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STUDIA UNIV. BABEŞ-BOLYAI, MATHEMATICA, XXXVI, 1, 1991

CONSIDERATIONS CONCERNING POWER ALGEBRA

I. PURDBA* and N. BOTH*

Dedicated to Profaaaor I.Mimtaan on hla 60th ami w e a ry

Rccoivedi July 2, 1991
«HS tub]act claaalf(cation: 08A0S, 0SAA0

RESUMAI. - Consideraţii privind algebra părţilor. Sa dau doul 
teorema da caracterizare a extensiilor unei algebre universale gi 
anume t
1) Condiţia necesară gi suficientă ca o algebră de părţi să fie 
extensia unei algebra date.
2) Condiţia necesară gi suficientă ca o algebră de părţi să fie 
extensia unei algebre dintr-o varietate dată.

Lat ( A, n)  ba an universal algebra, P(A) the Power set of A 
and neN. Note nn ■ {wefll o is n-ary operation} and we have

" \.UN n" '
The operations from (A,Q) are extended to operations in 

P(A), as follows: if u e nn and c A, i - l,...,n, then
u (Xi,...,Xn) ° {«(Xj,...,xn) I i-1,...,n} (1)
(P(A),fl) is called the Power Algebra of (A,fl) .
Here we continue the study of (P(A),n), considering the 

variety of algebras. For more details see the bibliography.
The following theorem gives a necessary and sufficient 

condition for a structure of n -algebra on P(A) to be obtained 
from an n -algebra on A, by (1).

THEOREM 1. Let (P(A),0) be a structure of universal algebra 
on Power set of A. There exists a structure of universal algebra 
(A,n) on A so that (P(A),(1) may be obtained from (A,(l), by (1), 
if and only if (P(A),fl) verify the conditions:

University of Clu), Faculty of Mathematics, 3400 Cluj-Napoca, Romania



I. PURDEA and N. BOTH

i) The subset A - {{x)lx«A) is a subalgebra ot the algebra 
(P(A) ,fl).

ii) It n € N , 0 4 ftn; Xjf • • • ,X|̂ c A, i m * • * ,n, then

Xi m 4> + u ( X ţ , . . .  ,Xn) “

iii) It neN , wcfln, i * 1| ... fnj X̂ , • • • f • • • ,XjţCA 
and X^jCA, jeJ, then

®(Xj» • • • (X^.j, JJaj X^jfX^j, ... ,Xn) ■

° ( • • • I » Xtj, X^+j,.. ., Xn) ,

thas Is, each (not nullary) operation o e n is distributive 
relatively to union, on each from components.

Proof. Suppose that there is a structure of n-algebra on A, 
so that (P(A) ,fl) is the Power algebra of (A,n). From (1) it 
results that for every neN,o£nn and x1,...(xneA, we have: 

0({X1>,...,{X„}) - {u (Xj, ...,xn)>.
Therefore A  is a subalgebra of the algebra (P(A) ,0), and the 
condition i). Also from (1) follows the condition ii).
Using (1), we hawe:
x e o(Xlf . . . U X xi+1.... Xn) «=4 there existj (J ^

(Xj, ... , X^_j / X^, X^+J , ... ,xn) 6 X1x. . . XXj.j ^jXijxX|+jX. . .
...xxn, so that x - ©(Xj,... ,xi_1,xl,xi+1/... ,xn) «=4
«•# there exists jeJ and (xx,... ,xi_1,xi,xi4.1,... ,xn) e
« XjX... xXt_1xX1jXXl+1x.. ,xXn so that x -
“o(x1,... ,xt_1,xi,xt+1,... ,xn) «i4 there is j « J so that
x e 4U w(X1,...,Xi_1,XtJ,Xi+1.... Xn), and so, the condition

iii) is verified too.
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CONSIDERATIONS CONCERNINO POWER ALGEBRA

Conversely,suppose that (P(A) ,(1) verifies the conditions i), 
ii), iii). From i) it results that for each n e N, u c n„ and

xn € A, the subset wfixţ),...,{xn}) contains the only 
element x, that is, »({x1>,..., {xn}) • {x>. Using this fact, we 
may define the n-ary operation e:An-.A by

®(Xj, • ••**n) " ** (2)
So is defined on A a structure of n-algebra. The symbol u denotes 
both an operation in the gived algebra (P(A),n) and the

