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POWER LOGICS

1. PURDEA and N. BOTH
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REZUMAT. - Logici de puteri. Se dau doud extinderi ale logicii
bivalente P a propozitiilor, la multimea f(P) a pirtilor sale.
Una dintre extensii devine o logic3 trivalent3d iar a doua,
tetravalenti.

Preliminaries. Let (P,v) be the (bivalent) propositional
logic, where viP — V = {0,1} ist the valuation map. We try to
extend the algebra (P,-,A,V) to power (€(P),-,A,V), where, as in

[5] or in [7], the operations are defined by:

X = {X|xeX} for XcP and

X6Y={x6y | xeX, yeY) for X,y c Pand 6 € {A,V}.

1. First we define a trivalent valuation
u: (P) -~ U = {0,1/2,1}
so that (Q(P),u) be a (trivalent) logic. This means that u must
be a homomorphic map of (®(P),-,A,V) on (U,-,A,V), where the

operations in U are defined as in [3]:

- A 0 i/z 1 Y% o |1/2] 1
0 1 0 0 0 0 0 o 172 1
1/2 | 1/2 1/2| o |1/2} 1/2 1/2 | 1/2 | 1/72 ] 1
1 0 1 o |1/2} 1 1 1 1 1
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I. PURDEA and N. BOTH

Now, define u: O(P) — U by:

0if InX = ¢ and OcX
u(x) =41 if ox = ¢ and IcX
1/2 otherwise

Here I,O0 are the classes of tautologies, contradictions
respectively.
COROLLARY. u(¢) = 1/2.

THEOREM 1. The valuation map above is homomorphoc, yhat is:

u(x) = alxy,
u(X 6 Y) = u(Xx) 6(v), 6 ¢ {A,V}.
Proof. a). u(X) = 1 - 0N X = ¢ and IcX=TcX=
={X|x€X} ~0cX. (i)
Suppose y€ INX+¢, that is, yeInR=0nx+¢,
a contradiction. Therefore In)?-cb (ii).

From (i) and (1i) it results that u(X) =0 =u(X).
u(X) =0=u(Xx) =1 =ul(Xy, analogously.
U(X) =1/2 =04 u(X) #»1 =0 su(X) »1 =

—~1su(X) w0=u(X) =1/2 =TTXY.

b). u(X) =u(Y) =1-0NX=¢=0NY and
IcXNY=0nNn(X\Y) =0Nn{(xhy | x € X, y e« Y} ~=¢ and I N I=
=T cXAy.

O c X = OcXAY
u(X) =0 "{ InX=e = In(XAY) =e | = U(XAY) =0.
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where v x v(x,y) = (v(x),v(y))-
The valuation v:P — V may be naturally extended to
w:®(P) ~0(V), wiX) =v(X)={v(x)|xeX}.
As |[Q(V)| = 2Vl = 22 = 4, instead of #(V), we consider the
set of values W = {0,1/3,2/3,1} with the operations -, A, V,

defined by the tables in [3], or briefly:
Xx=1-x; xAy =nin {x,y}; xVy = max {x,y}.

THEOREM 2. (P(P),w), with w:®(P) — W given above, becomes
a tetravalent logic.
Proof. It is sufficient to verify the commutativity of the

diagramms below:

- 6
P(P) ----- - P(P) +~----- P(P) x O(P)
w w |WXW
1 - 1 ) }
W ——mmmmme - W emm——— e WX W

where 6 € {A,V}.
Remark. With the results above may be characterized the sets
of (propositional) formulas, having applications in individual

formulas (see [1]).

’
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A CHARACTERIZATICN OF COVERING SUBGROUPS
IN FINITE 1[I - SOLVABLE GROUPS

Rodica COVACI'
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AMS subject classification: 20010

REZUMAT. - O caracterizare a subgrupurilor acoperitoare in
grupuri finite MN-rezolubile. Lucrarea contine o caracterizare a
subgrupurilor acoperitocare in grupuri finite Il-rezolubile gi
unele consecinte.

Abstract. The paper contains a characterization of covering

subgroups in finite [[-solvable groups and some consequences.

1. Preliminaries. It is the aim of this paper to prove a
theorem giving necessary and sufficient conditions for a subgroup
of a [I-solvable group to be an H-convering subgroup, where K is
a [I-homomorph. Some consequences of this theorem are also given.

All groups considered are finite. We shall denote by II a set
of primes, respectively II’ the complement to I in the set of all
primes and Oy (G) the iargest normal [I’-subgroup of a group G.

The main notions used in the paper are given below.

DEFINITION 1.1. A group G is I-solvable if every chief
factor of G is either a solvablelﬂ—group or a lI’-group. If 0 is
the set of all primes, we obtain the notion of solvable group.

DEFINITION 1.2. a) A class X of groups is a homomorph if A
is closed under homomorphisms.

b) A class x of groups is said to be II-closed if:

* University “Babeg-Bolyai", Faculty of Mathematics, 3400 Cluj-Napoca,
Romania



G/Oy (G) € x=GE€ y.
A II-closed homomorph is called a II-homomorph.

DEFINITION 1.3. Let ) be a class of groups, G a group and
H a subgroup of G.

a) H is an y-covering subgroup of G if : (i) H € x;

(ii) H < K s G, KoK, K/K,€x imply K = HK,.

b) H is y-~maximal in G if : (i) H € yx; (ii) H s H < G,
H' € x imply H = H".

c) H is an y-projector of G if, for any normal subgroup N
of G, HN/N is y-maximal in G/N.

DEFINITION 1.4. If G is a group, a subgroup H of G is a
stabilizer of G if H is a maximal subgroup of G with coregi = 1,
where

coregH =N { HY / g € G }.

Finally, we give a BAER’s theorem (1], which is used in the
proof of the main result.

THEOREM 1.5. A solvable minimal normal subgroup of a finite

group 1s abelian.

2. Covering subgroups. In [2) are studied some aspects of
the connection between covering subgroups and projectors in
finite groups and, particularly, in finite [I-solvable groups.

First, some results for finite groups.

THEOREM 2.1. ({2]) If X is a homomorph and G is a group, the
subgroup H of G is an H-covering subgroup of G if and only if H
is an H-projector in any subgroup K of G with H < K.

COROLLARY 2.2. If N is a homomorph, G a group and H an

10



A CHARACTERIZATION OF COVERING SUBGROUPS

H-covering subgroup of G, then H is an H-projector of G.

The converse of 2.2. is not true. But we have the following:

THEOREM 2.3. ([2]) If ¥ is a homomorph, G a group and H an
H-projector of G which is a maximal subgroup of G, then H is an
H-covering subgroup of G.

Remark 2.4. For any class x of dgroups, the following
conditions on a group G are equivalent : (i) G ¢ x; (ii) G is én
y-covering subgroup of G; (iii) G is an y-projector of G;

(iv) G is y-maximal in G.

From now on, we shall investigate the y-covering subgroups
of a group G ¢ x, where y is a [I-homomorph.

A first result deals with a converse of 2.3.

THEOREM 2.4. Let x be a Ill-homomorph, G a II-solvable group,
G ¢ X and H a subgroup of G such that there is a minimal normal
subgroup N of G with HN = G. Then, 1f H is an H-covering subgroup
of G, it follows: (i) H 1s an X-projector of G; (ii) H is maximal
in G.

Proof. (i) follows obviously by 2.2.

(ii) In order to show that H is maximal in G, we notice that
H » G, because H ¢ H and G ¢ {. Let now H' a subgroup of G such
that H s H' < G. We shall prove that H = H".

We first deduce that N is abelian. Indeed, N being a minimal
normal subgroup of the II-solvable group G, N is either a solvable
[I-group or a II’-group. Supposing that N is a II’~group, we obtain

that NsOp(G) <G and
G/0w(G) = (G/N) /(0 (B) /N, (1)
where

11
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G/N=HN/N=H/HNN.

From H ¢ H and H being a homomorph, H/H N N ¢ H, hence G/N ¢ K.
Then (1) implies G/0y/(G) € H,which leads, by the -closure of H,
to G € H, a contradiction. It follows that N is a solvable II-
group. Applying 1.5., N is abelian.

It is easy to see that H' N N is a normal subgroup of G.
Indeed, let g € G and x € H* N N. Because G = HN = H'N, we have

g = hyn,, where h; ¢ H" and n, € N. Then

gixg=(hn,) *x (n) = (n,'h") x (hyn)) =n;* (b x h)n.
But H*NNAH* implies h{lxhleﬂ'nN, where H*NNgN. We saw

that N is abelian and so

gixg=n'n(h'xh)) =h;'xh €H'NN.
Thus g 'xgeH"NN.

Furthermore, H* N N » N, for if we suppose that H* N N = N,
it follows N < H*, hence G = HN = H'N = H", in contradiction with
the choice of H". From H'NNAG, H'NnNcN and H'NnN+ N, we obtain,
by the hypothesis that N is a minimal normal =subgroup of G, that
H' NN =1,

Let us prove now that H = H'. Suppose H < H" and let h" ¢
¢ H'\H. Because h" ¢ G = HN, we have h* = hn, where h ¢ H and
neN. Thenn=h!h"andson e i NN = 1. Hence n = 1 and
h* = h € H, in contradiction with h* € H*\H. It follows H = H".B

The main result of this paper comes now from 2.3. and 2.4.
and gives the following characterization of covering subgroups
in finite IlI-solvable groups:

THEOREM 2.5. Let N be a II-homomorph, G a Ml-solvable group,

12



A CHARACTERIZATION OF COVERING SUBGROUPS

G ¢ H and H a subgroup of G such that there is a minimal normal
subgroup N of G with HN = G. Then the following two conditions
are equivalent:

(i) H is an H-covering subgroup of G;

(ii) H is both an H-projector of G and maximal in G.

Finally, from 2.5. follows an interesting consequence we
give below.

THEOREM 2.6. If H is a O-homomotph, G a lI-solvable group and
H a stabilizer of G, then the following two conditions are
equivalent:

(a) H is an H-covering subgroup of G;
(b) H is an H-projector og G.

The proof is based on a result given in [2]:

LEMMA 2.7. ([2), 4.5.) Let H be a IM-homomorph, G a -
solvable group and H < G such that H is H-maximal in G. Then, the
following conditions are equivalent:

(1) for any minimal normal subgroup N of G, we have
HN = G;
(2) H 1s a stabilizer of G.

Proof of 2.6. (a) implies (b): obviously follows from 2.2..
(b) implies (a): We are in the hypothesis of 2.5.. Indeed,

G ¢ H, for if we suppose G ¢ H, we obtain, by (b), H = G, in
contradiction with H stabilizer of G. Furthermore, 2.7. shows
that, for any minimal normal subgroup N of G, HN = G. Since H is

both an H-projector of G and minimal in G, 2.5. leads to (a).Nl

13
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EXISTENCE OF FINITELY ADDITIVE -NONTRIVIAL MEASURES ON THE
POWERSET OF A SET
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REZUMAT. -~ Existenta misurilor finit-aditive netriviale pe
multimea partilor unei mulgimi. In lucrare se demonstreazd
existenta a doud tipuri de mlsuri finit-aditive netriviale pe
multimea p3rtilor unei mulgimi.

Abstract. We prove the existence of two kinds of finitely
additive nontrivial measures on the powerset of a set; one which
is atomic (two-valued) and the other which is atomless. A second

proof of the latter using the Hahn-Banach theorem is also given.

By finitely additive nontrivial measure on the powerset P(5S)
of a set S, which from now on is simply referred to as a measure
on S, we mean [4, p.343] a function m from P(S) into the closed
unit interval [0,1) of real numbers such that

(i) m(s) = 1

(i) m({x}) = 0 for every x € S

(iii) m(A v B) = m(A) + m(B)

for every A,B c S with AN B = ¢

We would like to emphasize that unlike some classical
examples of measures, here, we require that m be defined on every
subset of S and not on some subsets of S.

As usual, we call the measure m on S two-valued (4, p.343)
(or atomic) iff m(A) = 1 or m(A) = 0 for every A ¢ S. The

existence of an atomic measure on a set S is an immediate

Southwest Missouri State University, Department of Mathematics,
Springfield, Nissouri 65804, USA



P. KEMP

consequence [1]) of the fact that the Boulean algebra (P(S),«) has
a (nonprincipal) ultrafilter U such that {x} € U for every X e
S. Indeed, we have:

THEOREM 1. Let S be an infinite set and let U be a
nonprincipal ultrafilter of the Boolean algebra (P(S),<«). Then
the function m from P(S) into [0,1) given by

m(A) =0 . if A eU (1)
m(A) = 1 if A e U (2)
is a two-valued measure on S.

Proof. We must show that (1) and (2) imply (i), (ii), and
(iii). Since S € U, we see that (2) implies (i). Clearly, (1)
implies (ii) directly since U is a nonprincipal ultrafilter.

It remains to establish (iii). Since U is an ultrafilter of
(P(S),c), we see that for every A,B ¢ S with AN B = ¢, it must
be the case that either A and B are elements of the prime ideal
P(S) - U or else exactly one of A or B is an element of U
(because no two elements of U can be disjoint). Thus in either
case, (1) and (2) imply (iii), as desired.

Next, we prove the existence of an atomless measure on a set
S. By an atomless measure m on S we mean (5, p.296]) a function
m from the powerset P(S) of S into the closed unit interval [0,1]
of real numbers such that m (besides (i), (ii) and (i1ii) ) has
the property that

(iv) every subset of S of positive measure can be split

into two disjoint sets of positive measure.

First we prove the existence of an atomless measure m on the

countable infinite set o of all natural numbers 0,1,2,...

