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SOME IMPROVED INEQUALITIES

J. 5. PECARIE’ and I. RAgA"™
Dedicated to Professor P. T. Mocenu on his 60"' anniversesry
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AMS subject classification: 26015

RESUMAT. -~ Citeva inegalitiiti Sintlirite. Citeva inegalititi
cunoscute sint intlrite folosind o metod¥ din lucrarea (9).

1. Let 0O<a<b and let n be an integer, n22. Let
x=(Xy,+..,X,) € [a,b]?. We shall use the following notation:
A=(Xyte . 4x,) /N, Gp=(Xy...Xp)Y", S, (%) =; (xy-x,)2
log(x)=(log(x1),...,log(xn)), JRB(VGE,...,jEZ)

Then:

1 1
-E—b;;sn(X) SAn-GnSESn (X) (1)

For the long history of (1) see {3])-[5]), (8]-[10], [12]). Let
us remark that the counterexample to (1), given in [12], is
inconclusive.

We have also (see[6]):

1 -g.s L
-m)—sn(\/i) SAn GnS nSn(f)-:) (2)

2. Let tecz[a,b]; let 2m and 2M be the minimum, respectively
the maximum of £ on [a,b]. Then f(t)-mt? and Mt?-f(t) are convex
functions on (a,b]. ’

This elementary remark, combined with an appropriate choice
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SOME IMPROVED INEQUALITIES

Remark 1. If I is bounded, the inequality (6) is equivalent
to the inequalities given (with different proofs) for n=2 in
(11,p.279].

Remark 2. 1t is easy to verify that if ¢ is 3-convex (in
particular, if ¢(3)20), then (¢(t)-¢(to))/(t-to) is convex on
(to,@)NI.

Using Remark 2 it is easy to check the convexity of
(#(t)-p(ty))/(t-ty) in all examples considered in (8): it
suffices to verify that ¢(3)>0. Moreover, the inequalities given
in those examples can be improved.

For example, let Y be a random variable, 0<Y<l, with mean

4 and variance o2

. Using the above theorem for t; = 0 and ¢(t) =
=t log(t), #(0) = 0 (note that ¢(3) < 0), Pittenger obtains in
(8]
E(Y log(Y))su log(u+o?/u) (7)
Using the Jensen inequality for ¢ (note that ¢{2)>0) he
obtains ulog(u) < E(Ylog(Y)) and, finally, the following elegant
result
0 < E(Y log(Y)) - plog(u) s plog(l+o?/u?) (8)
Now, in the spirit of Section 2, let us consider the
functions ¢, (t) = @(t) + t3/6 and ¢,(t) = ¢(t) - t?/2.
then ¢{*' <0 and ¢:%'20 for 0<tsi. By using Pittenger's technique
with ¢, and ¢, instead of ¢, we obtain
0%/2 s E(Y log(Y)) - plog(k) s mlog(1+o?/u?) - 6/6 (9)
vhere § = E(Y3) - n¥3(1+0?/4?)? is positive by virtue of the last
inequality in (8]}.

A similar treatment can be applied to the other examples
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discussed in (8).

7.
8.
9.
10.
11.
12.
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RESUMAT. - Punctii cu ocoeficienti negativi n-stelate de un ordin
complex. In lucrare se pun in evidentl unele relatii intre clasa T, 1 8
funcgiilor cu coeficienti negativi n-stelate gi clase T, , de functif cu
coeficienti negativi n-stelate de un ordin complex b. '

1. Introduction. Let A denote the class of functions
f(z) = z +§:akz“which is analytic in U = {(z € C; |z| < 1}.
We denote ;:y N the set of nonnegative integers (N =
{0,1,2,...}).

DEFINITION 1 ([3])). We define the operator D" : A - A,
neN, by : a) D%f(z) = £(z); b) Df(s) = Df(s) = zf'(2);

c) D°r(z) = D(D"*r(2)), z € U.

DEFINITION 2 ([3)). A function f € A is said to be n-
starlike it Re{D"*!f(z) / D'f(z)] > 0, z € U, n € N. We denote
by S, the class of n-starlike functions.

We remark that s, = S* is the class of starlike functions
and §; = S° is the class of convex functions. In (3] it is proved
that all n-starlike functions (neN) are univalent and S, > S,,,;.

DEFINITION 3. We say that f € A is n-starlike of complex

order b (b is a complex number and b»0, neN) if D?f(z) / 2 » O,

¢ "A.Vlaicu” University, Department of Mathematics, 2900 Arad, Romania

Faculty of Science, Department of Mathematics, Damiatta, Egypt
»

e University of Cluj, Faculty of Mathematica, 3400 Cluj—NapocaA, Romania
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(2 € U) and

Re| 1 +

1( DM1£(z2)

- 1|l > 0, zeU.
b\ D2f(z) )] z

We denote by S, ;, the class of n-starlike functions of complex
order b.

M.A.Nasr and M.K.Aouf introduced and studied the class S, ,
of starlike functions of complex order b ((1]). We also note that

S

n,1 = S

n‘
DEFINITION 4. Let neN and let b he complex and b » 0; we

define the class T, , by

T, , = (f€S, ,; £(2) =z - Z:'akz", a,20, k=2,3,...}.
-

A function f € Th,b is said to be a function with negative
coefficients n-starlike of complex order b.

The classes Ty ;_, and Ty ;.,, @ € [0,1) were introduced and
studied by H.Silverman [4) and the classes Tp,1-ar @ € [0,1),
neN, were defined in [2].

In this paper we give some relaﬁionships between the classes
T,,p (b complex) and T, ;.

We will dse the fbllowing lemma

LEMMA A. Let n € N and let a« € [0,1); a function

£(z) = z - ;akz“ is in T, ;., 1if and only if
-3
;k”(k -a)a, <1 - a.
=

The proof of a more general form of this lemma may be found in
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;k"(k -1)a,

1 - ;k”a,

By using the condition b € B which is equivalent to Re(1/b) 2z 1,

Re

<1. (1)

from (1) we deduce

z:k"(k -1)a,
$1. (2)
1 - Z:k"ak

But we have 1 - ;k"ak >0 because D'f(z) [ 2z

- -2
-1 - pk”akz“" » 0 (Definition 3) and 1lim([D"f(z) / z] =1,

=2 - -0
from (2) we obtain ;k""ak <1 which, by Lemma A, implies

2

LeT, ;.

COROLLARY 1. If f is a function with negative coefrficients
starlike of complex order b and b ¢ B, then f is starlike (fes").
COROLLARY 2. If f is a function with negative coefficients
convex of complex order b and beB, then f 1s a convex function

(res®).

3. Remarks. 1). If b ¢ B and b # 1, then we can find
functions f in T, ,1 such that f are not in T, ,b (1.e. T,,1%T,,p) -
Indeed, let f(2z) = z - 22/2"; then f is in T,,;. but for b ¢ B,
1/b = p + iq, we have

i(D”“f(z) -1) - p+r1+igz -2

1 +
b pnf(z) z -2

and

10
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1 Dmlf(zo)

-1) =0
b prf(z,) )

for zo = 2/(p+1+iq) € U, because p>1, and this implies f ¢ T, ,.
2). Let b be a complex number with |b| = r > 1 and for neN

ve consider the functions

f(z) =z- —-L 20
n 2°(r + 1)
then £, € T, », but £, € T, ;, (f, is not a n-starlike function).

Proof. By using Lemma A we have

;k""ak = 2nola2 = L > 1
=2 r+1
and this implies r ¢ Tp,1-
Let denote by U(c;jp) the disc {2€C;|z - c| < p}. We prove
that

i D""fn(z)

-1 U(1;1), = H . 3
b o0E (2) ) € U( ), z€eU = U(0;1) (3)

1+

ut (3) is equivalent to (D"”fn(z)/D"t‘n(z)-l)/b € U and we also

have .
1y Df . (z) 1) = 1 z-2rz3/(r+1) _ 1) = -Z__¢
r p°f,(z) r z-rz /(r+i) r+l-rz
_ r ., r+1 . -
€ U( TRk 21w1)<:£l(o,1) u.

If we denote by 6 the argument of b (b = r em), then we also

have

11
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nel
(D fn(Z) -1) 4

1 : -10
= —— ¢
b D°f,(2) "TTvi-rz° €V

and we obtain that (3) holds.

From (3) we have f € T, ,.

i

3). For b real the last result (Remark 2) can be extended.
- 80, by a simple calculation, we also can obtain the next result;
if -1/2 < b < -1/3 and 1/2 < B < -b/(1+b) or if b s -1/2

and 1/2 < B <1, then fp(z) =2 - 832 ¢ Ty, and I, € Ty .
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Rezumat. - Rasa de stelaritate a functiei eroare. In lucrare se
determin¥ razele de stelaritate pentru functiile £ definite prin
relatia de mai joe. Acestea se exprimid cu ajutBrul r8dicinii
ecuatiei (3) din intervalul (n/2,m).

The purpose of this note is to find the radii of

starlikeness for the functions
z
£,(2) =f exp(-t")ydt , zeC, neN* .
(1]

Particularly, for n=1, the result obtained by P.T.Mocanu in
{2) which gives the radius of starlikeness for the exponential
function will be refind and, for n=2, the radius of starlikeness
for the error function Erf(z)=f,(z) will be obtained.

Let £ be an analytic function around the origin, with £(0)=0
and £’ (0)»0. The radius of starlikeness for f is defined as being
the radius of the largest disk centered at 0 in which f is
starlike. According to [1), this radius equals min|z| where z is
a root of following system:

Re [z £'(z)/f(2)])=0
Re [z f"(z)/f’'(2)])+1=0

For the function f, this system becomes

* University of Cluj-Napoca, Faculty of Mathematics, 3400 Cluj-Napoca,
Romania -
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Re(];'exp[z"(l—u")ldu) “1a0 (1)

Re z"=1/n. (2)
Denoting by r=r*(f,) the radius of starlikeness of I,
relation (2) gives (Im 27)2=r2" -1/n?, so, it follows by (1) that

r is the smallest positive root of the equation
.Llexp[(l-u“)/n]cos[(1-u")(r’"—l/n’)”’]duso

Consider the egquation
F;(x)=L1exp(-u"/n)cos[x(1-u")]du=0 (3)

Then r2"=(xn)2+1/n2, where x, is the smallest positive root
of the equation (3).
Let now n=1. Then repeated integration by parts in (3) gives
the following equation for x,:
x sin(x)+cos(x) = 1/e ,
so,as in (2], we obtain r*(r,)=2.83...

For n>1 we have
Fﬁ(x)=iL1(1-u")exp(-u"/n)sin[x(l-u")]du=0

#o F, is a decreasing function on [0,n]). It is obvious that
F,(w/2)>0. We shall show now that F,(w)<0.
Let
g,(u)=exp(-u?/n) cos{n(1-u")]}. '
Using the sign of g, and the inequality exp(-u”/n) <

S exp(-1/(2n)) valid for u” 2 1/2 we obtain

14
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1 -1
F,(x) < L’gn(u)du+exp[-1/(2n)] (1-2 ")

But for u€[0,1/2] the following inequalities hold
exp(-u”/n) 2 exp(-u),
cos[n(1-u")] < cos(m(l~u)} < O,
80
gp(u) s exp(-u) cos[m(1-u")] s g,(u).

