STUDIA

UNIVERSITATIS BABES-BOLYAL

MATHEMATICA

5 .
1992

REDACTOR SEF: Acad. prof. 1. HAIDUC

REDACTORI SEFI ADJUNCTI: Prof. A. MAGYARI, prof. A. MARGA, prof. 1. A
RUS ’

COMITETUIL. DE REDACTIE AL SERIEI MATEMATICA: Prof. GH. COMAN
(redactor coordonator), prof. P. MOCANU, pref. I. MUNTEAN, bprof. A.
PAL. prof. 1. PURDEA, prof. 1. A. RUS, prof. D. D. STANCU, prof. P.
SZILAGY], prof. V. URECHE, conf. FL. BOIAN (secretar de redactie — in-
fermalticd), conf. W. BRECKNER, conf. M. FRENTIU, conf. L. TAMBULEA,
lect. R. PRECUP (secretar de redactie — matematica)

survey ® Sisteme de rescriere a termenilor gi demonstrarea teoremelor

prin algoritmi de completare ..

e s s e e .

.............. cereseseeeeall?

I. VLAIC, On the equidistant division of two-dimensional smooth curve @

RAsupra divizdril echidistante a unei curbe plane netede127

STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXXvII, 3, 1992

ON AN EXPERIMENT IN SOLVING EQUATIONS USING GENETIC ALGORITHMS

Mérton-Erné BALAZS"

Received: January 15, 1993
AMS Subject Classification: 68701

REZUMAT.- Asupra unui experiment de resolvare a ecuatiilor
folosind algoritmi genetici. Articolul prezintd concluziile unui
experiment de utilizare a unui algoritm genetic pentru rezolvarea
ecuatiilor. Rezultatele sint comentate in paralel cu prezentarea
pagilor unui algoritm genetic general. Sint de asemenea aritate
unele solutii specifice claseli de probleme abordate precum gi
sugerate posibilitiiti de imbunidti3{ire ale rezultatelor.
[

0. Introduction. Solving equations has been for a long time
a central problem in numerical applications. The most important
keywords in the field of eqﬁation solving are the domain of
convergence, rate of convergence and complexity of the methods.
Although there are many nice results in developing methods of
rather high rate of convergence with acceptable complexity, most
of them are strongly limited in what concerns their domain of
convergence. Nevertheless in many such methods testing for the
convergence domain 1is of a comparable complexity to the
computation itself. Another inconvenience of most of these
methods is that of converging to a single solution (that is
obviously induced by their nature) whereas there might be many
other viable solutions around. These deficiencies of the
classical equation solving methods gave place to the searching
for methods with "large" convergence domains (see [1]). Even it
these type of methods are usually of a great complexity they may

be used at least for isolating to a certain amount the solutions,

* "Babeg-Bolyai" University, Department of Mathematice and
Computer Science, 3400 Cluj-Napoca, Romania

M.E. BALAZS

giving then place to the "specialized" fast converging ones,.
Beside this approach in many cases these mathods can be improved
by using some kind of domain specific properties as shown in (5).
We also should mention that the developing of these "unorthodox"
methods was greatly encouraged by the development of computing
techniques towards parallel processing. In the present paper we
shall make some remarks on an experience in solving equations

using genetic algorithms.

1.A short introduction to genetic algorithms. One of the
striking ideas for designing optimum searching methods is that
of using principles of organic evolution ([3].The approaches
emerging from this idea (genetic algorithms and evolution
strategies) rely upon imitating the adaptation and selection
capacity of natural populations. Although the two main approaches
are similar to a large extent in the followings we shall

discuss in the terms of genetic algorithms.

1.1. General structure of genetic algorithms. Omitting the
details we can say that genetic algorithms (GA) operate on a
fixed size population of individuals of the same type creating
new generations of it in successive cycles.

Analogously with naturga populations the creation of a
newgeneration is directed by a fitness criterion which
conditions the perpetuation of the most viable individuals. In
GA-s this is carried out through the following operations:

a.) evaluation of the fitness of each individual of the

ON AN EXPERIMENT IN SOLVING EQUATIONS

current population;

b.) formation of a gene pool built up from the most fit

individuals;

c.) creation of the new generation by recombination and

mutation of elements in the gene péol.
The process of creating new generations is iterated until the
average fitness of the population ceases to improve, by which
time the population has converged to a few kinds of well
performing individuals.

As stated above the creation of a new generation is carried
out by recombination and mutation of elements in the current gene
pool. Individuals contribute to the gene pool in a number
depending on their fitness. The elements of the gene pool are
codings of the best performing individuals (according to the
fitness criterion) of the current peopulation. Such a coding has
to be a condensed representation of individuals which captures
their defining features.

Recombination is performed through the crossover operator
which randomly selects a fixed number of parent genes from the
gene pool and creates an offspring gene by combining a randomly
chosen part of them. Usually this combination is done either by
combining the "tails" of the parent genes (one point crossover),
or by combining some internel part of them .(two point
crossover). We should mention here that this crossover is not
merely a random creation of a new gene since it preserves
features of the parent genes.

Mutation is meant for preserving the diversity of the

M.E. BALASZ

population which prevents the algorithm from converging to local
solutions as well as from omitting some solutions in the search
space. It is esentially carried out by randomly changing some
portion of a gene.
Now we can present an outline of a GA (after [3] and [5]).
Let N be the fixed size of the population and f the function
which measures the fitness of an individual (fitness function).
procedure GA
begin
t:=0; { t is the number (moment) of the generation }
create an initial population P#t(;
evaluate the fitness of each individual in P#t(using f£;
while termination condition not satisfied do
begin
create a gene pool G*t(bz coding the most fit
individuals of pP»t(;

ti=t+1;

select parent genes from Pwt-1(;
recombine selected genes and build P*t(;
evaluate the fitness of each individual in P#t(
using £;
and
end.
In the followings we shall make our references to this

description.

1.2. A short overview of some results oconcerning GA-s. We

ON AN EXPERIMENT IN SOLVING EQUATIONS

shall mention the results and make some comments following the
steps in the algorithm outlined in the previous section.
Creation of the initial population. Although it is not explicitly
required most impelmentations of genetic algorithms begin with
a uniformly distibuted random initial population. This approach
is reasonalble since it intuitively prevents a possibly
long-drawn phase of diversification of individuals before
convergence, but in some specific problems it has been shown that
it is not absolutely necessary. Evaluation of fitness of
individuals. The most common way of treating fitness evaluation
is by simple function evaluation. To do this the objective
function o (the function to be optimized) has to be transformed
by composition to a nonnegative number: f(.)=u(o(.)). This
transformation may damage some desirable properties of the GA
(see {5]).

Creation of the gene pool. In the creation of the gene pool
one should handle the following problems: the selection of
individuals from the current population, establishing the
contribution of each selected individual to the gene pool and
coding of the resulting set of individuals.

Let us start with the coding. As it results from the
literature many contributors to GA-s' theory argue for binary
coding but there are some who consider other representation more
suited for special classes of problems [5). Choosing binary
coding, beside other features is apealing for its simplicity in
implementing recombination on digital computers.

As already stated selection and establishing the

M.E. BALASZ

contribution of individuals to be used for building the gene pool
depends on the fitness computed in the previous step of the
algorithm. There are several selection algorithms (which also
establish the contributions) of which the most used seems to be
the proportional selection algorithm which computes the number
of contributions of an individual as ratio of the individual's
fitness and the average fitness of the current population. For
this selection algorithm Holland gave a characterisation of the
number of classes of individuals in the next generation (the
Schema Theorem, see [5])). We omit further discussions here.

Selection of parent genes. Parent genes are selected
randomly from the gene pool. The number of parents used for
generating an offspring gene depends on the model used. As
presented in [5]) GA-s may use either a one parent or a
manyparents model.

Recombination of genes. We have already mentioned that
recombination of genes 1is performed through crossover and
mutation. Crossover means combination (tipically exchanging) of
a randomly chosen part of the parent genes. This operation is the
main me;hanism which creates new candidates for solution deriving
them from old ones by preserving a significan part of their
properties. In order this latter statement to be true the size
of gene portions to be combined is kept small. In the previous
section we gave the two alternative crossover types: one point
and two point crossover.

It is not our goal to go in more details about GA-s here,

the interested reader is suggested to read {5].

ON AN EXPERIMENT IN SOLVING EQUATIONS

2. Notes on an experiment in solving equations. The main
goal of the present paper is to report on some notes of the
author made during an experiment in using a GA for solving
various equations. In the followings we shall present some of
them.

Our purpose was to try to develop a GA type method for
approximatively solving egquations of the form f(x)=0, where
£:R? ->R. Obviously this problem can easily be transformed into
another, suited for application of a GA: Approximate the minimum
‘points of function g:R" ->R where g(x)=|f(x)| of which only those
solutions x” are solutions of the original problem for which
g(x")=0. So we applied a GA to this problem. For the beginning
we only studied one dimensional problems which also raised some
difficulties.

In our implementation the population was made up of real
numbers of the domain in which solutions were sought (i.e. an
interval of the real axis). We varied the population size in
different runnigns ranging from 10 to 200 individuals, noting
that the convergence of the algorithm improved for population
sizes over 100, by which time it correctly made distinction
between more solutions.

Whether the the initial population was built by uniformly
distributing numbers on the search segment or not seemed in our
experiment of no significance - the number of steps in which the
desired precision was achieved was about the same.

The coding used is a two level one which first mappes the

search domain into the segment [0,1), then considered the first

M.E. BALASZ

k significant binary digits of the representation, where k
depends on the desired precision. This coding is a simple one to
one mapping from individuals to their representation which also
has the advantage of easy reconstruction of an individual from
a code. As all binary codings it also has the advantage of
simplicity of implementing crossover.

For selection the proportional selection algorithm was used,
with randomly distributing the unassigned positions in the gene
pool to(individuals in the current population. The only model
tried was the two parents one.

The most problems in tuning the algorithm were raised by the
recombination of genes and building of the new population.

Implementing crossover and mutation was thechnically
speaking simple due to the binary coding used. A two point
crossover was tried with length ranging from 1 to 8 bits of the
representation. Here we can make the following notes:

a.) The convergence speed of the algorithm was improved by
making the probability with which the portion of genes to be
combined was selected depend on the generation number in such a
way that in "advanced" generations less significant digits were
combined with greater probability than the more significant ones.
This observation sounds intuitively fair since in advanced stages
of the search the algorithm should work harder on improving the
precision of the already approximated solutions but without
excluding the possibility of finding new candidates.

b.) When selecting a parent gene with a probability p it is

essential to select the coparent gene with a probability 1-p

10

ON AN EXPERIMENT IN SOLVING EQUATIONS

in order the two parents to be different. Probably this note
isnot wvalid if crossover is done with other combination than
simple exchanging.

For building the new population from the gene pool many
variants have been tried.

At the beginning the new population was entirely constructed
from the gene pool. With this approach for all the equations
tried the method converged to just one (of the known) solutions
even if in early stages of search all the solutions have had some
approximation.

This fenomenon was eliminated when z generation was built
up by preserving the most fit individuals from the previous one
and generatinc just some new individuals from gene pool. This is
however a known practice [5] even if we do not have sufficient
data to support the one fifth principle.

In the figure below we present the outlines of the results
obtained with our implementation for one of the equations
studied.

Evolution of number of individuals (real numbers) around the

solutions of equation sin 2x over (1.4) for a population size of
100.

1.57... 3.14... Total
Generation: 1 7.00% 7.00% 14.00%
Generation: 2 17.00% 26.00% 43.00%
Generation: 3 41.00% 8.00% 49.00%
Generation: 4 32.00% 14.00% 46.00%
Generation: 5 33.00% 32.00% 65.00%
Generation: 6 47.00% 20.00% 67.00%
Generation: 7 59.00% 25.00% 84.00%
Generation: 8 64.00% 29.00% 93.00%
Generation: 9 69.00% 24.00% 93.00%
Generation:10 62.00% 31.00% 93.00%
Generation:11 65.00% 32.00% 97.00%

11

M.E. BALASZ

3. conclusions. From the experience presented in the
previous section we conclude that GA-s can be successfully used
for solving equations although much care has to be taken in
designing the implementation. The expected advantage of this
approach is that of being applyabble even for equations which are
defined by non continuous furictions (not to speak about not
differentiable ones), a quality which is not common for other
known methods.

Obviously the implicit parallelism of the method is an other
appealing property which should be exploited in implementations.
As we did it in [1] we suggest the combining of the GA with
specialized, fast solving methods in order to obtain both
generality and speed.

In the followings we intend to work on improving the
selection methods and building of the fitness function using,
where possible properties of the equation defining function.

REFERENCES

1. M.E.Baldzs - A Heuristic Search Type Algorithm for Solving Nonlinear
Equation Systems, Studia Univ. "Babeg-Bolyai" Mathematica, XXXIII, 3,
1988.

2. J.J.Grefenstette, J.E.Baker - How Genetic Algorithms work: A Critical
Look at Implicit Parallelism, Proceedings of ICGA'89, ed. J.D.Schaffer,
(1989).

3. F.Hoffmeieter - A Survey of Evolution Strategies, roceedings of
ICGA'91, ed. R.K.Blew, (1991).

4. J.H.Holland - Adaptation in Natural and Artificial Systems, University
Michigan Press (1975).

5. G.E.Liepins, M.R.Hilliard - Genetic Algorithms: Foundations and
Applications, Annale of Operation Research, 21 (1989).

STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXXVII, 3, 1992

EXTENDED B-TREE

F. M. BOIAN

Received: January 3, 1993
ANS Subject Classification: 68P10, 68P20

REZUMAT. B-arbore extins. In lucrare se prezintd o extindere a
conceptului de B-arbore. Prin aceastd extindere se permite
accesul relativ in acest tip de structur3d de date. Prin acces
relativ se intelege posibilitatea de deplasare optimal¥ in B-
arbore peste n chei fat¥ de cheia curentX.

DEFINITIONS. In [3] B-tree was formally defined. We denote
by m the order of the B-tree, and we denote by e the number of
keys from the current node from B-tree. By p, p,, pP;, pp etc. We
denote some pointers to nodeé from B-tree. At last, by K, with
possible subscripts, we denote value(s) of key(s) from B-tree.

If p is a pointer to a node from B-tree, we denote by S(p)

the sub B-tree having the root in the node pointed by p.

DEFINITION 1. The possession of S(p) is the total number of
keys from S(p). We denote this number by Z(p).

Let a = K; 1K;,5...K;,,. be the r succesive keys from the same
node of B-tree. Let p;, DPi,i1: Piy2s v+ Pi.r be the neighbours

pointers for the keys from a.

Notations. By S(a) we denote the sub B-tree which has in its
root only the keys from a and the descendents S(p;), S(Pjs1)
S(Pjs2) s «--r S(Pjiey)-

We denote by Z(a) the possession of S(a).

By | a | we denote the number r (the number of keys from a).

* University of Cluj-Napoca, Department of Computer Science,
3400 Cluj-Napoca, Romania

F.M. BOIAN

THEOREM 1. The following relations (with the above
notations), holds:

Z(a) = r + Z(p;) * Z(Pj4y) * Z(Pjsa) * -t Z(Piyy)

For each j from 1 to r,

Z(a) = Z(K1+1...Ki+j) + Z(Ki+j+1"'K1+r) - Z(pi*j) and

Z(a) = Z(Kjpye-Kiujo1) + 1+ B(Kjpjin---Kiop)

The proof of this theorem immediately follows from the
definition of possession.

With these considerations, we continue to define an extended

B-tree.

DEFINITION 2. An Extended B-tree [l]) is a B-tree having in

its nodes the following information:

ZoPo K, Z,py K, Z,pP, NN ze"lpe! | ke | zepe
! | | | |

where z; = Z(p;), i =0, 1, ... , e

An example. In fig. 1, an extended B-tree is presented. In
each nodé, only values of keys are presented. For leafless nodes,
there are two arrows near each key: one on the left and the other
on the right. On the left of each arrow, in brackets, the value
of possession appears, and on the right, the value of the pointer

(here is the number of the node) appears.

14

EXTENDED B~TREE

Z(py) :=2(d) + 1 + Z(f);
2) From (II) to (I) of the fig. 2 (rotate to left):
Z(py) = 2(b) + 1 + 2(d);
Z(py) := 2(f);
3) From (II) to (I) of the fig. 3 (fusion of two nodes into
one):
Z(py) = 2(b) + 1 + 2(4d);
4) From (I) to (II) of the fig. 4 (transformations two nodes

into three):
Z(py) = Z(b);
Z(p,) i= 2Z(d) + 1 + Z(f);
Z(p3) := Z(h).

We have used these four transformatios in (1] for
implementation. If only these are used, at most two nodes are
necessary for operations with B-tree.

When these transformations must be applieds? From [3] these
are applied, possibily, after deleting a key or inserting a key,
if after that the number of keys from the current node are less
than m / 2 or great m. If after a deletion, in node remain less
than m / 2 keys, then this event is called undersiszed. If after
a insertion, in the node there are great m keys, then this event
is called overflow. The following rules are applied, in this
order:

1 If (|bcd| = m+1 (overflow) and |f| < m) or

(|]f| =m / 2 - 1 (undersize) and |bcd| > m / 2)
then
b and d are choisen so that | |bcd| - |f| | < 1
and rotations on the right are applied (see I to II in
fig 2).
2 If (|dEf| = m+1 (overfloﬁ) and |b] < m) or
(lp] = m / 2 - 1 (undersize) and |dEf| > m / 2)

17

F.M. BOIAN

then
d and f are choisen so that | |dEf| - |b| | s 1
and rotations on the left are applied (see II to I in
fig. 2).
3 If undersize and |b| + |d| < m
then
two node join into one (see II to I in fig. 3).
4 If overflow and |bcd| + |fGh| = 2m+1

then
transform two node into three other, with (approximate)
the same numbers of keys: b, d, f and h are choise so
that:
||b|-|dEf|]| < 1 and ||dEf|~|h|| < 1 and ||b|-]h|| <1
(see I to II in fig. 4).

Relative access in extended B-tree. Let K, (current key) and
K, (target key) two keys from a B-tree. Suppose that between K,
and K., in ascendent order, there are other n-1 keys. The problem
is to construct an algorithm so that to minimize the number of
moves in B-tree to find K, when K, is the current key.

Let p be the pointer to the nearest node so that both K_ and
K, can be accessed from it. This node is called common ancestor
from both keys. Its clear that all the n-1 keys between K, and
K, are in S(p). Because each other ancestor of K., and K, is
ancestor for their common ancestor, it results that minimal
number of moves is from common ancestor to K,.

To find common ancestor between current key and any other
key, we purpose to create and update a stack. When a key K_ is
found, for each ancestor of K, an record is pushed in this stack.
An record from stack has the following structure:

(pj, Jj;, 2l;, 2zr;, Kl,, Kr;)
where:

i is the current level in B-tree (the root has the level 1);

pP; is the pointer to the node;

In the following, we suppose that the node p; has the form:

ZjoPio Ky - - « Kij Z;5Pi5 - - - Kig Z;4Pje

18

EXTENDED B-TREE

J; is the index of the key K., if K;j; = Koy or K. is in
S(pij), if Kijj » K.;

8l; = Z(Kj..-K;5) - Z(piy) - 1 (the possession to left of
Kij):'

sr; = Z(Kij...Ki,) (the possession to right of Kij);

Kl; is the minimum value from S(p;):

Kr; is the maximum value from S(p;);

For example, in the B-tree from fig. 1, if K, = 211, the
stack is:

i pi j iy 21 1| 2r 1| K1 i} Kr 1

1 8 1 11 28 -00 +00
2 7 1 5 22 097 | +oo
3 9 5 4 2 157 | 233

The fields of this stack can be completed during the search
for a key. All informations for a record are known from the
current node or from its father. The last record from stack
corresponds to a node having the current key in it. The maximum
size of this stack is very small (see [3] for details).

Now, suppose that the current key is XK, and we want to skip
over n keys (forward or backward if n < 0). For that, we pop from
stack until n < zr; when n 2 0, or until -n 5 z1, when n < 0. The
pj from top of stack pointed to common ancestor to K, and K, over
n keys over K.

This stack helps to reduce the number of nodes accessed when
looking for a key having a value. For that, its suffices to pop
from stack until the value of the new key is between K1; and Kr,.
In the most cases, the search a new key begins instead the root

with an it's descendant for a same level.

19

F.M. BOIAN

REFERENCES

Boian F. M., Sistem de figiere bazat pe B-arbori, in Lucrldrile celui
de-al VII-lea colocviu national de informatic¥, INFO-IASI, 1989, pp.

