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STUDIA UNIV. BABES§-BOLYAI, MATHEMATICA, XXXVIIL, 1, 1993

GENERIC AND SPECIFIC

Nicolae BOTH"

Received: September 20, 1992
AMS subject classification: 03B0S

REZUMAT. - Generic si specific. Considerind definitia inductiva a formulelor predicative (cu
sau fard predicatul egalitatii) se disting doud categorii de formule: genence §i specifice. Se dau
exemple §i se pregiteste cadrul general pentru distingerea celor doud categoni.

In each domain of the knowledge, definitions, properties, reasonings and so on, give
a general logical formulation over a specific contents. The general formulation is realized
within the framework of predicate logic (with or without equality) and the specific part is
expressed in the language of terms (see [3]). Thus the proof of theorems is performed within
a deductive theorie, whose formulas have both logic and specific aspects.

FExample 1. The transitivity of (generalized) parallelism:

albablc=alc
may be formulated by

Vx (P(x,a) DP(x,b)) A Vx (P(x,b) DP(x,¢)) D Vx(P(x,a) DP(x,c)) )
where P(u,v) = "u L v" (perpendicularity)

Remark 1. If we put in (1) P(u,v) = "u < V", u,v € Z, then we obtain the formulation
of order-transitivity. Thus, the same logical formula may express similar properties in
distinguished domains.

Remark 2. As (1) represents a true predicative formula; the tiansitivity 15 a gencral (not

specifical) property.

* "Babeg-Bolyai" University, Faculty of Mathematics, 3400 i }..
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Example 2. Consider the predicative formula on Z :
' Gy 3l

Vx(p(xa) n § () Fw1) D 3y E(s(Was).p(bN.1) @
where labxyz € Z, s, p are terms (the sum, and the. product respectively) and & ¢ are the
equality and the divisibility respectively. Thus (2) express a theorem in number theory: "If
a,b are relative pnmes then there exist y,= s0 that ay + bz = 1", ’

Remark'3. If defote’ R(a,b) = "a,b relative primes” and &(a.h.2)= Yape+ b= 1",
then (2) becomes:

RabyD3y3z& (ayhz).... .. )
which is not a true predicative formula, although she. lggve a (true) model on Z.

In the preceding examples we may .observe that there are two tipes of (true)
predicative formulas: "generical” trug (as (1)) and "specifical” true (as (ER)Ne

The main purpose of this. paper is to charactenze the two above menfioned notions.

In the following we sketch necessary preliminanies and give some charactenizations.

GENFRIC FORMULAS
Let POR,., be predicative symbols,. t,y,z,,... (i =Tn,y =Tm: k = Tp,.),
individual symbols and P(x,... x,)) O(,....1,,). R(z...2;).... be elementary predicates.
"“We define, by induction, predicative formulas (see {3]): AU
(i). Every clementary predicate is a (elementary) predicative formula.
(i1). If /-,(; are predicative formulas then
FUING), UIVG), (ND(G) are predicative formulas,

Wi,
(i1i). If the predicative formula /-(x) contains "free" vanable x theu Vx/-(x), ﬁ\'l"(x) are
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predicative formulas.
(iv). There is not other predicative formula.

To emphasize that the formula F contains predicates P, from variables x,
(i = Tm, j = Tn), we write

HP,.. P, x,..x)
We call the predicative formulas above defined by (i) - (ii1), generic formulas.
Remarks. 4. The variable x in VxF(x) and IxF(x) (see (iii)) is "bounded".
5. The formulas F,G are called parts (subformulas) of the formulas defined
in (ii) and (iii).
As in [2] we define the order, O(H), of the part H of a predicative formula:
(0,). Fis a part of order zero of F,
(0)). F.G are parts of order 1 of the formulas defined in (ii) and (iii).
(0,). Fis a part of order nt+1 of G if it is part of order 1 of a part of order n of the
formula G.
If Fis a part of order n of G, we write F' 5 G.
'LEMMAA {fFIS) H andG 3 H then F pfq H
Proof By induction, using the definition (O, - 0,).
Denote I(#) the set of parts of the formula F and define in T(F) the relation
(s). Hs K iff there is n € Nso that H ; K.
PROPOSITION. (I(F), s) is an ordered set.
Proof. (re).H s H=> H3 H (Conf. (O,))

(tra). H < K, K s 1. = there is m.n € N so that



N. BOTH

HpKad K5 L=H,S5, L (Lemma) = H s .
(an). H < K, K < H => there is m,n E N so that
HpKadKyH=H, 5, H=>mm=0=>m=n=0=>H5K=H-=K
COROLLARY 1. The elementary parts of the formula I are minimals in (TI(1"), s).
W_e call edges of the formula /-, the minimals from (I1(/)), s). This name derives
from the graph of the ordered set (I1(/), s).
Fxample 3. The graph of (T(#), <), where /' is the formula (1) (see Example 1) is

given below:

F@abg) 0)
VAEA YxF, Vi, ' (1)
g N |
VxF,,” “VxF,. F,, @)
! ] Vi
1 ! / \
P Fah P ic F.’A Fc (3)
//” \\\\~ ’//“ \“\
F, F, F, )

where /1, = P(x,h) and I, = I, D I,. The oders are denoted by (0) - (4).

SPECIFIC FORMULAS

LetMbeaset,¢ =(/*), iEN uER a.family of maps f': M*— M. Define
the notion of term on M, by:

(,). Each (generic) element of M is a term

(1)). It f€ ¢ and x“ € M" then Ax") is a term

(t,). There are not other terms.

Now recall the definition of generic formulas (1) - (ii1).

6
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Denote P the set of bivalent propositions and associate to each elementary predicate
P(x,,....x,) a map P : M" - P, which will be called n-ary predicate on M.

Ife_mark 6. Between the predicates (on M) we consider also the binary predicate of
equality &

Replace (1), in the definition of generic formulas, by (i,). If P(x,,....x,) is n-ary
predicate on M and ¢,,...t, are terms, then P(¢,,....7,) is a specific formula (on M), and
gverywhere in (ii) and (iii), replace the "predicative formula" with "specific formula".

In this way, we obtain the notion of specific formula (on M).

Remark 1. To each generic formula F corresponds a class (1) of generic formulas on

Using the valuatién mapv. P—- V= ‘{0,1 }, we may define the notion of specifical and

generical true formulas.

Let FF = F(P,,..P,; x,,...,x,) a predicative formula with n-ary predicates P, and P :

M" — P the corresponding n-ary predicates on M.
Analoguosly as in the definition of the generic formula /, we define the specific

formula 'Y = FY®), . P, 1,,...4,) on M, starting from the correspnding predicates P on

M, 1, €M,
The specific formula F* € (F*') will be called specifical true if is identical true on
M (see [1]).
12

The generic formula F is called generical true if every 'Y € (1) is specifical true.

That is, a predicative formula F is genenical true if and only if [{(P,,. . P,; x,..x,) 15 a

*oms
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COROLLARY 2. 7he generic true implies the speciﬁc one.

The Example be]ow shows that tlié converse of Corollary above is false.

Ecample 4. The formula F = Rx.f) 33 y 3z B ytz) = FRE: x.p,=1) (see Example
) is not generical true, but there is a specific formula on Z, /¥ =
"ab)=1D31, 31 (at, + bt = 1)", which is specifical tfue.

The problem arises, in this context, to establish the ‘cases i which the converse of the

»ove affirmation holds.

" REFERENCES N

1. N.Both, .llgebra logicii cu aplicatii, Dacia, Ciuj 1984.
2. N.Both. Aonotonia in calculul propozitional, Stud. Cerc. Mat4 Tom 21/1969, 543-551.
3. S.C.Kleene, Mntroduction to metamathematics, D. van Nostr. Co. Inc. New York-Toronto, 1952.
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RECURRENCE RELATIONS FOR SOLUTIONS OF A" - Dy = N
DIOPHANTINE EQUATION AND ITS APPLICATION

Huseyvin ALTINDIS’

Received: April 27, 1993 |
AMS subject classitication: 11109

REZUMAT. - Relatii de recurentd pentru solutiile ccuatici diophantice X' - DY =N i
uncle aplicatii. Sc stabileste formula de recurenia pentru soluiile ccuatict \* - 0} =\ care
generalizeazd ccuatia lui Pell si uncle aplicatii ale ci.

Abstract. The equation X* - D}* = 1 is generally called Pell’s equation. In this paper
the recurrence relation for solutions of X* - )}* = N Diophantine equation are given.
Moreover some more recurrence relations are investigated beside those that are given by
Copley. Finally by using these recurrence relations it is shown that the set {1,2,287} can not

be extended.

1. Introduction. Let 1) be a positive integer which is not perfect square. Then the
equation X* - DY? = 1 is usually called Pell’s equation and it has always an infinity of
solutions, which may be found from the continued fraction for VD) [1]. It is well known that
if x, , y, 1s the smallest positive integral solution of the Pethan Equation, then the general
solution X, ¥, 1s given by

X +Y VD=(x, +y VDY (H
where r = 1,2,3,...[2]. But this is unwieldy for the computation of other ~olutions and it 1s

more convenient to use recurrence relations which can readily be shown to tollows from (1)
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G.N.Copley [3] give the following recurrence relations for solutions of Pell’s equation. From

(1) one gets

‘ ,: ;. fo’ : '
X, +Y, VD =(X +Y VD)X +Y VD) @
K, VD ={x, +¥ VDy a)

Equating rational and irrational coefficients in (2) gives the general recurrence relations:

‘X’” = ‘XfXJ' * I)Yryx‘ Yifs = /\’, Y.‘, + Y,-A,s (4’
'"”";:Xlr = sz +‘1_)Yr2 =-1 + 2X'2'er -_2)(’}/’ (q)
X, = X(4X2=3), ¥, =V (4X? - 1) )

For the solutions of Pell’s equation, we;alsa-have the tollowang relations:ss sies ¢

. )‘:*2("5 —Xi;(mod)(,‘) ey [ERENE IR RN FAN (7)
X=X, (mod ) : (®)
¥ ==Y (modX). . ©)

2. Diophantine Equation X’ - DY’ = N. Now we consider the Diophantine equation
X¥=DY:=N (10)
where D is a given square-f;r_ee natural number and N.is a. given non-zero integer. Suppose
that (10) is solvable, and x and y be two integers satisfying (10). Then x + WD) is called a
solution of (10). It will be called positive solution if x > 0 and y > 0. Let u + wWD be the
smallest positive solution of the Pell equation
U?-Di? =1
then all of the solutions of (10) are given by

X +Y,VD = (x +y VD)u # v VDY . (n

10
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where r = 0,1,2,3,.. [2].

So, we have the following relations:

X +Y VD =(x+yVD)u +vVDy
=(x+yVDYU +V VD)
=xU +xV VD +yU VD + DyV,

=xU + Dyl +(xb +yU WD
equating rational and irrational coefficients we have

X =xU_+DyV, (12
Y, =xV +yU. (13
similarly,

X. =XU+DYV, (4
Y. =XV +Y U, (15,
X, =-X(mod /) (16;
X, =X(modV) a7,
Y., =-Y(mod (/) (18;
Y., =Y(modl) (19)

Some more relations could be found.

. 3. An Application. We say that two integers « and 3 have the property P, if af} +‘
+ 2 is a perfect square. A set of numbers has the property 7, if every pair of distinct elements‘
of the set has this property [4]. The set of numbers {1,2,287} has the property P,. We show
that this property does not hold for the set {1,2,287,¢}. Where ¢ is any other positive integer.

It is sufficient to prove that there exist no positive integers x,y and z satisfying the

I



H. ALTINDIS

following equations:

TR :"'H.'Nl:i?’?i <
c+2=x2. 20)
ne k3wt 1)
287 Vs (22

from (21) we see that 2|y Herice, on putting’y = 7}, where V" is an integer, equating (21)
. i
gives ‘
¢+ 1 =2y 23
Now eliminating of ¢ between these equations. we have
¥ -2) =) st 29
and
z? - 28N = -572 (25)
So we must show that the Diophantine equations (24) and (25) do not hold simultaneously.
The general solution of the Pell equation (24) in positive integers is given by
X + ¥ 2 =@G3-2/2)y
where n=0,123,...

Hence, we have the following table of values:

%

n X, Y,
0 1 0
1 3 2
2 17 12
3 99 70
4 7 408
S 3303 (2378
6 19601 13860
7 114243 80782
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We perform the calculations in four stages. From (25) we have
=} = 287 - 572
1) Ifns=0 (mod 4), then from (8) we have
x, = X, (mod V,)

=1 (mod 12)

2

Hence =, = 3 (mod 12) which is impossible since 3 is not quadratic rezidu modulo 12

i) If # =1 (mod 4), then by (8) we have
x, = X, (mod Y,)
= 3 (mod 12)
Thus, =}=7 (mod 12) which is impossible since 7 is not quadratic rezidu modulo 12,
1) Similarly if n = 3 (mod 4), then we have
X, =99 = 3 (mod 12)
which leads to a contradiction again. *

v) If n = 2 (mod 4), then by (8) we have

x,= 17 =5 (mod 12)

and Jr,,2 = 1 (mod 12). So :,,2 = 3(mod 12) which leads to a contradiction again.

Thus, we have shown that the Diophantine equations (24) and (25) can not

simultaneously. This completes the proof.
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I1 - CLOSURE AND THE P PROPERTY

. Rodica COVACYK

Received: June 15, 1993
AMS subject classification: 20010

REZUMAT, - T1 - inchidere yi proprictatea P. in lucrarc sunt demonstrate citeva proprictati
cchivalenie cu proprictatca . Acestea sunt folosite la stabilirca unci legawrn intee T1-
inchiderea unui omomorf si proprictatca P. Aceasta nc conduce 1a 0 noud forma a tcoremei
principale din {1}, furnizind informagii suplimentare despre grupurile Il-rezolubile in care
subgrupurile acoperitoare §i proicctorii corespunzdtori unci clase Schunck coincid.

Abstract. Some properties equivalent with the P property given in [1] are proved.
They are used to establish some connection between the [1-closure of a homomorph and the
P property. This leads to a new form of the main theorem from {1}, giving furthen

informations about I1-solvable groups in which covering subgroups and projectors respecting

to a Schunck class coincide.

1. Preliminaries. All groups considered in this paper are finite. We denote by IT a set

of primes, I’ the complement to IT in the set of all primes and 0,,((s) the largest normal IT’-

W
subgroup of a group G.

DEFINITION 1.1. a) A class. x of groups is a homomorph if x is closed under
homomorphisms.

b) A homomorph x is a Schunck class if y i1s primitively closed, i.e if any group G,
all of whose primitive factor groups are in y, is itself in .

DEFINITION 1.2. Let % be a class of groups, (5 a group and H a subgroup of (5.

" "Rubes-Bolyai” University, Facully of Mathematics, 3400 Cluy-Napoca, Liomania



R. COVACI

a) H is an y-~covering subgroup of G if : (1) H € y; (ii)
H<KsG K, 4K, KK, €y imply & HK,

b) H is an x-projector of (; if for any normal subgroup N of GG, HNIN is x-maximal
in G/N.

Respecting to a fixed set of primes [l we define the following classes of groups.

DEFINITION 1.3. Let x be a class of groups.

a) s N-closed if:

GO (NEX=GEY.

b) A TM-closed homomorph is called [1-homomorph and a N-closed Schunck class will

be caled 11-Schunck class.

2. [1-llomomorphs with the P property. Let I1 be a set of primes and x a class of
groups. The following three properties are defined in [1]:

DEFINITION 2.1. a) A class x has the P’ property if for any Tl-solvable group (; we
have:

N mimmal normal subgroup of (5 and N IT'-group = G/NEY. (1)

b) % has the " property if for any Tl-solvable group (5 we have:

NaG, N=1 and Nis a [V -group = G/NEy,. )

¢) x has the I’ property if for any [1-solvable group (; we have:

0,,(G)= I => (&Y. )

First let us compare conditions (1), (2) and (3).

LEMMA 2.2 Let G be a group.
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.a) If y is an arbitrary class of groups, then (2) implies ().

b) If x is a homomorph, then (1) and (2) are equivalent.

Proof. a) Let N be a minimal normal subgroup of G which is a IT’-group. Then W
are in the hypothesis of (2) and so G/N € .

b) Suppose (1) is true and let us prove (2). Let N be a normal subgroup of GG, N =

and N IT’-group. There is a mimimal normal subgroup M of G, such that M C N. Clearly
is also a IT’-group. Applying (1), G/M € . But then G/N « (G/M)/(N/M) is in %, because
is a homomorph.

LEMMA 23. Let G be a group.

a) If x is a homomorph, then (3) implies (1).

b) If x is a Tl-homomorph, then (1) and (3) are equivalent.