Integrating by parts it is easy to obtain the next relation

(o wau-Lize1/z) (1
Finally we get the following inequality
F (m) < -1/4 + exp[-1/(2n)] (1-271/n),
If n23 using exp(-1/(2n)])<1 it follows that 4 F, (m) <
< 3-4x27Y/7 < 0. If n=2 we have exp(-1/4)x(1-2"1/2) < 15/64 so
F,(m) < 0 for every n22.
We can conclude riow that x, is the unique root of the
equation F,(x)=0 situated in (m/2,7) and
r'(t,) = ((x,)% + 1/n?)¥/(2m
By computation the following value is obtained for the
radius of starlikeness of the error function:
r*(f,) = r*(Erf) = 1.504...
Solving again equation (3) for n € {3,4,5) we obtain
r*(fy) = 1.268...
r'(f,) = 1.178...
r'(fg) = 1.131...
Remark. Since the numbers r"(fn) are greater than 1, every

function £, is starlike in the unit disk.

15
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p(lz|<|zo|) < q(U),
(1)  p(z5) = q({p) and
(11)  2op' (2g) = m{oq’ ({y)
LEMMA 2. ((1) and (8)) If feA satisfies (1), then

zf'(z)

Re (2)

1
>LX 3
> ZEeU (3)

LEMMA 3. ([3)) If feA satisfies (3), then the function

_ 1= .
g,<z>-7[° £ (4)
satisfies
/
Re 29, (2) >8(y) ., zeU (5)
g,(2)
where
3(y)= ¥+l Y (6)

2F(1,y+1,y+2,-1)

and F(a,B,y,2) is the hypergeometric function:

=. a({a+l)...(a+n-1)p(P+1)...(Pp+n-1) _,
Fla,B.v.2) 32 nty(y+1) ... (y+n-1) z

3. Main results.
THEOREM. Let feA be convex and let g be defined by (2). If

¢(2) 1s analytic in U with ¢(2) » 0 and satisfies:

Re-'ﬁg%%izo , Z€U (7)

18
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(y+28 (y) ) Re—L_ e 2€(2)__| y ___z¢'(2) | ;.4

v (2 (0(2))? |@(2 (¢(2))? (8)

Z€U

where §(y) is given by (6), then g(z)<f(z), zeU.

Proof. Without loss of generality we can assume that f and
¢ satisfies the condition of the theorem of the closed disc 0.
If not, then we can replacé f(z) by f.(g) = f(rs), e(z) by
¢(2)=p(rz) and honqe g(s) by g.(z) = g(rg), where O<r<1. f (3) is
convex on U. We would then prove g,(g)<f.(8) for all O<r<l. By
letting r-1~ we obtain g¢g(3)<f(2), zZeU.

From (2) we deduce:

Yy __ze'(s) | zg'(e) | °
(’(z) (0(8))3) g(z)*—;L(z)— r(z) (9)

If g is not subordinate to f, then by Lemma 1. there exists
points soeU and {,edU and an m21 such that:

g(my) = £({o) and 2,9’ (8y) = m{or' (o) (10)
From (9) and (10) we obtain:

! /
£z -( ERRNTY = ]f(co)+m——-——c°f (Lo}

¢ (z,) (9p(2))? ¢ (z,)
hence
,f(zo)‘f((o)x Y _zotp’(zo) 1 £({,) e m
CQfI(Co) "(zo) (@(zo))’ cof/((o) ?‘zo)
i) i o — X - Za@(2) Y AL
o(z) | o(2) (9(2))? ) 2z,9'(2,)

8ince g(z) = ¢(2)g,(8), where g,(z) is defined by (4), if we
g(z,)

note W
2,9'(2,)

from (5) and (7) we deduce

19
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1 1 1
Rej;>b(7) or Iw zb(y)ls 35 (y)

Using this result combined with (8) and m21, we obtain:

¢ (2 ¢ (z,) (p(z,))?

- 1 1 Y 2,9’ (2,) -

ReQ=mRe "S5 Re( 1.+
Yy  _Ze'(z) ) 1 1

+M[[‘Nzo) CIPAIE W TN il Tea

$o £ (L) 2

1 Y 2,9’ (2,) 1 | Y zo@"zo)
R - -1}- - -if120 ,
"I e iz ez ) BB [9lz) ez |
which is equivalent to
Iaz £(2,) -£({) | = (11)

Since ({yr'({y) is the outward normal to the boundary of the
convex domain f(U) at f({y), (11) implies that f(2z,) €¢r(U). This
contradiction shows that g-<r.
If we let ¢(z)=i, complex number, in the Theorem, we cbtain the
result of [4]: '

COROLLARY. Let f¢A be convex and let g(z)=-£%ﬁ'f(()('*dt

If A 18 a complex number which satisfies:

1y 4]
(v+28 (Y))Re |1. 1| 120

where §(y) 1s given by (6), then g~f.
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RESUNAT. Subclase de functii analitice. Scopul acestei lucriri
este de a obyine citeva proprietdt{i interesante ale unor subclase
de functii analitice. -

1. Introduction. Let A be the class of analytic functions
f in the unit disc U, normalized by r(0) = £'(0) - 1=o0.

Deftinition [2]. Let 0 be a set in C and let q be analytic
and univalent on U except for those {¢dU for which lim q(z)=cw,
We define y(N,q) to be the class of functions y:c3i:ir-~u for
wvhich ¢¥(r,s,t;z)en whep r = g(f) is finite, s = m{q'({),
Re (1 +»-§)zm Re (1+ ﬁg%%%l) and zeU, for m21 and 1| = 1.

In the special case when 1 is a simply connected domain and
h is a conformal mapping of U onto 1 we denote the class by
¥(h(U),q) or ¥(h,q).

If h(z) = gq(2) =

1+
1

=, then
(1) q(U) = 0 =h(U) = {w; Re w>0}.

LEMMA A(2) Let the function wey(l,q), where O and q are
defined by (1). If p 1is analytic in U, with p(0)=1 and if p
satisfies

Re ¥(p(2), zp'(3), a°p''(2);2)>0, zeU,

then Re p(z)>0 for all zeU.

' University of Cluj-Napoca, Department of Mathematics, 3400 Cluj-Napoca,
Romania
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2. Main results
THEOREM 1. Let M(z)=az" + a,,,z2"** + ..., N(z) = bz" + ...

be analytic in the unit disc U, a.b+0, n,kzl. Suppose

M(z) « _N(z)
rT AR )

])6, where 0<8<Re—% ,
un

u>0 and aeC with Re a>0. If .

ay [ M(Z)\P M (Z) | M(Z) \b? a 2
el (1 a)(N(z) ‘a N’(z)(N(J) ]>p , p<(b) , (2)

then

ak,
M(z) 2“*5(‘5) k
N(z) 2+8'k

M(z)\#
N(z)| '

for zeU .

Proof. Let p(z) =
- (2}

po)= (3)
From (2) we deduce that

then p is analytic in J and

Re[p(z)+“ “’ff’) zp’(z)])ﬂ’ (3)

We will obtain the real number ¢, for which (3) implies
Re p(z)>¢, for zeU.

Let q(z)._:;%——{p(z)—¢], then q is analytip in U and
(5 -
g(3) = 1 + Cpa* + .

If we define the function :C2 x U - C

o 3] o 3 e

then from (3) we deduce Re y(q(2), 2q'(2); z) > 0 and
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fe 9(1,0; Z) = (%)’- ¢ > 0, for all zeU.

For ss -%(lﬂ'z), reR, we obtain

{ . = g._ﬂ(_Z)__ a ¥ +© -
S TR P

s-b§(1+t’)[(%)"—q>]+¢—ﬂ , If (ps(%)" .

Since max{«p:«p'-ﬂ-b-g-(1+r’)[(-f—))“-«p]so; reR} =
2p-8i{-2)" '
FT8k— %o Ve have 9o §)" and

he §(ir,s; z)<0, for zeU, s8s -§(1+r2) and ¢<¢g.

From Lemma A we deduce that Re g(z)>0, for zeU and W'SOQ-

. Hence Re p(z)>¢y, ZeU.

If we let pu=1 in Theorem 1, we obtain
COROLLARY 1. Let M(2) = az” + a,,2z"** + ..., N(3) = bz" +...
be analytic in U, a.b » 0, n, k21.

N(z)

Su se that Re
ppo zN'(2)

>, where 0 5 § < Re-% and

oy M(2) M (2)
Re[(l «) N(2) +0 N (2) ])ﬂ , where a€C, Rea>0 , B<

oin

then

2B+5k.§
M(z) b
Re N(z) > 518Kk . for zeU.

This result was recently obtained by T. Bulboac3 [1].

If we let a = b = 1, u = 1/2, N(g) = 2, M(2) = f(2),
t=k = 1 in Theorem 1, then we deduce

COROLLARY 2. Let fea, L{2)

—z—o-O Z€U, Rea>0, P<1 and suppose
that
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4 [aZ+aB (1ea)
Theanle(zy >aretedfliva) ¢ sey . for zeu.
z 2(1+a)
This result was recently obtained by Shigeoyshi Owa and

Zhworen Wu [4].
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REZUMAT. - Conditii suficiente de univaleati obtinute cu metoda
subordonlirii. S8int gleite mai multe conditii de univalent¥ cu ajutorul
metodei subordon¥rii.

i. DEFINITION 1., Let f(2), g(2) be two regular functions in
U= {2:]|2] < 1}. We say that f(z) is subordinate to g(z), written
f(z)<g(2), if there exists a function ¢(z) regular in U which

satisfies ¢(0) = 0, |¢(2)| < 1 and

£(z) = gle(z)) |z| <1 (1)
DEFINITION 2. Let f(z) be a regular function in U and
f'(z) » 0 for z € U. The function f(z) is said to be convex if

2tz 4,0, zeu. (2)
£(z)

Re
Let S& denote the class of functions f(2) regular and
univalent in the unit disk U, for which £(0) = 0, £’(0) = 1.
F.G. Avhadiev and L.A. Aksentiev (1) have proved the
following theorem:

THEOREM A. Let f(2) = 2z + ... and g(z) = z + ... be two

reqular functions in U. If

'wuversity of Bragov, Department of Mathematics, 2200 Bragov, Romania
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| zg” (2) < 1 ()
| g’(2) 1 - |z

for all z € U and Log f'(2) < Log g'(2), Log t'(O)'- Log g’ (0)
= 0, then the function f(z) is univalent in U.

A generalization of this theorem was obtained in (3):
THEOREM B. Let f(z), g(z) be regular functions in U,
£f(2) =z + ..., g(2) =z + ..., and let a be a complex number,
0 < Rea < ;. If Log £'(2) < Log g‘'(2z), Log r£’'(0) = Log g’(0) =

0 and

(1 - |z 29"(z2) | ( pe «, (4)
g'(z)

for any =z € U, then the function

t 4
F(2) = la [ u*tf(u)du) /e
[}

is regular and univalent in U.
In (2] it is proved the following theorem:
THEOREM C. Let 8 and y be complex numbers and let

h(s) = c + 2z + ... be convex (univalent) in U with

Re [Ph(z) +¥)] > 0. (5)

If p(2) = ¢ + py)g + ... is analytic 1in U then

/
plz) + :(z)‘zi s <h(2) = p(2) <hz). (6)

In (5) it is proved the next univalence criterion:

THEOREM D. Let a and ¢ be complex numbers for which

a -1
+1

la] <1, |e} €1, ¢ » -1, € [1,).
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Fl(z) - [ g e ()

The function (—9—(-25)—)‘/' is reqular because ﬁ%‘-—)- * 0
(we choose the branch which is eqﬁal to 1 at the origin)
We have also g’'(z) » 0. Then F'(z) from (9) is regular and the

differential equétion (8) has the regular solution

F(z) = [ [l‘—;"—]“’ (g’(2)1*du, (10)
0

for which F(0) = 0, F’'(0) = 1.
For ¢ = -2ay the relation (ii) from Theorem D becomes:

' Sl ()
ay [-2]|z]* + (1 - |z|) -ﬁl—(f)—] + a1 - |z]®)

1.
F/(z) €

Because F(z) = 2z + ... is univalent, we have
zF"(z)

-2 .12 1 - 2
1z + ( |z|?) (2)

< 4|z|, therefore:

ay [-2|zf? + (1 - |z ZEA2 ) L g1 - |z <

F/(z)
s Jayla|z] + Ja(1 - |z]*) = |a|(-]|z|* + 4]y]lz| + 1].

