Lipy (2,10,1]).

Proof. The Theorem 3 is obtained from the qulity:

B"// (fix) = n(n-l)i: (f(f;%?-_) _2f(l¢+l) +f[f_)«)("!;2)x"(l —xy+?
=0

n n

and from

|B(fix~h)-2B.(fix)+B(fix -h)| = | BY f1 s kM L
n
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"REZUMAT. - Constructia unor operatori liniari de aproximare prin metode
probabilistice. Lucrarea prezinti o metodi probabilisticd de construire a unui sir de operatori

liniari pozitivi utilizati in teoria aproximirii uniforme a functilor continue de doui variabile.

Se studiazi convergenia sirului si s¢ evalueazi ordinul de aproximare. in final sunt prezentate

exemple care extind in plan rezultatelc obtinute in [2].

1. Introduction. Connections between probability and positive linear operators are
discussed in many papers. Also a lot of generalizations and investigations of the classical
operators of discret type (Bemstein; Szasz, Mirakyan, Meyer-Konig and Zeller and others)
were studied [1], [3], [4]. [5]. [6], [7], [8]. [9]. [10] and the literature cited there.

This paper develops a general probabilistic method for constructing positive linear
operators useful in the theory of uniform approximation of continuous functions of two
variables. We study this sequence of operators by applying the well known theorem of
Bohman-Korovkin. Then we evaluate the orders of approximation in terms of the modulus

of continuity; in the last section of this paper we present some examples which extend the

results of G.C.Jain and S Pethe [2].

2. Construction of the operators. Let ( Q, 4, P ) be a probability space in the sence

of Kolmogorov, i.e. Q is an arbitrary abstract space, 4 is a o-algebra of subsets of Q and P

* "Babeg-Bolyai" University, Faculty of Mathematics and Computer Science, 3400 Cluj-Napoca, Romania
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a probability measure in Q and on A. Let (X")" l, (Y..) _, be two real sequences of random

Mimazl

variables havi;g the following distributions:

P(X,=x,) =p,(x,y), (iEACN), P(Y =y, )=q,(x.y), JEBEN) where
(x,y)EIxJCRxR; I and J are not necessarily bounded intervals. Let (p ) be
defined by:

Pmj(x,y) = P(X,=x, and Y =y )

By the definition of this distribution we have:

E Py = D > Z p,.,, = p,, and consequently 2 Z p:j" =1 (1)
€A JEB ) i€A jEB
Now we consider the operators defined by:
(Lan /) 20) =X X Py (5. 9) S (%00 Vo)) P
i€EA JEB

where fis a continuous function on / x J.
It is clear that the operators defined in (2) are linear positive. Therefore they are
monotone. Let us calculate the values of our operator for the test functionse,,: D — R,

where ¢, (x,y) = x*y'; k,1 € {0,1,2}, k+! < 2. Using (1) we have:
) (Lm.eoo)(x’y) =z E pl’:j‘ = l = eoo(xay)

i€A JEB
Let us agree to denote the expectation of the random variable Z by E(Z) and the moments

about the origin by v,(Z), the subscript indicating the order of the moment. In these

notations;
(anelo)(x y) =EEP'"I m EpnixnigE(Xn)
i€EA JEB i§A
Analogous:
(.'LmneOI ) (x’y) = E( Y‘")
Also:

(L) &) =T X pix2 =¥ (zp,:;)xﬁ =Y P xl = v(X,)

1€EA JEB 1€EA4 \ JEB 1€4
46
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Analogous: (L.... eoz)(x,y) = Vz( Y..)
At last we compute;

12

(anell)(x’y) = 2 (Ep mj m) mj = E(Xn Ym) = (VZ(Xn)VZ(Ym)) ’
J

according to the Schwartz inequality. By making use of the results established above, in

concordance with the well-known Korovkin’s theorem in probabilistic form, we can state:

THEOREM. Let (L,,)

