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ON THE APPROXIMATION OF FUNCTIONS BY MEANS
OF THE OPERATORS OF D.D. STANCU

B. DELLA VECCHIA'

Dedicated to Professor D.D.Stancu on his 6Sth anniversary
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REIUMAT. - Asupra aproximirii functiilor cu ajutorul operatorilor
Jui D.D. Stancu. Lucrarea prezintd o sintezd a principalelor
rezultate in teoria aproximidrii uniforme a functiilor continue cu
ajutorul mai multor clase de operatori liniari gi pozitivi ai lui
D.D. 8tancu.

Abstract. - The aim of this paper is to present a survey of
the principal results obtai‘.ned in the theory of uniform
approximation of continuous functions by means of various classes
of linear positive operators of D.D.Stancu. First we consider the
original operator S, of Bernstein type, of D.D.Stancu, which is
connected with the probability distribution of Markov-Polya, or
with the Vandermonde convolution. We present saveral
representations for them and we investigate the monotonicity
properties of the prederivatives of high orders of the sequences
of these operators, by making use of a class of positive linear
functionals of D.D.Stancu. Estimations of the rate of convergence
and evalutions of the remainder terms are also discussed. Further
we consider several generalizations of these operators given by
different mathematicians. The spline operators included in this
paper represent generalizations of th_e spline operators of
Bernstein-Schoenberg type. In the last part of the paper we

discuss several multivariate extensions of the operators of
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B. DELLA VECCHIA

D.D.Stancu and certain basic approximation results corresponding

to some standard regions.

0. Introduction. Let us begin by recalling that the
D.D.Stancu parameter-dependent linear polynomial operator S, ,

for the interval I = [0,1) and a function r:I-R, is defined by
C k
(S30) (0 = SH(£:20 =3 Wik (%) f(—n-), (0.1)

where, by using the factorial powers, we have

n (k, ~8) —~y) (n-k, -a)
Wik (30 ==(k)" o , (0.2)

& being a real parameter.

This operator has been introduced and investigated by
D.D.Stancu in 1968 in the memoir (37]; it was studied further in
his subsequent papers [40) and [44]), as well as in several papers
published by other authors: (27). (8], [22] and [23].

It is easy to see that the linear operator S, , which maps
the space C(I) into itself, is positive if a>0 and according to

the Vandermonde convolution formula we have
n
Si(1;x) = z;wn',k(x) -1,

s0 that the norm of this operator is

ISzl = sup{ISp £, If1s1} = 1.
If a<0 but -a,<e, with 0<e<k , then S; is a positive

operator on C((e,1-¢)) (see [44]) and the following inequality

4
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color. This process is repeated n times. Denoting by Z; the one-
zero random variable according as the j~th trial results in white
or black, the probability that the total number of white balls:
Z, + 25 +...+ Z, be equal with k (0 < k s n) is given by

P(k;n,a,b,c) =

’(ﬁ a(a+c)...(a+(k-1)c)yb(b+c)...(b+(n-k-1)c)
k, (a+b) (a+b+c) ... (a+b+(n-1)c)

If we adopt the notations: x = a/(atb), a=c/(a+b) and we
hold a constant, allowing x to vary, we obtain the discrete
probability distribution of Markov-Polya. We see that the

probability to have

is given just by

(k, &) (n-k, -a)
n\ x 1-x)
wo k(x) = GJ g(m_”

The corresponding distribution function is

0 if y<o
ny
Faly:ix) = gw,‘,',k(x) if O<yx1
) 1 if y>1

If f is a real-valued function, defined on I = [0,1), such
that the mean value of r(y,) exists for heN, then one observes
that it is given just by (S5 £) (x). This probabilistic
interpretation of the polynomials S,f was given in [40]. In the
same paper D.D.Stancu has given a formula for the representation

by means of factorial moments and finite differences of a linear



ON THE APPROXIMATION OF FUNCTIONS

positive operator L,: ¢[0,1) - (C[0,1]) constructed by a
probabilistic method (L,f)(x) = E(f(Y,)), where Y, = (X; + X, +
...+ Xp)/n, X (j = 1,2,...,n) being identically distributed
random variables, with E(X;) = E(Y,) = x. If Y, is of discrete
type having on [0,1] the jump points a, , = k/n and jumps p, ;(x),

then we have

n
(L f) (x) = ;n,,,,(x)(af,,,r)w) ,
=0

where - in terms of factorial mements - we have
h (x) = = (x) = —» 3 kW {x)
n, j 31 Br, 1) 71 p Pn, x
! ! £

In the case of Markov-Polya probability distribution we

obtain ([38): = nlJ). xtJe-a) 1 (d-a)

Bn, 171
so0 that we have [37], [40]) the following representation, in terms

of finite differences,

(S26) (20 = E(k) Z (AT (0) (1.1)

In [42) Stancu has established a recurrence relation for the

central moments of the operator S, :
n k »
Tom(Xx) = ;: w:,k(x)(—r—l-x) , meN ,
=0

In particular, from formula (4) of [42], we obtain the

following estimation for the forth moment:






ON THE APPROXIMATION OF FUNCTIONS

(SRE) (0 = (B,£) (x) + 2XL=X) 1, x,, x5 B,1)

where the square brackets represent the symbol for divided
differences.

We notice that formula (2.1) is very useful in applications,
because it permits to transfer to S, many properties of the
Bernstein operator. For instance, with the aid of (2.1) it is
possible to obtain a representation of (S;f) (x) in terms of
divided differences namely
n 1(k, +)

(Spf) (x) = Y

k=0

xkeado, Lo kg
1(k,—a) n n

This representation can be obtained also by using
probabilistic tools [53]. Now refering to the preceding formula
we can see that if f is a polynomial of degree m (m<n) then S;f
is itself a polynomial of degree m.

By using formula (2.1) and an expression in terms of the
secon order divided differences, for the difference of two
consecutive terms from the sequence of the Bernstein polynomials

(36), it is easy to establish the relation

(Sp1=-Sp) (£:x) =
e 1 " (x+ke) (1-x+(n-k-1)a) .
n(n+1) g;,

(1+na) (1+(n-1) ) (2.2)
" k k+1 k+1
| S e

which was proved directly in [37].
By using this relation we are able to state the following

result: if f is convex (concave) of first order on I, then the
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sequence (S,f) is decreasing (increasing) on I.

We further note that if we assume that O<a=a(n)—-0, as n-wo,
by extending a result of E.Moldovan  [26), we can deduce the
converse of the previous implication, namely:

(S5 f) nondecreasing (nonincreasing) on I, V feC(I), and

O<a=o (n)—0 (n—w) = f nonconcave (nonconvex) of first order
on I.

In 1972 D.D.Stancu [47] (see also [21}) has generalized the
operator S, , by using a sequence of polynomials depending on a

<&«>

real parameter a:(tpm ), as well as the Nbrlund difference

quotient DY, defined by

(DXg) (x) = D_(D¥'q) (x) , (D,9) (x) = [g(x+a)-g(x)] ‘&,
Assuming that @5’ (0)#0, D.D.Stancu has introduced the
general linear operator L, defined, for any function f: J-R by
<> .o 1 - kX e
(Ln £) (X).-Wg (-1) T(D.Qn )(x)f(xmk) ’ (2.3)

where x, ,€J, k = 0(1)n, neN.
The operator S; can be obtained féom Ly® if we choose

e (x)=(1-x) ™9 In the same paper [47)] there has been given
a general Bernstein-type series, generalizing the operators of
Baskakov, Favard Schurer and Sikkema. We notice that in the paper
(21) the function ¢ has been multiplied by the normalization
factor A%L=1/¢ (0) and the operator L.*’,using the nodes Xn k=
= k/n, was further s?udied.

A8 a tool for the investigation of the monotonicity

properties of the derivatives of the sequence of the Bernstein

10



ON THE APPROXIMATION OF FUNCTIONS

polynomials, D.D.Stancu has introduced a class of positive linear
functionals Tﬁ”. Consider the followiﬁg points of an interval
[a,b] of the real axis: a; = a + ih, bj = a + j1, where i=0(1)n,
j=1(1)n, O<hs(b-a)/n, 0<l<(b-a)/n. One associates to each
function f, defined on [a,b], the Stancu linear functionals

{v)

T, 0sksn, 1svsr+l, defined recursively as follows:

T (f) =[a,, @p,ys bpoyi £} . Osksn-1
TN () =T () -T{ () , 1<vsr , Osksn-r.

In [50] there has been suggested to use, for the
investigation of the similar monotonicity properties of the
sequence (S, f), in place of the differentiation operator D the
prederivative operator of Nbrlund, with increment «:D,.

In our recent paper [4] we proved that for az0, m<n, there

holds the folldwinq relation

D" (8p.1-8p) (£3x) =

_ 1
n(n+1) (1+(n-1)a) (1+na)

[(x+ma) (1-x-ma)Ss ™ T™ £(x) +
+m(1-2x-(2m-1) &) S5 "IV £(x) -m(m-1) 32" T\™ F(x) ],

where

n-r . (v, -a)

S FE(x) =Y (-1)vEID)E RS (x-a) ——-———(x*r\"“l) f(—”—),
v=0
- (n, -«)

0:()(),(1 x) , T, f= k k+1 k+1;f'

1 (n,-a) B '’

n’ n+1’ n
Ve = Tl - T E (S22)

By using the above formula, which generalized the relation
(2.2), one can state monotonicity properties of the sequence

(D" Saf), where ms<n; O<masl (see[4]).

11
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expression for the remainder of the approximation formula:

£(x) = (spf) (x) + (R ) (x) , namely
n-1
« - (x+ka) (1-x+(n-1-k)a) _« Sy K Kk+1 . &
(Ra ) (2] g n(i+(n-1)a) RS - a

It should be remarked that this can be expressed also under
a form which permits to put into evidence that S,f is

interpolatory at the ends of the interval I (see [55]):

« S_x(l—)‘\r)_1~~n«"_1 - g ko k¥l
(Rnf) (X) n 1+a g Vn-],,k(x) [xl nl n 1‘1:

where

- . n-1 (X+l) (k, -&) (l-x+a) (n-1-k, -«)
V"'l'k(x) ( k ) (1+2a) (n-1.-®)

8ince the remainder vanishes for any linear function and

Voi1.x(X)20 on [0,1], while
n-1

Z; V;—x,ku‘f) =1,

by applying a known theorem of T.Popoviciu [29), wa can write

this remainder under “the simple form%:

. Xx{l-x)  1+na
(Rpf) (x) = - — Ta (Uns Vi Wai £],

where u v, v, are distinct points of I, which might depend on
the funoction f.
If we assume that teca(o,l), then by applying the known

theorem of Peano, we can obtain an integral representation of

this remainder [46):

13



(RAF) () = ['KE(Eix) £"(e)dt
o
where

Kn(t;x) = (Rpe,) (£) , @,(t) = Z[x-t+|x-t|],

N

the subscript x indicating that R, is to be performed with

respect to x, while t is held fixed. The Peano kernel X, , for
a fixed x in I, represents a spline function of first degree,
having the knots j/n (j=0,1,...,n). Since X, (t;x)<0 on {0,1] X
(0,1), we can apply the mean value theorem to the above integral

and we get finally

« e _X(1-x) 1+na oy
(Ry£) (x) 5h Tre £7(&,), §,€(0,1).

4. Estimates of the rate of convergence of (S, f) Since the
monomials e, and e, are fixed points for the operator S;, while

for e, we have

(She,) (x) = x* + ;:“ﬁ'x(l—x) .
if we assume that O0<a=a(n)-0 (n-w), then Shis a linear positive
operator and according to the Bohman-Korovkin criterion we can
state that for any function feC{0,1] we have Spf - f, uniformly
on I.Concerning the measure of the rate of convergence, we can
use the first order modulus of continuity

@, (f£;6)=w(L;8) :=sup{|f(x+h)-f(x)|:x,x+heJ,0<h<és},

or the second order modulus of continuity

Wy (£;8) :=8up{|f(x+h)-2f (x)+f(x-h)

1X,xXtheJ,0<hsé},

14



ON THE APPROXIMATION OF FUNCTIONS

where - in general J=[a,b) and 0<é<l1/2(b-a), with feC(J).

The following estimates are known:

IR%f] < m[f;.l 1*”"), if fec(I) (4-1)
n+na
uR;flsL.l ﬂm(f/;,l M] if FleC(I) . (4.2)
n+na n+na

In [37) for K and L were given the values 3/2 and 3/4, while

in [12) were found better constants: 5/4, respectively 5/8.
In [12) Gonska has deduced an estimation using the second

order modulus of continuity

- 1. .| 1+na (4.3)
IR L) < 3 7 wz(f,.| n+m] .

We notice that the numerical factors from these

inequalitices are not optimal and their estimation is an open
problem.

It is easy to verify that by starting from (1.2) we can
obtain for the approximation of the function f by S5f an

asymptotic estimation of Voronovskaya type, namely

1im28%8) (pepy 4y = XX fnioy | xer (4.4)
+na 2

Ne= 1
when O<a=a(n)—0 (n—-w) and for any f having a second derivative
at the point x.

If in addition O<an<l, then we can give the following

estimation

15
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. [lra(n-mix(1-x) , 1-(v-1)/n
8nm(X) = (1+a) (n-m) + Pam = II 1+(n-via
Concerning the sequence (DS"S;f) , in [21] has been proved

the relation %33“Df53—f‘”|=0, Y fec™(I), a=a(n)=0(n1t).

We further note that in [21] there has been given
estimations of the orders of approximation of (™ by DFs3f ,
using the modulus of continuity of (™ respectively of r{™1),
under the hypothesis that these are continuous on I. Comparing
these estimates with those given at (4.6), respectively at (4.7),
we can see that D,’S;f converges to (™, it r(Mec(I), with the
same rate as (S,f) ™. It should be noticed that we have assunmed
that a20. Neverthless, there can be obtained convergence theorems

and asymptotic estimates also for a<0, under suitable hypotheses

(see [27] and [44]).

5. Generalisations of the stancu operator. We next turn to
the extension given in [47] for the operator S; , namely to the
operator L} . mentioned at (2.3). By using, as in (21), a
normalization factor for the fundamental polynomials, depending
on the parameter a, which are used for the construction of these

operators, we can write
<L,,mx).-g<1)*" (D.*qpn(x))f( )

where a0, xe€K=[{0,a) (a>0), x, ,€J2K, f£:J-N, while ¢%(x) are

polinomials in x of degree n, such that

17
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05,(0) =1 , (-1)%Dfe% (x) 20 , Vxek , neN.

This class of operators introduced and investigated by
Stancu [47] was further investigated in [21] and a special ca:é
of it in [12). The operator L, contains several special
important linear positive operators used in approximation theory
of functions, as - for example: the Bernstein and the Baskakov
operators, as well as an operator P® introduced and
investigated by Stancu himself [41].

The operator L) possesses similar properties with those of
the operator S;. In particular, if x, , = k/n then L;f can be
represented (47] in terms of successive differences of the
function f; in addition, it has the varijiation diminishing
property - in the sense of Schoenberg [31], and it preserves the
order and Lipschitz constant (5). Estimations of the rate of
uniform convergence of L)f to the function fe¢C(K) can be seen

in [21]), [47] and ([12]). We mention also that the following

relation holds

LimlDALYf - £™) =0 , ¥ £ ™ec(K) ,

n-e

for0sa=a(n)—+0 (n—+w); some bounds for the corresponding error were
given in [21).
In 1972 D.D.Stancu has introduced (47]) a Bernstein-type

operator L;f”,definod by the following formula

(Lr:,':"f) (x) :.’g(nzp) x (k. -4) (1 _x) (nep-k. -a) f( k+p) ) (5.1)

1 (n+p.-&) n+y

where a20, 0<B8<gy, p being a given non~negative integer.

18



ON THE APPROXIMATION OF FUNCTIONS

This operator, gepending on the quadruple of parameters
(p,a,B,Y), includes some special operators considered previouly
by Schurer (33) ana\gikkema [34]. In [47] Stancu has proved that
the Bernstein-type operator defined at (5.1) can be represented
by means of finite differences on the starting point B8/(n+y) and
with the step 1/(n+y). Consequently, if f is a polynomial of
degree m (sn), then (5.1) leads us also to a polynomial of degree
m.For the convergence we assume that feC[(0,1+p/m]}.

In [12] Gonska and Meier, assuming that feC(0,1+1/m] and
§>0, gave estimates of the rate of convergence, involving the
first, respectively the second order modulus of continuity. The
corresponding inequalities are the following

[(La:d ) (x) - f(x>|
<0 (£:8) (145 ((ABR21LAP) _2(02p) 4 2,
8

(n+y)?(1+a) n+y
+(£1+2P) (n+p) | (n+p-1) (n+pla _ 2P B2 13
(n+y)? (n+y)?{1+a) D*Y (n+y)2

(Lo} 78 () - £(0)] <
(n+p-1) (n+p) _ 2(n+p)

1
3 ——,1 2
< {3+max( Y ) [( (ey)? (Leg) vy +1) x2? +
(1+2D)(n+p) (n+p-1) (n+p)a 2P p?
+ ( - ;8
(n+y)? (n+‘r)’(l*a) H*Y)x* (mY)’]}m’(f ’
2| B YRyl max (L, 1)w(£;8) .
n+y  n+y )

By using a probabilistic method, D.D.Stancu has introduced
and investigated in detail in [52] a new Bernstein type operator
L,,r» depending on a non-negative integer parameter r (n>2r),

defined by
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n-r
(L} .£) (x) :-; [(1-x) C,,',lr,kf;l(l—t)pn_,,k(t)f(t)dt .
-0

e x(Chpx) -lfo‘ tPpor(E) £(E) AE) Dy (XD

where

k+1

C n-r-k+1
(n-r+2) (n-r+1)

nrk T (n re2) (n-r+1)

-
¢ Cnrx =

The approximation properties of the operator L, , have been
further studied in the paper [3].

In [11] H.H.Gonska gave an evaluation of the order of
approximation of a function f by means of Ly, L using the second
order modulus of continuity.

