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METRIC CONVEXITY IN GRAPHS

VALERIU SOLTAN"
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REZUMAT. - Convexitatea metricX in grafuri. in aceastX lucrare se
prezintd o sintezd a unor rezultate recente in domeniul
convexitdtii metrice 1in grafuri. Sint analizate diferite
proprietdti ale mul{imilor gi functiilor convexe in grafuri,
caracterizdrile unor clase de grafuri cu ajutorul convexitXtii.
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1. Introduction. It is well-known that the ideas and results
of convex analysis are of high importance for many mathematical
disciplines. Convex analysis has shown itself as a powerful
instrument usefut for applications. Therefore the development of
mathematical structures and the enlargement of their
applications lead to the creation of distinct analogies and
generalizations of the notions of convex sets and convex
functions (see, for instance, {[31), [47], [73]).

Among them the notion of metric convexity introduced by

K.Menger [52] is one of the most developed. Recall that a set A

'Academy of Sciences, Institute of Mathematics, Kishinev, Moldova



V. SOLTAN

in a metric space (X,d) is called convex provided for every pair
* of points x,y € A, the metric interval
[(x,y) = {z ¢ X : d(x,2z) + d(z,y) = d(x,y)}

is contained in A. For any set B < X, its convex hull cqan is
defined in a standard way to be the intersection of all convex
sets in X containing B. Since the intersection of any family of
convex sets is again a convex set, convB is the least convex set
in X containing B.

The notions of metric convex set and covex hull became
fruitful in general topology, differential geometry and
functional analysis. (A sufficiently complete list of results and
references on metric convexity in metric spaces and linear normed
spaces can be found in (13], [73].)

Later the notion of a convex function on a metric space
(X,d) was defined (see [70], {71)): a real-valued function f on

X is callied convex provided

X d(z,y) . d(x, z) .
f(z) < a(zy) F(x) + _d(x,y) £{y)

for all points x,y € X (x » y) and z € (x,y).

The actual period in the development of metric convexity is
connected with investigations of discrete structures and of some
extreme problems on them (see, for instance, [61], {62]). At the
same time, a considerable part of the results on convexity in
discrete spaces 1is concentrated around metric convexity in
gﬁﬁphs; It is interesting to mention that the notions of convex
th and convex function in graphs appeared previously in

connection with some location problems (see [25]), [66], [68],



METRIC CONVEXITY IN GRAPHS

[69], [82]). And only later, due to the development of
generalized convexi&y theory, some properties of metric convexity
and related metriésbehaviour of graphs where studied by distinct
authors.

In this article, we deal with metric convexity in ordinary
(may be, infinite) graphs. Since this topic became too wide to
be described compact, we will be concentrated below on some
results closely connected with the author's interests in this
field. Some additional information on metric convexity in graphs
can be found in the literature placed at the end of the paper.

For the convenience, we mention here some necessary
definitions connected with graphs.

Everywhere below G = (X,U) denotes a graph with vertex-set .
X and edge-set U. A graph G is called finite if the set X is
finite. If cardX = n, then G will be denoted by G,. By a subgraph
H of G we mean the induced one, i.e., two vertices x,y are
adjacent in H if and only if they are adjacent in G. For any set
Y < X, the subgraph in G induced by Y is denoted by G(Y).

A graph G is connected if for any two vertices u, v in G,
there exists a finite chain containing u, v. We assume that all
the considered below graphs are connected.

In order to consider metric convexity in G, we assume that
G is equipped with standard metric: for any vertices x, y € X,
denote by d(x,y) éhe'least number of edges in a chain connecting
X, Y. Is easily seen that d indeed is a metric on X, i.e., d(x,y)
satisfies the following conditions:

1) d(x,y) 2 0, with d(x,y) = 0 if and only if x = y,
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2) d(x,y)

3) d(x,y) s d(x,z) + d(z,Y).

d(y,x).

If vertices x, y belong to a connected subgraph H of G, then
dy(x,y) denotes the distance between x, y in the graph H. A
connected subgraph H is called an isometrie subgraph of G if
dy(x,y) = dg(x,y) for every pair of vertices x, y in H.

A clique in G is a vertex-set having every two distinct
vertices adjacent. If X is a clique, then G is called a complete
graph. K, denotes a complete graph with n vertices. The supremum
of the cardinality of a clique in G is called the density of G,
and is denoted by ¢.

A vertex z in G is called simplicial provided the set 0(z)
of all vertices in G adjacent with z form a clique. The degree
deg(g) of z is the number of all vertices neighbor to z. Put
£(z) = o(z) v {z}.

A sequence 1 = (..., V; -,V;, V;,,. ..-} of vertices in G such
that every two consecutive vertices are adjacent is called a
chain. A chain 1 is finite if it is of the form 1 = (v;, ...,Vv,);
it is one-side i:finite provided it has one of the forms
1 = (vy,vyy, «+.), 1 = (..., vp,vy); 1 is infinite if it has no
end-vertex. A chain is simple if all its vertices are distinct.
A circuit of 1length n in G is a chain of the form
(Vi/Va,e++,Vpy,Vy). A circuit is simple if all its vertices
Vis +++, V, are distinct. Let C, denote the simple circuit of
length n.

A simple chain I = (..., V;3,V;,Viys ...) of vertices in

G is called geodesic if any two vertices of the form v;_;, Vv;,,
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are not adjacent in G. A segment (a ray, a line) is a finite
(respectively, one-side infinite, both-side infinite) geodesic
chain in G.

A disconnecting vertex-set in a graph G is a set 'Y c X such
that the induced graph G(X \ Y) is disconnected. A graph without
disconnecting vertices is called a block. A tree is a connected
graph without circuits.

A bipartite graph is a graph containing no circuit of odd
length. The vertex-set of a bipartite graph X can be partitioned
into two disjoint sets Y, Z such that every edge in G joins a
vertex in Y and a vertex in 2.

Also recall that G is named a chord graph provided it
contains no simple circuit of the length greater than three as
an induced subgraph. A Husimi tree is a graph such that each its
block is a complete subgraph.

A graph G is called planar if it can be placed in the plane
such that every vertex of G is a point and every edge of G is a
rectifiable arc with end-points in X satisfying the properties:
1) every vertex x of G is an end of each arc incident with x, 2)

a common point of two arcs is a vertex for both of them.

2. Extremal structure of convex sets. In this section some
analogies of Krein-Mil'man's theorem about extremal points of
convex sets in linear space are studied. Kkecall that Krein-
Mil'man's theorem f50] states that every compact convex set in
Hausdorff linear topoloéical space is the closed convex hull df

its extremal points.
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Since every vertex-set in G is closed, the closed convex
hull in G 1is identical with the convex hull, and a set of
vertices in G is compact if and only if it is finite. Therefore
we will discuss below the following problem. To determine
necessary and sufficient conditions for the implementation of the
assertion: for every finite set A of vertices in G, its convex
hull coincides with the convex hull of extremal vertices of A.

By analogy with the linear space, we introduce the following
definition. A vertex z of a set A ¢ X is called extremal in A if
z ¢ (x,y] for all x, y € A \ {2z}, where [x,y] is the metric
interval with the ends x, y. By extA the set of all extremal
vertices in A will be denoted.

It ﬁiil be shown below that extremal vertices are closely
related with simplicial vertices. The following well-known result
(see [27], ([51]) gives a sufficient condition for the existence
of simplicial vertices in a graph.

LEMMA 2.1. Any nonempty finite chord graph G contains at
least one simplicial vertex; if G 1is not complete, then it
contains at least two nonadjacent simplicial vertices.

The following theorem strengths this assertion.

THEOREM 2.2. (74)}. For a graph G = (X,U) the following
conditions are equivalent:

1) every nonempty finite set in X contains at least one
extremal vertex,

2) every nonempty finite subgraph in G contains at least one
simplicial vertex,

3) G is a chord graph.









METRIC CONVEXITY IN GRAPHS

4) A = v {[x,y]): x, y € extA} for every convex set A c X,

5) G is a chord graph containing no ray and no subgraph (1).

Another well-known result on extremal structure of convex
sets in linear space belongs to S.Straszewicz [81]: every compact
convex set in finite-dimensional linear topological space is the
closed convex hull of its exposed points. Recall that a boundary
point x of a convex set A in a linear space is called exposed if
there exists a hyperplane H such that A N H = {x}.

In order to formulate the respective analogous result for
graphs, we need some definitions. A vertex-set H in G = (X,U) is
called a half-space provided both H and X \ H are convex. A
vertex z of a set A ¢ X is called exposed in A provided {2z} =
= AN H for some half~space H ¢ X. Denote by expA the set of all
exposed vertices of A. It is easily seen that any exposed vertex
of a set is also extremal for the set, i.e., expA < extA for
every set A c X.

The following result is analogous to Straszewicz's theoren.

THEOREM 2.9, For a graph G = (X,U) the following conditions
are equivalent:

1) convA = conv(expA) for every finite set A c X,

2) convA = u{[x,y]: X,y € expA} for every finite set A c X,

3) G is a chord graph containing no subgraph (1) and none

of

i1
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T in G, then x is simplicial in the subgraph G(T).

THEOREM 3.3. [76]. For a graph G the following conditions
are equivalent:

1) for any convex set A ¢ X and r 2 0, the r-neighborhood
L. (A) is convex,

2) for any vertices a, b € X, the 1-neighborhood
L,(conv{a,b}) is convex,

3) G contains no simple circuit isometric to C,, n 2 4.

Note that Theorems 3.2 and 3.3 are repeated in [37) in an
equivalent form.

COROLLARY 3.4. If a graph G contains no simple circuit
isometric to C,, n 2 4, then the following conditions are
equivalent:

1) every diametrally maximal set in G is convex,

2) every ball in G is convex,

3) every ngighborhood of a convex set in G 1is convex,

4) G is a tre=.

4. Convex t.-ctions. Recall that a real-valued function f

on X is called convex provided

d(z,y) . d(x, z) .
fiz) < d(x,y) £ix) + d{x,y) £ty

for all vertices x, y € X (x » y) and z € [x,y]. One can state
the following simple properties of convex fuﬁctions on X.

THEOREM 4.1. 1) For any convex functions f, g and real
number A 2 0, the functions f + g and Af are convex,

2) the least upper bound of any family of convex functions

14
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is a convex function,

3) the limit of any pointwise convergent sequence of convex
functions is a convex function,

4) for any convex function f and real number A, the sets

{z € X : £(2) s A}, {Zz € X : £(2) < A}

are convex.

Similarly to the case of linear space, we can define an
affine function f on X as a real-valued function such that both

functions f and ~f are convex. In other words, f is affine if

- d(z,y) . d(x, z) ,
£(2) ax.y) £(x) + __—d(x,y) £(y)

for all vertices x, y € X (x » y) and z € (x,y). From this
definition follows immediately

COROLLARY 4.2. 1) For any affine functions f,, f, and real
numbers A,, A,, the function A,f, + A,f, is affine,

2) the l1limit of any pointwise convergent segquence of affine
functions is an affine function,

3) for any affine function f and real number A, the sets

{z € X : £(2) s A}, {2 € X : £(2) < A}
are half-spaces.