Calculating the maximum value of expression
E=|a|l |z + 4ly||z] + 1} for lz| <1 we obtain:
4fay] it |yl 3

E <
|} (1 + 4]y]?) ifly] < %

From Theorem D and conditions (i) and, respectively (ii) of
Theorem ‘1 we conclude that g(z) belongs to S.

THEOREM 2. Let g(2) =z + ..., h(z) = z + ... be regular
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r 9(2g'tz) 0,
z

" :
(1 _ 2 'ZG (2) < 1 (15)
S e R |
(Fl(z))* = [--q%:i]‘l g'(z) for all ze€ U, (16)
and
Rey > 0, RelLog e' G'*?] > 0,|a| <1, ¢% ¢ (1,=),
P ' 1
|ad| < 1 . ir |8 zlz )
|a] < TP if |8 < 5
Log F/(z) + zF7(z) < Log G/(z) (18)

F/(z) Log(e'F})
( for logarithmic functions we choose the branches egual to 0 at
the origin), then the function g(z) belongs to S.
Proof. Let p(z) = Log F'(g), which is regular, and

h(8) = Log G’'(z) which is convex (univalent) in U. Then

zp'(z) _ zF"(z)
p(z) + TL—__p(z) e = LogF/(z) + (2 Log (67F B)

By (18) and Theorem C we obtain

Log F'(2) < Log G’ (%) (19)
From (15), (19) and Theorem A it follows that F(z) € S.
Because all the conditions of Theorem 1 are satisfied, w

conclude that g(z) belongs to the class S.
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RESUNAT: - O noull generalisare a criteriului de univalentd al 1lui
Nehari. In aceastd notk se obgine o generalizare a unui bine cunoscut
rezultat de univalentld al lui Nehari.

We denote by U the unit disk { 2:|z] < 1 }. The aim of
this paper is to obtain a generalization of the following well-
known result due to Nehari.

THEOREM A (1). If f(z) = z + a2z2 + ... 1s a regular

tunction in U, and

2
I{f;l}l‘m. Vze€eU (1)
vhere
(£12) = A)_) ] 1(&.).) (2)
£/(z) 2\ £/(z)

then the function £(z) 1is univalent in U.

In the following demonstrations, we shall use the result due
to Pommerenke.

THEOREM B [2]. Let r, be a real number, o € (0,1],
U, = {z:]z] < 1) and let f(z,t) = aj(t)z + ..., a(t) » 0, be
analytic in U, , for all t 2 0 and locally absolutely

continuous in I = [0,o), locally uniformly with respect to U,

* University of Bragov, Department of Mathematice, 2200 Bragov, Romania
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Supposing that for almost all t ¢ I, f(z,t) satisfies the

equation
2 212 (azz' £ . D(z,t)afﬁ%;ﬂ' z €U, )

where p(z,t) is analytic in U and Re p(z,t) > O for allt
€I, zeU. If |a(t)] o for t - o and if { £(z,t)/a,(t)}
forms a normal family in U, ,» then for all t € I, f(z,t) bhas
an analytic and univalent extension to the whole disk U.
THEOREM 1. ILet a be & real number, ¢ be a complex
number, |c| <1and £(z) =z + a,z2 + ... a regular function in

the unit disk U. If

' I <1 (4)

and

l1-a + 2 ce-zg.' + 1 E(e-r"Z) za(l - e-zu)a <1 (5)
1+a 1l+a l+a 1+C
for all z € U, t 2 0, where
o(z) = (_f_ﬂ)’ A(M) (6)
£/(z) 2 £/(z) ) '

then the function f£(z) 1is univalent in U.
Proof. 1If the function f(z) is regular in U, then

£, (z)

l =
£'(z) £, (2)

(7

where the functions f,(z) and f£,(z) verifies the relatjons
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£/(z) + J’%fx(z) =0 (K=1,2) (8)
and

£,(0) =0, f£/(0) =1
(9)
£,(0) =1, £](0) =o0.

Let's consider L(z,t) a regular function L: U, x [0,») - C,
r, € (0,1), defined by
£,(e%*z) + —1_ (e - e*)zf](e *z)

L(z.t) = 1Ic : -
£a(e72) + = (et - ™) zf;(e™"2) (10)

=a,(t)z + ...
vhere

1

= a-t®
a(t) =e * T

(et* - o°%%). (11)

Let’s prove that a,;(t) » 0 for all t 2 0. We observe that
it a;(t) = 0,then from (11) results that ¢ = - e 2ta ¢ (-w,-1].
Because from hypothesis c ¢ (-»,-1), it results that a,(t) » 0,
for all t 2 0.

From (10) we obtain

a—Lfaz-zz-t-’- = ((t{(e™"z) £, (e tez) - £, (e toz)f](etez)]-

.[ et._.,ce-tc . 1 (1-0'"') Az’ p(e-tcz) ]}.
1+¢c (1,'0)2 (etc_e-tl)-l 2

(12)

s {[£, (et5z) + lic (e% - e t*)zf](e t*z)]3};
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aL(azc.t) = {z[f{(et"2) f, (e **z) - f, (e *z)f;(e **2)]"
qeleier L (oer)gaplefzlyy.
c (1+c)? (e™ - et%)? 2

: {[£,(e"t2) + lic (e%® - e~t)zf!(et%2) )3} .

Let's prove that L(z,t) is a Loewner chain in U. It is eas
to prove that the function L(z,t) is locally absolutely
continuous in I and locally uniformly with respect to U, . Th
family of the functions {L(z,t)/a;(t)} forms a normal family o
fgguiar,functions in U, = {z:|z] <1y}, 0 <1 <. From (11
we obtain a,(t) -+ », for t - «. Let we consider the function

Q:0U, xI-C, by

dL(z,t) / dL(z,t)

zZ €U (14)
From (12), (13) and (14) it results that

(et*+ce te) + 2::‘“2)) z2(1-e"3ts) (gt4-g "ta)
Q(z,t)= 21 +© (15)

(et®-cet*) - le(i_e.-zu) (et%—g ~t®)
' 2(1.+0¢)

In order to prove that L(z,t) is a Loewner chain it is
sufficient to prove that, there exists a real number r € (0,1),
such that L(z,t) is a regular function in U, = {z:|z| < r}, for
all t > O, the fuﬁction Q(z,t) defined from (15) to be regular

in U for all t > 0 and

Re Q(z,t) > 0, (16)
for all z ¢ U and t 2> 0.
Let's consider the function
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K(z,t) = f,(e %*z) +-E—%7;(e“ - e t*)zf] (e %z) (17)

We shall prove that the function K(z,t) » 0. Because f,(0)
= 1 and f,(z) is regular in U, it results that there exists a
number re(0,1) such that K(z,t) » o for any z ¢ U, and hence the
function L(z,t) is regular in U for all t 2 O.

In order to prove that the function Q(z,t) is regular in U

and with positive real part in U, for all t ¢ I, it is sufficient
to prove that
IR(z,t)| <1 (18)

for all z ¢e U and t 2 0, where

= Q(zlt) -1
R(z,t) oo 1 (19)

From (15) and (19) we obtain

< l-a 2¢c_ _ -2ta p(e=**z) 2(1_g-2t€y2 (20
R(z,t) T e Tra® + (1+¢)(1+c)z (1-e )2, (20)

By (5) and (20) it results that the inequality (18, holds true
for all z ¢ U and t 2 O.

Using Theorem B, it results that the function L(z,t) is
regular and univalence in U for all z € U and t 2 0.

It results that L(z,t) is a Loewner chain, and hence the
function
L(z,0) = £,(2)/£f,(2) = £(2)
is univalent in U,

THEOREM 2. Let a be a real number, ¢ a complex number,

lec] <1 and £(2) = z + a222 + ... a regular function in U.
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It
11 -« 2c
T+« + T . <1 (21)
and
|-« , _2¢c |z|? + p(z) o210y _ lzZ2 <1 (22

11 +«a 1+a 1 +ta 1+a

for all 2 ¢ U and © a real number, p(z) = {f£;z), then the
function f(z) is univalent in‘U.

Proof. Using the notations from the Theorem 1 it results
that the function R(z,t) defined by the relation (20) is regular

in U for all t > 0. It results that for all t > 0, we have

max | R(z,t) | = | R(ef%,t) | =

|z]=
(23)
li :: . 12+Cae-2t¢ + < ia P(:—:.:O) @210 (1 . g-itayz

where 0 cR. If [ = e ta+il , then |[{| = et < 1 and hence

applying the maximum principle to the function R(z,t) we have

IR(z,t)] < max [R(z,t)| =
jz{=2

(24)
l1-a 2¢ 2 g § 216 2)2
B |—— — e -
l+a 1+a'c| * 1+a +C ( |(|)
Because { € U, from (22) and (24) we obtain
| R(z,t) | <1 (25)
for all z ¢ U and t > O.
From hypothesis we observe that for t = 0
| R(z,0) | = |22 ., _2¢ | (26)

The inequality (25) holds true for all z € U and for all
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t 2 0, and, hence by Theorem 1 it results that the function £(z)

is univalent in U.

Remark 1. For a =1 and ¢ = 0 we obtain Nehari's

criterion of univalence.
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REZUMAT. - Asupra unor functii analitice cu partea reall positivi. Fic
a un numir real gi n un numdr intreg pozitiv. Fie P @i QO functii
analitice in discul unitate U, cu P“:) + 0, care verificl inegalitatea
(3). Se arat¥ cX dacld p(z) =1 + ... este o functie analiticl in
U, care verificE ecuatia diferen;iall (4), atunci Re p(zx) > 0 in U.
Acest rezultat este imbundtdtit in cazul cind functia Q este o
constantd reall.

1. Introductioﬂ. In this paper we shall show that under
certain conditions on a, P and Q the solution p(2) = 1 + p,z” +
...0f the differential equation (4) has positive real part. This
result is improved when Q is a real constant and we obtain an
extension of the "open door" Theorem in (3).

As a simple application we obtain a sufficient condition of
starlikeness. The results are obtained by applying the theory of
differential subordination. A survey of this theory and

spplications may be found in (4].

2. Preliminaries. Let A, be the class of analytic functions
f in the unit disc U={z; |z|<1} of the form f(z)=z+anﬂz"”+...,
vhere n21.
Denote A = A, - A function f ¢ A is said to be starlike if
Re { z £*(2) / £(2)] > 0 in U. Denote by $" the class of the
starlike functions.

Let F and G be analytic functions in U. If G is univalent,

University "Babeg-Bolyai®, Faculty of Mathematics, 3400 Cluj-Napoca,
Romania

** Thassos-Thassos Kavala, Greece
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then we say that F is subordinate to G, written F < G or
F(z) < G(z) Lf F(0) =G(0) and F(U) < G(U).

We will need the following lemma to prove our results.

LEMMA A. Let 0 be a set in the complex plane C and ld
n be a positive integer. Suppose that the function ¥P: C? x U+
C satisfies the condition

P (is, t; z2)'¢ N ()

for all real s, t < - (n/2)(1 + s ) and z € U.