In a recent paper [30) is modifjed the operator S; of
D.D.Stancu, defined at (0.1)-(0.2), in the sense in which
Kantorovich has modified the Bernstein operator. This Stancu-

Kantorovich operator is defined by
(KAL) (x) &= (nd)gwn',,,(x) f ey de
- Nonet, it

vhere Xpnel,k ™ k/(n+l), Xpel, kel ™ (k+1) /(n+1).

For a=0 it reduces to the original operator X, of
Kantorovich. One shows that K; can be looked upon as an average
of the operator K,, with suitable weights chosen. For this
purpose the author uses the same technique which was used in [37)
for giving the representation (2.1) of S5 by means of B,. By
using the operator X; the author extends the results of
D.D.Stancu from [37) to the approximation in the L,-norm on (0,1)

of the Lebesque integrable functions.

21
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We mention that G.Mastroianni and M.R.Occorsio (23] have
introduced and investigated the iterates of the operator S, ,

of D.D.Stancu, defined at (1.1):
(S)° =1, (S)Y =5, , (S =53(s)7 1 (5>1)

By extending a procedure used by Kelinsky and Rivlin [14],

used in the case of the Bernstein operators, these authors gave

the following representations
ay k -1 1k
(S8 X(eix) = xi(Aj e =),

1
1,3

(S k(ni*;ix) = YL,.G(A. Ai',l_,)kul- ,

where

Xe= (x,x%,...,x% ,u =1(0,...,0,1)7

v =[x x(2.h x Uk h)
k.h fT e T T e

_ k _ l(i,h) ,i=j s
Acn = A hSkan
k+1 1 kel ke\ T
Vk,h = (h kSk* ,hk 1Sk_1 AR ,hSl‘ )

s v
Som=1, Sen-= ( k1 {h) (k>0) ,

sf being the Stirling numbers of second order.

By using these formulas, in [23] is proved the following

relation
aim(S;)k(f;x) = £(0) + (£(1) - £(0))x,

uniformly on (0,1), for any a20. In the same paper [23] it is

22
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f € Lip,8 = S, ,f € Lip,8 .
In (6] we have studied the monotonicity properties of the
sequence (S, ,:f), for ma<l, m<n, A€(0,1].
For the remainder of approximation formula of the function
f by Spaf we found a representation by means of the second

order divided differences:

) = —x(1-x)[—netl . ;
Rn,La(f:X) = -x(1 X)[n(lﬂl) [51152153'1:] ’

where 1e(0,1) and §,,§,,8, are suitable points of I, which might
depend on f.
We have obtained also quantitative estimates of the

corresponding approximation

I£-S5 £l s %w(f;bﬁ,;) , V¥ fec(D),

V£-S%,f) < %6;’,,)l cw(f;8%) ., VY flec(D) ,
where

A
« _[_ne+l 137
ned [n(1+a)

It should be noted that if A is an integer greater than 1,
then the corresponding operator was studied earlier in [23].

For A=j+6, jeN, 8€(0,1), we have

].lims:'x(f;X) = Ln(fix) '

where L,f is the Lagrange interpolation polynomial using the

nodes k/n (k=0,1,...,n).

25
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6. Bpline-type operators of approximation. In the papers
[51], [57] D.D.Stancu has introduced and studied a spline-type
linear positive operator, depending on two non-negative
paraﬁeters, generalizing the operator considzred first in 1965
by I.J.Schoenberg [32] and investigated in detail in 1966 -in a
joint paper - by M.J.Marsden and I.J.Schoenberg (20] and later
in two papers of M.J.Marsden (17], {18].

Considering two integers m (m>1), n (n20) and two real
parameters a and B satisfying the condition: O<a<f, one
constructs a spline-type linear positive operator, in the sense

of Schoenberg, defined, for any f:[0,1) - R, by the formula

m+n

(552 £) (%) ;=):; N, o () £CE85) (6.1)
J-
where

0 =x, f X =X <K K XX = =X =1,

6.2)
«.p,_ 1 (
Emnt= B (X pagagte s o #X G+ X +X 4. L+ X+@)

Npp, g () 0= (XG0 =X y) (X gy oo X X Xy oo, Xy s (E-X) 7] (6.3)

the brackets representing the symbol for divided differences.
The points x,,x,,...,X, are the knots, the abscissas (6.2)
are the nodes, while the functions defined at (6.3) are the
fundamental spline functions, representing normalized B-splines.
For a=B=0 one obtains the Schoenberg original operator:
Sﬁn=$;ﬁ .which is interpolatory at both sides of the interval

{0,1], since
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number n, we have

lim s%Pf = £,

m=e

uniformly on (0,1].
In the case when we have no knots (n=0), in ([51] it is

proved that we have

(Sn..,'o’f) (x) =§ [0,’,;&_.1‘, 0,1,..., 1;(t—x),f"] f(_j_fﬁ)

n

Fel m+p
?; () xr - 228)

which is just the Bernstein-type polynomial B;Jf' on x,
depending on the parameters a and 8, investigated in [41].

In the case (ii), considering that m = 1, one obtains

a,p = (x1-x)o a
(s&2F) (x) - f(p+1)+

- X+ (x-x,)
- s (£- b] n’ + o+l
+;-1: (X5, =X5 1) [Kyy0 Xy, X5,,5 (E-X) ] f( B+l )+ Tx, f( B+1)

This is the equation of the interpolatory polygonal line for
the abscissas xg,x;,...,X,.
In [57]) it is shown that in the general case of broken lines

interpolation we can give also the formula

Pl(x) = F(x,) + [x,%;f] (x-x,), +

n
+ ;; (Xgaa=X54) (X550 %;, %, £) (x-x3),

where a = x5 < x; < ... < X, < x,,,=b, [ € Cla,b].
It is known that if we take x;=a+ jh (j =0,1,...,n+1),

h = (b-a)/(n+1), then if f € C{a,b], we have
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ON THE APPROXIMATION OF FUNCTIONS

If - P s zm(b'a) .

n+l

The next step leads to the cubic spline interpolation. In
(571 is given an explicit expression for S; ,f, by using the
divided differences of the first four orders.

We mention that for the remainder of the approximation
formula of the function f by S, .f, D.Leviatan [15] has given an

integral form, by using the known theorem of Peano.

7. Extensions to two variables of the Stancu operators. By
starting from the bidimensional Sfeffensen interpolation formula
(see [35]), in the paper [49) D.D.Stancu has associated to a
function f, defined on a polygonal domain fi, an operator L*P

defined by

(L*Pf) (x) := [®*P(0,0)) -

m (1,-«) 5 (5.-p) (7.1)
* ;; (—1)1'1X—ﬂ‘§l—-D::{0“"(X:Y) 'f(XIIYJ) 1
=0 j=0

where (x;,y;) € A and 28 js a bivariate polynomial, whose
coefficients might depend on two real parameters a and B8, while
Dﬁj=Dﬂ, 'Dﬁp is expressed in terms of iterated Nérlund difference
quotions.

If one assumes that az0, 820 and that

(-1) 9Dl @ P (x,y) 20 (i=0(1)m, j=0(1)n,) ,
then L*P represents a linear positive operator.

We mention two remarkable special cases of these operators:
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where is used the following notation

Wg’k(t) = (5(’) ke (1-g) P kv s )

If in the case (7.3) we select

O%(x,y) = (1-x-y) ™o (7.8)

then we obtain the following two-dimensional operator of Stancu

-m m-1

(SEE) (x,y) = we i 5 (x, )f(i',i , (7.9)
Y g;—‘; AV m)
where

« - m-1 (i.-a) (], -a) (1_X_Z)(m-i-j,~-¢)

W i,7(X,¥) (T)( P )x ey .-« o (7.10)

In the case (7.7) formula (7.4) leads us to the following

representation in terms of finite differences

(Sl;,‘npf) (X,y) =
m
= n x(t,»d)y(s,-p) s
£ (st .o

r=0 8=0
For the remainder &:3=I—1;: ., corresponding to the

n

approximation of a function r:Ss - K, there can be given the

following simpie form expression by.means of partial divided

differences of second order:

(RaPF) (x) =

(X(1-%) (1vma) (¢ g g f(c,y)],- X2oy) (1+0B)

. R(14P)
, x(1-x)y(1-y) (1+ma) (1+nP) [&, &2 &5 ]
Moy fix, 201, mn(1+a) (1+P) URENE R

where £, and N ; are suitable points from (0,1), generally
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depending on f.
In (45) is given the following estimations for the orders
of approximation of the function f € C(S) by means of the

operator defined at (7.7):
If - SEPFl < 20(8%,8%) , (7.11)

If - & Prisd%w, ,(8%, 8% +8% w, , (8%, 8% (7.12)
. 1,0 0,1

3% - . 1ram s _ | 1+Bn
" m+am ' " n+fn

The inequality (7.12) is true when the function f has

where

continuous first partial derivatives on S; by 0y,0 and wg ; are
denoted the moduli of continuity of f, respectively of f;.

We mention that the extension of the Stancu operator S to
the hypercube s-dimensional was investigated also in (45].

The representation by finite differences of the operator
defined at (7.9) - (7.10), according to the formula (7.5), is the

following
(S:f)(x,Y) =

(m)(m—r) x(:,--)yu -e) (A’%’%‘f) (0,0)

r-o =0 1“" -a)

From this representation we can see immediately that S3f
takes the same values as the function f on the three vertices of
T.

Assuming that a is positive, if we consider the Dirichlet

double integral
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SNV fj P 'y l(1-u-v)tdudv ,
,

tor x > 0, y > 0 and x+1 < 1, then Stancu has proven ([39] that
the two-dimensional operator S, can be represented as an average
mean of the Bernstein two-dimensional operator:

(S;f) (le) =

X, X A-x-y
=[D(x,y;a]'1ffTu“ ve (1-u-v) ® (B,f) (u,v)dudv ,

where

D(x,y;a) = B(i‘.,l,ﬂ) .

x o a

By using the modulus of continuity ¢ defined with respect
to the metric d((x,,y;).(X5,¥2)) = |x;-x,| + |y,-yil, in [39]
there has been given the foilowing estimate, in sup norm, of the

order of approximation:

1+ma
£-S31 s 2w/ £; ,
I£-Snl ( mﬂm)

provided f is a continuous function on the standard triangle T.
An extension to the standard simplex T,, as well as the
basic approximation properties of the corresponding operator have

been investigated in the memoire {39].
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REZUMAT. - Noi procedee de interpolare in triunghi. Problema
construirii unor funcgii interpolatoare care & coincidd cu o
functie datd pe laturile unui triunghi este larg studiat¥® in
ultima periocadi. In aceastX noti se studiazX problema construirii
unor functii interpolatoare care s¥ interpoleze functia dat¥ nu
numai pe laturlle triunghiului dar gi pe anumite linii interiocare
acestuia (in cazul de fa{¥ se consider¥ medianele). In final este
dat¥ gi o aplicatie practicdi a formulelor de interpolare
construite.

0. Begining with the papér by Barnhill, Birkhoff and Gordon
(1), the interpolation préblem to boundary data on a triangle was
largely studied. Using boolean sum of some Lagrange's, Hermite's
or Birkhoff's univariate operators, there were constructed
interpolants that interpolate a given function and certain of its
directional derivatives on the boundary 4T of a given triangle T.

Following the discrete case, where the interpolating nodes
lie not only on the boundary 4T but also in the interior of the
triangle T, it is natural to put such a problem in the
transfinite interpolation case.

In this note, there are contructed some interpolants that
interpolate a given function on the sides of a ﬁriangle T and on
one of its median. Certainly, instead of median we can take
others line in triangle. Finally some practical applications are

given.

* N . N A !
"Babeg-Bolyai” Univergity, Faculty of Mathematics and Computer Science,
3400 Cluj-Napoca, Romania

W . n Iy 2
) Technical University of Cluj-Napoca, Department of Mathematics, 3400
Cluj~Napoca, Romania






NEW INTERPOLATION PROCEDURE IN TRIANGLES

(a-x-y) (a-x-2y) dy(a-x-y) . a-x
I.yf ) : f(x,0) f{x, +
(12°1) (%, y) (a-x)* (x ' (a-x)? ( 2 )

$ Y(XH2Y-3) e asg
{a-x)?

and

x _ (a-x-y) (a-2x-y) dx({a-x-y) a-y
f ( ’ = f 0: ) f . +
(Lf) (x,¥) (ay) (0,y)+ (ay)? ( 5 y)

b X2x2y-2) poa oy
(a-y)?

So, L/ interpolates the function f on the sides E, and E; and
on the median VM, respectively L,” interpolates f on E,;, E; and
V,M,.

In order to obtain interpolation operators that interpolate
the function f on all 9T,, one considers L¢P L, and L,"@P L. We
hawe:

THEOREM 1. If f € C(T,) then

LYPLt=f on 3T, v VM,
and

L’PL’f=f ondT, u V,M,.

Proof. Taking into account that

(LD L) (x, ) =_‘E’a_‘f:)L2) [(a—x-2y) £(x.0) +ay £x, a_;")]+

1
a-y

B (a—x—y)(a-X-Zy)[f(0,0)+-;£—f(a,0)]—

+

[(a-x-y) £(0,y) +x f(a-y,y)]-
(1)

ala-x) a-x

_4dyla-x-y) fkh a—x)+ 2x arx. a~x)
a%-x2 2 a-x 2 2

and the symmetric expression of L{(Blﬁy, the proof follows by

direct substitution.
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THEOREM 2. LY@ L"f = f and LSPLIf = £
for any fEPf (the set of all polynomials of the degree less or
equal to two).

Proof. As, L/@P L and L@ L/ are linear operators, it
must be verified the two equalities for the basic functions €jjs
i + j s 2, where eij(x,y) = xiyj. This way, the proof is a
straightforward computation.

Using the boolean sum operators we can consider now the
following approximation formulas

£ = L Lt + RIS

and

f=LPLIL + RYE
where RITf respectively R}Yf are the corresponding remainder
terms.

THEOREM 3. If f€B,,(0,0) (5,p.175) then

RIYE) (x,y) -fo'x,o(x,y, 8) £02.9 (a,o>ds+fo"x,l (x,y,8) £31 (5,0) ds+

+L'Kﬁ(x,y,s)fw'”(o,t)dC+fth(x,y,s,t)f“~”(3,t)dsdt
T,

where
Koix,y.8) =X {X*2y-a) (2 x o2
2 (X, ¥, 8) 2 (8 n)3 (x-8)% 2ay) (a-y-8)°
Xy (a-x-y) _2g)2 4 Xla-x-y) (a-x-2y) a2
' (a+x)(a-x)’(a+x she s 2a(a-x)? (a-a)%

Ky (x,y, ) = XAX22773) (o gy _ XY (5. ) .
a-x a-y
. 2X (:-x~ )(a+x-23) ,
a2-x32 ’

Kg;(xl},l t) = 01
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from (1) and from the expression of Lfealqﬂ for £(0,0) = h,
f(x,a-x) = 0, x € {0,a) and f(a-y,y) = 0 for y € [0,a]. It

follows that

_la-x-y) (a-x-2y) £(0,0)
ala-x)
respectively
Fy(x,y)= (a—x—(y;-(j)-22x-y) f(o,y)+£‘(i§5‘i£):in_ f(é;_y.,y)i-
+9;%’if(x;o)—-————4x;‘§:;;y) f(-‘zi,o)_- (3)

- (a—X‘_Y) (3—2){‘}’) f(o 0)
a(a-y) )

Really, we have: F;(0,0) = f(0,0):=h and F,(x,a~x) = 0 for
all x € {0,a] respectively F,(0,0) = £(0,0):=h and F,(a-y,y) = 0
for all y € [0,a].

We also have:F,(x,0) = f(x,0), F,(0,y) = £(0,y) and FQGL-§§5>=
=f(xrf%5), for x,y € (0,a) i.e. F, interpolates the function f

cn E; v E, U VM, respectively F,(x,0) = f(x,0), F,(0,y) = £(0,y)

and Q4a;y,yj=ft3%xlyyx,y € [0,a), i.e. F, interpolates f on E, |
v E; U V,M,. In other words, if g,(x) = £(x,0), g,(y) = £(0,y) énd |
g3 (x) = f(x,—a—;—x), g3 (y) = f(—az;y,y), then we have the two
families of surfaces_

F; = F;(91,92,935), 1 = 1,2. (4)
Hence, for each given g,,9, and g3, or g3, one obtains a

surface from the corresponding family.
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What is new here is that we can control the surfaces not
only on the boundary of T, but also on its median.

It is obviously that the function g;,9, and g¢g;3; must
satisfies the natural conditions: g;(0) = g,(0) = h, g,(a) =
= g,(a) = 0 and .gj;(a) = gz(a) = 0. So, they can be some
interpolation functions (polynomials).

Next, one considers some of such surfaces.

A. Let us consider first

"

g, (x) a—;"f(o,o)

g, (y) 1= 12 (@-2y) ¢ q) Mf(o,g)
4 aZ az 2

a- a
gy (x) &= axf(olz

in the family F, respectively

.- fa-x) (a- 2x)f(0 0) + 4x(a.x)f( )
2’

g, (x) Y

g (y) := a—;Xﬂo,m

g3, (y) 1= —a—;Xf(o,g) )
in F,.

From (2) and (3) one obtains:

_ (a-x-y) (a-2y) 4y (a-x-y) (a®+ax-x?) a
F,(x,y) = h £(o, =
1 a? ' a%(a?-x?) ( )

respectively

(X, y) = (a-x-y) (a-2x) , , 4x(a- xgx)(a +ay- yz)f( )
a? a*(a-y?) 2’

where it must be given f(o —» and f( 0)

An example of surface is in Fig.4 for the function
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1
G1=3(F11+F21) . (5)

B. In the second case one of the function g, or g, is taken
as an Hermite interpolation polynomial, in order to can control
the derivative of the surfaces (the directional tangents) along

the axis ox or oy.