Proof. a) Let N be a minimal normal subgroup of & and N
IT-group. Then N <0

((G) and so 0 (G)=1. By (3), G € ¥, hence, % being

g 114

homomorph, G/N € .

b) We prove that (1) implies (3). Let 0, ((5)= 1. If follows that there 15 a minima
normal subgroup N of (s such that N<0,,((;) Clearly Nis a IT’-group. By (1), we have 5/
€ . But

G/0,,(G) = (G/NY(0,(G)/N)

and using that % is a homomorph we deduce that (;/0, ((;) Ex. But x is IN-closed and so (

13
€xm

LEMMA 2.4. fet G be a group.
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a) If x is a homomorph, then (3) implies (2). N
b)Ifxisa ﬂ-homomorph. then (2) and (3) are equivalent.
Proof. a) By 2.3.a), (3) implies (1) and by 2.2b), (1) impligs ‘(2):.2 So‘_'(3‘{)“;§mplies ).
b) ‘By 2.2.a), (2) implies (1) and by 2.3.b.),m(’l) implies (3). It followg thgt (2).implies
3).m | |
Lemmas 2.2, 23. and 2.4. lead to theb f(;llow‘ingvtwo theorems:
THEOREM 2.5. Let G be a group. | \’
a) If % is a homomoaorph, lh(.’l; ;'t)ivc);;i;rrs (1) and (2) are equivalen@
b) If % is a Tl-homomorph, then conditions (2) and (3) are equivc;le;;;. 1’1 this case,
onditions (1), (2) and (3) are equivalent.
THEOREM 2.6. Let x be a class of groups.
a) If x is a homomorph, then the following statements are eqtlil)c;ll;;rt:
(1) x has the P property;
(1) x has the P’ property.
b) Ify is a N-homomorph, then the statements (1), (W) and (iit) are equivalent, where
1) is given below:
@) % has the P" property.
Finally, we establish some connection between the I1-closure of a homomorph and the
' property.
THEOREM 2.7. If x is a class of groups having the P" property respecting 10 a sel

[ of primes, then y_is [I-closed.

Proof. Let GG/0,,(G) € x. There are two possibilities:

13
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1) 0,(G)=1. Then G = G/0,,(G) and so GEY.
2) 0,(G)= 1. If follows, by the P" property, that G € x .l

Theorems 2.6.. and 2.7. give the following result:

THEOREM 2 8. Let . be a homomorph. The following two conditions are equivalent:

a) x is M-closed and vy, has the P property,

b) % has the P" property,
where properties P and P" are respecting 1o the same set Tl of primes.

Proof. (a) implies (b). It follows from 2.6.b).

(b) implies (a). From 2.7. follows that y is I1-closed. Hence ¥ i§ a [l-homomorph and
we can apply 2.6.b). So y has the P’ property. W

Theorem 2.8. leads to a new form of theorem 3.3. from [1] which we give below.

THEOREM 2.9. ([1)] Let & be a Schunck class with the P" property respecting to a
set T1 of primes. If the T-solvable group G has a chain of normal subgroups:

I=N,aNa_oN=G
with every factor N, /N, nilpotent, i = 0,1, r-1, then the following conditions on a
subgroup I of G are equivalent:
(1) I is an F-projector of (i,

(i1) I is an F-covering subgroup of (.

REFERENCES

1. Covaci,R., On T1-Schunck classes with the P property, "Babes-Bolyai" University Rescarch Scminars,
Preprint No. 5(1988), 22-34.
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REZUMAT. - Citeva inegalitd{i pentru functii m-convexe. Functiile m-convexc au fost
definitc in [4]. Elc au alurd intermediard cclei de convexitate si celei de stelaritate. Pentru
aceste functii in lucrare se demonstrcaza incgalitdfi de tip Jenscn si de tip Hermite-Hadamard.

1. Introduction. We will follow the paper [5].
Let X be a real linear space, / = [0,1] and m = 0 a fixed real number.
. DEFINITION 1. A set D € X will be called m-convex if for any x, y € IJ and any /

€ [ we have ix + m(I-N)y € .

The following two lemmas which describe some properties of m-convex sets hold.

LEMMA 1. Ifm> 1,0 € D and D is m-convex, then ]i»‘ ars ¢ E Dtz 0 we have
Ix€D.

Taking into account this property, in what follows we shall consider only m € 1. The
value m = 1 corresponds to convexity and m = 0 1o starshapendness.

LEMMA 2. [f D is m-convex and 0 < i <-m < |, then D is also n-convex.

Now, let 1) be a m-convex set in the lincar space X with m € /. Transposing thc ideca‘
from [3] to the real case, in [4] it was introduced the following class of functions.

DEFINITION 2. A function f: D — R is said to be m-convex if for every x, y € L.

and ¢ € I it verifies the condition:

* University of Timigoara, Department of Mathematics, 1900 Timisoara, Romania

** Technical University, Department of Mathematics, 3400 Cluj-Napoca, komania
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Slux + m(1-0)y) < tAx) + m(1-0):Ay).
Here again, m = 1 gives ‘convex functions‘and m = O starshaped furictions.

As it is shown in [5], it is natural to suppose 0 € D and f0) < 0.

IS ETANE F

Now we recall some fundamental propemes of m-convex functions (see [S]).
LEMMA 3. The function f: D — N is m-convex if and only if the set:

epif) ={x, ED xR yzfx)}
is m-convex.' - |

LEMMA 4. If fis m-convex then it is ~slarshaped

%

THEOREM l If f is m-convex aml Osn<msl then f is n-convex.

2. Jensen’s inequality for m-convex functions. We will 'p’rove:f t‘lr\e fol‘lowing
inequality of Jenscn’sv;t‘ype. ‘ | |

THEOREM 2. Let X be a linear space, m €10,1] and D C X is a m-convex set in X.
If 1D — Ris am-convex function, l/;(;ll Jorall p,>0and x, € D (i = 1,...,n) we have:

Sopmtxap € D0 owhere )= Yn,

1= =l

and the Jollowing nequality:

(Zp m"r/I’]szl)m"/(x)/l’ n

-] =

holds.

) Proof. We proceed by mathematical induction. If # = 2, the statement follows by the

. b

defintion. Suppose that (1) holds for "n - 1", i. e 4
n-1

) -l ‘
| I[E qa m o yl /Qn-l] s E ql m i f(v:) /Qn-l
-l =l
n-1

whereY q,m™' v, /0, , is assumed to be in D, provided that ¢, > 0, 3, € 1D and
=

(22
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n-1
0., = Elq‘. Now:

l n ~ p p L ~ n
72 p,m"x,-.l_".xl*m[l-?lls pmx, 1Y p,
~l n] =2 L]

and since:

Y pmx 1Y p €D itfollows ¥ pm“'x |P,ED.
-2 =2

=l

By the above considerations we have that:

f(zl: pm*! x',/b"] =j:«(%x‘+m[l°l?)'. z;p,m:-zx'/zz:p, < |

P, P u - P
s .F';f(x,h(l —ﬁ]f ;': pm ’x,/§ pls l_’:.ﬂxl) +

+m_}!_2"': p‘ Z’l:‘p‘m"’j(x‘)lzn:pl =Y pmfx)IP,. ‘
=2 ~2

n =2 =l

and the theorem is proved.

COROLLARY 1. In the above assumptions for D, f m and x, (i = 1,...,n) we have that.

n
Y mx in€D and.

-
/[2 mtx, /n} s Yy mfix) In.
~l 3}

Application 1. Let m € I and x, p, > 0 fori = 1,...n.

The one has the inequalities:

q !
[Z pm '“'x,] s pl Y pmty Vel ]

.-l =l

and

Ly, 1
»|+7§_Zl):""-.x12[ (X"‘I)I)I'“l[l‘]
-1

wo=l

The proof of the above inequalities follows by (1) choosing the functions f: [0, ©]
— [0, x), fx) = x4, respectively f: [0, ©) — (-, 0], Ax) = -In(x+1) which are m-convex.

A second result is contained in the next theorem.

THEOREM 3. Let X be a linear space, m € I and D a m-convex set in X Iff: D —»

R is a m-convex function, then for all p, > 0, x, € D, one has the inequalities:

23
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f((rﬂn(l l))__z pm- _E pmx,

< _]_Ep,m"' .

,. -l n el
(l._zp m''x, #m(l-l)__Eme/' x] = — EPP,
,, ! l" ig=l

smfx, +m(1-0)x) s (t+m(] -l))_z m- ‘pzm" pJ(x).

Gl -

Proof. By the definition of m-convex functlons, one has:
AL, + m(1-0x) s 1 - fx) + m(1-0) - fix) for all ij € {1,..,n}.

By multiplying with n?’'p, = 0 and summing over j to 1 at n, one has:

me' Yf(tx, +m (1 -l)x) s

PRl

= '—E mp, ‘/(x)+m(l -‘)'—2 P [(x).

n"

Using Jensen’s inequality for m-convex functions, we get:

sz m’ex +m(l- l)__Ep m’'x ] = ( Z/)mf"(lx+

wa= n r~l s

+m(1 —l)x})) TZ P, ml‘lj(l\' +m (1 -l)x) s

n !
_I_.E m' 'p j(\’)+m(l -l)_.___E ’, m"‘j(,\ )
" Pra

forall i € {1, 2, n}.

Multipying this inequality with p™" and summing over / to 1 at # one has:

__L/;m" {I_I_Epm" \+m(l~l)__2pm",- 3

il n el n et

"

— Z ppme /(l\' +m(l —I)\ ) s ITZ m’ p

I-,,' Jonl el
.._.E p,m flx) +m(l —1)__2 pmtf(x ).__E pm- =
I,‘ ™l l n .l" ! ! I’n -l

= (1+m(] —l))._i-z p‘m“'_ITE [;‘;rt"'j"(x,).

n t=l n =l
On the other hand, by Jensen’s inequality for m-convex functions, we deduce

"

.._E p,m*f ‘—E P, mr x, +m(l —1).._2 P, m’! x|z

ln =l n!“
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1y Al 1y - 1 ¢ Al
zf(.l_,.;g; pm l[}r?;;: Pj'"“’xz""”“")jra§ p,m 'x_,)] -

-f((t+m(l -t)).;:g pm* _P'_gl: pm* x)
and the theorem is proved. |
Remark 1. If we assume that m = 1, we obtain a, ‘,reﬁnement of Jensen’s inequality
established in [2].
CORbLLARY 2. In the above assumptions for D, fand x, we have for all m € [0,1)

the inequalities:

f[(u-m(l-t))(l-m ), Em,- )

1-m p
_2 »"f[ x+m(|—t)_.sz' ]

— Z meL X, sm(l =1)x) (r+m1-0)(l _m")zm"‘ f(x,).

n? .55 n(l-m pry

The following appl%cations also hold.

Application 2. Letx, p,> 0, g 2 1 and m € [. Then one has the incqualities:

1
(t+m(l -1y (E p, m"'] (E pomex ] s

=l ml

I

@
s l’“L/)m"[tz;)m" X, +m(1 -1)21) m"\] s

sPY pop,mUx am(L-)x)Y s
if=l '

< (t+m(l -t))l’:‘"2 m‘"'p """" I'X"
/

Application 3. Let x, p,> 0 and m E (0 l]. Then one has the inequalities:

2

(t+m(l-t))_5£ p,m"' Epm’ 'x,+1 2

II 2 l(;,:'_) g pmrix 41 z

fe] ;- ”n
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s PR T

1p!
(H (1x, +m(l-t)x*l)”""""] 2

iy=l
g d - Nl : o T

(nn(l-l)ﬁ}:n' ‘p,

2 [ﬁ (x,+1 )""“] e

The proofs follow by Theorem 3 applied to the m-convex functlons f [O o) —» [0

o), Ax)=x'(g=1) respectlvely f [0, ®) = (-0, 0], Aix) = -ln(x + l)

Note that Theorem 2 and Theorem 3 give also some mterestmg, mequalmcs in a

ARSI

normed linear space.

.

AN ot L T TR A e AR R
! Application 4. Let (X, | * {) be a normed space, p, 2 0 with p, > 0, x, EX, mE ]
and ¢ = | Then one has the inequalities: )
: . T DA LM
Yo m"'x,l s P pm x : i
-] R ~l
cand ? , o ¢
. q 'I‘
(t+m(l~l))"[£pm"] Epm"xl s
£ =l L ] . { ~
"‘: ‘o ""./." ., 7
s P Yome I 'y p,mtex +m(l -‘I)E pj::ma"“xj;li:‘js A
Y ~ .l X
s Pl E pop,me iy, m(l-Dx s
[NAd!
s (+ml-1y)) P Z m'p, 2 mp hy g
el =l
The proofs follow by the above theorems for the m-convex function f: X — R, Ax)
) '-; ey
3. Some integral inequalities for m-convex functions. In what follows we consider
x 4 i v 't Y ER o »;z,!
mly functions defined on the real interval [0, b] and denote by K (b) the set of m-convex

unctions on [0, b] such that £0) < O (see also [5])

Ity
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The following lemmas hold:

LEMMA 5. The function f is in K (B If and only if
Lo = L@omw

xmv

is mcreasmg on (my b} forye [0, b].
lc’. Ey
LEMMA 6. If f is differentiable in [0 , b] then fE€ K, (b) :f and onIy if:
/’(x) 2 M for x>my.
~my

The ﬁ)llowing integral inequality for m-convex ﬁmctions' holds. ™

e

1l and 0 < a<.b.< ®. Then one has the anuallly

TT}? f J(x)dx s -—4- @)y +yeh) +m(f(aim) +f(b/m)))
Proof. Since fis m-convex, we have:

SUx+m(l=ny)y s tf(x)y+m(t-1)f(v). V x,ys> 0
which gives: -

/v’(x.l.ﬂ +(1-1b) s tf(a)+m(l *1)(_/'(/?/'")‘
and

’:/‘(i:lh +(1=0a) s tf(h)y+ml-0) flalm)
for all ¢ 61 l;{egratillg on [ we get:

['raarq-nbyd s (fiayemsinm)
and

I"vf(:tlg' +(1-na)di g]j{&)zi‘}%}f@rm’)‘))2.
But R

B

fm'aw(l«-r)b)m - ff(lh‘«(»l ~fa)dt = _El_ ® Kx) dx

-aJe
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Thus, adding the above inequalities, we obtain (2).
Aorw TR R O I SRS S

Remark 2. From the proof we deduce that hotds also a better evaluation:

f f(x)dx < min {(j(a)+mf(b/m))/2 (/(h)+m/(n/m))/7}

\

THEOREM . Let f [0, ©) - R be a m-convex d/ffercmmhlc Sfime tion w llh me (0
) -‘u'n,. F ST

11. Then for all 0 s a < b one has Ihe mcquu/mes

! J(mb) _b-a (h-may/f(h)y-(a-mb)fla)
—— b ___. o - .
TEaN 2 "(mb) s f /(\) X < - 2(/) 3 3)
Proof. Using Lemma 6, we thC for all X, y = 0-with x = my that:
'”_b_. ) N b T g (). ,.
) (x=my) [ (x) z f(x)-mf(y). “4)
Ay iieny o !

Choosing in the above mequalny X = mb and ds y < b, then Xz my and:

S ’ f

(mb-my) ' (mb) 2 /(mh)-mf(v
i S it

Integrating over y on [a, b], we get:

L0 _2")2/' (mb) = (b-a) funb)-m f bj'(y)dy

-

hus the first inequality of (3). Putung in (4) y  « and then integrating on [« , b] one gets
he second inequality of (3).
Remark 3. The second inequality from (3) is also valid for m = 0, while (2) is not. For

n = 11t is identical with (2) and represents a part of Hermite-Hladamard’s inequality.

4
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S

REZUMAT. -0 metoda probabilistica pentru studiul unor giruri asociate incgalitigii lui
Hadamard. Tn lucrare sunt calculate limitele unor siruri asociate inegalitapi i Hadamard
pentru funcii convese.

0. Abstiract. The limits for some sequences associated with the well ‘know
Hadamard’s inequality for convex functions are pointed out.

1. Introduction. Let f: /—R be a convex mapping on the. interval of real numbée

I, ?#@ and a,b €l with a<b. The folowing integral inequality 1s well known ﬁ

|
literature as Hadamard’s inequality - ‘. 1

a+b (I S@)+(h)

‘For some recent refinements, counter parts and generalizations of this classic fact sy
the papers [1 - 5] and {7 - 10] where further references are given.

In [S], S.S.Dragomir, J E Pecari¢ and J .Séndor proved the following refinement of ( !

+h
f(‘z) i

N

where nE€ N and n=2. Some applications for I'-function with intcivsting connections

m |, i

Number Theory are also made.



Now let consider the following sequence ot real numbers:

l'* b b "v;l+“'*'>r'l [
H ()= LT nér SRR
A ;(b-—a)"‘L i Lf[ an ] CEE A

i obvious that H (f) is monotonous nom’ncreasmg and bounded and, thus,-convergent. It

aatural to point out its limit. - EHT I VTR

| 2. The main results. We will start with the tollowing theorem:

THEORF-MI hlf‘l c Ki%lif;?ét'°Lj(g(ii‘fg».\f;c‘_'in;i'iw',b'e 7 =D, with a<'b. Then:

lim H,(7) =inf (i nEN') f(":”). 3)

“Firstly, we will state the:next lemma which-is also integesting:in itself. : -
-LEMMA. Le¢r g R—R be a bounded,:1.cbesgue measurable function and a,b € R
th a<b. Ifgis continuons in. ..':.[.,. ~then Faris.

" i, = g(“*”} “)

hm

iy R

Proof. We will give a probabilistic argument.

Let (X)), X, : (2. p) — Rbe asequence of independent random variables which are
I .
iformly distributed on the interval [a,b]. By the use of the "strong law of large numbers"

,p- 216] we have:

! X+X,+..+X a+b
'—.—-—-—-——-.——.——-—‘l i ..‘!.i’.; M(X‘) | ST 5 iood
n 4
The mapping g being Lebesque measurable on R and continuous in .a;'_b we

ain: .
(+. +X .
xl : +. ,,] 'ge g(zfl;:b)~

8
n

‘sing the dominated convergence theorem of Lebesque we obtain

X +X,+. +X
e e &
2 n 2 2 -
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But X, ..., X, are independent and then the repartition p © (X,,....X,)" of the vector (.X,,....X)
has the density p(x,.....x,) = py(x,)..p,(x,) [6,p. 14] where p(x) is the densis' .« random
variable X

Since X, (/ € N) are uniformly distributed, p{(x) = (b-a)" if x € [a,b] and p(x) = 0 if

xER-[ab),iz],then .