.y €10 I8 be introduced in (2) and f € C(IxJ)

i)
i) limv,(X) = x*, k€ (1,2}
ii) u:nv,(ym) =yt k€ {1,2)
iii) Lim E(X,Y,) = xy

(n,m)

then we have: lim (L f) = f uniformly on 1 % J.
(n,m)

3. Order of approximation. For evaluating the corresponding orders of
approximation, it is convenient to make use of the modulus of continuity of £, which is
defined by:

w(d,,8,) =max |f(x",y") -f(x",y")|, for |x'-x"|s8, |y'-y"|=d,,8,,8, being

positive numbers.
We will need the following known property of the modulus of continuity

w (0, 0,0,) = (1+X, +1,)w (8,,8,), (A, >0,14,>0) @)
We can write succesively:

(L..)x.9) - F )| = IR IR CIMENCOE
<X £ rilin) 1] < T ol s v, )

But by using the inequality (3) we have.
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o]x, - %, m,-yl)w(—l - x]3,. Iym,-ylb
(l+b, lx x|+62 |y —y|) (61,6)

Thus we obtain:

EZ(1+6 | %, —x|+6, y,,u-yl)p,(x,y)=
JEB €4

=1+ EP».Ix - x|+ 8 Eqm,lym-YI

Now we shall apply the inequality of Cauchy: E ab, < (2 a’'y b )

1ec lec lec

By choosing first C = 4, a, = ‘/— ‘/-1: |x,=- x|, we obtain:
Epnilxni_x = ((Epni)(zpmlx —x )) ((Epni)xz-
€4 1€4 i€4

i€A4

I POEMAEES WAL ) = (x2-2E(X)x + v,(x)) s {D(X)

1IEA
D(X,) being variance of the random variable X,.

It is easy to see that the equality holds for x = E(X).

At the second step we choose : C = B, a, = ‘/qm, , b = \/q..: |ym,- y| and we get

an analogous result:
¥4, 57 v < (D{Y.)

Now we can state the following proposition:

THEOREM.If f€ C(IxJ)and L, fis defined at (2), then the following inequality
[(L., /) xo9) - 79| < (1487 D2(x) + 87 DY2(Y,)) w,(8,,8,) holds.

Examples.

A.Letusconsiderthat/ = J = [0,1]; x,, = % (i=07m); Vi = _'j'._'., (j=07m).
We assume that (X )  follows a generalization of the binomial distribution with

i-1 i .
P, (x.8) = I (i +k) E(—l)’(’)(l -x-Bry @)
ity \ B r

r=0-
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-1

We assume that the product ] (.’_‘;. + k) is defined as (1) when i = 0 and we consider that
k=0

1-x

n

Bl < Xifp<o.
n

(Y_ )ml are identically distributed amé q,(y,a) =p, (y,a). ltis easy to verify

that: E(X)) = x(l +B,(n)) andvz(Xn)=x(_'l.; + ﬁ,f'n) +(n-Dx(x+p)(1+B,(m)],

B may depend on the number n. The limiting conditions on f are p < if 2 0 and

where
- (LEBY-1 L 1+(1+2By-2(1+BY _
B,(n) ———;'T‘_— 1, B,(n) T 1

The assumptions limnP(n) = 0 = limm o (m) assure that the conditions (i) and (ii) of the

theorem are satisfied.

In order to the third condition, we take into account that

EXY) =Y dpq = LIvip |5 jg |-
(h In) ;j-zlnmpmqnu nm glpaj[zjqau)

l1+a)’- f‘l

= xy(l +|3l(n)) (l +al(m)) = xy where a,(m) = -1

ma
We notice that the random variables were considered independent.
B. Letn = o, x = 0, § — 0 in (4) such that nx = a, nf§ = y then the limiting

probability p, (o, y) of obtaining i successes is given by

2i-1
p(o,y) =[] (a+ky) E_

-a
k=0 i!