16



EXISTENCE OF FINITELY ADDITIVE NONTRIVIAL MEASURES

Our proof is based on the notion of U-limit of a sequence
of real numbers where U is a nonprincipal ultrafilter on o i.e.,
U contains no finite subset of v as an element.

Let (s be a sequence of real numbers. We define [2] the

n)nc’u
U-limit of (s,),., denoted by U-lim s,, as the unique real number
r (whenever it exists) such that
{n| r - e <s, <r + e} €U for every ¢ > 0. (3)

We remark (2] that, with respect to a given nonprincipal
ultrafilter U, it is well known that a bounded sequence of real
numbers has a (uniqgue) U-limit and that the U-1limit of the sum
of two sequences is the sum af their U-limits.

LEMMA 1. There exlists an atomless measure on o.

Proof. Let U be a nonprincipal ultrafilter on w. Let m be

a mapping from P(w) into [0,1] given by

Card (ANI(n+1))
n+1

m(A) =U-1lim with n€ew (4)

where as usual, I(n+l1l) is the initial segment of o deﬁermined by
n + 1, i.e., I(n+¥l) = {0,1, ..., n}. Clearly the sequence
appearing in (4) is a bounded sequence of real numbers.

We show that m satisfies (i), (ii), (iii), (div).

Since

. Card (wnI(n+l)) _ Card (I(n+l))
n+1 n+1

s

=1'

n

we have for every e¢ > 0

w € U.

I

{n| 1 -e<s, <1+ ¢}
Thus by (3) we see that m satisfies (i).

Again, for every k € w,

17
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Card ({k}nI(n+l)) _ 1

, for n2k.
n+1 n+1

Hence, for every € > 0 we have

N={(n| 0-¢e<s,<0+¢€} €U
since N contains all but finitely many elements of w. Thus
m({k}) = 0 and hence m satisfies (ii).

Now, let A,B c o with A N B = ¢. Obviously,

Card (AnI(n+l)) , Card (BNnI(n+l)) _ Card ((AuB) nI(n+l))
n+1 n+1 n+1 )

Therefore, by the previous remark and by (4).
m(A + B) = m(A) + m(B).
Thus m also satisfies (iii).
Finally let E ¢ o be such that m(E) > 0.

Hence

(CardENnI(n+1))

m(E) = U-1im
n+l -

> 0. (5)

Cleérly, E is an infinite subset of v, say,

E = {eqg, €, €, €3, ...} With e5 < e; < e, < ...
Thus
E = A uBwith ANB = ¢ (6)
where
A= {eg, e,, €, ...} and B = {e;, e3, e5, ...}. (7)

But then by (5) and (7), it follows that

(CardAnI(n+l))

U-1lim (ENnI(n+1)) 50
n+1 )

n+1

m(A) =U-1im

=1
> (8)

Also, from (iii), (6), and (8), it follows that

18



m(B) = 2 m(E) > o0. (9)

™

Thus, (5), (8), (9) imply that every subset E of positive
measure of ® can be split into two disjoint sets of positive
measure. Thus, m satisfies (iv), as desired.

THEOREM 2. Let S be an infinite set. There exists an
atomless measure on S.

Proof. Let H be an infinite countable. subset of S. Since
card (H) = card (v), we can apply Lemma 2 to obtain an atomless
measure m on H and we define a function m; from P(S) into {0,1]
given by

my(A) = m(A N H) for every A ¢ S.
It is trivial to verify that m; is an atomless measure on S.

Next we prove the existence of a measure on a countable set
using the Hahn-Banach theorem (3].

In what follows, 1let @ be the (countable) set of all
rational numbers in the closed unit interval [0,1] of real
numbers. Let V be the vector space of all bounded functions from
Q into R. Let E be the subspace of V consisting of all measurable
functions with respect to the length measure s defined on algebra
of all finite unions of intervals of Q.

Based on the above definitions, we prove:

THEOREM 3. The Hahn-Banach theorem implies the existence of
a measure m on Q where in addition to (i), (ii), (iii), m also
satisfies (iv).

Proof. Let p be the function from V into R defined by

p(f) = sup f. Obviously, p is a sublinear functional. Let h be

19
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a function from E into R defined by h(f) = fof ds.

Clearly, h is a linear functional defined on the subspace E of
Vv such that h(f) < p(rf) for every f € V. By the Hahn-Banach
theorem there exists a linear functional h defined on the entire
V such that h is an extension of h and h(f) < p(f) for every

f € V. For every A ¢ Q, we let Ch{(A) denote the characteristic
function of A. Obviously, Ch(A) € V for every A ¢ Q. Finally, we
define the function m from P(Q) into R given by m(A) = h(ch(a))
for every A c Q.

We show that m is in fact a function from P(Q) into [O0,1]).

Indeed, .

m(A) = h(Ch(A)) < p(Ch(A)) = sup (Ch(A)) < 1 (10)
for every A c (.

Oon the other hand.

m(A) = h(Ch(A)) = -(h(-Cch(&)) 2 -p(-Ch(Aa)) =
= -gup(-Ch(A)) =0

(11)

for every A c (.

Thus, from (10) and (11) it follows that m is a function
from P(Q) into (0,1).

Clearly, m(Q) =1;Ch(0)ds = 1.

Also, for x € (Q, we see that Ch({x}) is an s-measurable
function and therefore m({x}) =j;ch({x})ds = 0. Thus, m satisfies
(i) and (ii).

Furthermore, if A,B ¢ Q with AN B = ¢, then

m(AuB) = h(Ch(AuB)) = h(Ch(A)) + h(Ch(B)) = m(A) +m(B) .
Thus m satisfies (iii).

20



EXISTENCE OF FINITELY ADDITIVE NONTRIVIAL MEASURES

To show that m satisfies (iv), let A be a subset of Q with
m(A) > 0. We define the function f from [0,1] into [0,1], given
by £(x) = m(A N [0,x])). Clearly,
[£(x) - £(y)|=|m(An[0,x])) ~-m(An[0,y))]| < |x-y|
Thus, f is continuous on [0,1]. Since f(0) = 0 anf f(1) = m(A)
> 0, we conclude that for some g € [0,1]) it is the case that

f{q) =m(An{0,q]) = —;- m(A). Hence, given any subset A of Q having

positive measure, we can always find a real number g such that
m(A) =m(An [0,ql) +m(An (g, 1])

where the two terms in the above sum are positive. Therefore, m
also satisfies (iv).

From Theorem 3, we derive the existence of an atomless
measure on any infinite set just as we derived the conclusion of
Theorem 2 from Lemma 1.

Based on Theorem 1 and Theorem 2 we have

THEOREM 4. On any infinite set there exists a measure which
is neither atomic nor atomless.

Proof. It is enough to prove that on the set of all natural
numbers v there exists a measure which is neither atomic nor
atomless.

By Theorem 1, clearly there exists an atomic measure m; on
the set E of all even natural numbers such that m;(E) = 0.5.
Similarly, by Theorem 2 there exists an atomless measure my, on
the set D of all odd natural numbers such that my(D) = 0.5. If
can be readily verified that the function m from P(w) into (0,1]

given by m(S) = m;(S N E) + my(S N D) for every S ¢ v is a
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measure on o which is neither atomic nor atomless.

1.
2.

4.
5.
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RESUMAT. - Doulk condﬁ;%x simple de convexitate. Fie A clasa
functiilor f(z)=z+a ., nzl, care sunt analitice in'discul
unitate U. Se noteazl cu K subclasa lui A=A, formatd din
functiile convexe in U. Se determind numerele pozitive a_, gi M
astfel incaAt dacX¥ feA gl Re(zf"(z)]>-a, sau |f"(z)|<M , "atunc{
I(r)eX, unde I(f) este definitd de (1).

1. Introduction. Let A, denote the class of function f(z)=

= n+l
=2z + a,.,z" "+

..., n 21, that are analytic in the unit disc
U= {z € C: |z] <1} and let A = A,.

Let f be analytic in the unit disc U. Then the function f
with £(0) = 0 and f’(0) » 0 is said to be starlike (univalent)
if it satisfies Re(zf’(z)/f(z)] > O in U. The function f with
f/(0) » 0 is said to be convex (univalent) if it satisfies
Re[1l + zf"(z)/f’(2)] > O in U. Further, we denote by S* and K the
subclasses of A consisting of functions f which are starlike and
convex in U, respectively.

In this article we obtain two simple sufficient conditions
for convexity, which are expressed only by means of the second
derivative of a function f € A,. Actually we determine two
positive numbers a, and M,, such that if f ¢ A, and Re{zf"(z)] >
> -a,, or |f"(z)| < M, then I(f) € K, where I: A, - A, is the

integral operator defined by

“Babeg-Bolyai” University, Faculty of Mathematics, 3400 Cluj-Napoca,
Romania
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If the function p(z) =1 + p,z” + ... is analytic in U and

v(p(z), zp’'(2); z) € 0

for z € U, then Re p(z) > 0 in U.

3. Main results.

THEOREM 1. Let n be a positive integer and let c¢ be a real

number, -1 < ¢ £ 1. Let

n =~ %n

c (c)’ (2)

where

(3)

1 (col)/n
C(c)=2¢+1+n21n—n+cht
n n 1+¢

If £ € A, and

Re[zf"(2)] > -«,, (4)

then I(f) ¢ K, where I is the integral operator defined by (1).

Proof. Let f € A, and let 0 < a < a,. The inequality

Re [zf"(2)]) > -a is equivalent to

2£"(z2) < - 222 < p(z)

Since h is starlike and f’(z) =1 + p z" + ..., by Lemma 1,

we deduce f’ < g, where

=1+ L (708 40 ., 2@
q(z) 1+nf0 . dt =1 nlog(‘l+z)

Since g is convex, we have

Re f'(z) > B, (5)

where
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B =p(a) = 1—-%% 1ln2. (6)

If we let P(z) = F’'(z), where F = I(f) and I is the integral

operator defined by (1), then we have
P(z) + =L zP/(2) = f'(2) < q(2),
c+1

and by Lemma 2 we deduce P < (Q, where

c+1l
z (c*1)/n

o(z) = f'q(t) £t /nige = 1 - 2% 1og (1+2) +
n 4] In

2a z t(c+1)/n
+ = ——
n Jo 1+t

Since @ is convex, we have

ReP(z) > v, (7)

24, ., , 2a (1 glet)/n
= ,C) =0(1) =1-=221n2+ 22| ~—____ _dt. 8
y=y(a,c) =0(1) S in2+ nfo Y (8)

On the other hand, is easy to check the inequality

Zan 1 t(c'l)/n
n fo 1+t

this inequality implies that y > 0 and Re F’/ () > 0, hence the

dt-1{<1, where a, is defined by (2) and (3). Then

univalence of F.

zZF" (z)
F/(z)

p(z) = 1 + p.z" + ...

Let p(z) =1+ , then p is analytic in U and

A simple calculation yields

P(z)[zp/(2z) +p3(2) )= (c+1) zf"(2) + (1-c?) f'(z) + c?P(z) .

By using (4), (5), (7) we obtain

Re{P(z)[zp’/(z) +p?(2)]}> -(c+1)a + (1 ~c?) P+c?y. (9)

In order to show that (10) implies Re p(z) > 0, according
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I(6) (2) =—2-fzf(t)dt. (12)
ZJo

If we set ¢ = 1 and n = 2 in Theorem 1, then we deduce

COROLLARY 1.3. If f € A, and

Re [zf"(z)]) > - =-0,541. ..

3 ., for z€U,
81n2
then I(f) € K, where I is the integral operator defined by (12).
THEOREM 2. Let n be a positive integer and let c be a real

number, such that 2c + n > 0 and

dct+4c®n+2c?n(2+n) -4cn-n*>o0. (13)
If~1' € A, and
|t"(x)| < M,, for z € U, (14)

where

- _nh(n+2c)
" n(2c+1) +2¢’ (13)

then I(f) ¢ K, where I is the integral operator defined by (1).
Proof. Let f € A, and let N < M,. The inequality |[f"(sz)]| <
M is eguivalent to zf"(£) < Mz and by Lemma 1 we deduce f’ < q,

where g(z) =1 + %!z, which implies

M

/ - —
[£¢z)}>1 e (16)

If we let P(z) = F' (%), where F = I(f) and I is the intgqrnl

operator defined by (1), then we have
1 / - £/
P(z) "‘EZP (Z) f (Z) *Q(Z)

and by Lemma 2 we deduce P < Q, where
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S

/ - —
g’'(s) YCIPDE

[s¥(n+2)2+252c?(n+2)2+4ct+d4c3n+2c?n(2+n) -dcn-n?|.

From (13) we deduce that g has the minimum value

§ef
g(o) = =

Hence the inequality (18) holds if
n Je o M
[(3+c)/c] [1 n]zM. (19)

It is easy to show that (19) holds if M < M,, where M, is
defined by (15) and by Lemma 3, from (18) we obtain Re p(z) > O,

which shows F € K.

It we set ¢c = 1 and n = 1, then from Theorem 2 we deduce

COROLLARY 2.1. If f € A and
lf”(z)ls%-o.s, for ze€U,

then I(f) € K, where I 1s the integral operator defined by (12).
If we set c'-.l and n = 2, then from Theorem 2, we deduce
COROLLARY 2.2. If f € A, and
j£*(8)] < 1, for z € U, then I(f) € K, where I is the

integral operator defined by (12).

THEOREM 3. Let n be a positive integer and let ¢ be a real
number such that

4c*+4c’n+2c?n(n+2) -4cn-n?*<0. (19)
If f € A, and

|t"(z)| < M,, for z € U,

where
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M - _nVATc,n)
" n+JA(C,

- . s
A(c,n) = (n+§)/3'*1ﬁ(1 c2)+2n(g+c c?) +2-2¢

and
A = ct(n?+4n) -4c’n-2c?n(n+2) +4cn+n?,
then I(f) € X, where I is the integral operator defined by (1).