X+ X X+, i 0 A -
L gl mldp= L gt d(poX;, - X)) ()

n _
©)
1 b b X X
= | gl ———Z|dx, . dx
(b-a) L L &( n )‘ e

Now, by (5) and (6) we obtain the desired result embodied in (4).

Proof of Theorem. If f / C R — R is convex on /, then the mapping ¢ R — R, g(x)
= fix) if x € I and g(x) = 0 if x € R - [, satisfies the conditions in the above lemma and then

lim H (f) = f(‘“” )

s 2

The fact that lim H (/) = inf H (f) follows by the monotonicity of H,(f).

n—so neN

As above, it is also natural to consider the following sequences associated with a_

convex mapping £ /C R — R

. 1 5 b | XWX, x, Ha+b)/2
H,;”(f)?-mfa Lf ! - i : x,..dx, |,

3 1 b oo | X x,t vk +2(a+b)/2
H, ’(f):sWL ff e ..,

oy s | x, +Hn-1)(a+b)2
H," (f): (b_a)faf[ . }h.

The next theorém contains some propeities of these sequences:

forn = 2.

3



THEOREM 2. Suppose that f ICR-Risa wm ox map/)mg onlandub€ 7«0
uth a< b Then A SRR TN AT Ok SRR AUANIY

(1) we have the following refinements of Hadamard's incquality:

o ER)erns s, o

Jor all n z 2,

-

(11) we have- the limits: - ! ‘ :

lim HO(f) = . = lim HO(f) = f(‘"b)

" nsw

Proof. (i). By Jensen’s integral i:néqixalitfr we have:

Ny f(xn(n-n’xam)/iJ s /i['"i (¢ f”“(" b2 ]]

o p-ale ) th-alle PR

i S E =/’(a:b) 5 Iz s

ahich proves the first inequality.in (7).

Now, by Jensen’s integral inequal;i't'y"w&é'lso; have:

i’ (l)(f)

RAS * b /‘- g
Jr J- x i, X, +1(a+ ) l“_dx"'lz
) (b—a)”“ 4 n "
1 bopb | 1 o xl+‘“+xh-i—1*x,‘,:‘,-"'1(a‘;5)/2' R
T ‘ T e b,
= (b—cz)”"" f“ J-“be‘a.L ( n =i n-i-\

1 e ; Ao L

=H,"(f)

orall 1 sisn2

The last inequality is also obvious by Jensen’s integral inequality. Indegd, we have:

32
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1 b b x,+._‘+x"
H()= —_ Tldx, ...
n(f) (b—a)”J; J‘u f 'I C 1 r,, P-4

1 b b 1 X FHX X
=2 | .. dx ldx . .dx =
(b-a)"! f Lf b—aL n S

l b b 1 X +.“+xn- +(a+b)/2
) (b—a)"-l J“' J:4 f l : x]--.dxn~1=H,:l)(f).

n

(11). Follows by the inequality (7) and by Theorem 1.
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REZUMAT. - Inegalitifi pentru o clasa de medii. In lucrarc sunt prezentate citeva
incgalitdfi pentru o clasd de medii studiate in [3] si [4].

t.Letn =2, a=(a,..a,), 0 <mina, < max a,. Let p = 1/(n-1). Dénote
n 1
G, (@) Ty
H (a")A (a) ‘
where a? = (a),...,a)) and 4,, G, H, are the arithmetic, geometric and harmonic means,

B a) =

respectively.

B¥(a) coincides with the mean B (a) studied in [3] and [5,p.101]. A
consequence of the results of H Bauer [2] is that min a <BP(a)<max a if p<Oorp>1,
and

BY (a)<A(a) for all p<0. )

Let us consider also .

i MP () = | Gl |
H,/(@)4,(a)

We shall study some properties of B*(a) and M“(a) 4s functions of p. They will

enable us to extend (1). Some inequalities related to previously known results will be also

given. -

* Faculty of 1extile Technology, Pierottieva 6, 41000 Zagreb, Croatia

™ Yechnical University, Department of Mathematics, 3400 Cluj-Napoca, Komania



2. For ¢ = (¢y,-..4.),.q, >0, let M,_f"(q;q) be, as usually;;the weighted mean of order
r € R (see, for example, [5]).

If ¢, = ... = g, we denote snmplyM,f"(a) i‘vrxls'teaél of M!"Y(aq).

It is known that M!"\(a;q) is strictly increasing as function of 7 € R.

It is easy to see that M,"Y(a) = A,(a) and Bi™a) = MI? "'i(ii;ct).
In the sequel letn = 3.,

THEOREM. (i) The finctions }) —>b‘,f"’(a‘)v and p—>M (ﬁ j(a) are strictly inc)*easing on

n

1 1
00— | ¢ ON | e , t® |, o e
( "-])q"“{ : ("_'l ) i v vy b

(i)  BMa)y<MP@)<A(a) forall p<0
.. B(a)> M (a) > H (a). for all j) -1 _
(i)  BYa)<MY(a) for —]T <p<l
n-
1

B(@> M) for 0<p<— .

Proof. We shall use the following inequality of Sierpinski (see [4], [6], [7]):
H™ @A,(a) < G,'(@) < 4" (@)H (a) (2)

Since

=5 08 MIa) = @)D g (T @H @G ay

we conclude that the function p-—*M,f”’j(q)‘_ifs’ __s'tfictly increasing on (-00,__.1_1.) and on

SEERLTER IS h
! ,+o0 |, '
n-1

Now set b, = (@, ..a,¥a)""". Then

i

BP@) = MP" gk ey

where
., G,'(b)
ADH b
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We have
(H G = M™(0) <M} (b) = H(5)
hence H,(b"")<H, (). It follows that

K>G, (DA BH) " (5)> 1

Wemﬂtdedudieﬁnaimp—*b‘,f"’(a)issnicdy-imwsingm(-w,_l_l)mdm( '],m‘
n-

So (i) is proved.
Now H(a) = M "Ya) and (H @) = M!"a); it follows that for <0 we hav
H (a” < H}(a) and therefore
Ba) <M,(a)<M,"(a) = A(a).

The other inequalities of (i1) and (ii1) can be prd'ved similarly.

3. With usual notation we recall the following inequality of .S Mitrinovi¢ an
P.M.Vasic¢ [4]: /

AN @H ()G, @) = A5 oH, (@G @) &

Using (3) it is easy to derive, for p < 0,

M@y A (a)y " 2 (MW aYiA, (ayye €

’ i . Y .
For p>0, p = —IT the inequality is reversed.
n-

4. Let 1 € (0, +x), a+t = (a,*1, ..., a,+1). In [6] it is shown that the function
t— A (a+n)H (a+)/G,"(a+l)
is nonincreasing on (0, +®). Consequently, for / < s we have

A log MP(a+f) = LA log M (a+s)
dp dp



JE. PECARIC, 1. RASA

-

R LEIE A AW !

Now let p, q<?]_.i. or p, q>_l_1; if p < g, it follows that
- n—

M%a +1)’/M}"’(a»_ft) > M,f‘)(a+s)/M,f”’(q+s) 5)

J L&

s 4 s 8
S. Finally, let 0 <a,s%, i=1,.,n H Alzer []] has proved the followmg mequahty
,,,,, o
(A (a)A (1 —a))" 'H (a)/H (1 —a) 2 (J (a)/(; "-a) (6)
Loy RN (schf; i EHEES

Using (6).it is easy to obtam for p <0 orp> :
n-
AfaVA (1-a)2 M"”(a)/M"”(l —a) )

For 0 < p\ —il the mequahty is reversed
n-

Moreover, using (6) we deduce
U U AT e

d W, )
— log M, (a z.... lo M 1-a
v 7 s‘” () d g M, (1-a)

vty ek npn Len ) BSTTY i w0 g6
It follows that the functlon [)—*M(" )(a)/M“”(l—a) |s mcreasmg, on (-00,__]_].) and on

( ! ‘+oo),
An-l AR BT T L AR T PN YRS
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STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXX VI, 1, 1993

SUBCLASSES OF STARLIKE FUNCTIONS WITH Ref’(z)>0

Xanthopoulos . XANTHOPOULOS" -

Recelved: September 11, 1993
AMS subject classification: 30C45

REZUMAT. - Subclase de functii stelate eu Re f7(2) > 0. Fie A, clasa functiilor £z)

=z+a,, "'+ .., 121 car sunt analitice in discul unitate U/ = { z; |z] <1 }.
Penti f € A, se objin condifii asupra functiei Z /' (2)/f(2), care sa implice
Ref’(z)>0.

1. Introduction. Let 4, denote the set of functions

) =z+an" va, 7"+ . el
that are analytic in the unit disc.U={ z € C, |z| s 1 }. Let §" be the usual class of starlike
(univalent)! ftfnctions inU, ie. “

S ={f€ A4 Re[zf (2) /)(z).] >0,zE U}
Let

R={f€ A Ref(z)>0,z€ U }.
In [2] P.T. Mocanu obtained subsets E of the right half-plane, such that.f€ S, whenever £ (2)
€ E, for all z € U. On the other hand it is obvious that §° & R aﬁd a natural problem is to

/
find certain subsets E of the right half-plane, such that f &€ R; whenever ij(.(.(.;.). € E, for
7 :

alz€ U.

. P /
In this paper we obtain some conditions in term of “f( (‘)z) such that f€ R,
4

* Fratti 17, 117 42 Akropolis, Athens, Greece
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2. Preliminaries. If f and g are analytic in the unit disc U, then we say that fis
subordinate to g, written f < g, or fz) < g(2), if g is univalent, £0) = g(0) and AU) C g(1)).
Let HJa,n] denote the set of fudttions = - ;o7 =

fey=a+az +a,, 2"+ .. ,nz1 (where nis a positive integer) that are analytic

in U,
| Wé shall use the following lemmas to prove our'restlts. i
LEMMA 1[3] I,et; h, with h(a) =“()i’,ibev"‘s’t_at;1ilcg;in Uand let p € HanlinU. If
ii" ﬁ( ;()2) < lh(z), then p(z) < q(z), where q(z) = a exp 7]; Lz.h_(:l dt

LEMMA 2. [1]. Let E be a set in the complex plane C and let ¢ be an analytic and

lvmivalem Junction on U. Suppose that the function H : € x U — C salisfies

Ste o,

HIq®).mtq' )z 1@ E,
_vhenever m = n, |¢| =1 and z € U. If p is analityc on U ofi;ie ﬁer p2) =q(0) + pnz;' +

., and p satisfies H [ p(z), zp’ (2); z ].E E forzE€ U, thenp < q.
{
|

3. Main results.

THEOREM 1. If £E A, satisfies )
/ .
HE) |« M, forz€lU - @ W e )
Az) -

" vhere M = M, is the solution.of the equation e
M tan % =y1-M? @
|S hen fE R
| Proof. If we let P(z) = Az) / z, then P € H[1,n), f' (z) = zP' (z) + P(z) and we have

I
Lo
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_____zf’(:) = _]_ P (2)+P)] =1 +___:P’(z).
[e 7o [zP(z) + P()] %)

From (1) and (3) we deduce

Sl oy 1(
SO craemzoor O e

A=) (2)

and by Lemma 1 we obtain
M

-

Piz) <e™.
/
If we let P(z) = /' (z) then we have & &) = 10
) =71 o PO
and (1) becomes.
PO lem
P(2)

(3

“

&)

In order to show that (5) implies Re p(z) > 0 in U/, according to Lemma 2 it is sufficient tc

check the inequality
is

P(z)

for all real s and all z € U. The inequality (6) can be rewritten as

2
-l‘ z M?

S-2sImP+(1-M)|P|* 20
and this inequality holds for all real s if

|ImP|? < (1 - MP) |P|* which becomes
Vl--M2
M

Im P(z)| s Re P(2).

On the other hand from (4) we deduce
larg P(z)| < ._A.'.{., ie.
n
M
|Im P(z)| < tan Z_ Re P(z)
" .,

and from (7) and (8) we deduce

Muan M <1 -m2

n

(©

@

@

hence if M = M, satisfies (i) then the inequality holds and we deduce iie pE) >0 U

41



“hich shows that /€ R. W

A8
We note that M, = 0.739..... and M, = 0.9003....

3t s

COROLLARY 1. If g € H[0,n] satisfies, lg@)| <M € U where M = M, is the

“olution of the equation (2), then ‘

Re {[ 1 +g(z)] exp -sz’iggclt} >0, for z€ U.

Proof. If we let

Az) =z exp Lzﬁg_).dt,

FREN

Alheu
/ D
FE g, 1) = [ +g(')] exp L 2 4. ‘
v "L ' che T
¢ nd the result follows from Theorem 1. M T
D THEOREM 2. [ff€ 4, satisfies
/ S 3
arg A (z) <9 . .
vhere 8 = 8, is the solution of the equation e
X an0+0 =21 o
\ 2n 2
Vhen f€ R.
Proof Let
’ -
Q(,)g(.l Z) 0<psl
-2
ind let ’
.
) 2nﬂz '
~ H(z-l+an(z)=1+ .
f ) wioR T
If we put P(z) = Az) / z then we have P € H[1,n]
] zf’(z) .1+ ZP/(Z) f"ii - sy
A2) P(f)

|
2

(&)

(10)
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From Lemma 1 we easily deduce that

=P()
1+ RHZ)=P< Q.
o < HE) 0
In particular the inequality (9) implies
|arg P2)| < B 2., (11
where

tan 8 =n §. (12)

If we let p(z) = f’ () then we have

7@ . P

f2) PR

and
[od 1 (
arg p(z) = arg P(z) +arg )
. , - A2).
Hence by using (9), (10), (11) and (12) we deduce
1 (»
larg plz)| = |arg P(2)| + arsf-jf-(;‘)‘—’ <pleo-2

i.e. Re p(z) = Ref’ (z) > O which shows that fE R W
We”note that
0, = 0.568... (32°54..) and
8, = 12‘_ =0785.. (459
’ COROLLARY 2. If h € M[1,n] satisfies | arg h(z) | <8, z € U where 6 = 0, is the

solution of the equation (10) then

Re {h(z) exp Lzh(t)- ! dt} >0, for z€U.

t
THEOREM 3. If f € A, satisfies
'@ _q|<nN zeu, (13)
f2) ‘

where N = N, is the solution of the equation

43
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(1 +1\’)L'%=2 (14)
then K
G -11<1, €U, S sy
Proof If we let P(2) = A=) / =, then by using (3), (4) and (I?)we obtain
ey < e (16)

If we let p = f’ then the inequality (13) becomes

i_’% i< N o ()
Since (15) 1s equivalent to v

FAORIRE | )
according to Lemma 2, in order to show thét"‘(l});‘i'vm‘plies (15; it is sufﬁcnent to check'th:e
mequality . o R |
for all complex T, with || = 1 and all z € U/. The inequality (18) can be rewritten as

[1-P+C|*= N |P] 9
We have

[1-P+g]P=[1-P]+2 Re[Z(1-P)] + 1= |i“§}"|?-2f1 -P|+1.
Hence the inequality (19) becomes poomd Ame i

|IP-1]-1] = N|P|. ‘ (20)
By using (16) and (14) we easily deduce that e R

|P-1]<1, v
. ;herefore (20) becomes = " : ,

1-|P-1]|2N|P|

a4
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which yields
N s 1. 1 -.l I

TPT P

We note that (16) is equivalent to

Hence the best bound N in (13), which can be obtained by our method is given by

N = min{|e?|- |e<-1]}.
I‘.'l'Nl'll N..
If welet z=x+iy, with x2+y? = — . then
n

e(xy) = le?] = le*-1]| = e"~‘/cl‘-2e"cosy+l .

It is easy to show that the system

oo, M.y
ox oy

yields
cos’y=1 and siny=0

Hence the minimum ¢ occors for y = 0.

For _N <X s N we have

n n
fdwx_1l = )1} er> 1
¢(x,0) =e¢*-ler-1] { dero] et <
and we deduce
N
min ¢ =2¢ "~ |
-y
hence N = 2¢ " -1, which is the equation (14). B

We note that
N,=0374...

N,=0532....

