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A BINARY TREE CLASIFIER BASED ON FUZ2ZY SETS

IOANA MARIA BOIER"
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Received: February 4, 1991
AMS subject classification: 68P99

Resumat. Arbore binar de clasificare bazat pe mulgimi fussy. In
aceast¥ lucrare eete descris un algoritm de proiectare gi
implementare a unui clasificator binar. Acest algoritm 1igi
propune imbuni¥tifirea algoritmului propus de Fu gi Mui (3). O
multime de date de test eoste utilizatd 1in constructia
clasificatorului. In abordarsa acestei probleme, Fu g§i Mui
folosesc proiectia datelor in plan gi inspectia vizuald ca metode
de separare a clusterilor. Abordarea de fatd propune o separare
automatX, bazatd pe multimi fuzzy.

The design of the binary tree olassifier.

A method to design 2 binary ‘tree classifier has been
proposed in [3). According to Fu and Mul, there are three major
tasks to be implemented, to design a binary tree classifier:

a) a tree skeleton or hierarchical ordering of class labels

b) the choice of features at each nonterminal node

¢) the decision rule to be used at each nonterminal node.
These tasks involve the specification of the £following
parameters:

a) the number of descendant nodes at each nonterminal node

b) the number of features used at each nonterminal node

c) an appropriate decision rule to be considered at each

nonterminal node.
since any conventional single stage classification scheme can be
represented by a binary tree classifier which has exactly two

immediat descendant nodes for each nonterminal node {3]), we

* University of Cluj-Napoca, Faculty of Mathematics, 3400 Cluj-Napoca,
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IOANA MARIA BOIER

consider the number of descendant nodes at each nonterminal node
to be two. The next parameter to be specified is the maximum
number of features used at each nonterminal node. This number
depends on the specific classificat:!.-. rroblem and it is a
constant for the problem. Let us denote it by K. To determine K,
the number of all features, the size of test sample and the
average number of samples per class are to be considered. The
decision rule chosen at each nonterminal node is:

if d(x,L') < d(x,L?) then X is classified into calss A; (1)

otherwise X is classified into class A,,
where X 1is the feature vector of the unknown sample to be
classified, Li is the prototype of the class A; (i=1,2) [1) anc
d is a norm induced by distance in RP:

a(x,y)=kx-yl.
The next steps we have to perform are to design the tree skeleton
or hierarchical ordering of class labels and to establish the
actual features used at each nonterminal node. The fundamental
problem which appears when the tree skeleton is built is the
separation of the two groups of classes in each nonterminal node
and the choice of features which are effective in separating
these groups of classes. But, generally, the choise of the most
effective features depends on the classes to be separated and the
separation of the classes depends on what features are used. A
method to break this deadlock is proposed in what follows. Using
General Fuzzy Isodata algorithm [1) a fuzzy class is divided into
two groups. Then, a method similar to the one presented by Fu and

Mui [3] is used to chose the features which are "most effective"
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in separating the two groups of classes.

Let us assume that the predetermined number of classes is
n and that the classes are labeled 1, 2,...,n. We also assume
that the dimension of the features space is p. Suppose we have
reached with the construction of the tree skeleton to a
nonterminal node. Let C be the fuzzy set describing the
nembership degrees of class label i to this node, for all i from
1 to n. For example, at the beginning, when the nonterminal node
is the root, the membership degrees are C(i)=1.0 for all i from
1 to n. Further, using the General Fuzzy Isodata algorithm, a
fuzzy partition [1] P = {A;, A,} of C is detected. According to

the definition of a fuzzy partition, we have:

C(i) = A (1) + A,(i) , i=1,n

For the classification accuracy, the following correction rule

is used:

if A;(i) < 0.1 then A, ,,,(i)=C(i) and A,(1)=0.0 , i=1,n, j=1,2

In determining the partition P, we use n feature vectors,
representing the mean values of the features for each of the n
classes. However, it is possible that not all the p features are
needed to split the class C into A; and A,. Using the set of test
samples, we shall find the "best" up to K features in separating
the two groups of classes. First, the best single feature is
selected an this feafure is used to perform classification based
on the decision rule [1]. The result of the classification is
computed and represents the number of test samples well

classified. The "best 2" up to the "best K" feature subsets are

5
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Setosa Versicolor Vvirginica
PwW 0.2 1.4 2.5
PL 1.4 4.7 6.0
SwW 3.5 3.2 3.3
SL 5.1 7.0 6.3

mean values

The classification results

of the 4 characteristics

are as follows:

samples no. well classified percent
Setosa 49 49 100%
Virginica 49 26 51.02%
Versicolor 49 49 100%
Total 147 127 85.03%
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Anexa A
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Rezumat. - Asupra seturilor independente de grafe.Lucrarea trece
in revistd unii algoritmi de determinare a multimilor
independente (mul{imi interior stabile) referitocare la un graf.
In prima parte se prezintd citiva algoritmi care au la bazX
expresii gi/sau ecuatii booleene precum gi un algoritm recursiv
gi anume algoritmul dat de Taulbee gi Bednarek. in final autorii
dau un algoritm recursiv inspirat din acest ultim algoritm.

1. Definition, properties. Let G = (V,T) be an undirected
graph where:

~ V is the set of vertices and |V| = n;

- T :V -V is the aplication which defines the graph.

DEFINITION : Let S < V., S is an independent set (IS) iff
YVves, T,NS =o.

(where we denote T(v) by T,).

In other words the vertices of S don't have any edges
between each other.

Obgervations:
19 We may define G = (V,E) where E is the set of edges, E c
cV xV, an edge is (x,y], x,y € V and (x,x] € E.
20 Let S be an IS. S is called maximal if S is maximal by

sets inclusion.
3  We denote by 8 the set of all maximal IS of G.

We remember that:

a) a(G) is the number of internal stability:

* University of Cluj-Napoca, Department of Computer Science, 3400 Cluj-
Napoca, Romania



V.CIOBAN, V.PREJMEREAN and S.MOTOGNA

a (G) =max|s]|
Ses

b) ¥(G) is the chromatic number of G, y(G) is the

smallest number of IS, <i.jo.nts, which cover 4.

4° Moon and Moser have proved that:

n
33 ,if n=3k
81y
@€(G)$) 44377 ' ,if n=3k+1
n-2
2#3 3 ,i1f n=3k+2

2. Algorithms for determining IS. In many problems it is
important to find the IS family.

There are some algebraic or combinatorial algorithms to find
IS.

2.1. Maghout and Weissman'S algorithm based on boolean
expression.

2.2. Malgrange algorithm's which finds every squared matrix

containing only 0 (zero) of the adjacent matrix where:
A= (a;,) ; i=1,n; j=1,n with

a.={t if [vi,v)€E
37 1o ,othérwise

2.3. The Rudeanu's method, using the boolean equations which
caracterize the IS family.

Let G = (V,E), where V = {v;,...,V,}.

If S ¢ V is an IS then we associate to each v; € V an

boolean variable b; define by :

12
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{1,3) o, {1} {1} (1,3}, {2}, {2},
{3} {1,3)
{1,2,4} e,{1},{2} | (13,42} | {1,3},{1,4}, | (2,3},
(2,4}, {4} {1,4},
(2,4}
{1,2,4,5} |e,{1},{1,4} {1,4} | (1,31,
{1,4,5},

{2,4,5},{5}

- L = {{1,3}, {(1,4,5}, {2,4,5})

2.5. In what follows we suggest the next algorithm:

The notations used:

Let G = {V,E} be an undirected graphs and:

Ve ™ {Vy,eee,vi}, |V = n,1 s k < n;

L, = the sets family of IS associated with Vier 1 £ k 5 n.
The steps of the algorithm are:

81. L, = {v;}, k=2.

B2. One finds I, :

a) if M€ L., =MelL.

b) if M e L, and Vy € M with [y,x;) € E = M U {X3} € L.
c) {vi} € L.

Repeat S2 for k=2,3,...,n.

83. Reducing L, with respect to sets inclusion:
VMNeL,and Mc N ~L, =1L, \ M.

For the previous graph we have:

L, : {1}.



[
)

{1}, {2}.

Ly = {1}, {2}, {1,3}, {3}.
Ly = {1}, {2}, (1,3}, {3}, {1,4}, (2,4}, {4}.
Ls : {1}, {2}, {1.3}, {3}, {1,¢*, 2.4}, {4}, (1,5}, (2,5)

{1.4,5), {2,4,5}, {4,5}, {5}.
Applying S3 we obtain:
L : { {1,3}, {(1,4,5}, {2,4,5} }.
The algorithm is very simple and it works only with a single

sets family.
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REZUMAT. - Asupra unor metode paralele in algebra liniari. Sint
etudiate din punct de vedere al complexitdtii mai multe metode
numerice de inversare a matricelor gi de rezolvare a sistemelor
algebrice liniare.

The barallel computation had became an actual problem in
many application fields.

Of course, not each mathematical method can be efficientely
projected in a parallel version.

To characterize the depth of the parallelism of a given
method there exists specificaily criterions. Such criterions are
the speed and the efficiency. The goal of this paper is to discus
some methods in linear ilqebra from the parallelism point of
view,

Let X be a linear space, X, a subset of X, (Y,|.l) a normed
linear space and S,S1 X, ~ Y, a given operator. The problem: for
given ¢>0 and x ¢ X, find an y ¢ Y such that |S(x) - yl<s ¢ is
called a § - problem, x is the problem element, S is the solutien
operator and s = S(x) is the solution element. 3 e¢ Y for which
! s -8 < e is called an ¢ - approximation'of the solution s.

In order to solve a § - problem there are necessary some
informations on the‘problem element x. 8o, let 3 be a set (the
set of informations). The operator J: X -~ Z is called the

informational operator and ¥(x) , x € X,, is the information on

* University of Cluj-Napoca, Faculty of Mathematics, 3600 Cluj-Napoca,
Romania
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e

x. To compute a solution of a S -~ problem for a given information
J(x) we need an algorithm, which is defined as an application a:
$(Xg)~Y. So, for a given x € X;, a(J(x)) s the approximation of
the solution S(x) given by the algorit!*a a with the in{ormation
J(x) as the input data. If a (J(x)) is an £ - approximation o/
S(x) then § and a are called e - admissible. So, to solve a § -
problem means to find an ¢ - admissible informational operator
and an ¢ - admissible algorithm for it.

DEFINITION 1. A couple (J¥,a) with $:X-2 and a : § (Xy)~V is
‘called a method associated to a S -~ problem.

If 3 and a are ¢ - admissible then the corresponding method
is called also e - admissible.