In the function p(z) = 1 + p,z2" + ... is analytic in U an

¥ (p(z), z p(2) ; 2) €, (2
for £ € U, then Re p(z) > 0 in U.

More general forms of this lemma can be found in (1},[2)] an

[4).

3. Main results.
THEOREM 1. Let a be real and let n be a positive integer,
Let P and Q be analytic functions in U, with Re P(z) + 0

and suppose that

ImQ(z)1? _ ,Re [P(2) D (2)) , .5 ¢ (3)

(2 + n) Re P(2z2) Re P(2z)

for z € U.
If p(2) =1+ p,2”" + ... is analytic in U and satisfia
the differential equation
z p'(z) + ap?(z) + P(z) p(z) + Q(2) =0 )
then Re p(z) > 0 in U.
Proof. Let ¥ (w,, w, ; 2 ) = w, + aw,? + P(z)w; + Q(2)

If we let 1 = {0}, then equation (4) can be written as
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F(p(2) , z2p'(2) ; 2) e (5)
In order to apply Lemma A we show that ¥ satisfies condition
(1), i.e.
t - as? + is P(2) + Q(z) » O (6)
for all real s, t < -(n/2)(1+s?) and zeU.

If for some s,t and z satisfying the above conditions the

equality

t - as®? + is P(3) + Q(z) = 0 holds, then

t-as? +sImP+Q=0 (7)
and

S ReP+ImQ=0 (8)

From (7) we deduce
t =as? + s ImP-Re Q < -(n/2)(1 + s?)

hence s satisfies the inequality

2“—;£s’+sImP—ReQ+iz’-so (9)
s8ince Re P(z) *» 0, from (8) we deduce
- Im Q
s Re P
and from (8) we obtain the inequality
ImQ\* . RePD '
2 =My L AL A
( 2 + n )(Re B 2 Fo P +ng<o0

vhich contradicts (3). Hence condition (6) is satisfied and by
Lemma A we deduce Re p(z) > 0 in U.

If the function Q is a real constant then Theorem 1 can be
improved by the following result.

THEOREM 2. Let n be a positive integer and let a and 8
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be real numbers, with 2a + n > 0 and 2B + n > 0. Let H be th

function

H(z) - B-e+2(arpemz + (B-a)2? (10)
1 - z?

Let P be analytic function in U satisfying P < H.
If p(z) =1+ p,2" + ... 1is analytic in U and satisfies the

differential equation

z p'(z) + ap?(z) + P(z)p(z) =P (11)

then Re p(z) > 0 in U.
Proof. As in the proof of Theorem 1 we have to check the

condition (1) of Lemma A, i.e.

t - ag® + isP(z) » B (12)
for all real s, t < -(n/2)(1 + s%) and 2z € U.
If for some s, t and z satisfying the above conditions the
equality
t - as? + is P(z) = B
holds, then
t-as? -sImP=258 (13)
and
S Re P =0 (14)
If Re P(z) » 0, then form (14) we deduce s = 0 and usin
(13) we obtain t = 38 > - n/2 which contradicts
t s - (n/2)(1 + 8% s - n/2.
Therefore, in this case condition (12) is satisfied.
Suppose now that Re P(z) = 0.

If s > 0, from (13) we deduce
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ImP(z)=-£—as—-Es——9-(1+s’)-as—-E=
8 8 2s s

- -—;—[(Zam)s + (?.Bm)-l;]- ¢ (3)

It is easy to show that the maximum value of ¢(s) is given

by

- Y@« +n) (2P + n).
Hence Im P(z) s - (2« + n) (2P + n) .

Similarly, for s < 0 we deduce

Im P(z) 2 (2« + n) (2B + n) .
Therefore condition (12) holds if either

Re P(2) » O or Re P(3) = 0 and |Im P(z)| < {2a + n) (2P + n).

If we let
C = o +n +n and
G(z) =2¢c —F%
- z2
then H(z) = G(—Ei) , where 2C —2_ = p-a.
l+az 1-a?

We deduce that H(U) = G(U) is the complex plane slit along
the half-lines Re w = 0 and |Im w| 2 C and H(0) = B-a.
From the above analyisis we deduce that condition (12) holds

it P < H. By applying Lemma A we deduce Re p(z) > O.

4. A starlikeness condition
1.
THEOREM 3. Let f € A,, with ﬂil-zf-‘—‘l»-o in U and
suppose that

z£z) | _f(z) 22+mz (15)

1 +
£f'(z) z f'(z) 1 - z?

Then £ € S".
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Proof. 1f we let a = B = 1 then in (10) we have

H(z) = 2(2+Dz
1 - 232
If we denote p(z) =-£?§%f2~ then (15) becomes
. zpl(tz) 1
pla) + p(z) p(2) < Hiz)
and if we take P(2) L - p(2) - zpia)

p(z) p(z)

then
P(z) < H(z) = H(-2)

and from Theorem 2 we deduce Re p(z)>0, which shows that f ¢ ¢

/
COROLLARY. If f € A, _ﬂﬁ)zf_(Z) »0
and
IIm[1+ zf”(z) - f(z) ”<2+n
£'(2) z f/(2)

then f € s".
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-1 - .
=g J Predpr=sup pr(z. o) s+

is the Robin constant of R with respect to z, and D, while
c,--e""r is the capacity of [ with respect to z, and b, the Riemam

surface R being hyperbolic or parabolic according as k[<«nm

k/'-M.

In the hyperbolic case,
pT(‘ 1Z3g) + GT(- 1Zg) = k[, . (0.1)
where Gr(- ,3p) = Gp(* ,3g) is the Green funotion on R with the
logarithmic pole 2z,, (8, pp.180-181}, (10,IX,I}, which i
characterized by the following properties:

1) Gp(- ,2p) is harmonic on R\zg,,

2) Gg(z,25) = 109155%5T + v(z), 2zeD, where v is a harmonic
function, and

3) GR&- +2¢) = Inf{P:P is positive and satisfies to 1) and
2)).

In what follows we consider two open Riemann surfaces R and
R' with the ideal boundaries [ and [*' respectively, tw
arbitrarily fixed points z,eR and z! er', two parametric discs
D3z, and D'> z{ and the corresponding capacity functions
pT(' ,Zg) and pph,zé). We denote by z and z' points in R and K
as well as parameters on these surfaces.

Suppose that there are K-gqc mappings (K-quasiconformal
homeomorphisms) r:R-R' with f(z,) = zsand denote by ¥ their
family and z'=f(z).

If £ would be a conformal mapping pp(zﬂzé)=qiz,zg (by a

convenient choice of the parameter of D’), hence level lines of
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pr(c +20) will be mapped by f in level lines of pp(uzé) .
Generally this property does not hold for K-gc mappings.

Our aim is to study the image under f of the level lines of
pl—(~ +2g) by means of the level lines of pp(’,zé) . For hyperbolic
surfaces we first treat this problem by working with the Green
functions Gg(* ,324) and Gu(-, z)) and taking into account (0.1).
This way enlarges the possibilities of application in as much as
the form of the results for the Green function is more adequate.

In the proofs we use the following

LEMMA [3]). Let R and R' be arbitrary Riemman surfaces which
are not conformally equivaient to Cand C. If Zy€R and zleRr,
the family & of the K-qc mappings f:R-R' with f(z,)= z is
normal and closed.

Compacity property will play a main role in the paper. Thus

ve consider only Riemann surfaces of c¢lass R i.e. Riemann

pl
surfaces on which there exists a capacity function with compact
level lines (8, p.30], (6, p-231)]. As it was proved by M.Nakai,
this class contains all parabolic Riemann surfaces [8,1V,§1}. The

interior of a compact bordered Riemann surface gives an example

of a hyperbolic Riemann surface of class R,.

1. Level lines of the Green function.
1.1. Let be R and R' two hyperbolic‘Riemann surfaces of class
Ry, 2o and zo/ two points in R and R’‘, Ggj(* ,2,) and GR/(',zé)
the corresponding Green functions and & the family defined above.
We designate by C; the level line Ggi(z,z3) = A where

le(0,+), by II, the regular region {zeR:Gg(z,2zy)>A} and for
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Ay<Ay by G ,, the curve family {C, : Ae€(A,,1,])) and
O, ,,=0, \I, . Further we introduce on R’ the notations CJ, - the
level line G,/(z',z5)=A’ , A'€(0,+»), and similary o, , C":‘; and
n;m , A<at.

The modulus of ﬁma defined as the modulus of the curve
family separating G, from C, inll,, is given by the modulus of
Gy, (2], namely

Aflz

Mod Cl‘ A, = i

(1.1)

Since ReR,, we can define for every fe¢# the functions:

Ao (A, £) =min{A/=Gy (2/, 2J) : 2'€£C,)

and
Ay (A, £) smin(A/=Gy(2/, 23) : 2'€£C,) .

PROPOSITION 1.1. The functions AQ(A,I)- and AL (A,r) are

strictly increasing with vrespect to A, and verify the

inequalities:

AL (A, L) S A < AS(A,1) (1.2)
and

KL A (A, f) < A <K AL, (1.3)

1) Proof that AQ (A,f) 1s a strictly increasing function of A.
We remark that fC, descomposes R' in fI, and R‘\fl,=:Q), that

max (Gy ( 2/, zg) : z'€fd|} =Aj (A, £) and C'L cfll,. Further if A;>A,,

MAL £)

then fCAICOQ‘. Suppose that CL

ty. 0) does not intersect fC, ;

since it has at least a common point with f£C,, hence with Q).
it follows that Aj(A,,f) < max{GR/(z’,z,’,):z’eﬁi‘}xl\é(ll,f). If

c/,

ALy, ) intersects £C,, then A (A, 1) < Ay (A,,f); however,
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equality cannot occur, since otherwise there would exist a point

in £, ncy,

o =
ALg,.n ¢ hence in Q) £, =o.

2) Proof of (1.3). According to (1.1) and to the Grétzsch
inequalities

(Zn)“Aﬁ(A,f)-ModC&u no~ the modulus of the curve family

/ . .
separating C,,, , from [’ on R/\my, , . 2Mod £G, 2K"*ModC, = (2rK) *A.
similary,

-11/ = / =Yy
(2m) 25 (A, ) MOGC,;(L,)O‘KMOdf Cx;,u,no‘K the modulus of the

curve family separating C, from [ on R\, = K Mod C, = (2m) !KA.
PROPOSITION 1.2. If 11 > 12, then

KU Ao (Ay, £)= Al (g, )] S Aj=hy <

S K[ Ag (Ay,£)= Af (A, 1)), (1.4)
The inequalities (1.3) are a particular case of the

inequalities (1.4). They can be obtained from (1.4) by taking

ly=A and A,=0, since Al (0,f)= AL (0,f)=0. However the proof of

(1.4) is also similar to that of (1.3):

(2%) 2 [(AQ (Ay, £) ~Ao(Ay, £)1 =MOdCyy \ iy 2

xModfC) , 2K™*ModC, , = (2rK) "' (A,-1,)

and, if Ao (A;,f) > Af(Ag, 1),

(2%) 2[5 (A, £) -As(A,, £)) =ModC" <

AL BAL (A, 0
- : = -1 -
<KModf CA‘(MJM‘“’J)sKModCM‘ (2%) 1K(A, -A,) .

Remark 1.1 The image fC, of a level line of Gp( ,z,) is
included in I—IA./,“',) Ma,n SO that its distorsion from the level
lines of Gg/( ,2d) could be measured by

/ .

MOdCy ) i g = (2%) T IAG(A, £) -Ag (A, £)) .