( ! _e-,) ,a>0,y>0,i21andp,,=e ™  Thiscase
Y
represents a generalization of the Szasz-Mirakyan operator. Also we define:
iln Jim
X, (Pm(”x’Y))m Y (pm,(my,v))m
If € C([0,%) x [0,%)) and if (y,¥ ) — (0,0) as (n,in) — (o, o) then the sequence
(L7 /)

mmen iy CONVETges uniformly to fon [a,b] x [c,d] where 0 sa<b <o, 0<c <

d < o, Indeed there holds:

E(X,) = an?(e-1)y'=>x,n—> 0, y—>0

- 2 -
vz()(”)=f.(nx+y)(e7 1)+_{e' l—»x’,n—»«w,y—*o
n n oy
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and similar results for E( Ym) and v2( Y...)‘

E

(X,1,) =YY ij(nm)'p,, (nx,x)p, (my,y) = xy, (n,m) = (»,®)

izl jzl

This completes the proof.

10.
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REZUMAT. - Operatori ¢-monotoni §i ¢-contractivi in spatii Hilbert. Lucrarea introduce

nofiunca de ¢-monotonie, care generalizeaz3 conceptul de tare-monotonie, §i arati ci familia

operatorilor ¢-monotoni este echivalentd, intr-un anume scns, cu cca a operatorilor ¢-
contractivi.

Introduction. The aim of this paper is to establish a relation between a class of
monotone operators, by a hand, and a class of contractive mappings, on the other hand, using
a generalization of the contraction mapping principle due to KRASNOSELSKI and
STECENKO (6]. As shown by CEA [3], which applies this results in optimization theory, if
the operator (; satisfies certain monotonic conditions, then 7, = I - yG, for a certain y > 0, is
a contraction. In [5] DINCA argued that CEA’s conditions are only sufficient and,
consequently furnishes necessary and sufficient conditions, obtaining the following
generalization of CEA’s result: G is strongly monotone and Lipschitz operator if and only if
there exists y > 0 such that 7, is a contraction.

Theorem 3.1 extends these results, by means of scme new concepts, and states that

G is ¢-monotone operator if and only if there is y > 0 such that 7| is ¢-contraction.

1. Comparison functions. Various concepts of comparison functions was defined and

* Unwversity of Baia-Mare, Department of Mathematics, 4800 Baia-Alare, Romania
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intensively studted in connectlon w1th the generahzed contracnon mappmg, principle, see, for
example RUS AI [7] [8] BERINDE,V. [}] B} in the present paper we need comparison
functions defined without the monotone mcreasmg condition.

DEFINITION 1.1. A mappmg cp R - R is said to be a comparison function if

(i) @ ts continuous; .

(i) 0 < g(t) <1, for 1> 0. *

R =Sy

Let’s denote by ¢ the set of all. eompanson funcuons, Obwously, ¢ is nonempty and contains

R

both lmzaz and nonlmear functions as shown by
F,xample 1L1.Ifo: R —=-R,q9()=at, 0<a<l tER, then ¢ € ¢.
Ixampme 1.2. 6 @:: R, = R,,.@.(t)= ((1-1), for 0 s ¢ <1 and q>(l) =t1, fort21,
then ¢ € ¢, but-¢ 1s nonlinear.
‘LEMMA 1.1. Let @€ ¢ be a comparison function. Then.
2) 9(0) = 0; -
b) 0.<2tp() - Q) < F, for 1> 0. -
-Proof.
) From (ii) we obtainlim (1) = 0, hence, by (i), @(0) = 0.
§b‘) Since ¢ € ¢, we have @(f) = 0.and ¢ - gff) = 0, t € R,: Then, for every t ER,,
209() - () = () [£+ (1 -9(1))] 20
Finally, for 1 > 0, ¢ - ) >0, then 2:q(2) - ¢*(f) > 0 and (1 - ¢(1))* > 0: that is, 20(/) - ¢()
< £, which completes the proof..
We are now able to give the following
DEFINITION 1.2. Let ¢ € ¢ be a comparison function. A function r,: R, — R, given
by r () = V 219(1)-¢*(2) is called the transformate of .