Next, one denotes by M(S) the set of all admissible methods
for the problem S. A method peM(S), u = (J,a), is called a serial
methqd if all the computations are deecribed as a single
instructions stream (a is a serial algorithm). If the
computations are described as a multiple instructions streans
then u is called a parallel method (a is a parallel algorithm).

To distinguish the two kind of methods one denotes by M,(S)
the set of all serial methods for the problem § and by MP(S) the
set of all parallel methods for S.

For a method ueM(S) one denotes by CP(u;x), X € Xo, its
computational complexity for the element x or the local

complexity, while

CP(p) = sup CP(u;x)

X€X,y

is the complexity of the method u for the problem S(global

18
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complexity) (3].

DEFINITION 2. The method p € M, (S) for which
CP(R) = inf CP(p)
pEM(S)

is called the optimal method with regard to the complexity.

Now, let u be a serial method, u ¢ Mg, (S).

Generally speaking, by a parallel method bp € My (s),
associated to u we understand a method in which all the
operations, independent to each others, are performed in parallel
(in the same time). So, we can image the serial method divided
in many parts (segments - streams of instructions) independently
or partial independently from the computation point of view, say

Biseeesbbp. Then

cpP = max CP
(“D) uis)i (“4)

is the complexity of tho'corresponding parallel method HBp-
DEFINITION 3. Let & be a given problem, By € MP(S) a
parallei method and j, ¢ M, (S) the optimal serial method with
regard to the complexity.
Then

CP(@,)

S(PP) = W“—p)—

is called the speed of the parallel method Hp-
Remark 1. The speed is also denoted by S(up;r), where r is
the number of the instructions streams of the method Bp.
Obviously, S(up; r) sr.

19
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Remark 2. A more practical value to judge the parallel
version bp of a serial method u, is

CP(p,)

S“‘pl'r) = —ém';—)"

We also have s (up;r) 2 S(pp;r).

DEFINITION 4. The value

S(py,i
E(p,) = J‘f_i

is called the efficiency of the parallel method Bp-

As 0 < S(uP;r) £ r it follows that 0 < E(pp) S 1.

Next, we consider first some examples.

B.1. Let & be the following 2xpression :

E=t, p t; p ... pt,
where p is an associative operation.

The serial computational complexity of & is

CP(&) = (n - 1) CP(p) ,
where CP(p) , is the complexity of the operation p .

A parallel version 8’p of the expression & is obtained as
follows: in the first step we compute, say ¢t;: = tyi-1p tyy, for
all possible i. To do it more clear, let meN be such that 2™ <
< n s 2™ If n < 2™ then vwe supplement the expression & by

thep = +-- = typ = 0, i.e.

E=t,ptyp ...ptpt,,p ... p Lo
80,

€} 1 =ty Pty 1 =1,...,2™
In the second st;ap we have

€2 ixtd i p 3, i=1,...,2m2

20
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and so on
tf =t p e, i=1,...,2mk
for k = 3,...,m. Finally, we have & = t,” .Hence, the necessary
steps'to compute & is m. Taking into account that 2™! < np ¢ 27,
one obtains m = [log,n), where [x] , x ¢ R is the integer with
the property x s [x] < x + 1.
It follows that
CP (8;) = [log,n} CP (p) .
So, we have
s(&;(n/2] ) = T;’#:n]
and

n -1 2
B (n/2] (log,n) [1og,n]

where (x] is the integer part of x.

Remark 3. If we consider the binary tree associated to the
expression & then the cohplexity of the parallel computation of
€ is the depth of the tree [5].

E.2. Let be X = M, (R), Xo =X , Y=Rand § : X - ¥,

A-det A. Hence, S is the problem to compute the determinant detA
of the matrix A. The method used consists in the transformation

of the determinant

a, a,... a

det A = a;, a,;... 4y,

a, a... a,



in the form

1 af, af,

\ 3

det A:= aj,*...*sam~|0 1 ... az,
0 A

using the operations :

aj; : = a;; » 1,3 =1,...,n

af;

1

afy :=——f ,i=p+1,...,n
app

afj' i=afi-afxaly’ ., i, =p+1,....n
for p=1,...,n-1.
So, we have
det A = aj,*a}»...*a) .
Remark 4. Next we suppose that CP(+) = 1 ( a unit time) and
CP(*) = CP(/) = 3.
If one denotes by u, the serial method to compute det A,
one obtains
CP(p,) = {é(n—l)(8n3+5n+18)
A parallel version of the considered method using n parallel

instructions strems (n processors) is :
begin
det A: = 1;
for p: = 1 step 1 until n -1 do
begin
ab
(det A: = det A * aj,; (p+ 1< j s n) aﬁf:=rig) ;
a

((p+1 £ ] < n) for i:=p+1 step 1 until n do

22
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E(n,) = % .

B.3. For X = M, (R), Xo= {A | det A » 0, A€ X} ,
Y = M, (R) and sS(4) = A"l , s is the problem to compute the
inverse of a matrix.

We use the method based on the succesive transformations of

the matrix [A | I,) in the matrix (I, | A), where I, is the unit

matrix of order n. The transformations are : first one denctes
the elements of the matrix (A | I,] by tj;, i=1,...,n;
j=1,...,2n. Now,

o _ tp
t},’jl:s-zf;l , J=p+1,...,2n

PP
efti=tf-efxtlt . i=1,...,n, ivp ; F=p+1,...,2n
o ,
thyt= n . j=n+1,...,2n,
n
ton

for all p =1,...,n-1.
So,
Ala=(tf)) i=T,n; J=n+1,2n

If u, is the corresponding serial method then

CP(u,) = —3— n (4n® - 50 + 3).

A parallel method, Bp, can be projected as follows :

.

begin
t11
for p:=1 step 1 until n - 1 do

begin for j:=p+l1l step 1 until 2n do

24
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. o 5o . ) .
tR ) b= :11 ; (1sisn, iep) tf5' :=tf-tfatf)?
PP
end;
n
[(n+1sj52n) tny 1= t"’]
Enn
end
We have
CP(pP;n) = 6(n2 -n+1)
and
1
s(p,in) = n - Y
respectively

E(up) ~ 1.

Remark 6. From these three examples we can see that the
matrix inversion permites a very good parallelism (E(up) s 1),
while for the determinant computation E(up) % 2/3 and in the
first example

E(S}) = 2/[log,n] .

Linear algebraic systems.

If X = {[A|b]| A€M (R), beM, ; (R)}, Xo={[A|b)eX | det As0}
S([A|b])=A“1b then S is the problem to solve the system As=b.

Next, there are discused serial and parallel versions for
some well known numerical methods for the solution of 1linear
algebraic systems.

I. Cramer's method. Taking into account that the solution
is given by s; = D;/D,i=1,...,n, where D=det A and D; is the

determinant obtained by D changing the i-th column vector by b.
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So, we have to compute n + 1 determinants of order n, with the
complexity CP(u,) from the example E,, and n divisions. It
follows that the serial complexity of Cramer's method u. is

CP( Wpg) =(n+1)CP(p,) + nCP(/), i.e.

CP(ps) = =(8n* + 5n° + lon* + 13n - 18). (1)

-y

A natural parallel method here is to compute in parallel the

(n+1) determinants and than to perform the n divisions. So,
CP(u?) = -Gl-usn3 - 3n? + 13n) (2)

where pg is the mentioned parallel method.

Hence, one obtains

s(pz; n+l) = (n+1) - 18 . n+l

8n3-3n%+13n

and

E(np) = 1. (3)
As a conclusion we can remark the very good parallelism of
Cramer's method (E(up) =1).
1I. Gaussian elimination method. As, it is well known first
the given matrix [A|b] € X, is transformed in the matrix ‘
(T, | b), where T, is an upper triungular matrix (T, = (ady)

i=1,...,n; j=i+1,...,n; aé=1) using the relations

26



ON SOME PARALLEL METHODS IN LINEAR ALGEBRA

ay:=ag, / af, j=p+1,...,n; bY / aj
1 s
af; :=afyj-af,*ajy, i,j=p+1,...,n

byt i =bf -af,+bf , i=p+,...,n

by

for p=1,...,n-1, and b := , where for the begining

1 1 Gnn
ajyi=ayy, by:=b;, i,j=1,...,n.

The complexity of this computation is n(n2-1)/3*%[CP(+)+CP(*)] +
+ n(n+l)/2 * CP(/). Now the triangular system T,s = b is solved

Ly back substitution method:

S,:=b,

n
s;:=b' - z: ajy * x;, di=n-1,...,1,
1*Th

with the computational complexity n(n-1)/2 * (CP(+) + CP( * )].

It follows that
cP(pd) = % (8n° + 21n? - 11n) . (4)

A parallel version pg of the Gauss method is :
begin

for p:=1 step 1 until n-1 do

begin
aP
(p+1sjs<n+1) afj: =—-—‘:l :
pp

for i:=p+1 step 1 until n do
begin ((p+1<jsn+1) afj':=af-afxaf); bi':=bf-af,+b] end
end;
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n

an,nd
n
ann

for k:=1 step 1 until n - 1 do

n
an,nnt=

((k‘i‘n"l) ant:i,ml ¢ =an?i,n~1 ‘an-i,n-kq‘an‘:ku,ml)
end

where af,..=b}.

So, s;:=a,., , 1=1,...,n.

It follows that

CP(pg;n) =2n? + s5n - 11 (5)

and

respectively

Ew) ~ 2. (6)

III. Total elimination methed. The matrix [A|b] € X, is

transformed in the matrix ([ I, | b") .