In the family ¥ there are K-gc mappings with the property:
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fc,=Cyy, for A'=A'(A,f). For such a function, if we write
l; = 1'(1j,f), j=1,2, the inequalities (1.3) and (1.4) beconme

KA < A < KA'and (1.3Y)
K1 (A1-A)) s Aj-h, s K (A-AD) . (1.4")
This case implies the equality in some of the inequalities used
to prove (1.3) or (1.4). The results in [2] show that equality
in the right- (left-) hand side of (1.3) and (1.4) is assured if
we add to this property of rf the conditions: the dilatation
guotient of f is the constant K and the major axes of the
characteristic ellipses are orthogonal (or respectively tangent)
to the curves C; a.e. in R. Then we have e.g.

Art=k"1a (or A'=KA, respectively). (1.3")
If K=1, the equality holds in both sides, A'=A, and expresses the
conformal invariance of the Green function as in the Lindeldf
principle.

Remark 1.2. If we denote by lo(l',f’l) = min{Gg(z,2,y): z¢
€ f*f{& and by Agy¢( Aé,t‘l)nmax{GR(z,zo): ze‘fdcﬁ} .
then we obtain

Aol As (A, £),£71)=R=Ag( A5 (M) ].

1.2. Till now we studied the functions AL(A,r) and AL(A,f)
which correspond to a K-gqc mapping fe¥. We now introduce two
functions which delinit the distorsion of the Green level lines
with respect to the whole family of mappings ¥. Namely we define

AL (L) = inf{ AL (A, L) : fe
and
Ay (L) = sup{ AL(A, L) : fe).

PROPOSITION 1.3. If R and R' are hyperbolic Riemann surfaces
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of class R,, there exist extremal mappings f, , and F, ;e such
that A (A)= A5 (A, f5,3) and Ag (A)= Ag(X,Fg ;) -

Proof. Let A be an arbitrary but fixed positive number and
{f,} be a sequence in ¥ such that Ab (A, £,)- AL (A). According to
the Lemma quoted in Introduction the family ¥ is normal and
closed, such that (rf,} contains a subsequence again denoted by
{f,} which uniformly converges in the compact subsets of R to a
mapping fo','e.?. Let us choose for any n a point z, € C; such that
Gul£,(2,) ,20) =Ao(A, £,) . Rs ReR,, the sequence {z,) contains a
convergent subsequence with a limit z*ecl. By a new change of
notations we may suppose that {fn}C.? uniformly converges on the
compact subsets of R to f; ,, that Gp (£, (2,),23) =ho (A, £,) and
that z,~z". Since fn(zn)-ofoll(z‘),lf,(k)=lni.1.nGR;(fn(z,,),zé):
=Gy £y, 3 (2*) , 29) 2Mg(A, £, ,) . It follows thus by the definition
that AQ(M=A.’,,(A,fOlA) . The proof for A;(A) is similar.

PROPOSITION 1.4. The functions AL(L) and A,(\) are strictly

increasing. They verify the inequalities

AL sa’sAL (), (1.5)

vhere A'= Gp(z/, z)for z' = f(z) and zeC,,
KAL (M) sA<KAG(A), and if A>A, (1.6)
KV{AG(Ay) =AS (X)) <A, -A < KIAS () A5 (A,) T . (1.7)

Proof that A;(A)1is strictly increasing. Suppose that A;>1,.
From the definition of the function A,(A) and since A(A,f),

fed, is strictly increasing, we deduce:

AG (X)) 2A0 Ay, Fy , ) >80 0y, Fy ) =Ag(Ay) .
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The proof for As(A) is similar.

Proof of the inequalities. From (1.2) and (1.3) it follow
directly (1.5) and (1.6) respectively, by passing to %2;‘?3)
in the left-(right-) hand side. Starting from (1.4) one obtain

(1.7) by means of the inequalities

Ao (A, B) =25 (A,, £) sAG (X)) -A5(X;) and
Ao(hy, £) -AG(X,, £) 2A (X)) -Af(X;) respectively.
Remark 1.31. Proposition 1.3 shows that the functions A}()
and Aé(l)are finite and Proposition 1.4. permits us to obtaina

uniform majorant. If A,, A, € [m,M), A, > A,, then

A (M) A5 (Ay) <AL (M) -Ag (m) .

2. Level lines of the capacity function.
2.1. We now consider two arbitrary Riemann surfaces R and R' of
class Ry, and - as in Introduction - the capacity functions
pr( ,35) and pp ,z!) of the ideal boundaries [ of Rand [*' of I

with respect to z,€R, the parametric disc D and zie R',D!

respectively.

We denote by c, the level line pr (z,25) = 1, where
fe(-n,kf) and by II. the regular region {ze€R: pT(z,zo)<f). For
1,<1; let c,, ={c, : t€lt,,t,]} and I, =N \Il, . The modulus of I,

is now given by
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L T 4
Modc, , = ;u‘. (2.1)

Further we introduce similar notations c&,c&d Ay Oy on R,
we consider the family # and we define as in 1.1. the functions
th (%, ) =min{t/=pp(2z’, z3) : z'efc,)
and
To (x, £) =max (tv'=pp(z',z3) : z'efc,).

By the same device as in 1.1 which is now applied to the
capacity function instead of the Green function (in the
hyperbolic case by using (0.1)) we prove the following results.

PROPOSITION 2.1. The functions <4(x,f) and T, (x, ) are
strictly increasing with respect to 1. They verify the

inequalities

th(t, £) se/sTh (v, £), (2.2)

and in the hyperbolic case

Klky - To(s, £)) s k- s Klky - t6(x, £) | . (2.3)

PROPOSITION 2.2. If 1, < 1,, then

K (%5 (%,, £) -To (%, D)V s1,-1,<K[ To(t,, £) -to(z,, £)]. (2.4)

Remark 2.1. Once again equality in the right-(left-) hand
side of (2.4) takes place for a mapping fe# with the properties:
fc,=c", , for a function t'=r'(r,f) (then t)(x,f)=T,(x, f)=1)),
the dilatation quotient of f is the constant K and the major axes
of the characteristic ellipses are orthogonal (tangent) to the
curves ¢, a.e. in R. Then (2.4) becomes r;-r{ = K‘l(rz—fl), ( or
aK(Ty=1,) respectively). Inequalities similar to (1.3') and
{1.4'), and equalities as in Remark 1.2. are valid.
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2.2. As in 1.2. if we introduce the functions

to(t) =inf {5 (%, F) : fe€F)
and
Ty (t) =sup (T5 (v, £) : feF)
we obtain
PROPOSITION 2.3. Let R and R' be Riemann surfaces of class
R, not conformally equivalent to C. There exist mappings £y, . ard
Fo,r €% such that to(t) =to(t, £ ) and To(x)=To(t,F, ).
PROPOSITION 2.4. The functions th(t) and T,(t)are strictly

lncreasing and verify the inequalities +

15 () <t/s Th(v) (2.5)

where t'=py(z’/,z;), z'=£(z) and zec, ,

Kty (t,) -Th (%) 1 st,-t, s K[ To(t,) ~t4(%,) ) (2.6)

for v, < 7, , and

K [ky - To () Y s kg - % <K [kp - 16(%) ) (2.7)
in the hyperbolic case.

Remark 2.2. 1f 7,,7, € (mM}, 7,<7,, then

Th(t,) - To(%,) <To(M) - tf(m)
so that we have again a uniform majorant.

Remark 2.3. The compact Riemann surfaces can be also studied
with this method - as parabolic surfaces hence surfaces of class
Rp - namely if S and S'are two such surfaces (for Propositions
2.3 and 2.4 not conformally equivalent to C), one deals with R

= S\z, and R' = S' \ z. for two arbitrary points z,eS, 2. € S'.

The family ¥ consists now of all the K-gc mappings f:S.S' with
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f(z,) = zﬁ,

h=0,0,2,5€R and z{ € R'.

Remark 2.4. These results have been applied in (4) in order
to generalize a Gehring's theorem. The paper (4] contains also
proofs of Propositions 2.1.-2.4. Let us mention that our main
tools - the functions Aé(l,f), Ab(A,F) and <i(x,f), Ti(s,£) -
generalize classical functions considered in the plane by
different authors and which have various applications. As an
example we guote [9].where for the level lines of the capacity
function in the plane (the Evans-Selberg potential) with respect
to 0, c.3|z] = r, the function M(r,f) = max{|{f(2)}| : 2zec.} is
used to thoroughly study the growth of the entire quasiregular
functions.
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LOCALLY BILIPSCHITZ MAPPINGS

dg(Eg, Ey) = int  HYNy),
ve[ (Eq, Ey, E)
vhere Hl is linear Hausdorff measure. If r(Eo,El,E)=¢, then, we
consider dg(Eq,E,;)=».

PROPOSITION 1. Eg,EycD =

1

D B ettt —————
mod.[ (E,, E,, D) TN

(P.Caraman {2], lemma 5)-.

Taking into account that the extremal length Afl’= T:l” ,the
preceding proposition yields the following mod-
COROLLARY. dp(E,,E,)= A[(E,, E,,D).
PROPOSITION 2. f 1is K-quasiconformal iff V Ey,E <D,
d,(Ey, E,)
K

s dy/(Es, E]) s Kdp(E,, E,) . (2)
(p.Caraman {2}, lemma 7).
COROLLARY. f is K-quasiconformal 1ff V Ey, E,cD,

A[(E,, E,, D)

-~ < A2T(El,El,D") s KAZ[(E,,E,,D) .

A mapping f is said to be a local C-isometry with 0<C<wo if

Vx € D, there exists a neighbourhood U,cD such that
1’%1 s IE(y) -£(2) ) s Cly-z)

Vy,zeU,.

THEOREM 1. f i.s K~quasiconformal iff it is a local K-
isometry.

Proof. Suppose f 1is K-quasiconformal and consider an
srbitrary point x ¢ D. Next, let U, = B(x,r)cD. Then, on account

of the preceding proposition in the particular case Ey={y},
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E\={2},

1£(y)-£(2)l < dp.(f(y),f(3)] S Kdp(y,2) = Kly-2] (3
V y,z € U,. But also the converse is true. Indeed, let x’'€¢ D' In
an arbitrary point and V,. = B(x’,r') c D'. Then, on account of
the preceding proposition, in the particular case E°={y},El-(zL

Vy-21<dp(y,3)sKdp.(y',2')=Kly'-z' 1=K} £(y)-£(2)]

V y,3ev, = £73(v,,). This relation, together with (3), yields
-!Y;(—zl < If(y)-£(2)) < Kly-z|

VyzeUNtiwv,.).

Now, let us prove also the opposite implication. Assume f is a

local K-isometry (1sX<w), x,€D, U,=B(xy,rg)<D. Then,
dp(x,y)=lx-yl<KI £ (x)=£(y)ksKdp.(x',y") (4)

V x,y € U,. But, also conversely,if xpeD and V, is a

neighbourhood of x, such that f(Vy)cB[f(Xy), Iy } < D’, then
dp.(x',y')=L1(x)-£(y) | sKix-ylsKdy(x,y)

V x,y € Vo, hence and on account of (4), we obtain
dy(x,y)

K

V x,y € WocU\V,.

sdp.(x',y’')<Kdp(x,y) (3)

Next, we observe that there exist two sequences
(x))cEj, {y)}<E{ 'such that
dy (B), B]) =inf dyu(x/, y') =1imd, (X}, y1) =
x’eB} n-e ’
y’cl{ (6)
<lim inf  H'(y}).
ne= ol el (x4, v, 0%

And now, V e>0 and V neN, there is an arc yhe[(y..z)., D)) such

that
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dy(xh, yly > H (yh) -¢ ; (7)
but y,=f1 () is compact, hence d(Y,,dD) =d,>0. Then, let x,€y,
such that x,,-x =f£1(x)), x} Pay =f- Yyl and dix)F, xX") <d, (k=0,m-1).