A function f : X » R is called quasiconvex if for every real
number A, the set {z ¢ X : f(2) < A} is convex. Equivalently, f
is guasiconvex if

f(z) < max{f(x),f(y)}
for all vertices x, y ¢ X and =z € {x,y].
THEOREM 4.3. 1) For any quasiconvex function f and real

numbers ) 2 0, u € R, the function Af + u is quasiconvex,

15
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2) the least upper bound of any family of quasiconvex
functions is a quasiconvex function,

3) the 1limit of any pointwise convergent sequence of
quasiconvex functions is a qﬁasiconvex function.

Similarly, a function f : X -+ R is called quasiaffine if
both functions f and -f are quasiconvex, i.e., f is quasiaffine
if

min{f(x),f(y)} < £(2) < max{f(x),f(y)}
for all vertices x, y € X and z € [x,y].

COROLLARY 4.4. 1) For any quasiaffine functions f,, f, and
any real numbers A,, A,, the function A,f, + A,f, is quasiaffine,

2) the 1limit of every pointwise convergent sequence of
quasiaffine functions is a quasiaffine function,

3) a function f is quasiaffine if and only if for every real
number A, the sets

{z € X : £(2) s A}, {2 € X : £(2) < 1}
are half-spaces.

Below we study some properties of the classes of convex,
affine, quasiconvex, and quasiaffine functions on X. Let A, D,
CA, and CD denoye, respectively, the collection of all affine,
convex, quasiaf}ine, and quasiconvex functions on X, and let F
(respectively, I) denote the family of all real (constant)
functions on X. Trivially,

CAcCDcF
v v
IcA <D
THEOREM 4.5. [65), [75]. 1) The following conditions are

equivalent: A= F, D=F, CA=F, CA=CD, CD =F, A = CD,

16
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D = CcD, G is a complete graph,

2) any two of the classes A, D, CA coincide if and only if
the two classes are trivial, i.e., are equal to I or to F.

THEOREM 4.6. (65], (75]. 1) A » I if and only if the graph
G = (X,U) can be decomposed into at most countable family of
pairwise disjoint complete subgraphs G; such that every vertex
z in G; is adjacent to all the vertices in G;,_, v G;,, and only
to then,

2) for a finite graph G, one has D + I if and only if X
contains a convex set Y with connected complement X \ Y such that
every vertex z € Y adjacent in X \ Y is adjacent to all the
vertices in X \ Y,

3) CA + I if and only if X contains at least one half-space,

4) CD » I (provided cardXx > 1).

For any family H of functions on X, let H, denote the
collection of all functions which are the sums of finite
subfamilies of H. We haQe the relations

D=D, cCDcCD, =F
U v U v
I cA=A < CAcCA

THEOREM 4.7. [65], [75]. The following implications hold:

1) CA, = A ~= CA = A,

2) CA, = D == CA = D,

3) ¢D, = CD holds if and only if G is a complete graph,

4) CA, = CA holds if and only if the intersection of every
collection of half-spaces in G is either empty or a half-space.

The supremum properties of convex functions play an

important role in convex analysis. For example, at the base of

17
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the finite dimensional theory of duality of convex functions lies
the famous theorem by Minkowski: every convex function is a
pointwise supremum of affine functions. Below we investigate an
analogous assertion for convex functions on a graph.

For any family H of functions on X, let H, denote the
collection of all finite functions which are pointwise supreme
of subfamilies of H. It is easily seen that the following
relations are valid:

CA cCA, cCD=CD, cF

v U v v}
Ic Ac A, ¢ D= D

8

In our notations, the analogous assertion to Minkowski's
theorem for convex functions on graphs looks as in item 4) of
Theorem 4.8.

THEOREM 4.8. (65], [75]. 1) The following conditions are

equivalent: A = CA, A =CA,, A

s = CA, A, = CA

g/

2) A= A, -~ either A= I or A=F,

3) CA = CA, holds if and only if the intersection of every
collection of half-spaces in G is either empty or a half-space,

4) A, = D kolds if and only 1f G is elther a complete graph
or a simple chain,

5) A, = CD holds if and only if G is a complete graph,

6) CA, = D =~ CA = D,

7) if G is a finite graph, then CA, = CD holds if and only
if the intersection of every collection of half-spaces in G is
either empty or a half-space.

As a logical consequence of this circle of questions, we

will consider the family H, which is the smallest collection of

18
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functions on X containing a family H of functions and is closed
with respect to taking finite sums and finite supreme. We have
the relations
D=D,c CDcCD, c¢F
U v v v
I cAcA, CA < CA,

THEOREM 4.9. (75). The following implications hold:

1) A, = A «= A, = A,

2) A, =D =~ A, =D,

3) CA, = A -~ CA = A,

4) CA, = CA =~ CA_, = CA,

5) A, = CA =~ A, = CA, -~ A = CA,

6) A. = CD holds if and only 1f G is a complete graph,

7) the rfollowing conditions are equivalent: A = cD,, D = CD,
CA = CD,, G is a complete graph.

In connection with the above results, we formulate some open
problems.

PROBLEMS 4.10. 1) To determine conditions for the
feasibility of any of the relations:

a) D» I, CA, = CA, CA, =CD, CA, =CD,, CA, = F, CD, = F,

b) A, = CD,, CA, = CD, CA, = CD,, CD, = CD, CD, = F,

2) to determine conditions for the feasibility of the
following property: the intersection of every collection of half-
spaces 1In G is elther empty or is a half-space.

The remained part of this section is devoted to the study
of separation properties of convex functions on X. Below we
consider a graph G to be finite. A family H of functions on X

will be said to have separation property if for any disjoint

19
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convex sets Y, Z c X there exists a function f ¢ H such that
inf {f(x): x € Y} > sup {f(x): x € Z}.

I1 the set Y (respectively, 2Z) is a singleton, then we will
speak about upper (lower) separation property. 1If both sets Y and
Z are singletons, we will say that H separates vertices.

THEOREM 4.11. [75). 1) For the family A, separation
property, upper separation property, lower separation property,
and separation property for vertices are equivalent and hold if
and only if the graph G 1s either complete or a simple chain,

2) the following properties are equivalent:

a) D separates vertices,
b) D has lower separation property,
c) G is a chord graph,
3) the following conditions are equivalent:
a) D has separation property,
b) D has upper separation property,
c) G is a chord graph containing no subgraph (1).

4) a) CA separates vertices if and only if any two vertices
of G can be separated by some complementary half-
spaces,

b) CA has lower separation property +=- CA has upper
separation property ~= convexity in G is regular,

c) CA has separation property if and only if convexity
in G is normal,

5) CD has separation property.

Sometimes it is necessary to know about the existence in a

given class of a function satisfying the respective separation

20
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5. convexity of S8teiner functiomns. As we know, Steiner's
problem (or Weber's problem, in a different terminology) on a
graph consists in finding a minimum of a function

£(2z) = Lp(x)-d(z,x), (3)
where u(x) 2 0 and the sum is taken over the set of all verces
x € X. Unlike to the case of Euclidean space, functions (3) have
no "good" properties like convexity, which guarantee the absence
of local minima different from the global one. Therefore it is
reasonable to find the class of all graphs for which Steiner's
problem is confined to the scheme of convex analysis. An
analogous problem will be studied below for functions

F(z) = Lu(A)-d(z,A), (4)
where u(A) 2 0 and the sum is taken over the family of all convex
sets A in X.

THEOREM 5.1. [72], [79]). For a graph G = (X,U) the following
conditions are equivalent:

1) every function (3) is convex,

2) for every vertex x € X, the function p(z) = d(s,x) is
convex,

3) every function (3) is quasiconvex,

4) for any vertices x,, x, € X, the function

p(2) = pyd(s,x1) + ud(2z,x3), Hy,by 2 0
is quasiconvex,

5) G 1s a chord graph containing no subgraph of the form
(1).

From ?heorem 3.2 follows

22
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COROLLARY 5.2. Every function p(z) = d(z,x), x € X is
quasiconvex 1if and only if the following conditions are
fulfilled:

1) G contains no simple circuit isometric to C, or C,,
nzxze6,

2) if Qp(y) = {x} for some vertices x,y in a simple circuit
T ¢ G, then x is simplicial in the subgraph G(T).

THEOREM 5.3. (79]. For a graph G = (X,U) the following
conditions are equivalent:

1) every function (4) is convex,

2) for every convex set A c X with cardA < 2, the function
p(z) = d(z,A) is convex,

3) every function (4) is quasiconvex,

4) for any convex set A;, A, c X, with cardA; < 2 and
cardA, < 2, the function p(z) = d(z,A,) + d(2,A;) is quasiconvex,

5) G is a Husimi tree.

From Theorem 3.3 follows

COROLLARY 5.4. For a graph G = (X,U) the following
conditions are egquivalent:

1) for every convex set A < X, the function p(z) = d(z,A)
is quasiconvex,

2) for every convex set A < X with cardA < 2, the function
p(8) = d(z,A) is quasiconvex,

3) G contains no simple circuit isometric to C,, n z 4.

A function r : X - R 1is called strictly convex
(respectively, strictly quasiconvex) provided it is convex

(respectively, quasiconvex) and

23
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d(z,y) . d(x, z) .
£(z) < ?ﬂjzjﬁ-f(X) +-37;7;T £(y)

respectively, f;z) < max{f(x),f(y)}
for all vertices x, y € X (x'¢ y) and z € [x,y} \ {x,y} in case
£(x) » £(y).

THEOREM 5.5. For a graph G = (X,U) the following conditions
are equivalent:

1) for every vertex x € X, the function p(z) = d(z,x) is
strictly convex,

2) for any vertices x,, x,€X, the function p(z) = d(z,x,) +
+ d(z,x;) 1s strictly convex,

3) for every convex set A < X with cardA < 3, the function
p(z) = d(z,A) is strictly quasiconvex,

4) G is a complete graph.

THEOREM 5.6. For a graph G = (X,U) the following conditions
are equivalent:

1) for every vertex x € X, the function p(z) = d(z,x) is
strictly quasiconvex,

3) for every convex set A c X with cardA < 2, the function
p(8) = d(z,A) is strictly quasiconvex,

4) G is a Husimi tree.

THEOREM 5.7. [79). For a graph G with at most countable
number of vertices, the folloving conditions are equivalent:

1) every finite function (3) with p(x) > 0 for all x € X is
strictly convex,

2) G is a chord graph containing no subgraph (1).

THEOREM 5.8. The following conditions are equivalent:
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1) every finite function (4) with u(A) > 0 for all convex
sets A in X strictly convex,

2) G is a Husimi tree.

At the end of this section we put the following problem.