First,
1 1 .
agji=a;;, &j,a=b;, i,j=1,....,n.
Now, one applies the succesive transformations
o, Ay
af':="2l, ja=p+1,...,n+1;
a’
af*: '-ag‘:a{},tafjl; i=1,...,n; diep; j=p+l,...,n+l

for all p=1,...,n.
So, the solution is s,:=af’},,, i=1,...,n.
The computational complexity of this method in the serial

version (p) is
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cP(pl) = %(m’ +30% - n). (7)

As a parallel version (p.f,) of the total elimination method

is the following :

begin
1
a
2 12
a3, z_—.;-. H
a

for pt=1 step 1 until n - 1 do
begin
for j:=p+1 step 1 until n do

p
a { *
(aj‘:’;ﬂ”—%}l‘l (1sisn iwsp) aft: aﬁ_aﬁ.agjl)

PP
FY 9y
a +1, p+ad . 1 +1
agfx,pnh—%;-L; (1<isn, isp) aff.,:=af...-af*al'l.,
ap*l.pb?
end
an
o no1 b -"L?" (1gi$n-1) a’pt=ain1-am*as
nn
end
We have
CP(pp) =2n* +2n + 3. (8)
8o,
splim) »n- 1
4
and

E(pp) = 1. (9)
IV. Iterative methods. One considers two iterative methods.
IV.1. Jacobi iteration. For a given x{® = (x,(®, .. . x,(0)T, the

sequence of the succesive approximation x{™1) jg given by
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(me1) 1 : (m) - ,
x4 =-a—-(b1—; a;x™ 9, i=1,...,n
i It

If CPI(p]) is the computational cémplexity of one iteration then

the serial complexity of the Jacowi wevaod is

CP(p}) =m,(e) CPI(u}),
where m; (e¢) is the iterations number for which x (oo is an

e~approximation of the solution. So, we have

CP(pJ) = (4n? - n) my(e) . (10}
A parallel version of the method ui is to compute, in
parallel, each x/™ , i=1,...,n.
Henca,
CP(pp 1n) = (4n-1) m, (e) . (11)

It follows that

o{u3i n)-n

and

E (up)=1

IV.2. Gauss - 8Siedel iteration. Starting with x{9), the

iterations are given by

i-1 n

xfm0 . L (b, - agx ™y - axf™),i=1,...,n.
ayy -1 Pr ¢8

The serial complexity of the Gauss-Siedel method is
CP(puS®) = (4n® - n) mg(e) , (13)

where mgg(e) is the iterations number.
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It is obviously that the parallelism of the Gauss-Siedel

method is more less than of the Jacobi iteration. Certainly we

solve for x;™"using already the "new" value x,™V, for x/™V it

is used the "new" values x'™! x™%and so on. Hence, x;™'tan be

(m+1)

computed only when the computation of x; is finished and the

(m+1) (m+1)

computation of x,™'hust wait for x, and x, and so on. It
follows that a parallel version pg‘ is to do the computation
begining with the first line ( x{”45 than the second one

( x,™) and so on. One obtains

CP(u3’)=n([log,n] +6) mys(e)

. 401 -1/n)
E(" ) [log,n] +6 °

conclunibnl. Taking into account the serial and parallei

and

complexity of the above methods for linear algebraic systems it
follows:

PROPOSITION 1. CP(pd ) <CP(pg) <CP(ng), Vm2.

The proof follows directly by (1), (4) and (7).

Remark 7. Of the Gauss - Siedel procedure may be viewed as
an acceleration of Jacobl method, so we generally have mgg(s)s
my(e) i.e.

CP(pS%) <cP(pl) .
Now, from (2) and (10), it follows :
PROPOSITION 2. If mgg(e) < tn/s] then
cP(p@)<cp(pd .
Remark 8. For the systems with a lagre number of egquation

(such that ((n/3) + 1} iterations are sufficient to get a good
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approximation the Gauss - Siedel iteration is better than of the
Gauss elimination method.

The following two propositions give some informations
regarding with the parallel methods.

PROPOSITION 3. CP(p}) <CP(uJ) <CP(p5) Vm>2.
The proof is based on the relations (2), (5) and (8).

Remark 9. For the parallel version pj and p; we have
CP( Wg)>CP( p;) just if in the serial case the relation is
CP( pf)<CP(uf). So, generally a good serial method does not
conduct to a good parallel version.

PROPOSITION 4. If mp(e)<{n/2) then CP( p;)<CP( pJ).

Remark 10. In the parallel case it can be done just [n/2]
iterations without passing the complexity of the best parallel
method pj

. Finally, from (3), (6), (9) and (12) it follows that the

best parallelism is possessed by the Jacobi iteration method
(E( u:)-l). Also, a good parallelism has the total elimination
method (E(u)»1-—-)and the Cramer's method  (E(hj)=1). But the
complexity of the Cramer method is, in both serial and parallel
versions, a polynomial function on degree with a unity greater
than the other ones. So, the Cramer's method is never recommended

from the computational complexity point of view.
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REZUNAT. - Asupra convergentei metodelor de ordinul trei Sn

spatii Préchet. In 1lucrare se demonstreazd existenta

gl

unicitatea existentei ecuagiei (1) precum gi convergenta metodei

iterative (2), renuntind la uniform m¥rginirea operatorului
A= [x*,x";P]7),

1. It is known that the rapidity of convergence for the

sequence of approximates (x,) of solution of the operatorial

equation

P(x) =8

(1)

given by an iterative method, can be improved if the first and

the second order divided differences, which enter
algorithm exprimation, are taken on special nodes.
In the case of opafatorial equation
P(x) = x~F(x) = 0
using the metod
Xpe1 ™= Xp~A,(I-|Xp,u,,v,;PY A, P(uy,) An)'l P(xp)
where
A, = [X,,uy;PY Y K = (u,v,/P)?
and

u, = F(x,;); v,=F(u,) = (F(x,))

in the

(2)

(3)

this property is proved in the paper [1}. The following theorem
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are proved:

THEOREM A. If for x,eX, there exist’ uy,B, M>1 and N so that
the following conditions:

1) )l P(xg) |( < Wgi

2) For any x',x'',x''' x'V

€ S(xq,R), R remaining to be
defined, we have
a. A = [x',x'";P])"! exists and Y1 A |( < B;
b. )| [x',x*';F] |( < M;
c. )| f[x',x**',x""";P) |( < K;
d. )| (x*,x*', xV;P] - [(x',x*",x*"*"";P) |( <
< N)| xV =~ xrre |

3) Gohg < 1 where hy:=B2MKp, < 1/2 and

Gg:

_ M(1+BKpo) [1+BKpy (1+M) ) (1+ N )
(1+hy)2(1-2h,) BK?

hold, then thé equation (2) has the solution.x'eS(xo,R), where

n .
B“o E (Goho) 3"_1

R=(1+M) p,+M?Q and Q=
¢ 1 "ho m=0

solution which 1s the limit of the sequence genereted by (3), the

rapidity of convergence being given by
) |x*-x,|C . (G,hy) ¥ 0.

THEOREM B. In the conditions of Theorem A, the solution of

equation (2) is unique.
In the following, we will change the condition 2a of Theorem

A, removing the uniform bounded of the operator A.
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2. Let us consider the equation
P(x) = x-F(x) = 0 .

where P:X-X is a continuous operator considered with its
generalised divided difference (2] nwp to the second order,
inclusively, X is a Fréchet space with a quasinorm induced by a
distance invariant to translation, i.e )| x |( = d(x,0), x,8 ¢
€ X [(3]).

To solve the equation (2) we consider the algoritm (3).

Concerning the convergence of the method (3) ., we prove

THEOREM. If for x, ¢ X exists @, M>1, X and N such
that the following conditions:

1° For any x',x'',x''' ,x*V c S, where S = {x |)|x-xu| ( <R},

R=(1+R p,+ND; D= 3‘—‘;3-2; (BE,) ™
0 Ml

we have:
a. A= [x',x'"";P)"! exists;
b. )| Afx*,x**;F) |( < N
c. )| Alx',x"',x'"*"";P} (< K
d. )| A ([x',x*,x¥V;P) - [x',x"',x*""";P)) |( <
< N)|x™V - x|
2° )| APGRO) 1( < Fos

39 T,H, <1 where W, :=M'Rp,<1/2 and

(-]

R(1+Xp,) (1+Ry, (1+8) N
m- 1e—
(1+h,)*(1-2h,) K?

hold, then the equation (2) has the unique x"CS(xo,R), which is
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the limit of the sequence genereted by (3), the rapidity of
.
convergence being given by

)| x*-x, | ( < (G By) 3™ -p.

Proof. We consider the equation

P(x)=0 (6)
where

P(x)= AP(x)= A(x-F(x)), A=[x',x";P]?

equation which is equivalent to (2).
Indeed, if x" is a solution of equation (2), i.e. P(x")=0,

du; to liniarity of A, it results
AP(x*) =P(x*)=0. (7)
Reciprocal, if x" is a solution of equation (6), i.e.
B(x*) =AP(x*) =0

from the existence of operator A, it results A"l-[x',x";P]
which, applied to the left of the equation (6), leads to P(x")=6.

For solving this equation, we have the iterative method

Xy =X -K (I-[%,,0,, v, ;PIK P(u,) ;{'n) 1P(x,) . (8)
Using the induction, one can prove that for X;=X,, U,=U,, V.=,

a8
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the sequence given by (8) is identical with the sequence (3).
For the operator P, the conditions of Theorem A and B are
true. Indeed
12 )] B (%) | ( = ) |AP(Xo) | ( < Wyi
2% For any x',x'',x''* ,x ¢ S(x,,R), we have
a) A= [x',x''; P17} = (A[x',x'"';P]"} =I, then
X exists and )| X |(=1= B ;
by )|(x*,xt; P (=AM ,x"F)| (< M
) )lx*,xtr,x't 'y P (= )|Alx',x'x P} (< K
aQ ) ftxtxt XV Py - et xttx G P( =
= ) JA(x',x' xTV5P) - [x0x0,x G PY) | (<
< RB)|xWV- x| ;

3% BH, <1, where K, i=F R X, < % and

Cn.n(l"PIFa) [1+BRE0(1+N)] (1+ b )

(1+hy) 2 (1-2hy) BK?

It results that the hypotesis of Theorem A are satisfied by
P, hence the equation (6) has a solution x*eS, which is the limit
of sequence gesnerated by the algoritm (3) or (8), the rapidity
of convergente being given by (4).

Because (6) is equivalente to (2), the statement results.
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Resumat. Software pentru clasificare. Articolul prezintd un
sistem de programe destinat clasificirii automate a unei colectili
de obiaecte caracteriszate prin valorile mai multor parametri.
Programele au fost elaborate de autor gi ge bazeazd pe o serie de
algoritmi din literaturd, precum gi pe unii originali.
Principalele componente ale sistemului eint: extractorul de
caracteristici, clasificatorul ierarhic diviziv, clasificatorul
nelerarhic, clasificatorul bazat pe arborescenta de acoperire
minimald gi componenta destinatd interpretirii ocalitative a
partitiilor obtinute. Pentru fiecare componentd se prezintd
structura gi functiile ei, algoritmii implementati, datele ds
intrare gi iegire.

0. Introduction. The aim of this paper is to describe a
program system designed for pattern preprocessing, classification
and interpretation of data sampled from a non-homogeneous
population. The programs, which belong to the author of the
paper, implement classical algorithms as well as some original
ones. The main components of the system are: the pattern
preprocolior, the divisive hierarchical classifier, the single-
level classifier, the minimum forest classifier and the component
which enables a qualitative interpretation of the obtained
partitions. The input of the eystem is the collection of objects
to be classified, characterized by the values of d variables

recorded within a usual text file.