Proof. The proof of this theorem is similar to Theorem 2,

but in this case the minimum value of g(s) is given by

= A{c,n),

2 — 2 -2 _ 2
gis,) = (n*rg)\/K+ n*(1-c ).+2n(12+c c?) +2-2c

where

- | A -c2,

n+2

If we set ¢ = 0 in Theorem 3, then we deduce

COROLLARY 3.1. Let n be a positive integer and let

M = 0(n+1)
n 2n+1

If £ € A, and
jt*(z)| s M,, for z € U,
then f € S".

This result was recently obtained by P.T.Mocanu (4].

4. Examples. The following simple examples point out the

usefulness of the above convexity criteria.
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z (4 1
. = -= t,
Example 1. Let f(z) z+f0 fo (e"‘— s) dsd
where 0 < a < 1.
Since zf"(z) = _azzl -1 and the function h: U - C
e -

is convex in U [5], then

W
h(w) oo -
a
e?*-1 )
Because f € A, from Corollary 1.2 we deduce that the

Re [z£"(2)] > h(1) -1 = >-§ for 0 < a < 1.

function F is convex, where

F(z)*-—f f(t)dt-z+—fff (e“~1 —;)dsdcdu.

Example 2. Let f(z) =z+2af f ——dﬂ—-, where
93 ° 1 +/1+at?
< —_—= 47 .
0<Cacg 196 0.
In this case zf”(z)--—(¢1-+az’ )
Let the function h(z) =—( Vitaz? -2 f dt and let
z ° J1+at?
g(z) = —3Z__, zeU.

\/1+az2
"
In [3] it is showed that Re(1+29/7(-“)’—))_> -—;— for €U and
g'(w
is well known that if g satisfies the above condition, then h is

convex in U.

Since r € A and Rel[zf/(z)] = Re{%(\/l*raz’-l)} > h(-1) =

=-_2a 1-3 for 0<cas 93

1+/T+a 7 196

1.2 we deduce that the function F is convex in U, where

=0.47..., then fromCorollary

F(z) =——f F(t)d:-z+4afff 1dufsdt
+y1+au?

Example 3. Let f(z) = a 8in z + (1-a)z, where a ¢ C,
1
|a| < m 0.85..
Since f"(z) = -a sin z and because f ¢ A,, we deduce

|[f"(z)| = |a}|-|sin z| < |a|-shl < 1, for |a] < ;1 =0.85...
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functions f in the unit disc U = {z ¢ C;

RESUMAT. - Delimitliri ale argumentului derivatei uner anumite
functii meromorfe implicind stelaritatea. Fie Ek, k 2z 0, clasa
fuquiilor f meromorfe in discul uni;ate, de forma f(z) = 1/z2 +
azt +...., 0 < |zf < 1 gi fie I" c I  subclasa functiilor
stelatc. Pentru ¢ > 0 se consider¥ operatorul integral I definit
de (1). Se determind numerele pozitive a = ay. rfcpectiv a=a,(c)
astfel incdt pentru f e Ek inegalitatea larg(—l f’(z)]] < an/2 sl
implice f « I, respectiv I (f) « I".

1. Introduction. Let L, be the class of meromorohic

: f(z)=%+akz“+...,0<|z|<1,kzo.
A function f ¢ I = I, is called starlike if

zf'(z)

Re f(z)

]>0, for zeU.

Let denote by I the class of starlike functions.

For ¢ > 0 let define the integral operator I_: I - I by

F =1I,(f), where

and

F(z) = —< foztcf(t)dt.

Zc'l
In this paper we find a = a; and a = a,(c) such that

(i) feX, and |arg[-zzf’(z)]|<a-’2—‘-»f6):‘

(ii) fe€X, and |arg[-z2f/(z)] | <a% ~F=TI_(f) €eX

Bowling Green State University, Department of Mathematics

Statistics, Bowling Green, Ohio 43043, U.S.A.

Romania
This work was carried out while the second author was a visiting
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respectively.

2.Preliminaries. We will need the following lemmas to prove

our main results.

LEMMA 1. Let n be a positive integer, let A > 0 and let
p* = p*(A,n) be the solution of the equation Pm = 3m/2 -
arctan(nip).

Let
a=a(p,A,n) =p+ %arctan(nlﬁ),

for 0 < p < P*. If p(a) = 1 + p,z" + ... is analytic in U, then

/ 1+z)* 1+z1p
p(z)+lzp(z)<[1 z] p(z)<[1_z],

where < denotes subordination.
This lemma was proved in tl, Theorem 5] in the case n = 1
and A = 1.
LEMMA 2. Let n be a positive integer, let A > 0 and let
B* = p*(A,n) be the solution of the equation Pw-2arctan(nif)=0.

Let
o -a(B,).,n)-%arctan(nlb)—ﬂ,

for 0 < p < p*. If p(z) =1 + p,z" + ... is analytic in U, then

- / 1+z d_. 1+z\P
p(2) -Azp'(z) *[1—21 p(z) <(1 ) :

The proof of this lemma is similar to that of Lemma 1.

3. Main results
THEOREM 1. Let k be a positive integer and suppose that a

and § are positive numbers that satisfy
a+px%arctan[(k+1)p] (2)
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If £ ¢ L, and
|arg[-22f/(z)]|<ag-, zZ€U, (3)
then

|arg[zf(z)]|<ﬁ1;-, z€U. (4)

P=Py~ kil J 2(f:1) -1, (5)
a=ak=%arctant,l3“;;l)-1-ﬁk, (6)

|largl-2z3f/(z)]] < ak% - |larglzf(z)]]< pk_;i

Moreover if

and

then

Proof. 1If we let p(z) = zf(g) and n = k + 1, then
- 2% £/(2) = p(z) - 3p’(2)

and the inequality (3) bacomes

p<2)-2p“z)<[1+zr.

1-z

Hence by Lemma 2, with A = 1 and n 2 2, we deduce

p(z)<[1+z]’,
where a and f§ satisfy (2).

If in (2) we consider a as a function of B, then

gy =20 _ 1 _
a'(§) * Tenip?

Since n 2 2 we deduce a’(0) -%—1>0 and a’(p) = 0 for § = P,
given by (5). Hence the bigest value of a is given by (6).8
For k = 1, k = 2 and k = 3 we have

a; = 0.04527..., P, = 0.26136...
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a, = 0.16701..., B, = 0.31795...
ay = 0.25795..., By = 0.31089...

and we deduce
feX, and |argl-z3f/(z)]] <51%-0.0711. .. (4°.07...) =

larg(z£f(z)]] < plg =0.4105...(23°.52...)

reXl, andIarg[-z’f“z)]l(a,%—-0.2623...(15°.03..J -

larglzf(z)}] < p,% =0.4994...(28°.61...)
feX, and |arg[—z’f’(z)]|<a,% =0.4051...(23°.215...) =
|arg[zf(z)]|<ﬂ312‘- =0.4883...(27°.97...)

THEOREM 2. Let k be a positive integer and suppose that a

and p are positive numbers that satisfy (2). If f « L, and
larg{-z3f/(z)]) ]| < u%, zeU

then

_zf'(z)
arg[ o) |

<arctan{(k+1)pl, z€U,
hence f € L.

Moreover, if a = a, is given by (5) and (6), then

_zf'(z) I 2(k+l) _.
arg[ W”(arctan — 1 (7)

-fe X
Proof. Applying Theorem 1, from (3) and (4) we deduce

|arg{-z2f/(2z)]| < ak%-'

zf'(z)

arg -———-f(z)

<|arg [-z*f/(2)] | +|arg zf(n) ] | <y 2,

where
y.a+p=%arctan[(k+1)ﬁl-

If a = a, then we deduce (7). B
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For k = 1, k = 2 and k = 3, we deduce

feX and |arg [-z?f'(2)]}]<0.07...(4°.07...) =
/
arg(- zf'(2)

f(z) |
feX, and |arg [-z%f'(2)]]|<0.262...(15°.03...) =

.

<0.481...(27°.59...) ~feX*

_zf/(z)
£(z) J

feXl, and |arg [-2z%f/(2z))|<0.405...(23°,21...) =

arg

<0.761...(43°.64...) =~f€X"

arg

_zf!(z) ]

<0.893... °©.19...,) = ..
F12) 0.893 (51 )y ~feX

THEOREM 3. Let k be a positive integer and let c > 0.

Suppose that the positive numbers a, p and y satisfy

« --f—:}arct:am—@E +p

(8)
and
f= % arctan {(k+1)y) -¥y. (9)
If f eI, and
|arg[—z2f’(z)]|<a%, Z€EU, (10)
then

_zF/(z)
!arg[ “Fa) <arctan [(k+1)y], z€U,

hence F ¢ L", where F = I_(f) is given by (2).

Moreover, if P = P, is given by

- 2 n _ 1 2(k+l) _ (11)
B, - arccos«‘ Z(eT) Kol 1

n
and a = ayp(c) is given by

k
a,(c) a—z-arctan(—il—)—&‘+ﬁk, (12)
n c
then
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_zF!(z2) }
£(z)

|arg[—zzfﬂz)1|<afg=aFrg
- FeX.
Proof. From (2) we obtain
(c+1)F(z) + zF'(2) = cf(2)
and if we denote
p(z) =-2%F/(z) =1+pz"°+..., z€U,
where n = k + 1, then
zp'(z) +cpl(z) = -cz3f!(z)

and the inequality (10) becomes

i / 1+z )*
p(z)+(:zp(z)<[1_z].

Using Lemma 1, we deduce

p(z) < [ 1rz ]’,

larg [-22F/(2)}| < B2,
where a and p satisfy

a=p+ %arctan-’lcg.
Now, by Theorem 1, the inequality (14) implies
larg zF(z) | < ylzt-,

where

p+ry= —12; arctan(ny)
and we deduce

_ zF!(z)
F(z)

arg[

where

40
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6=B+y=%arctan(ny).

Hence a and P satisfy (8) and (9).
Since a given by (8) is an increasing of B, the bigest value
of a occurs when p’ = 0.

Since

we have

1
p’:l—_’t_——
2n COS15-§]

! = i f Xl yil
andp’=0, if cos[b2 ] 2nf

In this case P = B, is given by (11) and a = a,(c) is given
by (12) and we deduce (13).8

COROLLARY. If k is a positive integer, f € Ek and F = I, (f)
is given by (2), with
(k+1) B,

0<cxg
tan[(l—ﬁg-%]

! (15)

where B, is defined by (11), then

Re [-z%f/(2)) >0 (z€U) =FeX"*.

Proof. From (12) and (15) we deduce ap(c) =2 1 and the result

follows from Theorem 3. B

For ¢ = 1 and k = 2 we obtain p, = 0.11961..., a,(1) =
0.3389... and from Theorem 3 we deduce that if f € 22 and
larg [-z2£/(2) ]} < az—g =0.5324...(30°.50),

then
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, .
arg _z_ﬁ‘(sz_)_ <arccos~'% =0.7617...(43°.64...) =FeX*,
where
= 1rz
F(z) = 22f0 tf(e)de.
For ¢ = 1/2 and k = 2 we have az(%)=0.5158... and from

Theorem 3 we deduce that if f ¢ I, and

larg [-z2£/(z)]] < az(-%) 2 =0.8103. .. (46°.43)
then
'
arg -%;‘;‘) <arccoe,l% -FeX®,
where

-1 ?r1/2
F(z) « — [Tevie(o ae.

For k = 3, k= 4 and k = 5, from our corollary we deduce the
following particular results:

feX, and Re [-z2f/(2)] > 0=I_(f) €L*, if 0<Ccx50.442...

feX, and Re[-z%f/(z)] >0 ~1I_(f) €X*, if 0<cx50.914...

feL, and Re(-z2f/(2)] >0=I_(f) €eL’, if 0<cx1.532...
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RESUMAT. - Functii Liapunov gi comportarea asimptoticd a
solutiilor unor ecuatii diferentiale. Bazat pe tehnica functiilor
Liapunov, sunt date criterii pentru existenta unor margini
exponentiale pentru matricea fundamentalX de solutii a ecuatiei
variagionale.

Introduction. Estimation of fundamental matrix of solutions
of variational system play important role both in
characterization of the system and in the theory of nonlinear
differential equations with perturbations (when the behaviour of
the solutions of this equation is estimate by properties of
solutions of unperturbed equation).

Recently Brauer (3-5], Hale [8], Marlin and Struble [9],
Brauer and Strauss [5), Fennel] and Proctor (7], Athanassov [2],
Pachpatte (13]), Fozi M.Dannan and S.Elaydi [6], Morchalo [10,11]}],
Ventura (14] and possibly others have obtained results on
gqualitative behaviour of solutions of perturbed nonlinear
differential systems using the nonlinear variation of constants
formula of Alekseev [1].

In this paper, base on the Liapunov functions, are given
criteria for existence of exponential bounds of fundamental
matrix of variational equation. In this case Liapunov function

will be defined on defference of two solutions.
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1. In discussing functional differential equations we will
use the standard notation introduced by Hale [8].

Let R" be a vector space of dimension n, with norm || and
h 2 0 a real number. We denote by C(<a,b>, R") the space of
continuous functions with supremum norm. When <a,b> is <-h,0> we
denote C = C(<-h,0>, R") andpecC, |o}'” = sup o (). c, will
denote the set of ¢ € C for which |¢f s H, C, = {9 € C1 [¢] < o},
If t; 2 0 and A > 0 are real numbers, then for every te<tg,, ty+A>
and x € C( <tg-h, ty+A>, R") we let x, € C be defined by
X, (s) = x(t+s), -h < § S 0. If A cRXxC, R= (-0, w) is open and
if f: O ~ R" is continuous, then the relation

xi(0) = £(¢t, x,) (1)

is the functional differential equation wherex.(0) denote the
right-hand derivative of the functional x(u) at t = u.