But, on account of (5) and (7),

dp(X,. ¥, s; dixy,xs3™) sz?: dpr (X5, %51 <

sxg H‘ (v:F) =KH* (y,) <Kdp(x',y') +Ke,

where y;,“ is the subarc of y;, joining x,'.“ and x,'.*‘l, hence,

letting e—+0, it follows that

dp(X,, ¥,) < Kdp(Xn, ¥2) .
vhence and since x,e¢E,,y,¢E;, we obtain
dp(Eg,Ey)sdp(X,,¥Y,)S Kd,,z(x,,,y,,) V neN,

so that, taking into account (6), we obtain

d,(E,, E,)) < Klimdy(x,,y,) = Kdy(Es, E]) . (8)

nee

In order to establish the opposite inequality, we use a similar
argument. We observe first that there exist two sequences

{x,},{y,} such that

dy(E,, E,) =1imd,(x,,y,) =1im inf H(y,) . (9)
nee R~ Yner(xn'yn' )

hence, V neN, and ¢>0, there exist y.ef (x,, ¥, D) such that
dD(xn,yn)>H1(yn)-e. Since 7,’;-1’17,,5 is compact, d(ﬂ,&D’) -d,',>0
80 that we may choose x,',"ey',, (k=0,1,...,p) so that x,',°-x,',,x,',’-y,',

and d(x;, . X k")(d . But then, taking into account (5), we get
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+ ’ p . ’ p
dpi (X, V) s; dix), x5 <KY dplx, x5t) =
-0 k=0

P
=Kp HY (y)) =KH (y,) <Kdp(x,,y,) +eK
0
and, letting ¢ - 0, we deduce that

dp(Xh, ¥8) < Kdp(X,,¥,) .

which, taking into account (9), yields

dp(Ed, E{) slnimd,,;(x,’,,y,’,) sklimdy(x,, y,) =Kd,(E,, E,) ,

nee

which, together with (8), yields (2), implying (by the preceding
proposition) the K-quasiconformality of f, as desired.
Arguing as in the preceding theorem, we obtain the

COROLLARRY. f is K-quasiconformal iff V x,yeD,

dy(x,y)
K

<dpy(x’, y'y skdp(x,y) .

A mapping f is said to be uniformly locally Lipschits with
the constant M>0 if V xe¢D, there exists a neighbourhood U,cD such
that V y,zeU,, If(y)-f(z)lsMly-zlf 1is said uniormly 1locally
biLipschits with the constant M>0 if f and £~} are uniforinly
locally Lipschitz with the constant M. .

THEOREM 2. f is K-quasiconformal iff it is uniformly locally
bilipschitz with the constant K.

Proof. If f is K-quasiconformal, then, according to the
preceding theorem, f is K-isometry, hence f and f~! are uniformly
locally Lipschitz with the constant K. The converse follows by

a similar argument.

COROLLARY. A K-quasiconformal mapping f:B(xg,R)=D' s
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Lipschitz with constant K.

REFERENCES

1. Caraman, P., Module and p-module in an abstract Wiener space, Rev.
Roumaine Math. Pures Appl. 27(1982)551-599.

2. Caraman, P., Boundary behaviour of guasiconformal mappings in normed
spaces, Ann. Polonici Math. 46(1985)35-54.



STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXXVI, 2, 1991

ON A CONJECTURE OF HORN IN COINCIDENCE THEORY

I0AN A. RUS’
Dedicated to Professor P.T.Mocanu on his 60"‘ snniversery

Received: July 3, 1991
ANS subject classitication: 47H10

REIUMAT. - Asupra unei oonjecturi a <lui Horm in teoria
coincidentei. Conjectura lui Horn afirmd c¥ doi operatori
continui gi comutativi ce invariazd un compact convex dintr-un
spatiu Banach, au cel putin un punct de coincidentli. In preszenta
lucrare se dau mai multe propozigii echivalente cu conjectura lui
Horn. In finalul lucririi se introduce notiunea de structurl de
coincidentd gi se stabilegte o teoremd generalk de coincidentii.

1. Introduction. Horn's conjecture ((1]}) states that if two
commutative mappings, onto a compact convex subset of a Banach
space into it self are continuous, .then this pair of mappings has
at least a coincidence point. In this paper we present some

equivalent statoments_with the Horn's conjecture.

3. Measures of noncompactness. Let X be a Banach space. By
a weak measure of noncompactness on X we mean a mapping,
atP,(X)-R,, which satisfies the following conditions:

(1) a(A)=0 implies X ¢ Pop(X),

(i1) « (COA) =a (A) , for all A € Pp(X).

By definition a weak measure of noncompactness is a measure
of noncompactness if satisfies the condition

A e P, (X) implies a(A)=0.

For example, ak.(Kuratowski's maasure of nonc?ppactnesa) and
ay; (Hausdorff's measure of noncompactness) are measure of

noncompactness and § is a weak measure of noncompactness.

'Univor-ity of Cluj-Napoca, Department of Mathematics, 3400 Cluj-Napoca,
komania
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3. Invariant subsets. lLet X be a nonempty set and let
f,g:X-~X be two mappings. We denote

I(f):={AcX| Awp, f(A)cA},

I(£,9):=1(£)N1(g),

Fpi=(xex| £ (x)=x},

c(f,g):={xex| £(x)=g(x)}.

We have

LEMMA 1. Let X be a nonempty set, u:P(X) - €(X) a clasure
operator, YeF, and f,g:Y-Y such that fegmgef. Let A,cY, A;+%.
Then there exists A,cY such that

(i) AgoA,,

(ii) Ag€F,,

(1ii1) AqjeI(f,9),

(1v)  u(£(A)Vg(Ag)Ua,)=a,.

Proof. Let B8:={BcYlB satisfies (i)+(ii)+(iii)}. We have
N8e8. Let A,:=18. We remark that u(f(Ag)Ug(Ay)UA;) € 8 and
B(L£(Ag)VUg(Ag)UA;) c A,. This implies (iv).

4. a~-condensing pnir: Let X be a Banach space, Y c X and
£,g:Y-Y. Let 0:P,(x)-R,. The pair (f,g) is 6-condensing if

(1) AeP,(Y) implies f(A), g(A) € Py(Y)

(i1) o6(r(a)lg(a) < 6(A), YV AeI,(f,g), O(A)»0.

Example 1. Let Y € P,(X) and let f,g:Y - Y be two compact
mapping. Then the pair (f,g) is ajp-condensing.

Example 2. Let Y € Py(X) and let f,g:Y —~ Y be two

é-condensing mapping. In general, the pair (f,g) is not

§-condensing.
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Now we consider

Statement S(0). Let Y be a bounded closed convex subset of
a Banach space X and let f,g:Y -+ Y be commuting continuous
mappihgs; If the pair is O0-condensing, then C(f,g) » ¢.

The main results of this paper is the following:

THEOREM 1. The following statements are equivalent:

(1) (Horn) Let Y be a compact convex subset of X and let
f,9:Y - Y be commuting continuous mappings. Then C(f,g) * ¢.

(ii) statement S(ay).

(iii) statement S(a), for an a - a measure of noncompactness
on X.

(iv) Statement S(a) for all a - measures of noncompactness
on X (i.e., {S(a)la € the set of all measure of noncompactness
on X}

(v) Statement S(a) for all a - weak measures of
noncompactness on X (i.e., {S(a)l ae the set of all weak measures
of noncompactness on X}.

Proof. The proof follows from the following implications:

s (1ii) ~
(V) = (iv) (1) » (v).
~ (ii) »

We will prove (i) = (v). Let A, = F, and u(A) = Co A. By
Schauder's fixed point theorem, F, » ¢. We have f(F,) = F, and
g(Fg) © Fe. By Lemma 1, there exists A, < Y such that

TO(f(Ag) U g(Aag) U Fp > = A,.

Since, Fsef(Ay)Ug(Ay), hence <Co(f(Ay)Ug(Agy))=A,. We have

a( Co(f(Ag)Ug(Ay)) = a(f(Ag)Ug(Aag)) = a(Ay)
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Thus implies that AjeP., ., (X).

From (i), we have that, C(f,g)»¢.

S. Coincidence property. Let X be a nonempty set and YeP(X).
We denote by M(Y) the set of all mappings, ;:Y~Y. A triple
(X,8,M) is a coincidence structure if

(1) ScP(X), S»¢,

(i1) M:P(X) -o U M(Y), Y +o M(Y)cM(Y), is a mapping

YeP(X)
such that, if ZcY, Zw»p, then M(2Z) >{rl ,:feM(Y) and f(Z)<Z},

(ii1) (Yes, f,geM(Y), fog=gef) imply C(f,g)+o¢.

For example (see [1]), if X=R, S-{[a,b]la,beR} and
M(Y)=C(Y) t={f:Y~Y| f-continuous}, then the triple (X,S,M) is a
coincidence structure.

Let (X,S,M) be a coincidence structure. A pair (8,u) is
compatible with (X,S,M) if

(1) 0:2-R,, Sc3c<P(X),

(11) p:P(X)-+P(X) 18 a clasure operator, Scu(z)cz, and
O(up(Y))=0(Y), for all Yez,

(i11) F“nz,cs.

The Theorem 1 suggests us the following very general results

THEOREM 2. Let (X,S,M) be a coincidence structure and (0,u)
a compatible pair with (X,S,M). Let Yeu(Z) and £,geM(Y) such that
Log=gof.

We suppose that

(1) 0(r(A)Vg(a))<O(A), for all AeI(f,g), a(A)»0;

(11) Fge=e.

Then
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C(f,g)»¢.

Proof. Let A,=F,. From the Lemma 1 there exists AjcY such
that

(£ (Ag)Ug(Ag)UFs)=A,.

since (0,u) is a compatible pair with (X,s,M), it follows

8 (k(£(29)Vg(Ag)UF,))=0(A,) .

This implies 6(Ag)=0. Thus, AyeFf1Z,.

SoiAg € S, i.e., C(L,9)%¢.

Remark 1. In the Theorem 2, insted of the condition (ii),
we can take the following

(i1') xeY Ae¢z implies AU {x}eZ and 0 (AU {x})=0(A).

Remark 2. For the f-condensing mappings see: (2] (3].

Remark 3. For the coincidence theory, see [4].
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REZUMAT. Interpolare Birkhoff bidimensionald pentru date
arbitrare. Se etudiazd formule de interpolare de tip Birkhoff
pentru functii de doul variabile definite pe un domeniu plan
oarecare, obtinute prin generalizarea cazului rectangular.

)

0. In a previous paper (1] there was considered the
following general scattered data interpolation problem (SDIP):
let £ be a real valued function defined on a given domain DCRz,
n={Dy<D|k=1,...,N} a given partition of D and L,f some given
informations on the function f at Dy, k=1,...,N. Find a function
g, from a given set of functions, say A, such that L,g=L.f,
k=1,...,N.

Remark 1. The usual informgtions are the values or sonme
nedium values of the function £ and of certain of its derivatives
£HY) (s, v) €N?,

Remark 2. If r={D;,...,Dy} is a set of discret points then
the (SDIP) is a punctual interpolation problem and it is a
transfinite interpolation problem otherwise.

Particularly, if L,f are the Lagrange informations (L,f =
= f(xy,¥Yyx)) then the (SDIP) take the clasical fashion (the
scattered data-fitting problem).