1. The pattern preprossssor. This component performs the
transformation of data from the original pattern space to the

feature space. The output is also a text file in which s features

* “BABE$-BOLYAI" University, Faculty of Nathematics, 3400 Cluj~Napoca,
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(s € d) for each object are recorded.

This program has several processing options: normalization
of the original patterns, Mahalanobi's distance, principal
component analysis and combinations .. the above options. The
first processing type is a simple scaling of the original
variables by the overall mean and standard deviation such that
they become comparable. The second option implements the
Mahalanobis distance by an appropriate coordinate transformation.
The principal component analysis projects the original patterns
onto the eigenvectors of the covariance matrix of parameters
corresponding to the first s eigenvalues in their decreasing

order. A given threshold indicates what percentags of the

original information should be preserved after data compression.

2. The divisive hierarchical oclassifier. This component
implements the fuzzy divisive hierarchical algorithm [2], and its
corresponding hard version. These algorithms perform a
hierarchical descendant classification, iteratively splitting the
current fuzzy (hard) cluster into two fuzzy (hard) subclusters
until the clustering degree of this binary partition (3] becomes
less than a given threshold; in this case, the cluster is
considered homogeneous.

The input of this classifier is the file containing the
features of the objects to be classified. There are three output
files: one containing the hard partition (in the fuzzy case, it
is obtained by defuzzification), another containing the fuzzy

partition (in the fuzzy case) and the last one containing the
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the centres of the clusters), DIRECTION (computation of the
directions of prototypes), PART (computation of a new partition -

fuzzy or hard) and COMP (comparison of the last two partitions)
until the last twe partitions coincid2 (in the hard case) or the
maximum difference of corresponding membership degrees does not

exceed a given error level (in the fuzzy case).

4. The minimum spanning forest (M8F) classifier. From
numerical experiments we noticed that Fuzzy c-Means and other
related algorithms often misclassify samples situated at the
border of the clusters. One way to prevent this situation, if the
distribution of the cluster samples is close to a normal one, is
to use hyperellipsoid prototypes. If the distribution is
arbitrary, we propose Prim's MSF clustering algorithm [9]) which
is based on a graph-theoretical approach.

The MSF classifier first detects the subclusters containing
samples which were surely correctly classified by a Fuzzy o-ieans
type algorithm and states them as “centres"; this operation,
implemented in module SSZLECT (fig. 3), is done by selecting thos.
samples which have the membership degree in the corresponding
fuzzy cluster higher than a given threshold. The remaining
samples represent the "objects" (according to the terminology
used in [(9]) and will be reclassified. Module DISSIM computes
object-to"oentredis;imilaritiesaspoint-to-sotdissimilarities,
i.e. the least dissimilarities between the objects and the
samples in the centres. Module MSF, implementing Prim's MSF

clustering algorithm, associates the objects one by one with the
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be interpreted as a mixture of the qualitative values from the

set
(£ le (1) = 7
We also define the matching degree as

S

T

which is a sub~-unitary value and characterizes the proportion in
which the qualitative feature can explain the partition of X.
The component of our program system which enables the
qualitative interpretation of obtained partitions enters
gquantitative and qualitative features of the classified samples
fulfilling certain criteria concerning their features. Then a
second module classifies the selected samples into groups as it
was done by previous clustering procedures or according to the
values of grouping features. Groups are identified as codes (for
qualitative features) or intervals (for quantitative features).
Quantitative features transformations can be performed. If two
partitions are thus obtained, they can be compared as it was
shown above. Selections, groups and tranaformed features can be
stored in output files. Scatter plots of one quantitative feature
against another can also be obtained and are useful in examining
the performances of the clustering algorithms we used, the
discrimination power of the two features and the regions

delimited in the plane by the clusters.

6. Facilities of the software. This software gathers in a
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unitary conception various aspects of classification:
hierarchical and single-level classification, fuzzy and hard
partitioning, pattern preprocessing and postprocessing, qraph-
theoretical methods and methods kased = the minimization of =
certain functional, supervised and unsupervised classification.
Here are now some of the implementation facilities of this
system:

- portability, as being written in Pascal language;

- simple text file structure of input and output data, which
enables its use in a sequence of processing stages;

- independence of the system components, which pernits
interchanging their order during processing, omitting or
reiterating them in order to obtain improved partitions;

- possibility of modifying the memory 1limits for data
according to the capacity of the computer (this is done simply
by modifying some constants and recompiling the programs);

- listing file option for obtaining a list with intermediate
or final results;

- supplementary possibilities to 1limit the execution of
iterative procedures by setting time, number of steps and maximunm
level in the classification hierarchy limits;

-~ other options which enable a flexible execution of
programs.

This software was applied in geology, to the determination
of certain types of mineralizations and to the parallelization
of tuff horizons [5], in geography, to the regionalization of

hydroenergetical potentials (6] and water resources (7] and in
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biology, to the determination of plants associations specific to

certain environment conditions [4].

7.
8.

9.
10.
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Resumat. - Sistem de gestiune a datelor topografice. Articolul
prezintd un sistem original de gestiune a datelor topografice
implementat sub sistemele de operare RSX gi PC DOS. Informagia
preluatd de pe hirti o constituie coordonatele punctelor de
observatie (puncte iIn care s-au efectuat anumite determiniri
calitative sau cantitative), precum gi entitdtile grafice curbe,
regiuni, semne conventionale, texte). Culegerea datelor se
realizeazd prin digitizare, sub controlul unui editor grafic.
Exploatarea bazei de date presupune extragerea §li reprezentarea
datelor situate in fereastra de lucru, definirea de noi entititi
grafice, calcule simple (arii, medii ale unor func{ii de
parametri cantitativi).

0. Introduotion. The aim of this paper is to present an
original topographical data management system for the acguisition
and processing of data taken from maps. We may also consider,
instead of maps, any kind of drawing consisting of curves,
regions, conventional signs and texts. This system was

implemented under the operating systems RS8X and PC DOS.

1.Map entities. An item (data elament) on a map will be
called topographical entity. Two kinds of topographical entities
are considered: observation points and graphical entitles.
Observation points are those points on a map where certain
qualitative or quantitative parameters were determined. For
instance, on a geological map, mineral resources and
petrographical types are qualitative parameters while percentages
of certain chemical elements are quantitative parameters.

Graphical entities are curves (opened or closed), regions (areas

- -
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delimited by a closed curve and filled with a certain colour),
conventional signs (circles, triangles, cross-marks, etc.) and
texts. Graphical entities are characterized by three features:
their type, the plotting mode (for «i.unre the typs nd the
colour of line for curves, the filling colour for regions, the
character set for texts) and the user code. This last feature is
an integer associated by the user with each graphical entity in
order to handle it easier. The position on the map of a graphical
entity is defined by a variable number of pdints in a given order
in the case of curves and regions and by a fixed number of points
for the other two entities; thus, one point is needed to indicate
the position of a standard conventional sign or text, while two
points are needed for variable radius circles or inclined texts.

Observation pointe are numbered; their gqualitative and
quantitative parameters as well as the coordinates of their
positions on the map are stored in separate files. A group of
graphical entities is formed by a single entity with variable
number of points or by several entities with fixed number of
points and the same features. Three files are used to store
graphical entities: an entity file, a coordinate file and a text
file. The firet one contains a record for each group of graphical
entities; this record consists of three features of the graphical
entities from the group (entity type ET, plotting mode PM, user's
code UC) and two pointers FP, LP to the first and the last point
in the coordinate file which define the position of entities. The
coordinate file contains sequences of (x, y, 2Z) - coordinates

corresponding to the groups or graphical entities from the entity
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time. In this latter case, we have to provide a file with the
number of group to which each observation point belongs.

The acquisition of graphical entities is performed by a
graphical editor which plots the entitizs ¢n the display as theyv
are stored into computer. A graphical cursor may be moved in the
current window represented on the display (corresponding to a
rectangular area from the map) by means of the arrow keys of the
keyboard or a mouse and its coordinates are indicated. The
position of the digitizer cursor on the display can also be
indicated.

Graphical entities which are edited at a time are stored in
the computer memory hierarchically, on four levels. This
structure enables a quick performing of editing operations.
Graphical entities are divided into fragments which are portions
of curves or groups of conventional signs or texts placed or not
in the current window. Fragment points are divided into sequences
which are stored in certain memory locations called pages. We are
now able to describe the tree structure of edited data (fig. 2).
The first level is a two-way list of data groups referring to
groups of graphical entities. Curves which do not intersect the
current window at all do not appear in this list. A data group
consists of the three features of the corresponding graphical
entities (entity type ET, plotting mode, user's code UC) and two
pointers FF, LF to their first and last fragments. On the second
level are placed the two-way lists of data groups referring to
fragments. Chaining of curve fragments observes the order in

which they are placed on the curve. A data group contains the
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fragment type FT (inside or outside the current window), a
pointer GE to the group of graphical entities to which it belongs
and two pointers FP, LP to the first and last point of the
fragment. Only points of fragments inside the current window are
stored in the internal memory; thus, for fragments outside the
window, pointers FP and LP point directly to the coordinate file.
on the third level are placed the two-way lists of pages, each
one containing a pointer PF to the fragment to which it belongs
and the sequence of data groups referring to points. Such a data
group consists of the (x, y, z) - coordinates and two pointers
P1, P2, thch chain in a two-way list the points placed in the
same square on the map. The number of squares into which the
current window is divided is given by the user. This chaining
enables a quick retrieval of points given a certain neighbourhood
of them. For instance, when digitizing a point which has already
been digitized, we can search for this point in a neighbourhood
of the curently digitized point and replace the coordinates of
the latter by those of the former. Connection of curves can thus
be carried out without errors.

The following editing operations can be performed:

- acquisition of a graphical entity (coordinates from the
digitizer, features and texts from the keyboard);

- prolongation of an open curve (the corresponding extremity
of the curves is in&icated using the graphical cursor);

~ connection of two open curves or of the extremities of an
open curve to form a closed one (the extremities of the

curves/curve are indicated using the graphical cursor and then
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the new curve fragment is digitized);

- modification of a curve fragment (a certain curve fragment
is deleted and then its extremities are connected by a new
fragment) ;

- deletion of a curve fragment, of a curve entirely, of a
conventional sign or text (the corresponding graphical entities
are indicated using the graphical cursor);

- change of the features of a graphical entity;

- hardcopy of the current window;

- asking for help on the editing menu;

Deletion and feature change operations can be performed on
several graphical entities at a time without viewing their
effects. These entities are also selected by indicating their
features fwild cards are permitted for some of the features).