V

corresponding operation defined by (2) in A. Let w' be the 
operation defined in P(A) by (1), starting from e in (A,fl). To 
close the proof, it is sufficient to prove the coincidence of the 
operations e and «• on (P(A),fl). Give Xl g A, i - l,...,n.
If Xt « {xt> (i - l,...,n), then from (1) and (2) it results: 
e'({x1y,...,{xn>) «■ {M(x1(...fxn)} - e({x1},...,{xn}). (3)
If one from the sets X1,...,Xn is empty, then from (1) and (i) 
follows: e*(Xlf...,Xn) “ 0 » e(X1,...,Xn) .
If each of the sets X^,...,Xn is nonempty then, from iii) and (3)
follows: u(Xl,...,Xn) - «( U {x^,..., U {xn}) -
“ ^ {w({Xj},.»., {xn}) I (Xj,..•,xn)CXjX...*Xn) —
= U {«' ({XX>,...,{xn>) I (xx,...,xn)€X1x.. .XXn> -
“ «'< l) {Xj},..., U {xn>) - «'(Xj.... Xn).

xi€Xi v x«*,Therefore e - w', that is, the Power-algebra of the algebra (A,Cl) 
coincides with (P(A),0').

The set n of the operation's symbols, together with the 
"arity"-function fl N,is called signature. The fact that o is 
the symbol of a n-ary operation is designet by u e nn.

To give an algebra of signature n on the set A means to give
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a function which associates to each u e tln, an n-ary operation 
on A (designed by o too). If n is a signature and X is a so 
called alphabet (from n0 disjoint set), then we may define the 
algebra of A-words (or the algebra of polynomials) over X, 
inductively, by the folloving:

(i) The elements from X U no are words (polynomials).
(ii) If n £ N*, e £ nn and plf...,pn are words (polynomials) 

then e(p1,...,pn) is a word (a polynomial).
If the n -words over the same alphabet X are expressed by 

xlf...,xn £ X, then the formal eguality .
• p(xx,...,xn) » qfxj,...^,,)
is called fl-identity. This identity is verified in the algebra 
(A,n), if for every replacing of xL by ai c A, i = l,...,n is 
obtained in A the eguality:

p(alr...,an) - q(alf...,an).
Let A be a set of n -identities. The class of all the n - 

algebras which verify each of the identities in A is called 
variety of n -algebras defined by A, denoted by (0,A).

It is shown that, even (A,n) is in the variety (a,A), the 
Power algebra (P(A),n) is not necessarily in the same variety. 
The following theorem characterizes the n -algebras on P(A), 
defined by (1) from (A,n), which belong to a given variety (ft,A).

THEOREM 2. Let A be a set, (P(A),n) an universal algebra on 
P(A) and (0,A) a variety of n -algebras. There is a structure 
(A,n) of universal algebra on A, in the variety (n,A), so that 
(P(A) ,n) is the Power algebra of (A,n), if and only if the 
algebra (P(A),n) verifies the conditions i),ii),iii) from Theorem

6
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1 and the condition

iv) The subalgebra A - {{x}lx c A} of (P(A),n) belongs to 
the variety (n,A).

Proof. From Theorem 1 it follows that there is a structure 
of ft -algebra on A so that (P(A),(1) is the Power algebra of (A,n) 
if and only if (P(A),n) verifies the conditions i), ii) and iii). 
In accordance with i), A  is a subalgebra of (P(A),(1). The 
function f:A P(A),f(x) - {x}, mappes izomorfely the algebra 
(A,fl) on the subalgebra A. Therefore (A,0)e(n,A) if and only if 
Ae(n,A).

COROLLARIES. 1) Let A be a set and (P(A),') a groupoide. 
There is a structure of semigroup (A,*) on A so that
(4). X.Y «• {x.yl x e X,y « Y>, for each X,Y e P(A) , if and only 
if (P(A),*) verifies the conditions:

1) A={{x}lx e A} is a subgroupoide of (P(A),*).
ii) X - ♦ or Y « M  X.Y -
iii) (X U X ').Y - (X.Y) U (X'.Y),

i

X.(yU y ') - (X.Y) U (X.Y*), for each X,X',Y,Y' c A.
iv) (A,*) is a semigroup.

The groupoide which verifies the conditions above is a semigroup.

2) Let A be a set and (P(A),*) a groupoide. There is a group 
structure on A, (A , •) so that the operation in (P(A),‘) is 
defined by (4), if and only if (P(A),*) verifies the above 
conditions i),ii),iii) and (A,-) is a group.