If we put zf' (z) / Az) = | - g(z), then from Theorem 3 we obtan



X.I. XANTHOPOULOS

poALENA T Yagsr o

solution of the equation (14), then

1 -g@)

4. Examples.

[ I".\;afrinple lﬂ.‘ It wé ‘l:et 2= L*,’ the;l f;omCorollary 1 we obtain )
Re [(1 + ) e¥) >0,z €U |
i I s M, =0730... g "
| Ixample 2. If we let g(:) =r» sin z’, then ; E MS:Z] ami: lg(z)f )< |A
R N

by Corollary 1 we deduce that

Re{ 1 exp L=§_(;le}>%, fOrzE(‘/ o

P

COROLLARY 3. If g € H[0,n] satisfies |g(z)| < N, z € U, where N = N, is the

| sh 1. Hence

, T Y
1 Re {(|+ksin:2) exp )».I)' sm’l dl}>0, €U, ,
whenever
M. Ny A s
' I\ s —2 =0.765....
' sh1 ‘ . ¥ 3 vk
Fxample 3. If we let h(z) = ¢*; then h € H[1,1] and
*
| larg h()| = [Im (Az)] < [A| ‘
and from Corollary 2 we deduce that
. . z > N l I
Re Je* ¢ atl>0 zeU,
e { exp [0 }
jif
. ¢ NYS '
: IA| <8, =0568..
1 .
( Ixample 4. 1f we let h(z) = e**', then h € H][1,2] and from Corollary 2 we deduce
| jthat

1
L’M -1
[2

>0 €U,
4

Re e exp j):
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whenever [A| < n/4.
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ON THE APPROXIMATION OF FUNCTIONS AND THEIR
DERIVATIVES BY BERNSTEIN POLYNOMIALS
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REZUMAT. - Asupra aproximirii functiilor §i a detiv atelor lor prin polinoame Bernstein.

In lucrare s¢ imbundaiese uncle rezultate obpiute recent de C Badea. | Badea gt H H Gonska

in |1}

1. Let ('[0,1] be the space of all continuous and real-valued functions on [0,1], and,
for every positive integral », 11, 11,{0.1] denote the space of all polynomials of degree n

on [0,1]. We shall consider the Bernstein Operators lf,, (’]0,1) = 11, defined by

B(/x) = E p,,,(.r)/(i). xé[(),l]b
' n

1)

where

Py = (',') iy

[}
Denoting by |} the sup-norm on ([0,1] we know that
hm /-8B 1 =0

In 1930 1. Chlodovscky proved that £, has the property of simultancous approximation that
is for all elements f1n the space ([0, 1], r € N, of all real-valued and r-umes continususly
differenuable l.‘uncuons on [0.1], one nas

i (D (-8 -0

nen

where 1 is the r-th differcntial operator

In 1937 T Popowviciu (|2]) vbtamned the followimyg: vt
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1D G- pl= 4, 0, (28, ) + LD yey 0
for all positive mtegers r and nz r+1 where e

's 3’24. 2’("_')' - / l iy 4' ‘ 'i

n o Vn-r

and w,(*) is the first order modulus of smoothness A history of the esimates of the form (1)
was given in [1]. Assuming that f€ C*" I’[0 l] D.D.Stancu [5] showed that
1D (=B HIM,, w (1708, ) A +-’-(-%n—"-)-lt‘"l @
where 8, = n”'% M,, = (1. @(n.1) Q?(n.-r)-ﬂ«,m with
(n(u,v) =y "”S[Zv +(t: +4vz -v‘)‘“]/ 2. L
We mentlon here the strong the result of F Schnrer and F.W. Steutel [3] which proved that:

Ilf B /s S o l|f, — -
i J;,_ J'_’- i\}i T R R
Here 7 is the best possnble constant in front of n'?

A e, H .

@

[

The aim the present paper is to prove news estlmates of the above typos by a method

wich uses the inequality (3) and the estimate given bt Slkkema [4]

1 R
W f-B,fl <Ko |f—], @@

[ ]
where K = (4306 +837y/6 )/ 5832 = 1.0898873.. Here K is the best constant in front of

l
[/7_—]

2. Fora € R and b € N we denote -

¥

b-1
@, :=[[a-k. .

k=0

The r-th derivative of a .Bemstein polynomial is given by

(D7B,f) 0 = .._: |5; _’Ef:’l kr LS | L)

We denote by g, the function g : [0,]1] — R defined by

50
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g () = [x(n-r)’ x(n-r)+l, . x(n-r)+r ;f]
n n.

n
and we obtain
(pBs) ) = o, —r(B,,8) () | ©)
LEMMA 1. Let fE€ CO0, l] Then for n =z r+1 we have
(), 1 I(n), l
\D*(f-B ls._._r'Ku) L rg -fo 7
) 8 JE—T] ~ (

where K is S:kkema 's constant.
Proof. From (6) we obtain:

|D"(Bf-f)(x)| = %);5 r' (8,8 )x)-g(x)| + 'L:% r' g,(x) - (x)
Using inequality (4) we obtain:(7) from (8).

®)

LEMMA 2. Let f€ C™'[0,1). Then for n 2 r+1

’ _f I () / 0 :
lo-6.r-nlsgm ( L |_,. ,x)l,_ ©

Proof. We obtain the inequality. (9) from the inequalities (3) and (6).

THEOREM 1. Let f€ (7[0,1]. Then for n = r+1 we have:

1D BSpRE “

nJIn-r
+ _('_’l' 0, (}"",-C) +(I ), ]'fﬂ'
’ n

n

w, [ 22 ! ]+
(10)

Proof We have
g (x+8) - g () = [o,l,...,i;f(ﬁ‘.*).‘.’l.‘.’l +:) -f(f_('_’_'ﬂu)] 1)
n n n n
Using Cauchy’s formula we obtain from (11):
8,(x+0)=g,(x) = ./ (—-—————"‘ o) c) =fo (———"‘”"’ +ﬁ) (12)
n n n n
wherec = c(f,x,n)E [0,r], b =

n-r

From (12) we obtain that: ‘ \QTE“ FAGUL 7'1

\%
C CLul-nAPOCA

0¢ yy remm\%‘ P
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w, (g, : sl'ml g 27r ! |- A
n-r re ;{" n-r ;

Because we have A T

o, r

-'-._g( -] < Pl - f‘ @],

[ o, J Lroe|
this inequality together with the mequahty (13) and (4) lmphes (lO) -

THEOREM 2. Let f€ C,,,[0,1]. Then for n = r+1 we have:

BT OV PRI (f"’" nr 1 )

= n'f‘ n -
n-r : r (14).
+ ..(."_)’. w, ( 1o, ﬁ)f;:{] (o ) ]' fml
; n’ n )
J’l oof. The inequality (14) wm result if we dbserve that we can wntc
g (x) = [n-r.',: x(nv-‘r)’ " x'(vr:*r,e)+r;::j.,']"-
n n n
and then we use Lemma 2. '

COROLLARY. Let rin Noi = r+1 and let f& C'[0,1). Then we have:

1 ),

WD C(f-BNY S————- L ¥ A —-——]*
n 4 n (15)

s (") If‘"”' r(r- l)l,v)l

Proof. We have: " S
_.____(" n_1 < ._l_, nar+l

n_‘/;,’—t"'—;‘ \/';

(n)r‘ 1 ] (”) 1

e T
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o, (/‘ L) < Z]yen)
n n
Now, the inequality (15) result from the Theorem 2.

Remark. In [1] the authors proved that:

ID' (BN s 21w [ 1|+

4 n-r Vn-r (16)
o L o)« LDy oy
n 2n

We observe the inequality (15) improves the inequalities (16) and (2).
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REZUMAT. - Observayii asupra a doud teoreme ale Iﬁi Ciric, Maiti gi Babu. in lucxale
sunt studiate aplicatii care satisfac condifia de contractie generahwa (2). Se demonstreazi
douil teoreme de punct fix pentru astfel de aplicatii.

Abstract. Let fbe a self-map of a metric space (X,d), F(/) the set of fixed points of
Jf L(x) the set of subsequential limit points of {/"x},, . We obtain two results on L(x) C F(/),

one of which extends properly a theorem of Ciric.

1. Introduction. Let f be a self-map of a metric space (X,d). Ciric [1] proved the
existence of fixed point for f provided it satisfies

min {d(fe,),d0c ) d(y )} — min (d(xf)Apf)) < dx.y) )
for x = y. Maiti and Babu [2] studied the structure of the subsequential limit points of a
sequence of iterates’of maps which are contractive over two consecutive elements of an orbit.

Let R, be the subspace [0,) of the real line with usual topology, 4 a continuous
function from Xx.X into R,. The purpose of this paper is to consider maps fon X which satisfy

min {h(fcfy)h(xfe)h(v,f)} — min {h(xfp)h(yf)} <

< max {h(x.y), min {h(xfx), h(y.f)}} @

for x = y. A fixed point theorem is obtained which is. a proper generalization of Theorem 3

* Liaoning Normal University, Department of Mathematics, Dalian, Liaoning, 116022, P. R. China
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of Ciric {1]. We arrive at the same conclusnon as in ["] abOut the set of subsequential limit
R S LI A
. points of a sequence of iterates of jj whqre j satlsﬁes 2).

In what follows F{() denotes the set of fixed points of £ The orbit of x € X generated
by fis denoted by O(x,f) and its closure by O-(xj) L(}) denotes th; set of subsequential limit
points of { f"x}", Forz € X and 4,B C X, define d(4,B) = inf{d(x,y) | x§ A and y € B} and
d(z,B) = d({z}, B) A self-map f of Xi is called orbltally pontmuous if hm Jix = hd 1mpl|es
En::ff'x-fw for eacthX

2.:ili;su:lts ;nd exan;;)le.

THEOREM 1’ Let f be; an orl;;talb/ continuous self-map ‘of a metric space (X.d), h a
continuous function from XxX into R, such that h(x,y) = 0 if and only if x = y."A{ss‘ilmezihdi
there exists x, € X such that L(x,) = @. If f satisfies (2) for all distinct x,y € O (x,), then
F{f) is noneinpty and L(x,) is a closed subset of F(}).

Proof Let x, = f™x, for n 2 1. If x,, = x,;, by (2) we have

min {406, X, )06 %) A06,%,0)) = min (A, x,.)h(x,x,)} <

<max {h{x,,x,)min {h(x,,x,)hex,x,1)}}
which iftiplies that h(x,x.,,) < h(x, ;x,). Thus h(x,x,,,) < h(x, %) for all n > 1. Hence
h(x,.x,) = r as'n = o For each p € L(x,), there exists a subsequence {x, }:. of {x,)=, such
" that x,—pas i = . Since fis orbitally continuous, x x> fp and X, Sip asi -- o, By
the continuity of A it follows that

hpfp) = limh (s, ,x,) = r = limh (x5 = h(/p.S'P)

“We assert that p = fp. Otherwise, by (2) we obtain *
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min {h(fp, /)i P)H(PSP)} — min {h(p.S'p).h(fP))
<max {h(pp),min {h(pp).h(0./’P)}}
which implies that (fo.f*p) < h(pfp). This is a contradiction. Hence P E K, ie., Lix,)) C
F{f) = . It is easy to see that L(x,) is a closed subset of F(f). This completes the proof.
Note that Theorem 3 of Ciric [1] is a special case of our Theorem 1. The following
example shows that our Theorem 1 is a genuine generalization of Theorem 3 of Ciric {1].

Example. Let X = {o,5} u {.;l'. |n=1 } with the usual metric. Define fX — X by f0

=0,f1=5/-= % and f% - i : for n22. The Theorem 3 of Ciric [1] is not appl.icable

since f does not satisfy (l) for x =1and y = 5. Let h(x,y) = |x-y|(1+x) for (x,y) € XxX and
*‘o'-;—' Then O (x,,f) = {0} U {_”l. |n=2 2}. To prove that f satisfies (2) we consider three
cases:

@)x=0and y = L Cleady h(x/) = 0 andh (x,) = 1 Hence (2) holds

n
(i1)x = _'1.', and y = 0. Similarly we can prove that (2) holds also.

(i) x = .:7 y= 7:_ and n = m. It is easy to see that

el +|;n):;:'+1) ::f < In;:nnl 'n;l = ko)
which implies that (2) holds.

Obviously, the assumptions of our Theorem 1 are satisfied.

THEOREM 2. Let f be a continuous self-map of a metric space (X,d), h a cont.riuous
function j;om XxXinto R, such that h(x,y) = 0 if and only if x = y. Assume there exists x, €
X such that O(x, f) is compact and (2) holds for all distinct x,y € O(x,f). Then L(x,) z:s a

nonempty, closed and connected subset of F(f), and either

L(x,) is a singleton, and lim f"x exists and belongs to F(f), or 3)
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el sl L Zavérania

zs cor‘ugmed in the boundary of F(/) “)
N
,;compactness of O(x, ) implies that L(x,) is nonempty. By Theorem 1 it
‘iﬁ;: L(x) is a closed subset of F(f). Put x, = /™, for n = 1. o
H‘V‘Ve show that d(x,x,.,,) — 0 as n — o, Otherwise there exi;ts ane > 0and a
subsequence {x"’}:, of {x },.o such that d(xn‘,xw) 2 e\for i = 1. Since O(x, ) is compact,
we can find a convergent subsequence {x,‘".}i.’:l of {x”'}:., . Let X, > pas r' —» o, Then p
€ L(x;) C F(f). By the continuity of f, we have d( X, xm',l) —d(p,fp) = ) asi—> o, which
is impossible. Hence d(x,,,x,,i,v)‘ —0asn— o, |

We now show that d(x,,L(x,)) = 0 as n — o. If not, there exists an e >0 and a
subsequence {x, },.l of {x,}.o such that d (x L(x )) =e fori=z 1. Asabove we can show
that there exists a subsequence {x,_ },_, of {x },_, such that x,>PE L(xo) as i — . Thus
d(x ,L(x,)) s d(x, ,p)—>0 as i —» ; ie, d(x, L(xo)) — 0 as i — o, which is
impossible. Hence d(x,,L(x;)) = 0 as n = o,

We next show that L(x,) is connected. Suppose the contrary. Then there exist two
nonempty, closed and disjoint subsets 4 and B of L(x,) such that L (x,) = AU B. Note that
L(x,) is a closed subset of the compact set (j(x‘,,/). Then L(x,) is also compact. This implies
that 4 and B are compact and d(4,B) > 0. Put d(4,B) = 3¢. By the above results there exists
an integer N such that max {d(x,x,.,), d(x,,4 U B)} < for n 2 N. Since L(xo) is compact,
there exists p € A U B such that d(x,,4 U B) = d(x”j). If p € 4, then dl(x,,A) < t. Thus, for
any n = N, either d(x,,4) <t or d(x,B) <t But botﬁ these inequalities cannot hold

simultaneously for the same » because in that case

d(A,B) s d(x,, 4) + d(x,,B) < 21 < d(4,B)

n
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which is impossible. The set of positive integers # 2 N, such that d(x,,4) < 1, is not empty,
because & » A4 C L(x,). Similarly, the set of positive integers n =z N, such that d(x,,5) < 1, it
also not empty. Consequently there exists a positive integer k£ = N such that both d(x,,4) <
< t. Hence

d(4,B) s d(x, A) + d(x,,x,) + d(x,,,B) <3t =d(4,B)
which is a contradinction. Hence L(x,) is connected.

By Theorem 1 of Berge [3,p.96] it follows th§t L(x,) is either a singleton or
uncountable. Note that d(x,,L(x,)) — 0 as n — », Therefore, if L(x,) is a singleton, then
lim x_ exists and belongs to F(f). In case that L(x,) is uncountable, it is contained in the

n-ew

boundary of F{(f) by the argument in [4,p.469]. This completes the proof.
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| REZUMAT. - Metode cu un singur pas pentru rezolvarea numericii a unor sisteme

diferentiale. in lucrare sunt examinate uncle metode cu un singur pas pentru integrarea
numeric3 a unor sisteme diferentiale de ordinul intéi. . |

Abstract. Some one-step methods suitable for the approximate numerical integration
of stiff systems of first-order ordinary differential equations are examinated. The given,

formula are A-stable. The generating idea is to build one-leg methods associated to the second

derivative multistep methods.

1. Introduction. This paper deals with the numerical solution of the initial values
problem for stiff systems of ordinary differential equations. Throughout we shall use
y'@) =), 0stsT, N0) =y, (1.1
to denote problems or clusses of problems under consideration. Here )(?) is a real vector of
N elements and f, a real-valued vector nonlinear function. We assume that fis a Lipschitz
function. This implies that for all initial vectors y,, the problem possesses an unique solution
for all 1 € [0,T].
Stiff problems occur in many fields of applications including chemical kinetics, reactor

kinetics, control theory, dynamics of missile guidance, electronic circuit theory,

* University of Timisoara, Department of Informatics, 1900 Timigoara, Romania
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atics, etc.
| %f“ence gf 'gy;ffmg,:i&~ﬂle solution to be computed is slowly varying, but
ations é%lﬁtwhncﬁ are rapidly damped. The presence of such perturbations complicates
the numerical computation of tl:e solution.

Example I: We consider the scalar equation:

YO = M) +g' () -Ag(), £20, W0) = y,, A<<0
where g is slowly varying function on 7 only, the solution }(7) is given by

X0 = 50+ e, - 20 o

Because A << 0, after a very short tin;_e distance the transient Iy, - g(yo)],whlch is also
called the stiff component or strongly varying sqvl'utionl component, is _njo longer present in the
solution y(¢). The function g(f) dominates the solutioq to be computed on the larger part of
the integration interval [0,7]. The explicit Euler method

Yoa = Vo *HAY,), n = O(OM, Mh =T
is damped only if —2 < A\ < 0. This condition of numerical stability imposes a severe
restriction of the stepsize A if A << 0, even when y, — g(#,) is negligible small. This situation
is typicaly when we apply an explicit linear to a stiff problem. The stepsize is restricted by
numerical stability rather than by aecuracy.