33-40.
Boian F. M., Cdutare rapidd in B-arbori, in Lucr¥rile simpozionului
"Informatica gi aplicatiile sale”, Z2ilele academice Clujene,

Cluj-Napoca, 1989.
Knuth D. E., Tratat de programarea calculatoarelor; vol 11I, Sortare gi

clutare. Ed. Tehnic¥, Bucuregti, 1976.

STUDIA UNIV. BABE$-BOLYAI, MATHEMATICA, XXXVII, 3, 1992

PROGRAM TESTING IN LOOP-EXIT SCHEMES

F.M.BOIAN and M.FRENTIU

Received: March, 3, 1993
AMS Subject Classification: 68Q50, 68Q60

REZUMAT. - Testarea schemelor Loop-Exit. In aceastd lucrare se
introduce notiunea de drum complet intr-o schemd¥ Loop-Exit gi se
aratX importanta drumurilor complete intr-o schemd program pentru
testarea programelor. De asemenea, se construiegte un limbaj care
genereazd mul{imea drumurilor complete.

1. Introduction. In this paper we consider the Loop-Exit
Schemes as they were defined in [2]. Nevertheless, we impose a
minor condition: there is an initial assignement a; just at the
begining (after START block in the corresponding flowchart), and
a final assignment a, at the end (in front of the STOP block).
A and T are the sets of assignment and test symbols,
respectively, and M = AUT. Also, we denote by SW(S) the skeleton
word associated to S, and we denote by D(xay) the direct word
from x to y (as in [41]).

To each Loop-Exit Scheme S a language L(S) may be
associated. More exactly, we have the following definition:

DEFINITION 1. The language L(S) associated to the Loop-Exit
Scheme S is generated by the following context free grammar
(1,2,3):

G(S) = (N,z,P,v)
where

N

{V) (W] {I]|J>0} (W] {Lk'k>o},

M) M u {+,-}

Ij is a nonterminal for IFj, and L, and B, are two nonterminals

* University of Cluj-Napoca, Departament of Computer Science,
3400-Cluj-Napoca, Romania

F.M. BOIAN and M. FRENTIU

for LOOP, from the definition of the Loop-Exit Scheme S, v is-a
new symbol - the axiom of G(S), and the set P of the productions
is constructed by the following rules:

a) v —-—--> SW(S)

b) the following productions

bl) I; ---> b-
b2) I; ---> b+SW(a) only if a has not the form a'EXIT;
are in P if

IFj b THENj a ENDIFj ;
is in s.

c) the productions

cl) Ij --=> b+SW(a) if a¢a'EXITk;
€2) I; ===> b-SW(B) if BwB'EXIT,;
are in P if

IFj b THENj a ELSEj ;) ENDIFj ;
is in s.
d) if
LOOP, aja,é ENDLOOP, ;

is in S then the productions

dl) L, ---> SW(a,a,8)L,
d2) By ---> SW(a,x,8)B, | €
d3) Ly ---> D(LOOP) @; IF;) b+SW(B)
if
@, = IFj b THENj B EXIT,; ENDIFj;
or

a, = IF; b THENj B EXIT,; ELSEj Y ENDIFj;

d4) Ly --~> D(LOOP, a, IF;) b-SW(B)

22

PROGRAM TESTING IN LOOP-EXIT SCHEMES

if
a, = IFj b THENj Y ELSEj B EXIT,; ENDIFj;
are in P. A
Intuitively, L(S) contains the set of all sequences which

can be met during the execution of the scheme.

2. The complete paths in a Loop-Exit Scheme. An important
problem in software development is program testing. Testing may
be done starting from the specification of the resolved problem,
or starting from the text of the program. In the second alterna-
tive it is important to know all the paths from the STARf block
to the STOP block of the corresponding flow chart. For this
purpose we introduce the notion of complete path in a Loop-Exit

Schenme.

DEFINITION 2. A word z= a;X;a,X;...a; X; 1is a section for

S iIf and only if there is weL(S) such that:

a) w = xzy

b) i,< iy, for j=1,2, ..., s-1
c) 1f xwe then x= x’a; X, with iy > i,

d) if yee then y= a, X, y' with iy > ig,,.

The set of all sections is denoted by SEC(S).

The following theorem is proved in [2]:

23

F.M. BOIAN and M. FRENTIU

THEOREM 1. For each S we have L(S)c(SEC(S)).
DEFINITION 3. A word ze€SEC(S) is a branch for S if and only
if there is weL(S) such that w=zy. The set of all branches of S
is denoted by BRA(S).
Next, an algorithm to construct the set BRA(S) is given.
Algorithm 1. Which constructs the set BRA(S), has the
following steps:
Btep 1. The grammar G; has the productions obtained from
the productions of G(S) by replacing the productions
By --> aBy | €,
with thq production B, --> a and in all the other productions
which have not this form the metasymbol B, is replaced by ¢.
8tep 2. Putting off the inaccesible and unseful metasymbhols
of G, we obtained the grammar G, (1];
8tep 3. The grammar G; is obtained from the grammar G, by
replacing the productions of the form
Ly --->a L,

by the productions

a _———
Lk > a

where Li is a new metasymbol associated to Ly

8tep 4. The grammar G, is constructed from the grammar G3 by
adding to the productions of G, some new productions. If L, is a

recursive symbol in G, and A --> a L, B is in G; then add the

24

PROGRAM TESTING IN LOOP-EXIT SCHEMES

production A --> Li to G,. Here Li is the symbol associated

to Lg.
8tep 5. One computes BRA(S) = L(G,).
To each metasymbol A of a grammar
G=(N,z2,P, v)
one can associate the grammar
G, = (N,z,P,A)
which has the metasymbol A as the axiom.
If BRA(A) is the result of the application of the algorithm
1l to the grammar G, then the following theorem holds [1]).

THEOREM 3. If S is a Loop-Exit Scheme then

SEC(S) = BRA(S) u {BRA(A)| A is recursive in Gé },

where G; is the reduced grammar of the scheme S.

DEFINITION 4. For each xy"zeL(S) with n20 and yeSEC(S) the
words w,=xz and w,=xyz with x=ayx, and z=z,a, (i.e. which contains
the assignments ay and a;) are called complete paths of the Loop-
Exit Scheme. The set of all complete paths of S is denoted by
CP(S).

THEOREM 4. Let G, be the grammar obtained from G in the
following way: If A is a recursive symbol in G and

A--—>aal B, | B, ... B,

25

F.M. BOIAN and M. FRENTIU

are all the A-productions of G then the A-productions of Gp are
A--=> p; 0 By .. Bl aByt aBy, ...l aBy
The language generated by the grammar G, generates CP(S).

The proof of this theorem follows imediatelly from the

definition 4.

To ilustrate these we consider the following Loop-Exit
Scheme:
a; a,
LOOP,
IF, ay; THEN; EXIT, ENDIF,
IF, a, THEN, ag
ELSE, a, a; ag ENDIF,
ENDLOOP,;

ag

The grammar G(S) and the reduced grammar Gé are

G(S) GY,
v --=> a, ay L, a4 v -~-> a, a, L, ay
Ly-=-> 1, I, Ly | a3+ Ly==-> I, I, L, | a3+
By---> I, I, B, | € I,---> a;-
I,---> a,- I;-==> agtay | as-aga,ag
I,--=> aztag | ag-agajag

For this Loop-Exit Scheme we have

BRA(S) = { aj,ajajytag , a a,az-a,tag , a,azaj-az-—agaqag }

26

PROGRAM TESTING IN LOOP-EXIT SCHEMES

and
SEC(S) = BRA(S) u { ajtag , aj-a,*tag , az—a,—aga,ag }
The grammar G, has the following productions:

v ===> ay a; Ly ag

Ly---> I, I, az+ | az+

I,-==> az-

I,=-=> as+ags | az-agajag

and the set of the complete paths is

CP(S) = { a,ajsajtayg , aja,a;-astagastag , a,aj,a;-a,-agd;agaztag }.

3. Testing a Loop-Exit Program Scheme. Similarly to [6] any
Loop-Exit Scheme becomes a Program Scheme if the assignments and
test symbols are defined as follows.

Let

V=(vy, Vo, vee, Vp} = T uWuuoO
be a set of variables, where I is the set of input variables, W
is the set of working variables, and O is the set of the output
variables. We may suppose, as in [9), that the set I, W and O are
mutually disjoint. Let

F ={f,, £, ..., I,}
be a set of functional symbols. We suppose that each assignment
aeA is of the form

v = L(Yy, Ya: ce-0s Yi)
where feF, k20, Y,, Y3, «-+, Yye\W, and ve WuO.

Further, let
T = {t;, ty, ..., t.}

be a set of test symbols. We suppose that each test symbol of the

27

Loop-Exit Scheme is of the form
(Y1, Y2r vve0 Yi)
where teT, k20, and y;, Y5, ..., YyeIW.

DEFINITION 5. A Loop-Exit Scheme S is a Loop-Exit program
Scheme if the symbols aeM are defined as above, and for any
weL(S) and any veW if w=w,aXw, and a is of the form t(...,v,...)
or u:=f(...,v,...) then there is a'c¢A of the form v:=f(y;, Y2.
..., Yx) such that w=w'a'w"aXw,.

As an example, from the Loop-Exit Scheme given above we
obtain the following Program Scheme:

d:=nl; 1:=n2;
LOOP,
IF, d=1 THEN, EXIT; ENDIF,
IF, d>i THEN, d:=d-i
ELSE, t:=i; i:=d; d:=t ENDIF,
ENDLOOP,

div:=d

In other words, the definition 5 asks that any working
variable is first initialized and then this vgriable may be used
in computation.

The condition of the definition 5, taken from {6}, is very
strong. An example of a Loop-Exit Program Scheme which do not
satisfy this condition but all variables receive their values
before their use, is given in [4]. Also, in [4] is shown that a
scheme S is a Program scheme if and only if this condition holds
for any ze¢BRA(S). It follows that if a variable does not satisfy

this condition for every 2zeBRA(S) then it is certainly an

28

PROGRAM TESTING IN LOOP-EXIT SCHEMES

uninitialised variable. This fact is very important for the
verification of the program corectness. Also, it is important for
the programmer to be informed about all the uninitialised
variables on some branches of the program.

Testing a program [{7] means to observe the results obtained
if the program is run for some testing data. A run is needed for
each complete path. Therefore, for program testing it is very
important to know all of its complete paths.

Knowing a complete path is also useful for choosing the
coresponding testing data. If the input variables receives these
data the program follows this path. That is, all test conditions

met in this path are satisfied.

REFEREWNCES

1. Aho A.V., Ullman J.D., The theory of Parsing, Translation and
Compiling, Prentice Hall Inc., 1972-1973.

2. Boian F.M., Sisteme conversationale pentru instruire in programare,
TezX de doctorat, Cluj-Napoca, 1986.

3. Boian F.M., Loop-Exit Schemes and Grammars: Properties Flowchartablies,
Studia Universitatis "Babeg-Bolyai", Math.(1986), n0.3, pp. 52-57.

4. Bolan F.M., M.Frentiu, and Z.Kasa, Parallel execution in Loop-Exit
Schemes, Seminar on Computer Science, Preprint no.9, 1988, pp.3-18§.

5. Floyd,R.W. (1967), Assigning meanings to programs, in Proc. Symposium
App.Math., XIX,(J.T.Schwartz ed.), Providence, Am.Math.Soc.

6. Greibach 8., Theory of Program Structures: Schemes, Semantics,
Verification (Lecture Notes in Computer Science), Springer-Verlag,
197s.

7. J.C.King, Symbolic Execution and Program T'esting, Comm. ACM, 19 (1976),
7, 385-394.

8. S.Katz, Z.Manna, Logical Analysis of Programs, CACM 19(1976), 4, 188-
206.

9. Manna, 2. (1974) Mathematical Theory of Computation, New York:
McGrawHill.

STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXXVII, 3, 1992

PARALLEL PRE~PROCESSING IN EXTRAPOLATION METHODS
FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS

0. BRUDARU" and G.M. MEGSON™"

Received: December 1, 1992
AMS Subject Classification: 68Q22, S8F99

Abstract: - The work deals with the parallel implementation of
the pre-processing stage of the polynomial/rational extrapolation
techniques for solving initial value problems in ordinary
differential equations. The multiple use of the Euler method is
analysed in the case of three step number sequences (n,): n =ak+b,
n,=2%*k, and Rg=ntn g, k=0,..,K. We make use of th PRAﬁ model
o% parallel cohputgtign and propose a specific parallel algorithm
for each type of eequence. It is assumed that the number of
processors is a factor of K. The performances concerning the
parallel processing time and the effectiveness of processor
utilization are established. Some conditions ensuring the
optimality of the proposed algorithme are also given.

Keywords: ordinary differential equations, polynomial

and rational extrapolation, parallel algorithms.

1. Introduction. The parallel implementation of the
polynomial and rational extrapolation techniques ({10}, [12~-13])
for solving initial value problems in ordinary differential
equations (ODE's) is discussed in [8)] where two ﬁypes of systolic

arrays are proposed.

We consider here a complementary task, namely, the design
of parallel algorithms for computinég%he initial data input to
the systolic arrays in [8].

The stages involved by the extrapolation methods for solving
initial value problems in ODE's are described in section 2. In
section 3, we present three parallel algorithms to compute the

data entering the extrapolating process, and consider Euler's

* Universitatea "Al. I. Cuza”, Seminarul Matematic “A. Myller"”
6600-Iagi, Romania

* Computing Laboratory, University of Newcastle-Upon-Tyne
Claremont Tower, Claremont Rd, Newcastle-Upon-Tyne, NE1 7RU, U.K.

O. BRUDARV and G.M. MEGSON

method applied to three types of step number sequences. The
performances concerning the parallel processing time and the
effectiveness of processur utilization are established. Some

comments are given in the last section.

2. Extrapolation methods for solving ODE's. Consider the
initial value problem
y'=f£(t,y), tost<b, y(ty)=yyi (2.1)°
and let us suppose that we need to compute y(t,y+H), to+tH<b. Let
y(t) be the true solution of (2.1) and y(t,h) be the approximate
solution obtained by using step length h, h<H, and a suitable
numerical method which is applied many times. Let us take some
step-number sequence ny<n;<n,<..., put h,=H/n, and define
Y(k,0)=y(to+H, hy), (2.2)
the numerical solution obtained by performing n, steps with step
size h,, k=0,2,...,K. The computation of the VY(k,0)-values
represents the pre-processing stage of the extrapolation.
Let us su;;ose that y(t,h) admits aﬁ asymptotic expansion
in h of the following form
y(t, hy=y(t)+dh™ D +d,h" Vs, 4d pT My (2.3)

where 0<r(1)<r(2)<...<r(m),d,,d,,... are independent of h.

2.1. Polynomial and rational extrapolation. If we consider
r(i)=ir in (2.3) then following [13] the polynomial extrapolation
involves the computing of the Y-values table given by
Y(k,m)cY(k+1,m—1)+[Y(k+1,m—1)—Y(k,m—1)]/[(nk+m/nk)’—1] (2.4)

. for k=0,1,...,K-m and m=1,2,...,K. The computation given by (2.4)

32

PARALLEL PRE-PROCESSING

is represented (for K=5 and m=5) in Fiqure 1.

For n,=H/(hobX), be(0,1), (2.4) becomes
Y(k,m)=Y(k+1,m-1)+[Y (k+1,m=1)-Y(k,m-1) 1/ (1/b™-1], (2.5)
k=0,1...,K-m m=1,2,...,K.

Usually, r=1 or r=2. The process is stopped ((13)) when
abs(Y(0,m)-Y(0,m-1))<tol, (2.6)
where tol is a prescrbied tolerance and Y(0,m) approximates
Y(to+H) .
The rational extrapolation ([10]) is defined by
R(k,-1)=0 ; R(k,0)=Y(k,0) ; (2.7)
R(k,m)=R(k+1,m-1)+[R(k+1,m~1)-R(k,m=1))/ {(hy/hs,m ?(1-
(R(k+1,m-1)-R(k,m-1))/(R(k+1,m=1)-R(k+1,m=-2))]-1} (2.8)
for m>1. This scheme is illustrated (for K=5) in Fiqgure 2. The
process is stopped ([10]}) when
abs (R(k-m,m)-R(k-m+1,m))<tol (2.9)
for some XK and m. If (2.9) holds then the result R(k-m+1,m) could

be accepted.

2.2. Basic pre-process#ng methods. In the case of non-stiff
equations (([10], (13]), for r=1 the basic method to compute the
Y(k,0)-values is the Euler method

Yin=Yithif (E5,y;) tyg=t +h,, 1=0,...,nm-1, (2.10)

Y(k,0)=Ypx-
For r=2, a numerical integration formula for which (2.3)

holds is the second order Gragg's method described by

O. BRUDARU and G.M. MEGSON

z(tg, hy)=yo, (2.11a)
z(ty, hy)=yo+hef(to,Yo) i
ti=to+ih,, Z(t;,y,h)=z(t;_,, h)+2h,f(t;, z(t;, h)); (2.11b)
i=l,...,mp 33
Y(k,0)=(z(t,k-1,h)+z(t k, h)+h £(t k,z(t,k, hy))]/2
Extrapolation of implicit methods can be used for stiff
equations. Some symmetric and non-symmetric methods which are of
interest are described in [12]. In this case, for each Y(k,0)-
value, we must solve n, nonlinear equations, and consequently the
computing time cannot be predicted. However, a lower bound to
this time could be given by the time needed by Gragg's method.
In what follows this lower bound will be used instead of the

exact time.

3. Parallel pre-processing algorithms. This section deals
with the parallel computation of Y(k,0), k=0,...,K. We consider
the case of explicit methods. The entire computational diagraph
of the polynomial extrapolation is illustrated for K=5 in Figure
3. The computation required by Y(k,0) is represented by the
sequence of vertices denoted by seq(k). éach vertex in this
sequence represents just one step of the Euler method, while an
arc (v,v') denotes the sending of the y-value from v to v'. The

first vertex in each sequence requires Y, as the starting value.

For each fixed k, Y(k,0) is obtained by performing n, steps

with the step size h;. It is reasonable to suppose that each step

34

PARALLEL PRE-PROCESSING

requires an amount of time which depends on the applied explicit
method and the complexity in evaluating f(t,y), and does not
depend on the step size hj.

Let t(0) be the time to perform the operation Oe(+,*,/) and
define the time unit (TU) as t(/). Let us denote by c the time
to execute just one step of the Euler's method (2.10). The
dominant part of ¢ is represented by the time to compute f. In
the case of formula (2.10), Y(k,0) requires cn, TUs.

If Gragg's method is used then Y(k,0) is computed in c+(n,-
1) [c+t(+))+ (c+t(+)+t(*))=n+1 TUs, because t(+)<<c. Therefore,
the use of the Gragg's method for computing the initial Y-values,
can be studied by considering n,=n; +1. In the case of n;=ak+b
this can be simply done by taking b:=b+1. Some problems arise for
nk=2k and ng,,=n,+n,_;. In each case, n, exponentially increases
and n, does not differ significantly from n,. So, we can reduce
the discussion to Euler's method applied to the above step number
sequences. Also, we can suppose that c=1.

We make use of the idealized model of parallel computation
known as the PRAM ([11]). We shall suppose that s processors, P,.
s=1,...,S, are available. We consider the parallel execution of
the sequences seq(k), k=0,...,K, where K+1>S. The processors
execute the same program implementing Euler's method for the same
function and initial condition, but for different step sizes and
number of steps. We remark that the use of the PRAM model is
motivated by the necessity to consider functions of arbitrary
complexity and not by the intrinsec structure of the numerical

method computing the Y(k,0)-values. We note that if f is a

35

O. BRUDARU and G.M. MEGSON

polynomial both in t and y, or is given by a small size
arithmetic expression including elementary functions, then a
soft/hard-systolic implementation is also possible ([(2-6), {14-

15), [17-18)).

3.1. Case ng=ak+b. Let Q and Q, be two positive integers so
that K+1=(2S)Q+Q,, with Q,<2s.

The K+1 sequences are organized in Q bands B(gq),g=1,...,0Q,
of 25 succesive sequences and the band B(Q+1) of Qo sequences.
The bands B(q), g=1,...,Q0+1, are processed in a serial fashion,
while the sequences of each band are processed in parallel, as
it is illustrated in Figure 4 for S=4. The g-th band is formed
by seq((g-1)2s+j-1), j=1,...,28, g=1,...,0Q.

The processors P,,...,Pg begin the execution of B(q) at the
same time, say ts(q). P, executes seq((g-1)2S+r-1) and then
seq((g-1)28+2S-r), r=1,...,S, and this computation takes

Tp(q)=t((g-1)2s+r-1)+t((g-1)2s+2s-r)=a(4(g-1)s+2s-1]+2b TUs.