52



¢-MONOTONE AND ¢-CONTRACTIVE OPERATORS

LEMMA 12. Let @ € ¢ be a comparison function and r its transformate. Then
ar,€¢;
‘b) The mapping r'¢ — ¢, r(@) = r is bijective;
¢) @(?) < ry(0), for each t > 0.
Proof.
a) follows from Lemma 1.1.
b) It suffices to show that for any y € ¢ there exists a unique ¢ € ¢ there a unique
¢ € ¢ such that
2t@(1) - ¢() =), tER. 0]

First; we Observe that for 7 = 0, it follows ¢(0) = 0. Then, let 7 = 0 be arbitrary but fixed.

Deiiote @ = Wf’) , X = 2? Since ¢y € ¢, a € (0,1). From (1) we obtain the equation
x?-2x +a’=0
which has a unique solution x € (0,1), x =1 - ‘/:-’.
Hence
@) = 1-\£- (1), (ER,

is the unique solution of (1), that is, r is bijective.

c) It is obvious.

DEFINITION 1.3. Let (Xd) be a metric space. A mapping fX — X is called A¢-
contraction if there exists a comparison function ¢ € ¢ such that

d(f(x).f(y) sd(x,y) - 9d(x,y)), Vx,y € X. ()

We need the following generalization of the contracﬁon mapping principle

THEOREM 1.1. (KRASNOSELSKI and STECENKO [6], RUS,A L. [7]).

Let (Xd) be a complete metric space and f. X — X a ¢-contraction. Then f has a
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unique fixed point that can be found by using functional iteration starting at an arbitrary

point x, in X.

2. ¢-monotone operators. Let H be a real Hilbert space whose norm and inner
product are denoted as usually by |-} and <-,>, respectively. An operator G:H-His
called monotone operator if

QGu-Gv,u-—v>zO, VYu,vEH. )

G is called strictly monotone operator if equality in (3) implies # = v.

G is said to be strongly monotone operator if there exists m > 0 such that

<Gu-Gv,u-v>zm-|u-v|*, Yu,vE H. @)

The operator Gis cavl"led Lipschil:: operator if there exists M > 0 such that

|Gu-Gv|sM-ju-v|, Yu,vEH. ()

LEMMA 2.1. If G: H — H is an operator which satisfies (4) and (5) thenm s M.

Proof. Since G is strongly monotone, hence monotone, the Cauchy-Schwarz inequality
yields.

<Gu-Gv,u-v>s<|Gu-Gv]-ju-v|, Vu,vEH
which together with (4) and (5) gives mju - v|?< M-|lu - v|*, Yu,v € H, thatisms
M

Remark. If G: A — H is strongly monotone, then G is injective. For an injective
operator G and a given comparison function , let denote by £, = 1,(G,y) , &, = 1,(G,¥) 4, <
t,, the (assumed) real roots of the quadratic equation

1Gu-Gv|1?-2-<Gu-Gv,u-v>-t+9*(Ju-v|)=0, u,vEH, u=v. (0

DEFINITION 2.1. We say that an injective operator G: H — H is a ¢-monoton
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operator if there exists P € ¢ such that
(m) <Gu-Gv,u-v>2|Gu-Gv|-y(lu-v|),Vuv€EH,

(my) QH[f.(G,'P), LG, $)]=¢.

Umy

LEMMA 22. Any strongly monotone and Lipschitz operator is a ¢-monotone
operator.

Proof. Assume G satisfies (4) and (5). To prove (m!) it suffices to show that there
exists P € ¢ such that

m-ju-viPzM-Nu-vi-py(lu-vl),VuvEH
or equivalently,
miu-vizM-y(lu-v|), YuvEH. ™

' m = M, (*) holds for any () =at, 0 <a< 1,1ER, and if m <M, (*) holds forp (¢) = L"Mt.
For the second part of the proof, let us observe that [#,,5,] is the solution of the inequation
obtained from (6) replacing "=" by "<", hence (m,) is equivalent to the following condition:
there exists y > 0 such that

1Gu-Gv|Py*-2-<Gu-Gv,u-v>-y+¢*(Ju-v|)s0, Yu,vE H.