Example 2: For the general linear problem

Y = A +r@e), 120, 0) =y,
where 4 is a constant N x N matrix and r is a time dependent forcing term, the most obvious
way of defining stiffness is to impose conditions on the eigenvalues of 4. Different solution

‘components occur when the Jacobian matrix possesses eigenvalues which differ greatly in
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mggnitude. Let A,,...,Ay denote these eigenvalues. Then (1.5) may be called stiff if

(1) exit A, with Re(A,) << 0;

(i) exit A, of moderate size, i.e., |A,] is small when compared with the modulus of

the eigenvalues satisfying (i);

(iii) no A, exist with a large positive real part;

(iv) no A, exist with a large imaginary part, unless Re(A,)) << 0.
It is assumed here that the forcing term r(f) is a smooth as the slowly varying exponentials
in the solution.

Stiffness for a nonlinear problem is usually described in terms of the eigenvalues of
the Jacobian matrix. The argument is based on local linearization.

In the literature, stiff problems are also called problems with large Lipschitz constants,
because the property of those is the presence of a large classical Lipschitz constant

TL = T sup If, ()l >> 1

The main requirement for a good stiff method is that it should have strong stability
propem'és. The concept of absolute stability is connected with the scalar equation

y'(® = M), NEC, 120, 0) =y, (1.2)
Though this equation is very simple, its use as a model to predict the stability behaviour of
numerical methods for general nonlinear systems. An one-step method applied to this test
equation reduces to

You = R@W,, 2 =h\ (1.3)
where R is called the stability function. The method is said to be absolutely stable at z € C

if, for this z, |R(z)| < 1. The set of all points z which satisfies this requirement is called the
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absolute stability region. If the left hal f-plaﬁe Re(zi < 0 is contained in the absolute stability
34 %

region, the method is said to be 4-stable. A condition which ensbrés that the method has the

" oo

correct damping at z = '——00, is stability-c.i; infiﬁity: ]im,_,,,,R(?) =0, y’i’i;evn, a one-step numerical
method is said to be L-stable if it is 4-stable and stable at mﬁr-ty In the case of A-stability
and only lim__, .|R(z)| < 1, we have strong A-stability. It is well known from a famous result
of Dahlquist, that the highest attainable order of an A-slable imqlicit linear multistep method
is limited to two. The explicit methods do not\have property ;f)A-stability. Among the class
of implicit Runge-Kutta formula we have the possibility of deriving A-stable methods of high
order. One of the main arguments against the usecbf these was on the grounds of the amount
of computatiqnal effort required to solve the resm;it;ng systems of algebraic equations.

Research into finding efficient stiff methods has f“&léwed some main directions:

(1) inside the Runge-Kutta class, thé investigation of the use of transfonnation
methods to obtain a solution of algebraic equations in an efficient manner or
the derivation of different classes of implicit Runge-Kutta formulé which do
not call for the solution of a system of simultaneous equations;

(2) the generalization of linear methods by formula with high derivations, cyclic
and composite metho;j;j’hybrid methods, pseudo Runge-Kutta etc;

(3) the construction of nonlinear methods such that of rational Runge—Kuna tyée
(see on this subject an author’s paper [12]);

The aim of this paper is to analyse the possibility to replace second derivative
multistep formula by hybrid methods with same stability properties. We make a first step

with the support of one-step methods. These are examples for some classes given in the
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following sections.

In section 3 we deal with second derivative methods and in section 4 with hybrid
methods connected to those. We examine carefully the stability properties and the
performance. Qur purpose is to derivate A-stable formula. Finally, in section 5, numerical
comparisions of some new methods with the classical ones are given. The efficiency of the
new integrations is demonstrated by solving a series of 'challeriging test problems.

,[' )

2. Backgrounds. One-leg methods were inirodu‘ced by Dahlquist in 1975 (to see

reference [7]). The characteristic of these is the presence of only one value of fin each step.

This made possible a certain theoretical stability analysis for stiff nonlinear problems (G-

stability, contractivity). Every linear k-st¢p method

k k
z “k-tyn*l-i = hz Bk-/;lﬂ-l’ '/I.l' ’h\ynﬂ) E Bk- =

i=0 =0 =0
has a "one-leg twin"
k k k
Eo Qi Vo1 = hf[g Be-i bor-o g Bk-iynﬂ-i] @n

The point in which the function is evaluated is named collocation point.

For linear autonomous problem the one-leg difference equation is identical to the
linear multistep equation. Hence, the stability regions are the same for a linear multistep
method and its one-leg twin.

It was realized that, for fixed step size,.the one-leg implementation of the equivalent
linear k-step method would be advantageous with regard to storage economy. For variﬁble
step size, in which case they are no equivalent, the one-leg methods seem to have superior

stability properties, in stiff problems. On other side, Dahlquist methods are particulary easy
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to apply to implicit differential equations.

The disadvantage is.the decrease of the maximuim order versus the multistep formula.

. In [7], Dahlquist shows that the maximum order of a one-leg formula with & steps is k¥ + 1.

. Therefore, in the case of a one-step method the maximum order is 2.

Second derivative multistep formula. Iteration schemes that have been proposed for
sff equations are usually based on a modified Newton-Raphson technique. The usual
yredictor-corector iteration scheme is not feasible since §# dfidy] mus. remain small to
:nsure the convergence. Realizing that the Jacobian matrix might be used for the iteration

icheme, Enright in 1974 (see reference [9]) consider. the possibility .of developing a class of
ormula that explicitly uses the Jacobian matrix. Since )" = (dfldy)y’ for autonomous

ystems, the above mention author considers the following class of second derivative formula:

)
2 o y",:h): Bl WS VSO fiSy onS = 20, @2)
=0
f the coefficients y, are zero, except for the last, the condmon of stability at infinity is
nsured and the maximum order of the formula with & steps is k + 2.
Example: For the one-step case, the method is L-stable as well and of order 3:
h h? .
y’pl = y,. + ’5(2.,;0] +j;|) - —6—'.f;,v] (23)
‘he local truncation error 7F =~y(z,,,,,) 8L (AR
. _ h*d¥f s
TE = +O0(h
s ) + Oh)
Problem 1: Is it possible to build similar one-leg formula for second derivative
wiltistep methods? How great is the lose in the accuracy order of such a formula?

England’s hibrid methods. England (see reference [8]) gives a partial answers to this

uestion. He builp up a -class of hybrid methods with the same stability properties as those
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of the Enright’s formula.

Example: For the one-step case, the methods of order 3 have the following form:

0-1,,,30-2, .0 ,
60 " 6O-1) "' 60O-1)"

Yoo = (0-1)y, -06(0-2)y,, +hO@O-1)f,,

3
yml = yn +h
(2.4)

The particular member taken into implementation by the author of the above mention paper

is in accordance to the condition of a zero coefficient in the first equation for f,;:

~ h, 3h, .
Yo = yn*'a‘ m"’Tf;»m »

5 4 2h
Yot = ’g‘ymn +"9-yn_"'9"'f;01

e e o VA LA df +O(h$
TE —(F 49771_’) o N+00?)

(2.5)

The formula certainly is L-stable and of order 3.
The derivative calculus is replaced by a function evaluation in a new point.
Highest order. It is possible to derive a second derivative method with upper order

that 3. The Obrechkoft’s formula is of order 4, but it is only A-stable:

h h?
A —Z'(fml +J) 'F(/:ﬂ"f:) (2.6)
e B dYf N
TE = = (y(t Oh®
72Odt,,(l'(,,))" (*#°)

Problem 2: Is it possible to build up hybrids methods of order 4 similar to the
Obrechkoff's second derivative formula? Preserving -the convention of only one implicit

equation to solve, in y,,, is it possible to reach better stability properties?
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Exponential fitting. The idea of using exponentially fitted formula for the
approximate numerical integration of certain classes of stiff systems has received considerable
attention. The basis is to derive integration fgqnulatcmtaining_ﬁeo parameters, other than the
steplength of integration, and then choos::\ thesex ﬁéraméiers S0 til'at a given exponential
function satisfies the integration formula exactly. It needs to be emphasized that exponential
fitting is really applicable to only a limited class of stiff systems, i.e.., to systems having an
Jacobian which is in some sense slowly varying, with all the eigenvalues of large modulus,
lying in two or fewer clustelis. However, for systems for which exponential fitting integration
formula are substantially more efficient than conventional ones.

When the method is appiied to the test equation, the approximation error is related to

T(z) = R(z)-e z=Hh\

If for some g = h)\, we have 7(q) = 0, then the numerical solution of the test equation is
exact in the discret meaning. If ¢ is a zero of 4 + 1 multiplicity, we note that R(z) is
exponential fitted of order d at z'='q. In the stiff case the exponential fitting points are the
bigest eigenvalues multiplied by the stepsize.

Pseudo-Runge-Kutta metliods. Bokhonven’s formula. Pseudo Runge-Kutta brocess
are generalizations of the classical methods with the same name. Bokhoven in 1980 (see
reference [1]) describes such methods named by the author Implicit Endpoim Quadrature
Formula. They have the following form:

Yoy =V, +hi: bk, k =(1-6)y +0y., +'fif: a;jkj, i=I1)s (e )

P 1
Also, the same author established the order conditions.

Example 1: Among others formula, we see some A-stable ones of order 3 and 4. The
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formula of order 4 is the following:

h 2h
y,n] = y,. +'3'(j;"| +j:,) +_3—f,l,,;’

(2.8)
‘E‘(y,,ﬂ yn) '§(j,',¢| ./;')

.V,,..;

h® |d‘f d’f df
E=- t)+0(h®
5455 ( A AR
Example 2: For order 3 are given the England’s one-step scheme and:

h
ml yn 2 n+0, +j;v*0)'

< y"'e‘ = 2+6J§- 4—J_ Ol + 3.6J§-’ 82- 3+ﬁ

n'l - n*l’ 6

Voo, = 4-;/3—y"+ 2+6'/—y"+l +-6-f"

(2.9)

1E = d’f df +O(h
1E 24[‘12‘”]0(1)) O(h’)

3. One leg methods associated to second derivative formula. We consider the class

of integration formula

(OLS 1)

i=0

k ( k k
E O Vuor-i = b \Z_:, Beitror-s g ﬁk-iyml-i] -
h 2 k k
- _6}” E Ye-ilwrr-p E YieiYmor-i| = 0
2 i=0 i=0 .

k k
where 3., = . = 1
-0 i=0
Order. A statement about the order can be proved similar to that for one-leg methods

(like im [7]).
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PROPOSITION 1. The maximum order of a method (OLS) is k + 2 and there are at

' east k + 1 distinct methods with this property. For these only one coefficient B, is not zero.
o
Proof. We introduce operator notation

k k k
P, = @i Wy = L Bedor W = KVidas
. i 1= i
i The differentiation error operator /., and the interpolation error L, are
(I .

/ 6” 2 //
(Lo)t,) = pe(t,) - hy'(ot) ——-¢ v,)

(LoXot,) = og(r) - plot,), (L'e)yr,) = yo(t,) - p(yt,)

N . ) . . .
- where @ is a sufficiently smooth function. Then, the local truncation error is

i s g .
Lyt = 00 - Wkt o0)) - 2276, 000)) =
' = (Ly)(t) +hfot pot,)) -Rot apt )]+

h?

2

= (L)) - (ot Wt DXL X0t ) - 227 eyt Y v

Ry, 2000 ) - Ayt vy ()] =

+

I
‘ Lo = O™, L, = O™, L'g = Oh™), I/g = O(h™)

then
p=min{p, p,+ 1, p, +2}

Dahlquist shows in [7] that
b =] if3j:01 =1t O0s<sjsk
max p, k, otherwise

A similar statement holds for p,. If p, = p, = ® we don’t have an one-leg methods. Then the

n+l-j?

maximum order is obtained when p, = © and p, = k. If we note 8 = (1,,, - yt,)h, p, is

\ maximized when

¥,.(0) = wtrt,) ,w() = [Te-1,..)

(wt 1, ')t ) -0
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Fpr each Jj we have Ic:0-2 free parametgrs: 0,8,a,,...,a,. In these conditions, max p, = k+2 and,
in céncll;gion, max p = k+2. For each j, the linear system of condition for order p, = k+2 has
at least one solution.

One-step method. We study the particular case of the one-step formula with minimum

order 2:

1+u 1-u u 1+v 1-v
=y +hfle——y +_y |-hf | —y
yn*l yn f( 2 n+l 2 yu) 2 ( 2 yn*l 2 yn)
Maximum order. We note that it is possible to eliminate the O(#) terms from the

truncation error by _cﬁqosing u=1,v=1/3 oru =-1, v="-1/3. Then the formula have the

optimal order 3. One from these is the following (for an autonomous system):

h?, (2 1
Yo = Va* 00,0 --—2-f (-3-y,..+-3-y,.) 3.1

e _ _h*|df ary
1E = -—__ |2 -3| 2 1)) +0(h?
. [dyaf (d){)f )+ 0h)
This truncation error is comparable with the error produced by Enright’s one-step method.
Stability properties: In order to examine the stability properties of our formula, we use

the maximum modulus theorem. Applying the method of order 2 to the scalar test equation,

we obtain the stability function:
(1 - 221 -
R@) = 1 +z(1 -u)2 - z%u(1 -v)/4
1 =z( +u)/2 + 2 (1 +v)/4
We notice that |R(ip)| < 1, V p € R if and only if v = 0. Under this circumstance, the

requirement that R(z) may be analytic in Re(z) < O, i.e., that there are not zero of the
denominator of R(z) in the left complex haif-plane, is equivalent with # > 0. The inequality
lim,_, |R(z)| <1is reduced to v > 0. Thus, the method is strong A-stable if and only if

u>0,v>0 and L-stable when v = 1, u > 0. The method of maximum order 3 is only strong

A-stable.
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One-leg associated to second derivative formula. If we consider a second derivative
forula of minirmim order 2:
1+a 1-a b+u b-a
Yo f =B ) = e
ot ) (- 2351

we can associated a twin formula of the new class with the same stability function for ¥=a,

Yo =V, +h(

v = bla. We exclude the case of a = 0. Thus, if the second derivative method is L-stable and
order 2, we can associate to it a formula (3.1) also L-stable and of order 2.
Example: In the pamcular case of the 3"-order Lnright’s method and for an

autonomous system, the associated formula is of order 2 and has the ?bllowing form:

ynﬂ =y hf(_ n+l ; ) f,(y,,q) (32)

The error produced at each step by this method is:
3
78 = & (" {f]w )+ Oth)
In the above class of methods the maximum order is obtain when only one B, is not

zero. The foHowing class of methods don’t suffer this\restriction.
h 2
(OLS ’)) E() ak—yml =i hz Bk 'I"'I ! (EO Yk-: nvl-p EO Yk yml—:] =

The maximum order is also k +2, but there are k free parameters in the set of a, or f,.

One-step case. If we take into account the one-step case, we can write the method of

minimum order 2:
2 U 1+v 1-v
Yor =V, h(—f 3 f) -h > (Ty".1+—2——y,.) (3.3)

Order. Unfortunately, it is not possible to reach order 4 with such a method, but the

formula of order 3 form a class depending on a free parameter since the unique restriction is

1
uv = _.
: 3

Stability. The A-and L-stability conditions are the same for the above mention class,
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because the stability function is the same. If the parameter is chosen in such a way that the-
method is stable at inﬁhity, we get the Enright’s one-step formula. If the free parameter is

chosen for exponential fitting at g€ C_ = {zEC|Rez<0} : R(q) = e *, then:

S (-q2+6q-12)e+q2+6q +12
v 3

(q°-2q)e?+q’+2¢
The Enright’s method can be seen thus as an exponential fitting to - of the formula in’

discussion, because lim__u(q) = .;_.The exponential fitting to zero is not possible since)

lim,,qu(g) = 0. It is easy to verify analitically that the -exponentialy fitted formula is 4-

stable for any g ER because u(q) > 0.

4. Hibrid methods. We pose the problem to find new hybrid methods which can

replace the Jacobian, which is necessary to calculate for a formula of the above section. We
search for a scheme with the following form:
HM 1) 1+n

yn'l = yn+ ) hj(vym] + (1 —V).V,,) +

1-x
h
5 Y,

n+l

Yo =Wy +(1-w)y, +_;_(6 WX M+_;_(ﬂ -w-xYf,

The first equation is known as the quadrature formula and the second, as the interpolation
formula.

Order. The maximum order of these schemes is 3. If we take into account the'
conditions of order 3 for the quadrature formula and of order 2 for the interpolation formula,

the hybrid scheme preserves the order 3 of the quadrature formula. We get ©. ' sses that
depend each on a parameter of the second equation. The coeflicients are given by u=-

»

tof -
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2
x= 5 and in a first case v= 0 0= T orina second case v=l, 9=_3., where w remam a free

£ IR

parameter. The, condmon of order 3 for the mterpolanon formula grve two methods with the
b ToraRiEm S . gt LI RFTAE 5
error coefficient equal to the quadrature formula. One for Gm3 , is

h 3h
Yia TV * ‘Zf:, + Tfmm: T

_ 20 7 4h'; _ 2h @n
R A e Tﬁf"i' Tt
df e
E = £ +O(h*
2,6[ ](y( L)+ Oy

The local truncation ‘error is‘lower-that the .one 'of the Entight,s one-step formula and some
system functions f; lower that the one of England’s method.
Stability. Strong A-stability take place, in the first case, if w > %, and, in the

second case, if w > _;7 Thus, the above method is an example of strongly A-stable class
cedrdien

member.
Exponehiial fitting. In the case of order 2, the free parameter w is possible to be used
for exponential fitting. In the first case we get:

4(q -6)e 1 +2¢? +q+6 hmw(q)= 2, th(q)=
9 G2 i+q*+2q q== 9 4o

and the formula is strongly A-stable for‘any gE K. In the second case:
wig) =L (7r0a-20e 1+5q"+ 189224 ) - 3 limwig) =-l-

N 9 (q 2q)8q+q +2q y g
Also in thls case the corresponding formula is strongly A-stable for any qul

w(q) =

If, instead of the exponential fitting, we put the condition of stability at infinity then
we get two methods. One England s one—step method for w =.§ and is the last formula
exponential fitted at 00, Another in the case 9 = _i_, w = % is also a formula exponentlal

fitted at -oo;
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g h . 3h
= + 7 +
yn*l yn 4-/;1 4 n+2/3?

yo -8, L1, 2k, “-2)
n+23 3 n+1 3 n T n+l

WS A dr O
TE 2]6[(1’, dt’d](y(t ) +Oh?)