3. Data base enquiry. Observation points retrieval is
carried out. in terms of the following criteria: point number,
qualitgtive and quantitative parameters. Qualitative parameters
are specified as codea while quantitative ones as intervais.
Selected observation points can be classified according to the
value of a grouping parameter; hence cluster identifier is a
supplementary retrieval criterion. Retrieval criteria for
graphical entities are their three features. Accessing of a map
entity is followed by plotting it on the display. A curve can be
plotted by joining its points with straight-line segments or by
smoothing it. Smoothing can be carried out using a cubic spline

interpolation or an original method which iteratively halves the
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angle between two neighbour straight-line segments until these
segments become sufficiently small. Thus, the user can construct
a map of an area he desires and containing only the information
he indicates. Moreover, he can add qirapt.ical entities, perform
some elementary computations and blow up a rectangular area.

Once the map is thus constructed, certain entities on it can
be identified using the graphical cursor. A temporary selection
of observation points is considered. We now explain how entities
are identified and what kind of operations can we perform on
identified entities.

a) Operations involving a single observation point:

- viewing the observation point with a given number;

- finding the number of an observation point;

- inserting/removing an observation point in/from the
temporary selection;

- displaying the guantitative parameters of an observation
point or elementary functions of them.

b) Operations on groups of observation points. A group of
observation points is formed by the points of a cluster, by the
temporary selected points or by the points placed in a
rectangular or arbitrary region indicated by the user. The
following operations can be performed on such groups:

- displaying the numbers of obseryation points from the
group;

- 1inserting/removing the points of the group from the
temporary selection;

- means computation of the group points quantitative
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parameters or functions of them.

c) Operations on graphical entities.

- adding/deleting a graphical entity on/from the display (we
indicate its position using the graphical cursor};

- storing/removing a graphical entity in/from the data base;

- modification of graphical entity features;

- displaying the area of a region and the number of
cbservation points placed in it (these parameters can be used
together with the quantitative parameters of the observation
points to compute the value of certain elementary functions
depending on them); .

- displaying the coordinates of the graphical cursor.

We conclude by mentioning that the system developed in this
paper is a useful tool for the management of a data base
containing .topographical data which can be then used by other
software to construct 3D plottings. Referring to the parameters
of observation points, the system is also useful for a primary
data analysis and for the interpretation of statistical

proceésing or clustering results.
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Resumat. Un model teoretic privind programarea paralel gi
orientati-ebiect. Lucrarea prezint¥ unele aspecte principale ale
unui model algebric pentru specificarea unor concepte de bazi din
limbajele de programare. Legitura cu alte lucriri din domeniul
specificlrii algebrice este prezentat¥ in partea introductivX.
Sectiunea 2 prezintd pe scurt conceptul algebric de ierarhie HAS.
Conceptele de obiect, metoda gi clasa, specifice programirii
orientate-obiect sint expuse in sect{iunea 3. Sectiunea 4 este
destinatd conceptelor de algoritm secvengial, algoritm paralel,
proces secvential gi proces paralel.

1. Introduotion. Generally, the specification of a
programming language has two purposes. The first purpose is the
specification of the data types proper to the language to ke
specified, which include the primitive (predefined) data types
and the composed data types. The second purpose involves the
specification of the operations (statements) which act on the
data types. The algabraic approach of a language specification
constitutes the topics of a great number of papers. We shall
mention further down some such works directly related to the
present paper.

In [3) and (4] T. Rus presents a hierarchical and algebraic
specification model. A context-free algebra is associated to a
context-free grammar. The specification aiming at such a model
involves a cascade ét heterogeneous algebras. The last algebra
from the cascade (hierarchy) corresponds to the complete

specification of the language. In this model, the hierarchical

* University of Cuj-Napoca, Department of Economicse, 3400 Cluj-Napoca.
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order (hierarchy depth) depends on the context-free grammar which
specifies the syntax of the language. My paper, which uses an
algebraic model (2], starts from the algebraic definition of
certain primitive data types (defined in the form of homogeneous
algebras). These will be organized into a specification base
(signature) for the whole hierarchy of heterogeneous algebras
which will constitute the specification levels of the programming
language to be specified. This time the hierarchical order (the
number of levels of the hierarchy) depends on the complexity of
the elements of the language to be specified. The proposed model
defines in a personal manner the concepts of object, method and
class, proper to the object-oriented programming.

An algebraic approach of a language specification for
abstract data types specification can be found in [(61. Unlike
this paper, in my paper the concepts of object and method are
defined on complexity levels (corresponding to the hierarchical
levels), allowing in this way a relatively easy implementation
of the model. The final result of a language specification will
look like a multi-level tree, unlike {1] where the specification
appears as a tree with a single level. At each level the data
types and their corresponding operations are defined.

Lastly, on the basis of the algebraic definition of the
concepts of parallel algorithm and parallel process [S) implanted
on the specification levels of the proposed model, the algebraiu

specification becomes concurrent algebraic specification.
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2. HAS hierarchy concept. The concept of HAS hierarchy was
presented in detail by T. Rus in (3] and (4]). This concept is
based on the following two principles:

pl. Every homogeneous algebraic structure is a HAS of zerc

hierarchical level in a HAS hierarchy;

p2. Every l1-level HAS can be chosen as a base for an (i+1)-

level HAS.

Let HASI be the i-level HAS given in the form of the pair:

HASt = < a1 |, i >,
where A! is the support, while n! is the collection of operations
defined on the support Ai. The support of the HASL is used as
index set for the specification of the HASI*l, consider the n-ary
operation ueni, and a = o (a,,a,,...,48,), where a,a,,a,;,...,48, ¢
€ Al. The set of operation schemes £, is defined as follows:
T, = {0 =<n,0,8,8;...8,8> [/ a=o(a;,a85,...,8,> }.

Since the operations specified by means of the operation schemes
o are heterogeneous operations, we consider the symbol of the
operation ¢ to be distributed upon its operands. In other words,
the operation scheme ¢ becomes 0=<n,$,8,...8,,a8,8,...a,a>. For a
compiete specification of the HAS!*! by the HAS! , consider a
function F which associates to each operation scheme g€xL,, ueni,
a heterogeneous operation specific to HASI*l, 1f o=<n,8q..-8,,
a;...a,a>, then F, is a specific operation in HAS;,;, that is ,

the function:
F, t Alxatx...xal --al .

In these conditions HAS!*! is gpecified on the basis of HAasi
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and has the form:

HASI*l = ¢Ails (A:u) .GA'il L= (20)0601' .

Oon the basis of the concept of HA® hisrarchy, in Secticn 2

we shall present schematically a model for the specification cof

a programming language. The terms of object, method, and class,

specific to the object-oriented languages, are found again in our

model. Section 4 presents briefly the algebraic formalization of

the concepts of parallel algorithm and parallel process (5]

adapted to our model.

3. Object~oriented hierarchical specification. An abstract

object is defined as heterogeneus algebra as follows:

Object name :
Supports :
Operation schemes H

Variables

23

Axioms

end NAME.

NAME;
NAME, ,NAME,, . . .,NAME,;
01102, +4+,0p;

LIST, : NAMEi,
LIST, : NAMEI,
LIST, : NAMEi,
W11"¥12-
W21%W22:

Wp1=Wp2i

We choose as zero level of the HAS hierarchy (HASO) the

following partial homogeneous algebra:
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Has® = <a%,a%, H%:2° - 1>,

where:

A = support of the algebra, consisting of a set of
predefined abstract obiects (A}’) e specified
as homogeneous algebras;

n® = the set of operations defined on the objects

(a3) « Jeas

H° = function which associates a measure to every
aea?;

I = the set of the measures printed out by the
function H°.

The level one of the HAS hierarchy (HAS!) is defined on the
basis of HAS? and has the form:

HAS' = < A'=(a}) , E=X) H* : A* -~ I,F* >,

)161' weQ®’

where:

Ai = g family of subsets with the property that the
same measure H°(a), a€A} , ieI, is associated to
all elements of such a subset;

£ = the set of operation schemes specified by the
operations corresponding to the zero level;

H! = the same definition as in the case of HY;

F! = symbol of a function (Flz (0 gege = oP(aY)),
where OP(al) is the set of all operations defined
on Al,

For wen®, aier, i=1,2,...,n, a=w(a,,a,,...,a,), an operation

scheme

65



ILIE PARPUCEA

a=<n,sosl...sn,HO(gl)Ho(az)...Ho(an)Ho(a)>
is associated.
If o¢X is an operation scheme, thern F! ,, defined as

follows:

1, 1 1 1 -al
Fo : Aﬂ“(u,)x‘q}l”a,)x‘ ° 'XAH"(A.) AH‘(:)

is a heterogeneous operation in HASY.

The function H® associates to every aeAl a characteristic
called measure. Another characteristic associated to an aeal is
the interpretation mode. For a given measure H%(a) associated to
an element aeAl there can exist several interpretation modes
(integer, real, boolean, character, etc.). Hence the
interpretation mode for an .acAl is the significance (integer,
real, boolean, character, etc.) assigned to the representation
(encoding) of a. We particularize the function H® as follows: for
every acAl, Ho(a)-l(a), where 1(a) is the representation length,
representing a in the computer storage. The conection between the
interpretation mode and the measure (representation length) of
the unstructured type data can be performed by a bi-dimensional
matrix. One conniders*aijsl if for the representation length 1
there exists the interpretation mode.j, and a;;=0 in the opposite
case. The row index of the matrix (i=1,2,...,n) signifies the
possible representation length of the data from Al, while the
column index (j=1,2,...,m) is the index associated to the
elements of the set of the interpretation modes. Having'thase
eleme..ts, we define the level two of the HAS hierarchy (HASz) on

the basis of the preceding level:
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HAS?=<A%=(A])) jey senr 2= (L) weopiar) « H2 1 AL XM~NXM, F?>

where:
Af, = the support of the data type i interpreted in
the mode j;
T = the set of the operation schemes generated by

“the operation weop(al);

N = a set containing all possible representation
length;

M = a saet containing all possible interpretation
modes;

H? = function which establishes by its values the
index set for the family of sets A?;
V (a,))ealxM, B3 (a,j)=(H'(a) , J)ayl ,);
F?2 = the symbol of a function which associates to an
operatlon séheme
U’<n,8031...Bn,Hz(al,jl)H2(32,j2)---Hz(anljn)Hz(blju+1)>
a heterogeneous operation on the data set A2,
The zero level HAS? points out tha primitive (predefined) data
types together with the operations defined on them. The level one
HAS' points out the data divieion in subsets, the criterion of
differentiation being the representation length. The level two
HAS® differentiates the data according to a characteristic
supplementary to the preceding level, that is, the interpretation
mode. This allows the specification of data types (short integer,

long integer, real on different length, character, etc.). The
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composed data types are specified at this level, too.