DEFINITION. Let t, be any given number z 0 and let ¢ € C be
any given function. A function x,(t,,¢) is said to be a solution
of (1) with initial function ¢ at‘t = to if there exists a number
A > 0 such that

1° for each t,ty s t s ty+aA, kt(to,¢) is defined and ¢ C,

20 X, (t5. @) =9,

30 x{(0) = F£(t,X,), tyststy+A.
Our main concerns is the system (1) where f is a nonlinear
continuous function with a continuocus first derivative with
respect to x, € C.

For every solution x,(t,;,¢) of (1) we can define a

nonautonomus linear functional differential equation
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c) |V(t,ry) - V(t,ry)| < K(t) |ry-ryl " for te<o,®),r;,r,ec,
d) v (t,9,-9) sa’(t) VIt,@,-9,) for te<0,=), ¢,.9,EC,
where the derivative of V along the solutions of (1) will be

denoted by v{,, and is defined to be

Vi ‘}"r);)nhil [vieshy X, (Eo, 9,) ~Xeop (Eo 9,)) -
SVt X (o, 9y) X, (Lo, 9,))]
where x.(t,,9;), X.(t;,9,) are solutions of (1) with x, (t,,¢,) =¢,,
X, (Eo: 92) =@,
We shall also sometimes write

V{l) (tl 01-‘P2) = IhIg\Fl‘ [V( t+h1’xc0h, (tl ¢1) -xt*h, < t' (Pz) ) - (4)
1™ 1

-Vt @,-¢,) ]

where it is understood in this notation that ¢,,¢, denotes the
solutions of (1) at time t.
Proof. Let the condition (3) of Theorem is satisfied.

Since
eitzlc?uxt.,(t,«pl) X (t, @) 1" exp [-(a(t+t) ~a(t))] 2
zlx . (t,@,) ~x.(t,0,) | =]o,~¢,|'".

Hence and (3) we have

o, -9 0™ < lx,, (t, @) ~X,.. (t,9,) ' exp[-(a(t+t) ~a(t))] < 5)
SK(E) o, -9 ™.

Define the function

Vit,@,-¢,) =

N st:op lxt*t(tl (Pl) _th (tl ¢2) ll(h)exp[_(a(t+t) ] (C) ) ] ’ (6)
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where x,,.(t,¢) is a solution of (1) for t 2> t;,, ¢ € C.
Hence (5) b) is also satisfied.

From (5) and the uniqueness of solutions of (1) it follows
that V(t, ¢,-¢;) is defined on <0,%) x C x C.

Let r,=¢,-¢,, I;~9,-¢,. Then from (6) we hgve
v(t, ry) -vit, r,) | =
-lfzglxh,(t,ol)ﬁx”,(t.oz)ﬂ”"exD[-(a(t+t)—a(t))]—
-a‘?g)lx:.,(t,$1) X (€, 9) I Pexp[-(a(t+r) -a(t))]s
< B:‘;?'Xc«(t'91) “Xeuo (€, 9,) =X (£, 9,) +

+ X (@) I Pexp[-(a(t+r) -a(t))] <

SK(E) jr,-r )™,

Now we shall prove the continuity of V(t,u). Take a § 2 O

and (t+5, e3), (t,e;) € <t,,®) x C.

Then
[V(e+d, @) -V(t, @) |s|V(E+8,@,) -V(Lt+d, @) |+
+|V(e+8,¢,) ~V(t,9,) |SK(t+8) Jo, -, |™ +
+{V(e+d, 0,) -V(L, @,) | S K(£+8) I -@, 1™ +
+|V(e+8,9,-0) -V(t, 9,-0) | =K(t+3) lo,-@ ™ +
+|.9'§z°p|xc,,(c,¢,) X (6, 0) M exp (- (a(t+s) —a(t))] -
‘S'Efll"m“"h) X, (E,0) [ ®exp[-(a(t+t) ~a(t))] <
SK(E+8) 19,-9, 1 +8uplx,.. (€, 9,) ~X,. (£, 0) -X,. (£, @) +

<x

+X,, (£,0) |Pexp[-(a(t+s) ~a(t))].

Hence

lim V(t+8,¢,) = V(t,9,).
L 29 2%

Hence, the continuity of V(t,u) is verified.
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With the help of (4), (6) and the uniqueness solutions of

(1) we have

Viyy (£, 9,-9,) =}‘ixgnhi [V(E+hy, X, (£, 9,) =Xeop (£,9,)) -V(E, @,-9,) ] =
™ 1 .

= 1m—h— [SUPlX, o (E+Dy XKooy (€, @1)) ~Xpup (€, 6,) ) |-
hy~0,

exp[-(a (t+h,+t) -a (t+h)) )] -suplx, .. (t,@,) ~Xx...(t,¢,) P
t20
expl-(a(t+t)-a(t))] =

= 1m— [suplxm(t @®,) X, (£, 9,) I'Mexp[-(a(t+t) ~a(t+h)))] -

h,~0, t2h,

- suplx,,, (t,¢,) ~x.. . (t, @) M exp[-(a(t+t)-a(t))])<
00

s}'i_m—~[suplxt,‘(t v @) Xe (@) | Pexp [~ (a(t+t) ~a(t+h) )] -
170, £y

—sucPlxc,,(t, 0,) X (t,0,) | Pexpl-(a(t+t)-a(t))]=
[suplic... (£, @) ~X... (€, @;) IPexp[-a(t+t)-a(t))]:
h1‘° hl

‘(expla(t+h) ~a(t)] -1]=a/(E) V(L, @,-9,)

Conversely: Let the function V(t,e,-¢,) satisfies the

conditions a)-d) of Theorem 1. Then

Ix. (5, @,) - x, (£, @) 1™ < K(t,) lo, -, exp (a(t) -a(t,))

for ty S t < tote, ¢ > O.

Hence every solution x,(ty,¢) is defined for all t 2 t, 2 0 and

ax . (t,, @)
I—‘—é—°—|s K(ty)exp(a(t)-a(t,)) for all ta2t,, ¢€C

or
jo(c, t @) < K(t,) exp (a(t)-a(ty))

which completes the proof of the Theoremn.
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Y(E) =V, (t, X, (ty, @,) X, (5, 0,)) +allx, (t5, @) -x.(t5, 0)1"M50

for t 2 t5, x, € C.

Thus y(t) is nonincreasing on <tg,o). Since 7(t0) = V(ty, 9,-93),
we see that y(t) < V(ty,e;-¢,) for all t > t,. Hence by (7) we

obtain

f:l X, (t,., @) —Xx,(t,, @) IMdE< %V( to. 91-92)

which proves our Theorem.
THEOREM 3. If
19 assumptions of Theorem 1 are satisfied,
2° Vi (€,9,-9;) s —C(19,-00")7, @y, 9,€C,  tzt,
for some ¢ > 0, p > 0,

then

[TIx (6, 00) =%, (85, 0,) PdE <.

Proof. Define the function

Y(t) = V(tlxt(tol¢1) 'Xc(ta,‘P;).) +

+ cftt(lx.(to,qpl) -X, (t,, @) 1M )Pds.

Thus, this theorem can be proved by following the proof of
Theorem 2.

DEFINITION 1. The function g ¢ X, if g € C( <0,r>, (0,®)),
g(0) = 0, g(t) is strictly increasing with respect to t.

DEFINITION 2. The solution x,(t,,¢) of the equation (1) is
said to be globally uniformly stable in variation if there exists
a canstant M>0 such that

Id(c,t,.@) <M for all tz2¢t,, p€C.
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DEFINITION 3. The solution x,(t,,¢) of (1) is said to be
generalized exponentiélly asymptotically stable if there a

constant N>0 and a function a(t) € H, a(t) - « as t - = such that
(e, 6, @) <N expla(ty) -a{t)]

for all t 2> ty, ¢ € C,. If a(t) = -at, then x.(t,,¢9) Iis
exponentially asymptotically stable.
DEFINITION 4. The solution x,.(t,,¢;) of (1) is said to be

uniformly Lipschitz stable if there exist M>0 and >0 such that
Ix. (. 0,) - x, (£, 9;) 1< Mlxto(to"p1) _xco(to' 9,) R
whenever
bx, (tg, @) - x, (6,918 and t2 ¢,

DEFINITION 5. The solution x,(t;,9) of (1) is said to be
uniformly Lipschitz stable in variation if there exist M>0 and

§>0 such that
ld(t, t,,¥)hsM for t2¢t, and Y €C,.

DEFINITION 6. The solution x, (t,,¢) of (1) is said to be
globa, ly uniformly slowly growing in variation if for every p>0

there exists a constant K>0, possibly depending on B, such that

bb(e, e, ¥) s Kexplp(t-t,)]
for all t 2 ty and ¥ € C,.
THEOREM 4. If the solution x.(ty,¢;) of (1) is uniformly
Lipschitz stable in variation, then the solution X, (ty,9,) of (1)

is uniformly Lipschitz stable. JEP—

. /’/{' ; i R *
Proof * From equal ity //,‘ \,\‘) e PR , \
;"!'-\ e e A /
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THEOREM 7. If
10 assumptions of Theorem 1 are satisfied,
20 u(t) = u(t,ty,9) is the maximal solution of the scalar

ordinary differential equation

% =a/(E)u+K(E)w(t,u), uy=ulty) 2V(ty, ¢,-9,) (11)

where V(t, ¢,-¢,) is the function given in Theorem 1,
30 conditions (9) and (10) are satisfied,
then the solutions x, (tg,9;), X (ty,9,) of the equation (8)

satisfy the relation

Ix, (E,, @) ~x,(t, @) I'P<sult, t,,0,-9,), t2t,, lo,-@, 1" s y,. (12)

Proof. Let y,,,(t,9), X, z(t,9) be the solutions of (8) and
(1) respectively with y.(t,e) = ¢, x,.(t,9) = ¢.
By Theorem 1 there exists a function V(t,¢,-¢,) having the

four properties from this Theorem. Then

/ 1
Viey (£, @,-95) ‘hII}';“E (V(E+hy, ¥eon (€, 9;) ~Yeon (E,@3)) ~V(E, @,-9,) ] =
213“%1 [V(E+hy, ¥pon (£, 0,) ~Vin (£, @) -

“V(trhy, Xen (£, 0)) X0 (E,9,)) +V(E+h, X, (£, 9,) ~X,,, (€,9,)) -
VY. 9,79a) ] S Vi (£,0,-9,) +TIR-m (K(E+h) .., (£, 0) -
"ytml(t,wz)->(xtml(t,¢l)~kal(t;¢:))ﬂh’s

SV (6, 0,-0,) +K(E) 0 (t, 1y (£, 9,) -y (€, 0,)IP) <

sa/(6) V(E, @,-9,) +K(B)w (L, V(t, ¢,-9,)),

from the relation a), d) and the fact that (t,x,) = £(t,y,)-
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Thus, if u(t,ty,e) is the maximal solution of (11) then
Vit, x, (ty, @) -x . (t,,9,)) sult, t,,0,-¢,)

for all t 2> t, [see 12]. Furthermore, from b)

Ix, (g, @) ~x (. @) NP sV(E, x (£, @) -X, (5, 9,)),
the theorem follows immediately.

COROLLARY. Let a(t) = =-p(t), where P(t) is continuous,
nonnegative and possessing continuous derivative for t 2 t, 2 0,
then we obtain Theorem I1.3(8].

COROLLARY. Let f(t,0) = 0 for all t 2 t,, then we obtain
some results given in [2].

COROLLARY. Let a’(t) = -a, a > 0, K(t) = K = const.,

o(t, le,-¢,1") =a le¢,-¢,|'”, «a -Ka«,>0, then the solutions (8)
are asymptotically exponentially stable.

COROLLARY. Let a’(t) = -a, a > 0, K(t)w(t,u) = Ng(t) for all
t 2 ty and Ju| < o, where g € C{R*,R*], 0 < N = const.

f-g(s) exp(as)ds < e, then
to

Ix, (t, @) -x,(t,,9,)1'"-=0 as t-e, (13)

Proof. By Theorem 7 is easy to derive the inequality

V(Iﬂ) (tl Ql‘¢2) < -av( t, (Pl“?z) *NQ’(C) .

The solution of (11) is given by

u(t) = ugexp (-a(t-t,)) + Nexp(-at) ftcg(s) exp («9) ds.

In the same manner as that for Theorem 7 we obtain (13).
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REBUMAT. - O proprietate a unui operator de interpolare. Se
demonstreazd conserva¥ea unei proprietd3ti de convexitate
generalizatd pentru functii cu valori 1n epatii Hilbert, prin
aplicarea unui operator liniar de tip interpolator.

Let I be an interval of the real axis and let (E,<,>) be a
Hilbert space. Denote by $(I,E) the set of all the functions
f : I - E. For the function f € J(I,E) and for the points of

I : %< ... < x,,,, where n > 0, we denote by:

n+l n+l
(X0 i Xpyi £ = ) (%, - x;) M £(x,), (1)
k=1 1=1

ek

the divided difference of order n of the function f on the points

In [{1] we have consider the following definition.
DEFINITION 1. If n > -1 is an integer we denote by &{i.E)

the set of the functions f ¢ ¥(I,E) that satisfies the relation:

<Exp, oo Xy £1, X, ... %, 1> 20, (2)

for any points x; < ... < x_,,5 of I.