So, in the family F,, we take:

(x-a)? x(2a-x) x(x-a)

gl(X) = —3—91(0) + 7—91(‘3) + gl{(a)

2

As, g;(0) = £(0,0) and g,(a) = 0, one obtains

(x—a)zf(olo) N x(t;a)

— gl (a)

g,.{x) =
The function g, and g3, are taken as in the first case:

g () = 12XLE2N £(0,0) + 242X £(o, 2)
a al 2

a-x
i1 (x) = —a—f(o,g) .

It follows that

(a-x-y) [(a-x)2+2y(2x-a)] £ ¢ o) «

F. R =
12 (%, 5) a?(a-x)
»Ayla-x-y) (ax+a®-x7) f(o, 3) + (6)
a?(a?-x2?) 2

f X(a-x-y) (a-X-2y) ra,0 (4, 0)
a(a-x) o

On a analogous way, one obtains (from (4)):

(a-x-y) [(a-y)?+2x(2y-a)] £(g o)

Fo(x,y)=
2\ X,V a?la-y)
4x(a-x-y) (ay+a®-y?) (fa , 7
* a?(a?-y?). (2' )+ )

» Yia-xy) (@-2X-Y) r0.1 (g, g
a(a-y) '
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It is well known ([4), pg. 131) that the degree of precision
of (1.1) is N-1 = 2m(s+1)-1 when the nodes are placed at the
zeros of the polynomial Pp, g(x) satisfying the power orthogonality

conditions:
fbw(x)x"[P,,,,(x)]"'1 dx = 0, k=0,1,...,m-1. (1.2)
a

The polynomials satisfying (1.2) are called s-orthogonal in
[(a,b] with respect to w [2], [3]), [4]). The case 8 = 0 gives rise
to the polynomials orthogonal in (a,b]) with respect to w.

It is well known that the polynomials‘satisfying (1.2) can
also be seen as polynomials of minimal Lp norm, p = 28+2 [18],
[20], [4); thus some of their properties derive from this
interpretation. Let us remark that, in spite of their importance
in the field of approximation theory, the polynomials of minimal
L, norm are explicity known only for particular values of p
and/or specific weight functions (for istance, see [16]).

_ For recent results on polynomials of minimal norm we refer
to [6], [%9]), [10}.

The zeros of P, , are real, distinct and are contained in

3
(a,b) (4] and, generally, they depend not only on m but also on
8. ‘

Here we shall consider only the case [a,b] finite assuming
in particular (a,b} = (-1,1].

Although the nodes Xj, can be evaluated following some

m’
stable methods (5], {13), the corresponding algorithms become
considerably expensive under the computational aspect, when m or

38 increases.
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A NOTE ON A CLASS OF TURAN TYPE QUADRATURE FORMULAS

Thus, an interesting goal seems to be the construction of
Tur&n type quadrature rules, where the nodes are independent of
s, at least. for some values of m and for suitable weight
functions.

This paper is devoted to study a case in which some
quadrature rules, having the above mentioned invariance property
with respect to s, can be obtained.

In Section 2 some preliminaries are given and the quadrature
rules are constructed; in Section 3 an algorithm for evaluatinq
the weights is presented and some remarks are made about the
round-off error propagation; .Section 4 contains a convergence
result of the rules and in Section 5 numerical examples are

carried out.

2. On some partiocular Turén type quadrature rules. In this
paper we consider weight functions w of generalized Gegenbauer
type (G.G.W.)

w(x)=|x|T(1-x?)¥, p,1>-1, xe€[-1,1]. (2.1)

The corresponding orthogonal polynomials were introduced in
{8] and some applications are given in different contexts of
approximation theory (14], (21]. As to the polynomials s-
orthogonal with respect to (2.1), we remark that they are
involved, for istance, in the construction of quadrature rules

with preassigned nodes Yy J = 1,2,...,0 [7], [19]

1 n €5 mn 2s
f.xf(x)dx = EJ EkBkjf(k) (v;)+ }:1 EhAmf(h) (x; o) . (2.2)
1 [ 1 0

where n=3, y;=-1, y,=0, y;=1, a, is an odd positive integer and
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al=&3 are positive:fnf;qers; then the highest degree of precision
of (2.2) is achieved when the nodes X; m are placed at the zeros
of the polynomial of degree m, s-orthogonal with respect to a
weight function (2.1), with r=a,+1, p=a;+1.

In the following theorem an invariance property of the
polynomials P, 4 s-orthogonal with respect to weG.G.W. is stated.

THEOREM 1. Let weéG.G.W., then the polynomials P, , are
invariant with respect to s, if and only if r=2u+1, u=-1/2, that
is

w(x) = |x|2#*1(1-x2)H, (2.3)

Proof. If 71=2u+l, u=-1/2 then w reduces to (1-x2)"1/2, in
which case the corresponding s-orthogonal polynomials are the
Chebyshev polynomials of first kind for each s, as it is well
known (3], [1].

The inverse is also true; in fact, due to the symmetry of w,

P,

n,s are even or odd functions, according with the even or odd

values of m and denoting by iva, x(4,7) the zeros of P, ,, then
one has
(/2]
P, (xip,t)=x* ?fx (x*-a, ,(p,7)),
where e=0,1 accordiﬁg to m even or odd. Admit now that P:,-(xiﬁrf)
be independent of s, which implies that the following s-

ortogonality conditions must be fulfilled simultaneously
filxml-X’)"(X’-a(u,t))"'1dx-o, §=0,1 (2.4)

with a(u,1)=: ag (4, 7) = a; , (4,7).

Denote by B the Beta function (or Euler function of the
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A NOTE ON A CLASS OF TURAN TYPE QUADRATURE FORMULAS

first kind) and by my(4,7), k=0,1,..., the moments of w, given by

m(p,7) = B((1+k+1)/2, u+l)/2,
then from (2.4) it follows
a, (B, 1) = my(p,7)/m(ps,7),
2(my (i, 1) 13-3mg (1, T)my (4, T) Mo (B, T) + mg(p,T) [mg(u,7))% = 0.

Using well known properties of the Beta function yields
1=2u+1. The same reasoning applied to the case m=3 gives u=-1/2,
1=0, 80 leading to the Chebyshev polynomials of the first kind.B

From the above proof, considering r=2u+l, one derives also
that

Py, g(xiu) = x2 - 1/2,

for each u.

This result immediately leads to the construction of a class

of integration rules relative to weight functions (2.3)

f_ilxl’“"(l-x’)"f(x) dx= (2.5)

28
=Y (A, (p) £ (-1/V2) +A,,(R) £ (1/y2) ) +R,(£) ,
0

where
Rg(£)=0, [fePy,_,, N=4s+4.
The subscript s in R (f) is meant to stress the dependence
on s of the remainder.
Let us remark that, since no condition is required for u,
(2.5) represents a class of quadrature rules, each having the
same nodes, while the weights depend on u.

For the symmetry of w, one has [4) Lo T
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A (p) = (-1)ha, (w)=: Ay (u), h=0,1,...,2s.
The evaluation of the weights A,(u) will be carried out by
a suitable algorithm presented in Section 3.
We recall that an useful expression of the weights in (1.1)

is also given by

*
Xi,m

Apg= (1) ¥-h-2 @ IN-h1) () | , I=1,m; h=0,2s, (2.6)

i,m

where the function ¢ is the Peano kernel or influence function
(1}, [(17) related to (1.1). The Peano kernel is a generalized
monospline having the nodes of the guadrature rule as knots and

is defined by

@ (x) -f_iw(t) (x-6)¥1/(N-1) ! dt-

m 23 (2.7)
-Y, Y, nrrra (x-xg )T (N-h-1)
1 1]

We shall also use the notation
¢(x) = &;(x), XE(X; meXi01,m)e i=0,1,...,m; Xgi=-1,K,, =1,

The salient properties of ¢, meaningful in the context of

the present paper, are the following

#(x) >0 in (-1,1), (2.8)
oM (1) = ¢M)(-1) = 0, h=0,1,...,N-1, (2.9)
#(x) = ¥(~x). (2.10)

The function ® allows also to express the remainder, for

fcc"[-l,l], by

R(f) -f_iw(x)@(x)f‘”’ (x) dx (2.11)
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3. On the evaluation of the weights. The weights (2.5) can
be computed by (2.6), or, taking in account the interpolatory
character of Tur&n gquadratures, by integration of suitable
Hermite-Lagrange polynomials. But due to the nature of the weight
function (2.3) it true out to be more convenient to get them
following the Theorem below.

THEOREM 2. Let w be of type (2.3), then the weights of (2.5)

are the solution of the upper triangular system:

N
22(ke1en) Eh Cn,h(‘/z) ~hAh(u) =
n

3.1
{0, n=2k+1, k=0,8-1 (3-1)
B(k+1/2,p+1)/(2k) !, n=2k, k=0,8,
where M = min(2n,2s), B denotes the Beta function and
Cn,n = h/((2n-h) 1 (h-n)!]. (3.2)

Proof. Since the degree of precision of (2.5) is N-1 = 4s+3,

the weights A,(u) can be evaluated solving the system

2s
[0 0,00 dx = T, A, (8) [(-1)4g (-1/v2) +g® (1/vD) ]
0

vwhere
g,(x) = (2x3-1)"/n!, n=0,1,...,2s.

It is easy to show that

0, n=2k+1, k=0, 8-1,

[iwix)g,(x) dx = {
-1 B(k+1/2,u+1)/(2k)!, n=2k, k=0, s.

Moreover it is possible to prove, by induction, that, for

h=0,1,...,2n:
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[h/2)
g (x) = Ej 222D xh2ip.\ (2x2-1)"P7/(n-h+f) !,
[}

where
Djp = 27ht /3 (h-27) 1.

Taking into account that g,e¢P,, is even and has zeros of
multiplicity n at t1/v2, one gets (3.1), by some easy
manipulations.

In the particular case when u is a nonnegative integer, the
corollary below holds:

COROLLARY 1. If ueN, then the weights A,(u) 1in the
quadrature formula (2.5) are rational if h is even and are
rational up to v2 if h is odd.

In order to get some information on the propagation error
and@ to analyse the convergence of the obtained rules, it is of
interest the result of the following theorem.

THEOREM 3. Let w be of type (2.3), then the weights of (2.5)
satisfy the following bounds

|Ap(8)| s 8o/ [h!(v2)P), (3.3)
with bo-[;w(x)dx.

Proof. As it was shown in [11], [16], the function ¢¥-k) nag
exactly k zeros, say Yy, N-k (jJ=1,...,k), in (xy,2,%2,3), which
fulftil the relation

X1,2 < Yi,N-k < Y1,N-k+1s k=2,...,28+2. (3.4)
Due to the symmetry property of w, one has, in particular
Yi,n-1 = 0.

since ®{"=w, x€lx, ,,x, ,], we can write
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A NOTE ON A CLASS OF TURAN TYPE QUADRATURE FORMULAS

R (x) =" de,, [ de, o [ wlpde.
y. y

Yi,n-k 1 N-kol 1,81
It follows from (3.4)

Lyl.u-tdtk-l fty"'“ dty ;... fyl'N 'W(t)dt ' =

1 k-1 ¢

8K (x,) | <

< 8,/(2(k-1)1(y2)%1].

[Pw(e) (-5 (he-1) 1 e

x

Again from (2.7) one derives

680 (x) | .U_l"‘wm (%,-£) %1/ (k-1) ldtl 58,/ (2 (k-1) 1 (y2)*1],

and then, using the last two relations, (3.3) follovs. ]

Among other things, the bounds (3.3) allow us to obtain
information about the absolute global error E,,, due to the round-
off errors on the data r(h)(xilz). More precisely, assuming that
the computed values f,; are such that |f,;, - f(h)(xi'2)| < e,

i=1,2, one gets:

2s
Eux $2¢ Y |2,(n)] < 2¢8,0"/V% =
0
= eoVI/RT (u+1) /(23 T(p+3/2))

From the behaviour of the Gamma function it is easy to

deduce that E,,. is a decreasing function of u.

4. Behaviour of the remainder. This s;ction is addressed to
get estimates of the remainder term of the particular Turéan
integration rules (2.5), and to investigate its convergence when
s —~ o,

We recall that results on the convergence of Turan
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quadratures (1.1) are contained in (15}, where the case of fixed
s and m - o is dealed with.

The case of m fixed and s - © is analysed in [12] where the
convergence is proved under the assumption that f is analytic in
a suitable region of the complex plane containing [-1,1]. This
result is reached considering the following expression of the

error term
R(£) =]_iw(x)[f(x) -p, (x)]dx, (4.1)

where p, is the polynomial of Hermite-Lagrange, interpolating
f(x) at the multiple nodes X; mof (1.1).

Here we shall present a result of convergence which holds
for functions feC”[-1,1] and is obtained by the use of an
expression of R, different from (4.1); actually, R,(f) can also
be written in the form (2.11).

The following Theorem 4 can be stated

THEOREM 4. Let feC™(-1,1), let |f'*)(x)|sM,, xe[-1,1], and
agsume

%igb?I:ﬁ%ﬁE; =0, (4.2)

then

1imR,(f) = 0.

Proof. Let us remark that, since w is an even function, such
is also @, then (2.8), (2.9) yield &(x) < #(0), xe[-1,1);
furthermore from (2.11), (2.8) one derives

IRy (£)]| < My #(0)6,.
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Relation (2.7), Jjointly with (3.3), gives
28

#(0) s &9/ (N=1)! + 26, zo:h (v2)~h/nt (\122).'""+1/(N-h-1)! s
S 8o/ (48+3) 1 + 2 (v2)17N6,/(25+3) ! Eh 1/h! <
S c8o/[(25+3)1228%2), °
with ¢ = 4(2+ev2).
Then the claim follows from (4.2).
COROLLARY 1. ‘Let rfec®(-1,1], |[£'®)(x)|sM, xe[-1,1],

k=0,1,..., then

1imR,[f] = 0.

8~

5. Some remarks and numerical examples. Systen (3.1) can be

written as

N
Eh Cn,hxh(“) = bnl n=0,1,...,28, (5.1)
n

where

Xp(p) = 2201 (y2)=ha, (),

0, n=2k+1,
n = {24"B(k+1/2,u+1)/(2k)!, n=2k.
It is easy to obtain the following recursion to evaluate b,,
n=0,1,...,28
by = B(1/2,u+1),
byk = by x-1)/[32k(2k+2u+1)], k=1,...,s (5.2)

Denoting by b,, the exact values and bylﬁk the calculated
ones, the absolute errors e, =|b,,-bj,| satisfy the difference

equation (5.2), whose solution, obtained by induction is given by
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k
&x = & / [32°kt[] (27+2u+1) |, k21,
J=0

then the initial error e, fastly decreases when k increases.
The starting value in the back sostitution process to solve

the system (3.1)

X,s = by,

M
X, =b-Y c\Mx,, r=2s-1,28-2,...,0,

I+l

can be assumed correct .in the machine precision.
The quadrature formula (2.5) is now written, using x,:
[l (1-x3) R0 ax =
-1

L
= 2-3(ape) [ En zhxzh[fum (-1/V2) +f (30 (1/y2)] +
o

s-1
+ ‘/2 Eh thzhd [-£(3h+1) (-1//2) + £ (2h+1) (1/y2)]
o

In Table 5.1-5.5 the values of x, are quoted for different
choices of u. Tables 5.6-5.8 contain the absolute errors obtained
comparing the exact value and the approximation given by (2.5%5),
when (2.5) is applied for evaluating respectively the following

integrals

f_ile(l—x’)sin(am-D)dx, (a,$)=(1,1.2), (2,3.2), (1,2.14),

f1|x]log(x+a)dx, a=2, 4.5, fllxle‘”‘dx, a=3, -2.5, +0.5.
- -1 -
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y = -0.5

.157079632679D+01

-.490873852123D-01

.245436926062D-01

.157079632679D+01
-.115048559091D-02

-.605922411215D-01
.958737992429D-04

.302961205607D-01

.157079632679D+01
-.170974941983D-02
.166447568130D-06

-.656256155817D-01
.165781777857D-03

.3281280779090-01
-.499342704390D-05

.157079632679D+02
-.293298300099D-02
.412217805447D-06

-.768261845304D-01
.310708195577D-03
-.910260138211D-08

.384130922652D-01
-.140830247097D-04
.162546453252D-09

.157079632679D+01
-.293319366119D-02
.101418421310D~-05
-.914323799542D-11

-.762854080849D-01
.333345877575D-03
-.294696719746D-07
.101591533282D-12

.381427040424D-01
-.198109829212D-04
.564848925050D-09

.157079632679D+01
-.517429117190D-02
.255802452024D-05
-.341760267433D-10
.440935474316D-16

-.958214192782D-01
.639894166541D-03
-.635554804211D-07
.479914170246D-12

.479107096391D0-01
-.468566961504D-04
.169984858329D-08
-.582034826097D-14

Table 5.1

k=0

.200000000000D+01

-.416666666667D-01

.208333333333D-01

.200000000000D+01
-.781250000000D-03

.494791666667D-01
.651041666667D-04

.247395833333D-01

.200000000000D+01
-.110677083333D-02
.968812003968D~07

.524088541667D-01
.105794270833D-03

.262044274833D-01
-.290643601190D-05

.200000000000D+01
-.179777599516D~02
.224037775918D-06

.587463378906D-~01
.187235029917D-03
.470950279707D-08

.293731689453D-01
~.793214828249D-05
.840982642334D-10

.200000000000D+01
-.172983805339D~02
.525151611005D-06
-.430047942102D-11

.578397115072D-01
.191042158339D-03
.147171962408D-07
.-477831046780D-13

.289198557536D-01
~.104281006667D-04
.273319358758D-09

.200000000000D+01
-.281094710032D-02
.126270390061D-05%
-.154996445799D~10
.191438720665D-16

.672682921092D-01
.338739156723D-03
.401980146415D-07
.212037527009D-12

1

.336341460546D-01
-.234241208071D-04
.789914449209D-09
~.252699111278D-14

Table 5.2
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.314159265359D+01 -.490873852123D-01 .245436926062D-01

.314159265359D+01 -.567572891518D-01 .283786445759D-01
-.766990393943D-03 .639158661619D-04

.314159265359D+01 -.592739763819D-01 .296369881909D-01
-.104662230840D-02 .988698554692D~-04 ~-.249671352195D-05
.832237840650D-07