Using (4) and (5) we have

IGu -GvIPY¥ -2 -<Gu -Gv,u-v>y+@ (lu-v|) s )
s (M2 -2ym)-lu-vI2+ @ (lu-vl),

hence, to prove (7) it suffices to show that for certain y > 0 and @ = r,, the inequality
(M- 2ym)-Ju-vP+ @(lu-v|)s0, Y u,vEH ®)
holds.
If m = M, then y(#) = at, 0 <a <1 and (8) holds for y = Tl-/l , since
(m*y* - 2yM)Ju -vPP+a*Ju-vP<(M*y¥ -2yM + 1) ju-v|*= 0.
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If m <M, when @(t) = ﬂt, 8) kolds for y = .
¢() = 1. @) Lays
Indeed; in this case we have
2.2 o2 o2 _ __.' z,mz_qmz m? . vl =
(M= 2ym) Lu - vP+ @(u-v1) LM - R UST ]
Remark. The class of ¢-monotone operators is larger than the class of strongly
monotone and Lipschitz operators as shown by theorem 3.1 together with theorem 1.1 and

theorem 3.2.

3. Fixed points. Let H be, as in the previous section, a real Hilbert space and let G:
H — H be a given operator. For every y > 0, let us define the operator 7,: H — H, given by
T =1-4G, )
where / 1s the identity operator.
Such a procedure plays an important role in many- practical problems, when the
problem of solving the operatorial equation
G(v)=0
is reduced (if possibly) to the fixed point problem:
T(x)=x (10)
Thus we are interested to convert the monotonic hypothesis on G in adequate
conditions of contractive type on T, in order to obtain an iterative method to solve (10).
The main result of this paper is given by the following
THEOREM 3.1. Let H be a real Hilbert space, G:H—Ha given operator and let
T, be the operator defined by (9).
Then, G is a ¢-monotone operator if and only if there exists y > 0 such that 1, is a
¢-contraction.
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Proof. Assume T, is a ¢-contraction. We shall prove that there exists y € ¢ such that

(m,) and (m,) holds. We have from (9)
W Tu-TvP=u-v-y(Gu-Gv)|* =

. 11
e luevP -2y <Gu-Gv,u-v>+y*-ju-v|>, Yu,v € H (1
But 7, is ¢-contraction if and only if there exists ¢ € ¢ such that
I 'I’yu - 7'7v|l sfu-vi-¢(lu-vl), Yuv€H (12)

Thus from (11) and (12) we deduce that there exists ¢ € ¢ and y > 0 such that
1Gu-v|P-y*-2 ‘<Gu-Gv,u-v>y +r§( lu-v)|)so0, V u,vve H, (13)
that is, the inequation
1Gu ",_G‘QV 12-2-<Gu-Gv,u-v>-t +rj( lu-v]|)=<0, u,veEH (14)
has a positive solutions / = y and y does not depend on u,v € H.
This implies, by a hand, that
<Gu-Gv,u-v>=20, VYVuveEH
(otherwise (13) is impossible for u = v), and on the other hand that
<Gu=-Gv,u-v>-|Gu-Gv|P rl(lu-v|)=0, Vu,vEH (15)

From (14) and (15) we obtain (m,) with yp =r_. .

Let £,(G, ), (G, y), £,(G,y) < 1,(G,y) the real rdots of the equation
associate to (14). Then y € [1,(G,y), ,(G,y)], for each w,v € H, u = v, that is (m,)
holds. Hence G is q)i'monotone operator. The converse is obvious. The proof is now complete.

Remark. From the proof of Lemma 2.2 it results tiiat'if G is strongly monotone and
Lipschitz operator then G is <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>