3) Let A be a set and (P(A), + ,.) a structure with two binary 
operations. There is a structure of ring on A, (A, + ,.) so that

X+Y * (x+y I x € X and y c Y>

7
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X.Y ■ {x.y I x « X and y « Y> for aach X,Y c A, 
it and only it ( P ( A ) ) verities the conditionss

i) {x> + <y> and (x).{y) contain all a single element, 
that is, A is subalgebra ot (P(A)

ii) X ■ ♦ or Ï ■ ♦ # X+Y - * and X.Y - *.
iii) (X U X')+Y - (X+Y) U (X'+Y)

X+(Y U Y ’) - (X+Y) U (X+Y')
(X U X').Y - (X.Y) U (X'.Y)
X.(Y U Y*) - (X.Y) U (X.Y*)» tor each X,X*,Y,Y»c A.

iv) (A, + ,.) is a ring.

B I B L I O G R A P H Y

1. I.Purdea, N .Both, Power Algebra ot a Universal Algebra, Mathematics 29 
(52), No.1/1987, 73-79.

2. I.Purdea, N.Both, Properties of Power Algebra, Mathematics 30 (S3),
No.1/1968, 61-65.
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RESUMAT» - Despre lnegelitates Iui Jemen-Hedtaard. în această 
notă obţinem o generalizare pentru funcţionalele liniare şi 
pozitive a inegalităţii lui Jensen-Hadamard; extensii comune 
pentru o .inegalitate a lui J. Săndor [3] şi H. Alzer [1]; precum 
şi alte rezultate Înrudite.

1. Introduction. The famous Jensen-Hadamard inequality states 
that for a (continuous) convex function f:[a,b] -* K (with a<b)

For relation (1) many applications in different branches of 
mathematics have been obtained (See e.g. [2],[3],[4],[5},[6]) and 
certain extensions and generalizations are also known ([3], [1],
[2]) . The aim of this paper is to obtain some new generalizations 
and other relations related to the Jensen-Hadamard inequality.

2. A generalisation. Let f:[a,b] - R be a (continuous) 
convex function and L:C[a,b] -*la positive, linear functional 
on C[a,b] - the space of all continuous functions defined on 
[a,b]. Let us denote by e^fx) - xk, x e [a,b], k e N.

THEOREM 1. If the above conditions are satisfied, with 
L(e0) «• 1 , then:

one has ( 1)

f (L(ex) ) s L(f ) s L(ej) f (b) -f (a) 
b-a

+ bf (a) -af (b)
b-a (2)

Proof. Since f is convex, it is well-known that

J M 6  Forţeni, 79, Harghita County, Romania



J. SÂNDOR

f(x)- f(y)i f; (y)(x-y), x,ye[a,b]
By setting y = L(ex) and applying the positive linear functional 
L we get L(f ) i f ( L ^ )  ) • L(e0) + f; (L(et) ) ’(Me!) - L(ex) ) « f (L(e,) ) 
by L(e0) = 1. This gives the left side of (2), where clearly, 
from a £ e1(x) 5 b we have aL(e0) £ L(ea) £ bL(e0), i.e.
M e ^  « [a,b].
For the right side of (2), let us consider the inequality

f (x)s(x-a)4^- + (b-x) Alăi.b-a b-a

which means intuitively that the graph of f on [a,b] is below the 
line segment joining (a,f(a)) and (b,f(b)). From ex(x) » x, 
e0(x) = 1, x € [a,b] by application of L, after simple
calculations we get the desired result ■

Remarks. 1) For L(f)= -=-i—  /’bf(t)dt we have L(e0) - 1 andb-a
ţ, is positive linear functional. For this L, relation (2) gives 
exactly inequality (1).

n
2) Let wt £ 0 (i=l,...,n) with and let

n Hi
at e [a,b], i=l,...,n. Let us define L (f ) ■ ^  wxf (a4)
Then clearly L is positive linear functional, so by (2) we get:

f wiai> wif <ai> s < JC wiai> f(b)-f(a)1 b f (a)-af(b)
b-a b-a ( 3 )

for a convex function f[a,b] -*■ R. The left side of this relation 
is the well-known Jensen inequality for n numbers. 3

3. On an inequality of Sândor and Alser. In this section we 
shall obtain a unified method to prove certain generalization of
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(1) discovered by J.Sândor [3] and H.Alzer [1]. First we state 
two lemmas.