.314159265359D+01 -.645930997047D-01 .322965498524D-01
-.162579742766D-02 .166827276645D-03 -.663189529268D-05
.181531878992D-06 ~—.364104055284D-08 .650185813008D~-10

.314159265359D+01 ~.634183998938b-01 .317091999469D-01
~.152194194737D-02 .163845361960D-03 -.821872253326D-05

.407674632078D-06 ~.110369041758D-07 .199119405234D-09
-.304774599847D-11 .338638444275D-13

.314159265359p+01 ~.702749978186D-01 .351374989093D-01
-.230781294491D-02 .271089280528D-03 -.176325698959D-04
+.939131436054D~-06 .291638814594D-07 .554753266430D-09
-.106353636405D~-10 .141956026417D-12 -.166295664599D~-14
.125981564090D-16

Table 5.3

p=1
.133333333333D+01 ~-.1666666666670-01  ,833333333333D-02

.133333333333p+01 -.188988095238D-01 .944940476190D-02
-,223214285714D-03 .186011904762D-04
+133333333333D+01 -~.195498511905D-01 .977492559524D-02

-.295552248677D-03 .276434358466D-04 -.645874669312D-06
.215291556437D-07

.133333333333p+01 .208994063120D-01 .104497031560D-01
-.442327267278D-03 .447994817502D-04 -.167707229475D-05
.446485330112p-07 .856273235831D-09 .152905934970D-10

.133333333333p+01 .205136980329D-01 .102568490165D-01
-.406062872494D-03 .427384626527D-04 -.197299115070D-0%

.965065808561D-07 .252765272500D0-08 .444015311162D-10
-.661612218619D-12 .735124687355D-14

.133333333333p+01 .2204083138770-01 .110204156938D-01
-.581030061058D-03 .665915004861D-04 - -.406225050409D-05
.213892378917D-06 .648441724720D-08 .119632353808D-09
~.224304920229D~-11 .292518365176D-13 -.336932148371D-15
.255251627554D-17

Table 5.4
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Table 5.7 (u=0)

8 p=2
Sl .106666666667D+01 -.9523809523681D-02 .476190476190D-02
2 .106666666667D+01 -.105158730159D-01 .525793650794D-02
-.992063492063D-04 .826719576720D-08
3 .106666666667D+01 -.107526154401D-01 .537630772006D-02
-.125511063011D-03 .115552849928D-04 -.234863516114D-06
.782878387045D-08
4 .106666666667D+01 -.112285663555D-01 .561428317776D-02
-.177176519950D-03 .175567253204D~-04 -.588287941804D-06
.149424384450D-07 -.263468687948D-0% .470479799907D-11
8 .106666666667D+01 -.110438626857D~01 .552193134285D-02
-.158888330275D-03 .161086167251D-04 -.634077858809D-06
.302466758562D-07 -.744299043453D-09 .124677146975D-10
~-.176429924965D-12 .196033249961D-14
6 .106666666667D+01 -.114722140635D-01 .573610703177D-02
-.207933569941D-03 .227832624817D-04 -.121648362691D-05
.626953147959D-07 -.181517333743D-08 .316635499895D-10
-.569289206413D-12 .711341241587D-14 -.792781525578D-16
.600592064832D-18
Table 5.5
8 8in(x+1.2) sin(2x+3,.2) sin(x+2.14)
1| .20073D-07 ,29584D-06 .18141D-07
2 | .21902D-12 .57297D-10 .21454D-12
3 ].17666D-13 .26869D-14 .53838D-15
4 .71384D-15
Table 5.6 (u=1)
8 log(x+2) log(x+4.5)
1 .10515D-04 .10273D-07
2 .10241D-06 .31346D-11
3 .12210D-08 .44409D-15
4 .16327D~10
5 .23537D~12
6 .37748D-14
7 .33307D-15
8 .22204D-15
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.lx .-Z.Sx .tO.Sx

.26006D-~-02 .56157D-03 .12195D-08

.29398D-05 .31299D-06 .19984D-14

.10186D-08 .529280-10 .66613D-15

.14122D~-12 .31086D-14

.17764D~-14 .44409D-15

Ot e jw IV = e

.88818D-15

Table 5.8 (u=0)
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RESUMAT. ~ Asupra interpollrii cu functii spline polinomiale de
grad par. Este studiatd interpolarea cu funct{ii spline polinomiale
de grad 2m. Functia spline interpoleazi valorile derivatelor pind
la ordinul m pe noduri echidistante. Este demonstratd existenta,
unicitatea gi se d¥ estimarea erorii. Rezultatele generalizeazd
pe cele din lucrarea (2].

0. summary. The problem of interpolating a given function by
a polynomial spline of degree 2m is considerad. The spline
interpolation is constructed such that it interpolates the
derivatives up to the order m at the knots of a uniform
partition. This problem was stated and solved in [2) when m =
=1,2,3,4,5. The case m = 2 with some different assumptions was
also considered in [3]. We study this problem for an arbitrary
positive integer m. Construction, existence, uniqueness, and
error bounds are given for the spline interpolation formula. At

the same time we make out the conjectures emphasized in [2].

1. Statement of the problem. For any integer n 2 1 let
A ta=xy<x,<x,<...<X,<X,,,=b be a uniform partition, i.e. the knots
of A, are given by x,=a+kh,k=0,n+1, h=(b-a)/(n+l). We denote
S;a(4,) the space of polynomial splines of degree 2m with
deficiency m in each knot of 4,. Therefore s ¢ S,,(4,) if and only

if 8 ¢ C"(a,b] and its restriction to any subinterval [(Xp,Xpe1] is

R ""Babogﬂaolyai"Universir.y, Faculty of Mathematics, 3400 Cluj-Napoca,
omania
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a polynomial of degree 2m.

One considers the problem of approximating a function f on

(a,b) by a spline function s, ¢ S,,(4,) such that

s[(xo)’ 0 St“‘“ (Xk) 'fk(ri)‘, k'ﬁ,ﬂ*’l, i=1,m,
when £, = f(x,), f}“-f‘“(xk) are given. Certainly, the function

f is so that the involved derivatives exist.

2. Two-point Hermite interpolating polynomial. There exists
explicit formula for the Hermite interpolating polynomial of
degree p+qg+l which matches g and its first derivatives at the
node a, aﬁd also g and its first g derivatives at the node B#a

(4). Namely, it has the expression
4 q
Hp g1 (9 X) .g h, () g™ (&) ?:; hy ;(x) g (P)

where the fundamental Hermite interpolating polynomials are given

by
L)t x-pret R (gevy (x-a)r
Ba. 1) 11 (a-ﬁ) g; (V )(B—a)' 1=0.p,
and
X- x-a \pt & p+p\ | X .
[ o) = LB K00 3:( ) (28) . 1o
These polynomials satisfy a% (@) =8,., 1.k=0,p, A (p) =0
1i=0,p, k=0,¢q and respectively h“‘)(B) =8, J.k=0.q

hM(«) =0, j =073 k=T,p.

In the following some particular cases are necessary.
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1%, p=m, g=m-1, a=x;, B=x,,,. Setting x=x,+th, 0<t<l we have

h‘t‘(l—t)"’ g

hx‘"i(x) = i!

(mw 1) £v , i=0,m,

v=0

and

v M-J-1
h, ;00 = M (’"*I-l) (1-t)% , j=O,m1.

My
i ”o

2.°. p=m, q=m-1, a=0, A=1, One denotes An,i(t)‘ho,i(t) and

By-3,y(t)=h; ;(t). Then we have

A (n-£0-0" v (”'*" 1) e, 12077, (1)
V-O
and
o M-J-1
B,-x,j(t)'-(t——l]-);t—.—l 2; ("”") (1-t)* , j=0,m-1. (2)

Taking into account these formulas we obtain that

h,, ((x)=hiA, (t) and h,  ,(t)=h7IB,, ;(¢). (3)

Remarks on A, i(t) and Bm_,,j(t):

1. Writing (1) in the form

m-1
Aﬂ,l(t) t (1 t)m Ea(”t' ’ ..Ulml

v=0

where a."' = ("":—1), it results these coefficients satisfy

following recurrence relations
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al®- 1,

(v)_ anf_v) +a”('v 1)’ v=T,m-1

(m) Ea(v) .

ve0

(4)

Recurrence relations (4) were conjectured in ({2].

2. We can rewrite (2) in an equivalent form whether the

binomial formula is used. Namely, we have successively

(“)(1)' v]-

_(e-1)demr NE "L mavy v -
7 ocur Y () () fer-

ue vep
-1
) DR W
veu T

CRILEESS Sl g])>

tk .

_(e-1)demr L mep
T ..2; (-1)» ( M )

Finally one obtains

£-1)Tem L
By, (t) = { ;, Y. bt jev (5)
n=0

where

b, = (-1) ¢ (M) (2T} | 30w T , =0, w71,

It can easily see these coefficients satisfy following

recurrence relations:

byl = (-1)"1a,"

’

b(ll 1) E(m_L +1) b“.l) o p,—m-l,m—2,--~,1:
{ (6)
bn:“l)j Zm_m.]Llenqu' J=1.m-2, pu=0,m-7-1,

0)
bp.- 1,m1=1.
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(Xx,Xx41] 18 considered to coincide with this polynomial. Then,

we have

sf(x)=h o(X)Sy+h, (8, 4

h, 0 £ h, (X)) B +h, 0 £,
My, 4 Kpozo 4 Xpom

when x € [x;,X%),;). Taking into account (3) we have the following

eguivalent expression

8,(x) -A"'f (t) 8,+B, , o(t) 8, .+
o

+ ?:ht[a,,,,j(t) £ 4B, (0 BN ]vA, L (0) £,
=1

where x = x,+th, t € [0,1].
The parameters s,, k=T,n, will be determinated by 8, €

¢ C™[a,b}, which is equivalent to

5™ (x,-0) = 8/ (x,+0) , k=T, 7.

Using (7) and (8) we have

88" (x, -0) =% L (A" (1) 5,,+BI o (1) 8, +

?:hf[ AL £+ (1) £ +h Al (1) £ ""}-

= (‘l)n { (2m) 1 (sk—l__sk) +

h?» m!
. = h‘iZm—i)l[f<n_(_l)jf(n]+hmfwm
E it (m=-1)1 k1 k B
On the other hand we havé
gim (x,+0)=h—{A‘ (0) 8,+B,™ 4 (0) 8., +

?:h‘[w’m)f“’ N.1(0) £+ "“4(0)1"5")}‘

Therefore the following recurrence formula holds
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2m) ! ~ hi(2m-1)1 i
Gt Conars) = 3 REES -0 o)

for k=1, n+I, with 85 = f5 = f(xgp).
The expressions of coefficients in recurrence formula (9)

were conjectured in (2].

4. Brror bounds. It 1is known the following result
established in [1]. If g € Cc®*"[0,h] and H,, ,(g) is the Hermite
interpolating polynomial of degree 2m-1 that matches g and its
first m-1 derivatives at 0 and h, then

h*[x(h-x)"*

0 (x) -HP (g;
|9 (0 ~Hams (g2 | s “HEEml

ug(ﬂm)ll (10)

xe {0,h], r=T,m, and |-| denotes sup-norm.

Since s,’: on (Xx,Xy,;] is the Hermite interpolating polyno-
nial of degree 2m-1 matching g = f' and its first m - 1
derivatives g(¥) = f(r*1) at x, and x,,,, based on (10) it results
that

hT(x-x,) (Xp,,-x)]™F

{r+1) _ £ (r+1)
|o7% 0 —£ 0 (0] < ! (2m-21) 1

If(z'"“" (11)

2
X€[xy, %3], r = T, M. As max{(x-x,) (x,,,-x) | x € [Xkr Xpea] } = —1’4— .

from (11) it results that

th-t
4™ Iry (2m-2r) !

|s}r‘1) (x) ~£17*1) (x) ‘S If(2m+1)u , (12)

X € (Xp,Xp3], r=0,m and £ e c{?™1) [a,b),.

Also we have that
h2m-r
4™ fr1 (2m-2r) !

ls;f'l)_f(td)ls jf@mUy  r=0,m.
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Integrating (11) over [a,x), in the case r = 0, and using

8g(a) = f(a), when f ¢ c?m1l 14, b] we obtain

and

(b-a) h®" I£ (2m+1) ' s
4™ (2m) !

|Se(x) -£(x) | < x€ [a, b)

(b-a) h3™ \ . (2m+1)
8,~-f}s ——~— |f
Is.- £} e (2m) 1 | I
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RESUMAT. -~ Metode numerice directe cu functii splime pentru
ecuatii integro-diferentiale Fredholm de ordinul doi. Este propusd
o metodd de colocagie cu functii spline polinomiale pentru
rezolvarea numericd a ecuatiilor integro-diferntiale Fredholm de
ordinul doi. Se stabilegte leglitura cu metodele discrete multipas
gi intr-un cas special se di estimarea erorii gi se demonstreaszl
convergenta.

Abstract. For the numerical solution of second order
Fr.dholm.integro-differential equations is proposed a direct
collocation method with polynomial spline functions. The
connection with the discrete multistep methods is established and
for a special case the estimation of error and the convergence of
the given procedure zre investigated. Some numerical examples

illustrate the direct spline methods.

1. Introduotion. Consider the nonlinear second order

Fredholm type integro-differential equation of the form
Y0 =£0ey (0 .,y (00, 2(0) . 200 <[ "K(x, £, y(e)) de , 0xxsa (1)

Y(0) =a, y'(0) =8
where f and K are given functions, a,B ¢ R, and y is the unknown

function.

R ; "Babeg-Bolyai* University, Faculty of Mathematics, 3400 Cluj-Napoca,
omania

- . .
) University of Agriculture Sciences, Department of Mathematics, 3400
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There is a number of papers in the literature which consider
special forms of the equation (1). References [1,3,4) investigate
the guestion of stability for problems without an integral ternm.
Chawla [3]) deals with problems explicitly containing first
derivative. The general problem (1) has received much less
attention. Linz [6] for example, solves a linear problem (1) by
converting it to a second kind Fredholm problem. Garey and
Gladwin (4] solve a first order Fredholm inteqro—ditterantiaﬂ
equation of the form (1) by directly applying of a multistep
method for the differential equation and a quadrature rule for
the integral term. Recently in ([5) Garey, Gladwin and Shav
present a general class of k-step three-part methods for
numerically solving second order Fredholm integro-differential
equations, the most results being given for the linear case.
Their methods consist of a k-step method for second order initial
value problems, a k -step extrapolation rule for first order
derivatives and a gquadrature rule is introduced for the integral
term. They are investigating the problem of stability also.

In this article we propose a direct spline collocation
method for the general nonlinear problem (1). The existence,
unigueness and the convergence of the constructed approximate

spline solution are investigated.

2. Direct spline collocation method. Suppose throughout in
this paper that the problem (1) has a unique solution y:[0,a]-R
and it is smooth enough. The function f:{0,a] x R*-R is assumed

to be sufficiently smooth function and it satisfies a Lipschitz
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condition with respect to its last three arguments:
L1) |f(x,uy,vy,Wy)=L(X,uy,Vy,Wa)| < Ly[|uy-ug|+|vy-vy| +|w -wy]]
vV (x,uy,vy,W), (X,uy,v,,w,)€(0,a]xR}
Also, we assume that the kernel function K:[0,a)?xR-R is a smooth
function and satisfies the following Lipschitz condition:
L2) |K(x,t,y,) - K(x,t,y,)| S Ly|y;-Ya|
Vo (x,t,y;), (x,t,¥;)€[0,a) xR
Let m > 3 be an integer number and n > m another given
integer number. Following the idea of (7] - ({9] we shall
construct a polynomial spline function s of degree m and class of
continuity c““l[o,a],(aesm) to approximate the exact solution of
(1). Let
A:0=xp<x;<...<xp<...<x,=a x,=kh h=a/n
be a uniform partition of the interval (0,a].
The first component of the spline function s on the interval
{0,h] is:
8y (x) =y(0)+y’(0)+a%clx2+. ..+%;—-§.i—)x"'1+%x” , Osx<h (2)

where:
y(0) =&, y'(0) =P, y”(o)=f(o,a,p,fo'x(o,t,a)dt)

The other coefficients y"'(0),...,y{™1)(0) are determining
by the differentiations of equation (2). The last coefficient a,

is to be determined from the following collocation condition:

sd(h) =£(h, s,(h) , 3. (h) 'fo"“h' t,a)dt)

Now, if the polynomial (2) is determined, define the spline
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function s on the next interval (h,2h}, by

m-1 ()
8, (x) =Y f"j—f”l(x-h)h%(x-m , hsxs2h

J=0

where s/ (h) , 0 < J < m-1 are left hand limits of derivates as
x-h of the segment of s defined on [0,h] in (2) and a; is to be

determined from the following collocation condition:
" / a
s!(2h) -f(zh, s,(2h), s{(2h), [ *K(2h, £, 5,(£)) dc)
0

Continuing in this way, on the interval [x;,x,,;] the spline

function, approximating the solution of (1) is defined by:

m-1

S(“ (x ) . oa
8(x) :-;0 __T"—k_ (x-x,) ‘+-;n—:‘ (X=X )™, X SXEXp,, (3)

where s'¥ (x,), 0 < i < m-1 are left hand limits of the derivates
as x —~ x, of the segment of s defined on ([x,_;,X,] and the

parameter a, is determined such that:

Sl/(/(xku) =f(Xpuy s 85 (Xp,q) Sl/x(xk.x) P2y,

L]
zszo K(X,,,, t,8,,(t))dt (4)
k=0,n-1 , s,:=8|I, I,: =[x, x,,,]

This procedure yields a spline function s ¢ S, over the
entire interval [0,a], with the knots {x,}y., . Xx,=kh.
It is to be shown that the parameter a, may be uniquly
determined by the collocation condition (4).
THEOREM 1. If ‘the conditions L, and L, are satisfied and if
h 1is so small thag
h [h

—{=+1]L, <1
m—l(m+ )1

then the spline function s given by the above construction exist
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and is unigue.