Let us denote by OP(HASi)i,ohhz the set of the heterogeneous
operations defined on the three hierarchical levels. An
eguivalence relation, denoted HAS?, is defined on this set. Twu
operations ;, w, 5(3351)1-0,1,2 are, by definition, called
equivalent if they have the same definition domain. Consider u,:

AyxAyX... A, = Ap,q,0, 3 ByXBoX...XB, -~ B,,,, @ HAS®e,, where

(A, if w,en®
Ay + 1f ©,=F5,0€L,0=(n,5,5,...5,
Ay =4 H°(a,)...H%(a,) H®(a)>
A;’(lpj‘)' if W= :v 062,0‘( n,s8,8,...s,,
L Hz(allj]_) "'Hz(anljn) Hz(aljn¢1)>

i=1,2,...n+1, and B; is obtained in a similar manner. Follows
that A;=B,,A;=B,,...,A,=B, (equality of sets). Let E =

- OP(HASi)i_O'l,z/HAS‘ be the set of the egquivalence classes. An
equivalence class ec¢F consists of all operations with the same
definition domain. Let C;xCyx...xC, be the common definition
domain for the operations belonging to the equivalence class e.
We call object an n-uple (¢;,Cz,...,C,) €C1XCyX...XC,, while the
set of all objects of this form will be called the class of
objects associated to the equivalence class e. Let us denote by
K the set of all classes of objects. We add to each class of
objects kéKX the object nil, which constitutes the nil object of
the class k. An object of the class k is either the object nil,
or an instance of the claas k. The specification of a class k
consists firstly of the specification of the form of the objects

belonging to the class k. The form of a class k specifies the n-



TEORETICAL SUPPORT FOR OBJECT-ORIENTED AND PARALLEL PROGRAMMTNG

uples which can appear as values of the instances of the objects
belonging to the class k. On the other hand, the specification
of the class k consists of the specification of a colection of
methods belonging to the class k, too. An operation wee acts on
the class of objects k according to a law well defined during the
stage of hierarchical level construction. Such an operation on
a class of objects k will be ca;ied method. The set of methods
is classified on hierarchical levels, but there also exists
hybrid methods whose definition domains originate in several
hierarchical levels.

The number of levels in the HAS hierarchy is arbitrary. It
depends on the needs of defining certain objects of high
conmplexity degree. We stopped at the level two of the hierarchy,
considering it to be sufficient for a concise exposition of the

model.

4, Conourrent hierarchioal specification. Let <3,0pP> a
homogeneous algebra, where A is the support and OP is the set of
the operations defined on A. If the set OP also contains
relations, then <A,0P> will be called algebraic system. Ths
concept of heterogeneous algebraic system is obtained
analogously.

L.et us consider the heterogeneous algebra HA=<KL, ME>, where
KL is the set of the classes of objects, while ME is the set of
the methods specified in Section 3. We define the concept of
algorithm over the given heterogeneous algebra HA as being the

heterogeneous algebraic system AL=<K1l,Me,R>, where: -
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K1 = a finite set of classes belonging to the support HA;
Me = a finite set of methods belonging to the set Me;
R = a relation indicating the order of execution of the

methods from Me on the objecrts of Ki1.

If the ordering relation R is linear (or total) on Me, then
the algorithm is called sequential algorithm.

If the ordering relation R is partial on Me, then the
algorithm is called parallel (or concurrent) algorithm.

Since the set Me of the methods specifying an algorithm is
finite, this ;ne can always be decomposed into the subsets Me,,
Me,,...,Me,, such that every Me;, i=1,2,...,k, is linearly
ordered by the execution of the methods. Let us denote by R; the
linear relation defined by the order of execution of the methods
in Me;. If for every i,j,1+j,i,j=1,2,...,k, thé subset K1,cKl on
which the methods from Me; are acting and the subset K1,cK1 on
which the methods from Me; are acting are disjoint each other,
then the algorithm <K1,Me,R> gives rise to a family of sequential
algorithms <K1,,Me;, R;>, i=1,2,...,k. These sequential algorithms
can be parallelly executed and keep the consistence of the
computations specified by the original algorithm.

In this context a processor is identified with an abstract
agent able to execute any method featuring the HA specification.
The concept of process over the HA specification is defined
through the couple Process (HA)=<Processor,b AL>.

A process P=<Processor,AL> will be called sequential if the
defined algorithm AL is sequential.

A process P=<Processcr,AL> will be called parallel (or
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concurrent) if the defined algorithm AL is a parallel algorithm.

S. Cconclusions. The basic theoretical concepts (belonging

to the programming languages) specified by means of the proposed

model constitutes a theoretical nucleus for the simultaneous

approach of parallel programming and object-oriented programming.

The nucleus, semantically and syntactically defined, could

constitute a reference basis for any other semantic construction

reductible to one of the semantic forms from the nucleus by

established transformation rules.

5.
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REZUMAT. -~ Integrarea formall a unor clase de functii. Lucrarea
prezintd¥ o metodd de determinare analitic¥ a primitivei unei
functil ragionale. Legat de aceasta, sint expugi gi algoritmi de
manipulare simbolic¥% a polinoamelor precum gi de factorizare a
polinoamelor peste Z(X]. Este descris¥ de asemenea determinarea
substitutiilor prin care problema integririi func{iilor din
anumite clase se poate reduce la cazul ragional.

1. Introduction. The symbolic computation represents the
entrance in a new computer usage era, in which the computer
becomes smarter and powerful enough to do complex scientific
computation, for example the formal integration. We can notice
here the software packages for scientific computation MACSYM2,
REDUCE, MATHCAD and MATHEMATICA.

In this paper we present the formal integration of ratiocnal
functions with integer coefficients {R(x)) and related to this,
the formal integration of functions from the classes R(exp) and
R(sin, cos, tan) where the arguments of the exp, sin, cos and tan
functions have the form kx with keZ.

With these algorithms I realized a Pascal program for IBM
PC compatible computers running MS-DOS, which can be easily

*

extended for larger classes of functions.

2. Substitutions. 8Since the problem of the formal
integration of rational functions is simpler than the same

problem for another function types, we try to reduce the given

* University of Cluj-Napoca, Department of Mathematics and Computer
Science, 3400 Cluj-Napoca, Romania
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function to a rational one by using suitable substitutions. For
this reason the determination and the effectuation of ¢the
suitable substitution represents one of the most important part
of a formal integration program.

In our case, we can apply the classical substitutions.

If the function belongs to the R(exp) class, the suitable
substitution is exp(x)—t and all the terms exp™(nx) become t™°,

' If the function belongs to the R(sin, cos, tan) class we can
transform the function to a equivalent function f from the R(sin,
cos) class. We have three cases:

f(-s8in, -cos) = f(sin, cos)

f(~8in, cos) = -f(sin, cos)

f(sin, -cos) = -f(sin, cos)

The corresponding substitutions are tan(x)-t, cos(t)~t and
sin(x)~t. If our function doesn't verify any of these conditions,
the suitable substitution is tan(x/2)-t.

Through these substitutions we transform our function in a

R(x) class function.

3. The formal integration of a R(x) class function. Suppose
we have to integrate the function f(x)=p(x)/q(x) where p,qeZ[x)
are primitive polynomials, deg p(x)<deg g(x) and .gcd(p(x),
(g(x))=1.

Obviously, every polynomial geéZ(x] has a unique squarefree
decomposition:

g (x)=q; (%) (@2 (X)) 2. (@e(x)) ¥

where q,€Z[x) are squarefree polynomials (some of them can be
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I, (x) "Z Iy(x)

q;(x) £ gqy(x) -
Iiy(x) . s ;
Now we have to compute f (x)d inigk,  1<Fisng.
dy;

If zuj(x)-avguj(x) (a€Q) then the result is the logarithmic term
a ln(qij(x)). However, if deg rij(x)=deg qij(x)-l we can extract
a logarithmic term ln(qij(x)) in order to reduce the degree of
the numerator at the highest deg sij(x)-z.

If deg g,,(x)=2 then we have an arctangent or a logarithmic
term depending on the sign 6f the discriminant.

If deg qij(x)c{3,4} the equation qij(x) can be solved
through radicals and therefore we can factorize qij(x) in a
product-of two polynomials of degree 1 or 2, over a radical
extension of Q(x].

If deg ¢;;(x)>4 we shall search for a substitution in order
to reduce the denominator's degree. Let's suppose we have to

determine:
fu(x)dx
v(x)
with veZ(x] a irreducible polynomial over Z(x}, deg v(x)>4 and

that we can effectuatelthe substitution g(x)—+t. In this situation

there exist the polynomials f,heQ{x] so that:

u(x) _ g/(x) £(g(x))
v{(x) h(g(x))

If deg g(x) = a then follows:
deg u(x) = a-l1l+a deg f(x)

deg v(x) = a deg h(x)
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u(x) = g'(x) £(g(x))
v'(x) = g'(x) h'(g(x))
This relations shows that we can search g'(x) (the
derivative of the possible substitution ¢g(x)) among the divisors
of gcd(u(x), v'(x)) with the property that l+deg g'(x) = deg g(x)

divides gcd(l+deg u(x), deg v(x)).

4. The squarefree decomposition Yun's algorithm. It is
fairly easy to show that if gqeZ[x) and g;(x) is a polynomial such
that it's roots are the i order roots of g, then qieZ[x],. all the
roots of g,(x) have the order 1 and (qi(x))i divides gq(x).

Let's suppose that all the roots of g(x) have the order less
or egqual to keN. In this case:

q(X) =gy (x) (g2(x))%. .. (Ge(x)) k.
Furthermore, since for i*j q;(x) and g;(x) haven't common
roots
ged(q;(x), g4{x)) = 1.
We can now see that: .
@) () . oo (@ (X)) e vk () ... @R (X) (g (x)) &2
“c(x) =gcd(g(x), @’ () =g, (x) (g (X)) 2. .. (g (x))*?
r(x) =%§—E;—=q1(x) @ (xX) .. @ (x)

s(x)=gcd(c(x), r(x))=q;(x)...q,(x)

I (x)
s(x):

c(x) and repeating the above operations untjil g(x) become

In this moment @, (x)-= and ve see that making g(x)<-

constant, we obtain the polynomials g;(x),...,gx(x). We also
remark that r,c,zeZ([x]).