This definition may be regarded as a generalization of the
convexity of order n, since in the particular case where E = R,
a function f ¢ #(I,E) is as in Definition 1, if and only if f is
either nonconcave of order n or nonconvex of order n on I in the

usual sense [2]. This statement as well as many properties that

“Transilvania” University, Department of Mathematics,2200 Bragov,
Romania
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are specific for the convex functions, are proved in (1] for the
functions as in Definition 1. In this paper we present an
operator that preserves the & (I,E) class for n = 0 and n = 1,

DEFINITION 2. If n 2 2 is an integer and x; < ... < x, are

points of the interval I, we denote by U, t F(I,EY~-F (I,E)

..... P

the operator defined by:

.

U, 000 = XXk pix.) » Zea "X px, (3)

Kyseooas - -
h " X1 ~ X Kyer ™ Xy

where f € J(I,E), x € I, and k is the index, 1 < k < n-1 with the
property that x € [x;, X;,;], or k = 1 if x € I N (-w,x,) or
k = n-1 if x ¢ I N (x,, ©), respectively.

We prove:

THEOREM. [1) If n = 0 or n = 1, f€ & (I,E) and Xy<...<X_.,

are points of the interval I, then U, xoy LE1E g1, B .

Proof. Let denote y,=f(x,), (1sis<n+3), g=0U, . [(f].

First we consider the case where n = 0. Let the points of
the interval I : t; < t;, < t3. If t; < x, or t; 2 x, the points
g(t;) are on a same line in E, and the theorem is obvious. Now,

let consider only the case wheare t; < x5 € t;. Let denote:

g =x,-t;, r = ty-x,, A= [x;,X,;9) and B = (X,,X3;9). We have:
r .
Aty taigls (6, 6559)> = = 1B + ??E“’ B> 20.

Let consider now the case n = 1. It is sufficient to prove
the following inequality:
<[t2; t;;g] - [tll Cz;g] ’ [t3l t“'g] - [tzl t3;91> Z01 (4)
for any points of the interval I.
We denote A = [x,,x,;f], B = (x5,x3;f) and C = [Xx3,X,;f].
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Since fe & (I,E), from (2) we obtain:
<B-A, C-B> 20. (5)

Let denote by p;, p,, p3; the number of the elements of the
set {t;, t,, t3, t,;} that are contained in the intervals (-w,x;),
(X5,%3), (x3,%), respectively.

In virtue of the symmetry, we have to consider the cases
where (p,,p,,p3;) 1i8 one of the following vectors: (4,0,0),
(3,1,0), (2,2,0), (1,3,0), (0,4,0), (3,0,1), (2,1,1), (1,2,1) and
(2,0,2). If one of the numbers p,,p, or p; is greater or equal to
3 then one of the following equalities holds: [t,,t,,t;3;9]) = 0 or
[ta,t3,t4;9) = 0. But in this case the relation (4) is obvious.
It remains to verify the cases (2,2,0), (2,1,1), (1,2,1) and
(2,0,2). Let denote D = < B-A, C-B > 2> 0.

Case (2,2,0). We have t;, < t, < x, < t; < t, g ¥3. Let

denote: q = x,-t,, r = ty-x,. We have (t;,t,;9} = A, {t,,t;;9] =

rB+ qA
= r—g- [t3,t4ig] = B.

With these notations, the relation (4) becomes:
EB*qA _, p-xBtda, .,
r+q ! r+q !

that is equivalent with the obvious inequality -——5273|B-—A|220.
: T+
Case (2,1,1). We have t; < t, < x, < t; < x5 < t,. We denote:

q =Xy -~ ty, r == -X3, $S=X3~1t3, p= ty, - X3. We have:

t ) h = . = IB__L‘* A . = __pC+SB
[ 1 t; g] A, [tzl t;;g] I+q v [t31 t4lg] p+s .

Then the left side of the inequality in (4) becomes:
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(IB*gA _, pC*sB_IB*gA, |
r+g " p+s r+q
1

= > {pr(r+@)<B,C> + r({sq pr)iB}* + r(pr-2sqg-pq) <A, B> -
(p+s) (r+q)? -
-pr(r+q) <A, + rqg(p+s) |Af?} =

=-—————l~—~——{pr(r+q)D+-qr(p+s)IA-—BF} >0.
(p+s) (r+q@)?

Case (1,2,1). We have t; < x, s t, < t; £ x3 < tg. Let

denote: p = x, - t;,, g = t; - X, r = x3 - t3, § = t;, - x3. We

A +QgB _ . . sC+rB
have: [¢t,,t,igl =1%;:§-, [¢,, 65:9) =B, [t,,tig] = —air " Then

the left side in (4) becomes:

(B__pA+qB’ sC+IB _ - sp D
p+qQ S+r (s+1)(p+qQ)

20.

Case (2,0,2). We have t; < t, < x, < x3 < t3 < t,;. In virtue
of the symetry we can suppose that x, - t, > t; - x;. Let denote
q =x9 - ty, 1 =x3-x,, and r = t; - x3. We have [t,,t,;g] = A,
[ty tyig) = = ZC*IB*@A (v .g] = . Therefore the left

l+r+qg
side in (4) becomes:

(rc+l§;qﬂ_wm C- rC+lB+qA> _
1l+r+qg l+r+q

-1 {(1+@)rCPR + (1+q-1) KB, > ~ (1+q+r+2Qqr) <A, +
(l+r+q)?

+ (1+r-Q)<A,B> +gq(l+r) A - 1%BJ?) =

=1 {(1+q-D)D+ (g-D) JA-BP + (g+1) r JA- CP} 2 0.
(l+r+q)?

The theorem is proved.

This theorem cannot be extended for n > 2. More, for n = 2

we have.

LEMMA. If f € J(I,E) is not linear on I, and 1if I is an open

interval, then there exist the points x; < ...< xg of I such that
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Uy,....,xf] does not belong to & (1,E).

Proof. Since f is not linear on I, there exist the points
X, < X, < x3 of I such that the points f(x;), (1 < i < 3) are not
on a line in the space E. Then we choose still two arbitrary
points X4,Xg of I such that x;<x <xg. Let denote g=UA """
In order to show that g¢&’(I,E), we take the number q > 0 and
the points t;, (1 < i < 5) of I such that x; < t;, < t;, < x, <
< t3 < ty, < tg < x3, and t, = t; + 2q, x; =t, + q, t; = x, + g,
ty, =ty +q, tg = t; + q.

We also denote a = g(t,+q) - g(t;) and b = g(t;) - g(x;).
Since the points r(x,),f(x;),f(x;) are not on a line, we obtain
a » b. Let denote ¢ = ¢g(t;). Then we have g(t,) = ¢ + 2a,
g(ty) = c + 3a + b, g(t,) = c + 3a + 2b and g(tg) = ¢ + 3a + 3b.

By the formula (1), we obtain

C , Ct2a _c+3atb ct3a+s2by_ ,_ g7’ b
’ ’ I ;/ = - = -a),
(&0t 85, 8079 { 20 12 8 15 }q 120( )

c+t2a , c+3at+b c+3a+2b _ c+3a+3b o
[tgit:,,_t‘,t_.‘ig]’{' 24 + 4 - 3 + 8 }Q’=

-3
=-%z-(afb). Therefore < [t;,t,,t,,t,;9], [ty,t;, t,,ts;9) > =
-1

= —=— g %la-bJ*<0. 2(1.E).
13024 @ %la-bf*<0. Hence g does not belong to &’ (I,E)
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associated

. - e nx b l(. 2
P (£5%) = 2y g;pk(nx)f(n) (2)

We suppose that p,(x,g) 2 0 for 0 < x <, k = 0,1,...

If a, 2 0 for any n € N then suppoaition is fulfilled because

n
k

k-v
Pe(x) = 3 (:-v) T

v=0

For g(z) = 1, the operators P, become of the Szasz-Mirakjan

operator

S,(f:x) = e””‘g ~(—’;(‘T)k'f<—l—‘;) (3)

2. In this section we are concerned with the estimate of the
order of approximation of the derivatives of a function fecl(o0,a)
by means of the derivatives of the linear positive operator P,.
We shall use the modulus of continuity, defined by

w(r;8) = sup |£(x") - £(x’)],
where x’ and x" are points from [0,a) so that |x‘ - x"| < §,
§ being a positive number.

THEOREM 2.1. If f ¢ Cl[o,a], then for any x € [0,a) we have

|P,€(f;x) -f’(x)'s(l +Ja+_1. (1) + ’(1))(., f/;_l_«o-.l +

+ w(f’; —]—')
n

Proof: 1t is known (3] that the first order derivative of

P, is

64
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s ne "x < Ky _
Pa{fix) = 20 kz_;pk(nx) Af(n)

;(;;’)‘g pk(nx)[%' k;1 ;f]

We denote by h the first order divided difference of the function

£, h(t) =[t, t+%; f] and so we can write
/ e k
; = = h{=| =P, (h; x
P, {f;x) o (D ;_0 Dy {nx) (n) ' )

By using these notations we have

|Pa(£:x) =~ £/(x) | s |P,(h;%) —h(x)] + |h(x) - £/(x) |

It was proved in [1], that:

L [..1.9"(1) +g'(1) ) 1 (5)
|P,(h;x) - h(x)| s[l +\Ja+ = (D) @ |h; VG

Hence

IP,’,(f;X)—fl(X)"(l"\Ja*'-}-' (1) + /(1) ](n)(h,'—l— +
n g(1) Jn

+ |h(x) - £/(x) ]
But using the mean Theorem for the divided diffe;ences and the
properties of the modulus of continuity, we have
lh(x) - £/(x) | =|[x, x+%; f] - (%) |= |f’(x+ %) - £/ (x) | <

sw(f’;%), where 6¢€ (0,1)
’

By making use of the mean theorem, we want to express

n
We have

w(h; 1 ) by means of the modulus of continuity of f£’.
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i'ii"{';) [l(l)‘:l:l 06, r+d .l;fl—-[t, t+l;f]|=
i n n

=1)!r‘(r b o :3) £(C+8) -r‘(t-r%)+f(t)|=

.—.‘f’(L+6+_61.)-f’(L~* 93)
n n

where 6,,6, ¢ (0,1).

. 1 . 1 /. 1 1
Now, if we set 8=-—, it results wlh; —|so|f/; —+=
’ VA ( Jﬁ) ( vn n)

and we obtain finally the desired inequality.

w(f’;6+M)sw(f/;b+.}.)
n n

If f € c?[(0,a], it is known that u(fﬁ-ﬁ)s-%nf”n
and we obtain
COROLLARY 2.1. If f € C2[0,a], we have in the maximum norm

over [0,a]:

|P(fﬁX)-qu)H[1+Ja+l» (1) + “1))m £, L 1),
n o g(l) . P -

1 yeu
+ = |\f
= £

For g(z) = 1, one obtains the estimate of the order of
approximation by the derivative of the Szasz-Mirakjan operator.

If £ € Cl[o,a], we have

|SH(E;x) -~ £/(x) | < (1+ya) m(f’;-j‘-ﬁ+%)+u(f’;%)
and if f € C2[0,a]

P (F ) - £/ U SR N I Y
|51 (£5 %) f(x)ls(lnfé)w(f, ﬁ+n)+nlf I

3. We consider now £ € Ck[o,a]. We shall prove the following



Lesulus

THEOREM 3.1, [f I vl';':'l_,.ii, $re i cuya G, 4] we have

N ) " . ‘i ) ‘ { R H
iy xy oM (X)|S[1 +J;+%-5_9_M.g.g€.'l~; v & i r‘n*'l_);)*P )

w(f“‘); i()
n

Proof: Tt is known [3] that the k order derivative of P, is

PR (fix) =D (i)nxz:pl(nx) Akf( )
1=0

where Af(i) - f(ii) —f(i') and A*f(i) =AAk-1f(i'), k=2,3,
n n n ‘ n n
By making use of the relation between the divided differences and

the finite differences, we have

A"f( )
()

e X i irl i+k
= | S, —_ e . =
ki ) ;_ p,(nx) { , b ,f]

enx

g(l)

PP (f; x) =

f\: p, (nx) h( )=k! P, (h; x)

where we have denoted

h(t) =[t, e+ X, e K F
n n

We want give- the estimate of the order of approximation of the

£(%) by means of the k derivative of the operators P,

P, iy x| = Lk Pthix) - £ (x) | s
(9)
SEL s o)+ lkth(x) - £® (x)]
Here we shal’ 123, and to get to the modulus of
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continuity of the f!{X) function, we shall use the mean theorem

and the properties of the modulus of continuity. We have

|h(t+6)—h(w|;|k+6,t+6+i,...,t+6+£;f]—

n n

—[t, e+ L, L e X, fH: ilf(“(ub*eli‘)— f""(c+625)|s
n n k! n n

< —lw(f"";6+£|91—62|) s —1—w(f“";6+£)
k! n n

where 0,,0, ¢ (0,1).

For & = , we obtain

v
On the other hand, we have

[kt h(x) - £W (x) | = |k![x,x+—11;, x+§; f] - FUO (x)

fm(x+e,7’;) - £ (x) l < w(f<*>;e,in‘) < w(£w; i;)

where 6, ¢ (0,1).
Coming back to (9) we obtain the desired estimation.