This time does not depend on r, thus the processors
terminate the processing of B(g) at the same time, ts(q)+Tp(q) -
A serial algorithm takes Ts(qg)=S*Tp(q), then the efficiency of
processor utilization is Ec(q)=Ts(q)/(STp(g))=1 i.e. the strategy
to process each band is optional.

The execution of B(g+l) starts at ts(g+l)=ts(q)+Tp(g) and
is done in the same manner. If Q,;=0, then the parallel processing
time for Q bands is

Tp=ts (1)+Tp(1)+...+Tp(Q)=Q(2b+a(25-1)+2aS(0-1)], (3.1)

36

PARALLEL PRE-~PROCESSING

for ts(1)=0. The total time required by a serial algorithm is
Ts=Ts(1)+...+Ts(Q)+S[Tp(1)+...+Tp(Q))=S*Tp, (3.2)
therefore the global efficiency Ec=1.
Now, let us suppose that Q+#0 and B(Q+1) is processed like
the previous bands.
First, if 1<0,<S we use only Q, processors to process
seq(20S-1+j), j=1,...,0Q9. Therefore
Tp' (Q+1) =t (2Q5-1+Q,) =t (K)=aK+b TUs,
while
Ts'(Q+1)=t (20S)+t (205+1)+. ..+t (20S+Qy-1)=
={a(205-1)+b])Qy+aQy(Qot1) /2.
Thus, we obtain that the effectiveness of processor utilization
for the last band is
Ec' (P+1)=1-a(Qgp-1)/[2(aK+b)].
Oon the other hand,
Tp'=Tp+Tp' (Q+1),
Ts'=Ts+Ts"' (Q+1),
and from (3.1) and (3.2) we obtain the effectiveness of processor
utilization for the entire process as
Ec'=Ts' [(STp')=
=1-[aQy?/2-Qq(aK+b+a/2)+S (aK+b)] /S (Tp+aK+b))<1,
and Ec' has the greatest value for Qo=S when
Ec'=1-a(S-1) /[2(Tp+aK+b)].
Second, if §+150,<2S-1, we have that S processor execute the
sequences sedq(2QS-1+j), j=1,...,Q9. Let us take Pge (1,...,8-1),
so that Q,=S+Qs. For the sake of regularity we use the same

strategy for peocessing this last band. Therefore, Pj performs

O. BRUDARU and G.M. MEGSON

only
seq(2SQ-1+3), j=1,2,...,S-Qs while P, executes seq(20S-1+h) and
then seq (20S+2S-h), h=S-Qs+1,...,S. Consequently, the parallel
processing time for the last band is
Tp" (Q+1) =t (2QS-1+S) +t (2Q05+S) =a(4Q5+25~1) +2b TUs,
while tlhie corresponding sequential time is
Ts" (Q+1)=Ts"' (Q+1)
and we obtain that
Ec" (Q+1)=(Qy/S) [a(K+1-Qg~1) +bta(Qpt+l) /2] /[a(2(K+1-Qq) +25~1) +2Db].
In this case, the total parallel processing time is
Tp"=Tp+Tp" (0+1)
and the corresponding sequential time is
Ts"=Ts+Ts" (Q+1),
and from (3.1) and (3.2), the obtained effectiveness of processor
ut;lization for the entirelpropess is
Ec“=Tg" / (S*Tp")=1-{a[-252 (1+20) +5(1+20Q0) H (Qg=1) /2] +b (-28+Q() } /
[S[Tp+a(40S+2S~-1)+2b]}}.
As a conclusion of the above analysis we can state
THEOREM 1. Under the above assumptions, 1f ny=ak+b, k=0,...K
and 8 processors are used to compute Y(k,0), k=0,...,K, then the
following assertions are true:
(1) if K+1=25Q then the algorithm is optional with respect

to processor utilization and the parallel processing time

is
Tp=Q(2+a(2S-1)+2aS(Q-1)];
(ii) if Qy=K+1-2SQ and 1sQ,<S then the parallel processing

time is

as

PARALLEL PRE-PROCESSING

Tp'=Tp+aK+b
and the effectiveness of processor utilization is
Ec'=1—[aooz/z—oo(ax+b+a/2)+S(aK+b)]/[S(Tp+aK+b)]
<1-a(S-1) /[2(Tp+aK=b)],

while the equality holds for Qu=S;

(1ii) 4ir Qu=K+1-25Q and S+1<Qp%25-1 then the parallel

processing time is

Tp"=Tp+a (4QS+2S-1)+2b,

and the effectiveness of processor utilization is

Ec"=1-{a[-25%(1+2Q)+S(1+200Q4) +Qo (Qg=1) /2] +b(-25+Q¢)) /

{S[Tp+a(40QS+25S-1)+2b}}.

The above discussion could be extended in the following way.
Let m be a positive integer, 1<m<K+1, with K+1=m*N, and define
Cb-{seq(p+jm)/j-0,...,N-l}, p=0,...,m=1. Also, consider the
positive integers a, and b,, p=0,...,m-1. A mixed pre-processing
strategy is to compute Y(k,0) in accordance to the step number
sequence a,*k+b,, . as ‘it 'is required in the case of stiff
equations ([12]). A desirable prbperfy of the parallel processing
scheme is that whenever'k<k', the Y(k,0)-value is obtained before
Y(k'.0), because in this case the stopping condition (2.6) can
be efficiently used to save time and hardware. On the other hand,
the precedence constraints appearing in the extrapolation stage
do not require such a property (see Figures 1-2). It results that
we could relaxe the above condition by requiring that it holds
only for a given number of succesive Y(k,0)-values. So, an
acceptable compromise is to assign seq(pt+jm), p=0,...,m-1, to

processor p,.,, J=0.,,,.5-1, S>N, and to continue with Py,

39

O. BRUDARU and G.M. MEGSON

Py,.... for j=s, s+1,... and so on. This solution is compatible
with the necessity to adopt a local synchronization technique
({19], [16]) for interfacing the set of S processors and the

systolic arrays in [8].

3.2. Case nkzzk. If S processors are available to compute
seq(k), k=0,...,K, the obtained efficiency is
Ec(S)=N(K)/(S*Tp(S)),
where N(k)=ng+...+n, and Tp(S) is the corresponding parallel
processing time. Since N(k)=2n,~1 and
Tp(S)zmax{n,/k=0,1,...,K}=n,,
we obtain
Ec(S)=(2ng-1) /(Sny)<(2n,-1) / (2ny) .
This upper bound does not depend on S and because
Ec(2)=(2ny-1) /(2ny)
we conclude that it is fruitless (from the efficiency point of
view) to use more than two processors to execute seq(k),
k=0,1,...,K. If the processors are P; and P;, then P, executes
seq(k) ,k=0,...,XK-1 in N(K-1) TUs and P, performs seq(X) in
ny=N(K-1)+1 TUs as it is illustrated in Figure 5. If we need to
extend the activity of P;, i=1,2, to seq(k), k=K+1,...,K+R+1, and
P, executes seq(k), k=K+1,...,K+R, while P, acts on seq(K+R+1),
then the obtained efficiency is
Ec(2)=ny,N(R) /(2N pgsy) =1-1/28%1,
Now, P, works in ny, N(R-1)=2K'R*1_2K*1 pug while P, needs

ny.p+y TUS.

40

PARALLEL PRE-PROCESSING

These results suggest the following strategy. Let us suppose
that S$=2S' and the sequence seq(k),k=0,...,K are divided into M
bands B(m), m=1,...,M of equal size, and band B(m) is divided
into S$' subbands SB(m,s), s=1,...,S of equal size R, 1i.e.
K+1=MS'R. Therefore B(m) contains seq((m-1)RS'+j-1), j=1,...,RS?*,
and SB(m,8) consists of seq((m-1)RS'+(S-1)R+r-1), r=1,...,R,
s=1,...,8', m=1,...,M. The processing begins with B(1) so that
the S' pairs of processors start at the same time. The s-th pair
of processors, say (P(s,1l),P(s,2)), acts on SB(1,s), s=1,...,S!
so that P(s,1) executes the first R-1 sequences and P(s,2) the
R-th sequence. As goon as P(s,j) terminates its work for SB(m,s)
it passes to the corresponding sequence(s) of SB(m+l1,s8), and so
on. This strategy is illustrated in Figure 6. It results that
P(s,1) executes seq((m-1)RS'+(s-1)R+r-1), r=1,...,R-1, while
P(s,2) acts on seq((m-1)RS'+sR-1), m=1,...,M, s=1,...,5'. Let t,
be the time when P(s,j), s=1,...,8', j=1,2, start the activity
for B(1). Also, let us denote by tf(k) (tin(k)) the time when the
execution of seq(k) 1s terminated (initiated). Clearly, for each

se{1,...,8"}, from the activity of P(s,2), we have that

tf(sR-1) =t +297°1,
tf((h-1)RS'+8R-1)=tf((h=-2)RS'+¥sR-1) +2(mM RS 4sR-1 = .o,
and consequently, we obtain

tf((m-1)RS*+sR-1) =t +28R"1(2MRS'_1) , (2RS"_qy | pm=1,...,M.

41

O. BRUDARU and G.M. MEGSON

Oon the other hand,
tin((m-1)RS'+SR-1)=tf((m-1)RS'+sR-1)-2(M"1IRS"+sR-1
tf((m-2)RS'+sR-1), m=1,...,M.
Now, let us analyse the activity of P(s,l1l), se{1,...,S'}.
This processor executes in the order ((seq((m-1)RS'+(s-1)R+r-1),
r=1,...,R-1), m=1,...,M). Let TB(s,m) be the time in which
P(s,1) executes the sequences bglonging to B(m), m=1,...,6M.

Clearly,

R-1
- / - -
TB(s,m) = E 2(m-1)RS/¢(8-1)Rer-1
r=1

= (2R 1) 2 (m-1)RS'+ ($-1IR

Also, let TF(s,m) be the time when the last sequence of B(m)
associated to P(s,1) is terminated. Clearly,
TF(s,1)=ty+TB(s,1),
TF(s,h)+TF(s, h-1)+TB(s, h), h=1,...,m.

Thus,
m
TF(s,m) = t, + TB(s, h)
to+2(271) (281 ~1) (2@’ _1) /(2R 1),

If TS(s,m) denotes the time when P(s,1) begins the execution
of its first sequence from B(m), then TS(s,m)=TF(s,m)-TB(s,m).
For a better analysis, we compute tf((m-1)RS'+(s~1)R+r-1),
r=1,...,R-1, m=1,...,M. Clearly, we have
while

tin((m-1)RS'+(s-1)R)=TS(s,m)

42

PARALLEL PRE-PROCESSING

r
tf((m—l)RS’+(s-1)R+r—l)=TS(S,m)+2: 2(m RS’ (s 1) Reh -1
B (3.3)

=-TS(s,m) +(27-1)2(m RS (s IR,
and
tin((m-l)RS'+(s—1)R+r-1)=tf((m-1)RS'+(8-1)R+r-2), r=2,...,R-1,

Now, let wus compute the effectiveness of processor
utilization, Ec(S',R).

The time Ts required by a sequential algorithm is

Ts=ng+...+ng=2%"1,

The number Np=2S' of processors leads to the parallel
processiné time Tp whose value is obtained by analysing the
activity of (i) p(s,1), s=1,...,S' and (ii) P(s,2), s=1,...,S'.

(1) From (3.3) we obtain the equivalent form of the final
time tf((m-1)RS'+(s-1)R+r-1)=t + (287 1-1) (2™MR9'_1)2(8-1)R; (RS’ 3 _

(2R-1-1)2(m-1)RS'+(s-1)R,
(zr_l)z(m—i)ks'-f(.—l)nl
r=1,...,R-1, m=1,...,M.

The last task executed by P(s,1) is obtained for m=M and
r=R-1 and has ti’le ending time tfg given by

ff2,1=tf((M-l)RS'+(s—1)R+R-2)=
to+&.2R°1°1) (2K*1-1)2(8~1)R; (oRS'_3)
because K+1~=MRS'¥.

(1i) The last task executed by P(s,2) has an end time tf,, 2
obtained from tf((m-1)RS'+sR-1) by taking m=M, i.e.
tf, ,=to+(2K*1-1)28R-1,(oRS"_p)

But

Tp(S',R)=max{tfsll,tfs’2/3=1, «e.,8')-ty=max{tfi,tr2},

43

O. BRUDARU and G.M. MEGSON

where
tfl=max{tf, ,/s=1,...,S8"'}-ty=tfg. ,-to=
(2R-1-1) (2K+1.1)2(8'-1)R; (5RS" 3y
while
tf2=max{tf, ,/s=1,...,5"'}~tg=trlg, ,~tgo=
(2K+1-1)2RS'~1, (aRS' _qy
and finally, we obtain
Tp(S',R)=(2K*1-1)2RS"~1,(2RS"_q)
Therefore,
Ec(S',R)=Ts/ (NpTp(S',R))=(1-1/2R8") /s, (3.4)
As it was expected, by taking S$'=1 and R=K+1 in (3.4), it
results
Ec(1,K+1)=1-1/2%*1
and
Ec(1,K+1)2EC(S',R)S'.
Also, for M=1 it holds Ec(1,K+1)=Ec(S’',R)S'.
On the other hand, Tp(1,K+1)=2% and
Tp(S',R)/Tp(1,K+1)=(1-1/2K*1) s (1~1/2(X+1)/H) (3.5)
By taking M=1 in (3.5), Tp(S',R)=Tp(1,K+1l) results. If M>1
consider f(x)=(1-x™)/(1-x), with 0<x<1/2. A simple calculation
shows that 1<f(x)<2-1/2%"1 and therefore we obtain that
Tp(1,K+1)<Tp(S',R)<Tp(1,K+1) (2-1/2¥"1),
In fact, we have proved the following
THEOREM 2. Under the above assumptions 1if nk—zk, k=0,...,K,
and S processors are used to compute Y(k,0), k=0,...,K, then the
following assertion are true:

(1) if Ec(S) 1s the effectiveness of processor utlilization

PARALLEL PRE-PROCESSING

for an arbitrary parallel algorithm then Ec(S)<Ec(2), for S22;
(ii) if S=2S' and K+1=MRS' and the above strategy is used
then
(ii.i) the parallel processing time is
Tp(S',R)=(2K*1-1)2R9" "1/ (2R%"-1);
(ii.ii) the effectiveness of processor utilization is
Ec(S',R)=(1-1/2R8") /s ;
(i1.1iii) if M=1 then
Tp(1,K+1)=Tp(S’,R)
and
Ec(1,K+1)=Ec(S’',R)S"';
(ii.iv) if M>1 then
Tp(1,K+1)<Tp(S',R)<Tp(1,K+1) (2-1/2""1)
and

Ec(1,K+1)>Ec(S',R)S"'.

3.3. Case n;, =n,+n,_,. Let us consider the case when (n,) is
a Fibonacci sequence, for some prescribed n, and n;. The reason
to consider this sequence is that it is possible to determine a,
b, ny and n; such that ak+bsn,<2**k holds for k2k,, where k, is
a prescribed rank. We suppose again that $=25'. We split the set
of K+1 sequences into S' bands B(s), 5-1,:..,5'. The band B(s)
splits into the subbands SB(s,r), r=1i,...,R, where SB(s,r)
consists of three succesive sequences, 1i.e. X+1=3RS' and
SB(s,r)=(seq((s-1)3R+3(r-1)+h)/h=0,1,2} as it is shown in Figure
7(a). The pair of processors (P(s,l),P(s,2)) acts on B(s),

s=1,...,8' and all pairs begin the activity at the same time t,

45

O. BRUDARU and G.M. MEGSON

(Figure 7(b)). The processor P(s,l) executes the sequences
({(seq((5-1)3R+3(r-1)), seq((s-1)3R+3(r-1)+1), r=1,...,R) in this
order, while P(s,2) executes (seg((s-1)3R+3(r-1)+2), r=1,...,R)

in this order. Therefore P(s,1l) needs t(s,l) time, where

R

t(s,1) = E (Ng1ysra-n * De-1)3reaz-190) 1
=1

while the time required by P(s,2) is

R
t(s,2) = E Bg-1)3Re3(r-1) 427 (3.6)
b=t

and because (n,) 1is a Fibonacci sequence it results that
t(s,1)=t(s,2). Therefore, the time to execute B(s) is t(s,2) and
the parallel processing time is

Tp=max{t(s,2)/s=1,...,8'}=t(S',2)=

R
E Ng_1y3me3r-1 TUS.
r=1

It g, and g, are the roots of the equation x2-x-1=0, then

ny=c g, M +cq,%, (3.7)
where Cj, j=1,2, are determined by n, and n,. Using this form of
n, and taking into account that qj3-1=2qj, J=1,2, from (3.6) we

obtain

2 R
t(s,2) = p c, E gl
-1

I=1

(3.8)
2

0.5 E C1Q1('_1)u'1 (Q'j"-l)]

1=1
Therefore, it is obtained that

46

PARALLEL PRE-PROCESSING

2
Tp=0.5 ; c @i R (gif-1) .
-3

on the other hand, the time required by a sequential algorithm
is

sl

Ts = 2 t(s,2),
2

and from (3.8) we produce

—

2
TS = ; Ciq“ (Q'fﬂ—l)]
=1

while from (3.7) and the fact that X+1=3RS', we obtain
Tp=0.5(ng,2 Nxs2-30)
and
Te=ny,,~n,.
Thus, the effectiveness of processor utilization is
Ec=Ts/(S*Tp)=3R(ny,y~n;) /[(K+1) (Rg,a=Ng,5_38)]+
Let us remark that S'=1 yields k+1=3R and ng,.,_3p=n;,

consequently Ec=1,

As a consequence of the above analysis we can state
THEOREM 3. Under the above assuptions, if {(n,} is a
Fibonacci sequence, a number of S=25' processors are used to

compute Y(k,0), k=0,...,K, and the above parallel algorithm is

used, then:
(1) the parallel processing time is
Tp=0.5(nky3-Ngs2-3p) TUS;

47

O. BRUDARU and G.M. MEGSON

(ii) the efrfectiveness of processor utilization is
Ec=3R(ng,p-n1) /[(K+1) (Ng,p=Ngen-38) 17

(iii) if S=2 then the parallel algorithm is optimal with
respect to the processor utilization.
Now, we are able to give a better motivation to our work.

A serial implementation of the extrapolation stage requires 0 (K?)
amount of time. The pre-processing stage needs 0(cK2) time for
n,=ak+b, and 0(cqx) time, where g=2 for nkazk and g=max{(q,,q,) for
Fibonacci sequence, where c¢ includes the time complexity in the
evaluation of f. The comparison still indicates that a parallel
approach of the pre-processing stage is well suited. A similar
situation appears in the case of Romberg's extrapolation method

for numerical integration ([1]), [7]).

4. Final remarks. There are two contradictory aspects in any
attempt to parallelize the extrapolation methods for solving
initial value problema in ODE's.

The first aspect refers to the adaptive feature of the
method which allows us to stop the first stage computation as
soon as it is obtained the desired accuracy. A considerable
amount of time can be saved in this way. Clearly, the best way
to accomplish the adaptive task is to use a serial algorithm,
which starts the computation of Y(k,0) value only if Y(h,0),
h=0,...,k-1, do not lead to a true value of the convergence test.

The second aspect concerns the fact that if we wish to
obtain a short parallel computing time, then the parallel
algorithm must anticipate the computation of some Y(k,0)-values

before knowing that these values are necessary or not to obtain

48

PARALLEL PRE-PROCESSING

the desired tolerance. If they aren't then an useless computation
was performed, and this comes as a price. In compensation, a
certain gain of accuracy could be obtained if the extrapolation
stage continues while it consumes the Y (k,0) values whose
computation was already started and does not need much time to
be finished.

The proposed algorithms accomplished a serial processing of
the bands, while the parallel processing addresses to the tasks
within of each band. For this reason, they seem to be a good

compromise between opposing restrictions.

REFERENCES

1. Brudaru, O., Systolic arrays for numerical integration with Romberg's
formula, Analele §$tiintifice ale Universiti{ii "Al. I. Cuza" din Iagi,
Informatica, no. 35, 1989, pp. 367-374.

2. Corbaz, G., Duprat, J., Hochet, B., Muller, J.M.,Implementation of VLSI
polynomial evaluator for real-time applications, RR 91-07, LIP, ENSL,
France, 1991,

3. Darte, A., Risset, T., Robert, Y., Synthetizing systolic arrays: some
recent developments, RR 91-09, LIP, ENSL, France, 1991.

4. Duprat, J., Muller, J.-M., Evaluation of polynomials and elementary
functions by integrated circuits, RR 698-I, TIM3, IMAG, France, 1988.