Remark 3. The (SDIP) can be also a deterministic or a non-

deterministic problem if L, f are deterministic or non-

* University of Cluj-Napoca, Faculty of Mathematics, 3400 Cluj-Napoca,
Romania
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deterministic informations.

DEFINITION 1. The degree of exactness of the interpolation
formula defined by the informations L,f, k=1,...,N, will be
called the exactness degree of these informations.

Remark 4. For the bivariate case we cane have the total
degree of exactnees and ﬁhe degree of exactness on régard with
each variable.

We remark two ways for solving a (SDIP):

1) to generalize the tensor product or the Boolean sum techniques
from a regular domain D (rectangle or triangle) to a unusual
shape on.

2) to generalize or to modify the Shepard's method.

The goal of this note is to derive some scattered data
interpolation formulas using first way and the Birkhoft
informations of the function fr.

1. For the begining, one supposes that L,f = f(x.,y,),
k=1,...,N.

Now, if the partition I is
M={(x,,y,)eD} i=0,1,...,m; j=0,1,...,n}

then the solution of the corresponding (SDIP) is given by the
tensor product of the univariate Lagrange operators L, and L)
corresponding to the nodes x;, 1i=0,1,...,m respectively

Yj'j-ollpont,n, i.e.
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m n

y ) o= _ulx) viy)
(L."@Ln) (x,y) g g (X'Xi)U' (xi) (}"}'1) v (yj) f(Xj'y_j)

where u(x) = (x=xp)...(x~x,); v(y) = (Y=Yo)++-(Y=Y,)-
In [5), J.F.Steffensen had given a first generalization of

the Lagrange interpolation problem for the partition
N=((x,,y,)eD|i=0,1,...,m; j=0,1,...,n, and neN}

One obtains

- u(x) vily)
(P, £) (x,y) 1{; § o) ut () (y-y,)v;(yj) £(xy,yy)

where v,(y) =(y-y,) ... (y-y,) .
In 1957, D.D.Stancu (3] had given a new extension of the
Lagrange interpolation problem, that is also a generalization of

the Steffensen problem, taking

nﬂ{(xi,yij)EDl.i‘O,l,...,m; j=0,1,...,n1 w.ith HICN}
i.e.
m Ny (y)
(P,£) (x,y) = u{x) L4 £(xy,¥,,)
g g (X‘Xi)u (xl) (y-ij) V_i (yij)

with v, (¥)=(y-y; o) ... (¥-¥;,).

We note that in both generalization are given expressions
for the error functions (f-P;f,i=1,2) in terms of divided
differences.

We, also, remark that P,f is a solution for the clasical
(SDIP), 1i.e. a Lagrange's scattered data interpolation

polynomial.
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Next, we consider the (SDIP) with the punctual Birkhoff's

type informations on f.

2. Let M={(xy,yy), k=1,...,N} be a given set of points in D.

Following (1), on considers the partition M; i=0,1,...,p of
the set M, where M; is the set $f all points (x;,yy)eM with
X)=X;, k=0,1,...,9; and  x;*xy for i»j, i.e.
M1={(xi,yij)|j=0,1,...,q1} for i=0,1,...,p.

Let L}?};=f‘m"(xihyﬁ),j=0,1,..., 43 i=0,1,...,p and
(u,v)eIixJij with Ii,JijCN, be informations of the Birkhoff type
of the function f, while L{f=f%(x,,.) respectively

Ljf=£f£°" (.,y,) will be considered as partial informations of the
function f on regard to x and y.

2.1. For the begining one considers the rectangular case,
i.e. D=[Xq,Xp)%(Y0:Yqls M={Xg,-.c/Xp}%{¥Ygs++-1¥gq} and Ii,chN,
with |Ig|+...+|I |=m+1, |Jo|+...+|Tg|=n+1. If B,'andB; are the
Birkhoff's interpolation operators corresponding to the partial
informations L}{f=f®*%(x,,.), i=0,1,...,p; pel, respectively

Lif=f%v(.,y,),j=0,1,...,q; veJ; then the well known bivariate

interpolation formula is

£=B,®B) f+R; DS , (1)
where R,and RJare the corresponding remainder operators. More

precisely n

P q
(B,®B) ) (x,y) = gf‘-‘a..); Y by (x) by, (y) £*¥) (x,,y,)

1 vedy

and for fec™!.n*l(p),
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xp
(RMXQRnyf) (x,y) = fd’_,,,(x, 8) f'™1.9 (g,y)ds +
X0

Yq
[y, O £020 (x, 01 dE - [[8,(x, )W, (y, ) £727 (3, £) dsdt
Yo D

where b;, and ij are the fundamental interpolation polinomials,
while ¢,and ¥, are the Peano's kernels.

Remarks 5. It is ob&iously that the degree of exactness of
the formula (1) is (m,n) (m on regard to x and n on regard to y).

2.2, One considers now the general case.

So, M=Mgu...uM, with M;={(x;,y;5)|j=0,1,...,9;}. Let B, be
the same operator that interpolate the data f£®*%(x,,.) for
i=0,1,...,p and peI; with ]Io|+...+|1p|=m+1. Using this operator

we obtain, in a first level of interpolation, the formula

f=B)f +RSf (2)

where

P
(BXE) (x,y) = ;j Y by, (x) £4:9 (x,,y)

=0 pely

Now, let‘H{ be the Birkhoff's operators which interpolate,
respectively the data f“:V (x,,y;;),j=0,1,...,q;,and veJ;; with

IJL°|+...+|JL0J=H1+1 and K, the corresponding remainder
operators, for all i=0,1,...,p and ueI;. Applying these operator, ,
from (2) one obtain§, in a second level of interpolation, the

final scattered data interpolation formula
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p U i
f(x,y)= by (X) b, (¥) £ (x,,y,) +(RE) (x,y) (3)
» J b
=0 J=0 pel, veJ,,

with

p
(RE) (x,y) = (R3 ) (x,y) + by, (x) (Ry£) (x,,¥) .
. '

=0 yel,

PROPOSITION 1. The degree of exactness of the formula (3)
is (m,r), where r=min{n,,... 'Dp}.
The proof is a consequence of the theorem 1 from (1].
From the Peano's kernel theorem we also have:
PROPOSITION 2. If f(.,Y) eH"'”[xo,xp] and~

£ (x,, Ve y, ,y,,) for all i=0,1,...,p, then

Xp
(RE) (x,y) -f¢,.,<x. 8) £ 1.9 (g, y) dg+
Xo

y
p f.8q

; 2 b,, (x) f b, (v, t) £ (i, £) de
=0 pel,

Yio

where
(x-3)7 & (x-9)3*
¢, (x, 3) - ;;“ZI:, b,“(x)—“i_—““—
and
(y-6)3 & (yy -0 "
¢n,(}’. t) T ;Q“Zhjbijv(y) n,-v) 1

Remark 6. From the first proposition it follows that the
best case, from the degree of exactness point of view, is

obtained for n,=n,=...=n

- In this case (3) is a homogeneous

interpolation formula on regard to the variable y (1). But, the
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structure of the interpolation formula depend on the given
informations. So, if the initial informations do not permit to
construct a homogeneous formula (there exists 1i,je{0,1,...,p},
i#j such that n;»n;) then there exist two posibilities: to
generate new informations on f or to try to interpolate the
function f first on regard with the variable y and than on regarad
with x. Anyhow, an interpolation formula as closed as possible

of a homogeneous one is recomandable.

Summarizing the given procedure we have:

1. Input data:

Mi={(x;,y,;) | 7=0,1,...,q;} ,i=0,1,...,p;
IjIJjjl, jgolll-"Iq_il'iaolll"'lp;
f(”'v) (XI,YU), "eIi'VCJlj' jgolll'"Iql;igoll""’p'

2. One determines the fundamental interpolation polynomials by,

and b,,. solving the lihear algebraic systems:

b}j’) (x,) =0, vek, reIl,,
bij' (x,) = b,,, rel,,

for jel, and k,p=0,1,...,p,

respectively

b (y,) =0, r»k, seI,,

C b (v = 8,, sel,
for pelI,; k,r=0,1,...,q;;
for all i=0,1,...,p.
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3. Compute F(x,Y);

44

P
Flx,y) = ; ; E E b“. (X)buv (y) £®" (X,.YU) (4)
=0 j=0 pel, veJ,,

EXAMPLE. The test function is

1

f(x,y) = —=——r,
y) PRI

with the graph in fig.1. The input data are:

My={(-1,-1);(-1,0);(-1,1)};
M={(-1/2,0)};
M,={(0,-1);(0,0);(0,1)};
My={(1/2,0)};
M={(1,-1):(1,0);(1,1)}.

I,=I,=I,=I,=I,={0};
Joo={1}; Jg,={0}; Jy,={1};
J0=(0,1,2};
Jpo={1}; Jp,={0}; J,,=(1};
Jye={0,1,2};
Jeo={1}; J,=(0}; J,=(1}.
So, it is used a Lagrange's interpolation with regard to x
and a Birkhoff's interpolation with regard to y.
The graph of the interpolating surfaces computed by (4) is

in fig.2.
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REZUMAT. -~ Asupra migclrii circulare fn jurul unui elipsoid de rotatie.
Se studiaz¥ migcarea init{ial circular¥ a unei particule test in cimpul
gravitational necentral al unui elipsoid de rotatie. Se stabilegte o
formul¥ analiticH pentru perioada migclrii, cu o precizie de ordinul al
doilea in raport cu parametrul caracterizind turtire elipsoidului,
generalizindu-se astfel rezultate anteriocare (ale altor autori g¢i
proprii).

1. Introduction. Consider a point mass -orbiting an
attracting body (under the only gravitational influence of this
one) at a distance r. We shall describe the relative motion of
the point mass with respect to a Cartesian right-handed frame
originated in the mass centre of the attracting body by means of
the Keplerian orbital elements { y ¢ Y ; u }, all time-dependent,
vhere:

Y = {p, g =6 cosw, k = e s8inw, 01, 1}, (1)
and p = semilatus rectum, e = eccentricity, © = argument of
pericentre, f1 = longitude of the ascending node, i = inclination,
u = argument of latitude.

Many authors studied such a motion (for a brief survey see
e.g. [2]) with very various hypotheses. First and (sometimes)
second order pertufbations of. the orbital parameters were
analytically estimated, as well as first order perturbations of

’
the nodal or anomalistic period (1,2,6,7). We must emphasize the

* Astronomical Observatory, 3400 Cluj-Napoca, Romania
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fact that the anomalistic period cannot be used to the case of
very low eccentric (and especially circular) orbits; that is why
we use in this paper the nodal period. Also, as far as we know,
nobody determined second order perturbations of the nodal period
for a specified perturbing factor.

We shall estimate analytically the nodal period, with a
second order accuracy in respect of a small parameter ¢ on which
the perturbing factor is depending, in the following hypotheses:

(1) The attracting body is a rotation ellipsoid with a
corresponding mass distribution.

(ii) The initial orbit of the point mass is circular.

(iii) The initial orbital elements are considered in the

ascending node of the orbit.