The above relations represent the mathematical basis of the
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Yun's algorithm. The complete description can be found in [2].

-

5. 8imple fraction decomposition algorithm. Assune
p,u,teZ({x) and gcd(u(x),t(x)) = 1. This algorithm will compute

the polynomial reQ(X) so that:

p(x) _r{x) s(x)
u(x) t(x) u(x) t(x)

s€Q[x] can be computed analogously.

and deqg r(x) < deg u(x), where

From the above relation we obtain that:
p(x) = r(x)t(x) + u(x)s(x)
and
r(x) = r(x) mod u(x).
This implies that:
p(x) mod u(x) = r(x)t(x) mod u(x)
= (r(x) mod u(x)) (t(x) mod u(x)) mod u(x)
= r(x) (t(x) mod u(x)) mod u(x).
since gcd(u(x), t(x)) = 1, there exist the polynomials
v,weQ{x) such that:
u(x)vix) + wix)t(x) = 1.
(The polynomials v and w can be computed using the Extended
GCD Algorithm).
By dividing this relation by u(x) we can see that:
w(x) = t(x)"! mod u(x)
and this tells us that

r(x) = (p(x) mod u(x)) w(x) mod u(x).

6. The Hermite~Ostrogradski algorithm. This algorithm

computes the polynomials a,b € Q[x) so that:
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plx) 4. __ax)  bix) ;4
(g(x))” (g(x))? q(x)

where p,q € Z(x) and g is squarefree.

It is easy to show that gcd(g(x),q'(x)) = 1 since q is
squarefree. Therefore we can use the Extended GCD algorithm in
order to determine the polynomials v,w € Q[x] so that:

vix)gq'(x) + w(x)q(x) = 1.

If we multiply this relation with -p(x)/(n-1) and:

s(x) = - (’2_"1("‘) . (X)) = -p(x)w(x)

we obtain that s(x)g'(x) + el glx) _ _pix) and
n-1 n-1

-(n-1)s(x)q'(x) = p(x) + t(x)q(x).

Consequently,

[ 8(x) -]’_ s/ (x) _ (n-1) s(x) q'(x)
(@(x))a? (g(x))t (g(x))”

- _ S0, px)+tx)gix) | _px) , 8(x)+t(x)
(g(x))a? (g(x))" (g(x))" (glx))o?

This means that if r(x) = s'(x) + t(x) then

P(X) gy - 8(x) _f r(x)
{g(x))” (g(x))n? (g{x))n?

It is now clear that using this algorithm for n-1 times, we

will obtain

f p(x) . 85X . e Sp_y (X) . [bix)
(g(x))2 ~ (gx))2r 77 (g(x)) q(x)

and thus a(x) = 8,(x) + 8,(X)g(x) + ... + 8,_1(x) (g(x))*"2.

7. The Berlekamp-Hensel algorithm. Let f(x) = anx"+. ..+ a)x+

79



DRAGOS POP

+ a, be a squarefree and primitive polynomial with integer
coefficients.

Also let

S =al+...+a?

M(r) = 2%s (1)

q 2 M(f), gez

The algorithm presented here computes reN and the
polynomials u,, ..., u, € 3[x) irreducible over fZ(x), such that

f(x) = uy(X)...up(x).

It can be prove that if beZ[x]}, b(x) = by+b;x+...+byx? and
b divides f then |b;| < M(f) i=0,s5. (see (4))

This means that if b;>0 then
b, = b, modqe(o,-zg) ;
and if b; < 0 then

b, mod ¢ = ¢q-b, e(‘—g,q) (2)

These observations 1lead us to the idea that the
factorization of f over Z,(x) could be fairly closed to the
factorization of f over Z(x)], since if

£{x) = p(x)t(x) with p, te2(x)
then

f(x) = p(x)t(x) mod gq
and according to (2) we can determine the coefficients of p(x)
mod ¢ which correspond to negative coefficients of p(x).

The Berlekamp-Hensel algorithm is based on these conclusions

and it has the following steps:
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Determnine a prime number p, the least possible, for which
deg f(x) = n (g doesn't divide the leading coefficient of
f) and f remain sguarefree in Zp(x].
Use the Berlekamp's algorithm (see [3]) for the
factorization of f(x) over zp[x]

I'(x) = u,(x)...u (x) mod p
Compute M(f) given by (1).
Pass from the factorization of f over 3,(x) to the
factorization of f over Z.{x],...,Z,(x] using the formula
given by the Hensel's lema (see [3)), until qspk 2 2M(f).
This step computes the polynomials Ujge ooy Ugp € zq[x]
such that

£(x) = u;,(x)...us(x) mod g

U;(x) = u,(x) mod p, 1i=1,s.
Compute the product of each possible combhination of

1,2,...,8 uy,(x) polynomials in Zq(x].

Normalise the coeficients of the product according Lo (2}

by subtracting g from the coefficients greater than %?.

If this normalised product divides f then it represents a
factor of f and the u,,(x) polynomials which compose the
product will be excluded from further combinations since
is squarefree.

Note that this is a polynomial time algorithm. There also

exists the Kronecker's algorithm which is simpler and more

intuitive but it requires exponential time and it become very

inefficient for polynomials of degree greater than 5.
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Resumat. In lucrare se prezintX un sistem formal de demonstrare
prin respingere a teoremelor. Conditia necesar¥ gi suficientd
impusd acestui sistem ee bazeaz¥ pe metoda 1lui J.Hsiang de
demonstrare a teoremelor cu ajutorul sistemelor de rescriere a
termenilor.

1. Introduction. Let T be a set of linguistic, algebraic or
symbolic objects (as, for instance, first-order terms, programs)
and let ~ be an egquivalence relation on T.

DEFINITION ([2]. A computable function S:T - T is called a
canonical simplifier for the equivalence relation ~ on T iff for
all s, t e T:

S(t) ~ t

sS(t) s t
(for some ordering < on T)
t ~8 = S(t) = S(8)

For computer algebra, the problem of constructing canonical
simplifiers is basic, because of the following theorem:

THEOREM (2)}. Let T be a set of linguistic objects and ~ an
equivalence relation on T. Then ~ 1s decidable iff there exists
a canonical simplifier § for ~ .

Let T = T(F,V) be the algebra free generated by the set of
variables V with thé set of functions F; that is T is the minimal
set of words on the alphabet F u V u {(,)} such that:

1.vgT
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2, If f € F, a(f) is its arity, and if t1'°°'rta(t) € T, then
f(ty,eoustyyy) €T .
Let £E ¢ T(F,V) x T(F,V) Be a set of equations. By the
Birkhoff theorem (1935) s and t are _:rantically egual in th-
equational theory E(E = 8 = t) iff s and t are provably equal in
the theory E(E + s = t).
Let s ~ t be the egquivalence relation defined by E + s = £,

Then ~ ia decidable iff there exists a canonical simplifier & for

-~
.

2. Associated term rewriting system and the completion. Let
E be a set of equations E c T x T and let Ry a term rewriting
system (TRS) obtained such that
£t ~r e Rg =t =1r ¢ E and
v(r) < v(¢), where v(t) is the set of variables in the term
(object) t € T. This system will be called TRS associated with
E. The rewriting relation E} has the inverse relation,
transitive closure, the reflexive-symmetric-transitive closure
denoted by R,, R, and K, respectively. Also, we have:
ERy
For a TRS denoted R let be the following definition (3],
(73, (8]):
DEFINITION. R is noetherian (R has the finite termination
property) iff there is noc infinite chain
t ﬁs t, ﬁs t3 ﬁs"'
DEFINITION. R is confluent iff V x, y, z ¢ T J u € T such
X

that if x R.Z and x é;y then z é;u, Y é;u.
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DEFINITION. If x ¢ T, X € T, Xxg x i and it does not
exist t such that x { Bt then x | is normal form for x in TRS
R (denoted x | R).

If Ry which is associated with a system of equation E is
noetherian and confluent (i.e. complete) then, for V x € T, the
application S(x) = x { Ry is a canonical simplifier. Then ~ is
decidable, and we have :

s ~ t irt $  Rg = t | Rg

Stated in the context of confluence, the idea of completion
is straightforward:

Given a set of equations E we try to find a set of equations
F such that: g and the relation R, is confluent.

If this set of equations do not exists, then the completion
must terminate with failure or the completion is impossible.

The first completion algorithm for rewrite rules is that of
Knuth~Bendix (1967). For a general formulation of this algorithm
some additional notion for describing the replacement of teims
in terms are needed.

DEFINITION [1]},{2},(5]). Let 0(t) be the set of occurrences
of a term t. If 8, t € T(F,V) and v € O(t) then t{u « a) 1is the
term that derives from t if the term occurring at u in t is
replaced by the term s (t/u becomes s).

DEFINITION. s - t iff there is a rule a - b ¢ Ry (or an
equation ((a,b) € E), a substitution r and an occurrence u ¢ 0(s)
such that

8/u =1 (a) and t = g [u « 7 (b))
DEFINITION. The terms p and q form a critical pair in E iff
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there are equations (a,,b;) ¢ E and (a;,by) € E, an occurrence u
in 0(a;) and the substitution 7,, 7, such that:

1. a;/u is not a variable

2. 13(a;/u) = 1,5(a,)

3. p=15(a;) [u- 15(by)]

q = 1,(by)

The algorithm Knuth-Bendix is based on the

THEOREM: A TRS noetherian Ry, is confluent 1ff for all
critical pairs (p,q) of E: p | Rg = g | Ry.

Then it suggests to augment Ry by the rule p { Rg ~ q | R;
or ¢ § Rg - p + Ry. This process may be iterated until,
hopefully, all critical pairs have a unique normal form or it may
never stops: the algorithm is at least a semidecision procedure
for ~ .

The completion algorithm for rewrite rules (Knuth-Bendix,
.1967) is therefore (2]:

Input: A finite set of equations E such that R, is
noetherian.

Output: 1. A finite set of equations F such that

* *
- WD = =

Ry Ry

and relation ﬁ; (theretfore system R,) is confluent (therefore

is decidable) or
2. the procedure stops with failure or
3. the procedure never stops
Algorithm (2]:
1. F: = E ;

86



A NEW METHOD FOR YHE PROOF OF THEOREMS

2. C: = set of critical pairs of F;
3. while ¢ » 0 do
3.1. if (p,q) e Cand (p | Rp * @ 4 Ry ) then
3.1.1.if pIRy - qiRy, leaves R, noetherian then Rp:=Ry u
{piRy »qiRy} else if giRy - piRy leaves Ry noetherian
then Ry : = Ry U { g | Rp = p { Rp}
else STOP (FAILURE)
3.1.2. ¢=C v { critical pairs in Fu {(p { Rp , g ¢ Rp )}}
3.1.3. FaF U {(p ¢ Ry = g { Ry )}
3.2. Ci=C \ {(p, 9)}
4. STOP(R,).
The above crude form of the algorithm can be refined in many
ways. The sequence of critical pairs chosen by the procedure in
3.1. may have a crucial influence on the efficiency of the

algorithm.