5. Duprat, J., Muller, J.-M., Hardwired polynomial evaluation, Journal of
Parallel and Distributed computing, no. 5, 1988, pp. 291-309.

6. Evans, D. J., Margaritis, K., Bekakos, M.P., Systolic and holographic
pyramidal soft-systolic designs for succesive matrix powers, Parallel
Qomputing, no. 9, 1989, pp. 373-387.

7. Bvans, D.J., Megson, G.M., Romberg integration on systolic arrays,
Parallel Computing, no. 3, 1986, pp. 289-304.

8. Evans, D.J., Megson, G.M., Construction of Extrapolation Tables by
Systolic Arrays for Solving Ordinary Differential Equations, Parallel
Computing, 410.1, 1987, pp. 33-48.

9. Figher, A.L., Kung, H.T., Synchroniring large VLSI processor arrays,
IEEE Transactions on Computers, vol. 34, no. 8, 1985, pp. 734-740.

10. Gear, W.G., Numerical Initial Value Problems in Ordinary Differential
Equations, Prentice-Hall, Inc., Englewood Cliff, New Jersey, 1971.

11. Gibons, A., Rytter, W., Efficient Parallel Algorithms, Cambridge
University Press, Cambridge, 1988.

12. Hairer, E., Wauner, G., Solving Ordinary Differential Equations II-
Stiff and Differential-Algebraic Problems, Springer Verlag, Berlin,
1991.

13. Jain, M.K., Numerical Solution of Differential Equation, Wiley Eastern
Limited, New Delhi, 1984.

14. Kung, H.T., Let’s Design Algorithms for VLSI Systems, Technical Report
CMU-CS-79-151, Carnegie-Mellon University, Computer Science
Departament, Pittseburgh, January, 1979.

15. Kung, H.T., Why Systolic Architectures?, Computer, 15, 1982, pp. 37-46.

49

O. BRUDARU and G.M. MEGSON

16.

17.

18.

O'Leary, D.P., Stewart, G.W., From Determinancy to Systolic Arrays,1EEE
Transactions on Computers, vol. C-36, no. 11, November, 1987.

Privat, G., Renaudin, M., L‘'algorithme CORDIC dans les architectures
gpecialisees de traitement numerique du signal, Traitement du Signal,
vol. 5, no. 6, 1988, pp. 421-434.

Rajopadhye, S.V., Fujimoto, R.M., Synthesizing Systolic Arrays from
Recurrence Equations, Parallel Computing, no.l4, 1990, pp. 163-189.

PARALLEL PRE-PROCESSING

pre-processing

stage 02 -

0-+0+0+0305 -

seq(nd)

y(t,H0) extrapolation
s0—0 st

wmﬁx\\ [L

20 —>C—0

PTIAVERN

0 —=0—0—0

PPASAVERVAN

20 —-0—0—0—0

WM%N\N \3\\ \N

+0—0—0—0—0—0

Figure 3: Polynomial extrapolation including the pre-processing

stage (K=5).

§3

STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXXVII, 3, 1992

ON A NONLINEAR-FRACTIONAL OPTIMIZATION PROBLEM IN GRAPHS

Eugenia IAcoOB’

Received: November 1, 1992
AMS Subject Classification: 05C75, 05C38, 90C35

REZUMAT. Asupra unei probleme neliniar-fractionari de optimisare
in grafe. Fie G(N,A) un graf finit gi neorientat. Asociem
fiecdrei muchii a grafului doul ponderi pozitive: costul c.. g¢i
capacitatea k;;. Notdm cu Y mul{imea tuturor arborilor” de
acoperire ai afului G@. Pentru TeY definim costul c(T) gi
capacitatea k(T) a arborelui T. Scopul acestei lucridri este de a
rezolva urmidtoarea problemdi de optimizare: Si se determine un
arbore TeY care minimizeazd c(T)/k(T) pe multimea Y. In articol
se prezint¥d gi un algoritm aproximativ de determinare a solutiei
optimale.

1. General problem. Let Q(N, A) be a finite undirected graph,
where N is the vertex set and A ¢ {(i,j): i,] € N}\{(i,1i):1 € N}
is the edge set.

We associate to each edge (i,j) in A two positive integer

pounds, that is a cost c¢;, and a capacity kij .

J
Let Y be a given set of subgraphs of G(N,A). For every

subgraph T in Y we define:

c(T) = 2}; c;; and k(T) = min { k;; : (i,7) € T},
(1, Vet
representing, the cost and the capacity of the subgraph T,
respectively.

We consider the following general fractional problem:

(P). Find a subgraph T'in Y minimizing the ratio c(T)/k(T)
over the set Y, namely:

min { ¢(T)/k(T) : T € Y }.

The particular case of problem (P) , when Y is the set of

*
University "Babeg-Bolyai“” Cluj-Napoca, Department of Computer Science,
3400 Cluj-Napoca, Romania

E. IACOB

paths between two given vertex of the graph G was studied by
Martins [3]. In the paper (5], we gave a generalization of
Martins algorithm.

The purpose of this paper is to apply this general algorithm
for a particular case of the set Y. Namely, we take Y to be the
set of all spanning trees of the graph G. In this case, we solve
problem (P) by the perturbation of its cost coefficients. We
obtain an approximate optimal solution for the initial problem
and we give an evaluation of the deviation from the optimal

value.

2. Basic properties. Firat we introduce the "nondomination"
relation on the set Y of spanning trees.

DEFINITION 1. Let 7T,T'e Y be two distinguished spanning
trees of G(N,A). T dominates T' if and only if c(T)<c(T') and
k(T)2k(T') and the strict inequality holds at least once.

The fact that T dominates T' we denote by T D T'.

Let Y, = {T € Y : 3 T' € Y such that T' D T } be the set of
dominated spanning trees.

DEFINITION 2. Y, = Y - Y, is the set of nondominated
spanning trees.

From the above definition it results that Y, can be viewed
as a set of optimal solutions for a bicriterion problem
associated to (P).

The algorithm that will be presented for solving problem
(P), 1s based on the concept of nondominated spanning tree. This

concept is inspired by the procedures of solving the bicriterion

60

ON A NONLINEAR-FRACTIONAL OPTIMIZATION PROBLEM

problem.

Further on, we present without proof some theorems and
propositions which represent the theoretic support for the
algorithm. In the general case, when Y is an arbitrary set of
subgraphs of G, we allready proved all these results (see, (5]).

Let Y, be the set of optimal solutions of problem (P). The
following theorem establishes a relationship between Y, and Y.

THEOREM 1. ([5)) Any optimal solution for (P) 1s a
non-dominated spanning tree, that is Y, € Y, .

DEFINITION 3. The subset Y,' of Y, is a selection of Yy, if
and only if for any T in Yy there exists a unique spanning tree

T' € Yy' such that c(T)=c(T') and k(T)=k(T').

PROPOSITION 1. ((5]) Let Yy’ a selection of Yy. If T' and T*
are two distingueshed spanning trees such that T',T"e¢Y,' then
c(T') is not equal with c(T") and k(T') is not equal with k(T").

From Proposition 1, it follows that the number of elements
belonging to Yy,' is bounded by the number m' of edges with
distinct capacities from G(N,A). Hence, a selection Y,' can be
computed in O(m’C(m,n)) time, where m is the number of edges of
G(N,A) and C(m,n) is the time needed for determining the minimum
cost spanning tree.

It follows that the complete determination of a selection
Y' can be done in polynomial time. Therefore, the execution of
an exhaustive search for Y,' (using Theorem 1), in order to
compute an optimal solution of (P) is not unrealistic. However,
in the algorithm that we present, we need not to find an entire

set Y,'. As a consequence the number of executions of a minimum

61

E. IACOB

cost spanning tree algorithm is minimized.

PROPOSITION 2. ([5]) Let Yy' ={ T;,T;,...,T;} (r < m) be a
selection of Yy. Then Yy' can be ordered such that c(T;)<c(T;4,)
and k(T;) < k(T;,,) for i=1,2,...,r-1.

We consider now the following set:

Yy" = {Ty.,....Tp} € Yy' where T;,...,T, are the first h
elements of Y,' and Y,' is a selection which has the elements
ordered in sense of proposition 2.

THEOREM 2. ([5)) Let k' > max {k(T) : T € Y }. If the
element T; € Yy' verifies the following conditions:

i) c(Tj)/k(Tj) =min { c(T)/k(T) : T € Yy'},

ii) c(Ty) < [c(Ty) /k(T;)] k',

iii) T, is not in Y,,
then exists T, in Y, and (Y,'-Y,") such that:

k(Tg) > [k(T;)/c(T;)] c(Ty).

3. Algorithm for the problem of the spanning tree with
minimum cost/capacity ratio. The basic scheme of the algorithm
that we propose is the same as the algorithm for the
MINSUM-MAXMIN bicriterion problem. Let us assume that T, € Y,'
was just determined with such an algorithm. Then, as k(T,,;) >
k(T4), the edges (i,j) € A, for which kij < k(T,), can be deleted
from G(N,A). In the resulting graph, the subgraph 7T.,,, is
determined as the spanning tree with minimum cost and maximal
capacity relatively to the set of all spanning trees with minimum
cost.

In fact, the difficulty is that we haven't an algorithm to

62

ON A NONLINEAR-FRACTIONAL OPTIMIZATION PROBLEM

determine the whole set of minimum cost spanning trees. The
algorithm of Kruskal find only one of these spanning trees. These
difficulty doesn't appear when Y is the set of all paths between
two given vertex of G(N,A) or Y is the set of assignements in a
bipartite graph (see, e.g. {1], [2], ([31).

We avoid this dificulty by using the following method.

Let ¢ = {c¢;,¢9,...,Cn} be the sequence of cost values for
the edges of G(N,A) in a nondecreasing order, and let
E={(i1,,73),.-+,(ip, Jn)} be the sequence of corresponding edges of
G(N,A). Further on we suppose that ¢, < ¢,. Otherwise we have c
= ¢y = ... = C, and (P) degenerates to the usual problem of
determining the maximum capacity spanning tree of a graph G(N,A).

The following algorithm generates some perturbation pounds
dij and perturbated pounds cij"°1j+dij' ordered in the sequences
D = { dy,...,d, } and C' = { c¢;',...,c,' }, respectively,

corresponding to the same edges as the elements of C.

Algorithm 1.
Step 1. Take kX = 1 and p = 0.
Step 2. If k+1 > m, then 4, = 0 and go to Step 11. Otherwise, go
to Step 3.
Step 3. 1f cp = Cpyy, go to Step 4. Otherwise, set d; = 0, take
k+1 instead of k and go to Step 2.
Step 4. Set d, = 0.
Step 5. Take p+l1 instead of p and go to the next step.
Step 6. If k+p = m, then go to Step 10. If k+p < m, then go to

Step 7.

63

E. IACOB

Step 7. If ¢ = Crepr then go to Step 5. Otherwise, go to Step 8.
Step 8. For g from 1 to p do dy,, = ¢ 107L (Ckep=Ck) /P, where L is
a natural number choosen such that 10%Y > m.

Step 9. Take k+p instead of k and go to Step 2.

Step 10. For g from 1 to m-k do

d q 107% (m-k)~! max { c,,q-cp, : h=1,...,m-1}.

q

Step 11. For q from 1 to m do cq'ch + dq .

Step 12. Stop.

This algorithm modifies the costs of those edges from G(N, A)
which have the same cost. More exactly, the algorithm adds to the
costs of these edges a positive quantity in order to
differentiates their costs. In this way, all values of costs
associate to edges are different. 1n this case, the spanning tree
of minimum cost is unigue.

The following theorem estimates the maximum error, due to
this method, in the determination of the spanning tree with
minimum cost/capacity ratio.

Let-e = 107 max { ¢;,; - ¢, :t h=1,..., m-1 } and

g = min { kij s (i,7) € A}.

THEOREM 4. The maximum error caused by Algorithm 1 1in
finding the spanning tree with minimum cost/capacity ratio is
(n-1) e/g.

Proof. Let suppose that 1'* is the spanning tree with minimum
cost/capacity ratio. Then, from the definition of e and g, it

follows :

ON A NONLINEAR-FRACTIONAL OPTIMIZATION PROBLEM

Y cyy Y (cy+diy)

c/(T*) _ (i,7)eT" - (i,j)eT” .
k(r*) min { k;; : (i,7)eT*) min (k;; :+ (i,5)€T*)
Y oy Y. di;
- (i,7)eT’ . (i,j)er <
min { k;; ¢ (i,5) €T} min{k;; : (i,j7)eT}
c(T") N (n-1) e
k(T*) g

Since, for any (1i,j) in A, dij > 0, from the above

relations, it results:

c(T") _ c(T?) _ (n-l)e

k(T*) = k(T*) g

0 <

which means that the conclusion of the theorem is true.

Further we will present an adjustement of Martins's
algorithm. Theorems 2 and 3 are used as an attempt to decrease
the number of spanning trees that have to be determined.

Three working variables are used in the algorithm: T, c¢" and
z. T' keeps the best spanning tree that was determined until the
curent iteration, ¢ keeps the value of (c(T')/k(T')) k' and z
keeps the value of c¢(T')/k(T'). Foregoing k' is a parameter of

the algorithm which is fixed such that k' > max{k(T): T € Y}.

Algorithm 2.
Step 1. Apply the algorithm 1 for G(N,A), and let denote by cij'
the perturbed costs.
Step 2. Set c'=INF, z = INF and the graph H(N,B) = G(N,A), where
INF is integer positive number such !%at:

INF > 2 max {c(T)/k(T) : T € Y}.

65

E. IACOB

Step 3. Find T" the spanning tree with minimum cost from
Y(H)= { T C Y : T spanning tree for H(N,B)}, that is

c'(T") = min { ¢'(T) : T € Y(H) }.
Step 4. If Y(H) is an empty set or c'(T") > c¢", then finish the
algorithm. In the opposite case go to Step 5.
Step 5. If c'(T")/k(T") < 2z, then perform the following
operations:

i) Take T' = T".

ii) Take c' = (c' (") /k(T")) k' and z=c' (T")/k(T").

iii) ?ake x=k (T") and go to Step 7.

If‘c'yT")/k(T") > g, then go to Step 6.
Step 6. Set x = ¢'(T")/z and go to Step 7.
Step 7. Eliminate from H(N,B) ail the edges (i, j) which has
kij < X. After this the new set of edges B is :

B:=B - {(1,]) € A : kij < x }.
Go to Step 2.

In order to clarify the implications of theorems 2 and 3 we
explain the algorithm step by step.

The first step modifies, if it is necessary, the costs
associated to edges of G(N,A) such that these became distinct.

In the second step the working variables ¢* and z are
initialized

In the third step we determined a nondominated spanning tree
T". This step is the most complex step of the algorithm because
each iteration requires the solving of an optimization problem
on the spanning trees set Y@). We can use in this step Kruskal's

algorithm (see, e.g., [4], [(2]).

66

ON A NONLINEAR-FRACTIONAL OPTIMIZATION PROBLEM

In the fourth step, we check a stop condition of the
algorithm. Thus the algorithm stops with an optimal solution 7'
when either in Y(H) there is no elements or it is verified the
condition of theorem 2.

Step 5 is performed when the spanning tree T" determined in
Step 3 is "beter" then the best spanning tree determined until
that moment. Also in this step we actualize T', c* and z. If T"
is worse than T', Step 6 is performed. In Step 5 is used Theorem
3, to justify the elimination (in Step 6) of some edges from the
auxiliary graph H(N,B). In this way, it can be possible to avoid
some nondominated spanning trees which not belong to Y, .

In Step 7 the edges having the capacities smaller than x are
eliminated from H(N,B). We must note that x=k(T') when the Step
4 is performed. But when Step 5 is executed the value of x is

determined by the Theorem 3.

REFERENCES

1. Burkard, R.E., Hahn, W., Zimmerman, U.,: An algebraic approach to
assignement problem, Math. Programming, 12 (1977), pp.219-232.

2. Gondran, M., Minoux, M., Graphes et algorithmes, Editions Eyrollaes,
Paris, 1979.

3. Kruskal, H.B., On the shortest spanning subtree of a graph and the
traveling salesman problem, Proc. Am. Math. Soc., 71 (1956), pp.48-50.

4. Martinas, E.Q.V., An algorithm to determine a path with minimal
cost/capacity ratio, Discrete Applied Math., 8 (1984), pp. 189-194.

5. Tigan E., Algorithms to minimize the cost/capacity ratio, Econ. Comp.
and Econ. Cyb. Studies and Res., 4 (1989), pp.53-59.

STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXXVII, 3, 1992

FILES D'ATTENTE DANS DES SYSTEMES
DISTRIBUEES DES SERVICES

Gr. MOLDOVAN" and I. RAP

Received: February 21, 1993
AMS Subject Classification: 68M20, 60K25

RESUMAT. - Cosi de agteptare in sisteme distribuite de servicii.
Se considerX un sistem de agteptare distribuit ce are o topologie
particular¥ determinatd de matricea de rutaj dat3d. In anumite
ipoteze ale sistemului de agteptare au loc teoremele 1 gi 2 ce
dau evaluliri pentru unele caracteristici numerice mai importante.

L'étude des systémes distribueés des services exécutées &
1'aide des ordinateurs a actugllement une importance de plus en
plus grande. La ré&alisation des certains services distribuées a
l'aide des ordinateurs est possible grace au développement de la
technologie de construction des ordinateurs basée sur
l1'utilisation de microprocesseurs de plus en plus performants.
Plusieurs systémes distribuées des services correspondent aux
réseaux des ordinateurs ayant des topologies connues.

Un systéme distribué des services exécutées 3 l'aide des
ordinateurs suppose 1l'existence des certaines composants
physiques (ré&seaux des ordinateurs) et des programmes assurant
le traitement le transfert, le contrdle et la protection des
données. Dans le transfert des donnés et des informations, qui
est fait par certaines procédées de comutation, l'exécution des
services suppose la consideration du caractédre aléatoire de 1la
réalisation des certains événements.

Dans ce qui suit on suppose que 1'unité qui doit étre traité

dans un noeud du systéme distribué est le job.

* University of Cluj-Napoca, Department of Computer Science,
3400 Cluj-Napoca, Romania

Gr. MOLDOVAN and I. RAP

Nous faisons les hypothéses suivantes:

Il. Les jobs arrivent aléatoirement & aux ordinateurs du réseau
en formant un flux poissonnéen.

I2. Le temps d'éxecution de n'importe quel job est aléatoire,
ayant une répartition exponentielle.

I3. Pour tous les ordinateurs du réseau les temps des services
et les inter-arrival temps sont des variables aléatoires
indépendantes.

Dans les hypoth2ses faites les ordinateurs qui éxistent dans
les noeuds du réseau des ordinateurs sont les stations de service
dans des files d'attente M/M/1.

Considérons un systéme distribué formé par les noeuds Cg,
Cy,+.+,C, et supposons conues les probabilités pP;jj q'un job qui

a 8té &xécuté dans le noeud C; est dirijé vers le noeud C;, pour
i,7=0,n .
La matrice P = (py), i,j =o,n s'appele la matrice de

routage du réseau.

Dans le processus de passage des jobs d'un noeud a l'autre
des agglomerations seront crées dans certainas noeuds. Pour
étudier cettes agglomerations nous considérons le réseau des
ordinateurs comme un réseau d'attente exponentiel ayant les
stations dans les noeuda et ayant la matrice de routage P. Ce
réseau d'attente sera considéré en régime stationaire.

Il est utile de trouver le nombre des jobs qﬁi attends &
8tre éxécutés dans les noeuds du réseau des ordinateurs.

Un état du réseau d'attente sera le vecteur k = (ko,
ki,...,k,) ol k; est le nombre des jobs en cours d'éxécution on

70

FILES D’ATTENTE DANS DES SYSTEMES DISTRIBUEES

qui attendent & é&tre é&xécutés par l'ordinateur ¢; , i =0,n .

Pour les réseaux exponentielles d'attente a lieu la théoréme
de forme produit du Jackson ([{1], [2]). Donc, la probabilité que

le réseau d'attente se trouve dans 1l'état k est

n
P(k) = Py(ky)
I_Io 115y
ol P;(k;) est la probabilité que dans le systéme d'attente de

1'ordinateur C; se trouvent k; jobs, i =0,n . Dans le régime

stationaire ces probabilités ne dependent pas de temps.

Soit a le paramétre du flux poissonnéen des arrivées des
jobs A l'ordinateur C,, soit b; le paramétre du temps de service
exponentiel de 1l'ordinateur cC,, i=T,n et soit p; 1la
probabilité gque le job &xécuté a l'ordinateur C; quitte le
réseau, i =0,n.

I¢i nous nous limitons au cas p;j; = 0 pour |1-7] > 1 et
Pio = 0O pour i =71,n .