Proof. Replacing s given by (3) in (4) we have:

L (m-2)1
hm—z
a,

¥ (m-1)1

a, 7
ak (f(Xkd,Ak(Xku) "'E!_h M,Ak(xk,l) +

(5)

hM‘l, zk) —Aél(xk,l) )

vhere

m-1

si(x,) a
Ak(x)z-g-—i-!'—(x-xk)i , zk:-fo K(X,.,.t, 8, () dt

If wve denote the equation (5) for brevity by

using the assumption L, for

_”.(_'1»,1)L1 <1
m-1\m

the function G,:R~R is a contraction and therefore (6) has a
unique solution a;, for each k, which can be found by iterations.
For the sake of definiteneas we consider applying this
method for a problem (1) in the case of not appearing the
derivative y*' of the unknown function in the equation. ‘
Henceforth let consider the following second order Fredholm

integro-differential problem:
y"0 =£(x,y(x), [*Kix, £,y(£))dt), 0sxsa (6)

y(0)=a, y'(0)=B
Keeping the notation z(x) -fo'K(x, t.y(t))de and the assumptions
L, and L,, straightway we have the following theorem:

THEOREM 2. If the condition L, and L, hold and if
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h<(m(m-1)/L1)1/2 then the spline function s approximating the
solution of (6), given by the above construction exists and is
unique.

For the purpose of error estimating we shall need the
consistency relations which hold for spline function s € S, with
equidistant knots x,=kh, k=0,1,...,m-1, given by.

THEOREM 3. [7,p 807] For any spline function s e S, (m23)
there exists a linear relation between the quantities s(kh) and

8'(kh), k=0,1,...,m-1 given by

m-1 m-1
f‘: ci™ g (kh) -h?: bi™ g/ (kh) (7)
=0 -0

with the coerfficients

o™= (m-1)1 (0, , (k+1) -20,_, (k) +0, , (k-1)]

8
bi™ i =(m-1)1 Q,., (k+1) @

where
Oy (X) "‘Tan}i (-1)4 (m;’l)(x-i)’f

THEOREM 4. The values s(kh), k=0,1,...,n of the spline
function constructed above are precisely the values furnished by

the discret multistep method described by the recurrence relation

m-1 (- m-1
Eocj"yj‘k = h“;bj“"’yj,k, k=0,1,2,...,n (9)
I= =Q

where the coerficients c}”,tﬁ" are given by (8), if the
starting values
yo’=S(0), Yl“s(h)n--'Ym-z:S((m'z)h) (10)

78



DIRECT NUMERICAL SPLINE METHODS

are used.

Proof. For h<(m(m-3.)/L1)"/2 only one sequence {yj},
j=m-1,...,n satisfies relation (9) with the starting values (10).
By the consistency relation (7) the sequence {s(jh)},
jem-1,...,n satisfies (9) and evidently has starting values (10).
Thus the values s(jh) must coincide with the values Yo
j-;n—l,...,n generated by the corresponding multistep method.
Theorem 4 tells us that the approximate spline solution of degree
m yields the same values as the discrete method of (m-1)-steps on
X,. In the sequel we shall be concerned with estimating of error
of approximation of solution of problem (6) by splines as well as
with the covergence of the approximation s to the exact solution
y for h—0, for the degree m=3 and m=4. We now define the step
function s!™ at the knots x,=kh, k=1,2,...,m-1 by the usual

arithmetic mean:
s (x,) :-—;—[3 “"’(xk—%h)+a""(xk+—§—h)], k=1,2,...,n-1 (11)

Let y be the unique solution of (6) and we denote:
Y=Y (xx), Y'pt=y"' (%)), Y"xi=y"(2y), #,:=2(x,) and analogously for
s wiure x,=kh and k=0,1,2,...

LEMMA 1. If |s(x,) - y(x,)|<Kh?, where K is a constant
independent of h, and if s"(x,)=f(x,,s(x,) ,j;.K(xk, t,s(t)dt) then
there exists a constant K, independent of h such that

|8(xx) = y(x3)| < KEP, |s"(xy) - y"(x,) | < K,hP
The proof is similar with the proof of Lemma 1 of [7,p 809].
LEMMA 2.([7,p 809)] Let yeC™1[0,a) and let s5€S, be a spline

function with the knots at the points {xx}, k=1,2,...,n-1 such
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that the conditions:
| 8¢F) (x,) =y (F) (%)) | =0 (BP7), r=0,1,...,m-1, k=0,1,...,n-1 (12)
|s(™ (x)-y™ (x)| = O(h), X, < X < X4, k=0,1,...,n-1 (13)

are satisfied. Then

|8(x) - y(x)| = Oo(hP) (14)
where
p:= on}in (r+p,) ., (pm=1f (15)
and furthermore
8™ (x) - y™ (x) = o(h), x € [0,a) (16)

3.Cubic spline funotion approximating the solution. Theoren

3 gives for m = 3

h3, 1 "on
sk*l—28k+sk'1=T(sk’1+4sk +Sk_1) ’ k"l,z, .« e ,n_l

By Theorem 4 &he cubic spline function yields the same
values on the knots as the discrete 2 - step method based on the
recurrence formula

Yr+1=2YxtYp-1 = (h?/6) (Yis1t4YxtYk-1)= (17)
=(h?/6) [£(Xpa1sYir1o Zaer) HAL (Xpe, Yo i)+ Xy Ypo1 185y ]
if starting values y,=a and y,:=s(h) are used.

The 2-step method (17) has the degree of exactness two
provided the starting values y,,y, have second order accuracy. One
can check that |y(h) - s(h)| = O(hz) and therefore we have

|s(xy) - y(x,)| = o(h?), k = 1,2,...,n

From Lemma 1 it results direct that

|s"(x)) = y"(xx) | = 0(h?)
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and using the standard Taylor formula we obtain
8' (xx) = ¥'(x) = 0(h?)
In a similar manner as in {7] we can prove that
s (x) = y"'(x) = O(h?), X < X < Xy,
k =0,1,...,n-1

THEOREM 5. If feC?([o,a) x R?) and s is the cubic spline
function approximating the solution of problem (6), then there
exists a constant K such that, for h < (6/L,)*/? and xe[0,a)

Is(x) - y(x)| < Kh%, |8'(x) - y'(x)| < Kh?
|s"(x) - y"(x)| < Kh?, |s"'(x) - y"'(x)| < Xh
provided s"'(x,) 1s given by (11) with m = 3.

Proofr. Tl.le conditions of Lemma 2 are fulfilled for m = 3, p,
= p, = p, = 2. Note that f ¢ C?([0,a)xR?) implies yec*[0,a).
Applying Lemma 2 three times succesively, first for s and then
for s' and s", the first three inequalities of the theorem
follow. The 1last inequality follows from (16) and thus the

theorem is proved.

4.8pline function of fourth deqree approximating the
solution. If m = 4, Theorem 3 gives the following consistency
relation for spline function of degree four:

h2, s " non
sk,l-sk—sk_1+sk_,=ﬁ(sk,ﬁllsk+1lsk_1+sk_,) , 2sk<n-1

According to Theorem 4, the spline function of degree four
approximating the solution furnishes values which, on the knots

coincide with the recurrence relation:
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h? Z " n" "
Yier Y Vi1t Ye-2= 735 (Vi +1lyd+11y vy ,) =

h (18
ET;_ (£(Xpey s Yiors Zrar) *2LE(K ¥ ye) 2) +11L( X )0 Yoy s Ziy) + )

+E (X 30 V20 Zx-2) )

provided that the starting values are yp=a, y,=s(h), y,=s(2h).

The 3-step method (18) has degree of exactness four, if the
starting values have the same exactness.

If is not dAifficult to show that

|s(h) - y(h)| < Ch: and |s(2h) - y(2h)| < c,h*

From the fact that the 3-step method (18) has the degree of

exactness four and by Lemma 1 for p = 4, if followas that:
8(xx) = y(xx) = O(hY), 8"(x;) = y"(x,) = o(hY)

Similary as in [7]) using the standard Taylor technique it is

easy to show that
8'(x) = Y'(x) = O(hY), 8" (x) - y"'(x;) = O(h?)
If x € (X, X),1) by a direct calculation it follows that
8(x) = y(x) = O0(h), Xp < x < Xp4q, k=0,1,...,n-1

THEOREM 6. If f ¢ C3([0,a)xR?) and s is the spline function
of the fourth degree approximating the solution y of the probler
(6), then there exists a constant K, such that, for any h <
< (12/L;)Y? and x € {0,a]

|s(x) - y I (x)] < kn*J, § = 0,1,2,3

|s®)(x) -~ y®)(x)| < Kh
provided s'%) (x,) is calculated by (11) with m = 4.

Proof. The conditions of Lemma 2 are fulfilled for m = 4,
Pop = Py = P, = 4, py = 3. Obviously from f € c3(1o,a)xR?), it

follows that y e cC%0,a). Applying Lemma 2 for s, then
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successively s', s", s"' in the role of s in Lemma, the theorem
follows, with the last relation coming from (16).

The method of approximating the solution of problem (6), by
a spline function, given here for m = 3 and m = 4 has some
advantages over the standard known methods for second order
Fredholm ;ntegfg—diftercntial equations, producing smooth,
accurate and global approximations to the solution of (6) and its
derivatives. The step size h can be changed at any step without
additional complications. In addition, this direct spline
collocation method need no starting values.

Note that in this paper it was assummed that the values z,
are calculated exactly. In practical applications it should be

suggested to choose a suitable quadrature formula.

5.Numsrical example.

Example 1. (Garey, Gladwin and Shaw [5]).
" -5 5
yix)=y(x)+e ~1+foy(t)dt , x€[0,5]
y(0)=1, y'(0)=-1

The exact solution is y(x) = e™*.

Example 2. (Garey, Gladwin and Shaw ([5]).

-3 3
y//(x) x},()() *log X+e +f _Y(t‘) dt
x+1 0 x+et
y(0)=1, y’(0)=-1
The exact solution is y(x) = e *.
For the both examples are constructed the cubic spline functions

to approximate the solutions.

For each example the higher order of spline looses accuracy
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as x increases. To compute effectivly the values of z, if was
used the Newton-Gregory quadrature formula of order three.
The value of e,:= y(x,) - S(x,) are giving in the following
| ]

table:

Example 1.(h = 1/10)

Xn Yn €n

1,0 0,3679 -2,4.1077
2,0 0,1352 -4,1.1077
3,0 0,0497 ~4,9.1077
4,0 0,0182 -5,2.10""
5,0, 0,0069 -5,1.10"%

Example 2. (h = 1/5)

xn y n ‘ﬂ

1,0 0,3678 -4,68.107%
1,5 0,2229 -5,91.1077
2,0 0,1358 2,78.10°7
2,5 0,0824 2,41.1077
3,0 0,0511 3,44.107%
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REZUMAT. - Dependenta continull a solutiilor ecuatiilor hiperxbolice
de datele initiale gi de coeficien{i. Este studiatd problema lui
Cauchy pentru ecuatii hiperbolice cu coeficien{i variabili din
punctul de vedere al dependentei continue a solutiei de datele
initiale gi de coeficienti.

Abstract. The Cauchy problem for one-dimensional hyperbolic
equation with variable coefficients is considered. The continuous
dependence of smolutions on initial data and coefficients of the

equation is investigated.

1. Introduction. Let us consider the Cauchy problem

P,(u,) =0, x e R, t>o, (1)
Uelemo = fo(X) s Upelemo = £1(X), x € RY, (2)
vhere P = 3¢ -a(e, x, t)—éiz—z~ao(c,x, t)%—al(z,x, t)%—az(t,x,t), a

and a,, k = 0,1,2, are smooth functions in x and t and ¢ is real
parameter. We suppose that egquation (1) is of hyperbolic type,
i.e.,
a(e,x,t) 2 y,>0, x e RY, t2o0. (3)
It f, and f; are smooth then there exists a unique solution of
this problem, cf.[1].
The aim of this paper is to exqmine the dependence of

solutions on the problem data. Two theorems are proved. The first

one concerns the continuous dependence of solutions on initial

- Py :
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data (2) with respect to Sobolev space norms. The second theorem
establish the continuous dependence of solutione on the

coeffitients of ecuation (1).
e

Let ck(n) be the set of functions having continuous

derivatives up to order k in Q.

B,(Q) '{fGC"(Q) | 'fla,m) = I‘Ifil‘:mla'f(") j<=},

Bo(R)=B(N), B,mB(RY), Lp(a)={f] Ifl, q <=} , LpmLp(R'),

where

1
(ol £(x)[Pdx)®,  1sp<e,

11,00 -
@88 BUD, o |£(X) |, p==.

Let W, (8 2 0, integer) be the Sobolev space of functions f

€ L

pr Whose derivatives up to order s belong to L,. Let

S={reC"(R) | sup|xP¥f(x) |sC(a,P) <)
x€r?

be the Schwartz space. Define the direct and inverse Fourier

transforms of £ € S as

4
£8) aF, (£l =(2r) *[fix)e™df, F ,(f] =F_ [£](-x).
4 4 x~{

Let us denote I, = {(x,7)|xeR!, o<r<t}, b=(a,a;,a;,a,), a =
~a(0,x,t)~-a(e,x,t), a,=a, (0,x,t)-a,(e,x,t), k=0,1,2, B=(a,a,, a,.q

For b, b and an integer v > 0, define b, and b, as follows:

supdalyym, ,- Vv =0,
b, = { sup,max{}al, g, ¥aly@g,. k = 0,1}, v =1,
sup, max {lalg m,; lals (o,  k =0,1; Vals, @)}, v22,

Bv is defined exactly like b, but withA a and a,, k = 0,1,2,
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replaced by a and a,. We shall say that b € B,(ll,) if b, < .

Let u,,(x,t) (t:n(x,t)) be the solution of problem (1), (2)
with initial data (rf,0) ((0,f), respectively). Denote the
operator that solves problem (1), (2) with data (utj(x,O),
Upje(Xx,0)) by Ty(e,t), j = 1,2, i.e. Ugj(x,t) = (T (e, t) 1) (x).
Then u,(x,t) = (Ty(e,t)L,) (x) + (To(e,t)f,)(x). For ¢ = 0 we shall
write Ug; = uy, up = u, T,(0,t) = T,(t), and Tile,t) =
= Ty(t) = Ty(e,t), j = 1,2.

Les us formulate the main results.

THEOREM 1. Suppose that a satisfies condition (3), and b ¢

€ Bpig-y (). Then the estimate

ITJ(t) fl’ﬂ:‘C(t'YO'bmc-jufuw'p“"(""'f‘” 4 fGS, tlo, (4)
holds for 1 < p s =,

THEOREM 2. Suppose that a satisfies condition (3), and b ¢
«B,,, (). Then

t \\‘ NAl f\“; COWL Y, Dy DM\ . £€S, ta0, (3)

forl s ps .

it
Remark 1. For 1 s p < ®, S is dense in W, , therefore 1

follows from (4) and (3) that T,(t) and T,(e,t) are bounded as

-J+2 »
operators from Wi*°*7Y into W, and from Wy into Wy,

respectively. If p = o, S is not dense in B,, but these operators
are still bounded when considered from B,,.(0,m-j+1) into B, and
the fact
from Bm-—j*2 into B,. This follows from (4), (5) and from
that the spsed of propagation of initial data for equation (1) im
finite (mee Lemma 4, below).
Remark 2. It follcws from (5) that T,(e,t), as an operator

89



A.V. PERJAN
»

from W, into W, , depends continuously on the coeffitients of

equation (1) and likewise for T,(¢,t) as an operator from WQ“
into W,. We emphasize that T, ( e,t) doesn't depend continuously on
the coeffitients of equation (1), as an operator from W,

into W' , i,e. the estimate

IT, (e, ) £l,2 < CBAfl,s (6)

is not, in general, true for any N, even for p = 2. In fact, let

aaz; "’2(")3% . Then (T, (e, t) £) (x) = Fii(m(e, &, &) £(5)],
wvhere » = coq(a(O)l{lt) - cos(a(e)|i|t). It is known (of.(2)),

j-l' P.I

that m is an L,-Fourier nuitiplior it and only if |m| < e, and
the norm of T,(e,t)as an operator from L, into L,, 1-sup‘,,.|n(o,l
Hence, in order that (6) be true, it is necessary that

supim(e, ., )| sC(e)B, .
fer?

But one can observe that such estimate doesn't hold in this
case.

It should be noted that there is a lot of works dealing with
estimates of type (4) for hyperbolic equations and systems. Not
) ptmndinq to an ample analysis of all of then we would
mention here only some works carried in this di(roctvion, in which
one can find a large bibliografy. The articlas '(3) was one of thi
first in which the problem on existence of Qatintol of type (4)
for the wave equation was aborded. Using the theory of Fourier
multipliers it is nhowr; in (4] that condition (n-1)|1/p~-1/2]| 'ss
j=1 is necessary and sufficient for the existencs of estimates of

type (4) for the solutions of the wave equation, Here n is the
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number of space variables. Sufficient conditions for such
estimates for solutions of second order hyperbolic equations with
variable coeffitients are indicated in [5] for small t. The case
of equations with a single space variable and constant
coeffitients is trivial. In the case of variable coeffitients we

have Haar's inequality (cf.{1]}):

IU(°:t)IL.$C(t)(lU('IO)h.*IF‘p(n‘)) ’ (7)

wnere u is a solution of the following strictly hyperbolic system
u - A(x,t)u, - B(x,t)u = F(x,t). It should be emphasized that
estimate (4) is not implied by (7) because reducing of equation
(1) to the indicated system 1éads to the following estimate for
u (x, t) s fu, (-, £) I,scﬁfl,‘ ., whereas (4) gives ju, (-, t) < Cifl, .

Finally, we note that estimates of the type (4) for eguation
(1) were obtained in [6] whenever the coefficients of equation
(1) satisfy an additionai agebraic condition. Thanks to (7], this
extra condition can be dropped.