Thus, the formula is comparable with England’s one step scheme and Enright’s formula. It
is a better .alterative as (4.1), because it has the property of L-stability. The formula (4.2) is
also included. in the 8-class described by England, which replace the Enright’s method and
contains only L-stat;e methods. |

The England’s B-élass contains all L-stable methods with the minimum order 1 in both

equations of the following formula class:

(HM 2)
yml =yn+h(u;vfml uf) h‘j;ul
v+ q-v-
R A

-

It is easier to see that for this class there is an increasing in maximum order of accuracy

versus the class (HM 1). The conditions of order 4 lead to the Bokhoven’s formula (2.8),

which has the same stability function as the Obrechkoff’s method, thus it is only A-stable.
To improve the performance of Bokhoven’s 3”-order scheme (2.9), we study the class:

(HM 3)

I+n . I-n
yn*l = yn +h_.2£['"ﬂl * h 2' j;wl,

h L h
Yo, = Wt (1-w))y, +.2.(9 -w,+x, ), >

(ﬁ -w,-x)f,

(02 W, —xz)fn

o':-

Yoo, = Waba* (LW, + 200, o),
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Order. If we require the conditions of order 3, the methods depend on three free
parameters: u, w,, w,:

g = 1. V3(1-u?) o = 1 V3(1-u?) o = o 1*2u o 2u-]
Y2 Te(ru) 0 2 Te(l-wy T e(lvw) P 6(1-u)
Stability. We consider the case of order 3. The stdbility function is the following:
CREz) = 1L+(1-20)z+(1/3 —J)zz’ [ = ,HuwI . ]_uw’z"
1-21z-(1/6-1)z? 4 4
The condition of strong A-stability is t >% ‘Bokhoven’s method of order 3-is only 4-

stable, because ' = 7‘4. “When ¢ = %, we get'a class which depends ¢ two parameters

(for example w,,w,) with the same linear stability properties as the Enri'ght’s method: i we
take in account thie case w, o= w, = _;". then u is'a free parameter and it can be choose for
minimising error.

Example I. In the case of L-stability, if the parameters are choosed such that all

equations of (HM 3) are of order 3, then one of the solutions is the next:

2+y/3 2-y3
+\/—hf + ‘/—hf;.-,/s-a

ynfl '—“)',, * ; n+y 3713 4

- 4
2 .
|Powsn= |1 ‘f)r 2 N YA CICR ) WA U

=1+ ’ny ?'f—y,- f—o/s" S, 2‘5(243’ W,

Yn-y3-n= S

. h'd¥f
TE = —=(y(1,)) +O(h*)
7241’ 4
This method is an important one. We observe the identity on the local truncation error and
on the form of stability function with the Enright’s method. Similar efects with the classical
one-step method are obtain, but the evaluation of the Jacobian matrix to each Newton iteration

step is replaced with 2 functions evaluations. Here we did not find in the form of the local
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trucation error some perturbation produced by the interpolation equations, like in Bokhoven’: ;.

one-step method. ;
3

Example 2. For such methods it is possibie to reach order 4. The unique method is the

following:

h h .

yml yn _ ml/2¢,/3‘/6 2 ml/z-,/ 376 -

| N

ot o) ok et
Lymlfzxjr =+ S el |
TE

|4y sdY | o ey |
4320 | dr* d:’ dr
Analysing the stabil function, we can see that this is the same as for Obrechkoff’s formula.

Thus, the method is only A-stable. We observe that, for the most of the system functions f, |
the level of local truncation error is lower than the one of Obrechkoff’s formula or

I
Bokhoven’s scheme (2.8). The computational effort is the same like for (2.8).

In scheme Bokhoven’s (2.9) are needed 3 functions evaluation per Newton step: in

| !

Voor Vosor Your- One step needs 3m + 1 function evaluations, where m is the iteration number
] 3 B

taken to solve the implicit equation; m is relatively small if the starting value is good.
+ We consider now a different class for which are also necessary 3 evaluations:

(HM 4)

y,.o[ =y" +ah-/(uy”o|+(] _u).yn) +bhﬂy"4|) +"'hﬂvy;v¢| +(l -v)y") .
Voo =WY,n *(1-w)y +hdfluy,, +(1 -u)y)) + heflvy,, +(1-v)y) b

Order. The conditions of 3-order are:

a+b+c =1, 0 =w+d+e, 02 =w+2(du+ev)
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k.f' B

vl au+b0+cv=_1_, au2+b92+cv2=_l., au+b62+,cv=_l..
' corddl Qe s e 2 gt o Ban v soan i Fr

Under these circumstances, a formula of order 3 has three free parameters, u, v, 0.
ot

1 The local error produced by the quadrature formula is:

(1) ~O(h?)

:

4 " d? '
TE‘__h_ &, 30 461dff,
{ 36 2 dl3 92-0

To this is added the error produced by the approxrmatmn of y,., with the integration formula:

| .
. ' d’f _(u+v-1)0-[6(6-0)+1]uv (df\' ) df v O(hS
K 1E, = 36[((1 -0=f- R (_)) )rm ) +0(h")

:We observe that the error formula irttroduced by England’s.one—step metuod is a particular

AT

|| of the above. The adventage of using this class is the dependence on more parameters and the
\

1

i possibility to reach order 4 of formula. The method of maxlmum order in this class is the

- Bokhoven’s formula (2.8).
: Stability: If we impose the suplementary condition of stability at infinity, the new
equation is:

d(1 -u)+e(1-v)=0

_Then the coefTicients are:

! u-2 y
2 v-0 . 2, u-0 - 1
u v

2 L -
6(02-0)(v-u) H-

6(02-0)(u =v) 6(6%-0)

a= Q00D @D, g
s v-u u-v

where 0 is the solution ©f the equation
[6uv=3(u+v) +3107 -~ [6uv=-2(u +1) +2]0 +uv = 0
These methods, depending on  and v, are all L-stable“because the stability function is the

| same as that the Enright’s method and that of the 0-class of England.
\ ) :
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Examples:
1)u=0,v=1o0ru=1,v=0 gives the England’s 0-class;

2)vy=0,0 = _:;_ gives a class of formula depending on u:

3h h
=y + 2 f +
Yot = Va y Jros 4f; >

8

. (4.5)
.ynozlj = 9 "vl 9y ___ﬂu ,|0|+(1 _u).y,')+

2(1-nyh
on S

LY Ay O
E = | S22t 2 18- 1)-1’ o) ~own)

Fdr u = 1 we get scheme (4.2).
3)v=120-= .;_ gives the England’s one-step method;

4)ifu +v =1, then

1
0-— 0-—
1B il de e ¥ wdga_ 2 o 2
6(u-v) 6(u-v) 6 v-u u-v

The local truncation error is:

LR AR df 43 V3 | d¥f df O
TE = -2 (dﬂ 6u(1-u). ,f) [ )dde(y(r» 0(h*)

If we consider 1 - 6u(1 - 1) = 0 and if by convention # > v, then for u = _ ‘/_;-.

N

formula is the following:

Yt = Y +hf(y Wi )*

] - (4.6)
2 3 1 3
Y 1,y = (—*"‘/-_-]ym*(—‘—-—]yn‘ !
"7 .T_ .
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1 - \/3—}1“ d4f+ d3f +3;‘/§- dzf df ’ .
TE = 5% (W dy{fk(y(’»)) Ey -‘—175;&-] Gt ) +0(h*)

chich for some functions f is possible to produce a lower error that the one of the Enright’s one-

!
ep method.

3

4. Numerical results.

We have been testing the following schemes:

No. Scheme N Stability~ - EFTCit at one step
H i 7 Order. 3 - o
'(2.3) | -Ennght’s second denvative formula L-stable 1 Function, 1 Denvative
i1(2.5) | -England’s hybrid one-step scheme .  L-stable .-| 2 Function, 0 Derivative
(3.1) | -from class (OLS 1) stongly A-stable | 1 Function, 1 Derivative
(4.1) | -from class (HM 1) stongly A-stable | 2 Function, 0 Derivative
(4.2) | -from class (HM 1) L-stable 2 Function, 0 Derivative
4.6.1)| -for 8=1/2+ﬁ /6, from class (HM 4) L-stable 3 Function, 0 Derivative
'4.6.2)| -for 9=l/2—;/3— /6, from class (HM 4) L-stable 3 Function, 0 Derivative
‘ Order 4 \ . L
(2.6) | -Obrechkoff’s second derivative A-stable 1 Function, 1 Denvative
) formula
‘ (2.8) | -Bokhoven’s hybnd scheme A-stable ‘2 Function, 0 Derivative
,(4.4) | -from class (HM 3) A-stable 3 Function, 0 Derivative

These formula have been implemented in a constant stepsize method.

The above methods suppose to solve some equation in y,,:

I'(yml) =0

where F depends on the choosed method. The iteration scheme adapted to solve the implicit
|

set of equations is a modified Newton-Raphson technique:

F'() Oma” =32") = =F,"), 20, 3,0 =y, +hf,
The starting value is given by the Euler explicit formula.

' , , ,
The numerical process consists of the following stages at each step:
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Stage 11 The evaluation of the specific  linear system matrjl
F'(y,) = I-ahJ, +bh%J?, with specific couple (a,b): a = 2/3, b = 1/6 fi\

(2.3), 2.5), (4.2), (4.6), a=5/9,b=1/9 for (4.1), a= 1, b = 1/3 for (3.1) ar

a=1/2, b= 1/12 for (2.6), (2.8), (4.4).

Stage 1.2. Compute F(y);

n+l J»

Stage 2.2. Solve the linear system:

) the decomposition LU = F(y,), U upper triangular matrix, L lower

triangular matrix;

(1) solve the system Lx = -F(1);

n+l/>

(2) solve the system Ud = x;

(3) compute y," =y +d, iei+l;

Stage 2.3. If §dl, 2 tolerance and if the iteration number exceed a certain limit the
GoTo stage 2.1.; in the opposite case, if the maximal number of iteratio

steps has been overpassed, an error mesage is printed and finish step,

otherwise continue;

Stage 3. Evaluate function at the approximation .7, necessary for the following ste;

and store the values and the Jacobian if the method asks for it.
Finish step. Continue with the next step.
The efficiency of the methods has been measured by independent machine statistic

like the number of function calls, Jacobian evaluations, and matrix inversions.



D. PETCU
s 20T S TE-TO

The numerical results appear in the following tables. We have noted: xxF = the
function evaluation number, xxD = the derivative evaluation number, xxS = the number of
linear systems solved. By * we h'ave indicated the method with the lowest error for a certain
choise of the step and system component.

The comparison was drawn between the exact solution and the solutions given by the
methods for each system, at the point £ = 1.

The number of iterations depends on the chosen steplength. The stcpsize is indicated
in the table head. The possiblg values are 0.1, 0.05 or 0.01, depending on the required
condition of convergence of the methods in discussion. |

The following testing systems are known to be stiff:

System (S1):
¥ (1) = -4498y, (1) - 5996,(1) +0.006 - {

25498/1500
134 (1) = 22485, (1) + 2997y,(1) -0.503 + 3, y(0)= [-16499/1500|,
1

75 () = 5,0

B - 17998-14991¢
1)y = -2e " +Te™0 7~ "7
»(n 7500
- _ 1.268908
Exact: | yz(’)= 1.5¢ " -3.5¢ -1500¢ _ 13499 |]2455’ y(l) = | -0.9505142
1500 0.3678795
¥ y3(’) = e-‘

System (S2):

Yl (1) =-6y,(1) + Sy,(1) + 2 sin 1
0

121 (1) = 94y,(1) -95y,(1) , y(0) = [o];»

ys (£) = -1000y,(¢) -y (1)
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94 _ 1 (10
N=_"_e'+____ | __e
7 99 10001 | 99

e, 1 (108,
9

-1000/ _ 9496 cos + 9506 sinl)

Exact: | y(0) =

0.6361023
“1000_ 9494 cos ¢ +93Q6sint) 1) =10.6193826

99 10001 | 0
1000
1) =
0 1-(1+1000)e 10

System (S3):

Y (1) = ~0.013y,(1) - 1000y, (1), (1)
1
102 = =25004,(0)y,(1) , ¥(0) = (1)

ys (1) =-0.013y, (1) - 1000y, ()y,(t) = 2500y, (1)y,(1)

099073192\
-0.00000367

Fxact [10]:y(1) = [100926441

Analysing the results, we can see that the proposed methods in the present paper have
all good stability properties and implementation performances. Some method are indicated for
solving special stiff s).'stems like methods (4.1) and (4.4) for the system (S1) or (S3) and (4.2)
the system (S2).

JAlthough it 1s difficult to draw any definite conclusions from these limited results, a
general pattern is indicated. It appears that our methods are at least comparable to the classical ones
an'cfi therefore worth considering in a comprehensive comparison. However, we do feel that our
results indicate that a properly implementation version of our algorithms should be useful for the
numerical integration of stiff diferential systems. We expect that, in the case of a variable

steplength, those new methods have better properties that classical methods.
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Method ) Fffort ) EfTort ) Effort
h=001 . — h=003 h=0.1

ol ‘ 1.195369 302F | 6904017 1 64F | 9916564 23F

{Enright (2.3)| - .8953443 302D [ 6731095 64D | 1.00834 23D

‘ ' 1 3690993 202S |-6.539034E-30" - | 44S-|-3.670194E-6" 148

" 1.205755 504F | 6834461 1147 9916568 . 39F

ingland (2.5) - .9031347 100D | .6661996 20D | '1.00834 9D

i | 3678792 2028 |-6.546161E-30 47S |-3.670197E-6 158
| i ‘

1.174317 510F | .7059933 124F | 9916567 “67F

OLS | (3.1)| - 8795553 305D | 6886706 72D | 1.008339 38D

' 3715501 2058 | -2.77061E-7 528 |-3.6769.1E-6 298

'|'.'- - 1.205853" SO6F | 6830078 128F | .9916446" 67F

. HM 1 (4.1) | - .9032077 100D | 6657606 20D | 1.008352° 9D

' 3678793° 1:203S <4.812774E-9 . - 548 | -3.662948E-6 298

1 1.205848 504F | .683004° 114F | 9916566 41F

' 'HM 1 (4.2) | - .9032041 touD | .6657568" 20D | 1.00834 9D

> 3678792 2028 | -6.539737E:30 47S | -3.670196E-6 16S

. '- 1.205755 706F | 6834486 158F | .9916787 48F

M 4 (4.6.1)| - 9031349 100D | 6661998 20D | 1.008318 9D

' 3678792 2028 | -6.579986E-30 | 46S |-3.670312E:6 98

' 1.205758 706F | 6834486 158F | 9916565 54F

© 1M 4 (4.6.2)] - 9031366 100D | .6661998 20D | 1.00834 98

!, 3678792 12028 | -6.568837E-30 46S |-3.670195E-6 15S

h=0.01 h=0.01 h=0.01

T1.196627 304F | 6464161 296F | 9907243 202F

Obrechkoff | - 8962881 304D | 6295791 296D | 1.009272 202D

(2.6) 3678732 2048 0" 1968 | '1:009272 202D

; 1.205815° 510F | .645691° 464F | -3.665286F-6 { 1028

. Bokhoven |- 931796 100D | .6288624° 100D | .9907317 310F

(2.8) 3678794" 2058 0 182S | -3.665327E-6" 1058

| 1.205753 712F | 6457027 1646F | .9907318" ' 415F

"HM 3 (4.4) | - 9031334 100D | 6288741 100D | 1.009264° 100D

; 3678794" 2048 | 0 11828 | -3.665327E-6" | 105S |

]
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SPLINE APPROXIMATIONS FOR SECOND ORDER NEUTRAL
DELAY DIFFERENTIAL EQUATIONS
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"REZUMAT. - Aproximatii spline pentru ecuatii diferentiale de ordinul al doilea cu
argument intdrziat de tip neutral. Sc considerd un procedeu de colocalic cu funciii spline
polinomiale de grad coborit pentru rezolvarca numerici a ccuatiilor difcrentiele de ordinul al
doilea cu argument intarziat de tip neutral. Legitura cu metodcle discrete ale multipagilor este
punctul cheie in studiul convergeniei metodclor splinc. Sc studiazi estimarca erorii i
convergenja mctodclor splinc pentru aproximatiile spline de gradul trei §i patru.

Abstract. A collocation procedure with polynomial spline functions of low degree is
considered for numerical solution of a second order initial value problem for neutral delay
differential equations. A connection with discrete multistep methods is the ingredient in the
study of the convergence of the spline methods. The estimation of the error as well as the

convergence of cubic and quartic spline approximations is investigated.