Les probabilités ci-dessous satisfont les relations

n
po”l’; By
=1

D, =1-py,
Py =1 -(Py 44 * Pyy.) 722,01
bp=1- Pp,na

S1 a; notte le paramédtre du flux d'er{trée dane le file

d'attente de l'ordinateur C;, ;i -03,n , alors (3)

a, = a
& = Pp1dy * Py 4,
ay = Pojdg * Py.a,5 45,4 * Pju,j @5, J=2,0-1
an = pOn ao + pn~1,n an—l

Le facteur de service de l'ordinateur C; sera

71

Gr. MOLDOVAN and I. RAP

r;=—+,1=0,n. L'existence du régime stationaire exige que

r; <1i, i=0,n-

Pour ce type de systéme distribué ont lieu les théorémes
suivants.

THEOREME 1. Dans les hypothéses f, - I, et en régime

stationaire on a

ako‘kl‘ka (bo - a)

ko+1 ky+1 ky+1
be® " by' b’

1) Pk, ki, k) = .
(1-py; Pyy)?

. [by (1-DPy3 Pa;) - @(pPgy + Pop P3y V1.
(b3 (1 - Py Py) - @lPy; + Pgy Pi3)]

ii) L'espérance mathématique du nombre des jobs & 1'ordinateur
C, est

N=__‘E.:‘___ i=0,1,2
i ’]
1-r,

ii1) Le racteur de nonutilisation de 1'ordinateur C; est

6, =1-r, , i=0,1,2

1
iv) L'espérance mathématique de nombre des jobs dans le réseau
est

I r I
Q + 1 + 2
1-r, 1-r; 1-1,

v) Si la discipline d'attente est FIFO, 1'espérance mathématique

du temps d'attente d'un job & 1'ordinateur C; est

T 1

;] = ————— , 1=0,1,2.
1 bi(l-ri)

72

FILES D'ATTENTE DANS DES SYSTEMES DISTRIBUEES

THEOREME 2. Dans les hypothéses I, - I, et en régime

stationalre ou

a

n
1) Plky k., ..., k) =}‘[(1-r)r
=0

il) L’'espérance mathématique du nombre des jobs A 1'ordinateur
C; est

I
1_1-1

Nl'g ’ i ‘ﬁ,n

iii) Le facteur de nonutilisation de 1l'ordinateur C; est

0.

1

=1-r, , i=0,n
iv) L'espérance mathématique du nombre des jobs dans le réseau
est
n ri
o 1l-rg
Ssi la discipline d'attente est FIFO, 1'espérance

Na=

mathématique du temps d'attente d’'un job & 1‘ordinateur C; est

1 . -
T, & ———— i=0,n
17 b, (1-1))
Les approximations données correspondent aux approximations

A .
a = -4 i=1,n

1
1
ol
n

Ay = 2: 111 . i=T1,n

J=1

avec

Gr. MOLDOVAN and I. RAP

J+1
Po; [Pssn .pour j<i

=1

4, - { Po ,pour j=1

J-1
Dg; l_[Ps, 501 - pour J>l
8-1
et

1-p,.p,; . pouri-=1
By =1 1 - Py,i1 Pia,1 Piin Pin,y + pour i= -1
1- Ppon-i Ppnoaa,n + POUL 1=D

Les démonstrations des deux théoré&mes consistent dans 1la
résolution des éguations de Chapmann-Kolmogoroff d'un file
d'attente M/M/1 en régime stationaire et la résolution du systéme
des équai:ions satisfaites par a; , i =0,n.

Le cas particulier du théoréme 1 est presenté en detail dans

(4].

BIBLIOGRAPHIE

1. Jackson, R.R.P., Networks of waiting lines, JORSA, vol §, nr. 4, pp.
518 (1957).

2. Jackson, R.R.P., Job-shop like quening systems, Management Sclence,
vol. 10, pp. 131-142 (1963).

3. Vijbrands, R. J., Quening Network Models and Performance Analysis of
Computer Systems, Technische Universiteit Eindhoven, Nederland, 1988.

4. Moldovan, Gr., Rap, I., Asupra unei probleme de agteptare In retele de
calculatoare, Lucclrile Conferintei de Matematicl Aplicat¥ gi MecanicX,
Cluj-Napoca, 21-23, octombrie 1988, Cluj-Napoca 1989, pp. 493-501.

STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXXVII, 3, 1992

VARIOUS KINDS OF INHERITANCE

8. MOTOGNA" and V. PREJMEREAN’

Received: November 18, 1992
AMS Classification:68065, 68099

RESUMAT. Diverse tipuri de mojtenire. Lucrarea de fatd se vrea un
mic setudiu comparativ, in functie de avantajele gi dezavantajele
lor, a diverselor tipuri de mogtenire implementate in limbajele
orientate obiect, Studiul s-a flcut In principal pe limbajele
Smalltalk, Beta gi CLOS decarece exemplificd cel mai bine
mogtenirea aimpl¥, multipl¥ gi in CLOS introducerea claselor
abstracte numite mixin. ’

1. Introduction : A variety of inheritance mechanisms have
been developed for object-oriented programming languages. These
mechanisms range from Smalltalk single inheritance to the complex
and powerful multiple inheritance combination of CLOS.

These languages have similar object models and also share
the view that inheritance 1is an incremental modification
mechanism, but they differ widely in the kind of incremental
changes supported.

Inheritance is a hierarchical incremental modification
mechanism that transform a parent P with a modifier M into a
result R : R = P + M as in figure 1.

Parent P)
} R=P+ M
Modifier M |

fig. 1

The parent P, modifier M and result R have a set with

finite number of attributes :

* "Babeg-Bolyai” University, Department of Computer Science,
3400 Cluj-Napoca, Romania

S. MOTOGNA and V. PREJMEREAN

P= (P, Pyy .., Pp)
M= (M, My, ..., Mp)
R= (Ry, Ryy «+v, Ry)

When the attributes of the modifier M differ from those ot
the parent P then the result R has p+m attributes, contains the
union of the P and M attributes. For the overlapping attributes,
the modifier attributes redefine the parent attributes, in the
same way as the identifiers declared in an inner encapsulated
module redefine those declared outside the module.

The inheritance in Smalltalk, Beta, CLOS are representative
of three kinds of inheritance. The inheritance mechanisms seem
to be very different but they have a common structure. This
mechanism combines two sets of attributes P and M such that

duplicate attribute definitiona are given a value from one set.

2. 8ingle Inheritance : If we consider single inheritance,
each class has at most one superclass, the determination of the
class procedure list is trivial : we only need to traverse a
linear path to the most general superclass of its inheritance
hierarchy.

Inheritance in Smalltalk is a mechanism for incremental
derivation of classes, it is a single inheritance and was adopted
fromn Simula.

In Beta the inheritance is single, too and is designed to
provide security from substituting of a method by a completely
different method. Inheritance is supported by prefixing of

definitions.

76

VARIOUS KINDS OF INHERITANCE

These two mechanisms are the same, only the direction of
modification is different. In Smalltalk the new attributes are
favored and may replace the inherited ones, in Beta the original

attributes are favored.

3. Multiple Inheritance: The real world has in many
situations to deal with multiple inheritance. The natural
inheritance comes from two parents more than from one.

Let's consider a class T which inherits from superclasses
Ty, Ty eooy Ty ¢

class T inherits (T, T,, ..., T,) in T - body.

Some multiple inheritance systems, as ClLOS extend the
inheritance hierarchies, i.e. by ordering 7, ..., T, in a linear
order from left to right.

The problem of the multiple inheritance is at the moment of
invoking a method. If a method is defined in more than one
superclass which of them should be invoked? There must be no
conflict between characteristics inherited from independent
classes (even if these characteristics have the same name).

There are some algorithms for linearization the hierarchy,
for reaching a method but each of them has some disadvantages.

There are two kinds of strategies to solve the conflict
problem in multiple inheritance : linear strategy and graph-
oriented strategy.

The principle of linear strategy is that the inheritance
graph should be transformed to a linear structure, without

duplicates and treat the resulting graph as a single inheritance

77

S. MOTOGNA and V. PREJMEREAN

one. This goal is realised ordering the superclasses list of a
class using depth-first search or breadth-first search.

The graph-oriented strategy works directly on the
inheritance graph without modifying it, allowing to access each
inherited characteristic. When a conflict occurs the superclass
from which we want to inherit must be specified . We mention that
this class is not necessary the one which defines the
characteristic. A technic which is used in extended Smalltalk is
the selector composition. A composed selector is a selector
preceded by the class name.

Using linearization, a CLOS multiple inheritance hierarchy
could be reduced to a collection of inheritance chains, each of

which can be interpreted using single inheritance.

4. Mixins : A mixin is an abstract subclass that may
be used to specialize the behavior of a variety of parent
classes. In contrast to classes, mixins are no objects which can
create own instances. In mixins we may define new methods that
perform some actions and then call the coresponding parent
methods, but these methods are only textually. When a class is
defined, the methods of its mixins will be defined for that
class.

Stroustrup(6] had the followiné argument for using multiple
inheritance : "it might be useful to have class B inheriting from
two classes A) and A, ...". This is not possible using mixins but

if we use factorization we obtain a solution for this.

78

VARIOUS KINDS OF INHERITANCE

PERSON SPORT PERSON FACULTY
P . [N , IR P |
SPORTSMAN STUDENT { SPORTSMAN ' STUDENT |
. . | ! !
SPORTYSTUDENT SPORTYSTUDENT

using multiple inheritance using mixins and

factorization
fig. 2

CLOS supports mixins and it seems to be not so difficult to
extend Beta and Smalltalk to support mixins and generalized

inheritance.

REFERENCES

1. Wegner, P. and 2donik, S. B., Inheritance as an Incremental
Nodification Mechanism or What Like Is and Isn’'t Like, in ECOOP'88
Proceedings,pp 55-77.

2. Ducournau, R. and Habib, M., Oon Some Algorithms for Multiple
Inheritance in Object Oriented Programming, in ECOOP'87, pp 243-252

3. Bracha, G. and Cook, W., Mixin-based Programming, in ECOOP/OOPSLA'90
Proceedings, pp 303-311.

4. Bretthauer, H., Christaller, T. and Kopp, J., Multiple vs. Single
Inheritance in Object-oriented Programming Languages. What Do We
really Want, 1989.

5. Wegner, P., Concepts and Paradigms of Object Oriented Programming -
Expansion of Oct. 4 OOPSLA'89 Keynote Talk, OOPS Messenger, vol 1, no
1, pp 7-87, Aug 1990.

6. Stroustrup,B., The C++ Programming Language. Addison Welaey, 1986.

STUDIA UNIV. BABES~BOLYAIL, MATHEMATICA, XXXVII, 3, 1992
ALGEBRAIC SPECIFICATION OF PROGRAMMING LANGUAGE SUBSETS

Ilie PARPUCEA"

Received: March 1, 1993
AMS Subject Classification: 68Q05

REZUMAT. Specificarea algeb.ick a subseturilor unui limbaj de
programare. In aceastX lucrare autorul incearcd¥ aplicarea unui
mndel algebric de specificare, in definirea seubseturilor unui
limbaj de programare. Modelul se bazeaz¥ pe ierarhia algebrelor
eterogene. Citeva rezultate teoretice cit .gi un exemplu concret
de specificare sint redate aminuntit pe parcursul intregii
lucriri. PR S :

1. Introduction. The algebraic modelling of programming
language specification is subjected to an intense research, with
significant results. Partial or "relatively total" solutions were
found, having the category theory ([ADJ73, ADJ77), partial or
total heterogeneous universal algebras [BRO82, BRO87], algebras
with operator schemes, or even context-free algebras [RUS72] as
algebraic departure point. These solutions concerned many times
only certain aspects of the programming language specification.

The ADJ group of authors attempts to develop a concept of
programming language within the framework of the category theory.
It is interesting as to the mathematical object in its own self,
constituting a strong source of inspiration for subsequent
results. In [WAG89] the author presents a model of algebraic
specification of a langﬁage for abstract data type specification.
This model of language belongs to the object-oriented language
set.

The total or partial heterogeneous algebras seem to be ever

* Universitatea “Babeg-Bolyai” Cluj~Napoca
Facultatea de §tiinte Economice
P-ta gtefan cel Mare 1, 3400 Cluj-Napoca, Romdnia

I. PARPUCEA

more used to the complex approach of programming language
specification. Lots ot papers (e.g. [BRO82, BRO87]}) constitute
interesting approaches, from both theoretical and practical
viewpoints. They present algebraic models for defining abstract
types of partial data and hierarchical data types. Very
interesting is the pure algebraic model concerning the
specification of programming language semantics, using particular
models of abstract data types {BRO87].

Both the heterogeneous algebras [BIR70] and those with
scheme of operators [HIG63) constituted the main theoretical
source for the elaboration of HAS hierarchy (RUS80] and
introduction of context-free algebras [RUS72)}. It is to be
noticed that the HAS hierarchy concept allows a unitary approach
of the programming language specification, from both semantic and
syntactical viewpoint.

The specification of a programming language implies the
existence of a set of data (which constitutes the data base of
the language), and a set of operation defined on this data base
(which constitutes the instruction set). The data base and the
instruction set associated to a language constitute the so-called
"computing reality". The concept of program will allow the
identification of that subset from the "computing reality" which
needs transformations. Within the framework of a specified
programming language, a program will constitute a well defined
entity from two points of view: semantic.and syntactical.

We shall consider a language which gathers together all

"computing realities" corresponding to a given set of languages.

82

ALGEBRAIC SPECIFICATION

This language will be called universal language (UL). Its
restriction to a certain "computin reality" will constitute a
subset of the universal language. Such an approach allow to
consider the programming languages hierarchically as to their

specification and implementation.

2. Example of simple language. In order to exemplify our
model, we shall consider the following simple language. This
language includes three data types: numerical, array and record.
Oon the numerical type there are defined the arithmetic operations
(+,-,*%,/,**) and the relational operations (<,<=,>,>=,==,/=). One
defines the instruction IF and the assignment instruction. The
syntax of data types and arithmetic expressions is given in BNF
by:
<TYPE_DECLARATION>::=type <TYPE NUME> is <TYPE DEFINITION>
<TYPE_DEFINITION>::=<NUMERICAL_TYPE>/<ARRAY_TYPE>/<RECORD_TYPE>
<CONSTRAINT>: := range <RANGE>
<RANGE>: :=<SIMPLE_EXPRESSION>..<SIMPLE_EXPRESSION>
<SIMPLE_EXPRESSION>: :=<FACTOR>{<ARITHMETICAL_ OPERATOR><FACTOR>}
<FACTOR>: : =<VARIABLE>/<CONSTANT>
<VARIABLE>: :=<IDENTIFIER>/<INDEXED_COMPONENT> /

<SELECTED_COMPONENT>
<RELATION>::=<SIMPLE_EXPRESSION><RELATIONAL_0PERATOR>

<SIMPLE_EXPRESSION>
<ARITHMETICAL_OPERATOR>: :=+/~/%//[%*
<RELATIONAL_OPERATOR>: :=</<=/>/>=/==/ [=

s

<SUBTYPE_DEFINITION};{;subtype<SUBTYPE_NAME>

I. PARPUCEA

is<TYPE DESIGNER> [<CONSTRAINT>)
<TYPE_DESIGNER>::=<TYPE_NAME>/<SUBTYPE_NAME>/
<PREDEFINITION_ TYPE>
<NUMERICAL TYPE>;: :=<CONSTRAINT>/new<PREDEFINITION_TYPE>
<CONSTRAINT>
<PREDEFINITION TYPE>: :=<INTEGER>/<FLOAT>
<OBJECT_DECLARATION>: :=<IDENTIFIER LIST>:<TYPE DESIGNER>
[:=<SIMPLE_EXPRESSION>];

<IDENTIFIER _LIST: :=<IDENTIFIER>{,<IDENTIFIER>}
<RECORD_TYPE>: : =record<COMPONENT LIST> end record.
<COMPONENT_LIST>: :=<OBJECT_DECLARAT1ON>{, <OBJECT_ DECLARATION>}
<ARRAY_TYPE>: :=array (<INDEX>{,<INDEX>}) of <TYPE_DESIGNER>
<INDEX>: :=<RANGE>/<INTEGER>
The syntax of assignment and IF instructions is given also in BNF
by:
<ASSIGNMENT_STATEMENT>: :=<VARIABLE>:=<SIMPLE EXPRESSION>
<EL_IF>::=<RELATION> then <SEQUENCE>
<IF_LIST>::=<EL_IF>/<IF_LIST>elseif<EL IF>
<IF>::=1f<IF_LIST>endif/if<IF LIST>else<SEQUENCE>endif
<SEQUENCE>::-<ASSIGNMENT_STATEMENT}{;<ASSIGNME§T_STATEMENT>}

Remark. The symbols +, -, *, /, 6 %% correspond to the
arithmetic operations of addition, substraction, multiplication,
divislon, powering, while the symbols <, <=, >, >=, ==, /=
correspond to the relational operations of smaller than, smaller
than or equal to, greater than, greater than or equal to, equal
to, different from, respectively.

In the above defined language the numerical types <INTEGER>

84

ALGEBRAIC SPECIFICATION

and <FLOAT> are considered to be predefined. We renounced the
definition of the following syntactical categories: <INDEXED-
COMPONENT>, <SELECTED~COMPONENT>, <IDENTIFIER>, <CONSTANT>,
<TYPE-NAME> and <SUBTYPE-NAME>. Neither the theoretical aspect,
nor the examples we shall present will be altered by these
restrictions.

A context-free grammar is considered to be a gquadruple
g=<v,Uv,, v,, P, Vv,>, where

P={ A~ S,A,5,A,8,...8, ,ASn | 8:/8,,...,8, €V,
A A, Ay, ... A E V)

V, is the nonterminal symbol set, while V, is the terminal symbol

set. A specification base B=<«v,Uv, X5 is made to

correspond to this context-free grammar, where
LS=(8=x<n,8,s,...8,AA,...A,A> | A~ 8,A,8,...8,,A,8, € P).
The context-free algebra ([RUS83] specified by B can be
written in the form of the triple

d = < (M, = W(V,LS),, LS, F>,

*
where W,(V,,Xs) = {xev; | A=x} , and for every w, e W, (V.,LS),

.k=1,2, «.e,n, and 8§ = «<n, S08;1...8,,A)A,...A,A> we have
Fsg(WyiWaseeo ,Wy) = 8gW1S1...8, W, S, € Wa(V,, ZIS).