If £ € ck*1[0,a), it is known that w(f‘”;‘f) s-%|f‘“‘ﬂ
and it results

COROLLARY 3.1. If f. € c**1[0,a), we have

|Pa (£:x) -£® (x|

S(1+Ja+i,g”ﬂ)+g“l)]w fu”_i‘hﬁ *5If““W
n gl(l) vao n n

For g(z) = 1, we obtain for Szasz~-Mirakjan operator:

if f € cX{0,a), then
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|s2 (£ix) - £ (x)| < (1+Va) w(f“"; —1—+5)+w(f“"; i();
G
if £ € c*¥*1[0,a], then

B ey w, 1 kY, K e
|Sa (£:x) f(k)(X)IS(lﬂ/E)m(f 'ﬁ+n)+nlf I
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RESUMAT. - Asupra restului in formula de aproximare prin
operatori Favard-Ssasz generalizati. Lucrarea studiazd un
operator generalizat de tip Favard-Szasz, ob{inut de c¥tre A.
Jakimovski gi D.Leviatan cu ajutorul polinocamelor Appell. Se di
o reprezentare integralX¥ a restului in formula de aproximare a
unei functii f € C(0,»), de tip exponengial, prin acest operator.

1. A. Jakimovski and D. Leviatan (2] considered a
generalization of the well known Favard-Szasz operator (1], (4].
Let

g(z) =Y a,z"

n=0

be an analytic function in the disk |z| < R, (R > 1) and suppose
g(1) +» 0. Define the Appell polynomials Py{x) = pp(x,g9) (k 2 0)

by the expansion
g(U)e“"*;pk(x)u" (1)
=0

To each function f defined in [0,) is associated the operator

)

n+ according to the formula

. e™ - k
(P,£) (x) ——-—g(l)g;apk(nx)f(a), (2)

where n is a natural number.

B.Wood [5] has proved that this operator is positive in
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(0,o) if and only if a_,/g(1) 2 0 for n e¢ N. The case g(z2) = 1

yields the classical operators of Favard-Szasz,

= nx C (nx)k k
(S,£) (x) =e kz; = ~f(71).

A.Jakimovski and D.Leviatan established several results analogue
to those obtained by Szasz, as well as certain other new
approximation results. They proved that if f is of exponential
type, i.e. |f(t)| < et for any t > 0 and certain A finite, then
limP,f = f, the convergence being uniform in any compact interval

n-e
of the real axis.

2. It is the purpose of this paper to give an integral

representation of the remainder in the approximation formula
£(x) = (P,£) (x) + (R, ) (x), (3)

where we suppose that f ¢ c? [0,).
The values of the operator P, for the test functions

ey.e,,€,, where e;(t) = ti, i€ {0,1,2}, are given by
(P,e,) (x) =1

(P"el) (x) =x+lm
n g(1) (4)

P § g'(1) ], 1 g”(1)+g’'(1)
(Pnez) (X) X "’n(l +2—g(1))+n2 g(1) .

By making use of the Mac-Laurin’s formula, with the remainder
having an integral representation, we have
f(x) = f(0) + xf’'(0) + g(f;x),

where

72



ON THE REMAINDFER IN APPROXIMATION FORMULA

g(f;x) =g(x) - [x(x—r)f”(r)dr.
Since P, is linear operator, it follows that R, is linear, so
that we can write

(R,£) (X) = £(0) (R,8,) (x) + £/(0) (R,e,) (X) + (R,@) (x), (5)

where, according to (4), we have

(R,e,) (x) =0 and (R,e,) (x) = _71?
It follows that

= -1y gtn) -
(Ryf) (0 == 2 £7(0) LEL + (R,9) (x)

(6)

I g’(1) _
nf(0>———g(1) +g(x) - (P,g) (x).

L 4

Now let us calculate (P,g)(x). We can write successively:

(Pg) (x) = ;(‘;’)‘ ) pk(nx)g(% -
N k/n
= ;(1) épk(nx) {(5 - t)f”(t)dt =
nx 1/n 2/n
N ge(l) p, (nx) [(%—t)f//(t)dt»rpz(nx) {(%"t)f”(t)du, N

+p, (nx) kf(% - t) f//(t)‘dt ... .]‘-_-

k/n -

;(:)‘2; (k_,[)/" jZ;p.i(“x)(% - t)f”(t)dc.

By using (4), we can write
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k-1

ipj (nx) (l—t) =1 (g’(l) e™+nxg(1)e™-Y jp;(nx)|-
=t n n j=0

k-1
- t(g(l) e""—zpj(nx)].
=

It follows that

« k/n k-1
= 1971 o e NN T 4y "
(P,g) (x) ?:l R e +X-t g(1)§(n y)p_,(nx)]f (t)dt

Replacing in (6) we obtain

(B,£) ) ==L £1(0) LA (- 1) £ ale -
n g1y 4

k/n

-y 19, e KL )
g; P ERCATY Txoe g(1) ;o(n t)pJ(m‘) £7(¢t) at

-

We can write this results as follows

(R,F) () ==L £1(0) LU 4 ("6, (130 £7(t) dt,
n g(1) 0

where, if we suppose that xe[l—;ll- . %] , 1€N, we have:

(a) if te[_’l, Tl;] 1sksi-1,

(% - t)pj(nx)

(b) if ce[i_;l,x]
G,(t;x) = ;(’:’; 1: (% - t)p](nx)

74
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i i
| X, —
* 3
19/(1) ~ j t ( )
{ =-= +E-Xx+ =< - nx
W65 %) n g(1) z;(n )pi
Q) if te[ﬁl,i‘],kziu
n n

k-1 .
L =1 g'(1) _ e ™ J. .
G,(t;x) 7 gl1) vexr ; (n t)pj_(nx)

it is easy to see that in the cases (a) and (b) we have
G, (t;x) < 0.

Oon the other hand, for each m € N we have

LGl e RN gy ]
ng(n T gm §(n ) pstmx)

(P,e,) (x) -AM]+

1-i(i+t:(Pe)(x) n g (1)

g(1)

%E(ﬁ‘t)%‘““ <1>?PJ<“X>-

+

- ;(1"')‘ ;(t n)p,(nx) P2 g(% c)pjmx) -
5 E A ptns

Conseqguently, we can state that for any t € [0,w) we have
G,(t;x) £ 0, x being a fixed point in [0,w). For this reasons we

can apply the mean theorem to the integral and we can write
1 g’(1) - .
R f = -=f/(0) ==L + £/ G,(t;x)dt,
(R,£) (x) = -2 £/(0) Loms (E)fo - (£;x)

where £ € (0,).

If we choose f(x) = x2, we get
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x?2 = (P,t?)(x) + (R,t?)(x),

so that we obtain

22,24 X gty |, 1 g"(1) +g’(1) - ,
x?=x2+ n(1+2 25 ) = ey +2f°G,,(t,x)dt

It follows that

g(l c2 2 ) 1 g’ g’
n

N
[, Gateixrde = - 3 D ) T g

In this way we arrive to the following representation of the

remainder:

(R,£) (x) =
_1 g'(1) £ -—1-f”<£)[x(1+2 g1 )+_1_5—9_.__”(1) * /(1)].
2

n g{(1)

n g(1) n? g(1)

If g(z) = 1, we obtain a result given by F.Stancu (3], for the

remainder in the approximation formula by means of Favard-Szasz

operators:

(R,£) (x) = —%f”(t) X, 0k,
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RESUNAT. - Observatii asupra inegalititii lui Bessel in spatii
pre-Hilbertiene. Se dau citeva generalizdri ale inegalitdtii lui
Bessel, care extind rezultate ale lui Bombieri, Selberg sgi
Heilbronn.

Abstract. - Some generalizations of Bessel’s inequality in
inner product spaces containing the results of Bombieri, Selberg

and Heilbronn are given.

1. Introduction. In the recent paper (3], J.E.Pelarié& proved
the following result connected with the well known Bessel’s
inequality which holds in inner product spaces (X;( , )).

THEOREM A. Suppose that x,y, (r=1,n) are vectors in X and

c, (r=1,n) are arbitrary complex (real) numbers. Then the

following inequality

2
n

s IxI2 Y e 2 1y, vy | (1)

r,s=1

Y c.ix, ¥

r=1

holds.
He showed that this inequality improves the following result
which is important in Number Theory (see [2]):

THEOREM B. If x,y,,c,(r=1,n) are as above, then

w . . . .
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2. The main results. The first result is embodied in the
following theorem:
THEOREM 1. Let x,,y,€X and a«; p;€K(i=1,n). Then one has

the inequality:

2
n
Y «,B;(x;,y;)| <min{A,B,C} (3)
1,7=1
where
n n
A:= g: |ai|z|(xi'xj)| 2; [ ARKAN
i,7=1 i,7=1
n n n’ n 1/2
B: ‘; LA ;: Ak ; | (g, x,) |2 ; | (v ¥ 2
=1 =1 i,J=1 1,7=1
and
n n n n
C:= «. . |max a L, X ma ; P ’
gl 1| §|p1 llsisn ;l jl'(XJ X,)I lsi:; Aq“’]ll(yi yj)|
respectively.

Proof. We have

2 2

<

n

; aipj (Xu}’j)
1

i, 3=

(& e o)

n 2 n n
|5 x| (500 -
=1 =1

; ajzj (XI,XJ-)
i, J=1
n

< ,g;l lag | lasl | (g0 x| 1;:1 181 1851 [ e yp)].

1,

; BB,y vy
i,¥=1

Using the Cauchy-Buniakowski-Schwarz’s inequality for double

sums, one has:
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2
n

E ajpj(xj:}’j) <
fom (8)
n n n n
, ., max .
s 3 lal 32 18,0 max 130 Jayl 1 Gepoy) | max ) 32181, vy) |
we put a; =1, ag = ... =a, =0 and x; =X, X = ... = x, =0,

we deduce the inequality

n
=1

which gives, for f,=(x,y;,) (j=1,n), that

2
n

< lxlzz “}1' ]1.\':?32 {E ijl |(Yi,}'j) |} (9)

i=1 J=1

1/2

n n 1/2 n .
2
;q | (%, ¥4 1% < le[lz.1 | (x,y,) |] [m{ Zq |(X,Yj) | |(yjly1) l})

Now, if we assume that in this last inequality, the family

() ;v 1s orthonormal, then we obtain

n n 1/2
2 (10)
; (%, 7)) |12 < Ix) [m{l (x, ¥y 1} Z; | (x,¥,) I]

which is another inequality of Bessel’s type.
If in (8) we consider that (x;),.r5 . (y));.r5 are

orthonormal, then we have:

n

; aiaj (Xi.}’j)
i,J=1

2
n n

< « max { |« ma .
;;l 1|§|51| uim{l i} 1“:2{“31'}

The second result is embodied in the next theorem:
THEOREM 2. Let x,x;€X (i=1,n) and c;€K (i=1,n). Then ore

has the inequality
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n

Y- catxoxpl s 3 (af* = min (a',8,¢') (11)
=]
where
. . R 1/2
Al:= ; lesl? [ (x50 x50 |, B/==;|C1|2 [ ; |(x1,xj)|2)
i J=1 =1 i,3=1
and
n n i
Ccl:= c;| max cil | (x;,x,)
% led max {35 15l 10y |
respectively.

Proof. We have

2

(x,i; Eixi]] +I£; CiX;
ﬁ;ci(x,xi) 3

+ ; cicy(x;, xy)
i

=1

2
n
] st-; 'Eixil = |x}*-2 Re
=1

< ix§2-2

from where we get

n

;1 c; (x,x,)

n

s%(lx|2+ ; chj(xi,xj)]s
inga

n
S%(lez + E lesl legl Hxg x)) I)

i,5=1

Now, by an argument similar to that embodied in the proof
of Theorem 1, we obtain the inequality (11). We will omit the

details.

Remark 4. In the above assumptions, for c,=7x,Xx,) (i=1,n),

we have the inequality
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n n
ZI(X,X1)|2(2-z;|(xyxj)|)sIXIZ, x€X. (12
$

i=}

Indeed, by the inequality
n

n n
1 5 )
; c.(x,x)s =|ix|*+ c.zz (x;,x;)
S ! 2[‘I ;:{lll -1| ! jl)

from (11), we obtain for c¢;=1{(x,x;) (i=1,n) that

n 2 —]—' ) n . ) -n ’
Y xox) [ < 2(!Xﬂ MIEEN ;ux,,xjn)

which 18 equivalent with (12).

Now, if we assume in (12) that (x;) 115 is orthonormal,
then we deduce Bessel’s inequality.

Remark 5. By the inequality

n

_]; 2 n n
g ci(x, x;)| < > (lell * 12-; |le4l max {; les) | (xg0 %)) |})

we obtain for c;=1x,x;} (i=1,n) that

n 2 —]; 2 n n
gl(x,xi)l < 2[|x| +§|(x,xi)|{n‘?‘)§’{;|(x,xj)l l(xi,x,)l})

which gives for (x;),r5 orthonormal, another inequality of

Bessel’s type

n 1 n
; [ (x,x;) |* < 5(""2 + max {1 (x, x) I}E (x, x,) I].
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REZUMAT. - Perturbatii neliniare ale sistemelor asimptotic
controlabile. In aceastd 1lucrare se studiaz® modul cum se
pistreazX proprietatea de controlabilitate asimptoticX a unui
sistem liniar la o anumitX clas¥ de perturbdri neliniare.