PROBLEM 5.9. For a graph G = (X,U), to determine conditions
for the feasibility of the following property: the function

f(z) =L {d(z,x) : x € Y} is convex for every finite set Y c X.

6.Convex sets in chord graphs. It was shown above that chord
graphs play a special role for metric convexity. In this
connection, we collect here different properties of convex sets
in chord graphs.

We say that convexity in a graph G = (X,U) has join property
provided

conv(A U B) = u {[a,b] : a € A, b ¢ B}
for any convex sets A,B in X, and that it has cone property it
conv(a v B) = u {[a,b]) ¢t b € B}

for every vertex a and every convex set B in X.

For any set A c X, put P(A) = v {[(x,Y] ¢ X, Yy € A}.

THEOREM 6.1. [7?]. For a chord graph G = (X,U) the following
conditions are equivalent:

1) convexity in G has join property,

2) convexity in G has cone property,

3) conv{x,y,2} = u {[(X,y] ¢ Vv € [y,2]} for any vertices
X, ¥, ¢ € X such that diam{x,y,z} < 2,

4) convA = P(A) for every set A c X,

5) convA = P(A) for every set A < X with cardA < 3 and
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2) for every set B c X of diameter one and every vertex
a € B, the sets {a} and B \ {a} are separated by complementary
half-spaces,

3) for every set B c X of diameter one with at most four
vertices and for every vertex a ¢ B, the sets {a} and B \ {a} are
separated by complementary half-spaces,

4) G contains no subgraph (2).

THEOREM 6.13. [77]). For a chord graph G = (X,U) the
following conditions are equivalent:

1) convexity in G is normal,

2) any two disjoint edges (a,b),(c,d) € U such that the set
{a,b,c,d} has at most one pair of nonadjacent vortlcos, are
separated by complementary half-spaces,

3) any two disjoint parts of a set with at most four
vertices in X are separated by complementary half-spaces,

4) G contains none of the subgraphs (8), (9).

Note that some sufficient conditions for the separability
of vertices in a chord graph by complementary half-spaces are
studied in [63].

We continue with some combinatorial problems on convex sets
in chord grapha. Further S denotes the family of all convex sets
in G. Put

8, = {A ¢S5 : carddA =k}, k=0,1,...

THEOREM 6;14. [77). For a chord graph G, with n vertices,
one has cardsS, 2 n - k + 1.

1) cardS, = n - 1 if and only if G, is a tree,

2) for 3 < k < n -1, the equality cardS, = n - k + 1 holds
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if and only if G, 1s a simple chain.

For any vertex z ¢ X, call by a semispace corresponding to
£ any convex set in X \ {2} maximal with respect to inclusion.
It 1s known that the family of sets consisting of X and of all
semispaces in X forms the least base B of convexity; i.e., every
convex set in X can be represented as the intersection of some
elements from B, and every proper subfamily of B does not satisfy
this property.

THEOREM 6.15. (77). If B is the least base of convexity in
a chord graph G,, then cardB 2 n + 1. The equality cardB = n +1
holds if and only if G, is a complete graph.

Denote by P the family of all half-spaces in a graph G.

THEOREM 6.16. For a chord graph G,, n 2 4, one has
cardP > 6, For n = 4, the equality cardP = 6 holds if and only
if G, is either a chain or a star, and for nz5, one has cardP =
= 6 If and only if G, contains a complete subgraph K, , such that
every vertex in G, - K,_, is adjacent to all vertices in K,_, and
only to thenm.

For a set A c X, put

Po(A) = P(A), Py, (A) = P(Py(A)), k = 0,1,...
It is easy to prove that
A c Pj(A) € Pa(A) € ... c convA = u {P,(A) : k 2 0}.

This method of convex hull construction gives us the
following characteristic number for convex hulls: for any set
A © X, denote by B8(A) the least natural number k such that
convA = P,(A).

THEOREM 6.17. [77). For any vertex-set A in a chord graph
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family of all (respectively, all k-membered) convex sets in G.
THEOREM 7.2. [20}, (72), (78j. For a finite graph G,,
cardS 2 3n - 2, cardS, + cardS; 2 2n - 4.

The following conditions are equivalent:

1) cards = 3n - 2,

2) G, is different from the graph of cube Q; and cardS, +
+ cardSy = 2n - 4,

3) G, is planar and convex simple.

THEOREM 7.3. [19]). A planar graph G = (X,U) with cardX 2 5
different from the graph of octahedron F; is convex simple if and
only if it contains at least one vertex of degree 2z 2, and every
such a vertex has a unique dual vertex in G (a vertex z is dual
for x provided O(z3) = 0O(x)).

Now we are going to describe convex simple planar graphs.
Denote by T any tree with at least three vertices, and let T, be
a copy of a subtree formed by all the interior vertices in T.
Denote by L(T,Ty;) the graph containing T u T, with the following
additional edges: any vertex 2z in T, is adjacent to all the
vertices in 0(Z) and only to them (here ZeT is a copy of z and
o(z) = {v €T : v is adjacent to z }).

THEOREM 7.4. ([18). For any planar convex simple graph G
there is a tree T such that G = L(T,T,).

In connection with the previous theorem, there appears the
problem to describe those trees T for which th: graph L(T,T,) is
planar and convex simple.

THEOREM 7.5. (19]. For any tree T with at least three

vertices, the graph L(T,T,) 1s convex simple.
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new edges in correspondence with the following rules:

1) the distance (in T) between the ends of any new edge
(x,y) is equal to two,

2) any new edge is incident to at least one end-vertex
of T,

3) for any end-vertex of T, its degree in R is at most
threé,

4) if one of the vertices of a new edge (x,y) is interior
for T and a vertex z lies between x and y in T, then deg,z = 2,

5) if T is not a star, then R contains no simple circuit
containing the snd-vertices of T only,

6) if T is a star and R contains a simple circuit containing
the end-vertices of T only, then this circuit contains all the
end vertices of T.

Let T, be a subtree, consisting of all the interior vertices
of a tree T. For any graph R ¢ R(T), denote by L(R,T,;) the graph
containing R, T, and tho.followinq edges: every vertex s ¢ T, is
adjacent to all the vertices in O(%) , where Z ¢ T means the
copy of £ and O(Z)= (v ¢ T : v is adjacent to Z}).

THEOREM 7.10. [{19]). For any planar convex quasisimple graph
G with cardX x 4 different from complete graph K,, there is a
tree T and a graph R ¢ R(T) such that G = L(R,T,).

THEOREM 7.11. (19). For any tree T with at least three
vertices and for any graph R € R(T), the graph L(R,T,) is convex
quasisimple.

THEOREM 7.12. (19]). If a tree T has at most countable number

of vertices, then for any graph R ¢ R(T) the graph L(R,T;) 1s
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planar.
THEOREM 7.13. {19]). Let S and T be some trees, Q € R(S) and
R € R(T). The graphs L(Q,S,) and L(R,T,) are isomorphic if and

only if S and T are isomorphic.

8. Characterisation of hyparcubss and Hamaing graphs by
means of convexity. Let S be any set. The graph of hypercube H(S)
is defined as follows (see [28)): the vertex-set of H(S) consists
of all finite subsets in S (the empty set inclusively); two
vertices A, B in H(S) are adjacent if and only if the symmetric
difference (A \ B) u (B \ A) of the sets A, B is a one-point set.

Below we assume that any graph isomorphic to a graph of
hypercube also is called a graph of hypercube. Observe, that for
a finite set 8§ with cards = k, H(S) is the graph of k-dimensional
cube.

It is not hard to prove that the function

d(A,B) = card[(A \ B) u (B \ A))
is the induced metric on N(S); i.e., d(A,B) is equal to the
number of edges in a shortest path in H(S) with the ends A,B.

A graph G is called median if for any vertices x, y, & € X
their *"median® [(x,y] N [y,8) N [x,2] conasists of a vertex.

THEOREM 8.1. [80). For a graph G the following conditions
are equivalent:

| 1) G is a hypercube,

2) G contains no three-vertex convex set, and any two

disjoint convex sets in G are separated by complementary half-

spaces,

k1]
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3) G contains no three-vertex convex set, and any two
vertices in G are separated by complementary half-spaces,

4) G contains no three-vertex convex set and convexity in
G satisfies cone condition,

5) G is a median graph and contains no three-vertex convex
sat.

For proof of Theorem 8.1 we use the following lemmas.

LEMMA 8.2. [4]. For a bipartite graph G the following
conditions are equivalent:

1) G is a hypercube,

2) every interval (x,y) in G generates a hypercube.

LEMMA 8.3. [54]. Any median graph G is bipartite. Every
interval {x,y) in a median graph G is a convex set.

The relation between hypercubes and median graphs is shown
in the following lemma. ‘

LEMMA 8.4. [4). A graph G is a hypercube if and only if it
ig median and any two.Vbrticaa in G have either two common
adjacent vertices or have no common adjacqq; VQFQiQOI,‘

Let {S,}, ¢ € I be a family of pairwise disjoint sets. The
Hamming graph H is defined as follows: the family of‘y,rtipos in
H coﬁsists of all finite subsets A cu S, such that card (A N S,)
< 1 for each ¢ € I; two distinct vertices A, B in H are adjacent
if and only if the symmetric difference (A \B) u (B \ A) of the
sets A, B is contained in one of the sets 5,, v ¢ I. If (8,} is
a finite familv of finite sets, then H is the Cartesian product
of complete graphs.

It is easily seen that for any vertices A, B in the Hamming
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graph H, the induced distance d(A,B) lcoks as

d(A,B) = Esign card([{(A\ B) u (B\ A)) nsS,).

Recall that for any vertex x € X and for any set M c X, the value

d(x,M) = min{d(x,u) : u € M} is called the distance from x tc M,

and the set

N (M) = {z €¢ M : d(x,2) = d(x,M)}

is named the metric projection of x on M. For 2 € M, put

We(M) = {x € X : N (M) = {3}}.

A set M c X is named Chebishev provided N, (M) is a one-

vertex set for every x ¢ X.

THEOREM 8.5. [80]}. A graph G is a Hamming graph if and only

if the following conditions are fulfilled:

1) every three-vertex set in G induced a complete subgraph,
2) every clique in G is a chebishev set,

3) for every clique C in G and for every vertex z € C, the

set W, (C) 18 convex.
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REZUMAT. - Medii g¢i convexitate. In lucrare se considerd o
notiune de convexitate in raport cu o medie de puteri, numitll
r-convexitate. Se generalizeazi inegalitatea lui Hermite-Hadamard
pentru functii cu inversd r-convexd aga cum in {3])} s-a procedat
pentru functii cu invers¥ logaritmic convexi.

1. Introduction. In this paper we consider a notion of
convéxity with respect to a power mean called r-convexity. We
generalize Hermite-Hadamard's inequality for functions with r-
convex inverse. Then we apply it for the study of the monotony
of the "relative growth" of generalized logarithmic means. We try
to analyse so the position of the mean values of two numbers
between those numbers.