F is the symbol of a function which associates to every
operation scheme § ¢ IS a heterogeneous operation specific to the
context-free algebra 3. If §=<n,s5,8,...5,, AjA,...A A>, then Fy

is the function

85

I. PARPUCEA

Fy 2 Wy X Wy X ... X W, = W,

The action law of the function is the above mentioned one. We

present further down the operation schemes § € IS:

9;

g2

86

<2,
<1,
<1,
<1,
<1,
<2,
<1,

<3,

<1,
<1,
<1,
<1,
<1,

<3,

<0,
<0,
<0,
<0,

<0,

= <o,

<0,

<0,

type is,TYPE NAME TYPE DEFINITION TYPE DECLARATION>

range

,NUMERICAL_TYPE TYPE_DEFINITION>
,ARRAY_TYPE TYPE_DEFINITION>

,RECORD_TYPE TYPE DEFINITION>

,RANGE CONSTANT>

, SIMPLE_EXPRESSION SIMPLE_ EXPRESSION RANGE>
,FACTOR SIMPLE_EXPRESSION>

,FACTOR ARITHMETICAL_OPERATOR SIMPLE_EXPRESSION
SIMPLE_EXPRESSION>

, VARIABLE FACTOR>

, CONSTANT FACTOR>

, IDENTIFIER VARIABLE>

, INDEXED_COMPONENT VARIABLE>

, SELECTED_COMPONENT VARIABLE>

+SIMPLE_EXPRESSION RELATIONAL_OPERATOR

SIMPLE_EXPRESSION RELATION>

+

k%

<=

+ARITHMETICAL OPERATOR>
+ARITHMETICAL OPERATOR>
+ARITHMETICAL_OPERATOR>
+ARITHMETICAL_OPERATOR>
+ARITHMETICAL OPERATOR>
+RELATIONAL_ OPERATOR>

+RELATIONAL OPERATOR>

+RELATIONAL_OPERATOR>

ALGEBRAIC SPECIFICATION

0,3= <0,
0y4= <O,
0,5= <0,
026

/=

,RELATIONAL OPERATOR>
, RELATIONAL_ OPERATOR>

,RELATIONAL OPERATOR>

<2,subtype is , SUBTYPE_NAME TYPE_DESIGNER

SUBTYPE_DEFINITION>

6,7= <3,subtype is ,SUBTYPE NAME TYPE_DESIGNER CONSTRAINT

0,5= <1,
09= <1,
030= <1,
03,= <1,
04,= <2,
033= <1,
O34~ <1,

O35= <2,

036= <3 ’

037= <1,

03B= <2 ’

039= <1,record

O40= <1,

041= <2,

042= <1,

943= <2,

new

’

’

SUBTYPE_DEFINITION>

,TYPE_NAME TYPE_ DESIGNER>
, SUBTYPE_NAME TYPE DESIGNER>
, PREDEFINITION_TYPE TYPE_DESIGNER>
,CONSTRAINT NUMERICAL_ TYPL>
,PREDEFINITION_TYPE CONSTRAINT NUMERICAL_TYPE>
; INTEGER PREDEFINITION_TYPE>
,FLOAT PREDEFINITION_TYPE>
,IDENTIFIER_LIST TYPE DESIGNER

OBJECT DECLARATION>
, IDENTIFIER_LIST TYPE_DESIGNER SIMPLE_EXPRESSION

OBJECT_DECLARATION>

, IDENTIFIER IDENTIFIER LIST>
IDENTIFIER_LIST IDENTIFIER IDENTIFIER LIST>
end record, COMPONENT LIST RECORD_TYPE>
+OBJECT_DECLARATION COMPONENT LIST>
,COMPONENT LIST OBJECT_DECLARATION

COMPONENT LIST>
, INDEX INDEX_ LIST>

,INDEX LIST INDEX INDEX_ LIST>

044= <2,array() of ,INDEX_LIST TYPE DESINGER ARRAY TYPE>

87

I. PARPUCEA

045= <1, ,RANGE INDEX>
046= <1, , INTEGER INDEX>

049= <2, := ,VARIABLE SIMPLE_EXPRESSION ASSIGNMENT_ STATEMENT>
045= <2, then ,RELATION SEQUENCE EL_IF>

O49= <1, ,EL_IF IF_LIST>
Ogo= <2, elsif ,IF_LIST EL_IF IF_LIST>
0g;= <1,if endif,IF_LIST IF>

O0g,= <2, if else endif,IF_LIST SEQUENCE IF>

0g3= <1, +ASSIGNMENT_STATEMENT ASSIGN_LIST>
Ogq= <2, , ,ASSIGN_LIST ASSIGNMENT_STATEMENT ASSIGN_LIST>
Ogs= <1, +ASSIGN_LIST SEQUENCE>

3. Basio «concepts. Let JB=<IUs, LS, a> be the

specification base for an arbitrary programming language. B is
organized under the form of a homogeneous algebra. I is the set
of all object names, S is the reserved word set, such that s n
I = @; ES is the set of operation schemes represented as triples:
IS = {0=<n, 8§38,...8,, 1;i,...1,1i>}; « is the set of axioms given
as couples of words (w,;,W;). These words are generated by the
operations specified by the operation schemes 0¢IS. For an

operation scheme 0€XS, 0=<n,s,8;,...5,, 1;1,...1,i>, the function

Fo: A; XA; X...XA; =~ A
specifies a signature for a heterogeneous operation in the
language specified by B. Consider an arbitrary subset J ¢ I, to
which we shall refer in what follows.

DEFINITION 1. The operation scheme o'=<n,s;s,.. <8p,

88

ALGEBRAIC SPECIFICATION

jida---Jpi>, Jy € J, k=1,2,...,n, is called restriction of the
operation scheme 0€XS, 0=<n,s38;...S,, iji;...i,i> to the subset

J if there exists the function Fy : A; XA; X...XA, - A, which

is a restriction of the function F, : A; XA; X...XA; = A,.

n

For a given subset J, an operation scheme ¢ can have one or
several restrictions. We denote by o|, the set of all
restrictions of o to J, namely:

o|l; = { o’|o’ is a restriction of the operation scheme
g to the subset J }.

Remark. If 0'=<n,sy8,...8,,717,...7,1> is a restriction of

the operation scheme a=<n,sosl'. «.8,,i11,...1,i> to the subset J,

then AjkCAik , Vj k=1,2,...,n.

k’
DEFINITION 2. Let %'={0,,0,,...,0,} be a set of operation

schemes. A restriction of L' to the subset J 1s defined as
follows:
Y ', = loylo; € oy, . i=T,m}
DEFINITION 3. The restriction of the specification base

B=<1UsXs,a> to the subset J is the specification base

Bl, = <gU s, Xs|,, al,>,where a|, is that subset of the axiom set

« which consists of the axioms satisfied by the operations
specified by LS|, (restriction of the operation scheme set IS to

the subset J).
DEFINITION 4. An interpretation [RUS83) of the specification

base B = <IUS, ¥S,a> is the triple <A,p,¥>, where A = (A;) jer

is a family of sets indexed by the set I of the supports of Bi e

I. PARPUCEA

is a function ¢ :I-+A such that ¢(i) is an element of A for
every 1 € I; ¥ is the function Y:IS ~ OP(A), where OP(A) is the
set of all operations defined on A.

The interpretation A4 = <A,¢,¥> of the specification base
B=<1Us, S,a> fulfils the following conditions:

c1i. @ (i) =A; for every 1 ¢ I; A; is called the support set
for the name of the object i.

ca. For every o€y, 0=<n,8g,8;...8,,i11,5...1,1>,
Y(o): (i) x (i) x...x (i) - ¢ (i) , or in other
words F(o): Ay xA;x...x A

- A, such that if

0=<0,s,1i> then Y(o):¢ - ¢(i) or ¥(o):¢ - A;, namely
?(o) is in this case the injection of the element ¥ (o),
which will be denoted by s, in the set A,.

€3. Every axiom (w,,W,) is considered to be satisfied in

the interpretation 4 = <A,¢,¥> ; this means that it

is satisfied by operations from OP(A).

We shall hereafter denote by (B the set of

interpretations of a specification base B =<Ius, IS, a>.

If A€1(B , then it can be denoted g = <A=(A,), LS, ¥>,
where @(1)= A, for every ieI, and
Vio):@(d) xe(i)x...x ¢(i,) ~ @(i) or ¥(o):4, XA x...xA -

for every 0€IS, 0=<n,sys,...s,,1,1,...1,1>. In other words, every
interpretation A of the specification base B is a heterogeneous

algebra.

90

ALGEBRAIC SPECIFICATION

DEFINITION 5. Let B =<IuS, IS, a> be a specification base,

and let a=x<49¢,¥> be an interpretation; then
al, =<Al,.@|, ¥|,> 1is called restriction of the interpretation
4€1 (B to the subset J, where: A|, 1s the family of sets

(A;) jesi @, 1is the restriction of the function ¢ to the

subset J; Y|, is the restriction of the function ¥ to the
operation scheme set LIS|;.
PROPERTY 1. Let B =<I v S, ES, a> be a specification base,

and let J € [I(B) an arbitrary interpretation . Then the

restriction of J to the subset J, Al, = <A, ¢l, ¥|»> , is an

interpretation of the restriction of B to the subset J,

8l, = <gUs, 3|, «|p>.

Proof. The proof results immediately from Definitions 3,4
and 5.

For a given specification base B =<I u S, IS, a>, an
important interpretation is the so-called word-algebra or the
heterogeneous W~algebra [RUS83) specified by the base B. This is
obtained as follows:

(1) one constructs the family of all words specified by the
base B in the form W=(W;) jer» Where every W; is defined as
follows:

rl. If 0=<0,s,1>,0€¢L5, then seW,.

r2. If o€Xs, a=<n,sosl...sn,iliz...in1>, and if w;, wy,..,w,
are words of the types i,,i,,...,1,, respectively, namely
(WyeWap-oo,W,) € Wi XW,ox...xW;,, then

91

I. PARPUCEA

W = SgW1S51,¢-+,5,1WpS, € Wi.
r3. The rules rl and r2 describe all the words of the type
i, which will sometimes be denoted by W(i), too.

(ii) For the given specification base B one constructs the
following interpretation:
pl. For every ieI, ¢(i) =W(i).
p2. For every 0€LS, 0=<n,sy8;...8,,1;1,...1i,1>, the function
Y(o):W(i,)xW(iy)x...xW(i,) - W(i) acts according to the law:
1f weeWw (1y), k=1,2,...,n, then
Y(O) (Wi, Wo,eoo ,Wy)=80W18;1...8, W eN(1).

(iii) Interpreting the specification axioms as formal identities
[RUS83], follows that the family W=(W(1)),,r together with
the above defined functions (¢,¢) form an interpretation of
the considered specification base. This interpretation is
written under the form

HB) = <w=(W(i)) ;. LS, ¥>
Let A, = <A=(A;);.r, ES, ¥,>, A, = <B=(B,),;.r, IS, Yo> be

two similar heterogeneous algebras such that 4,,3, € I(B).
DEFINITION 6. A family of functions f=(f;),.r, f,tA; ~ By,

indexed by the set I 1is called similarity morphism or

homomorphism from J, to 4, 1f for every operation scheme o¢XxS,
o=<n, 8,8,...8,, 11i,...1,i> and for every
(a,,a,,...,a,) € A XA x...xA

n

we have

£,0¥,(0) (a1, 8,0 - . 3,)) = ¥,(0) (£, () £, (&), ... £, (a,)).

DEFINITION 7. Let B=<Ius, IS, a> be a given specification

base. A model of B is an interpretation W e JL(B) with the

92

ALGEBRAIC SPECIFICATION

property that for every other interpretation 3 € [(B) there
exists exactly one homomorphism f:W ~ 3.

In [RUS83) there is shown that for every specification base
B = <Ius, S, a> there exists a model of this base. This model
is the word algebra { (B) = <W=(W1));.;, =S, ¥>. If W,(B) and
W.(B) are two models of the base B, then they are isomorphic.

Since the model W(B) belongs to the set of interpretations
of B, according to Definition 5 one can consider the restriction
of the model W(B) to the subset J, written as

H(B) lJ = <WIJ = (W(j))je.ﬂ ESIJ’ '”J>'
Property-1 also holds for the model W(B), bat may be reformulated
as follows:

PROPERTY 2. Let B=<IuS, IS, a> be a specification base. Then
the restriction {(B) |, of the model is equal to the model of the
restriction of B, H(B)|,) -

THEOREM 1. Let B=<IuS, IS, a> be a specification base, and
let W(B) be a model of this base. For every Je¢P(I), J+e, there
exists a restriction B|, of B whose model is H(B) |, (here P(I)
stands for the set of the subsets of I).

Proof. Consider JeP(I), J»e, and construct the restriction
B|;- Let §(B) be the model of the specification base B, and let
H(B) |, be the restriction of the model K (B) to the subset J.
According to Property 2, follows that W(B)|, = W(B|,)-

For a given' specification base B =<IusS, IS, a >, the
construction of an interpretation j € J(B) supposes the choice
of both the family of sets A and the operation set OP(A) defined

on this family. The construction of an interpretation for a

93

I. PARPUCEA

specification base corresponds to the construction of the level
one (HAS,) from the HAS (heterogeneous algebraic structure)
hierarchy [RUS80) of a language specification. According to the
principles of construction of a HAS hierarchy, the level one
(HAS;) will constitute the specification base for the level two
(HAS,) . The transit from level one to level two is performed by
constructing a new interpretation of the specification base HAS,.
This process can continue until the specified language satisfies
the requests of the specifier. The new theoretical concepts
presented in this paper are valid for every level HAS; from a
language specification. For simplicity reasons we discussed only
the level one from the HAS hierarchy.

Let LB,;=<A,,¢,,V¥,> , LB,;=<A;,9,,¥;> be two programming languuges

specified by the same base B.

DEFINITION 8. The language LB, i1s subset of LB, if A; < A,,
and, 1if w, € OP(A,), then either w, € OP(A;) or w, is a
restriction of an operation w, € OP(A;).

COROLLARY. Let =B=<IuS, IS, a> be a specification base. The
language LB|; specified by the restriction B|, of the base B is
a subset of the language LB specified by the base B.

Proof. This is evident by virtue of Theorem 1.

One can construct in this way a large specification base B
able to generate a subset of the object specified by B, by means
of the operation of restriction to a given subset J. Denoting by
UL the language (object) specified by the base B, a subset of UL

can be obtained as an object specified by a restriction of B

94

ALGEBRAIC SPECIFICATION

4. Examples. The examples which follow concern the simple
language specified from a syntactical point of view in Section
2. The set I conﬁists of all words written in capitals from the
éontext-free grammar of the language, while the set S consists
of all words written in small letters from the same grammar.

Example 1. Consider J, = I\ {PREDEFINITION_TYPE}. Remove from
IS the operation schemes og,,, 0,4, Which are PREDEFINITION TYPE.
Replace the operation scheme o3, by a restriction of this one to
the subset J;, denoted o3o'=<1, , INTEGER TYPE DESIGNER>, and
replace the operation scheme 0,, by a restriction of this one to
the same subset J,;, denoted 032'=<2, new , INTEGER CONSTRAINT
NUMERICAL_TYPE>. The restriction of the specification base B to
the subset J, is B|,, = <J,uS, ES|,,,a|;;>, where IS|,; =
(ES\{030,032,033,034}) U {030',032'}. The following numerical-type
declaration

type REAL_MIC is new FLOAT range -10.0..10.0
is correct in the language LB specified by B, but not in the
language LB|,, specified by Bl;i- This last language admits the
following numerical-type declaration

type INTEGER MIC is new INTEGER range -10 .. 10
which is a restriction of the first declaration admitted by LB.
Neither the operation scheme 03, nor its restriction o,
contribute directly to tpe spgciticatioﬁ of objects of LB or
LB| 5y, respectivqu.“ Tﬁé‘ objécts of the type TYPE DESIGNER
specified by 030' will contribute to the specification of objects
of the type ARRAY TYPE, as we shall see in the next example. The

axiom set a|,, remains the same as the axiom set a. In these

95

I. PARPUCEA

conditions the language LB|,; is a subset of the language LB.
Example 2. Consider J, = J,\{TYPE_DESIGNER}. Remove from
ZSL,1 the operation schemes Oagr O29: which are TYPE DESIGNER. We
choose the following restrictions for o,¢
026'-<2, subtype is ,subtype NAME INTEGER SUBTYPE DEFINITION>,
and for o,,
0,4 =<3, subtype is ,subtype NAME INTEGER CONSTRAINT
SUBTYPE DEFINITION>.
For o35 and 03¢ we choose respectively the restrictions
035'-<2, ¢ ,INTEGER _LIST INTEGER OBJECT DECLARATION>,
036.m<3, : := ,IDENTIFIER_LIST INTEGER SIMPLE_EXPRESSION
OBJECT_DECLARATION>.

Lastly, one chooses only one restriction for o,,

04"-<2, array() of ,INDEX_LIST INTEGER ARRAY TYPE>.

In these conditions, Bl,, = <58, Y8l al, >, where
L8ls, = (ESI5\ {024,057, 054,055,045, 05,0, YUl 035,02,035, 03,0).

The following array-type declaration
type ARR TY ie array (1..10, 1..10) of FLOAT
is correct in the languages LB and LB|,,, but not in LB|,,. The
language LB|;, admits the definition of an array-type restriction
(reduced from) whose elements are of integer-type. 8o, above
array-type definition reduces in the language LB|,, to
type ARR TY is array (1..10, 1..10) of INTEGER.
The following record-type declaration
type COMPLEX is

record

96

ALGEBRAIC SPECIFICATION

REAL : FLOAT;
IMAG : FLOAT;
end record.
is correct in the languages LB and LB|;;. The language specified

by J, ,LB|;;, admits only a restriction of the object COMPLEX,
namely
type COMPLEX is
record
REAL : INTEGER;
IMAG : INTEGER;
end record.

Also in this example the axiom sets a|,, and a coincide. In
these conditions the language LB|,, is a subset of the language
LBl -

Example 3. Consider J; = J,\{IF_LIST}. Remove from IS|;, the
operation schemes 0,9 and o,,, which are of the type IF_LIST. We
choose respectively for og; and o5, the restrictions

’

0g; = <1, if endif, EL _IF IF>,

Oy, = <2, if else endif, EL IF SEQUENCE IF>.

In these conditions 8l,, = <5, Us, ¥sl,, af,>, where

LSl = (81, 045,05, 04,,05, 1) Ulog,, 00,) . An instruction of the

form
if RELA;ION then
SEQUENCE
{elsif RELATION then

SEQUENCE}

97

I. PARPUCEA

(else
SEQUENCE)

endif.
is admitted in the languages LB, LB|;;, LB|;,. The language LB| ;3
admits the following reduced forms

if RELATION then SEQUENCE endif,

if RELATION then SEQUENCE

else SEQUENCE

endif.
The axiom set al;; coincides with a, too. In these conditions the
language LB|;; is a subset of the language LB|,;.

REFERENCES

[ADJ73) J.A. Goguen, J.W. Thatcher, G.Wagner, J.B. Wright: A junction
between computer sclence and category theory, Basic definitions and
examples, Part 1, IBM Research Report RC-4526, 1973.

[ADJ77]) J.A. Goguen, J.W. Thatcher, E.G. Wagner, J.B, Wright: Inictial
Algebra for Computing Machinery, vol. 24, no.l1, 1977.

[BRO82) M. Broy, M. Wirsing,: Partial Abstract Types, Acta Informatica,
18, 47-64 (1982).

{BROB7]) M. Broy, M.Wirsing, P.Pepper: On the Algebraic Definition of
Programming Languages, ACM Transactions on Programming Languages and
Systems, vol 9., no.l, 1987.

[RUS72) T. Rus: IS-Algebra of a Formal Language, Bul. Math. de la Soc. de
Science, Bucharest, 15(63):2, 227-235, 1972,

{RUSBO) T. Rus: HAS-Hierarchy: A natural tool for Languag specification,
Ann. Soc. Math. Polonae, Series IV. Fundamenta Informaticae, 3:3,269-
274, 1980.

[RUS83} T. Rua: Mecanisme formale pentru specificarea limbajelor, Editura
Academiei R.8.R., 1983, Bucuresti.

(HIG63} P.J. Higginse: Algebras with a scheme of operators, Math. Nachr.,
27, 115-132, 1963/64.

[BIR70]) G. Birkoff, J.D. Lipson: Heterogeneous algebras, Journal of
Combinatorial Theory, 8, 115-132, 1970.

[WAG89) E.G. Wagner: An Algebraically Specified Language for Data

Directed Design, Proceedings of the First International Conference
“Algebraic Methodology and Software Technology", May 22-24, 1989, IOWA,
U.S.A.

98

I. PARPUCEA and B. PARV

Ty = C Py Fy

where the polynomial part P; has the form:

P, =xlj’xzj’...x,i'. (3

while the trigonometric part F; is:

F, = gég(k,y1+k2y2+. otk (4)
In practice, one does not operate with Poisson series, but with

partial sums of these ones, called Poisson expressions, of the
form:
¥
S-Z;Tl, NeN. (5)
PSP operates with Poisson expressions of the form (5). The

hierarchical model of ites algebraic specification consists of
five levels:

1) numerical coefficients specification;

2) trigonometric part specification;

3) polynomial part specification;

4) term specification;

5) Poisson expression specification.

1. Humorio*l coefficients specification. The coefficients
C; from (1) are considered rational numbers, of the form M/N,
with M,Ne23. The definition of the abstract data type RAT follows
the chain:

BOOL --> NAT =-=> INT =-> RAT

where:

BOOL - represents the primitive boolean type;

NAT - represents the hieratchical natural type (including

zero value);

100

I. PARPUCEA and B. PARV

* zero eq zero = true,
* zero eq succ(N) = false,
* succ(N) eq succ(M) = N eq M,
* N noteq M = not (N eq M),
* pred(succ(N)) = N,
(N,1) = N,
(3 R, P: nat t: R<M, N=P *M + R) ==> (N, M] =P,
GCD(N, 0) = N,
U < V ==> GCD(V, U) = GCD(U, V- U * (V , UJ]),
GCD(U, V) = GCD(V, U),
* N*0 = 0 = 0 +*N,
* N * succ(M) = (N * M) + N = succ(M) * N,
* N * pred(M) = (N * M) - N = pred(M) * N,
* N+0 = 0+N = N,
* N + succ(M) = succ(N + M) = succ(M) + N,
* N + pred(M) = pred(N + M) = pred(M) + N,
(0 < succ(0)) = true,
(pred(N) < succ(N)) = true,
(N < succ(N)) = true,
(pred(N) < N) = true,
N <M ==> (succ(N) < succ(M) = true),
N <M ==> (pred(N) < pred(M) = true),
* N-0 = N,
* IF M <N THEN N - gucc(M) = pred(N - M),
* IF M <N THEN N - pred(M) = succ(N - M),

endoftype.
We define NAT*, subtype of the NAT type:

type NAT» =
SORT bool, natw»,
CONS
one: --> natw,
succ: nat#* --> nat¥,
pred: (nat* x: x noteq one) ~-> natw,
OPNS
+: nat* --> natw,
-: nat* --> natwe,
: nat, nat* --> nat#*,
eq: nat*, nat* --> bool,
noteq: nat*, nat* --> bool,
VARS
M, N: nat*,
AXIOMS
The axioms of NAT type marked with * are axioms of the
subtype NAT*, with the following modifications:
one eq one = true,
one eq succ(N) = Trfalse,
N#*1 = 1 *N = N,
N+1 = 1+ N = succ(N),
IF 1 <N THEN N -1 = pred(N),
endoftype.