1. Introduction. In the sequel we shall restrict our

attention about the systems:

(A,B) X=A(t)x+B(t)u

(A,B,f) X=A(t)x+B(t)u+f(t,x)
where x € R” is the state vector, u ¢ R™ is the control vector,
the matrices A(t) and B(t) are of dimensions nxn and nxm
respectively and their entries are real continuous functions on
J = (tg, ©), and f: J x R® + R® is a continuous function. Here R’
is the real Euclidean space of dimension p of all vectors z =
= (2;,...,2,) endowed whith the norm |z|=(z}+...+z])¥/2,

We denote by ¢(t,s) the evolution matrix generated by A(t)
and by x(t;ty,xqy,u) the solution of (A,B) corresponding to
control u which satisfies the initial condition x(t;) = x5. By
BC(J,R"®) we denote the Banach space of bounded and continuous

mappings x:J - R? endowed with the norm:

kx| = sup | x(¢t) |
tat,

We recall the next definition ({3)]):

- o . n
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DEFINITION. The system (A,B) is said to be asymptotically
controllable it for every xg,Xx; € R™ there exists a continuous

function u: J - R™ such that:

lim x(t;ty, Xy, u) =X,

t-=

By analogy with the above definition, we say that the system
(A,B,f) is asymptotically controllable if for every xg,x, € R"
there exists a continuous function u: J - R™ and a corresponding

solution x(t; ty,xg,u) such that:

lim x(¢t; ty, x,, u) =X,

=

Our problem is to found some conditions on the term f(t, x)
such that if the system (A,B) is asymptotically controllable then
the perturbed system (A,B,f) is also asymptotically controllable.

In the case of usual controllability this problem was
investigated by Muntean ([6]) for the perturbing nonlinear term
not depending upon the control vector. More general systems with
the perturbing nonlinear term depending upon t,x and u are
investigated in [1] and [4].

The main result of this paper and the method of proof are
in the same spirit as the related results of Balachandran and
Dauer ([2]) and Tonkov ((7])). The main tool used is Banach’s

fixed-point argument.

2. Main result.
THEOREM. Assume there are fulfilled the following condition:

(i) ft‘jm(r,s) lds s K and [} (., s)4ds s K, c2¢,
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where K, > 0, K, > O,
(ii) £(t,0) =0, t 2 tg
(iii) |£(t,xy) - f£(t,x;)| < a(t)-|x;-x,|, x;,x, € R?, t 2 ¢t,
where a € BC(J,R,).
If the system (A,B) is asymptotically controllable and
ak, <1, where a = sup a(t), then the perturbed system (A,B,f)

L2ty
is also asymptotically controllable.

Proof. We first define on the Banach space BC(J,R") the

operator T, as below:
t
() (£) = [ @(t,s) £(s,x(s))ds

We observe that T is continuous and from (ii) and (iii) we

have t 2 to:
c t .
| (Tx) (&) | sft I$(t,s) I|£(s, x(s)) |ds sfc I (&, ) l-als)|x(s)|ds<
< (supa (&) Ixl-f "o (¢, 9 Ids s ax;Axl.
t2t, £

Consequently Tx is bounded and thus:
T(BC(J,R")) c BC(J,R).

For all y,,y, € BC(J,R") and t 2 t, we have:

[ (Ty,) (£) - (Ty,) ()] sf:ll¢(t,s)l-|f(s,yl(s)) ~f(s,y,(s)) |ds s

sf W (¢, s)als) 1y, (8) -y, (s) |dSS(!||y1-y2I~f “Ib (¢, s) lds<a X, ly,-v.l,
ty ¢

= Ty, -Ty,} < ak ly, - y,l.

Therefore T is a contraction.
We next denote by B the set all bounded solutions of (A,B)

and B, the set all bounded of (A,B,f) on the interval J, where
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IR (x) - x(¢t) Isfttl¢(t,s)ﬂ-|f(s,51(s))|ds
= [1 (e, £) $lte, 1| £(s,R(8)) [ds s
to

s 14 (t, t) ﬂ-ftcld»(to,s) Ja(s)|%(s)|ds <

sal IRI-Mb (6 ) .

We denote

o(t) = 1oL, )1, t2g,

and we have:

from where

Qe (aalda- (At qlash a s,

10(t. ) b-[ o) dss [“1o(e, )1 2 o(s)dssK

¢ (s)

and from here it follows:

TYCRNIP K

¢ (s)ds
%o

Now, we denote

¥(6) = [“e(srds, t2 ¢,

and therefore

From

Then,

V() =@(t), t2e¢t,.

(5) we obtain:

.1 :
fb(t, )= e t 2 t,.

from (7) it follows:

(4)

(5)

(6)

(7)
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y(t) ey , 1
w/(t)s K,, namely T3 b3 X,

Integrating over (t,,t), t; > t,, we obtain:

e t-t p(e)  t-t
In (¢ () )¢ 2 Tk namely 1n Vit 2 _ET_

t-t,
- y(t)29(t) e ™, 2t

From here we obtain lim y(t) = »and from (7) it follows:

Coe

lim §é(t, )l =0
=

Passing at limit for t - ® in (4), we get:

lim |%(t) ~x(t)] =0 (8)

on the other hand:
[R(E) -x,| < [R(E) ~x(E) | + |x(t) -x,]|,
from where it results, according to (3) and (8):

limR(¢t) = x,.

[

consequently, we showed that the asymptotically controlla-
bility of (A,B) implies the asymtotically controllability of the
perturbed system (A,B,f).

The proof is complete.

REFERENCES

1. Aronsson,G., Global nonlinear systems, SIAM, J.Control, Vol. 11,
4(1973), 607-617.

2. Balachandran,K. and Dauer,J.P., Controllability of nonlinear systems
via fixed-point theorems, JOTA 53(1987), 345-352.

3. Conti,R., Linear Differential Egquations and Control, Acad. Press.,

92



NONLINEAR PERTURBATIONS

London - New York, 1976.

Dauer,J.P., Nonlinear perturbations of quasilinear control systems, J.
Math. Appl., 54(1976), 717-72S. ,
Ivanovici,M., On asymptotic controllability of the linear sSystems,
Mathematica, Cluj-Napoca (to appear).

Muntean,I., On the controllability of certain nonlinear egquations,
Studia Universitatis Babeg-Bolyai, Ser. Math-Mech. 20(1975), 41-49.
Tonkov,E.L., Controllability of a nonlinear system in a linear
approximation (Russian), Prikl. Mat. Meh. 38(1974), 599-606.



STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXXVII, 4, 1992

ON COMPLETENESS OF METRIC SPACES

Cs. VARGA' and G. FARCAS

Received: June 10, 1993
AMS subject classification: 58A05

RESUMAT. - Asupra completitudinii spatiilor metrice. Ih aceasti
lucrare se studiazd existenta metricilor complete pe un spagiu
topologic local compact, Hausdorff gi cu baz8 numdrabilX gi
existenta metricilor Riemann complete pe o varietate
diferentiabilX finit dimensionald. La sfirgitul lucri3rii se dau
aplica{ii in teoria geodezicelor.

i. Introduction. Many authors obtained interesting results
concerning the existence of a complete metric on metrisable
topological spaces and on differentiable manifolds see (1], [2],
(3], [4] and [5].

Let (M,7) be a locally compact topological space with
countable base. In this paper we consider the space of all
metrics on M generating the topology 7, endowed with the compact-
open topology. The ﬁain result states that the set of complete
metrics of the above épace is dense. If M is a finite dimensional
differentiable manifold we obtain that the set of complete
Riemannian (or Finslerian) metrics is dense in the space of all
Riemannian (respectively Finslerian) metrics on M.

Let (M,7) and (M’,7’) two topological spaces apd we
introduce the following notation, Top(M,M’) = {(f: M - M'|f is a
continuous function}.

Let X ¢ M be a compact subset and D <« M’ an open subset and
we use the notation B(K,D) = {f € Top(M,M’)/f(K) < D}.

DEFINITION 1.1. On the set Top(M,M’) we consider the

w . . -
"Babeg-Bolyai" University, Faculty of Mathematics, 3400 Cluj-Napoca,
Romania
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topology for which the family {B(K,D)} is a subbase, where K c
M is compact and D < M’ is an open subset. This topology is
called the compact-open topology and the topological space thus
obtained is denoted by Top,,(M,M’) .

DEFINITION 1.2. A continuous function f: M - M’ is called
a proper function if for every K ¢ M’ compact set, 1K) is a
compact subset of M.

We need the following results from [1], [4) and [6].

PROPOSITION 1.1. Let (M,7) be a Hausdorff, locally compact
topological space which satisfies the second axiom of
countabjlity and K ¢ M a compact subset. If g: M - R 1is a
continuous function, then there exists a proper function
f: M - R such that f|K = g|K.

PROPOSITION 1.2. Let (M,d) be a metric space and f: M - R
a continuous proper function. Then d’: MxM - R,, where d’(p,q)=
= d(p,q) + |f(g) - £(q)| for every p,q € M, is a.complete metric
on M which generates the same topology on M as d.

PROPOSITION 1.3. Let M be a finite dimensional,
differentiable manifold of class ¢X (k > 1) and K c M a compact
subset. If g: M - R is a ¢k differentiable function, then there
exists a ck proper function f: M - R such that f|K = g|K.

PROPOSITION 1.4. Let M be a Riemann manifold of class
c%(k > 1) with metric tensor g = (9;;) and let f: M » R be a

proper function of class cX. Then M is complete with respect to

Jdf 9f

th tri = 9i5 =9, .
e metric §=(§,,) where 9;5=9,;* 3 ax7

2. Let (M,7) be a topological space. It is known that if
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(M,7) 1is a 1locally compact, Hausdorff topological space
satisfying the second axiom of countability then M is metrisable.
Therefore we can consider the space of metrics on M, which
generate the topology 7, i.e. let M = {p: MxM - R, |p is a metric
and 1, = 7} and M is endowed with the compact-open topology. Now,
let My be the subset of M consisting the complete metrics on M
which generate the topology 7.

We have the following result.

THEOREM 2.1. M, is dense in M in the compact-open topology.

Proof. Let py € M a metric on M and V ¢ Vy(py). It suffices
to prove V N My * ¢. Using the fact that the family {B(K,D)} is
a subbase for the compact-open topology of M, where K c MxM is
compact and D ¢ R is an open subset, it follows the existence of
compact subsets K,, K,, ... , K, ¢ MxM and open subsets D;, D,,
.-+« 4, D € R such that poefﬁ B(K;, D)) cV.

Let II, , II,: MxM - M thégzanonical projections, i.e.
Hl(x,y! = x and II,(x,y) = y for every (x,y) € MxM.

For every i € {1,2,...,r} we have: K; ¢ Hy(K;)xII,(K;) <
c (I, (K;) v Hz(Ki))x(Hl(Ki) v I, (K;)) and M, (K;) u M,(K;) = M is
a compact set. Put K;: =II,(K;) VIL,(K,) cM and, theﬁ we have
K;cKk;xK; for every i € {1,2,...,r}. Since K, u...UK cM is a
compact set and using Proposition 1.1. we may define a proper
function f: M - R such that fhﬁh“ux;=0.

Define a metric p;: MxM » R as follows: pi(x,y) = po(x,y) +
+ |f(x) - f(y)|, for every x,y € M. Using Proposition 1.2. we
have that p, is a complete metric and T, =T, =T The theorem

will be proved once we show that P, € V. Indeed, for every
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ie {1,2,...,r}, and for every (x,y) € K, we have py(x,y) € D;.
But (x,y) € K; implies that (x,y) €K;xk; and we have f(x) =

= f(y) = 0, then p;(x,y) = po(x,y) € D; and p,;(K;) ¢ D; for every
ie{1,2,...,r}. In conclusion the relatioanE'ﬁ]B(K;,Dj): 74

i=1

holds.

In the following let M be a differentiable manifold of class
ck, where k € N*. We begin by recalling some definitions. For
every x € M let T, ,=T:(M®T;(M) =L(T,M, TM,R) denote the space
of tensors of type(0,2) which are tangeht at x to M, and let

Tf(M)=JiﬂfJ(M) denote the bundle of tensors of type(0,2) on
M.

Recall that a Riemannian metric on M is a symmetric tensor
field of type(0,2), g:M-Ts5 (M) .It is known that every Riemannian
metric generates a structure of metric space on M, with the
metric d,: MxM~R,, d (x,y) =infLy(x,y) , for every x,y € M
(infinimum of the set of ar; lengths of paths joining x ta y).

DEFINITION 2.1. A Riemannian metric g is said to be complete
if either of the following two equivalent conditions hold:

10 (M,dg) is a complete metric space{

20 Enery gdeodesic arc ¢ = c(t) can be extended for all
values of t € R.

Now we consider the space of function & = {g:M-T) (M) |g is
a Riemannian metric} endowed with the compact-open topology and
the subspace $0={gwnl~7§(u)/g is a complete Riemann mefric).

THEOREM 2.2. &,1s dense in & with respect to the compact-
open topology.

Proof. Let g,€e® be a fixed Remannian metric on M and
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VE Vu(g,) a fixed neighbourhood. We shall prove that v, *o.

From the definition of the compact open topology on & there

exist compact subsets K,,...,K, € M and the open subsets
D,,....,D,cT{ (M) such that g,€ A B(K;,D;) V. We consider the
i=1

compact set K‘=101KicM. Since M is a locally compact space it
folows that there exists an open subset G < M, such that G is

compact and K ¢ G. Using Proposition 1.3. there exists a ck
proper function f: M - R such that f|c—; =0.Next we consider a new

Riemannian metric § on M, which is defined in the following

manner. If (U,¢) = (U,xl,...,x“) is a local chart at p, and
i 3.7 . - df of
== ‘e 1 J - —— 1 j
9p gjij(p)dx-dx’, we define §,=g,+ 3 3 jdx dxJ, for every

p € U. We obtain that § is a Riemannian metric on M, and using
Proposition 1.4. we have that § is a complete metric.

The theorem will be proved once we show that gev.

Indeed for every i € {1,...,r} and for every p € K; we have
Of . Of .4 and from the relation g,=9,+ O Of igyx?

oxi axJ ox 1t 9x7
results that & ,=g,€D;. Therefore §€ B(K,,D;) for every

i€ {1,2,...,r} and we have € hB(Kl,Di) <V.
i=1
Remark 2.1. In this proof we obtain that if g is a
Riemannian metric on M, and K ¢ M is a compact subset then there

exists &

a complete. Riemannian metric on M such that gf, =§|,.