As moust of the definitions and results which we need may
be found in the book of P. S. Bullen, D. S. Mitrinovié and P.

M. Vasié [1) we content ourself to refer mainly at it.

2. Means. We shall use in what follows some means of two
positive numbers O<a<b. They all belong to the familly of
extended mean values defined by K. B. Stolarsky (see (1], p.345)
for res, rs+0 by:

Ey4(a,b)=(.(r/8) (b5-a®) / (b¥-aF))1/(#7F)
the definition for other values being obtained by taking limits.
As special cases we have the power means:

Pr=Er,2r for r=o0

* Polytechnic Institute, Department of Mathematics, 3400 Cluj-Napoca,
Romania
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P.=E, ,y for r+o

and
Py(a,b)=G(a,b)=(a-b)1/2

then the generalized logarithmic means defined by:
L,=E1'r*1, for re-1, r«0

but

L_,(a,b)=L(a,b)=(b-a)/(logb-loga)

and
Lo(a,b)=I(a,b)=(1/e) (bP/a%)1/(b-a),
Also we use weighted power means defined for osts<l by:
P..(a,b)=(ta’+(1-t)b¥) /T if reo
and
Poe(a,b)=G,(a,b)=atbl-t,
For t=1/2 we get the usual power means and for r=1 the weighted
arithmetic mean P_ . =A,.

Among the properties of these means we are interested in
their monotony with respect to the parameter. So we have (see
{1), p.159) for r<s:

P..(a,b)<P,.(a,b), 0<t<l (1)
and also (see [1] p. 347):

L.(a,b)<L,(a,b). (2)

3. r-Convexity. Let us censider the following notion: we
said that the positive function f:(a,b]-R is r-convex if:
L(A (X,y))SP (f(x),f(y)), Vx,yela,b]), te[0,1].

As we can remark, this notion differs from a similar one given

in (1] called r-mean convexity.
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From (1) we deduce that if f is r-convex then it is also s-
convex for every s>r. Also from the definition we deduce that f
is r-convex if and only if: a) f* is convex, for r>0; b) logf is
convex, for r=0 and c) f*¥ is concave for r<0. Thus O-convexity
is in fact logarithmic convexity.

The paper [3]) deals with functions which have logarithmic
convex inverse. We consider also functions with r-convex inverse.
Let us denote by K;[(a,blhe set of positive, strictly increasing

functions with r-convex inverse defined on [a,b). We have:

K;la,b) < K,la,b) , for r<s. (3)

It is also easy to check the following:

LEMMA 1. If the positive function f is twice differentiable
then it belongs to K;[a,b] if and only if:

I'(x)>0 and 1+xf"(x)/f'(x)sr, V¥ xe(a,b] (4)

Inﬁegrating the differential equation obtained from (4) we
get functions which can be considered to be r-linear. As a
special case we have: .

LEMMA 2. The function f, defined by:

()

La B A
A WYV
[« =N =)

xl_at .
£, (x) =1{logx - loga ,
at -x*,

has the properties:

£,(x)20 , £L(x)>0 , 1+xf)(x)/fl(x) =, V x2a .

4. Hermite-Hadamard's inequality. For a function f:(a,b)-R

consider the integral arithmetic mean defined by:
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LB -£(8) £y, £(E)-£(a)
£ =B Tr ey £ i £ (15)

So, if r>0, (£71)T being convex:

£(b) -£(¢t) _r, £(t)-f(a) pr

tT S FBf@ ° TEFB) ~F(a)

or

£e) » LDV -£(a) . bTf(a)-a’£(b)
bT-ar br-ar

It is also valid for r<0. By integration we get (13). For

r=0; log(r~!) is convex and (15) gives:

E£(b) -£(E) ) oo, £(E)-£(a)

log t < HHy—F(a) F(b)-£(a)

logb .

Isolating f(t) and integrating we get (14).

5. The relative growth. We consider the following

expression:

Lf(a,b)-ar

- , %0
D‘r (a,b) = brf-ar
b-I‘i)(-aa b) ! r=0 .

which we call relative growth of L.. It is easy to see that:
0sD,.(a,b)<1, Vr; D,(a,b)=1/2.
THEOREM 3. If r<s and O<a<b then:
D,.(a,b)2D,(a,b). (16)
Proof. As the function f, given by (5) belongs to KX;[a,b]
and r<s, from (3) it follows that it is also in Kk [a,b] and so
(12), (13) and (14) implies:
A(f ;a,b)=f . (L.(a,b))2f,.(b)Dg(a,b)
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REZUMAT. - Teoreme de punct fix in spatii cu metrick vectorialid.
In aceast3 lucrare se stabilesc trei teoreme de punct fix in
spatii cu metric¥ vectorialld analoge teoremelor de punct fix pe
spatii metrice demonstrate in lucrarea (3]).

1. Notions préliminaires

DEFINITION 1.1. Soit X un ensemble ordonné. Une suite
{X,}peN 4'€léments de X (0)-converge vers un &l&ment xeX s'il
existe deux suites {a,},.N et {b,},N d'éléments de X, telles que
a,<x,<b, (V) neN et a,tx, b,ix.

Nous désignons par x = (0) - limx, ou x, 2 x .

DEFINITION 1.2. Un ensemble ordonné X s'appele ensemble
réticulé si pour tous x,yeX (donc aussi pour tout nombre fini
d'édléaments) il existe xVy et xAy.

DEFINITION 1.3. Un ensemble réticulé X s'appelle ensemble
réticulé relativement complet si pour tout sous-ensemble
denombrable borné de X il existe la borne supérieure et la borne
inférieure.

DEFINITION 1.4. On appelle espace linéaire complétement
réticulé tout espace linéaire ordonné& qui est un ensemble
réticulé relativement complet.

DEFINITION 1.5. Un espace linéaire ordonné X est appellé
espace archimédien si A%x =0 pour tout x>0, xeX.

DEFINITION 1.6. Dans un espace linéaire réticulé archimédien

Civil Engineering Institute, Bd. Lacul Tei 124, 72302-Bucarest,
Roumanie
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X une suite {x,},.,N d'éléments de X p-converge (ou converge avec
régulateur) vers un é&lément x, s'il existe v>0 (appellé
régulateur de convergeance) tel que: pour tout nombre e>0 il
existe n,eN de maniére que:

|x,~x| < ev si n2n,
on note x = (p) - limx, (ou x, £. x)
si x=(p) - limx, alors x = (0) - limx,

DEFINITIOﬁ 1.7. On appelle es;ace régulier tout espace
linéaire réticulé archimedien tel que: tout suite (0)-convergente
est (p)-convergeante.

2. Définitions et notations. Soit X un espace linéaire
complétement réticulé et Z+e un ensemble. On définit une métrique
vectorielle d: ZxZ-X et pour AcZ on note le diamdtre de A par
§(A) = sup{d(z,;,2,)/%,,3,€A}.

DEFINITION 2.1. On dit que l'ensemble BcZ est d-fermé si
tout {2,},.N; 2,€B, z, 4 z implique zeB.

(11 2z, 8 2z = d(z,2) 20)
DEFINITION 2.2. Soit BcZ. Définissons par:

B = izeZz / z=d-limz, , z,€B }
n

LEMME 2.1. Si Z est d-complet la suite {B,}{, B,<Z,
B, d-fermé et &§(B,ji0 alors il existe z,¢B unique tel que

n[:an = {z,)

DEFINITION 2.3. Soit 1'ensemble 2Z+e d-complet. Une
application f: 2-+Z s'appelle application de Picard s'il existe
z"€Z telle que Fix(f) = (2"} et la suite {f?(z,)},N d-converge
vers 3" pour tout zge3.

DEFINITION 2.4. Soit 2Z#e un certain ensemble. Une
application r:2-+Z est une application de Janos si
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N £7°(2) = {z'} o ({z°} = Fix(f)
neN
DEFINITION 2.5. Soit Z+#e un certain ensemble, f,f : 2-2,
neN. La suite est assimptotiquement uniformément convergente
(designons par f, :a:; £f) s8'il existe v>0, veX tel que pour tout
e>0 il existe ng(e), my(e)eN tels que d(f,)(z),£™(z)) < ev pour
tout n>ng, m>m, et zeZ.
3. Théordmes de point fixe dans les espaces avec métrique
vectorielle.
THEOREME 3.1. Soit X un espace linéaire complétement
réticulé, Z»e d-complet, f: 2Z-Z et ¢:X,~X,. Nous supposons que:

(i) @ est | et @7(t) Q. 0pour t> 0 et n~ o

(c'est - & ~ dire: ¢ est function de comparaison)
(i1) &(f(A))<se(6(A) pour tout AcZ tel que f(A)cA
' (c'est - & - dire: f est (5,9#) - contraction generalisée)
Alors:
(a) £ est application de Picard
(b) f est application de Janos
Démonstration a) Soit A, = T(2), A, = T(A]J,..., A, = TUA]T
Alors nous avons: Anﬂ&An, A=A, et f(A,)cA, pour tout neN.
D'autre part:
8(A,,,) =8 (FTAT)=8(L£(A,)) <@ (8(A,))<@*(8(A,,))<...<9"(8(2)) 20
Donc &(Ap,;)40. Alors d'aprés le LEMME 2.1 il existe z'ez
unique tel que [)A,=(z°} et f nA,J c (1A, . donc Fix(f)={z"}.
Soit zp€Z et Bnn-'l{f,“(zo) (Y, 0, 2% . conme
£(B,) = {f"1(z,),r"%(3,), ...,2"} = B,,,<B, et
§(B,) = §(f(B,))<e(8(B,)) 11 résulte que &§(B,) !0 pour n-w,.
c'est - & - dire f7(z,)~z", ne
b) z‘eq'f"‘(z) c nAn = {z*} et donc Qf”(z) = {z'} q.e.d.
nEl n=1i ne

THEOREME 3.2. Soit X un espace liné&aire complétement
réticulé Z#e d - complet, f: 2Z-Z une application ayant la
proprieté suivante: il existe nkeN" tel que f™ solit une (8,¢)
contraction generalisée.