102

ALGEBRAIC SPECIFICATION OF PSP

1.3. The INT type

The specification of INT type uses BOOL and NAT as primitive
types:
type INT

SORT bool, int, nat,
CONS

zero: =--> int,
succ: int --> int,
pred: int --> int,

OPNS
eq: int, int: --> bool,
noteq: int, int --> bool,
+: int, int --> int,
-: int, int --> int,
*: int, int --> int,
<: int, int --> bool,
{_1: int --> nat,

VARS
N, M: int,

AXIOMS .
NegM = MeqN,
zero eq zero = true,
succ(N) eq succ(M) = N eq M,
N noteq M = not (N eg M),
pred(succ(N)) = N,
succ(pred(N)) = N,
i 03 = o,
(pred(0) < 0) = true,
The axioms of INT which refer to the operations +, -

and < are inherited from NAT type;
endoftype.

Remark. The INT type contains the zero value and two unary
operations, succ and pred. The integer number n (n>0) is obtained
by n successive applications of the succ operation to 0.
Analogously, the integer number -n (n>0) is constructed with
pred, starting with 0.

1.4. The RAT type

The specification of RAT type uses INT and NAT* as primitive
types:
type RAT =

SORT int, nat*, rat,
CONS

103

I. PARPUCEA and B. PARV

/: int, nat* --> rat,
OPNS
+ : rat, rat --> rat,
"% ; rat, rat --> rat,
“:7: rat, rat --> rat,
~-_: rat, rat --> rat,
VARS
M/N, P/Q: rat,
S, T: natw,
AXIOMS
(M/N) + (P/Q) = ((M *Q) + (P * N)) / (N *Q),
(M/N) * (P/Q) = (M *P) / (N *Q),
(M/N) ¢ (P/Q) = (M * Q) / (N *P),
(M/N) - (P/Q) = ((M * Q) - (P *N)) / (N*Q),
(3 S: nat*, 3 T: nat*, :
M = S % GCD({M|,|N}) AN = T % GCD(|M},|N})) =
- M/N = S/T
endoftype.

2.lTriqonomotric part specification. The definition of the

trigonometric parts F; from (4) follows the chain:
SET -=-> FLIN --> TTR

where:

SET - represents a symbol set;

FLIN - represents the abstract type of linear forms;

TTR -~ represents the abstract type of trigonometric parts.

2.1. The BET type

The SET type consists of a set of symbols. This type is used

as primitive type for the specification of FLIN type.

type SET =

SORT set,

CONS
X, ¢ --> set,
X, ¢ =-> set,
X, : --> set,
Y, : --> set,
Y, ¢ --> set,
Y. : —-=> set

endoftype. "

104

ALGEBRAIC SPECIFICATION OF PSP

2.2. The FLIN type

The FLIN type defines the linear forms over the types SET

and INT.
type FLIN =
SORT int, set, flin,
CONS
* (concatenation) : int, set --> flin,
OPNS
+_: flin, £lin --> flin,
“-_: flin, flin --> flin,
“#* : int, flin --> flin,
VARS
X, ¥, Z2: set,
M, N, K: int,
AXIOMS
X1 = 1-X = X,
X0 = 0-X = 0,
N-X = X-N,
X (N+M) = (N+M'X = NX+ MX,
N-X + MY = MY + N-X,
(N‘X + M'Y) +K'Z = NX+ (MY + K- 2),
N-X+0 = 0+ NX = N-X,
N*0 = 0 = 0 *N,
1 %X = X*1 = X,
N * (MX) = (N * M)'X,
N* (MX +KY) = (N*M:'Xt (M*K)Y
endoftype.

The FLIN type contains linear combinations of the form:
Ny Y 4Ny Yoo LN Yy
which can be used as arguments for sine and cosine functions in
trigonometric parts F;. The three operations (+, * and
concatenation), together with the axioms, are used for the
specification of the trigonometric part.
2.3. The TTR type

type TTR =
SORT flin, ttr,
CONS
cos: flin --> ttr,
sin: flin --> ttr,
AXIOMS
cos 0 =
sin 0 =
endoftype.

O =3
-

I. PARPUCEA and B. PARV

3. Polynomial part specification. The definition of the

polynomial parts P; from (3) follows the scheme:

MPOL --> PPOL

where:

MPOL - represents the set of monomials;
PPOL - represents the set of polynomials.
3.1. The NPOL type

The MPOL type defines the set of monomials of the form XV,

where X is in SET and N is of INT type.

type MPOL =
SORT int, set, mpol,
CONS
" (raise to power) : set, int --> mpol
(XN = xVN)
VARS
X: set, N: int,
AXIOMS
(X ~0) = 1,
(X~ 1) = X,
endoftype.
3.2. The PPOL type
The PPOL type defines the set of polynomials of the form
(3):
type PPOL =
SORT mpol, ppol
CONS
_% _: mpol, mpol --> mpol,
VARS
M, xN, M, 2X : ppol,
AXIOMS
XM o x¥ - XN wxM = XM
XN ox yH = yM o N,
XVow 1 o= xN o= 1w xN
endoftype.

106

ALGEBRAIC SPECIFICATION OF PSP

4. Term specification. The terms T, from (2) are defined as

follows:
type TERM =
SORT rat, ttr, ppol, term,
CONS
(concatenation) : rat, ttr, ppol --> term,
VARS

N/M : rat, cosY, sinY: ttr, X: ppol,
* * * We denote with Y the linear form and with X the polynomial
* * % form

AXIOMS
sinyY siny
(N/M - { }) - X=N/M- - ({) X,
cosY cosY
siny sinY siny
N/M - { } - X ={ } - N/M - X = { } - X - N/M
cosY cosY cosY
sinY
=X - N/M { P
cosY
0 -0 X =0,
i/r -1 - X=X,
siny
0 { } X = N/M 0 X =0
cosY
endoftype.

S. Poisson expression specification. Taking into account the
above definitions, the Poisson expressions (5) will be defined

in the following form:

type EXP =
SORT term, exp,
CONS
+ : term, term --> exp,
~: term, term --> exp,
_* : term, term -~-> exp,
OPNS
d (differentiation) : exp, set --> exp,
| (integration) : exp, set --> exp,
VARS

N/M , P/Q : rat,
Y, ¥y , Y, : flin,
X, Xy , X, : mpol,
AXIOMS
sinyY siny
N/M - { } - XtP/Q- { }‘ @ X-=
cosY cosY

107

I. PARPUCEA and B. PARV

siny
= (N/M £ P/Q) - X - { } o
cosY
(N/M - cosY, * X;) * (P/Q - sinY, - X;) =
= (1/2 * N/M * P/Q) - X; * X, - sin(¥;+Y,) +
+ (1/2 * N/M * P/Q) - X; * X, * sin(¥,-Y,) ,
(N/M - sinY, - X;) * (P/Q - sinY, * X;) =
= (1/2 * N/M * P/Q) - X, * Xy * cos(¥,-Y,) -
- (1/2 * N/M * P/Q) - X; * X, ° cos(Y;+Yy) ,
(N/M - cosY, * X;) * (P/Q - cosY, ' X;) =
= (1/2 * N/M * P/Q) - X; * X, * cos(Y;+Y,) +
+ (1/2 * N/M * P/Q) - X; * X, * cos(Y,-Y,) ,
d COoB (Ny- Y +Ny Yot o o +Np - Yo+. . L #N - Y,)
—== (N/M - |
aYk Bin(Nl‘Y1+N2‘Y2+...+Nk' Yk+...+N1'Y1)
D R I
COS(NI' Y1+N2‘ Y2+. . -+Nk' Yk+' . -+N1' Yl)
= N*M, /M - { }
Sin(Nl' Y1+N2' Y2+o . -+Nk' Yk"‘. . -+N1' Yl)
M1, .y Mk-1, . x, Mh
XMooy D N IR
8in(Ny- Y +Ny- Yo+. oo #Np Y+, . . +N; - Yy)
¥ N*Nk/M ‘ { }
COS(Nl' Y1+N2' Y2+. - .+Nk' Yk+' . .+N1' Yl)
M1, .y, Mk, . x, Hh
XMooy e o My
Ny
Io = [N/M : sin(Np Y +Ny Yo+, . +Np- Yo+ . +N; Y,)

M, Mgy O My41 Mp
Xl ‘e e .Xk_l M Yk - Xk*l ° o e e ° Xh dYk =
= (-1/Nk*N/M) * COB(NI'Y1+N2'Y2+..o+Nk' Yk+--.+Nl‘Yl)'
M, Mgy, O Myksy M,
N Xl S eew .Xk_l * Yk N Xk*l ¢ eee ° Yh
k .
I; = [N/M - sin(Np Y +Np Yo+ o o #+Np - Yo+, .o 4+Ny 0 Y))

M) M, 1 Myiy My,
Xyt oo Xyy o Yy o Xygp ¢ oee. o Xy AY, =

108

ALGEBRAIC SPECIFICATION OF PSP

= (=1/N *N/M)

+ (1/ (N *Ny))

Ny

Tp

= (-1/N*N/M)

cos(Nl-Y1+N2~Y2+...+Nk~Yk+...+N1'Y1)-
My M, 1 My41 My,

XI ‘eee .xk_l * Yk * Xk*l * oo xh

Sin(Nl' Y1+N2' Y2+. . .+Nk' Yk+° . .+N1' Yl) ¢

Ml Mk_l 0 Mk*l Mh
Xl ’....Xk_l * Yk * Xk*l C eee Xh

= [N/M - sin(Ny Y 4Ny Yo+. .. 4+Np Y+ o 4Nyt Y)

M, M., p My My,

Xy “eeeeXyy 0 Yyt Kyyy 0o-ee 0 Ky QY =

COS(N1° Y1+N2' Y2+. . .“"Nk' Yk". . .+Nl' Yl) *

M, | Y M, L Y M,
Xl ‘....Xk_l * Yk * Xk+1 S e e Xh +

+(N/M*p/ (N &N,)) - 8in(Ny Y Ny Yok o o 4N - Ypbo oo 4+N) - Y)) -

endoftype.

M, Mo, Pl My, My
Xl '....Xk_l N Yk * xk+1 ° e e Xh

k
= (N/M*p/Ny*(p-1) /Ny) - I, ,

Remark. The EXP type must also contain the axioms referring

to the recurrent computation of the integral:

My

Jp

= (=1/N, *N/M)

= [N/M - COS(N " Y +Ny Yot . +N Yy +. . +N - ¥,)

M, M My M,

Xl '....xk_l ‘ Y ‘ Xk,l * e Xh dyk =

SAN(N - Y 4N Yot L LN Y4 L L4 - Y)

M, M1 P Mpa My,
Xl '....Xk_,l * Yk * Xk+l S e ee ° Xh +

+(N/M*p/(Nk*Nk))~cos(N1-Y1+N2-Y2+...+Nk-Yk+...+N1-Y1)'

CONCLUDING REMARKS.

M M1 Pm1 My, M,
x1 '....Xk_l * Yk * Xk+1 ¢ «ee " Xh -

P
= (N/M*p/Ny*(p-1) /Ny) - T,

This paper specifies the data types

109

I. PARPUCEA and B. PARV

defined in PSP (implemented in Pascal) in a hierarchical way.
Some of the advantages of algebraic specifications are used,
especially those involving the correctness of the defined
operations. In such a way the singular cases (as non-
determinations or exceptions) are avoided. The authors intention
is to simulate the operational semantics of PSP by using terms
rewrite rules. PSP can also be specified in the specification and

programming language OBJ3 (see [Gog88)] and [Kir87j).

REFERENCES

{Wir82) Wirsing,M., Broy,M.: An analysis of semantic models for algebraic
specification, in Broy,M., S8chmidt,G. (eds.), Theoretical foundations of
programming methodology, Reidel, Dordrecht, 1982, 351-412,

[Wir83]) Wirsing, M., Pepper,P.,Partach,H.,Dosch,W., Broy,M.: On hierarchies of
abstract data types, Acta Informatica, 20, 1983, 1-33.

{Kir87) Kirchner,C.,Kirchner, H. Meseguer,J.: Operational semantics of OBJ3,
Technical Report, SRI International, 1987.

[Gog88) Goguen,J.,Winkler,T.: Introducing OBJ3, Technical Report, S8Rl
International, 1988.

(PAr89} Parv,B.: Poisson Symbolic Procesgsor, Studia, Mathematica, XXXIV,
1989, No.3, 17-29.

STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXXV1I, 3, 1992

CORP MODELLING USING FORMAL LANGUAGES

V. PREJMEREAN, V. CIOBAN and 8. NOTOGNA"

Received: November 11, 1992
AMS Subject Classification : 68N20, 68052

RESUMAT. Modelarea corpurilor folosind limbajele formale. Definirea
unui corp tridimensional se poate realiza de multe ori mai natural ,
gi mai eficient utilizind comenzi de deplasare a "cursorului® (virf
de creion imaginar) in diverse directii. In acest fel se pot defini
muchiile sau chiar suprafetele unui corp, prin "plimbarea"”
cursorului pe direc{i paralele cu axele de coordonate. Pentru
aceasta am definit un limbaj de comandi gi o serie de transformiri
elementare : translatie, rotatie, ecalare, simetrie gi proiectie
pentru reprezentarea corpurilor descrise.

Solid corps modelling (tridimensional graphic objects) through
front specification can be realised cox'rering (describing) the edges
("wire-frame" method). This cover may be realised by moving
commands of the cursor on a tridimensional frame this way: up,
down, right, left, front, back. These moving commands compound the
alphabet needed in the object outline description, which we want to
model :

=4{u,d, r, 1, £, b}

w € £' is called command word of the cursor.

We will use for object definition an infinite frame of points
obtained through intersection of the parallel plans with x0Oy, x0z
and yOz at distance equal to 1. Two points P(x,y,z) and
P'(x',y',z') are "neighbours" if we have the following relation :

|x=x'|+|y-y'|+|z-2"'| =1 (*)

This relation can be generalized :

X + dx

x!

y' y + dy

* "Babeg-Bolyai" University, Department of Computer Science,
3400 Cluj-Napoca, Romania

V.PREJMEREAN, V.CIOBAN and S.MOTOGNA

z' =z + dz

where dx, dy, dz € {-1,0,1}, |dx|+|dy|+|dz| > 0, which need an
extension of the alphabet I by definition of other commands,
obtained through composition of the existing commands.

We will use definition (*) to simplify grammars.

One command word w € T* is, in fact, a succession of commands
to the cursor and defines a "walk on the frame".

For a point P(x,y,z) we define its succesors on the six
directions this way :

-up i SUC((x,¥,z),u) = (X,y,2+1)

- down : SUC((x,y,2z),d) := (x,y,z-1)

- left

suUC((x,y,z),1) := (x,y-1,8)
- right : 8UC((x,y,2),r) := (x,y+1,z)
- front : SUC((x,y,z),f) := (x+1,y,%)

- back

..

SUC((x,y,2),b) = (x-1,y,%8)

The design specified in this way by a command word w € " is
defined as follows :

suc : 23 x " --> 23

8UC((x,y,2),€) = (x,y,2)

and

SUC((x,y,2),aw) = SUC(SUC(x,y,z),a),w)

We notice that the cursor movements are executed from left to
right. The cursor movement may be defined initializing the cursor
in Py(x5,Y9,29) and then moving through a command word

w e T : MOV(W) = SUC((xq,¥g/2g) W) -

112

COPR MODELLING USING FORMAL LANGUAGES

A spatial graph unoriented described by
v =a,...a,, (a; € {uv,d,1,r,f,b}, i=1,n)
is g((x¢.Y9r20) W) = (V,A) ,
where vV = { MOV(a,...a;)/ i=1,n}
and
A = {(MOV(a;...a; ,),MOV(a,...a;)/ i=1,n}.
We suppose that MOV(e) = (x,Yy,2Z).

A language formed of command words is called language of solid
object description, and the grammar which generates the language is
called solid forms grammar.

To represent the objects‘described by such grammars we will
define functions for spatial transformations.

TRANBLATION :
TR(g((Xq,Y0:20) /W), (dx,dy,ds)) = g((xo+dx,yo+dy,zo+ds),w) =

= glixg, Vo, 7)) , S sl glasly,)

dx>0
dx=0
dx<0
dy <0
dy=0
ay>0

L I T T « I)

de>0
dz=0
dz<o

-]
"
R &

So, if V = (dx,dy,dz) is the translation vector then we may

113

V.PREJMEREAN, V.CIOBAN and S.MOTOGNA

say that TR(g(w),V) = g(s,|al syldﬂ s lazl wy.

For rotations with 90°, 180°, 270° or even with 45°, 135°,
225° and 315° we can apply command word transformations depending
on the axis of the rotation Ox, Oy or 0z. For example, rotation
around Ox will change the word w so :

f, b - remain unchanged

u-->r
d -—-> 1
1l -->u
r --> d.

In the same way the substitutions applied to the productions
rules of the grammar, for the other angles and axis are defined.
SCALATION :

A point P(x,y,2) through scalation become P'(x',y',2'), where:

1

T4 If, 0 0lfy
ly'l = £, 10 £, 0 ||y
lz') lo o rJlzl

It f.f1,, f,r,, f,f, 2 1 then the image grows and we will

consider these scalar factors natural.

If £,f,, £of, £ f, <1

gy’

f =1 .
f)'- £ 4

y

fof=p £
X

[g

£, , £, , f,€N

then the scalars applied to a command word w = a,...a, will modify
the word as follows :

a; -=> aif , Where

114

COPR MODELLING USING FORMAL LANGUAGES

tyf, if aselu,d
£={€f, if aell, 1)
f,f, if aele, b

These transformations may be applied to the grammars which
generate the command language.
SYMETRIES :

Reflections in planes xOy, xOz, yOz or in axis Ox, Oy, Oz are

realised through such substitutions :

reflection in xOy: u <-->d
x0z: 1l <-->r
yoOz: f <=-=> b.
SIMy, (9 ((Xg,Y0:%g) W) = g((=Xg,~YosZo).W') , where w' is

obtained by subsastituting 1 <--> r and f <--> b.
In the same way we construct reflections in Ox and Oy.
PROJECTIONS :

Projection parallel to 0z on xOy is defined as :

g(d™w/) - if £,>0
PR, =
xoy (9 (1)) {g(u"w’) if 2,<0

where w' is obtain by substituting "u" or "d" with €.

We can realise images with solid forms grammars extending the
alphabet £ with simbols representing commands to choose (select)
colours, where the null colour , "dark", shift the cursor without

effective translation :

115

V.PREJMEREAN, V.CIOBAN and S.MOTOGNA

£'=% U {0,1,...,7}.

In this case we consider that the initial position of the

cursor is 0(0,0,0) and the initial colour is null. Then the word

(Sl"ols)l'}’alsl‘ol cw)

draw the object g(w) from the initial position (x;,Y9,29) in the

colour "c“.

2.

4.

116

REFERENCES

F. J. Brandenburg, J. Dassow, Reduction of Picture Words, MIP 8905,
Universitit Passau, 1989.

H. A. Maurer, G. Rozenberg, E. Welzl, Using string languages to describe
picture languages, inf. and Control 54, 1982.

A. Rosenfeld - Picture Languages - Formal Models for Picture Recognition,
Academic Press, 1979.

F. J. Brandenburg, M. P. Chytil, On picture languages: Cycles and syntax-
directed transformations, MIP 9020 Universitiit Passau, 1990.

STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXXvII, 3, 1992

TERM REWRITING SYSTEMS AND COMPLETION
THEOREMS PROVING: A SHORT SURVEY

Doina TATAR®

Received: February 15, 1993
AMS Subject Classification: 68715

REZUMAT. - Sisteme de rescriere a termenilor g¢i demonstrarea
teoremelor prin algoritmi de completare. In acest articol sunt
prezentate principalele rezultate privind problema cuvlntului
pentru o teoris ecuationalX, tratatd¥ ca sistem de rescriere a
termenilor (TRS), inclusiv o versiune sinteticl a algoritmului de
completare Knuth-Bendix.