The proof of these theorems is based on the representation
of solutions of the problem (1), (2) as sum of Fourier integral
operators. Such representations appeared in (8], [9] and are
often used when studying hyperbolic type equations (cf.[10])).
Another key point in the proof is connected with the estimation
of remainder terms in the expansion of integral Fourier operators
amplitudes, (Lemma 3). For those remainder terms which satisfy
hyperbolic equation with large parametér multiplying inferior
derivatives, energetic type estimates (uniform relative to the
large parameter) are proved in [7]., The claimed estimates are

obtained from the last inequalities.
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2.Representation of solutions. We shall represent the
solutions ucj(x,t), j=1,2, as a sum of Fourier integral operators.
Let ¥(£) € C®(RY), 0 < w(§) <1, ¥(§) = 1 if |[§] < 1 and ¥(§) =
0 if |E| 2 2, and f € S. According to [10] we shall seek the
solution ucj(x,t) in the form:
ugy(x,t) = (Toy(e,t)f)(x) + (Tyy(e,t)f)(x), j =12, (8)

where

(Toyle, £)£) (x) = [W(E) K (e, x, £,8) £(E) eiXdE, (9)

2 ,
(Ty, (e, £) £) (x) ?:;f(l—v(z) VA (e, x, t,8) F(E) ™=t 0 gg (10)

The functions Kj, Ayjr Ok will be defined below. Functions
¢x Aare homogenouse of degree 1 with respect to §, i.e.
o (e, x,t,08) = Bgy (e, x,t, k), 8 > 0, £ € R}'. Let ¢, be a solution

of the problem

@ = (-1)5/ale, x, Eg,,, x€R', >0 . (11)
¢H‘w-x~£ , k=1,2, (12)

and let xj be a solution of the problem

Pg(Kj) + P, (X)) =0, xeR, t>0, (13)
Kijlemo = 8150 Kjelemo = 824, (14)
where P, mal(e,x, t)Ed - if (2a(e, x, t)—aa;wl(e,x, ), 8y={8 K23
Suppose that Ay satisfies the equation
Pe(Ayj) + 1]1&|Qex(Ayy) =0, x € RY, k,} = 1,2, (15)

and the cenditions
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2
EA”(C,X;O'e) = 61,j 4 (16)
k=1
2
E(aak](a ,X,0,8) via (e, %,0,6) acpk(e;;,o,ﬁ) ):bu, j=1,2, (17)
k=1 '

where

o‘ksqok(clxl t) _ait +q1k(elxa t) —aix *’Q'Zk(e'xl t) ’

qokzz("’l)k\/a(t'x: E) (pk(e/x/ L, ‘I%T)l
1k = (-1)"'1\/-3_(&,—5_(1“ ’
Q= ((Vale, x, €)) ,-J/ale, x, Eya, (e, x, t) +

- k
+(—1)*“a,(e,x,t)+-i—%l—

(18)

a, (e, x, t)) gy

Thentuj defined by (8) satisfies the Cauchy problem (1), (2) with

initial data (u.j,u.jt)lt_o. For |§| 2 1 we shall represent Ay in

the form
N
Akj”pak_ﬂ("x' t)z-(l'j‘l)"RkJN(‘:xl tl()l klj']-lz- (19)
<0

If we substitute (19) in (15), (16), (17) and group the terms

with the same degree of homogeneity with respect to §{ then we

obtain
Qexl8xs0) = 0, x e RY, t >0, (20)
3. j=1,
Axjoleso = (-1)%14 j =2 (21)
2/ale, x,0) ‘
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Qi (ay;y) =i|—%P,(akﬂ_1), X€E€ER' , ©>0, (22)

ayirle=0 = 9xji(e.X), 1 =1,...,N, (23)

Py (Ryjn) +1|E|Qq i (Ryjn) ==E~M*7"1p (a, 1), xeR!, t>o0, (24)

. Rkju|c-0=0’ %ﬂlc-o=gkjm1(C:X)E'(N'j'1), (25)
(-1)ki <= 9a,5.,(e,x,0) __Bagy(e,x,0)

where g,;, = If

’ g iN+1 —
2/ale, x, €) o1 at ke at

a,a,, k = 0,1,2 are smooth enough the obtained problems for

®irAxj1/ 1l =0,...,N and Rkj,, have classic solutions.

3. Estimation of phases and amplitudes. In this part we
shall obtain the necessary estimates for the phases ¢, and the
functions a1, l=20,...,N and Rkj,,.

Let ¢,(e,x, t) = ¢,(0,x,¢,1) - @,(e,x, t,1)

LEMMA 1. Suppose that a satisfies condition (3), and a €

€ B, (,). Then ¢, and ¢, satisfy the following conditions:

¢p(e,x, t,~1) = "Qk(elx/tll)l (26)
®xx(t,x,r,1) 2 C(t,vy, laly @, )>0, (x,r) e, (27)
an (cl I.Il)

P I sC(t,¥olaly @,) >0, mz21, (28)

ax" B(O,) -
®x(e,x,t,1) - - when x—+-o, ¢, (e,x,t,1) - +o when x-+mw, (29)

e

ax': Im ,S cle Yo laly,  m,) 125, m, - (30)
Proof. The relations (26) - (29) are proved in (6]. It

follows from (11) and (12) that ¢,is the solution of the problen
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L
9= (-1)%Va(0,x, t) @,, + [ (e, x,t), XER', >0, (31)

$k|t=0=0, k=1,2,

where f,= (-1)*(/a(0,x,t) -/ale,x, t)) @, (e, x, t,1). Solving this

one we obtain

@ (e, %, 0) =fotfk<e,xk<n,r) ) Lyegy e, 0 T (32)

where x,(n,t) is the solution of Cauchy problem

dx,
—= = (-1)** /a(0, x, £), 0) =vn , (33)
a9t (-1) X X, (0) =7

and 1n = ¢,(x,t) is the inverse to x;, (n,t). It exists because

X, = @Xp (—1)k+1ft a,(0,x(n,7),7) P P
on ° 2y/a(0,x,{n,t),v)

We deduce (30) in the case m = 0 from (28) with m = 1 and (32).
If we differentiate the problem (31) with respect to x then using

(28) and (32) we likewise deduce (30) for m 2> 1.

Lemma 1 is
proved.

Let a,;, (e, x,t) =a,,;(0,x,t)-a,,,(e,x,t), 1=0,...,N, k,j=1,2.

LEMMA 2. Suppose that a satisfies condition (3), and b €
€ Bj,,., (II,). Then the following estimates are true for a,;; and

Emr when k,j = 1,2, 1 = 0,...,N:

da
_La “vl SC(t, Yo, byyay) (34)
X" Mg,
*a,,, _
ﬂ 2y < Clt, Yo bpovea) Byoyuy + V20,1, .. . (35)
B(0,)

Proof. Let q,, be defined by (18). According to (27) qgx *
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» 0, therefore we can denote a,, =(RML;, k,v = 1,2,(ﬁk=ch;0w.

Let us consider the Cauchy problem

Ol(u) = fle,x, t), xe€R', £>0,
(36)
ul,.o = Yple, x), xeR'.
If f and u, are smooth enough then the solution of (36) has the

form

u(e, x, t) =(L%(c,n)exp{-:L‘azk(c,xk(n,t).t)dt}+
t
. 37
+fo Fle,x,(n,1),1) (37)

t
. exp{ —j: e (e, x,.(n,t,) ,tl)dtl} dr) |,‘,..(x'c,,

where x;, (n,t) and ¢,(x,t) are defined by the same way as in the
problem (33). Note that the problem (20), (21) is of the form
(36) with f = 0. Hence using (37) we obtain the estimate (34) in
the case v = 1 = 0. Differentiating the problem (20), (21) with
respect to x and using (34) for 1 = 0, from (37) we obtain the
estimate (34) for 1 = 0, v = 1. Similarly we get (34) for 1 = O,
v > 1. Now we shall estimate a,;1 for 1 2 1. Let us observe that

if Q,,(u) = h, then

. 2
Po(u) =h.-a, h -a, h+ (@&, &, a,, ~a,a;,+a,) u+

1, 2 (38)
+(zalkazk‘“lkc‘3(“1::),‘*51‘30“11:) u, .

Hence

1
Polag,) =3 05 (ay,.,) (39)
va0

where (' are differential operators of order 1 with respect to

x, whose coefficients depend on a,ao,al,az,aaa,aﬁao,aﬁal,aYaz,
|le] <1 + 1, |[B] s 1, |yl 1 - 1. We remark also that (23) and
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(25) imply that 951 are polynomials in a and 4%, |a| < 1,aq,a,
and d%a,,d%a,, |a| <1 -1, for 1 > 1, a,,d3%a,, |y| s 1 - 2 for 1
2 2. Finally, we observe that the problem (22), (23) has the form
(36). Bearing this in mind, from (37) we similary obtain the
estimate (34) for ayi1s l=1,...,N.

ILet us now prove (35). It follows from (20)-(23), (38) and

(39) that @&,;, is the solution of the problem
Oox(3y;1) = Fiy1. X€ERY, ©>0, (40)
é-kjllt-o ’ikj)f k,j=1,2, 1=0,...,N, (41)

where g_'kjl = gkjl(olx) 'gkjl(e:X) ’

(o.k_ook) (aij) [ -l=or
1-1

ki1 E(ﬁo(;m (Axj1v-2) + (O -0 (Qxypovr))r 121
v=0

(42)

4y

The problem (40), (41) has the form (36). Acting like in the case
of (34) and using (31), (28), (30), (42) and (37) we get the
estimate (35). Lemma 2 is proved.

Let Ryy(e,x,t, &) =Ryy(0,x,¢,8) -Ryyle,x, 6,8, k,j=1,2.
Let y(t) > 0 and (xg,t;) an arbitrary point from R?,
D(xg,tp,t) = {(x,r)|0 <r <t <ty Y(t)(tyg-1r) > |x - x]},

T(xg,tg,t) = {(x,r)|xeRl, r = t} N D(xq,tq,t),

E(ui t, Xy, t) = [ {100 () |2 + |ul?} dx.

T'(x;, &g, £)

LEMMA 3. Suppose that a satisfies condition (3), and b ¢
€By,miq (I,) . Then there exists Y=Y (t,¥o,0aly,g,) ., so the following

estimates are true for |(| > 1 and v,m = 0,1,...
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aV*'"Rij_'. t,Xq, to) < C(E, Yo, by,piy) |E] 201, (43)
dx "3k
(44)

3, _
(————kLN; t'xoto) < C( ¢, YO'bNﬂmd)b-:ﬁmo1ie|-2(uoj_m 3 v

Proof. Let B, = a;,8q + 2a;,Q5; = &1, + &, = a8 = Q33015
k =1,2, with a,;, defined in Lemma 2. It follows from (7, Theoren

4] that if Bk =0, (x,71) € M(t) then there exists Y =

= y(t,yg,by), 80 the inequality
E(ul tlxoto) < C(C/Yolb3) (E(U;leo: to) + "flliz("(xo,tn.t))) [ (45)

holds for the solutions of the equation P,(u) + i|§|Q,,(u) = f£.

Therefore from (45) we obtain (43) for Ryiy, when v = m = 0.
"R
Let us now estimate the derivatives T‘%‘—' . We observe
X

that
L p () =P.“’(%) - g, L (W) + (2 8ay-ay) U,

";}th(u) =Q-(k1)(% + Qopse Tok Qox () + (@ypou= B2y Togo) Us
where PV = 73% - a.a_%_ - 80'585 _ alu)_aa; - afm

(1) a (1)
Q, . + +
ek QQth qlk-a—x (s FY ")
(1) (1) ’
a, =a +a,, a =Q, +4a, - a«,da,, .
V=, + - «.,) Qb
2k Qix ~ Forx®1x) Tok -

TGk = Lk * Qiex ~ Doxx®1x ¢ « X
Hence v = Egi)‘(ﬂ is"the solution of the problem
PP (v) + i|E|lOS (V) = £, (e, x,t,E) , x€R!, t©>0, (46)
(47)

= ‘E—(N+j-l) (gkj"-‘-l ) x*

Vliemo = 0, Vieliao

where
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/ CN-j+
£, = @ Qe (Rygn) + (@ou0o0-%5) Reyy — & NP, (@ 4y)

. -1 \
- 1€ |(Qokx Qox Oei (Rjn) + (Qopu=®pxQokn) Ricyn) -

We note that [3,‘("—l 0 when B, = 0, where i is obtained from B
substituing a, by a," and a,, by a;i’. Using (45), (34) and (43)
for v = m = 0 we deduce the estimate (43) when v = 0, m = 1 for
the solution of (46), (47). In the same way we obtain the
estimate (43) for v = 0, m 2 2.

OR
Now we shall estimate w = 4J¥ Note that w is the solution

3
of the problem P, (w) + 1{&|Q. (W)
= (N+1-F)E™VIP, (ay4y) ~18gnE Quy(Ryqy), X € RY, t > 0, (48)
Wleao = 00 Welemo = —(N4j-1)EN¥Tg 0 (e,x),  [E] 2 1. (49)

Using (45), (34) and (43) for v = m = 0 we deduce the estimate
(43) when v = 1,m = 0 for the solution of (48), (49). Similarly
we obtain estimate (43) in the remaining cases. Thus estimate
(43) is proved.

We shall pass to estimate (44). It follows from (24) and

(25) that f";qu is the solution of the problem

P(Ryyy) + 1|E|Qok(Reyy) = Fle,x,t, ), xe€R', t>o0, (50)

Resue=o = 00 Rygnejemo = E¥7 Ggna (e, %), [Ef 21, (51)
where P = Py,

F = _E-(Noj-l)P(a_ij) _E-(Nd-l) (p._p') (aij) - (P—Pl) (Rij) -

“1|E} (Qox=Qux) (Ryzy) -
The estimates (34), (35), (43) and the relations (38) and (39)
yield

2 (N s :
“FIL,(n(xo,co,mSC’(t,Yu,bN..)l_D-ﬁ.lifl AL PSS (52)
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Using (52) and (45) we obtain the estimate (44) for the solution
of (50), (51) when v = m = 0. Differentiating the problem (50),
(51) with respect to x and £ we obtain the estimate (44) for
v +m2 1. Lemma 3 is proved.

LEMMA 4. Suppose that a satisfles condition (3), and b ¢
€ Byim+s (II,) . Then the following estimates are true for Ry ;v and

EQN, when |E] 2 1, v,m = 0,1,...

"R | ~(Nejom-2)
R .. SC(Et, Yo, byumy) €] : (53)
*t 107 *~Nemed ’
I dx m3EY B(,)
—(mj-m—%)

avﬁn}:\); N —
——_kn < C(t, Yo Dymes) Dymiz 1€ (54)

dx maEv la(n,)
Proof. We shall get (54). The proof of the estimate (53) is
analogous. Let I (xy,ty,t) and D(xg,t;,t) be the same as in Lemma
3. We denote by TIg(xg,to,t) and Dg(xqg,ty,t) the é-vicinity of the
sets I'(xy,to,t) and D(xy,ty,t). Let 0 < § < 1, 0 (x) € C°(RY),
0sn(x) <1, n(x)=1 if x€l(x,, ¢t,,0) and n(x)=0 if x&T,(x,, ¢t,, ).
Let w,(x,t) € C3(RY), 0 < ny(x,t) < 1, ny(x,t) = 1 if
(x,t) € D(xg,ty,0) and 1n,(x,t) = 0 if (x,t) € Dg(xq,ty,t). From
(45) it follows the finitness of propagation speed of initial
data. Hence if z(x,t,f) is the solution of the problem

P(z) + 1|E|Qox(2) = n,(x,t)F(e,x,t, k), x ¢ R, t > 0,

Zle0= 0, Z,|euo= M (X) gkjuu(‘l")t-m’j_”l

then z(xg,ty,§) = Eim(c,xb,to,ahx supp z(x,ty,{) < [x;,x,], where

X3 = Xg = 2Y(tp)ty - &8, x5 = x5 + 2y(ty)ty + §. Therefore
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El (U,‘ tlxol to) SC(tr YO'bl) (El(u;olxol to) +|If"i,zlno(x“,co,t))) ’ ‘Elszl (58)

is proved for the solutions of the equation
P,(u) + Py, (u) = f(e,x,t, ), x ¢ R}, t > 0, (59)
in [6). The equation (13) has the form (59) with f = 0. The
a'*"K
ecuations for ?;T%E% have the same form with the free ternm
X ;
depending on K; and its derivatives of order less than v + m with
respect to { and x. The inequality (58) yields
K
E| ——Lit,x. t,|sC(t, ¥y, bpy) . |Els2, v,m=0,2,... . (60)
Ox mIEY
The equation for i@ is also of the form (59) with r = (P, -
- P)(Kj) + (P, - Plo)(Kj) and with trivial initial data.
Therefore (58) and (60) lead us in this case to the estimate
( K,
El

mi;;t,xo,to)sc(c,yo,b,,,,,)b”,,,, |&l<2, v,m=0,1,... . (61)

From (60) and (61) as in Lemma 4 we obtain estima@es (56)
and (57). Lemma 5 is proved.

Let 8, (e, x, ,§) =1-e =08 T (y) <, [(1-w(§)) 171,
Tale,x,t,y)=F, ((1-¢(E))E 10, (e, x, t,E)), k=1,2, 1=0,1,... ,

h(y)=(1+y*) 7, 8=sup ,en,  [®x(e. X, 7) |, Bo(y) ={b°h(y)' 128,
) Elles 1, ly{<d
LEMMA 6. For T, the estimate

|73(y)| s ¢'h(y), 1 = 0,1,... (62)

are true.
If a€eB (I,), then
ITkll $C( t, ¥, 'algl(ut)) 'ho(Y) , 1=0,1,... (63)

Proof. We shall consider the case 1 = 0 which is more
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difficult. The proof in other cases is analogous.

Because Y (£) is even 7 (y) =iflml(l—¢(€))5'1 sin(gy) d&.

| Toty)| < ¢, |yl

- "o
If |y| 2 1 then V\(y) =-y? s l(_l_!l’_(_gl) eidE. Therefore

| Toy) | s c'y?, Jyl 2 1.
The estimate (62) follows from (64) and (65).