1. Introduction. In recent years, there has been a growing interest in the numerical
treatment of differential equations with deviating argument; see [5] - [11]. Because of the
versatility of such equations in the modelling of processes in various applications, especially
physics, engineering, biomathematics, medical science, economics, etc., neutral delay
differential equations provide the best and some times the only realistic simulation of

abserved phenomena.

" "Babey-Bolyai” University, Faculty of Mathematics, 3400 Cluj-Napoca, Romania

™ University of Kentucky, Department of Mathematics, Lexington, Kentucky 40506, U.S. A,
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Recently many aut};}ors [13,14,19,20,22] have proposed methods to approximate the
solution of differential equations with deviating argument by’ means of spline functions. It
seems that the spline approximating solutions for such kinds of equations possess some
advantages over other methods. l

In this paper, we consider a spline approximation for the numerical solution of second
order neutral delay differential equations vyit:h given initial conditions. The purpose of the
present study is to extend some results frbm'the ordinary case 10 the second order neutral one.
Ina inéhtlymediﬁed manner, we shall constructa Spline approximation solution Agnd also we

shall investigate the estimation of the errors and the convergence of the given proceduie for

cubic and quartic splines. The notation used i‘s::this'paper is taken from [7], [9] and [18]-[20].

2. Description of the spline collocation miethod. Consider the following second order

initial value problem for neutral delay differential equations:
») = e, Mg0), v ©u)), 1E[abl,
M = c;(l), V@) = ¢'(0), t€Jaal, asa<b.

The function g, called the delay function, is assumed to be continuous on the interval [a,b],

@

and to satisfy the inequality o < g(r) <1, 1 € [a,b], and ¢ € C"""[u,a], where m»> 2. Assume
that the functional
Flab] x C'la,b] x C'lab] x Cla,b] = R
satisfies the following conditions H, and H,:
H,. For any x € C'[a,b], the mapping ¢ - A.x(),x(+),x’ (*)) is continuous on [a,b].

H,. The following Lipschitz condition holds:
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HEAGEAORACRS (A XGRACKEAQ)]
s L, = xb gt W -y t 12, - 20 )

+L2'zl -zl|[a,1] »

with L, 20,0 s L, < 1, 8 > 0, for any 1 € [a,b], x,,x, € C'[a,b), y,,,2,,2, € Cla,b].
Under conditions H, and H,, the problem (2.1) has a unique solution y € C*[a,b] N C[a,b];
see [7,12]. For a discussion of the qualitative behaviour of the solution y, in particular the
presence of jﬁmp discontinuities in the higher derivatives caused by the delay function g, the
reader is referred to [4], for example. Jump discontinui.ties can occur in various higher
derivatives of the solution even if fg,¢ are analytic in their argumerits. Such jump
discontinuities are caused by the delay function g and propagate from the point a as the order
of derivative increases. We denote the jump discontinuities by {E,} which are the roots of the
equations g(E) = &,..; Ago = a is the jump discontinuity of '¢. Since in this paper gAdoes not
depend on y (no statedependent delay) we can consider the jump discontinuities to be known
for sufficiently high order derivatives and to be such that
E, <E <.<E_, <E <. <E,

~>We shall construct a spline approximating function s = R, s € §, (the polynomial spline
function space of degree m and continuity class C™') which is defined on each interval
[E,E,1), /= 0,...M-1. For this construction, we use the modified collocation method as in [2]
and [18]-[20].

Consider the interval [E,E,,], 0 s j < M-1, subdivided by a uniform partition defined

by the knots

E <, <f <. <t<f, <.<t =E,
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v
“wheve 1, = 1, + khand h = (§,,, - E)/N. The spline function s approximating the solution of

. (2.1) isdefined on each subinterval [1,¢,,,] by

“ m-1 (u)( )
P s() = 2___« LY+ __(t L, 22)

'« where s,), 0 s i < m-1, are left-hand limits of the derivatives as 1 — 1, of the segment of
| s defined on [4,,,], and the parameter a, is determined from the following collocation

conditions;
5 (' *l) j(’ .p“ (".p _,..(L'(’ | )), J-l(g(',‘.,)))

e “J =0, M k=0, N1,
I " where 5= s|l, 1= [1,,.t], and s, = ¢. This procedure yields a spline approximating function

(2.3)

' s €S, over the entire interval [a,b]. It remains to show that, for A sufficiently small, the
| parameter a‘.,_O s k < N, can be uniduely detem\i_ned from (2.3).
THEOREM 2.1. If f satisfies.conditions H; and H,,  €EC™'[aal, asg) s L E
[ob], and if h is sufficiently small, then there exists a unique spline approximating solution
1 of problem (2.1) given by (2.2)-(2.3). o

Proof. 1t suffices to prove that a, can be uniquely determined from (2.3). Substituting

(2.2) in (2.3), we have

_ (m- 2)

1)+~ *h .-.(g(r..)),s.’.,<g<r -4 @)l 24

M

where .

m-1 (n( ‘)

A0 = E___« 1)
If brevity we denote (2.4) by
[ a, = GJa,), (2.5)

]lf.’

using assumption H, for h < {m(m-1)/L,]'* the application G : R — R is a contraction and

) (2.4) has a unique solution @, which can be found by iteration. This completes the proof of
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SPLINE APPROXIMATION

the theorem.

In order to make a connection between the spline method and discrete multistep
methods (see), we present the following theorem which gives the relationship between the
value Qf any spline function s € S, and its second derivative at the knots ("consistency
relation").

THEOREM 2.2. (17] For any spline function s € S,, m z 3, there exists a unique

linear consistency relation between the quantities s(t,) and s" (1), k = 0,1,...,m-1, namely

m-] m-1 Py
zaj("’s(tm) =hY b"s" t.), 0svsN-m+l (2.6)
o o
where
a™ = (m-NQ, (*D-20, () +Q, (-D),
b = (m-1)1Q, G+, 27
and

O = (/f"ll)!,z:;(—I)l‘(l;’)(x_i)’:-l.
THEOREM 2.3. The values s(t), k = 0,1,..,N, of the spline function are precisely the
values furnished by the discrete multistep method defined by
:2;;10',‘")_1/”‘* hzg by k=012, (2.8)
Jf the starting values
Yo=s(p), vy =5, +h) ..,y , =s(t,+(m-2)h), (2.9)
are used.

Proof. For h < [m(m-1)/L,]'?, only {3 satisfies (2.8) with the starting values(2.9).

By (2.6), the sequence {s(#)}, j = 0,1,..., satisfies (2.8) and obviously has starting values (2.9).

Thus the values s(4) must coincide with the values y, j = m-1,..N, gencrated by the
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corresponding multistep method.
I the sequel, Wé shall bé concerned with estimating the error in the approximation
of the solution of (2.1) by splines as well as with the convergence of the approximation s to

the exact solution y as h — 0.

We now define the step function s at the knots {¢*})- by the ususal arithmetic mean:

LT W EERT LY

)'_. l } l B } l L ¢ .
s) = .Z_[N ’(tk-?h) vst ’(l*+..ih)]‘ (2.10)
We need the following lemmas:

LEMMA 2.1. If
Ist) =Ml < Kh?,  |sgt)) - Mg < Kh?,
where K is a constant independent of h, and o
s () = SU,s(t),s1)),s' €1,
then there exists a constant K, such that
Is) =yl < Khe, |s” @) -y" @)] < K.h ’,
Using the Lipschitz condition H,, the proof is sfmply a moﬂiﬁcation of Leinma 41 of [17].
LEMMA 2.2 [20] Let y € C"''[a,h] and s € S, such that
Is1) -y )| = O™, |s @) -y @) | =04, @1)
Jorr=01,.m-1,k=01,.N-1, and
Js ™) - y‘“)(t)l =0h), 1E[1,1L,.] (2.12)
Then
Is) - 0| = O*"), 1E[ab], 2.13)
where p = min .o, (rtp,), p,, = 1, and furthermore

s @) -y @] = 0, 1€ [ad] (2.14)
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SPLmE APPROXIMATION
In the following sections, we shall investigate the cubic (m=3) and the quartic (m=4

spline approximations of the solution of (2.1).

3. Cubic spline function approximating the solution. By Theorem 2.3 for m=3, the
cubic approximating spline function yields the same values at the kﬁots as discrete multistep
method based on the foIloWing‘ recurrence formula;

Yo "WtV = f6-1[y1.’.+4y1' ¥l = -"6—2 e 4] (€N))
where ‘

S = /). M8)).y' @ )),
if starting values y, = s(1,) and y, = s(#, + h) are used. The discrete method (3.1) has degree
of exactness two provided that the starting values y, and y, have second ordsr accuracy. As
in [17], it is easy to'prove that the starting values y, = s(¢,) and y, = s(f, + h) have the same
order of exactness as the recurrence formula (3.1); theréfore we can conclude that

s -l = 0@, Is" () -y" (1 = O, (32
The second relation follows from Lemma 2.1 for p = 2.

LEMMA 3.1. [17] Let y € (Y[a,b] ‘and assume Lt € [ab). If Py is the unique

po7ynomial of degree 3 satisfying the Hermite-Birkhoff interpolating conditions

M) = P, v = P,
vy = P, v @) = P @),

then there exists a constant K such that

(3.3)

™ ) - P () < Kh.
THEOREM 3.1. If f € C\([a,b] x C'[a,b] x C' [e,b] x C[a,b]) and s is the cubic

spline function approximating the solution of (2.1), then there exists a constant K, independent
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of h, such that, for h sufficiently small and t € [ab],
;l‘y""(t)-s“)(t)l < Kh?, i( =0,1,2,
and
™ @ -s" 0| < Kh,
provided s" (1) is given by (2.10) with m = 3.
Proof. Denote the cubic component of s over [,4,,,] by
() = byrei-1) +d-, P e (t-1), tE[t.th.)
Solving a system similar to (3.3) for s we obtain
& = ls” () 5" O] = =" () =y 1) + O,
since
s () =y" () +Oh?).
Now let 1 € (1,1,,,). We have s (1) = 6¢, and Lemma 3.1 implies that
s () = Py (1) +Om) "= y" (1) + Oh) = y" (1) + (1, =)y () +O(h).
Since |1, - 1] < h, we have
s") = y" )+ O, 1E@H,), k=01 N-L (3.9
Hence it follows that the condition (2.14) of Lemma 2.2 is satisfied for m = 3. Since the
funcﬁg)n s™ is constant on (f,1,,,), we may write
At = At +hy' (1) *i;-y” (A +£6-3y’” ©,
and
M) = 50 +hs' @) + s ) + 2o o,
where ¢ € (f.1;,,). Subtracting we obtain
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SPLINE APPROXIMATION

[5(t) = D] = () =) +his' (1) -y (1] +
h? , h3
+ Tls S ARSS (A & —6-[s “©@-y" ©),
which implies that

s'(t) =y'@)+o(d). (3.5)
From (3.2) and (3.5) it follows that the conditions (2.11) of Lemma 2.2 are fulfilled for m =
3, 0=2,p,=2,p,=2 Applying Lemma 2.2 three times sqpcessively, first for s then for
s’ gnd s” in the role of s, the first three inequalities follow. The last inequality follows from

(3.4), and thus the theorem is proved.

—> 4. Quartic spline function approximating the solution. According to Theorem 2.3
for m = 4, the quartic spline function approximating the solution of (2.1) furnishes values at
the knots which coincide with the values of the discrete multistep method defined by

h? " w o, .n
Yer Ve VitV ™ Tz-lym*”."k + 1Yy + Y]
= T3V 1+ 1Y, )
provided the initial values are y, = s(t,), y, = s(t, + h), y, = s(t, + 2h). The multistep method
(4.1) has degree of exactness 4 if the starting values have the same exactness. Also for this
case, as has been shown in [17], it is easy to conclude that the starting values have degree
of exactness 4. From this fact and by Lemma 2.1 for p = 4, it follows that
Is@) =Ml = O, Is" (()-y" )| = O™, k = 0,1,.N. (4.2)

In a similar manner as in the above theorem, it may be shown that the following relations

hold:

Is™ @) -y @l = OhY), 1s'()-y' ()| = O, k = 0,1,.N, 4.3)
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and also that
[s@) -y ()| = Oh), tE W, L,.), k =0,1,.,N-1. "f4‘_4)
The relations (4.2) - (4.4) show that the conditions of Lemma 22 are satisfied for m = 4, p,
=4, p, =3, Ps =4, \‘p, =‘3Alpplymg Lerima 3.2 for a, ‘then :gﬁécessi:'él;tfor s/ 5", in
the role of 5, we have 'fbliowfhg‘:ihéo‘riéfﬁzz
THEOREM 4.1 Iff € C¥(a,bi’% C'[a,b] x C'{a.b] X Clayb]) and s is the quartic
spline function approximating the solution of (2.1), then there exisis a éb;tsta;zt K, i;;é}épeitdeilt
of h, such that, for h sufficiently small and t € [a,b],
vyt < BT 012 e e
and
Ly =s @y < Ix‘h K
provided sV is given by (2.10) with m = 4 .
The methods of appreximating the solutions of ‘neutral delat differential equations by
spline functions, given here for m = 3,4 have advantages over the other methods in that they
give a global approximation-of the solution, are convergent, and also permit thé gtud& of the

behaviour of the derivetives of the aproximate solutions.
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REZUMAT. - Efecte de ordinul intdi ale precesiei Lense-Thirring asupra orbitelor
cvasicirculare de sateliti. Se studiazi migcarea unui satelit artificial al Pimantului, avind
otbita initialad cvasicirculard, sub influcnia perturbatoarc .a rotatici terestre, descrisd de
acceleratia Lense-Thirring. Se determind perturbatiile de ordinul intdi in cinci clemente orbitale
independente, pe durata unei perioade nodale. Efectcle constatate constau in miscarea apsidala,
precesia orbitei §i variatia inclindrii planului orbitci. Sc atrage atentia asupra posibilitatii
determindirii pe aceastd bazdi a perturbatiilor acelorasi elemente pe intervale mari de timp.

1. Introduction. The effect of "inertial frame dragging" on an orbit in the
gravitomagnetic field of a rotating central body was discussed since 1918 (see e.g. [5]). A
description of this relativistic phenomenon, also called Lense-Thirring precession,
characteristic to a rotating, gravitomagnetic field-generating body, can be found e.g. in [3].

Let such a body be the Earth (of gravitational parameter p and rotating uniformly with
the angular velocity ), and let an artificial satellite be orbiting the Earth at geocentric
distance r. Let the relative motion of 'the satellite be described (with respect to a Cartesian
;'ight-handed frame originated in the Earth’s mass centre) by means of the Keplerian orbital
elements {y € ¥; u}, all ime-dependent, where:

Y= {pg=ecosw, k = e sinw,Q,i}, (1)

and p = semilatus rectum, e = eccentricity, w = argument .of perigee, Q = longitude of
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** Astronomical Observatory, 3400 Cluj-Napoca, Romania
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ascending node, i = mchnatlon u= argument of Iautude Smce the Lense—Thlrnn& precessxon
influence on the satellite ofbit ean. be treated penurbatnveiy,\#e shall estimate analyttcally the
first order variations of the orbital elements (1), due to the mennoned influence, over one
nodal period. The results w1|| be estabhshed under the followmg, hypotheses

(1) The elements (1) have small vanations over one revolution of the_‘hs'a‘t,e"llite (thns is
likely since the Lense—'l‘hirring precession is a relativistic et‘fect).

(n) The mmal orbit of the satelhte is quasn-cnrcular (accordmgy, cxp,ansxons to first

iy

order in e through q and k will be used)

1. v
X A et e

/

2. .Ba‘vsifc' :equotions._Since the .r_todal period was chosen as basic time interval, we shall
describe the satellite motion by means of the Newton-Euler system written with respect to u
as (eg [1.2]:

dplddu = 22T,

daldu_ = (ZIp)r*kBCWIQD) + r*1ir(q + A)ip + A) + r*BS), T
dkldu = (ZIw)(=r*gBCWI(pD) * r¥1{r(k + B)p + B) ~r *4S), @)

dQdn = (ZIwr BWIpD),
Y dildu = (ZIwr AWip,

dildu = Zr*(up)™?,

e v i
where Z = (1 -r2C QI(up)")", 4=cos u, B =sin u, C = ¢os i, D =sin i, 8,1, W = radial,
transverse, and binormat components of the perturbing ‘acceleration, respectively’”

By virtue of hypothesis (i), the elements (1) can be consndered Constant and equal to

their initial values y, = y(u,) = (1)), y € ¥; in the rlbht -hand sndc of cquallons (2)..and
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these ones can be separately integrated. So, we can write y = y, + Ay, where the first order
variations are found from:

Ay = L”(dy/du) du, y€Y, )
with the integrands provided by (2). The integrals are therefore estimated by successive
ap‘pr’o'ximat'ions, with Z = 1, limiting the process to the first order approximation.

In what follows, for simplicity, we shall omit the factor Z in the motion equations.
Also, we shall no longer use the subscript "0" to mark initial values of y € Y. In fact, every
quantity which does not depend on u (explicitly or through A4,B) will be considered constant
over one revolution of the satellite.

3. Perturbing acceleration. Under the influence of the LenseLThining precession, the
satellite undergoes a perturbing acceleration whose components are [5]:

LS'

KhCir?,

1" = =KhCe sin vi(pr?), )
W = KhDQ2B + Are sin vip)r?,
where v = true anomaly, & = (u p)'?, and:
K = 2(y + Dpw, R*(5¢?), 5)
in which y= 1.000 + 0.002 is the space curvature parameter, R = mean cquaton'él terrzstrial

radius, ¢ = speed of light.