Abstract. In this paper we survey the main results
concerning equations and the»methods for reasoning about them
like term rewriting systems (TRS). This TR8 are used to reduce
expressions to canonical form, if this form is unique. A
simplified version of Knuth-Bendix completion algorithm is

presented.

Like most surveys, ours does not contain any new results,
but it gives an idea on the application of TRS to theorems
proving. This paper is justified by the interest of this subject
and it presents the most important things in the completion idea.
Since the piloneering paper (Knuth and Bendix, 1970), which
indroduced the algorithm Knuth-~-Bendix, and the influential papers
(Huet and Oppen, 1980), there has been a great deal of research
in this field. For an excellent survey see (Avenhaus, Madlener,
1990).

This paper is organized as follows: Chapter 1 presents

»
Univ. "Babeg-Bolyai" of Cluj-Napoca, Dept. of Computer Science
3400 Cluj-Napoca, Romlnia

D. TATAR

equational systems and TRS, Chapter 2 the "critical-pair" idea
and the "critical-pair" completion algorithm, and Chapter 3 some
of the examples.

1. Introduction.

DEFINITION: An equational theory (F, V, E)
consists of

. a set F of function symbols or operators (with the same

sort, for simplicity).

. a set V of variables. Let T(F,V) be the set of terms built

from F and V.

. a4 set E of pair of equations, s=t, s,t € T(F,V).

The set of equations E defines a syntactical equality
relation ;on T(F,V), usualy defined by the concept of "replacing
equals by equals". One has also a semantical (logic) definition
in equational theory E denoted by: E = s=t,

The theorem of Birkhoff (1935) assures that both notions
coincide: t . t, = E ~ t =t,.

A tundﬁmental problem is the “validity problem* or "“word
problem", which is undecidable in general:

"Give 8,t ¢ T(F,V), does BE t 2"

Obviously, the undecidability (more precisely, the semi-
decidability) of the "word problemn" is transfered on the approach
by TRS. But this approach is, on the our opinion, more
algorithmicaly.

DEFINITION: A TRS R is a set of rules:

R={l1-r| 1, r € T(F,V) every variable occuring

in term r also occurs in term 1}.

118

TERM REWRITING SYSTEMS

It defines a rewrite relation ; :

DEFINITION: sgt iff there is a rule l-r € R, an occurence
p in s, such that:

s/p=0(1), t=s(p-o(r)).
for some substitution o .

The relation E is compatible with the term structure in
T(F,V) (i.e. 8+t implies tl[%;s] t,(p-t]) and with the
substitutions (i.e. s—t implies a(s);o(t) for each o).

We denote by : . : the reflexive - transitive and
reflexive - transitive - symmetric closure of ;.

DEFINITION: The transfering of "word problem" to a TRS is:

"Given an equational theory E, compute an R such thats;t

»*
is equivalent to s«t .

The problem ogzcompute R is a "completion procedure because
R is constructed step by step by collecting new rules in R, which
is in the same time simplified as much as possible.

Let t {| R (or ti) normal form of t, that is such term with
the properties:

1) ¢ : tl

R
2) ti is irreducible.
If R has the properties that every term has a unique normal

form, then:

-
s~t Iff sl = tl.

- * R ,
because s ~ t is s-sl = tl-t)
R R R

Fact: If in R every term t has a unique normal form then

119

D. TATAR

s=t if sl = tl!
E
DEFINITION: A term rewriting system R with the property that
every term has a unique normal form is convergent and it has the

properties:

a) R is terminating (or Noetherian) that is it allows no

infinite seguences:

G b b

R
(such that every term t has at least a normal form ti)
* *»
b) R is confluent, that is: ¢t ,-¢t,, t,~t, implies that does
* " R R

exist u such thatta;u, t,;u (every term t has at most a normal
form ti).

The properties 1 and 2 are, unfortunately, undecicable
(Dershowitz, 1987). However, there are useful tools to prove
termination, the most important ones are reduction orderings on
T(F,V). An ordering > on T(F,V) 1is a reduction ordering if > is
well founded, is compatible with the term structure and is
compatible with substitutions.

THEOREM: A TRS R is terminating 1ff there is a reduction
ordering > such that t>r for every rule e-r in R.

Due to a result of Newman (Newman, 1972) the confluence is,
for terminating TRS, equivalent to the weaker property of local
confluence, which is: tl;taandtdétz, implies that does exist u
such that tziu, t,iu. Hence, a terminating R is confluent iff it

is locally confluent.

120

TERM REWRITING SYSTEMS

2. Critical pair oompletion.

DEFINITION: Let ¢,~r, and ¢£,~r, be two rules in R. By
renaming of variables we may assume that they do not share common
variables. If o, and o, are two substitutions, such that:

0,(2,) = 0,¢,)
then (0y(ry), o,(ry)) is a critical pair for R. Let
CP(R) be the set of all critical pairs for R as equations.
“Critical Pair Lemma" (Knuth and Bendix, 1970) say that:
For any TRS R, if t,~t, and q;t3 then either does exist a

*
term u such that ¢,-u, t,-u (if R 18 locally confluent) or
R R

“epir) . .
Clearly, if for every (a;, a,)€CP(R) we havulEaz or aa;eal,
then R is locally confluent. This think can be tested. The
completion procedure do this. The simplest form of a completion
procedure is:
INPUT: A set E of equations, an reduction ordering >.
OUTPUT: a) A TRS Rp convergent, such that
*
£ R,
b) FAILURE.
c) The algorithm run forever.
The Completion Algorithm:
R = e.
If every equations in E can be oriented
then
Ri= {=r| ¢ >r., ¢t =r ¢ E}

else

D. TATAR

122

"FAILURE". STOP.
while CP(R) * o do
(t;,t;):= an element in CP(R)
It calculates t;} and t,!.
If t,4 » t,4
then
If neither t;{ > t,{ nor tyi > t !
then
“FAILURE" STOP
else
CP(R)=CP (R)\{(ty,£;) }.
R =R u {t;1 =+ tyi}.
or
R =R U {tyt - t,i}
else
CP(R)=CP(R)\{t,, t,)}.
STOP.
Some observations are immediatelly:
a) If CP(R) is transformed in e, then the procedure stop
succesfully.
b) The procedure may stop by "FAILURE® if R is not
terminating.
¢) The procedure may run forever, if CP(R) can be not
transformed in e.

(CP(R) grows and degrows in a step).

TERM REWRITING SYSTEMS

3. Theorem proving examples. 1) Let E be given by E={e*x =
x, 1(x)*x=e, x*(y*z) = (x*y)*z}, hence E are the axioms for a
group.
If the ordering is 1 > * > ¢, then R is, at beginning:
I: e*x - X
R{I;: I(X)*»x ~ @
{r,:(xvy)*z-*n-(ytz)
From r, and r; we obtain:
rgii(x)*(x*y) - y.

because:

(I(x) #X) *y ~ 8%y -y
C Iy 2

(1 (x) #x) »y - 1(x) * (x*y)
I,
Hence, (1i(x)*(x*y),y) is a critical pair and r;, is the new
correspondent rule. At the end, we obtain the following TRS

convergent:
R {ry,...ry5}, where r,, r,, ry, r,, are the previously, and:

rg: i(e) -+ e
Fg: Xte - x
ry: 1(i(x)) = x
rg: x*l(x) - e
rg: x*(i(x)*y) -y
rip: i(x*y) - i(y) * i(x).
Thus, for example we have:
1(i(x*y)*e) * i(y*y)=i(y*i(x))
1(i(x*y)*e) * i(y*y) L (d(e) * 1(i(x*y)) * i(y*y) _~

10 Iy, I,
(e* (x*y)) *°i(y*y) ; (x*y) * i(y*y) r* ((x*y) *» i(y)) * i(y)
1 10
(x*y) * (i(y) * i(y)) r* x * (y*(i(y) * i(y)) r* x * i(y)
3 9

123

D. TATAR

For second member:

I(y*i(x)) ;0 P(i{x)) = j(Y)I; x+i(y)
Thus theorem i(i(x*y)*e)*i(y*y)=i(y*i(x)) is proved, as each
member have the same normal form x * i(y).
In present, several very strong prover have been developed,

such as REVE (Lescanne, 1984), RRL (Kapur et al. 1986) and the

Large prover (Garland and Guttag 1989). A catalogue of theorems

proved is given in (Hermann 1991). Some experiments with a
completion theorem prover was made in (U. Martin and M. Lai,
1989). Another way for using TRS in theorem proving is that
suggestéd by Hsiang (Hsiang 1985, T&tar 1992): The TRS denoted
BA for Boolean Algebra. This is a rewrite-based method for first-
order predicate calculus.

At the end of this short survey let list the best paper

concerned TRS and Theorem proving.

REFERENCES

1. Avenhaus, J., Madlener, K. : Term rewriting and Equational Reasoning,
Formal Techniques in A.I., A Sourcebook, R.B.Banerji (ed) 1990.

2. Avenhaus, J. : On the Descriptive Power of TRS, J. of Symbolic
Computation 2, 1986, pp. 109-122.

3. Avenhaus, J., Denzinger, J., Muller, J. 1 THEOPOGLES anefficient Th.
Prov. based on Rewr. Technigue, Tach. Rap.,Univ. of Kaiserslautern,
1990.

4. Bachmair, L., Dershowitz, N., Hslang, J. : Orderings for equational
proofg, lst LICS (1986), pp. 346-357,

5. Bellegarde, F., Lescanne, P. : Transformation orderings, l2th CAAP,
1987, LNCS 249, pp. 69-80.

6. Ben Cherifa, A., Lescanne, P. : Termination of TRS by Polynomial
Interpretations and its Implementation, Science of Comp. Programming,
9, 1987.

7. Buchberger, B. : History and Basic Features of the Critical-
Pair/Completion Procedure, J. Symbolic Comp.3, 1987, pp.3-38.

8. Buchberger, B., Loos, R. : Algebraic Simplification, in Computer

Algebra-Symb. and Alg. Comp., 1982, pp.11-43.
9. Buchberqer, B. 1 A crztxcal—pa;r/complet;on algorithm 1n reduction
rings, Technical Rap, CAMP-LINZ, 1983.

10. Bundgen, R. : Buchberger's Algorithm: The Term Rewriter’'s point of
view, ICALP'92, to appear.

11. Dershowitz, N. : Completion and its Applications, Coll. on the

124

TERM REWRITING SYSTEMS

12.
13,

14.
15.
16.
17.
18.
19.
20.
2].
22,
23.

24.
25.

26.
27.
28.
29.
30.
31.
32.
33.

34.

"Resolution of Eq. in Alg. Structures”, vol.2, 1989.

Dershowitz, N. : Termination, J. Symbolic Comp, 3(1987), pp.69-116.
Dershowitz, N., Hsiang, N. : Refutational Theorem Proving with Oriented
Equations, Coll. on the Res. of Eq. in Alg Struct., 1987.

Goguen, J. : Proving and rewriting, 2nd International Conf. on Alg. and
Logic Programming, oct. 1990.

Hermann, M., Kirchner, C., Kirchner, H. : Implementations of TRS,
Computer Journal 34, 1991, pp. 20-33.

Heiang, J. : Two results in term rewriting theorem proving, LNCS 202,
pp. 301-324.

Hsiang, J. : Rewrite method for Theorem proving in First Order Theory
with Egquality, J. Symb. Comp. 1-2, vol. 3, 1987.

Hsiang, J., Rusinowitch, M. : On word problems in equational theories,
LNCS 267, pp. 54-71.

Huet, G., Oppen, D.C. : Equationa and Rewrite Rules: A Survey, in
“"Formal languages: theory, perspective and open problems"” (ed. R.
Book), 1980.

Jantzen. M. : Confluent string rewriting, EATCS monographs 11, 1988.
Jouannaud, J.P., Lescanne, P. : Rewriting Systems, Techhnology and
Science of Informaticse, 1987, pp. 181-199.

Kaplan, 8. : Conditional Rewrite Rules, Th. Comp. Sci., 33, 1984, pp.
175-193.

Knuth, D.E., Bendix, P.P. : Simple Word Problems in Universal Algebras,
Comp. Prob. in Abstract Algebra, (ed. J. Leech), 1970.

Lescanne, P. : Term Rewriting Systems and Algebra, LNCS, 170, 1984.
Lescanne, P. : Computer Experiments with the REVE TRS Generator, Proc.
10 ACM POPL, Austin, 1983, pp: 99-108.

Martin, U., Lai, M. : Some ‘experiments with a completion theorem
prover, J. 8ymb. Comp., 12, 1992, pp. 81-100.

Muller, J. , ‘Topios in. Completion Theorem Proving, Technical Rap.,
Univ. Kaiserslautern, 1990.

Newman, M.H.A. : On theories with a combinatorial Definition of
Equivalence, Ann. of Math., ¢3, 1942, pp. 223-243.

Rusinowitch, M. : Path of Subterms Ordering and Recursive Decomposition
Ordering Revisited, J. Symb. Comp., 1987, vol.3, pp. 117-133.
Rusinowitch, M. 1 Demonstration automatique. Techniques de réécriture,
Inter. Edition, Paris, 1989.

Titar, D. 3+ A new method for the proof of theorems, Studia Univ.
"Babeg-Bolyai", 1991, pp.

Tidtar, D.: Critical pair as a deduction rule, Proceedings of 3th. Coll.
on Logic Lang., Math. Linguisitc, Bragov, mai, 1991.

THdtar, D.:Normalized TRS and applications in the theory of programs,
Analele Univ. Buc., nr.2, 1989, pp. 76-80.

Winkler, F., Buchberger,B.: A criterion for eliminating unnecessary
reductions in the K-B algorithm , 983, Coll. Alg. Combin. and Logic,
Gy¥br.

STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXXVII, 3, 1992

ON THE EQUIDISTANT DIVISION OF TWO-DIMENSIONAL SMOOTH CURVE

Iuliu VLAIC

Recefved: April, 11, 1993
AMS Subject Classification: 65030, 68U05

REZUMAT.- Asupra divislirii echidistante a unei curbe plane
netede. AceastX notll preziritd o metodd de divizare echidistantX
a unei curbe plane netede definit¥ prin ecuatia sa explicitX,
parametric¥, polard sau printr-un tabel de puncte discrete. in
finat este datX o aplicatie de naturd tehnicd. Programarea
formulei lui SIMPSON, aferentd unor integrliri numerice, a fost
ficut¥ in limbajul HPL pentru un calculator de tipul HEWLETT-
PACKARD 9826.

0. Introduction. BSetting of Problem. For a two-dimensional
smooth curve given by explicit, parametrjc, polar equations or

by n data points, i.e.:

| v = £(x), X € [xg9,%,], (1)
l x = x(t),
y =y(t), t € [tg,t,]), (2)
r =r(e), 9 € [00!0’)]' (3)

and respective
| (X0, Y0) e (X3,¥1) 00 (Xp,¥0)

Xg < X3 <...< X, n €N, (4)
on search points coordinates (a;,B;),i =0,m which divide this
curve in m equal arcs, or the distances between (a;,B8;) and
(@ 42/B441) 1 =0, m-T to be equal.

There are many technical applications of such problems. For
example, in the last part of this paper is presented equidistant
division of basis ellipse from gearings with elliptical gear

wheels.

1. BRIEF THEORETICAL SBPECIFICATIONS. SOLUTION OF PROBELM.

Let a plane smooth curve describe by the equations (1), (2) or

* Mechanical Enterprise of Cugir, 2566 Cugir, Romania

I. VLAIC

f‘“‘f(x)~dx =10, 1i=0,m1
a

i

and a;,; unknown (initial value is a5 = x5 and maximum value is

a, = X,), becomes:

m
(h/3) {f(a;) + 4-f(a; + h) + 2-f(a; + 2h) + 4 f(a; + 3h) +...+

+ 4-fla; + (p - 1)h] + f(a; + ph)} - 10 = 0, (8)
where h = (a;,, - @;)/p, @y = X, @y = X,, 1 =0,m-1 and a;,, is
unknown value.

We remark that, in general, the function f has one of the

following forms:

./‘1 + [(x)12~f(x), JIX(BOIZ+ [Y(t)]1? - £(b),

VIZ + (dr/de)? -~ £(9), 1 + [fex(x)])? - £(x) and

(ty,) =[x, 2,1, [@y,9,] ~ [x,,x,] or (x,,%,,,] =~ [x,,x,]

For equation (8) we present a numerical solution by using
bisection method where a; < a;,; < a, = x,. In Fig. 1 is given the
algorithm of this method.

The number of points, p, for SIMPSON rule depends on the
e-precision supplyed by the user. If for the estimation of the
curve length £, we impose the precision e¢/2 and for each interval
[@;, a@;,;), the precision e/(2m) both from the estimation of
number p and for the solution of the equation (8), the total
error will be:

€/2 + me/(2:'m) = ¢ (9)

which may be considered as error for entire proceeding (7)-(8).

I. VLAIC

A subroutine for SIMPSON rule is presented by HPL, (5],
program given in Table 1.

In this method the stop criterion is to obtain a maximum
number of divisions for interval {a,b) or the difference between
two successive values is less than e¢-tolerance supplyed by the
user.

All parameters supplyed as input data for subroutine must
be initialized in driver programme:

The user may by joint subroutine with any your programme and
solution for integral value is stored in V variable.

Parameters and used variables:

a) Input data:

P - maximum numbers of iterations;

A - lower bounds of definite integral;

B - upper bounds of definite integral;

f(x)-Y - which may be given by the user;

E - error tolerance (difference between two successive

calculated values of integral.
b) Output data:

P, A, B, f(x), E (see a));

V - approximative value for definite integral:fbf(x)'dx.
a

c) Working varliables:
D - domain of abscissae;
J, (J < P) - index of iterations;
Q - precedent value of integral (used for to stop

criterion);

132

ON THE EQUIDISTANT DIVISION

- current number of intervals (N = 2"J);
- size of interval [C = (B - a)/N];
function argument;

- function value {y = f(x)];

KX 0 =
!

- the first and the last value of the integral.

Table 1 ~ HPL Programme of SIMPSON rule

0: “"SIMPSON":0->1i;0->V;s8fg3;if A>B;prt"error limits";ret

1: A->X;gsb"Function";V+Y->X;gsb"Function";V+Y->V;V+Y->R

2: if (J+1->J)>P;Q->V;ret

3: 2°"J->N; ((B-A) /N->C)+A->X;gsb"Functinn";V+4Y->V;A->D

4: if (D+2C->D)<B;gto 8

5: CV/3->V;if flg3;cfg3;gto 7

6: if abs(Q-V)<E;ret

7: V->Q;R->V;gto 2

8: D->X;gsb"Function";V+2Y->V;D+C->X;gsb"Function";4+4Y->V;
gto4

9: "Function"

10: 72.5*%V(1-X*X/(1041312))~->Y;ret

2. EXAMPLE. The described proceeding has been applicated for
equidistant division of basis ellipse from gearings with
elliptical gear wheels in paper industry (gearings axis has been
situated in focus of ellipse). Such an example of division is
given in Fig. 2, where it is shown coordinates of division

points.

133

tn cel de al XXXVII-lea an (1992) Studia Universitatis Babes-Bolyai apare in
urmatoarele serii:

matematica (trimestrial)

fizica (semestrial)

chimie (semestrial)

geologie (semestrial)

geografie (semestrial)

biologie (semestrial)

filosofie (semestrial)
sociologie-politologie (semestrial)
psihologie-pedagogie (semestrial)
stiinte economice (semestrial)
stiinte juridice (semestrial)
istorie (semestrial)

filologie (trimestrial)

teologie ortodoxad (semmestrial)

In the XXXVII-th year of its publication (1992) Studia Universitatis Babes-
Bolyai is issued in the following series:

mathematics (quarterly)

physics (semesterily)

chemistry (semesterily)

geology (semesterily)

geography (semesterily)

biology (semesterily)

philosophy (semesterily)
sociology-politology (semesterily)
psychology-pedagogy (semesterily)
economic sciences (semesterily)
juridical sciences (semesterily)
history (semesterily)

philology (quarterly)

orthodox theologie (semesterily)

Dans sa XXXVII-e année (1992) Studia Universitatis Babes-Bolyai parait dans
les séries suivantes:

mathématiques (trimestriellement)
physique (semestriellement)

chimie (semestriellement)

geologie (semestriellement)

géographie (semestriellement)

biologie (semestriellement)

philosophie (semestriellement)
sociologie-politologie (semestriellement)
psychologie-pédagogie (semestiriellement)
sciences, économiques (semestriellement)
sciences juridiques (semestriellement)
histoire (semestriellement)

philologie (trimestriellement)

théologie orthodoxe (semestriellement)

43 875

Lei 200