LEMMA 1. For x e [a,b] one has

(b-a)n/2n"1 s (x-a)n+(b-x)n s (b-a)n, nil (4)

Proof. We consider the functions h:[a,b] - K defined by 
h(x) = (x-a)n + (b-x)n. Here h(a) = h(b) = (b-a)n and 
h( ) = (b-a)n / 2'*'1. Obviously, h'(x) = n[2x-(a+b)]•q(x), withA

q(x) - (x-a)n_2 + (x-a)n-3(b-x) + ... + (b-x)n~2 > 0,
so h'(x) £ 0 for x <, (a+b)/2 ; and h'(x) £ 0 for x £ (a+b)/2.
We get h(x)£h(a) for x e and h(x)£h(b) for x e t-^^.b]
In all cases h(x) £ (b-a)n and h(x) £ (b-a)n / 2n_1 ■

LEMMA 2. For f e Cn[a,b] and t e [a,b] one has

(-i)nf*t (X)dx » g [  (t-a)Mt-b)1

îj-| j e (x-a)"f <n) (x)dx -*■ J b(x-b)nf <n) (x)dxj
(5)

Proof. Applying the generalized partial intégration formula 
(called also "Green-Lagrange identity") we can write:

j e (x-a)nf (n) (x)dx = (t-a)nf <n'1) (t) - n(t-a)n*1f (n'2) (t) + n(n-l) •
• (t-a)n~2f <n"3> (t) -. . . + (-l)kn(n-l) . . . (n-k+1) (t-a)n‘k •
. f in-k*i)(t)+... + (-i)»-in i (t-a)f(t) + (-1)" p n  lf(x)dx

and likewise

J b(x-b)nf <n>(x)dx « -<t-b)nf (n l)<t) + n(t-b)n lf <n'2) (t) - n(n-l) •
• (t-b)n-2f <n-3» (t) + ... + <-l)knn(n-1) . . . (n-k+1) (b-a)nk •
. f (n-k»u ( t) +...+ (-i)"nl (t-b)f (t) +<-l)n /tbnlf (x)dx

Adding these two relations and dividing with n! we obtain (5) ■

11
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He now prove the following:
THEOREM 2. Let f c C2k[a,b] with f<2k>(x) * 0 tor x € (*,b) 

(k i 1, positive integer) and let t c [a,b] be arbitrary. Then:

(-l)l-lf U-1» (t) +/ > ’» »
(«)

and

j bf (x) dx i (t-a)1-(t-b)1 
il (-1)i-if u-n (t) + 1

(2k) I
•{ (b-a)2k*[f <2k-1> (t) -f «ak-1» (a) ] +Sk.a<b(t)}

(7)

where Sk a b (t) - J b(b-x)2kf <2k) (x)dx - 2 j b(b-x)2kf (2k> (x)dx.
If f(2k>(x) > 0, the inequalities are strict.

Proof. He apply Lemma 2 for n = 2k and first the right side 
of (4), then the left side of (4).Since J b = Jb - /* , the
theorem follows by simple computations. From the proofs of (4) 
and (5) we can see that for f<2k)(x) > 0, x € (a,b), the
inequalities in (6) and (7) are strict ■

THEOREM 3. Under the same conditions,

£  <*?:£ )3i*x fU3>/aib\ s rbf(x)dx i £
ţzi 22j(2j+l) ! \ 2 / K  fe►1)

•f (2j)| a+b|̂ 1
(2k) !2ak (b-a)ak [f(2k-1» (b)

(b-a)2̂ 1 . 
2aJ (2 j +1) !
- f (2k-l) (a))

( 8 )

Proof. Let us apply Lemma 2 with t = (a+b)/2. Since

~ {^T-)1 = 2( j»1 for * odd»‘ = °» for à even; with the
notation i=2j+l we easily can find the left side of (8) . In order

12
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to prove the right-hand side inequality, we can remark that
b-a y2k(x-a)2k s if x e

^ f a+b wl
a, a+b

for x 6 

1
(2k) I

, and (b-x)2k s j-EZâ)
, b . So, in all cases the second term is less than

(bf (2k> <x><** - i S r r ‘ (b~fv)2k lf (2k'1) <b> -f <2k'l> <a> 1 ■2zlt <»• (2k) I 2“

Remark. The left side of Theorem 3 is due to J. Sândor [3]. 
THEOREM 4. With the same conditions,

4 E  <brf)1 If <i-1) (a) ♦ ( -l) (1-1> (b) ] ♦ a(hfa~a)“  [f ,2k-1) (b) -2ft il 22k‘2 (2k) 1

- f (aic-i) (a)) s [bf(x)dx s ■(b~a>1 [£<*-*> (a) + ( -1) i'1f <1-1) (b) ]'• 2ft l!
(9)

If f(2k) (x) > 0, the inequalities are strict.
Proof. Setting t-a and t=b in (6), after addition we get the 

left side inequality. By doing the same thing with (7) we get the 
right side of (9) ■

Remark. The right side of (9) is due to H.Alzer [1].