58



FLORICA VOICU

Alors:
a) f est une application de Picard
b) f est une application de Janos

Démonstration (a) + (b). Dans le théoréme 3.1. nous avons
Fix (£f™) = {z*} et 38(f™(2))10 pour k-0 D'autre part:
Z2£(2)>f*(2)>...2£™(2)>... donc [)£™(2)={z'} q.e.d.

nel

THEOREM 3.3. Soit X un espace linéaire complétement réticulé
et régulier, 2z d - complet et f, f,: Z2-Z neN. Supposons que:
i) f est une application de Picard (On note Fix (f) = {2"})
ii) £, ¢
iii) Fix (f,)»e pour tout neN (On note Fix (f,) = {z,})
Alors: z, 4. z°*

Démonstration. Nous avons:

d(z,, 2*) =d(f,(2,),2z*)=d(£f)(2z;),2") ¢
<d(£](z*), £F™(zy)) +d(£2(z)),2°*)

D'aprads (ii) il en résulte qu'il existe v>0, veX tell que pour
tout e>0 ils existent ny(e), mg(e)eN:
d(f;(z,) , £™(2,)) < %v quel que soit n>ng(e); m>mgy(e).
D'aprés (i) il en résulte que pour tout neN nous avons:
d{f=(z;),z*) 2 0, pour mm,
L'espace X etant régulier il existe un régulateur de

convergeance w2v tel que: (V)e>0 il existe m(e,n)2my(e) tel que:
d(£f=(z;),z*) s %w (V) mzm(e,n)
Donc on obtient:

d(z,, z*) < %v»*-—;v < ew pour tout nxng(e)
ponc: z, 4 z+ =
q.e.d..
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- (a,, e,)
wy+a ’-VL: Hm”{ k PP ]d =
[yeeriimmgday | o7 & |
( 1) m,n.2 ( W2 a, k) ’ ( wglk) ’ (a ep) (1.2)
p02 q’l f ) ’ (V'wzlk) ’ !

where h>0, A<0, B>0, |argz|<1/2Bm, Re[wy+a+kb;]>=1 (7j=1,2,...,m),
Rea>~-1.

The orthogonality property of Laguerre polynomials [3,p.292-
293, (2) & (3)):

0, m*n, Rea>-1;

e ag-xy @ a = 1.3
fox e L, (X)L, (Xx)dx r(a;,l;+1) | m=n, Rea>O. (1.3)

The following orthogonality property:

0, msn
f"e“’“"cosznxdx= —’2‘—. m=n#»0 (1.4)
(o}

{n, m=n=0.

2. Double Fourier Exponential-Laguerre series. The double

Fourier Exponential-Laguerre series to be established is

(a e)]

(sing) My tHpE £)

z(sin%) “2hy Kk

- 2 - (‘1)': irxy & .
L Tlasemy & LD (2-1)

(1 w]_ zrlh) ’ (-wa-ark) I‘(_wz‘l k) ¢ (ap’ ep) ¢ (1—Wl+21',h)
(5 -Hy,h), (by, £5), (1-wy, B}, (€=, KO)

1,n+3

X Hpii/ge3|2

valid under the conditions of (1.1), (1.2), and (1.3).
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Proof. To establish (2.1), let

(a,, ep)
£)

S §

£f(x,y)= (sing) 2 y"*h,:{'glz (sin-’z—‘) “2hy K

= E Ear,cezkxl'c.(}’) . (2.2)

I=-w t=0

Equation (2.2) is valid, since f(x,y) is continuous and of
bounded variation in the region 0 < x < m, 0 < y < o,

Multiplying both sides of (2.2) by y%*eYLJ'(y), integrating
with respect to y from 0 to «, and using (1.2) and (1.3), we

obtain

("wg'ark) ’ (wglk) ’ (apl Op) -
(bql fq) ’ (V"walk)

(-1) "(sin%) s Hp.’z",’g,z[z(sin—g—) -2h

=Y a4, ,T(a+vel) e2ie (2.3)

Lm-

Multiplying both sides of (2.2) by cos2ux, integrating with

respect to x from 0 to 7 and using (1.1) and (1.4), we get

- 2(_1)v (2.4)

Au,v
vyIn) T(a+v+l)

(1-w1-2ulh) ¢ ("wz—alk) ’ ("wgl k) ’ (apl ep) ¢ (1-wl+2u:h)

me+l, neld
X Hpwa a2 (%—wl,h), (bg, £, (1-w;, h), (Vv-w,, K) ‘

except that Aq , is one-half of the above value.
From (2.2) and (2.4), the formula (2.1) is obtained.

Since on specializing the parameters the H-function yields
almost all special functions appearing in applied mathematics and
physical sciences. Therefore, the result presented in this paper
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is of a general character and hence may encompass several casses

of interest.
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the real and positive parameter A for which the function
g(z)=f(Az) is close-to-convex in U.

Finding the close-to-convexity radius of a function is
important as an independent problem and also because in this way

is obtained a lower bound for the radius of univalence.

2. Main problem. We deal in this note with the problem of

finding the close-to-convexity radii for the functions

8i(2) =Lzsi:tdt, z€C

Shi (z) =L‘9‘tht, zeC

Note first that these functions have the same close-to-
convexity radius, denoted by rgy. This becomes clear from the
relation Shi(z)=Si(iz)/i. The nonvanishing condition for the
derivative implies that rysw.

Letting A = {(t,,t;):0st,<t,<2m} Theorem 1 applied to these

functions now gives

I,(t, t,) = f:'Re(zctgz)dt > -n (1)
1

I(t,.t,) = f:Re(zcthz)dt > -x (2)

where z=rei’, for every r € (0,ry) and (t;,t;) € A.
If we put
X=x(t)=rcos(t), y=y(t)=rsin(t)
g; (t)=ysh(2y)+xsin(2x), g,(t)=xsh(2x)+ysin(2y)
hl(t)-ge(z ctg z)=g,(t)/(ch(2y)-cos(2x))
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h,(t)=Re(z cth z)=g,(t)/(ch(2x)~cos(2y))
then the functions g,,h,,9,,h, are even, periodical of period
and verify the relations

g;(t)=g;(n-t), h;(t)=h;(n-t), sgn hy=sgn g;, j=1,2 (3)

ga(t)=gy(t-n/2), hy(t)=h,(t-n/2).

Using the well-known inequalitis sin(a)/a < 1gsh(b)/b,
cos(a) < 1sch(b), a,beR” and the sign of g{ if follows that g,
increases on ([0,7/2], decreases on [n/2,%n), and rsin(2r) <
< g,(t) < rsh(2r). Consequently relations (1), (2) are fulfiled
for r < m/2 because g5 and hj are positive, so r; € (n/2,n).

Using the sign of h; it follows that the minimum points
(t;,t;) of I, with respect to & verify t;, e {0,m-tgy, 2n-t;),

t, € {ty,n+ty,2n} where t, = ty(r) is the unique root of the
equation g, (t) = 0 situated in (0,7/2). Aplying relationé (3) we
finad

I,(0,tg)=I,(2m-ty, 2m) =I, (m-ty, m+ty) /2<0

I, (n-tgy,2m)=I,(0,n+ty).

So the minimum points (t,,t,) of I, with respect to A
satisfy the relation (t,,t;)e{(0,m+ty), (n-ty,m+ty),(0,2m)}. We
distinguish two cases:

a) If I,(0,m-ty)20 then I, (n-t,,m+ty)SI,(0,M+t,)sI,(0,27) 80
min{I,(t;,ty)t(t;,t;)ed}=min{I,(t;,t;y):(t,,¢t,)e€ Ay=I, (m-tq, n+ty).

b) If I,(0,m-ty)<0 then I,(0,2m)<I,(0,n+ty)<I,(n=tq,M+ty) SO
min{I,(t;,ty):(t;,t0e B }=inf{I;(t,,t;):(t,,t,)€A}=I,(0,2m).

Consequently, with a previous use of relations (3), tye
close-to-convexity condition (1) for the function Si and for a

fixed r becomes
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I,(0,tg)>-w/2 and I,(0,m/2)2-/4. (4)
consider now the case of the function Shi. Denoting by
cé=té(r) the root of the equation g,(t)=0 situated in [0,7/2] we
have by (3) that to+té=n/2.Usinq again (3) and proceeding in an
analogous way as before it follows that the minimum value of I,

with respect to A may be

I, (ty, ®m~tg) = 2I,(t;,n/2) = 2I,(0, ¢,

or

I, (tg,2x-t3) = I,(0,®)+2I,(t5,x/2) = 2[I,(0, t,) +I,(0,%/2)].
So, the close-to-convexity condition (2) for the function
Shi and for a fixed r becomes
I,(0,ty)>-n/2 and I,(0,ty) + I (0,w/2)>-m/2. (5)
It follows now, from (4) and (8), that the following
conditions are fulfiled when r equals rg,:
I,(0,ty)=-n/2 or I (0,n/2)=-m/4 (6)
I,(0,tg)=-m/2 or I,(0,ty) + I,(0,m/2)=-m/2. (7)
Presuming that I,(0,t,)>-n/2 for r=r, we obtain from (6) and
(7) that I,(0,n/2)=-n/4 and I,(0,ty) + I,(0,n/2)=-n/2, SO
I,(0,ty)=I,(0,n/2)=-n/4 which is impossible because h, is
negative on [o,t;] and positive on {[tg,n/2].
Finally, the close-to-convexity radius r, of the functions

Si and Shi is the smallest root, situated in (w/2,7]), of the
egquation

o % ysh(2y)+x8in(2x) ;. _ _ =&
I, (0, (1)) fo ch(2y) -cos (2x) at 2

where x=rcoa(t), y=rsin(t) and t,(r) is the unigue root of the
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equation ysh(2y) + xsin(2x) = 0 situated in (0,m/2).

An approximative value obtained for r, is ry~3.1411...
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REZUMAT. ~ Functii prestelare generaliszate. Lucrarea se ocupk cu
functii prestelare cu mai multi parametri, de ordinul a g¢i tipul
B. Sint stabilite unele inegalitXt{i privind coeficientii acestor
functii.

Introduotion. A function f(z) normalised by £(0)=f!(0)-1=0
is said to be in the class S if it is analytic and univalent
in the unit disc U={2z:|z|<1}. A function f(2) -z+2 a,z”is saiad
to be in the class of functions starlike of org;r a, Osa<l,

denoted by s"(a), if

Re{-z—tf—'(’-%}za (z€U)

Further we say that f in S belongs to the class S(a,B) if
f satisfies

| zf'(z) _,
£(2z) B
z£/'(2) .. _

I-—FT;T-+1 2a

where 8¢€(0,1), Osa<l.
The convolution or Hadamard product of two power series
f(z)af:anz" and glz)*Z:thz” is defined as the power series
nel = n=0

ftg(z)-z;anbnz" . A normalised analytic function is saiad to be
n=

in the class of functions prestarlike of order a and type 8,

* Department of Maihematics, Willington College Sangli, Naharashtra State,
India
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0sa<l, Be(0,1), denoted by Rf, if f*S, peS(a,B) where S, g=z(1-
Bz)~2(1"@), For B=1 we get the class R, introduced by Ruscheweyh

(2].

Main Results. We need the following lemma due to Kulkarni
S.R. [1]:

LEMMA: Let f be in S(a,B8), then for z in U

zf/(z) |, 1-P(1-2a) 1
Re{ £(2) }> B 1

We also need,

LEMMA: Let

S,,p=2(1-Pz) 2% =243 " y(n,«,B) 2", then

n=2

n

II [B(k-z«)] (2)

y(n,a,6p)=22 TR for n=2,3,4, .