Let us prove (63). If |y| 2 1 then

Tro(¥) ==y 2

2
iil_ek(e x, t, C))e“"d{-—y"z G I,

v=0

€21 6&2(

2121 E2- '( 1—\1:6(5) )'a?

where I, (y) f

observe that
e, = 2i sin(?k'—g-)e-j;'é,
and
|2{‘1sin($k‘-§-)| < |94

Then (67), (68) and (30) yield

IIkﬂl <C: ’$k| < C( t, Yol uan,l(nt)) °£7-;-

Because |?%9k < |¢,] we have

[Tl < C- 194l s C(t,vo. laly m,)) By
We observe that I,,=¢;/,(y-¢,) . Hence
lIkzl < C( t, Yor ||a"31(ut)) '1;0

Substituing (69)-(71) in (66) we deduce

i 8, (e, x, t,E)eitydf, v=0,1,2.

Hence

(64)

(65)

(66)

We

(67)

(68)

(69)

(70)

(71)
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'/}o|s<?(t,Yo,"aﬂm(uJ) ‘byy?, |yl21. (72)

By the other hand /,, may be written in the form /45 = I, + I,,,

where

I, = —f\l!(E)E'lek(e,x, £.£) ettraE
I, = f{'lek(e,x, t, &) eitvdE

Using (67) and (68) we obtain the estimate for I,;:

IIkJ'Sc'la.klsc(t'Yo:"augl(nc)) '13_0: ‘Vele- (73)

For I,, we have
I, = [E7(8in(Ey) -sink (y-8,)) dE.

Becausse f{*sin((a)dt-x°sgna, the last yields
I,,=x(8gny-sgn(y-9,)) .
Therefore
0, if y(y-e,) >0,
| Iiel < . -
2r, if y(y-e,) <0,
that leads to the estimate
| Ixal s Choty), |yl s 1. (74)
Using (73) and (74) we obtain for T,
|,I'k0|‘C(t'Yofuaupl(nt))ho(Y)' IylSl. (75)

The estimate (63) follows from (72) and (75). Lemma 6 is proved.

We denote

Thjim(€, X, €, y) =F(-1y[(1"¢ (§)) ¢! "Rin(e X, €, 8) ],

ox™

"R, jy(€, X, £, E) ]

Qymle, x, t,y) = F{.ly[(l-W(E) YE!
Ix ™
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Re;n(€, x, £, &)
dx™
LEMMA 7. Suppose that a satisfies condition (3), and b €

o
Yyim (€, X, 6, y) = FO,I(1-9(E))E8, (e, x, £, §)

€ Byimis (ﬁc).Then the following estimates are true

|th1m|50(t,yo,bnﬂm3)h(y), if 1+N+j-m-5/2>0, ' (76)
| nj1ml SC(t. Yo/ Pyames) PyumaB (¥),  1f 14N+j-m-9/2>0, (77)
| ¥nj1m| SC(t, Yo s Pyime3) Boh(y), if 1+N+j-m-7/2>0, (78)

Proof. Using (54) for |y| < 1 we have

— o m-1-N-j+1
'¢Nj1m| < C( t’ YO’bNomoS)bNtm¢2j; E 2 d& < ( 9)
7

S C(E, Yo, Byums) Bymas l+N+j-m——2— > 0.

Let |y| 2 1. Integrating twice by parts and using (54) we obtain
|8y71m| SC(E, Y0, Pysmes) Dyumzy 2. 14N+J-m=9/2>0. (80)
The inequalities (79) and (80) emply (77).

Let us prove (78). From (67), (68), (26) and (53) it follows

— » m—l—N—j+_5
ITMﬂm|S|¢k|C(tIY01meq)L E zdﬁs
(81)

SC(t,YleNuyMJ)bO’ |y|$1’ l*N‘.j—m-%)O.

Integrating twice by parts and using (53), (68) and the estimate

Ly

3% sC%t,ymuahﬂnd)EL v=1,2,...we obtain

| ¥njiml SC(E1 Y01 Pysmes) Boy®,  |yl21, 1+N+j-m=-7/2>0. (82)
The inequalities (81) and (82) emply (78). The estimate (76)
can be proved analogously. Lemma 7 is proved.

We denote

K ’ ’ ’
ijl(e,x, t,y) ‘—‘F{}y[el‘p(e) anﬁ x, t E) ]I

oxm

X, - Gml? X, Ly
Kjm (€0 X, E1y) =Fz-‘y{61we> J‘ZX"m £ 8) ]
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LEMMA 8. Suppose that a satisfies condition (3), and b e

€ B, (II,) . Then the following estimates are true
Ixjmllgc(tIYOIbm-J»l)h()’)o (83)
iim,sC%t,yo,th)B;h(y), 1,m=0,1,... (84)

Proof. Integrating twice by parts and using (57) we obtain

|| € CUE Yo, bp ) Bpy ™, |yl2l, 1,m=0,1,... (85)

For |y| < 1 the estimate

I-Ej,,,IISC(t,YO,bm,z)b—m, llmgoll,-.. (86)

is evident. The inequalities (85) and (86) emply (84). The

estimatei(83) can be proved analogously. Lemma 8 is proved.

4. The proof of the theorems.
Proof of the Theorem 1. Using the Young inequality we obtain

from (9) and (83)

B%M—M(T”(t) £ ()| sClt.y by, Ifl,, 1spse. (87)
LP

Let

(Tyryp (€) £) (%) = Fgl, [(1-9 (8)) E719°%a, (0, x, ) £(§) ](9,(0,x,£,1)),

where 1 = 0,...,N,

(Typgmer (€) ) (%) = FC,[(1-W(8)) Ry (0, %, £, 8) £(§)] (9, (0, x,£,1)) .
Let j +1 -1 =1,...,N. We shall use the estimates (28), (34),
(62) and the Young inequality, then we do the non-degenerate (in
virtue of (27)) change of variables s = ¢,(0,x,t,1). Now using

(26) and (29) we get
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% (le'll(t) f) (') s C(C’YO’bMOIOL"f"WPM“‘n"'"1'2)’ lSpSOO. (88)
X ’ L,

If1+3j=11, i.e. 3 =1, 1 = 0, we have

1P L9 (D)) B E(E) ] (9,0, -, £, 1)) I, <BFC TEVE(E) ) (@, (0,7, £, 1)) 1,
*HF{_}}/- [ly(E)Evf(E)] ((pk(ol R 1) ) “Lps C(uflw;+‘f'Lp) .

Hence, using (28) and (34) we obtain

| o

m(lew(t)f) (-)l sC(t,Yu,b,,,,l)llflw;, 1<psw, (89)

Lp

From (88) and (89) it follows for 1 = 0,1,...,N

Iaf—m(rrm,(c) £) (-)I $ C(E, Yo, bpoye) Mflypxcon v, Lspseo. (90)

Ly

Further we observe that

y’ (0,x,¢,8) 7 - avR (lel CIE)
Ry (0, x, t,§) @% 058 Ty (%, ) §r KN
ax"'( kN ) VZ.;S.., ks ox"®
e, (0,x,t,1)
where g,, depends on P , v=1,...,mv. Therefore

oxV
from (28) and (76) it follows

I——ai"m (Typgny (£) £) (-)I S C(E Yor Dyumar) Vel 1sp3o0,

Ly

where r = max(0,min(nz0,n-integer|n+N+j-m-5/2>0)). If N = 3 - 7,
then r = max(0,m-j+1), hence
| r

o (Tyxy2-5 (£) £) (')l £ C(t, Yo, by shflymertomsn, 1spses. (91)

L,

From (8)-(10), using (87), (89) and (91) we obtain (4). Theorem
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1 is proved.
Proof of the Theorem 2. Using the Young inequality and (84)
we have for T,;(e,t) = Ty;(0,t) - Tg,(e,t)

% (To;(e. 00 ) ()} <C - Blhsfl, s C - Blhl, If), s
LP

< C(t,yo,bmz)b_mlfl,'p, m=0,1,..., 1sp<»,

(92)

In virtue of (15) we shall write fb(e,t) = Ty5(0,t) - Ty (e, t)

in the form

2 N
Ty (e, t) -Z:l( (Gyy1(t, &) +Hyy (€, £)) + Syule, ) +Vgule, £) |, (23)

where

(Gyyple, E) ) (x) = [(1-¢<c))a,1<e,x, £) ET1If(E) @t t0 S g,
(Hyy (e, €) £) (x) =

= [(1-w (&) ay;, (e, x, )8, (e, x, £, E)ETTH£(F) im0 m o g,

(Seynle, £) ) (x) = f(l-V(E) )R—”N(e.x, t,E)L(E) @0 X8 g,
(Vign (e, €) £) (x) =

- f(l-lHE) ) Regnle, x, £,6)0, (e, x, £,8) £(§) e O g,

We observe that

o

Ox™

— 1"('0.11‘&()
(3.0

m
) = 2; Tyyre (X, t) Erainaiox el
'

aVQ’k(O:X: t,1)
>a,, oxY
and —3;%—: |[vl < m. Dealing similary as when proving (88) by

where Ikylv depends polynomially on , Vo= 1,,...,m,

means of (28), (35) and (62) we obtain

m
— (G (t,t)f)(')l <
dx ki1 L

P

sv{_jo 9yl Feoy [(1-9 (B) ) ET- T2 £(E) (@, (0, -, £, 1) )an <

108



THE CONTINUQUS DEPENDENCE OF SOLUTIONS

me2¢l-j

SC(t Yorbppd) Bpn| Y N E) (@i (0, £, 1))+ (94)

v=0

m

+ E I(']'kl*F('}y[E—l—ﬁzwf])((pk(O,~It,l))HLp)s

vem+lsl-j

SC(t, Yy bp,1.2) b 'l,llflw(om;u , lspgoe,

Let us estimate ijl(c,t) . We observe that

‘ B (0,x,¢t,8)
amm LN Egkjlv(x t)eki”z £ gy (x, r)] o,

v=1

39, (0,x,¢,1)

where 9kjlv depends polynomially on , v=1,...,m,

ox"
avak Iy /
and ax |[vl < m; and gy;;, depends on the same terms and
e
additionally on aT‘pv“, v =1,...,m

Dealing similary as above and using (28), (30), (34), (62)

and (63) we obtain

L Hgte, 000 ()] <
ax : .

‘E lgkjly'.(n )|F(_~1y[ (1"¢ (E) ) E—I»'j':l’vf(ﬁ) ] (‘Pk(o' “y tl 1) ) ILP+ (95)

E gkjlvlp(u )IFE-Iy[(l W(E))E Ij’l'vek(c; v t, €)f(£)] ((Pk(of o t, 1))' S
=1

$C(t, Yo, bpeey) Dol Elymuto.nasn , 1spses,

Let us estimate Skjn(e,t). We observe that

xok(o x,t,8)

a” 10,0,%,¢,8)
ox™ 7 (Rugn 700 ) < Egkj,w(x,t 5) RkJN

v=0

where Ik jNv is a polynomial of order m-v in £, and whose
¢, (0,x,¢t,1)
axV

similary as when proving estimation (94), by means of (28) and

coefficients depend on

. v = 1,...,m-v. Dealing

(77) we obtain
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o
ﬁ (Sijf) () LPS (96)
m m-s

$C(E, Y0, b0 Y 3 IFG, L (1- (8)) 8T o T R (01 (@00, £, 1)) I, s
8=0 v=0
Sc(t' YolbmoNos)E;noNozlfI";l ' 1$p5°°:
where r, = max(0,min(n2o,n-integer|n + N + j - m -~ 9/2 > 0)).
Let us finally estimate ijn(e,t). We observe that
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where g, ., is a polynomial of order m-v in {, whose coefficients
o, (0,x,t,1)

depend on Fy , B =1,...,m-v; and g@v is also a
X
polynomial of order m -~ v in {, whose coefficients depend also on
*e,(0,x,t,1 ) 040
73 ), and additionally on k, po==1,...,m - v.
ox# ax*

Dealing similarly as above and using (28), (30), (76) and (78) we
obtain
l P (Ve 0 ) (- )I

m-v

< c(t,yo,b,,)z uF{,‘,[ (1-9(£))E*0, (e, t,§) x

v=0 g
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m-1 m-v

Z;Z;IF [(1- tl:(())(' R,U,,(t, (68T (@0, 8, 1)) 0 <
sC(t,yo,bN,mn)B;,,lfI";l , lspsge,
It follows from (93)-(97) or 1 s p s o

|-—ainm (ITU(C, t) £) (-)I £ C(¢t, YO'bmoms)B;hm.z(nf"w;l*'lf'w:“‘i) . (98)
Ly

If N =3 then r; = m + 2 - j. Therefore the right part of

inequality (98) can be estimated by C(t,Yg,bpeg) b éﬂfhmz;.
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From (92) and (98) it follows (5). Theorem 2 is proved.
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Professor Dimitrie D. Stancu, a distinguished Romanian
mathematician, was born on February 11, 1927 in Calacea-Timig,
Romania. After finishing secondary school in Arad, in 1947, he
studied at the University of Cluj, from which he received a
master's degree in 1951 and a doctor degree in mathematics in
1956. His advisor for the doctoral disertation was the famous
mathematician Tiberiu Popoviciu (1906-1975), a great master of
numerical analysis and approximation theory. After his
graduation, in 1951, he was named assistent at the Department of
Mathematics, University of Cluj, and -in a normal succesion- he
advanced up to the rank of full professor in 1969. He holds a
continuous academic career at this university, except for one
academic year (1961-1962), when he was visiting at the University
of Wisconsin, Madison, Wis., U.S.A.

During his teaching career, professor Stancu had given
courses on numerical analysis, approximation theory, probability

theory, mathematical analysis, arithmetic and theory of numbers
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Cluj-Napoca, Romania



GH. COMAN

and automatic computer programming.

Since 1961 he is a member of American Mathematical Society
and a reviewer of Mathematical Reviews. He is also a member of
the society Gesellschaft fiir Angewandte Mathematik und Mechanik
and a reviewer of Zentralblatt filr Mathematik. He is member of
several editorial committees of mathematical journals: Calcolo
(Italy), Revue d'Analyse Numérique et de Théorie de
1'Approximation and Studia Univ. Babeg-Bolyai, Mathematica (Cluj-
Napoca) .

Professor D.D.Stancu has participated, presenting invited
lectures, at several international symposiums and conferences on
approximation theory, held in: Gatlinburg, Tennessee,
U.S.A.(1963), Lancaster-England (1969), Varna-Bulgaria (1970),
Durham-England (1977), Hamburg-Germany (1985 and 1990),
Acquafredda di Maratea-Itay (1992). He also has presaented
contributed papers at several meetings of American Mathematical
Society, held in New York, Chicago and Milwaukee (1961-1962) and
at five international conferences organized by the Mathematical
Research Institute of Oberwolhach-Germany, in the period 1971-
1981. He has been invited to present colloguium talks at several
universities from Germany (Stuttgart, Hannover, G8ttingen,
Dortmund, Miinster, Siegen, Wlirzburg and Berlin), at two
universities from Holland (Delft and Eindhoven) and at four
universities from Italy (Roma, Napoli, Potenza and L'Aquila).

Profeasor D.D.Stancu exercised a profound influence on many
of his students. He gave his own ideas generously to them. A

number of 28 doctoral students were working under his guidance.
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The outstanding attribute of D.D.Stancu is his devotion to
research work. He has made important mathematical contributions
in various areas of numerical analysis, approximation theory and
probability theory. These fall into the following list of topics
(the numbers in the square brackets refer to the items from the
list of selected mathematical papers of D.D.Stancu, annexed to
this article):

1) Interpolation theory: interpolation with multiple nodes
(6], [34); multivariate interpolation (2], (3], (4], (8]}, [31],
(54], [5%5]; study and use of divided differences ({24], ([32],
(58], [60]-.

2) Numerical differentiation: extension to several variables
of the Steffensen theorem on remainders [1], representations of
remainders in numerical partial different%!tion procedures [25],
(32].

3) Orthogonal polynomials: a class of symmetric orthogonal
polynomials on (-a,a) for a weight function of the form w(x) = =
p(x)x2' {(9); orthogonal polynomialas obtained by some general
Christoffel type formulas (7], (10), ([13], [17]), [64); power
orthogonal polynomials [80], [82].

4) Numeriocal quadratures and cubatures: formulas of high
degree o exactness (10], [12], ([24), [59], ([64); Gauss-
Christoffel quadrature formulas {7], [10], {17), [?7]; quadrature
formulas obtained by linear positive operators [66), [67), [79]);
cubature formulas (3}, [5), ([11), [13).

5) Taylor-type expansions: use of multivariate interpolation

for obtaining Taylor-type formulas for several variables ([15],
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(20], {32]; integral representations for remainders in
multivariate Taylor expansions [20]), [26], [32].

6) Approximation by linear positive operators: operators of
Bernstein type [16), ([21], ([22), (27), (38]), (39), [42]), (50},
[68], (70]), [81]); representation of remainders (28], (32), [51],
(54], (61], [63]), (68], [74]; construction by interpolation
methods [(27), (52), ([55]), ([56]; multivariate approximation by
means of linear positive operators {16}, [21], (22), ([27], ([28],
(29), [43), [46), [47], [49]), [55], [57), [72], ([75); Bernstein
power series [48]), [52], (53], [54]); monocity of the derivatives
of the sequences of Bernstein polynomials (36]), [60].

7) NKNepresentations of .remainders in linear approximation
formulas in several variables: rupresentations by divided
differences (2], (4], [28), [32), {57]; integral representations
of remainders [15], [20], {25), [26]}, ([32)].

8) Probabilistic methods in the theory of wuniform
approuximation of continuous funotions: construction by
probabilistic methods of linear positive operators ([21), ([41],
(47), (68], [73].

9) Use of interpolation and calculus of finite differences
in probability theory: integral representations of the
distribution functions of sone multivariate discrete
distributions [44); expressions in terms of finite differences
for different types of moments of random discrete variables [31],
(40}, (42}, [45]), [(47), [(69].