Taking into account the fact that v = u - w, and the definition of ¢ and &, formulae (4)

—

7 ECA FACU 1}
Q\‘\\Q‘ t14y,
CLUJ-NAPOCA
~N
0 myepaTiCH

can also be written as:
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S = KhCir?,
T = -K(hip)C(Bq - Ak)Ir?, (6)
W = KhD(2B + r(Bq - Ak)_/p)/{ ‘
i
4. Variations of orpital elements. Consider the orbitz equation in poler coordihates:
r =pll +ecosv) = pl(1 + Aq + By), )
which, by virtue of hypothesis (ii),: leads to:
r"=p"Q—nqunBM. . 8)
Replacing (6) in (2), then substituting (8) in the resulting expressions, and observing the
considerations made in Section 2, the first five equations (2) acquire the form:
dpldu = -2KpbC(Bq - Ak),
dgldu = KbC(B +2(1 + B?)l‘(),
dkldu = -KbC(4 +2(1 + BY)qg), ©)
dQldu = Kb(2B? + B*(1 +2A)q + B2 B* - A)k),
dildu = KbDQRAB + AB(1 +2A)q + A2B* - A)k),
in which we denoted b = (ph)"' = p*?y'?
" So, the expressions in the right-hand side of (9) contain only explicit functions of
(through 4, B) and quantities considered constant over one revolution of the satellite.
Performing now ihe integrals (3) with the integrands provided by (9_)? we obtain the
first order variations of the orbital elements: due to the Lense-Thirring acceleration over one

nodal period:
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Ap =0,
Agq = 6xKbCk,
Ak = -61KbCq, (10)

AQ = aKb(2 +q),

Ai = -nKbDk.

5. Comments. Examining these results, we observe that, in a first order approximation,
the Earth’s rotation (by means of the Lense-Thirring acceleration) does non affect the shape
and dimensions of the initially quasi-circular orbit over one nodal period. Indeed, taking into
account the definition of q.k, and the second and third formulae (10), we easily get:

Ae = Agcosw +Aksinw = 0. (11)

Considering the relation p = a(l - ¢?), too, where a is the semimajor axis, one sees
immediately that Aa = 0.

Taking again into account the definition of ¢,4, and the second and third expression
(10), we obtain;

Aw = (Akcosw -Agsinw)le = -6aKb(, (12)
thét is, the Lense-Thirring acceleration causes apsidal motion. By (12) and (" = cos i, one sees
that the valué of w decreases if the satellite motion is direct, and increases if this motion is
retrograde.

The last two expressions >(10) show that the position of the orbit plane is affected by
the Lense-Thirring acceleration. The value of Q increases (hence the satellite orbit undergoes

a precession), while the value of i increases or decreases as the initial value of the product
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sin i sin w is negative or positive, respectively (remind that [ = sin i).

N
According to hypothesis (i1), the results (10) are obtained with a first order accuracy

\

as fega-rds the eccentricity (through ¢ and £). Observe that only the longitude of ascending
node undergoes perturbations of zeroth order in eccentricity. Subsequently, in the particular
case of*initially circular orbit, the only first order effect on the Lense-Thirring acceleration
is the precession of the orbit.

“As a‘f'i'nal remafi(, if thébi:ﬁtég(rz;ls (3) are pe;fb;i;ed between the initiai ;—(u(,) and current
) Ipo§iti6n§‘,' the variations of the orbital elements in the interval [240,u] Ean be used to
determine the 'ﬁrsi order peftiuf:liétiions';ih the nodalpenod {e.g.[1,2]). Also, stdrtiné from the
formulae (1 O; the evolution of these elements can be stu;(ii;d over large time interval‘s;blnsing

either an averaging-type method or the numerical integration, or a mixed method (e.g.[4]).

sl
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Calendarul UNESCO pe anul 1993 cuprinde, printre cvenimentele stiin{ifice §i culturale ce

trebuie comemorate pe plan mondial, implinirea a 520.de ani de la nasterea marelui astronom

polonez Nicolae Copernic (Mikolaj Kopernik, Nicqlaﬁé:ngop(}mfcgs) §1 450 de ani de la publicarea
operei sale capitale, "De revolutionibus orbium coelestium".

Cu 20 de ani in urm'a‘, in anul 1973, sub egida ‘UNESCO,‘ a fost marcatd, in cadrul unor
ample manif'eétﬁfr‘i stnntlﬂcesi culturale, impigni;eav-g.soo ée ani de la nasterca acesfﬁi geniu al

N

Renasterii, care, prin teoria sa heliocentrici a Sistemului solar-planetar - ce era total opusa teoriei

‘s

S , w“r

geocentrice dominante de peste un‘mileri’i.g §i jumatgte, a""sareschis o né{;é erd in cunoaterea
Universului - era revolutiilor stiintifice ale s?cole_lor urmit()are Dintre manifestirile ce au avut loc
ne reamintim cu emotie Adunarea Gegxgral\é 'E)ggfaordi"x;ér’ﬁ a Uniumi AstronQ_mice lnte'fnationale din
Polonia, precum §i manifestirile orggﬁiiate in tara noastrd de catre Comitetul pentru ‘sié;batorirea a
500 de ani de la nagterea lui Copemi'c'.{. \

Astdzi, in cadrul simpozionului nostru, ne-arf;i propus o scurtd evocaré a, momeritului
Copernic din istona cunoagterii Universului. Dar noi, astropomii, putem cel mai bine cmstl memoria
acestui geniu al omenirii prin promovarea in’drézh:ea;a a invatimintului astronomiei §i a gercetérii

in domeniu.

N.Copernic s-a niscut la 19 februarie 1473, la Torun (pe Vistula, la 170 km nord-est de
Vargovia), ca fiu al negustorului si consilierului comunal Nicolae Copemic si al sotiei sale Barbara,
nascutd Watzenrode. La vérsta de 10 ani, Copernic pierde pe 't'atél_ sdu, in timpru-l\ ;:pidcmici de
ciuma, cei 4 copii orfani au fost ajutati de frate_l; mamei lor, canonicul Lukasz Wat;enrodé, membru

al Societatii Literare Vistulane, doctor in drept canonic al Universitatii din Bologna, episcop de

Warmin din 1489.
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N:Copernic si-a Tnsusit cultura, formandu-gi personalitatea prin studii la Universitatea di
Cracovia (1491-1495), - matematica, astronomia, clasicii latini -, la Universitatea din Bologh'é (149¢
1501) = dreptul canonic, filosofia, matematica, mediéiné‘- si la Universitatea din Padova (1501-1503
- medicina si filosofia’(diferite sisteme ale lumii: Pitagora, Eudox, Aristarh, ..., Hiparh). Docioratu
in dreptul ‘canonic si1-a luat la Ferrara.

‘Canoriic, a fost secrétar si medic 4l unchiului siu, episcopul L. Watzenrode la Lidzbark, i
anii 1504-1512, cind s-a mutat si a locuit tot restul vietii la Frombork. Aici a fost inspector
cancelar (1511-1512), -iar'in anii 1512-1521 a fost administrator al bunurilor intreprinderilc
economice ale Sfatului Canonicilor din Warmia. Ca cetifean credincios Warmiei, el a contribuit |
apararea cetdfii Olsztin, care era atacatd de o armati a cavalerilor teutoni.

Despre Universitatea din Cracovia la epoca respectivd, Hartmann Sched! a scris: "Ling
biserica Sf.Ana se afli universitatea, cunoscutd prin invitatii ei mari si slivifi, unde se inva
retorica, poetica, filosofia si fizica. Dar din toate stiinfele, astronomia infloreste mai mult acolo. |
aceastd privintd, dupa cate stiu, in toatd Germania nu existd o gcoald mai renumita."

N.Copernic a studiat astronomia, predati de Adalbert Budzew dupi Almageste (traducer
in limba arabé a operei lui Ptolemeu "Sintaxa matematica"). i

Adaricind studiul astronomiei, Copernic constata ca diferentele intre pozitiile Lunii calcula’
.cu teoria lui Pfolemeu si pozitiile observate ajungeau pani la 15' (jumitate din diametrul apare
al Lunii), instrumentele de observare (fari lunetd) din timpul lui asigurind. o precizie de l(l’
Diferentele mari-O-C au determinat pe Copernic s&'pund sub semnul intrebirii teoria geocentn‘f
a lui Ptolemeu. Copernic avea atunci doar 49 ani!

Coperriic avea si alte ‘argismente cure se adaugau spre a-i intari neincrederca n sistemul I

Ptolemeu §i anume: el observase, printre altele, ci la momentul opozitici planetéle Marte, Jupi,



si Saturn straluceay mai puternic, fapt care ii aratd cd aceste plancic ... puteau sa se roteasci in jurul

Pamantului ca centru al traiectoriilor lor! . . . . . .. -

-

; La Bologqq, IQopggnig_.galpql;eazé eclipsarea (ocultatia). de ¢atre Lund a stelei Aldebaran (a
‘ , ‘

l'auri), folosind ideea sa asupra migcarii Pamantului in jupul Soarelui yi cea @ migcanii Lunii in jufhl

>amantului. Conform prevederii, eclipsarea s-a produs in seara.zilei de 9 martie 1497,-In a sa "De
{

'evolptj,onibl__xs...';.,; ‘Copernic scrie: "Asteptandu-pe. sd ebservam. acest .fenomen, amn vizyt steaua

tingénd partea intunecatd a sferei lunare §i disparand intre coarnele ei."

T RN
R .

. Revenind in patrie, in Polonia, in castelul de la Lidzbark, Copernic: cultiva mai. departe
bservarea cerului si studiile pnvind sistemul migcarilor, studii care.se apropiau de faza elaboranii

inale. . '

ini ,1>5(1‘);7,§>N1Cppe,rnic compune lugrarea "Mic comentariu degpre ipotezele migcarilor

orpurilor ceresti", care nu a fost tipantd, dar.a avut g largj circulajie in forma de manuseris. in

B

ceastd lucrare se aratd, in cadrul a 7 axiome, 6&: .. !
- Nu existd un centru unic pentru toate, orbitele; .

- Pamantul nu este centrul Universului, ¢i numai centrul sdu de gravitafie si centrul orbitei

nare; b

- Soarele este centrul Universului,

PR

- distanta de la Pamant la Soare este neansemnata in raport cu distania la stele,

- migcarea diurnd a sferer ceresti este rezultatul rotafiel, Pmantului in jurul axei. polilor,

[ . . . , e . ) .
ipreund cu atmosfera ce-l inconjoard, in, timpul unei rotagi. polii pastrand o pozijie.neschimbata

|a de stele;

At PR

- deplasarea anuald a Soarelui faid de stele este rezultatul migcani Paméantlui in jurul

i

1y arelur, la fel cu nugcarea oricdrer ajte plancie;
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- migcinle planetelor in sens direct; statiile si retrogradatiile acestora sunt aparente cauzate
de migcanle planetelor gt Paméntului in jurul Soarelui. i

Astfel .au fost formulate in "Micul comentariu..” ideile de baz& pe care le va dezvolta
Copernic in opera sa magistrald "De revolutionibus...". . S

‘N.Copernic a ezitat si-gi publice lucrarea, géndindu-se la reactiile negative care ar fi putut
s se dezlantuie pe nedrept contra adeptilor noului sistem al lumii - sistem ce se afla in contrazicere
cu scrierile sfinte.

N.Copermic a..fost sigur cd structura heliocentricd corespundea. adeviarului $i cé: prin ;
perfectionarea ulterioara a observatiilor se vor preciza si legile migcérilor, ceea ce s-a gi- intAmplat -
in realitate, astfel: .

- J Kepler, (intre ‘anii 1609 - 1619).a:descopent legile miscdri eliptice neuniforme a 
planetelor si satelitilor - ficand pasul decisiv de la migcdrile circulare §i uniforme din sistemul :

copernician;

- G.Galitei a indreptat spre cer (in seara de 7 ianuarie 1610) luneta construiti de el si a ‘
observat, printre altele, fazele planetei Venus, care dovedeau tocmai migcarea acesteia in jurul
Soarelui; aga.cum previzuse Copernic;

-~ ] Bradley, in 1727, a descoperit-abera{ia luminii, dovada-elocventd a migcari Pamantului
in jurt;l Saarelui; se stie c& el dorea sd pund in eviden{a paralaxa anuali a stelelor, dar precizia de
1" a lunetei de care dispunea:nu era suficientd (paralaxe.e anuale ale stelelor, o §tim bine astizi, sunt
toate mai mici de 1").

- Primele paralaxe stelare au fost descopente mai tarziu;: -

- V.Struve, in 1837, descoperi paralaxa anuald a stelei Viega (a Lyrae), iar

- F.W Bessel, in:1838, descopera paralaxa anuald a stelei 61 Cygnr.

Y



In vara anului 1541, un tanar §i renumit profesor de la Universitatea din Wittemberg, elev
al lui Copernic, Georgius Joachimus Rheticus, ebtindnd un concediu, il ajutd pe maestru la grabirea
redactani i aparitiel lucrini "De revolutionibus..."care intrd in tipografia lui Petreius:din Niirnberg
in anul 1542. Primele exemplare ale operei apar in'martie 1543 - acum.exact 450 de ani. Copernic
se stinge din ‘viafd la:24 mai 1543 §i sé crede cd un exemplar din carte a ajuns in mainile
murnibundulu.

Ca o masurd de precautie, N.Copemic dedici lucrarea papei Paul al Ill-;ea, cu urmatoarele
cuvinte: "Dedic cartea mea sanctitaii-tale, pentru ca savantii. §i ignorantii si vada:c# eu nu fug de
judecatd. Dacd unii oameni usuratici §i ignoranti ar voi si abuzeze de pasajele din Sfanta Scripturd
si, schimband sensul lor, s abuzeze contra mea, eu dispretuiesc atacul lor temerar. Adevirurile
matematice trebuie judecate numai de rmate_maticieni"‘.

~"De revolutionibus..." a fost interzisd la 5 martie’1616 de Cangregatia Indexului, cand lui
Galilei, profesor la Universitatea din Pisa, 1 se interzice sd propage ideile lui Copernic.

Faptul ca a criticat in mod curajos §i constructiv atat stiinta "oficiald" a timpubui sdu, cat §i
aparentele imediate ale simtului comun, il situeazid pe Copemic printre marii inovatori ai gtiinjei,
fiind considerat - pe drept cuvant - precursorul primei revolutii stiintifice a secolului al XVIl-lea.

“ jn perspectiva timpului ne dam seama §i mai bine c& fard drumul deschis de el, fara revolutia
copernicand, n-ar fi fost posibile. progresele spectaculoase ale dstronomiei, ale gtiinger in general,
pentru a caror ilustrare este suficient sd ne referim la realizanle ob{inute de zborurile cosmice §i
astronomia spatiala.

Simbol al puterii innoitoare a min{ii omenesti in ciutarea adevarului, Copernic ramane in
amintirea colectiva a umanitafi un titan at gandini gi.un binefacitor al omeninit.

In incheiere, remarcam doud recente evenimente stitngifice semnificative pentru promovarei
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in zilele noastre a ideilor lui Copernic:

i) Cea de a doua Adunare Generald a Societdfii Europene de Astronomie (Torun,
Polonia, 18-20 august 1993) pe tema: "Astronomia extragalacticd si Cosmologia
observationald",

i1) Celebrarea a 400 de ani de la inaugurarea lectiilor lui Galilei la Universitatea din
Padova (manifestare organizatd in cadrul Anului Internafional al Spatiului 1992, la 7

dec’:embrie).v
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In cel de al XXXVIII-lea an (1993) Studia Universitatis Babes-Bolyai apare in
urmaétoarele serii:

matematicd (trimestrial)

fizicd (semestrial)

chimie (semestrial)

geologie (semestrial)

geografie (semestrial)

biolegie (semestrial)

filosofie (semestrial)
sociologie-politologie (semestrial)
psihologie-pedagogie (semestrial)
stiinte economice (semestrial)
stiinte juridice (semestrial)
istorie (semestrial)

-filologie (trimestrial) ‘
teologie ortodoxa (semestrial)
educatie fizici (semestrial)

In the XXXVIII-th year of its publication (1993) Studia Universitatis Babes-
Bolyai is issued in the following series:

mathematics (quarterly)

physics (semesterily)

chemistry (semesterily)

geology (semesterily)

geography (semesterily)

biology (semesterily)

philosophy (semesterily)

sociology-politology (semesterily)

psychology-pedagogy (semesterily) -

economia sciences (semesterily)

juridical seiences (semesterily)

orthodox theologie (semesterily)

philology (quarterly)

orthodox theologie (semesterilly)

physical training (semesterily)

Dans sa XXXVIII-e année (1993) Studia Universitatis Babes-Bolyai parait dans
les séries suivantes: \

mathématiques (trimestriellement)

physique (semestriellement)

chimie (scmestriellement)

geologie (semestriellement)

géographie (semestriellement)

bhiologie (semestriellement)

philosophie (semestriellement) -

sociolegie-politologie (semestriellement)

psychologie-pédagogie (semestriellement)

sciences économiques (semestriellement)

sciences juridiques (semestriellement)

histoire {semestriellement)

philologie (trimestriellement)

théologie orthodoxe (semestriellement)

éducation physique (semestriellement)