4. Some related inequalities. Finally, we will prove two 
related results.

THEOREM 5. If f e Cn[a,b], then:

~ ira-/.bf,xldx| ‘ 
f— 1 (b-a)2* if (2j> ( a+b} ̂
ft 2« 1 2

+ -- -— fb|f<n)(x) |dx2n • n!

( 1 0 )

Proof. We apply Lemma 2 with t=(a+b)/2. The modulus-

13
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inequality for sums and integrals implies at once the result if 
we observe that )*- = 0, i even; = 2 ,
otherwise. Remark that i = 2j ♦ 1 i n »  j s j - j , where (xj 
denotes the integer part of x ■

Remark. For n = 1 we obtain the inequality

|£(^) - s i/.Bi£,<*>d* <ll>
for f 6 C1[a,b]. This improves the relation

|£ {■sr ) i 5 bh C Ux,dx * i/.“’i£'(x) i*1 <12»

known as "Gallagher - Sobolev inequality" ([7])
THEOREM 6. If f e Cn[a,b] and |f<n>(t)| £ M for all 

t e [a,b]f then

|^bf (x)dx (t-a)i-(t-b)1 
i!

(_1)if (i-D (t) u M(b-a)n<1 
1 nl (13)

Proof. The result follows by an application of Lemma 2 and 
the remark that

J t(x-a)ndx + J b(b-x)ndx s J b((x-a)n+(b-x)n]dx i (b-a)n*1

by Lemma 1 ■
COROLLARY. Under the same conditions,

|2jbf (x)dx+J£ ((-i)4f <1'1> (b) -f u '1) (a) ] \i
, 2M (b-a)n>1 

nl
(14)

Proof. Using (13) for t = a and t = b, respectively, from 
the modulus inequality we get relation (14) ■
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RESUMAT. - Aaupra unor inegalităţi diferenţiala şl integrals 
pantru funcţiile analitice. Fie A^ claaa funcţiilor f 
analitice in discul unitate U » {z; Jz| < 1} care admit
dezvoltarea de forma f(z) = z + an+1zri+1+.. ., z € U, unde

Itèl. Fie g € A n şl fie f ( Z ) = J  g(t)/t dt. Se arată că

dacă g  aatisface inegalitatea |g ' (z) - l| < Mn
unde Mn este dat de ( 2 ) ,  atunci| zf'(z)/f(z) - 1 | < 1, care

este echivalentă cu R e f  g(uz)/ug(z) du> -i- pentru z £ U.
Jo 2

In cazul n = 1 acest rezultat a fost obţinut In (3).

1.Introduction. Let An denote the class of functions f 
which are analytic on the unit disc U={z; I zl <1}, of the form 
£(z) = z+an+1 zn+1 + ...» zcU where n is a positive integer. In 
a recent paper the first author obtained the following result: 
If g e A = satisfies ig'(z) - ll< Mj « 8/(2 + V15) then

zf '(z) 
f (z)
f (z)

- 1 < 1, for z e U
= r  g<t) dt =
Jo t Jo u

where
du

In the present paper we extend the above result to the class 
An, for all nil. This new result allow us to improve some of the 
particular examples given in [3].

^University of Cluj, Faculty of Mathematics, 3400 Cluj-Napoca, Romania 
Thasaoa - Thassoa Kavala - Greece
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2. Preliminaries* If f and g are analytic functions on U, 
and g is univalent then we say that f is subordonate to g , 
written f-<g, or f(z)«g(z) if f(0) = g(0) and f(U)cg(U). We shall 
use the following lemmas to prove our results.