Proof: We have

S=z(1—ﬂz) -2(1-a) _

n

- II B (k-2a))

=Z[1+ =2 zn-l =
,,Z, (n-1)!

n

Hence the result follows.
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THEOREM 1. Let f be in R}, then

1 \
Re{G(2)} > T+P (3}

where

£ _z_)
G(z) = ( (1-pz)>2

- P4
(1_32)2-20)

Proof : Since f is in R: , F=f*S, n belongs to S(a,B)

Re{zf’(z)} , 1-p(1-2a)

£(2) 1+p
zf'(z) . _ 2(1-a)
Re{w*‘l 2“} > __l‘l‘ﬂ

We have
F(g) = f*sa’,,(z)
ZF'(g) = f*z(sa'ﬂ(z))'

ZF'(2) . 5 . oy Fx(z(1-p2) "3-3%)
Flz) 20 = 2 e (i pa) 6o

Hence the result follows.

THEOREM 2. If f(z) -z+}_; a,z” be in R? and
ne=
Sa,n = #(1-Bz)~2(1-a) then

n-1
1+Y laly (k, a,B)

k=2

Bn-1+z; Bn_k‘Y (k,a, p)

|2, <

Proof : In view of Theorem 1, we can write
with |b,| <1 .
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REZUMAT. - Asupra unor functii n-a-aproape convexe. In lucrare
sint stabilite citeva propriet3ti ale unor functii n-a-convexe.

1. Introduction. Let A be the class of functions f£(z) which
are analytic in the unit disc U={zeC : |z|<1}, with £(0)=r'(0)-
-1=0. In [2] the author defined the class Kp,a(6), the class of

functions feA which satisfy

Re| (1-a) B21L(2) o DTIf(e) |y ey
DPf(z) Dn*1f(z)

-1 (n)
where a20, §<1 and D“f(z)a———-’:———*f(z)zz(zn £(z)) ™
(1-2z)7? n!

where (*) stands for the Hadamard product (convolution) of power

’

series, i.e. if r(z)= ;:rjzj and s(z)= ;;sjzj, then
(r*g) (2) = ;:zgsjzi.

Note that the classes K, ,(6§) and Z,(§)=K, o(§) were studied
in [2] and the classes Kh'a(l/z) and 2,(1/2) were introduced by
H.S.Al-Amiri [1]) and S.Ruscheweyh [7] respectively.

We denote by AC,(8) (the class of n-close-to-convex
functions of order &) the class of functions feA which satisfy

o 2 E2) 5
Dn’lg( Z)

€U

where geZ,.,(68), <1 and let Ch,a(S) (the class of n-a-close-to-

University "Aurel Vlaicu", Department of Mathematics, 2900 Arad,
Romania .



T. BULBOACA

convex functions of order §) the class of functions feA which

satisfy

(1—a)‘Dndf(2)+a‘anf(z) >8

Re
D"‘lg(z) D"’zg(z)

, Z€U

where geZ,,,(8), §<1. These classes were introduced in (3] and we
have presented in (4] .some properties by using sharp
subordination results from ([S5] and ([6), and the classes
Cn,all/2), AC,(1/2) were studied in {1)].

Let yeC with Re y>-1 and tg(z)=§:-%§;zj. In (7],

i

S.Ruscheweyh showed that if Re y 2 (n-1)/2 and feZ,(1/2), then
f*b, € Z,(1/2).

In [4) we presented some new results concerning this

function and in this paper we will give other new properties of

the function b, (z).

2. Preliminaries. We will need the next lemmas to prove our
results.

LEMMA A. [4, Theorem 3). Let y>-1 and

- n-y 2n-y
6,= max {n+1 ) 2(n+1)} £8<1.

If fez,(8) then f»b€Z,(§(n,v,8)) where

3(n,v,8)=

1 +1 _
n+1 [F(1,2(n+1)(1-5).Y+2;1/2) y+n]

and this result is sharp.

LEMMA B. [4, Theorem 4]. Let y > -1 and
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n-y+1 2n-y+2 2n-y+3
max { n+2 ' 2(n+2)} <8< 2 (n+2)

If f€AC,(8) related to geZ,,,(§) then f*breACn(S) related to
g*byezn+1(6).

3. Main results.

THEOREM 1. If -1 < y < 0, then fez,,(%‘{-) implies that

f‘bvez,,(g (n,y, ﬁ» , where

- n-y 1 L(y+3/2) n-y
n,y., = +
8\ Y (n+1)yx T(y+1) n+1
and the result is sharp.
_ n-y 2n-y . n-y
Proof. If -1 < y £ 0, then max{n+1 P 2(n+1)} vE) and

by using Lemma A for § = (n-y)/(n+l) and a simple calculus we

obtain our result.

THEOREM 2. If y 2 0, then fez,,(s?—(ﬁ-:{-)-) implies that

2n-y+1
ftkgezn(z(n+1)

and tbis result is sharp.

n-y 2n-y . _2n-—y |
Proof. If y 2 0 then max{n+1 ' 2(n+1)} Z a1y ¢ taking
) =-§%%E¥T in Lemma A and using the well-known relation
sg)m - ~ 2n-y |\ . 2n-y+1
F(l,a,a,;2)=1/(1-2) we have sin. v, Z (o) 2 (n+1) and we

obtain our result.

Taking y = 0 in Lemma A we obtain the next result.

COROLLARY 1. Let 7:%1"“1 and f€Z,(8) ; then
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f+by€2,(§(n,0,8)) , where

1 [1-2(n+1)(1-6) m] for w_20%1

§(n,0,8)=] A1l 2-22enOW 2(n+1)
1 1 2n+1
S S O S £ =_2n+1
n+1[ 21in2 ”’] . for 8=

and this result is sharp.

Taking n=0 in the above corollary we obtain:

/
COROLLARY 2. Let 0 £ § < 1 and feA with RO-ZTI?(%ZOB . Z€U.

/
Then Ro-z—;(—(z-%)—>§ + ZEU where

28-1 1
—_2_22(1-6) ’ for 6‘3

-~

1 1
—_—, d=—
zinz ¢ for 8=3
and F(®s)=f(3)*bg(z) , and this result i1s sharp.
Considering n=0 and é=0 in Lemma B we obtain the following

result:

7
COROLLARY 3. Let 2sy<3 and f,geA. Then Re-L{Zl,0, zev,

Mz) i, 22
where Re(1+—zg-—z—J> -1, z€U implies Re—2) 50, zeU
g/(z) G/ (z)
"
where Re(1+£(%(i-‘:-)—)>-1 , Z€U and
z

F(z)=f(Z)*b,(2) , G(5)=g(s)*b, (5).
Taking n=0 and é6=1/2 in Lemma B we obtain the next result:

COROLLARY 4. Let 0<y<l and f,geA. Then
/ " \
rRe L2yl  ;eu where Re(1+ zg_(z) ))0 , Z€U implies

(z) 2 g'(2)
! "

Re—i-'—if)—>—1— , 2€U where Re(1+£q—§ﬂ)>0 , ZEU ano
G'(z) 2 @' (z)
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F(z)=f(2z) »b,(2) , G(2)=g(2)+b,(2).

Considering n=0, y=0 in Lemma B and y=0 in Theorem 2 we

obtain the next two results concerning f*b, respectively.

COROLLARY 5, Let 1/2 < § < 3/4 and f,geA. Then

/ "
re-£ (2) (z; >8 , zeU where Re(1+—w)>26—1 , z€U implies

g'(z

G'(z)

g'(z)

G'(z

/ "
Re-£{2) 53 | zev where Re(1+ZG—(Z)))>25‘1 . Z€U and

F(z)=£(z) *b,(z) , G(z)=g(2z)*b,(z).

COROLLARY 6. If fez [-B-)\ then fsb,ez (271 _
2\ n+1 0=%n\ 2(n+1)

and this result is sharp.

1.
2.

3.
4.
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REZUMAT. - Asupra unei subordoniri diferentiale Marx-sStrohhiicker.
Fie A clasa functiilor f, £(0) = £'(0) - 1 = 0, analitice in
discul unitate U. Fie g o functie univalentd in U, cu ¢g(0) = 1.
Presupunem ci sint verificate conditiile (5) gi (6), unde h(s) =
= g(2z) +zg'(2)/q(z). Rezultatul principal al lucririi afirmi ck
dacX feA gl zf"(z)/f’'(2) < zk"(2)/k’(2) atunci zf'(2)/f(2) <

< zk’(2z)/k(z), unde k este definitd de (9). Se consider¥ cazul
particular k(z) = (e’ - 1)/A unde [A] s a.

1. Introduction. If the function f with rf'(0) + 0 is
analytic in the unit disc U, then r is convex in U (i.e. f is
univalent and f(U) is a convex domain) if and only if
Re(3f"(2)/f'(2)+1)>0 in U. Let A denote the class of analytic
functions f in U, which are normalized by £(0) = 0 and f*'(0)=1.
A function f in A is starlike in U (i.e. f is univalent and £ (U)
is starlike with respect to the origin) if and only 1if
Re(zf'(2)/f(2)] > 0. If Re[zf'(2)/f(z)] > a, 0 a< 1, then f is
called starlike of order a. A classic result due to Marx [2] and
Strohhlicker [7) asserts that a convex function f in A is starlike
of order 1/2, i.e.

2£Nz) 5, (z€U) = Re zf/(z) , 1

feA, R L L) =
A Re=Ea) ) 2

(zel) . (1)

If F and G are analytic functions in U and G is univalent
then we say that F is subordinate to G, written F < G, or F(&m)«<
<G(8), if F(0) = G(0) and F(U) c G(U).

If we let k(2) = g/(1-8), then the implication (1) can be

* University "Babeg-Bolyai*, Faculty of Nathematics, 3400 Cluj-Napoca,
Romania
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rewritten as

zf"(z) . zf'(z) _ zf'(z) , zk'(z)

feaA,
A ) X (2) £(2) (2)

(2)

In (4) S.S.Miller and the present author determined certain
general sufficient conditions on the function k in A, for which
the implication (2) holds.

In this paper we determine other sufficient conditions on
k in A, for which (2) holds. For example these new conditions are
satisfied if k(z) = (e*® - 1)/A, where |A] < 4. This example is
an improvement of a recent result of V.Anisiu and the author (1].
In particular we offer a new and more simple proof of the

starlikeness condition obtained in [1}].

2. Preliminaries. We shall use the following lemmas to prove
our results.

LEMMA 1. Let G be an analytic and univalent function on U,
with G*({) » 0, for { € 3U. Let F be analytic in U, with
F(0) = G(0). If F is not subordinate to G, then there exist
points 24, € U and [ € dU, and an m 2 1, for which

(1) F(z) = G({) and

(1i) zoF'(2g9) = m{G'({).

More general forms of this lemma may be found in (3). A
recent survey on the theory and applications of differential
subordinations is given in [5].

LEMMA 2.[1]}. The radius of univalence of the function
f(z) = (e®* - 1)/z is given by r = 4.83... , where r satisfies the

system
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Az

Re
etz

>0

holds for all z € U, if and only if |A| < r", where r' = 2.832...

is given by

r* = 1’14—}’0 (3)

and y, is the smallest positive root of the eguation

(4)

ysiny + cosy =

ol

We note that r" is the radius of starlikeness of the

function r(z) = e* - 1.