3. The J. Nsiang's ocompletion procedure. It is well known
that a formula in first-order predicate calculus is valid, iff
the closed S8kolemized version of its negation is false under
Herbrand interpretation. Equivalentely, a formula is valid if the
set of the clauses in its clausal form is insatisfiable. Hslang
(7] first suggested using a complete rewrite system in a
resolution-like theorem-proving strategy.

Let ¢ = {Cl,..;,cn} the set of clauses of a formula in
first-order predicate calculus.

Let ¢, =L, V L,V...VL, be a clause where Lj is a literal,

and let H be a mapping transforming terms of a Boolean algebra
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into terms of a Boolean ring:

i if ¢, is empty :lause
HC) x+1 if C;isx
EL ™ ifc, isx

H(L,) »H(L,V...VL,) otherwise

THEOREM (Hsiang([7]: Given a set of c¢lauses € in first-order
predicate Calculus, € is inconsistent iff the system
H(C;) =0, C; ¢ €, i =1,n
has not a solution.
Now, let BR be the complete TRS ([7]:
X+ 0-0
X +x -0
X * 1 -x
x*0->0
X * x -~ x
X *(y+z) - xXx * Yy + x * z
For each equation H(C;) = 0 let us consider the equation
a;,~b;, where a; is the biggest monomial of boolean polynomial
H(C;) and let E be the system corresponding in this fashion to

the system of equations:

H(Cj) = O,i = I,n

The TRS Ry having all the rules of the form a; ~ b; is noetherian

(7). In the TRS formed by Ry U BR we have:

*
8 ~ t -5 ~te~s - t
H(C;)=0 E RgUBR
because a; = b; is equivalent with a; + b; = H(C;) = 0

a8
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A critical pair (p,q) may be added to system Ry not only in
the form piRy = q!Rg or in the form g!R; —#plRy , but also in the
form p'iRgy —q'iR; where p' is the biggest monomial of Boolean
polynomial P + q. Hence, the polynomial p + ¢ is an intermediate
form to study for critical pair.

Then, the previous theorem becomes:

THEOREM (7). A set of clauses €,in first-order predicate
calculus is inconsistent iff by Knuth-Bendix completion algorithm
applied to the TRS formed by R v BR, where E is the set of
equations a;=b;, 1 = 1,...,n (a; is the biggest monomial of
H(C;)), the critical pair 1-0 is obtained. Let us observe that

KB algorithm of completion is allways terminating by STOP.

4. A nev method for proving a formula. Let S = (X, F, A, R)
be a formal system, where £ is the alphabet for the term in a
boolean ring (inclu&ing + and *), F 1is the set of boolean
polynomials, A = ¢ and R is the single deductive rule denoted
“res" or :

£, £; v £, iff

£y, £,
the substitution r; and r, such that:

f) € F and there exist the monomials a, 8 € F and

(@ * 7,(f;)) + BR= (8 % 1,(f)) + £;) ¢ BR
where the equality ;s modulo associativity and commutativity.
For this formal system the following theorem is true:
THEOREM : Given a set of clauses € = {C),...,C,} in first-
order predicate calculus, € is inconsistent if in formal system
S
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true:
(aVag"V...Vas Y A(@Vb,"V. . .Vb; ') = (a; V. . .Vbs")

where i, » u, j, » v,

a, ,a, €0,1) ,s=Tk , ¢t=T/e

and

if ai‘.l

if ¢1.=0

and analogously for kﬁf.
The above implication is therefore:
HY(£) NH 'l(fj) - B l(1£,)
PROPOSITION 2. If € = {C;,...,C,} is a set of clauses, and
ir:
H(Cy),...,H(Cy) + U
U is clause polinomial, then
G Ao Ac, ~ BV
Proof: To prove this proposition we proceed by induction
after the length i of the deduction of U from H(Cy) ,...,H(Cy)
in formal system S.
If 1 = 0, then exists j such that U = H(C;) and
HY(H(Ccy)) = ¢ .
The following 1ﬁplication is true:
Ct Ao ACp=»Cy , J=1,..0,n
We suppose that the proposition 2 is true for the length g

i - 1 of deduction, and let f,,...,f, = U a deduction of U with

g1
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the length 1i.

For the three last polynomials f, ,, f,,, [, in the system
S there is the relation:

a*f,,=8B*f , + [,

Moreover, if f, is a clause polynomial, f, , and f,_, ars
too, and f, , and £, ; are obtained by the deduction of length <
i-1.

From the induction hypothesis we have:

C; N oo Ac, » BN, )

Cy AN oo Ac, - H YL, )

By the formula:

+ (A~-B) - ((A-C) - (A-BAC))
results by modus poneus:

FCy A oo ACp = Hoy (£ 3) N H_y (fpy)

From proposition 1 we have:

r HY (f,,) A HY (f,,) - B! (f,) and by the rule of

syllogism
FCy A oo ANC, = HY (£,)
or
FC A ... Acy » B (U) q.e.d.
PROPOSITION 3. If H(Cy),...,H(C,) + 1 then € = {C;,...,Ch}

is inconsistent.
Proof. From the proposition 2 we have:
FC A oo Ac, = HT (1)
but H"! (1) is the empty clause. gq.e.d.
But the condition (x) "H(C;),...,H(C,) + 1 iff € =

= {Cy,...,Cp} is inconsistent" is also true hence the implication

92



A NEW METHOD FOR YHE PROOF OF THEOREMS

"H(Cy),+++,H(Cyp) v+ 1 = € = {Cy,...,C,} is inconsistent® is true
even through not all the polynomials f£,, tj, £, in the
propositions are the clause polynomials.

Exemple: (In propositional calculul 7, = 71, = identic
substitution) € = {(PVDPVR, PVOVER PVB,0VPPVE}

H(C;) = POR + QR + PQ + Q

H(C;) = POR + PR
PQ
H(C,) =QR+Q +R +1

H(C3)

H(Cg) = PR + R

H(Cy), H(Cq) + PR + PQ + RQ + Q
(due to the fact that PQR + PQ + RQ + Q = (PQR + PR) + (PR + PQ
+ QR + Q)

PQ + PR+ RQ + Q, H(C3) » PR + RQ + Q

PR + RO + Q , H(Cg) + RQ + Q + R

(PR + RQ + Q = H(Cg) + QR + Q + R)

H(Cy), RQ+Q + R+ 1

This set of clauses is inconsistent, and the triplet f,, fj,
f;, is not in each step the clause polynomiales (like in
proposition 1).

In fact the following observation is true: if A; is the set
of all the clauses with I positive variables (nonnegative):
C) € A; and C; € A; are two clauses, |i-j| 2 2, and H(C,), H(C,)
+ £, then £, is not a clause polynomial. Moreover, if C, ¢ A; and
C, € A;,, differ by a number n of variables, with n 2 2, and
H(C,), H(C;) » £, then f, is not a clause polynomial.

The condition (*} results from Hsiang's theorem (§ 3) by
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following observations:

Let us observe that the deductive rule “"res": f;, f; + f, «
3 a,8 (monomials) such that (a * 7(f;))iBR = (B*1,(f;) + £ }IBR
is a ‘special fashion to calculate ¢ ci.tical pair. Indeed, tho
biggest monomial in a*r,(f;) (i.e. MP [f;) ard the biggest
monomial in B*rz(tj) (i.e. MP fj) are egnal and:
(£x) 4BR = (a*T,(f;) + B*7,(f;))4BR = (MP f; + MP f; + REST f; +
REST fj )} {BR = (REST f; + REST fj)lBR
This is the case r1,(a;) = 7,(a,) and (p,q) = (1;(by), 75(by) is .
critical pair. The intermediate form p + q of critical pair (in
our case f,) is studied.

THEOREM: The set of clauses € = {C,,...,C,} is inconsistent
irr

H(Cy) oo  H(Cy)r 1

Proof: I1f € = {Cy,...,C,} is inconsistent, by Hsiang's
theorem the system H(C,;) = 0, l=1,...,n has not a solution, or,
equivalentaly, by completion in Rp; the rule 1 - 0 is obtained.
Therefore, a critical pair (1,0) or (r,, 0) is obtained. We have:

(fy) + BR=1m=(1+ P+ P) 4 BR

In formal system S we can write 1 + P, P r f,( = 1)
where P is a boolean polynomial.

Conversely, if H(C,),...,H(C,) + 1 then there exists a
deduction f,,...,fy = 1 from H(Cy),...,H(C,).

Therefore, there exists f; and f, such that f;, f, » f,(=1).
But f, is a critical pair corresponding to a rule 1-0, and by

Hsiang's theorem € is inconsistent.
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in cel de al XXVI-lea an (1991) Studiq Universitatis Babes-Bolyai apare in
urmdtoarele serii:

matematicd (trimestrial)

fizicd (semestrial)

chimie (semestrial)

geologie (semestrial)

geografie (semestrial)

biologie (semestrial)

filosofie (semestrial)
sociologie-politologie (semestrial) .
psihologie-pedagogie (semestrial)
stiinte economice (semestrial)
stiinte juridice (semestrial)
istorie (semestrial)

filologie (trimestrial)

In the XXXVI-th year of its publication (1991) Studia Universitatis Babes-
Bolyai is issued in the following series: '

mathematics (quarterly)

physics (semesterily)

chemistry (semesterily)

geology (semesterily)

geography (semesterily)

biology (semesterily)

philosophy (semesterily)
sociology-politology (semesterily)
psychology-pedagogy (semesterily)
economic sciences (semesterily)
juridical sciences (semesterily)
history (semesterily)

philology (quarterly)

Dans sa XXXVI-e année (1991) Studia Universitatis Babes-Bolyai parait dans
les séries suivantes:

mathématiques (trimestriellement)t
physique (semestriellement)

chimie (semestriellement)

géologie (semestriellement)

géographie (semestriellement)

biologie (semestriellement)

philosophie (semestriellement)
sociologie-politologie (semestriellement)
psychologie-pédagogie (semestriellement)
sciences économiques (semestriellement)
sciences juridiques (semestriellement)
histoire (semestriellement)

philologie (trimestriellement)