3. In this section we give some applications of the Theorem
2.2, to geodesics.
PROPOSITION 3.1. Let (M,g) be a (not necessarily complete)

Riemannian manifold of class ck. For every point p € M, and for
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a geodesic c: I - M (0 € intI) whith respect to the metric g such
that c¢(0) = p, there exists a complete Riemannian metric & on M
and an arc of geodesic ¢ such that this arc is a geodesic arc
w;th respect to the metric §, too.

Proof. Let (U,4) = (U,xl,...,x") be a lpcal chart in p, such
that U is compact. Also, let ¢ > 0 be a positive real number such

that [-e,e) <« I and c((-¢,e]) c U. The differential equation of

gecdesics with respect to the metric g is as follows:

n

d2ck(¢) 3 dei(t) deci(t) . 1
e +i§;lr‘f,<c(c)) T T 0, (1)

for evefy k=1,n, where PL are the Christoffel symbols of the
second kind.

Using the proof of Theorem 2.2. we obtain a complete
Riemannian metric § such that g|,=g|,.

Therefore the differential equation of geodesics with
respect to the metric ¢ is also (1). Hence we obtain that
c: [-e,e] - M is a geodesic arc with respect to the metric §.

Remark 3.2. ¢ can be extended as a geodesic with respect to
the metric &, for all values of t € R.

PROPOSITION 3.2. Let (M,g) a Riemannian manifold and
c: [a,b) - M a geodesic with respect to the metric g. Then there
exists a complete Riemannian metric § on M such that c is a
geodesic are with respect to the metric g.

Proof. Let a = ty < t; <...< t,, <t, =b be a.subdivision
of [a,b], such that for every k € {1,2,...,n}, c({ty_;,t,]) is
contained in a coordinate neighbourhood on M. We suppose that for

every k=1,n we have c([t,_,,t;]) < U, where (Ui, 9x) is a local
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chart on M and U, is compact. We consider again a complete

Riemannian metric § on M such that gl; 7 =9l5.. .5, Therefore

c|“bpt“: [tpy ] - M is a geodesic arc with respect to the

metric §, and finally we obtain that c¢: [a,b] - M is a geodesic

arc with respect to §.

for

4.
S.

6.

Remark 3.3. Theorem 2.2. and Propositions 3.1, 3.2. are true

Finsler spaces.
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ON A METHOD FOR POTENTIAL FUNCTION DETERMINATION
FROM MOTION EQUATIONS
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REZUMAT, - Asupra unei metode de determinare a functiei de forti
pornind de la ecuatiile migc¥rii. Nota de fatd prezintid o metodid
de determinare a functiei de fortd care genereazd un camp de
forte, date fiind ecuatiile migcdrii unui punct material de masd
unitate in acest camp, in spatiul euclidian n-dimensional.

Many problems of celestial mechanics, in which the force is
known as deriving from a potential function, require the
determination of this last one. The way to find the force
function starting from a known orbit (or family of orbits) is
ensured by Szebehely’s [4] renowned eguation. (It is to be
however mentioned that the Romanian astronomer C.Dramb3d [2] found
an equivalent equation some decade before V.Szebehely.)

The purpose of this note is to point out a method for the
determination of the potential function starting this time from
the equations of motion. So, consider a material point of unit’
mass moving in the n-dimensional Euclidean space R”, in a force
field generated by the potential function U, (the index added to
U signifies hereafter simply the dimension of the space we deal
with), and write the equations of motion with respect to an

inertial frame in the form

X, = fi(x,,....,x,)., 1=1,n,

where (x,,...,x; ) € R" is the position vector of the point mass

and f; are known real-valued functions. We search for a function
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U U,(Xy,...,%,) of class c%(I), I < R", which verifies the

n

system
U, /0x; = £,(x,,...,x,), 1i=1,n, (1)

rtn

the existence condition
aﬁh/axiaxj= *U,/ox;0x;, 1,j =1,n,

namely

Of,/dx; = Of /ox;, i,i =1,m, (2)

being fulfilled. We shall suppose, without loss of generality,
that U,(x.,...,x3) =0, where the superscript marks the initial
values.

We shall prove by induction that
- x / 0 0 /
Un=;fgfj(xll...,X,-_UXj,Xi.l,...,xn)dxj' (3)
=1 Y Xi

where the prime indicates the variable with respect to which the
integration is performed.

In the case n = 1, equations (1) reduce to
du,/dx, = £, (x,),
with the solution
x ! /
Ul = fx":fl (xl)dxl,

hence (3) is true.
Suppose that (3) is true for n and prove for n+l. The system

(1) becomes
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U, /0x; = £(X,, ..., X, X,q), 1=1,n0+1. (4)
The integration of the last equation in (4) with respect x,,,

(cf. [3]) leads to

Xne / /
Y = on 1fn*l (Xl' cre 'xn' Xn*l) dxn*l + Vn(xll L] 'xn) . (5)

n+1
Xn+1

where the expression of the function V, (of only n variables) is
not determined yet. Replacing (5) in the rest of equations (4),
and taking into account condition (2), we get

f o E 1 /8X,00) (Xys v e oy Xy Xiby) AXa +9V,/0x; =

Xney

xfj(xll--'lxnlxn,l), -i =1,n,
which lead to

v,/dx; = g;(x,,...,x,), i=1,n, (6)

n

where we denoted

gilXy, oo, X)) = F£(X, ..., X, X)), 1i=1,n.
One sees that the functions g; fulfil condition (2). The system
(6) is of the form (1), for which (3) holds. Writing hence (3)

for (6), and substituting it into (5), we get

n
= X /o 0 /
Uno] - ; fxogj(xll .. -lxi_lllequ, [P ,x,,)dxi +
=1 1
Xpey / /
+ f, £,0%, ¢ 00 X0 Xpu1) Xy
Xne1

Lastly, we replace the expresion of g; in the above formula,

obtaining

n+1

= *i1 /0 0 /
Unol = Efxofj(xllcool i_llx,',xi‘l,...,xml)dx,',
i

i=1
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and the proof is complete.

To give a simple example, let the motion be described by the

equations

X; = —apr-**¥x,, i =1,n, (7)

where a is a positive constant,

e[S

1=1

is the radius vector of the point mass, and we call u (constant)
attraction parameter. The functions f; (right-hand sides of the
system (7)) fulfil condition (2), hence (3) holds and yields
, = BI7E.

This is the potential function which generates an attraction
obeying an inverse (a + 1)-law (see e.g. [1]). Placing a point
mass in the origin of the frame, and concretizing n=3, a=1,
we have the relative motion in the classic 3-gspatial two-body
problem, where i is the gravitational parameter of the dynamic

system, and U; = u/r is the well-known Newtonian force function.

The author thanks Professor A.P4l for fruitful discussions.
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REZUMAT. - Perturbatiile de ordinul intdi gi doi ale unei orbite
initial circulare in atmosfera planetei Marte. Se studiaz¥
migcarea initial circular® a unui orbiter in atmosfera simetric3
gl £Xr¥ rotatie a planetei Marte. Adoptadndu-se un model analitic
pentru distributia densitdtii in atmosfera martianid in gama de
in¥l¢imi 100-1000 km, se determin3 perturbatiile de ordinele
int&i g§i al doilea in cinci elemente orbitale independente pe
durata unei perioade nodale.

1. Introduction. The first analytic models for the density
distribution with height in the Martian atmosphere were proposed
in [6,7], on the basis of the numerical data listed by the MA-87
model. Two altitude ranges are covered: 0-100 km (6] and 100-1000
km [7]. The motion of an orbiter in the lower altitude range was
studied in (3]).

For heights between 100-1000 km, the density profile of the
Martian atmosphere is represented by the formula [7]:

¢ = Qo exp(4y + A, /h), (1)
where ¢ and @, = 1 are expressed in kg/m?®, h is the altitude in
km above Mars’ surface, A, and A, are constants separately
determined for minimal, nominal, and maximal density profiles
(some numerical estimates of ours the nominal model with Ay = -
- 37.936, A, = 2376.1).

) The motion of an orbiter in this height range was approached

in (1,2,4,5], under more or less restrictive conditions as to

planet, atmosphere, and orbit. In this paper we shall estimate
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analytically the first and second order perturbations undergone
over one nodal period by five independent orbital parameters
y €Y= {p, q==¢e cos v, k = e sin 0,0,1} (2)

of an orbiter moving in the same region of the Martian
atmosphere. Here p = semilatus rectum, e = eccentricity, o =
argument of periastron, 0 = longitude of ascending node, i =
inclination (all with respect to a frame originated in Mars’ mass
centre). We shall work with the following hypotheses:

(i) the atmosophere is spherically symmetric;

(ii) the athmospheric rotation is neglected;

(iii) the initial orbit is circular.

2. Basic equations. Since the nodal period was chosen as
basic time interval, let us denote: u = gravitational parameter
of the planet, r = planetocentric radius vector, u = argument of
latitude, A = cos u, B = sin u, ¢ = cos i, D = sin i, and
describe the perturbed motion by means of the Newton-Euler
equations written in the form (1, 4, 5j:
dp/du = 2(3/u)r’T,
dq/du = (Z/u) (r3kBCcW/(pD) + r?T(r(q + A)/p + A) + r2Bs),
dk/du = (Z/m) (~r’qBCW/(pD) + r*T(r(k + B)/p + B) - r2as),
da/du = (Z/p)r>BW/(pD), (3)
di/du = (2/w)r3aW/p,
dt/du = zr?(up)~1/2,
where S, T, W are the radial, transverse, and binormal components
of the perturbing acceleration, respectively, and

The variations of the orbital elements (2) in the interval
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Z={(1-r®CQ/(up)t? L. (4)

(ug,u), where the "subscript (as hereafter for y € Y) means

initial value, are determined from
Ay = [“(dy/du)du, yev. (5)
Ug

These integrals can be estimated from (3) by successive

approximations.

3. Perturbing acceleration. Taking into account hypothesis

(ii), the components of the perturbing acceleration will be

§=-p8v,v,,

T=-pdv,,V,, (6)
w=o0,
where ¢ = drag parameter of the orbiter, v_,; = orbiter speed
with respect to the atmospheric flow, v, v, = radial and

trasverse components of the orbiter velocity with respect to the
planet centre. Using the orbit equation in polar coordinates
under the form

r =p/(1 + Aq + Bq), (7)

and the well-known expressions of the velocities v v, and v,

rel’

given, e.g., in (4]}, one finds easily (to first order in

eccentricity, or, equivalently, in g and k):

S =-pd(u/p) (Bg- Ak),
T = -p8(u/p) (1 +2Ag + 2Bk) , (8)
W=0.

By the fourth equation (3) and W = 0, follows that 2 = 1.
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Now, using (7) and (8), the equations of motion become (also to

first order in q and k):

dp/du = -2pbp2(1 - Ag - Bk),
dgq/du = -2p8p(A + B2q - ABk),
dk/du = -2p8p(B - ABg+ A%k),
dQ/du = 0,

di/du = 0,

dt/du = p*/?ut/2(1 - 2Aq - 2Bk) .

(9)

4. Expression of the density. We have to express the density
as function of u (through A and B). With hypothesis (i), h = r-R
(where R = 3380 km is Mars’ radius). Using again the expression
(7) and introducing its expansion in (1), we find after some
calculations (which can be found e.g. in [(1,4] and will not be
repeated here) that the density can be written under the form
(witlr the same accuracy of first order in g and k):
e = X(1 + (b + 1)Aq + (b + 1)Bk), (10)
where we denoted
X = go exp(Ag + A,/ (P - R)), (11)
b = Ap/(p - R)? - 1. (12)
With (10), equations (9) become (again to first order in q

and k):

dp/du = -2x8p?(1 + bAqQ + bBk) ,
dg/du = -2X8p(A + (1 + bA%) g + bABk) ,
dk/du = -2X8p(B+ bABg + (1 + bB*) k) ,
dQ}/du = 0,

di/du = 0,

dt/du = p*2u-t/2(1 - 24q - 2Bk) .

(13)
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5. Changes of the orbital elements. Equations (13) will be
solved for the elements (2) by successive approximations. Using

(5) and (13), and hypothesis (iii), we find’

Ap = -2X8pf(u-u,),
Ag = -2Xbp, (B - B,),

Ak = 2X8p, (A -4y, (14)
AQ =0,
Ai=o0.

Here A, = A(uy) (do not confuse with the numerical coefficient A,
which appears in (1) and will no more appear).
Expressions (14) lead immediately to the first order changes

of the orbital parametérs (2) over one nodal period:

-anXxdp?,

AP (15)

A,y =0, yeY-{p}.

Using (13) and (14), we also found the second order changes

A,p = 16wX2d2p; (n - u,),

A,q = -6nX%d%p.bB,,

A,k = -2nX282p¢ (4 - 3bA,) , (16)
AQ =0,
Asi = 0.

Observe that only p undergoes first order perturbations,
while the second order perturbations affect g and k, too. As to
the fact that orbit is planar, this was to be espected, having
in view equations (6).

Of course, the other quoted papers (see Section 1) work with

less restrictive hypotheses (e.g. small but nonzero initial
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eccentricity, oblate planet, rotating atmosphere; one, some, or
all), but they deal with first order perturbations only. From
this viewpoint, this pa}per is the first to determine second order
perturbations, too. Our hypotheses (i)-(iii) can obviously be
relaxed, obtaining generalizations of our present results, but

this subject will be dealt with elsewhere.
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