3. Main results.

THEOREM 1. Let q be univalent in U, with gq(0) = 1. Let

h(z) = g(z) + 2242)

c(z)
and suppose that
h 1s convex in U (5)
/
Re{ h/(z) g(z)|> o0, zeU . (6)
q'(2)

If P 1s an analytic function in U, such that
P(z) < h(z), (7)
then the analytic solution p of the differential equation
zp'(g) + P(z)p(z) = 1 (8)
satisfies p < 1/q. »
Proof. cCondition (6) implies g(z) # 0 in U, hence the

function 1/q is analytic and univalent.
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zf’(z).< zk/(z)
£(z) k(z)

Proof. From (9) we obtain

q(z) = -‘%—g—)— and h(z) = q(z) + %";—) = 1+£}:—,{_(z’;—) .
Since condition (10) implies f'(z) # 0, the function P(2) = 1 +
+ zf%(z)/f'(z) 1is analytic in U and satisfies (7). For this
particular P equation (8) has the analytic solution p(z) =
= f(2)/[2f'(2)]). Thus all conditions of Theorem 1 are satisfied
and we deduce p < 1/g. Since 1/q(z) # 0, this implies p(z) » ©
and so 1/p(z) = zf'(2)/f(2) is analytic in U. In addition from
p < 1/q and g(2) * 0 we obtain 1/p < q, i.e.
;f'(z)/f(z) < zk'(2) /k(2).

4. A particular case. If we let

Az
etr_1

qlz) =

’

then from Lemma 2 we deduce that g is univalent in U if

[A] < 4.83... and in this particular case we have

k(z) = 1'5’" and h(z) = 1-Az .

On the other hand we have

g'(z) O | 1

+ -

h'(z) g(z) e*s-1 Az

and by using Lemma 3 we deduce that
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/
e-,q# >0, if |A| < r, =4.046...
h'(z) g(2)

Thus if |A| < ry all conditions of Theorem 2 are satisfied
and we obtain the following result.

THEOREM 3. Let r, = 4.046... be the root in the interval
(0,2m) of the equation r{l1 + ctg(r/2)] = 2. If f € A and

, f”(z)
£'(2)

sM<r,, for zeU,

then

zf/(z) < _rz
f(z) elz_l

, for |Al =M.

This theorem is an improvement of a result in [1].

By using Lemma 4, from Theorem 3 we deduce the following
sufficient condition of starlikeness, which was obtained in [1].

THEOREM 4. Let r" = 2.83... be given by (3) and (4). If feA
and

f”(z)

sr*, for zeU,
£(z)

then £ is starlike in U and this result is sharp.

Example. Let f ¢ A be defined by
f(z) = f‘e""dt .
0

From Theorem 4 we déduce that f is starlike if |A|sr®/2=1.41...
In particular, if we denote by p the radius of starlikeness

of the error function
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er £(z) = fo’e-t‘dc ,

then p 2 4-%; =1.19... We note that the inequality p 2 r*/2 in

(1) has to be corrected by p 2

I‘
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REZUMAT. - Convolutii de functii univalente cu coeficienti
negativi. In lucrare sint stabilite unele proprietidt{i ale
convolutiilor de functii stelate de ordin a gi tip B cu
coeficienti negativi.

1. Let A denote the class of functions of the form

f(z)=z-) a,z", a,20, n=2,3,...

n=2

that are analytic in the unit disc U = {2zeC; |z|<1}. The function
feA is said to be starlike of order a, a€[0,1), with negative
coefficients, if

zf/(z)

Re f(z)

> a, zZ€eU.

We denote this class by S"(a). Let a€[0,1) and Be(0,1); we define
the class S"(a,B) of starlike functions of order a and type 8
with negative coefficients by

S"(a,B) = {feA; J(f(z);a)<B, zeU},

where
zf'(z) _,
J(£(z) ;@) = |—L(2)
_____-—Zf/(z) +1l-2a
£{2)

Remark 1. Let D be the disc with the center at a = (1-2a8%+

+ B’)/(l - 32) and the radius r = 28(1-a)/(1-82) when Be(0,1) and

* Univergity "Babeg-Bolyai”, Faculty of Mathematics, 3400 Cluj-Napoca,
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a€[0,1), and let D = {weC; Re w>a}, when B=1 and ae{0,1). Then

for zeU we have

J(f(Z) ;@) <P = 3%%é§L €D (1)

and we deduce that if feS"(a,B), then

/
Rei%§T%§L >0, z€eU,

where o=0(a,B8) and

o(a,p) =-li%%%1ﬁ .

We obtain $*(a,1) = S"(a) and S"(a,B)cS"(0), where o=0(a,B).

Remark 2. By using (1) we also obtain
a) if 0sa,;<a,<1, then S"(a,,B)<8"(a,,B);
b) if 0<B,<B,<1, then S"(a,B,)cs"(a,B,).

Let f and g be two functions in A,

f(z) = z-Y a,z" and g(z) = z-Y b,z".
n=2 ne2

Then we define the (modified) Hadamard product or convolution of
f and g by
(f+g) (2) = z—g ab,z" .
n=

In this paper we show that it r, ges'(a,ﬁ) , then f»ge

es*(a,y)ns"(8,8), where 0<y<8 and a<6f1.
We will use the following result due to V.P.Gupta and

P.K.Jain [1].
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THEOREM A. A function £,

£(z) = z-Y a,z", a,20, n=2,3,...

ne2

is in $"(a,B) if and only if

n-1+p(n+1-2a)
n=2 25(1—a)

a,s1.

The result is sharp.
2. THEOREM 1. Let f,geS*(a,B), a€[0,1), Be(o,1}. Then
f*ges* (a,y(a,B)), where

- 2p?(1-a)
v(a.B) (3-2&) (B+1)2-2(1-a)

and O<y(a,B8)<B. The result is sharp.

Proof. From Theorem A we know that if f, gcs'(a,B) and

£(z) =.z- ", = z-Yhz",
z znz.;a,,z g(z) z;;

then
~ n-1+p (n+1-2a) 2
nz-; 35 (120 a, <1 (2)
and
—~ n-1+f (n+1-2a) 3
§ 36 (1-a) b,s1. (3)

From Theorem A we also know that f*geS”(a,y) if and only if
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~ n-1+y(n+1-2a) 4
; 2y(1-a) by < 1 (4)

and we wish to find the smallest y=y(a,B) such that (4) holds.

From (2) and (3) we get by means of the Cauchy-Schwarz

inequality
—~ n-1+f (n+1-2a)
)) zg(l_a) Jab, s 1 (5)
which implies
vazb, < 2p (1-a) , n=2,3,... (6)

n-1+f (n+1-2«a)

We observe that the inequalities

n-1+y (n+1-2a) n-1+f (n+1-2a) }
2?(1—“) anbn s 2ﬂ(1“¢) vaan ‘ n 2,3, “ e (7)

imply (4). We also observe that (7) is equivalent to

“'1*7‘:*1‘2“’¢ag>;s "'1*‘”;*1‘2“’ , n=2,3,...  (8)
By using (6) we obtain

n-1+y(n+l-2a) 2p(1-a) (n-1+y(n+1-2a)) -
Y VaPn < vy (n-1+p (n+1-2a)) o M=2a3.

In order to obtain (8) it will be sufficient to show that

2B (1-a) (n-1+y (n+1-2a)) n-1i+f (n+1-2a)

=2,3,...
(n-1+f (n+1-2a«) )y * n=2.3
These last inequalities are equivalent to
- - - 2
I 1+n+1—2a < (n-1+f (n+1-2e)) , n=2,3,.

2p%(1-«)

or
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2p2(1-a) (n-1)
(n-1+p (n+1-2a))%-2p2(1-a) (n+1-2a)

Yy 2y(n) = , nN=2,3,...

We note that y(n)<y(2) for all n = 2,3,... and then we

choose

2p%(1-a)
(3-2a) (B+1)2-2(1-a)

y(a,B) = y(2) =

We have y(2)>0 because 232(1-a)>0 and
(3-2a) (B+1)2 - 2(1-a) = 2(1-a) (B+1)% - 2(1-a) +
+ (B+1)2 = 2(1-a) (B%+2B) + (B+1)2 > 0.

We also have

B-y(a«,p) = (1-p)2+8p (1-a) +4af (1-p) +2ap? o
) (3-2a) (P+1)2-2(1-a)

By Theorem A the function

29(1"“) 2 (9)

f(2) = -3 820 2

is an element of S"(a,B8) and

4 2(1‘“)2 . .
(£,+£,) (2) = z- (1}‘9(3_2“)): z* € S*(a,y(a,P)) ,

because
4P2(1-a)? . _2y(1-«)

(1+p (3-2a))? 1+y(3-2a)
Then the functions f = g = f, are extremal functions for this

., when y = vy(a,B)

theoremn.
|
COROLLARY 1.1. If F,ges*(a,B), then f*gesS*(a,B).
Proof. We use Theorem 1 and Remark 2 b).

COROLLARY 1.2. If f,geS"(a,B), then r*geS"(p(a,B)), where
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1l 4p2(1-a)?
Pl B) = 1 75 (5pe1-4ap) (10)

Proof.1f f,geS” (a,B), then f*ges” (a,y(a,B))cS" (a(a,y(a,B))),

where

o(a,y(a,B)) = 1+2GY1(-0-“Y'£1) -py)(alp) = p(a,p)

and p(a,B) is diven by (10).

—p2
COROLLARY 1.3. If f,geS*(a), then f*g € s*(ﬁlii-).

3-2a
Proof. We know that S*(a) = S"(a,1) (see Remark 1) and by
-yl
using Corollary 1.2 we obtain f*ges*(p(a,1)) and p(a,l)= :_g;

The preceding result (Corollary 1.3) are due to A. Schild
and H.Silverman [2].

3. THEOREM 2. Let a€¢(0,1) and Be¢(0,1]. If f,ges'(a,b), then
r*ges* (§(a,B),8), where

- 2
$(a,Bp) =1 -§gé%jf%§ .

and a<é(a,B)<1l, The result is sharp.

Proof. If f,ges”(a,B), then (6) holds. By Theorem A we know
that f*ges*(6,8) if and only if

n-1+f (n+1-29) 11
Y T 3p(1-8) ab, <1 (11)

and we wish to find the largest é=6(a,B8) such that (11) be
satisfied.

We note that the next inequalities

n-lfp(n+1-26)¢§:B; ¢ p-1+B(n+1-2a)

, n=2,3,... 12
1-8 1-a ! (12)

implies (11).
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By using (6) we have

2p(1-a) . n-1+f(n+1-238)

1-8 a,o, < 1.8 n-1+p (n+i-2a) , n=2,3,...
and we deduce that
20(1-a) . n-1+f(n+1-28) _ n-1+P(n+1-2a) n=2,3,...