2. Equations of motion. Considering hypothesis (i), let us
choose the Cartesian right-handed frame mentioned in Section 1
as follows: The basic plane is the equatorial plane of the
ellipsoid, while the third axis (normal to this plane) 1is the
rotation axis. Since we study the nodal period, we describe the
perturbed motion with respect to this frame by means of the
Newton- Euler system written in the form (e.g. (3,5)):

ap/du = 2(Z/p)r’T,

dg/du = (Z/p) (r°kBCW/(pD) + r’T(r(q + A)/p + A) + r’BS),

dk/du = (Z/u) (-r’>qBCW/(pD) + r’T(r(k + B)/p + B) - r?AS),

an/du = (2/s)r’sW/(pD), (2)

di/du = (z/p)r3m/p,

at/du = (3rl(up)~i/2,
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where u=gravitational parameter of the dynamic system, A=cos u,
B=sinu, C=cos i, D = sin i, 2= (1 - r2CQ/(pp)*/*)"!, while
S, T, W stand respectively for the radial, transverse, and
binormal components of the perturbing acceleration.

For the needs of Section 4, it is to be specified that we
consider, as usually, that the elements (1) have small variations
over one revolution, such that they may be taken as constant and
equal to y, = y(ug) = y(u(ty)), y € Y, in the right-hand side of
equations (2), and these ones can be separately considered. So,

we can write y = y, + Ay, where, according to hypothesis (iii):

Ay = f(dy/du) du, ye€yvY. (3)
]

These integrals are estimated from (2) by successive
approximations, with 2 =1, limiting the process to the first
order abproximation.

In what follows, for simplicity, we shall no longer use the
subscript "O" to mark the initial values of elements (1) and of
functions of them. In fact, every quantity which does not depend
onu (explicitly or through A,B) will be considered constant over

one revolution.

3.Perturbing accaelsration. Since the gravitational field

generated by the attraci:ing body is not Newtonian, the point mass

will undergo a perturbing acceleration. Having in view the

hypothesis (i), the components of this acceleration are (2,7]:
S = - (3/2)c,ouR*r* (30?82 - 1),

T = 3c,ouR%r"402aB, (4)
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W = 3c,ouR?r™4cDB,
where R = equatorial radius of the ellipsoid, while c¢,, 1isa

small parameter featuring the oblateness.

4. Variations of orbital elements. Firstly remind the orbit
equation in polar coordinates: r = p / (1 + e cos v), where v
= true anomaly, or:

r=p/ (1 +qgA+ kB). (5)
Replacing (4) and (5) in (2), taking into account hypothesis
(1i), in other words q(0) = k(0) = 0, then performing integrals
(3) as we showed in Section 2, we obtain:

Ap = 3¢y, (R/p)?pD?B?,

Aq = (cz0/2) (R/p)?(7D%AB? + (2¢% + 1) (1 - A)),

Ak = (cz0/2) (R/pP)%(7D%B® - 3B), (6)
AQ = (3cy0/2) (R/P)3C(u - AB), ’

A1 = (3cy9/2) (R/p)3CcDB2.

5. Nodal period. As we showed in [4), the nodal period can

be written as:
Ty = To + &,Ty + A,Ty, (7
where T, is the Keplerian period for u = 0; with hypothesis (ii):
T, = 2np®/3u~1/2, (8)

The first order ( in o ) perturbation is ([4]:
2%

AT, = p’“u"/’f[ - 2(J, + Jp) + (3/2)p'J, + P*uNJ,) du, (9)
[}

where, with hypothesis (ii):
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J, = Ap, J, = AAq, J, = BAk, J, = Bo(CW/D),. (10)

As to the second order ( in o ) perturbation, this one has the

expression, according to [4]:

2%

AzTN = p3/2u-1/2f (3 (Jqq + Jkk + 2qu) - 3p-1(Jm + ka) +
]

+ (3/8)p=2J,, + (1/2)putJ,, + (11)
+ P’ll'l y ('San - SJko + Jﬂo + Jio) +

+ (1/2)p*p2J,,] du,

vhere, with hypothesis (ii): '

Ixy = Iy, x € {p,q,k}, y € {p,q,k,0}, (12)

Jao = 8T q, JTio = AL(TL) 4, JTge = B202(C?W2/D?),,.  (13)

We must emphasize the fkct that the subscript ¢ in the
right-hand side of the last formula (10), and the subscripts 1,
i, and oo in the right-hand sides of (13) mark the respective
partial derivatives. As to the subscripts added to J in (9) -

(13), they are simple identifying notations.

6.Results. Substituting W from (4) in the last formula
{(10) and calculating the required partial derivative (the part
of 0 is played by c,3), then substituting (6} in (10) and the
results in (9), and finally performing the integral (9), we
obtain:
ATy = 3mcy, R*pY/2,71/2(3 - s5p%)2). (14)
Analogously, replacing W in the last formula (13) and
calculating the partial derivative (o0 = cy 5, too), then

introducing (6) and the previously calculated (10) in (12) -
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(13), substituting the results in (11) and performing the

integral, we obtain:

A,T, = (r/32)c2R*D™*/n-1/3(1527D* - 3180D% + 1620). (15)

We must mention that (14) confirms the results of (2,7],

while the result (15) is entirely new. Moreover, this result

constitutes a first application of our formulae given in (4] to
the case of a concrete perturbation.

with (8), (14), and (15), the nodal perioda (7) can be

written as:
1}

Ty = To(1 + Kf,(D) + K2f,(D)), (16)

where K = czo(R/p)z, and:
£,(D) = (18-15D?) /4, f,(D)'a (1527D%-3180D%+1620) /64. (17)
This new, bettgr approximation for the real (perturbed)
nodal period could be very useful in the case in which the
ellipsoid is strongly oblate and the point mass orbits in its
immediate neighbourhood. According to X and to the orbital
inclination, the contribution of r,; ( which can act as f; or

inversely) in altering the period could be sensible.
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REZUMAT. - Asupra unei metode de element pe frontierX cu valori
compexe pentru "efectul de perete". Prima parte a lucririi
congine o trecere in revietd a unor consideratii matematice
legate de migcaroa fluidXd generatd de deplasarea unui profil in
prezenta unui perete nelimitat, rezultate ale autorului care au
fost deja prezentate pe larg in [2]. Partea a doua dezvoltX o
metodd de element pe frontierX cu valori complexe (CVBEM), pentru
care se stabilesc o echemi de utilizare in problema propusi ca gi
un rezultat final de convergentl.

1. Let us consider as given a plane incompressible,
potential, inviscid fluid "basic"” flow of complex velocity wy(z).
This fluid flow could have some singularities, too, takes place
in the presence of an unlimited fixed wall 6.

Let now the plane fluid flow, produced by a general
displacement (rototranslation) in the mass of an arbitrary
profile (C), in the presence of the same wall § and which
superposes over the basic flow. We assume that during its
displacement the profile (C) doesn't cross the singularities of
the given basic flow.

A general method to determine the fluid flow which results
from the mentioned superposition, method establishing also the
existence and the uniqueness of the solution of the joined
mathematical model, has been already developed by us (2). In what
follows we intend to make a sketch of a complex variable boundary

element. method (CVBEM) which could easily be used for the studied

' University of Cluj-Napoca, Department of Mathematics, 3400 Cluj-Napoca,
Romania
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problem and whose convergence has been already established in the
case of the unbounded flow (3, 4).

Concerning the unlimited wall § and the contour C, we
suppose that their parametrical equations z=a(¢) and respectively
z=B(¥), defined for ¢;¢6E1 versus a fixed, rectangular, Cartesian
system of axes, are 2m periodical functions on the interval
(0,27), with a(0) = o and B(0) taking a finite value, which
define Jordan positively oriented curves with continuous
curvaturel.

In what concerns the given function wgz(z), it belongs to a
class (a) of functions having the properties (2]:

l1a) They are holomorphic functions in the domain D, bounded
by the wall §, except a finite number of points {z.,.r; placed
at a finite distance, and which represent singular points of
these functions; let D/=D\{z,}, 15

2a) They are continuous bounded functions in V(w); let
lim wg(3) = wg(®);
| 2|0

3a) They are hdllderian functions in the points of §\{w}
satisfying also the following boundary condition:

3 vp:(0,2n) — R so that w,(a{@))=Vy(@)a(e)/|&(e)]| , Vpe(0,2m)

With regard to the unknown function w(g), the complex
velocity of the fluid resulting by the considered superposition,

must be determined among the functions of class (b), i.e.:

1b) They are holomorphic functions in the domain D=D\{Int7

1 This last condition is equivalent to the assumption that
the functions 1/(a(¢)-z;) (where 2z, is a point placed on the
"right" side of §) and B(y) are from c?(0,2n) having also a
nonvanishing first derivative.
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except the same points ({z,}, r which are singular points of the
same nature as for wg(2);
2b) They are continuous bounded functions in V(») where they
have an identical behaviour with wyz(z) and consequently
lim w(z) = w, = wg(®);
| 2|0
3b) They are holomorphic functions in the points of C U§\{»}

vhere these functions 'also satisfy the following boundary

conditions:
3v,:(0,2m) - R so that wlal(@)) =V, (@) &(9)/|&(e)]| , Vee(0,2m);
3 Vv,:[0,21) = R so that W{P(¥) )=V, (W) B (¢)/|B (@) |+1+imriw (B (¥)-2,)

Yye({0,2m) ,
vhere (1,m,w) are the given functions of time corresponding to
the components of the rototranslation of the profile (C)
evaluated in the point g, ¢ {Int C};

4b) They satisfy the equality:
dz =,
fcw(z) z = [

where [ is an "a priori" given constant (circulation).

2, As a consequence of the requirements imposed on the
functions wp(2z) and w(z) we remark that the function g(z)=w(z)-
-Wz(z), Known together with w{z), is:

- holomorphic in the fluid flow domain D which also contains
the points (z,}, . i

- continuous and bounded in D (the point of infinity
included, where lim g(2) = 0);

2z |0

- h3lderian on c U 6\{w};

917
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(7=1,...,n), ¢! the boundary elements on §. Let us consider now
the approximations ¢&,({) in the points of C, and, respectively,
Fis(t) 1in the points of §\({ c’JUcl) of the function g(z), where
g,({) and g;(t) are suitable interpolating spline functions
related to the divisions d and d’ accordingly.

‘ At once, for every z € D, we have the approximation g"(z)

of g(z), 1i.e.

g°(z) =~

g(t
211t.ifc gdfcz) dC+ 211ti (5.5 g:fz) de .
where the right side could be calculated explicitly sometimes
even precisely ({3, 4). Accepting then the existence of

limg*(z) (=g*(z,)) and limg*(2) (2g*(zi)) ,

Z~2) 2]
by separating the real and imaginary parts of the approximate
equalities

gx=g (2) =g" (2x) and gi=g(zi) =g"(2)) ,

we finally get an agebraic system in the unknowns u,,v,, u‘, vi,
i.e. the real and imaginary parts of g, and gﬁ.obviousli, while
solving this system we should take into account the data
connected with the values of g(z) on ¢ U & (in fact it is a
boundary value problem of Hilbert type for g(z)) and, of course,
the circulation given "a griori"z. Once solved this system, via
the already written Cauchy formula, one gets the approximate

solution g*(z) valid in all the points of the flow domain.

2 In the particular case of a "piecewise" Lagrange
interpolating system, which is essentially an approximation by
spline functions of first order, the algebraic system becomes
linear and it has a unique solution, due to the "a priori" given
circulation.
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In respect of the convergence of the method, if we admit the
“acceptability" of the divisions d and d’ (i.e. for every tec,
or t € Cj there exists max{]t-zjl,|t—zj~1|}<|zj-zj_l|,j=1,...,n),
the uniform continuousness of the approximation ¢ in the
points of CU[z{,zﬂ allows to prove, like in the case of the
unbounded flow [3, 4], the following final result:

THEOREM. For every point z € D,

lim  g¢"(z) = g(2) ,
n-+o
(6,6'-0)
where § and §' are the norms of the acceptable divisions d and

d', respectively.
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