10) spline approximation: approximation of functions by

Schoenberg type spline operators [52), (65].
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Ending this article we join the members of the family of
mathematicians of Professor D.D.Stancu, his colleagues and
students, as well of many friends from Romania and many other

5th apniversary,

countries, congratulating him with esteem on his 6
wishing him good health and happiness. May he be granted with
many more years with an active life and with new satisfactions in

his scientific research work.

A LIST OF SELECTED MATHEMATICAL PAPERS OF

PROFESSOR D.D.STANCU

1. Contributions to the partial numerical differentiation of
functions of two and several variables. Acad. R.P.Roméne,
Bul. Sti. Sect. Sti. Mat. Fiz. (1956), 733-763 (Romanian.
Russian and French summaries). MR 20, No. 1873.

2. A study of the polynomial interpolation of functions of
several variables, with applications to the numerical
differentiation and integration; methods for evaluating the
remainders. Doctoral Dissertation, University of Cluj, 1956
(Romanian), 192 pages.

3. Generalization of some interpolation formulas for functions
of several variables and certain considerations on the
numerical integration formula of Gauss. Acad. R.P.Romane,
Bul. St. Sect. Mat. Fiz. 9(1957), 287-313 (Romanian. Russian

and French summaries). MR 20, No. 1874.
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10.

11.
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Consideration on the polynomial interpolation of functions
of several variables. Bul. Univ. V.Babes and Bolyai, Cluj,
1(1957), 43~-82 (Romanian. Russian and French summaries).
Contributions to the numerical integration of functions of
several variables. Acad. R.P.Romdne, Fil. Cluj, Stud. Cerc.
Mat. (Cluj), 8(1957), 75-101 (Romanian. Russian and French
summaries). MR 21, No. 6092.

On the Hermite interpolation formula and on some of its
applications. Acad. R.P.Roméne, Fil. Cluj, Stud. Cerc. Mat.
(Cluj), 8(1957), 339-355 (Romanian. Russian and French
summaries). MR 21, No. 6093.

A generalization of the Gauss-Christoffel quadrature
formula. Acad. R.P.Romdne, Fil. 1Iagi, Stud. Cerc. Mat,.
8(1957), no. 1, 1-18 (Romanian. Russian and French
summaries). MR 20, No. 1875.

Generalizations of certain interpolation formulae for the
functions of several variables. Bull. Inst. Politehn. Iasi
(N.S), 3(7) (1957), no. 1-2, 31-38 (Romanian. Russian and
English summaries). MR 20, No. 2558.

Sur une classe de polynfmes orthogonaux et sur des formules
générales de quadrature A nombre minimum de termes. Bull,
Math. Soc. Sci. Math. Phys. R.P.Romaine (N.S) 1(49%) (1957),
475-498. MR 21, No. 37GO0.

A method for constructing quadrature formulas of high degree
of exactness. Comunic. Acad. R.P.Romdne 8(1958), no. 4, 349-
358. MR 21, No. 1475.

On some general numerical integration formulas. Acad.
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12.

13.

14.

15.

16.

17.

18.

19.

R.P.Romdne, Stud. Cerc. Mat. 9(1958), 209-216 (Romanian.
Russian and French summaries). MR 20, No. 4917.

On the Gaussian quadrature formulas. Studia Univ. V.Babes
and Bolyai, éluj, 1(1958), 71-84 (Romanian. Russian and
French summaries).

A method for constructing cubature formulas for functions of
two variables. Acad. R.P.Roméne, Fil. Cluj, Stud. Cerc. Mat.
(Cluj) 9(1958), 351-369 (Romanian. Russian and French
summaries). MR 21, No. 6094.

On numerical integration of functions of two variables.
Acad. R.P,Romdne, Fil. Iagi, Stud. Cerc. Sti. Mat. (Iasi)
9(1958), no. 1, 5-21 (Romanian. Russian and French
summaries). MR 21, No. 1474.

On some Taylor expansions for functions of many variables.
Rev. Math. Pures Appl., Acad. R.P.Romaine 4(1959), no. 2,
249-265 (Russian). MR 22, No. 3909.

On the approximation By Bernstein type polynomials of
functions of two variables. Comunic. Acad. R.P.Romane
9(1959), no. 8, 773-777 (Romanian. Russian and French
summaries). MR 22, No. 4908.

Sur quelques formules générales de quadrature du type Gauss-
Christofel. Mathematica (Cluj) 1(24) (1959), no. 1, 167-182.
MR 22, No. 11078.

On a proof of the Weierstrass theorem. Bul. Inst. Politehn.
Tagi (N.S) 8(9) (1959), no. 1-2, 47-50 (Romanian. Russian
and Italian summaries). MR 23, No. A455.

On the approximation of functions of two variables by
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20.

21.

22.

23.

24.

25.

120

polynomials of Bernstein type. Some asymptotic estimations.
Acad. R.P.Romdne, Fil. <Cluj, Stud. Cerc. Mat. (Cluj)
11(1960), no. 1, 171-176 (Romanian. Russian and French
summaries). MR 24, No. A374b.

The integral expression of the remainder in a formula of
Taylor type for functions of two variables. Acad.
R.P.Romé&ne, Fil. Cluj, Stud. Cerc. Mat. (Cluj) 11(1960), no.
1, 177-183 (Romanian. Russian and French summaries). MR 24,
No. Al196.

On some Bernstein type polynomials. Acad. R.P.Rom8ne, Fil.
Iagi, Stud. Cerc. Mat. (Iasi) 11(1960), no. 2, 221-233
(Romanian. Russian and French summaries). MR 24, No. A374a.
Some Bernstein polynomials in two variables and their
applications. Soviet. Math.Dokl. 1(1960), 1025-1028. MR 23A,
No. A3401.

Sur l'approximation des dérivées des fonctions par les
dérivées correspondantes de certaines polynomes du type
Bernstein. Mathematica (Cluj) 2(28) (1960), no.2, 335-348.
MR 24, No. A376.

On the calculatjon of the coefficients of a general
quadrature formula. Studia Univ. Babes-Bolyai, Cluj, Ser.
Math.-Phys. 8(1960), no. 1, 187-192. (Romanian. Russian and
French summaries). MR 27, No. 6389.

The expression of the remainder in some numerical partial
differentiation formulas. Acad. R.P.Romfine, Fil. Cluj, Stud.
Cerc. Mat. (Cluj), 11(1960), no. 2, 371-380 (Romanian.

Russian and French summaries). MR 27, No. 6388.
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26.

27.

28.

29.

30.

31.

32.

33.

34.

On the integral representation of the remainder from the
Taylor formula in two variables. Acad. R.P.Roméne, Fil.
Cluj, Stud. Cerc. Mat. (Cluj) 13(1962), no. 1, 175-182
(Romanian. Russian and French summaries). MR 27, No. 5880.
A method for obtaining polynomials of Bernstein type of two
variables. Amer. Math. Monthly 70(1963), no. 3, 260-264 MR
27, No. 2762.

Evaluation of the remainder term in approximation formulas
by Bernstein polynomials. Math. Comp. 17(1963), 83, 270-278.
MR 31, No. 3772.

Ganeralization of an inequality of G.G.Lorentz. Anal. Sti.
Univ. Al.I.Cuza, Jagi 9(1963), no. 1, 49-58. MR 32, No.
2803.

Quadrature formulas with simple Gaussian nodes and multiple
fixed nodes (in collaboration with A.H.Stroud). Math. Comp.
17(1963), no. 84, 384-394. MR 28, No. 718.

On the moments of certain discrete random variables. Studia
Univ. Babeg-Bolyai, Cluj, 9(1964), no. 2, 35-48 (Romanian.
Russian and French summaries). MR 31, No. 782.

The remainder of certain linear approximation formuias in
two variables. J.SIAM, Numer. Anal. 1(1964), 137-163. MR 31,
No. 1503.

Quadrature formulas with multiple Gaussian nodes (in
collaboration with A.H.Stroud). J.SIAM, Numer. Anal.
2(1965), 129-143. MR 31, No. 4177.

On Hermite's osculatory interpolation formula and on some

generalizations of it. Mathematica (Cluj) 8(31) (1966), no.
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35.

36.

37.

38.

39.

40.

41.

42.

43.
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2, 373-391. MR 35, No. 2030.

A method for computing the moments of the multinomial and
multiple Poisson distributions. Studia Univ. Babeg-Bolyai,
Cluj, 12(1967), no. 1, 49-54. MR 35, No. 7375.

On the monotonocity of the sequénce formed by the first
order derivatives of the Bernstein polynomials. Mathen.
Zeitschr. 98(1967), 46-51. MR 35, No. 3018.

On the moments of negative order of the positive Bernoulli
and Poisson variables. Studia Univ. Babes-Bolyai, Cluj,
13(1968), no. 1, 27-31. MR 37, No. 2352.

Approximation of functions by a new class of linear
polynomial operators. Rev. Roumaine Math. Pures Appl.
13(1968), no. 8, 1173-1194. MR 38, No. 6278.

On a new positive linear polynomial operator. Proc. Japan
Acad. 44(1968), 221-224. MR 38, No. 461.

On the Markov probability distribution. Bull. Math. Soc.
Sci. Math. R.S.Roumanie 12(1968), no. 4, 203-208. MR 40, No.
8107.

Use of probabilistic methods in the theory of uniform
approximation of continous functiona. Rev. Roumaine Math.
Pures Appl. 14(1969), no. 5, 673-691. MR 40, No. 606.

On a generalization of the Bernstein polynomials. Studia
Univ. Babeg-Bolyai, Cluj, Ser. Math.-Phys. 14(1969), 31-45
(Romanian. Russian and English summaries). MR 43, No. 775.
Approximation of functions of two and several variables by
a class of polynomials of Bernstein type. Stud. Cerc. Mat.,

Bucharest, 22(1970), no. 2, 335-345. (Romanian. English
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44.

45.

46.

47.

48.

49.

summary). MR 47, No. 2242.

on the distribution functions of the multidimensional
Bernoulli and Poisson laws. Stud. Cerc. Mat., Bucharast,
22(1970), no. 4, 675-681 (Romanian. English summary). MR 47,
No. 7848.

Recurrence relations for the central moments of some
discrete probability laws. Studia Univ. Babeg-Bolyai, Cluj,
Ser. Math.-Mech. 1%(1970), 55-62 (Romanian. Russian and
English summaries). MR 41, No. 9368.

A new class of uniform approximating polynomial operators in
two and several variables, In: Approximation Theory (Proc.
Conf. Constructive Theory of Functions, Budapest, 1969; eds.
G.Alexits, S.N.Steckin), 443-455. Budapest: Akadémiai Kiadd,
1972. MR 352, No. 14785,

Probabilistic methods in the theory of approximation of
functions of several variables by linear positive operators.
In: Approximation Theory (Proc. Sympos. Lancaster, 1569; ed.
A.Talbot), 329-342. London-New York: Acad. Press, 1970. MR
42, No. 736.

Two classes of positive linear operators. Anal. Univ.
Timigoara, Ser. sSti. Mat. 8(1970), 213-220. MR 48, No.
11863.

On the approximation of functions of two variables by means
of a class of linear operators. In: Constructive Theory of
Functions (Proc¢. Int. Conf. Varna, 1970; eds. B.Penkov,
D.Vacov), 327-336. Sofia: Izdat. Bolgar. Akad. Nauk, 1972.

MR S2, No. 3823.
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50.

51.

52.

53.

54.

55.
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Approximation properties of a class of linear positive
operators. Studia Univ. Babeg-Bolyai, Cluj, Ser. Math.-Mech.
1%(1970), no. 2, 33-38. MR 43, No. 6637.

On the remainder of approximation of functions by means of
a parameter-dependent linear polynomial operator. Studia
Univ. Babes-Bolyai, Cluj, Ser. Math.-Mech. 16(1971), no.2,
59-66. MR 46, No. 4072.

Approximation of functions by means of some new classes of
poaitive linear operators. In: Numerische Methoden der
Approximationstheorie, Bd. I (Proc. Conf. Math. Res. Inst.
Oberwolfach, 1971; eds. L.Collatz, G.Meinardus), 187-203.
Basel: Birkh#user, 1972. MR %52, No. 1107.

A new generalization of the Meyer-Kénig and Zeller
operators. Anal. Univ. Timigoara, Ser. sti. Mat. 10(1972),
no. 2, 207-214. MR 49, NO. 11113,

Evaluation of the remainders in certain approximation
procedures by Meyer-Kinig and 2eller type operators. In:
Numerische Methoden der Approximationstheorie, II (Proc.
Cont. Math. Res. Inst. Oberwolfach, 1973; eds. L.Collatz,
G.Meinardus; ISNM:-26), Basal-Stuttgart, 1975, 139-1%50. MR
82, No. 9568.

Use of Biermann's interpolation formula for constructing a
class of positive 1linear operators for approximating
multivariate functions. In: Constructive Theory of Functions
of Several Variables (Proc. Conf. Math. Res. Inst.
Obexwofach, 1976; eds. W.Schempp, K.Zaller), 267-276.

Berlin: Springer, 1977. MR 358, No. 1915.
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56.

57.

58.

59.

60.

61.

62.

Use of linear interpolation for constructing a class of
Bernstein polynomials. Stud. Cerc. Mat. (Bucharest)
28(1976), 369-379 (Romanian. English summary). MR 54, No.
3226.

Approximation of bivariate functions by means of some
Bernstein-type operators. In: Multivariate Approximation
(Proc. Sympos. Durham, 1977; ed. D.C.Handscomﬁ), 189-208,
London, New York, San Francisco: Acad. Press, 1978. MR 80f,
No. 41015.

On the precision of approximation of differentiable
functions by means of linear positive operators. Itinerant
Seminar on functional equations, approximation and
convexity, Univ. Babes-Bolyai, Cluj-Napoca, 1978, 74-75
(Romanian)

An extremal problem in the theory of numerical guadratures
with multiple nodes. In: Proc. Third Colloquium on Operation
Research (Cluj-Napoca, 1978), 257-262, Univ. Babeg-Bolyai,
1979. MR 83c, No. 65044.

Application of divided differences to the study of
monotonicity of the derivatives of the sequence of Bernstein
polynomials. Calcolo 16(1979), 431-445. MR 62b, No. 41008.
Representations of the remainder in an approximation formula
of Favard type. Itinerant Seminar on functioral equations,
approximation and convexity, Univ. Babeg-Bolyai, Cluj-
Napoca, 1979, 185-190 (Romanian).

Representations of the remainder in some linear

approximation formulas. Itinerant Seminar on functional
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65.

66.

67.

68.

69.
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equations, approximation and convexity, Univ. Babes-Bolyai,
Cluj-Napoca, 1980, 127-129 (Romanian).

A study of the remainder in an approximation formula using
a Favard-Szasz type operator. Studia Univ. Babes-Bolyai,
Cluj-Napoca, Ser. Math.-Mech. 25%5(1980), no. 4, 70-76. MR
83c, No. 41026.

On a generalization of Tiberiu Popoviciu quadrature formula
of maximum degree of exactness. Itinerant Seminar on
functional equations, approximation and convexity, Univ.
Babeg-Bolyai, Cluj-Napoca, 1981, 383-394 (Romanian).

A generalization of the Schoenberg approximating spline
operator. Studia Univ. Babesgs-Bolyai, Ser. Math.-Mech.
26(1981), no. 2, 37-42. MR 83i, Nc. 41017.

Quadrature formulas constructed by using linear positive
operators. In: Numerical Integration (Proc. Conf. Math. Res.
Inst. Oberwolfach, 1981; ed. G.Himmerlin; ISNM 57), Basel-
Boston-Stuttgart: Birkhduser, 1982, 241-251. MR @83k, No.
65003.

Procedures of numerical integration of functions obtained by
means of some linear positive operators. Itinerant Seminar
on functional equations, approximation and convexity, Univ.
Babeg-Bolyai, 1982, 333-337 (Romanian. English summary).
Approximation of functions by means of a new generalized
Bernstein operator. Calcolo 15(1983), 211-229. MR €33, No.
41015.

On the representation by divided and finite differences of

some linear positive operators constructed by means of
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70.

71.

72.

73.

74.

75.

76.

probabilistic methods. Itinerant Seminar on func£ional
equations, approximation and convexity, Univ. Babes-Bolyai,
Cluj=-Napoca, 1983, 159-166.

Generalized Bernstein approximating operators. Itinerant
Seminar on functional equations, approximation and
convexity, Univ. Babes-Bolyai, Cluj-Napoca, 1984, 185-192.
MR 87b, No. 41025.

A note on a multiparameter Bernstein-type 4approximating
operator. Mathematica (Cluj), 26(49) (1984), no. 2, 153-157.
MR 86m, No. 41019.

Bivariate approximation by some Bernstein-type operators.
Proc. Colloquium on Approximation and Optimization, Univ.
Cluj-Napoca, 1984, 25-34. MR 873, No. 41028.

Probabilistic approach to a class of generalized Bernstein
approximating operators. Anal. Numér. Théor. Approx.
14(1985), no. 1, 83-89. MR 87i, No. 41019.

On the representation by divided differences of the
remainder in Bernstein's approximating formula. Univ. Cluj-
Napoca, Research Seminars: Seminar on Numerical and
Statistical Calculus. Preprint Nr. 4, 1985, 103-110. MR 88f,
No. 41035.

On a class of multivariate linear positive approximating
operators. Studia Univ. Babes-Bolyai, Cluj-Napoca, Ser.
Math. 31(1986), no. 4, 56-64. MR 89a, No. 41034.

On some spline-type operators of approximation. Studia Univ.
Babe$4Bolyai, Cluj-Napoca, Ser. Math. 32(1987), no. 4, 68-

75. MR 89j, No. 41018,
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77.

78.

79.

80.

81.

82.

Quadrature formulae of high degree of exactness using
multiple preassigned nodes. Contract, Institutul Central de
Matematicad, Bucuresti, 1989, 25 pag.

Oon quadratures generated by linear positive operators.
Colloquium on Applications of Mathermatics, on the occasion
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