1-8 n-1+f (n+1-2ea) 1-a
or
2B (n-1+B(n+1-26)) (1-a)25(1-§) (n-1+B8(n+1-2a))?, n=2,3,... (13)
implies (12).
The inequalities (13) are equivalent to
A < B,
where
A = -482(1-a)2 + (n-1)? + 2B(n-1) (n+1-2a) +
+ B?(n+1-2a)2 = (n-1) (B+1) ((n-1) (B+1) + 4B(1-a)) > O
and
B = (n-1)? + 28(n-1) (n+1-2a) + B2(n+1-2a)2 -
- 28(1-a)2(n-1) - 282(1-a)2(n+1) =
= (n-1) (B+1) ((n-1) (8+1) + 4B(1-a) - 2B(1-a)?).
Wa obtain
3 ¢ B . (n-2) (Ps1)+aP(1-a)-2p(1-a)? _
A (n-1) (B+1) +4p(1-a)

1o 2p(1-a)? -
Ly ap ey D 0@

We have
§ £ 6§(2) £ 6(n), n=2,3,... ,
because §(n) is an icreasing function of n.
Now we choose

§(a,B) = 6§(2) =1 - 2B(1-a)?/(5B+1-4aB).
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We have §(a,B) > a because

. . (3B+1) (1-a) +4a?p
8(a,P)-a P (1-a) pri >0

and §(a,B) < 1, because
- 2
1-8(a, ) ='If¥%%%f%%TI >0 .

The extremal functions are f = g = f, given by (9).

Remark 3. By using Theorem 2 and Remark 2.a) we obtain again
Corollary 1.1.

Remark 4. Since o(§(a,8),B8) = p(a,B), where p(a,B) is given
by (10), we obtain S'(S(a,B),B)cS'(p(a,B)). So we can prove
Corollary 1.2 by using 2 and Remark 1.

Remark 5. We have §(a,l) = (2-a2)/(3-2a), hence we can
obtain Corollary 1.3 by using Theorem 2 and Remark 1.

Remark 6. For given a and 8, a € [0,1), B € (0,1), the
classes S"(a,y(a,R)) and S*(6(a,B),B) are inclused in S*(p(a,B)),

but they are generally distinct.
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UNIVALENCY CRITERIA OF KUDRIASOV'S TYPE
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REZUMAT. - Un criteriu de univalent# de tip Kudriasov. In lucrare
se obtin condi{ii de wunivalentd similare cu cele date de
Kudriasov, conditii care folosesc gi coeficientul a,.

Let A be the class of regular functions in U = {z:|z]|<1},
£(z) = z + a,z2 + ... and f(z)/z » O for all z € U.

THEOREM A [3]). Let f(2) be a regular function in U, f(g) =
=2z + a,z2 + ...

If

|£”_(_2_). <M (1)

£'(z)

for all z € U, where M = 3,05, then the function f(z) is
univalent in U.

( In Kudriasov's results the constant M doesn't depend from
a,. The result could be improved for valours of |a,| approaching
to 0.

In this paper we obtain the conditions of univalence similar
to the result of Kudriasov's type, conditions which use
coefficient a, too.

THEOREM 1. If f(2) is a regular function in U, f(z) = a +
3

+ a3z” + ..., and

* University of Bragov, Department of Mathematics, 2200 Bragov, Romania
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f”(z)

2
7 12) (2)

for all z € U, then the function f(z) is univalent in U.
i f”(z)
4 f'(2)
Schwarz's lemma (2] and Becker's univalence criterion (1], for

Proof. Let's consider the function g(z) = Using

the function g(z), we obtain

zf"(z)

1- 2
R e

= (1-]z|?) |z]-ajg(2) | < 4(1-]z|?) |z|* < 1,

and, hence, it results that the function f(z) is univalent in U.
THEOREM 2. Let a be a complex number, Re a>0 and the
function f(z) belongs to the class A.

If

' f”(z)
£(z)

for all z € U, where the constant M verifies the condition

Mg 1 5
|z|+ 2|a,|
max (1-]z|2Re9) |z (4)
Isl<1 Rea 2a,|
1+—T IZI

then, for every complex number B, Re B2Re a the function

z 1
Fy(z) = [pfo ubt £/ (u) dul ® (5)

18 regular and univalent in U.

Proof. Let's consider the function F:{0,1] —~ R,
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. 2|a,|
- y 2R
F(x) = (1§Z‘:‘) 2124[ ; x = |z|
1+—2x
M
Because F(%) * 0 it results that m(ax]F(x)>0. Let's
x€{0,1
"
consider the function g(z) = —:'?-%;%'7—))- Using the generalization
z
"
of Schwarz's lemma [2) for the function g(z) = -’% i,((z)) , Where
z

M is a real positive constant which verifies the inequality (4),

we obtain

|a, |
—1. f”(z) |Z|+ M (6)
M fl(z) |, 203
+ B
M
for all z ¢ U, and, hence we have
(l_lzlzaoclzf//(z) <
Rea | f/(z)
2|a,| (7)
1 olan Iz|+__.._
< M - max|-21=lz2P) z| M
Isis1 Re « 1+ 2{a,| I2|
M
From (4) and (7) we obtain
(l_lzlznec) zf”(z) <1 (8)
Re a f'(z)

for all z € U and from Pascu's univalence criterion (4], it
results that the function Fg(3) is regular and univalent in U.

COROLLARY 1. If the function f(2) belongs to the class A and

f”(z)
fl(z)

(9)
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for all z €¢ U, where the constant M verifies the inequality

M< 1

2]a,|
|+ =5 (10)

max|(1-1z|?) |z
| T
M

then the function f(z) is univalent in U.

Proof. From the THEOREM 2, for a = 1 and 8 = 1, we obtain
the COROLLARY 1.

Observation. From Kudriasov's result it doesn't result the

THEOREM 1,but from COROLLARY 1 for a,=0 we obtain the THEOREM 1.
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TEST SETS IN QUANTITATIVE
KOROVKIN APPROXIMATION

1. RAGA"
Received: December 15, 1991
AMS subject classification: 41A36
REZUMAT. - Multimi test in aproximarea Korovkin cantitativik.

Lucrarea contine rezultate cantitative de tip Korovkin in care -
in afar¥ de functiile liniare - este utilizat¥ ca functie test o
singurd functie convexi.

1. Let (X,d) be a compact metric space and let B(X) denote
the space of all real-valued bounded functions on X.
Let C(X) be the subspace of B(X) consisting of all
continuous functions on X. For f € B(X) and § > 0 let
w(f,8) = sup {|f(x) - £(y)| : x,y € X, d(x,y) < §}.
Suppose that there exists a constant 4 > 0 such that
o(f,té) s (1 + pt)e(r,d) (1)
for all f € B(X) and all t,§ > 0.
Let F be a nonnegative functiop in B(Xz) such that
F(',y) € C(X) for each y € X. (2)
Suppose that there exist constants ¢ 2 1 and k > 0 such that
d9(x,y) < kF(x,y) for all x,y € X. (3)
T.Nishishiraho [2) has proved
THEOREM 1. Let T:C(X) - B(X) be a positive linear operator
such that Tl = 1. Then
[Tr(x) - £(x)| < (1 + pk6™9 TF(- ,x) (x))w(f,§)

for all £ € C(X), x €¢ X and § > 0.

2. Let E be a normed real space and E' the dual of E endowed

* fTechnical University, Department of Mathematics, 3400 Cluj-Napoca,
Romania
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with the usual norm. Let X be a compact convex subset of E.
For f € C(X), hy,...,h, € E' and § > 0 let us denote
w(f;hy,...,hy) = sup {|f(x) - £(y)|: x,y € X,

1=1

a(f,8) = inf {o(f;hy,...,hy) s m 21, hy,...,h, € E',
fjlhilz - 572,

In what follows let L:Z(X) -+ C(X) be a positive linear operator
such that L1 =1 and Lh = h for all h ¢ E'.

For x € X and § > 0 let us denote
1(8,x) =sup{;m: (Lh} (x) -h}(x)) :m21, h,, ..., h€eE, ﬁ:lh1|2= 5§72y,

Then we ;;ve (see [1], (5, Th.1.4]): N

THEOREM 2., Let f € C(X), x € X, § > 0. Then

(i) o0 < &, < 6, implies Q(f,8,) < Q(f,8,) and

7(81,X) 2 1(65.%)

(ii) 13;1\ Q(r,8) =0

(iii) |Lf(x) - £(x)] < (1 + 1(8,x))N(L,8)-

In Theorem 1 the test set is {1} u {F( ,Xx) : x € X}.

In Theorem 2 it is {1} U E' u {h® : h ¢ E'}.

Suppose now that there exists a constant ¢ > 0 such that

204x12 + Iyl?) = Ix + y1? 2 clx - yI? (4)

for all x,y € E (See[6,p.86}, [7]). In this case we shall obtain
guantitative results in which- besides the linear functions -
- only one convex function is involved as test function.

Let us remark that ¢ < 1; moreover, ¢ = 1 if and only if E
is an inner =~ product space. Condition (4) implies that E is

unifofmly convex (see[5)).
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THEOREM 3, Let f € C(X), x € X, § > 0. Then:
|LE(x) = £(x)| < (1 + LF(-,x)(x)/cé?)u(£,8) (5)
|[LE(x) - £(x)] < (1 + (Le - e)(x)/cé?)n(f, ) (6)

where e(x) = kx}2 and F(x,y) = 2(e(x) + e(y)) - e(x+y), X,yeX.

Proof. In this case (1) holds with u = 1 (see {2,Lemma 3]).
By virtue of (4) we can choose ¢ = 2 and k = 1/¢; so (2) and (3)
are also satisfied. Now (5) is a consequence of Th.1l.

For x,y €¢ X, a € [0,1] and f ¢ C(X) let us denote

(x,a,y; ) = (¥ - a)f(x) + af(y) - £f((1 - a)x + ay)

From (4) it follows (see(4]) that (x,a,y; e) 2 ca(l-a)e(x-y)
for all x,y € X. Let x € X. Then f € C(X) - Lf(x) defines a
probability Radon measure on X with barycenter x. It has been
proved in (3] that for all f € C(X) there exist u,v € X, u » v
and a € (0,1) such that

Lf(x) - £(x) = (Le(x) - e(x))(u,a,v; f)/(u,a,v; e).
Let h € E'. Then we have Lh?(x) ~h?(x) = (Le(x) -
- e(x)) (u,a,v;h?) /(u,a,v;e) < (Le(x) - e(x))(h(u) - h(v))?/
/ce(u-v) < (Le - e)(x) {hl?/c
It follows that 7(6§,x) < (Le - e)(x)/c&2 and thus (6) is a
consequence of Th.2.

Let us remark that in (6) the test functions are the
constant function 1, the linear functions and the convex function

e. On the other hand it is easy to verify that o < Q.
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