LEMMA 1. [1, p .192]. Let h be a convex function on U fi.e 
h is univalent and h(U) is a convex domain) . If p is analytic in 
V, of the form p(z) = 1 + pnzn +..., zeU, n£l and p satisfies 
the differential subordonation p(z)+z*p*(z) < q(z), then p(z) ■<
■< q(z) , where

LEMMA 2. [2, p.2 01] Let E be a set in the complex plane C and let 
q be an analytic and univalent function on U. Suppose that the 
function H:CxU -* C satisfies

H [q(C) , m C q 1 (O z]CE,
whenever m£n, I ÇI =1 and zeU. If p is analytic on U of the form 
p(z) « q (0) + pnzn + ..., and p satisfies■ • • »

H [p (z) , zp'(z);z] e E, for zeU, then p-<q.

3.Main results.
THEOREM 1. If f€ An, n£l, satisfies 
I f 1 (z) + zfM (z) - ll £M, zeU, (1 )

where M £ Mn, with

M, (n+l ) 2 y/ (n+1)6-4n-n (n+3) 
(n + 1)4-n (n+4) ( 2 )

then

18
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zt'(z) 
f (z) z e u (3)

Proof.Since the inequality (1) can be rewritten as 
f• (z) + z• fM (z) -< 1 + Mz,

by using Lemma 1, we deduce f'(z) <1 + Mz/(n+l) and

f(z)  ̂1t Mz 
z (n*l)2 (4)

Let p(z) « z-£'(z)/f(z) and P(z) « f(z)/z. Since M„£(n+1)2, from 
(4) we deduce P(z) * 0; which shows that the function p is 
analytic in U and the inequality (1) becomes

|p(z)[ zp'(z) + p2(z) ] - il < M, zeU (5) 
The inequality (3) is equivalent to

p ( z H  1+z ■ q(z) (6) 
and to prove (6), by Lemma 2, it is sufficient to check the 
inequality

I P(z) [ mC + (1 + O 2] - il i M (7)
for all m i n ,  I Çl = 1  and zeU. If we let C * e1®, then 

L(m,8,z) - IP(z)[ mC + (1 + O 2] - li 2 =
= I P(z)•£•({ + 1 + m + 2) - ll2 =
■ (2cos0 + m + 2){(2cos0 + m + 2)IP(z)l2 - 
- 2 Re[eieP(z)]> + 1.

From (4) we deduce I P(z) - ll < M/(n+l)2 and Ip (z )I > l-M/(n+l)2. 
For min we have

= (2cos0+m+2)-|P(z) |2-Re lel#P(z) ] =

19
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«• (m+2) ’|P(z) |a+Re (e1#P(z) (2FTz7 -U } » 

a |P(z) | { (n+2) -|P(z) |-|2P(z) - 1 1) a

a |P(z) I* { n+2- M- 2Mn+2
(n+l)a (n+l)

= |P I */ n+l--ÜÎ!_ m 1>0 ,\ (n+l)a /

which shows that L is an increasing function of n.
Hence we deduce
L(m,6, z) Z L(n,6, z) - (2cos0+n+2){(2cos0+n+2) I Pi 2 - 2Re[el®P)}+l£ 
Z (2cos0+n+2){(n+2)• I Pi 2 + 2Re[ei8P(P-l)]}+l £
2: (2cos0+n+2) { (n+2) • I pi 2-2l Pi • I P-ll }+l - 
- (2cos0+n+2) I Pi { (n+2) I Pi -2l P-ll >+l £

a n M
(n+l)aJ j (n + 2 ) M

(n+l)2 — ---M }+l«K(M)(n+l)2 I

Since 0<M<Hn, where Mn given by (2) is the positive root of the 
equation K(M)=M2, we deduce L(m,0,z)£M2, which yields (7). Hence 
the subordonation (6) holds and we obtain (3), which completes 
the proof of Theorem 1.

The following two theorems are versions of Theorem 1.
THEOREM 2. If g € An satisfies lg'(z) - ll <Mn, where Mn is 

given by (2) then

z't'(z) 
f (z) < l , for z e u

20
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THEOREM 3. It g « An satisfies lg'(z) - ll <Mn, where Mn is 
given by (2) then

Re rshlfSLdu > 4  , for z eu. Jo ug(z) 2ug

From (2) we deduce the following particular values of Mn:

8M, yiî+2 = 1.362
and

M, 81
frzi+io

- 2.198 ...

4.Examples.
Example 1. If we let g(z) * (sinXz)/X than g e A2 and if 

|X|sln[l+M2+^M2(M2+2) ) «1.830. . .
then we deduce

|g'(z)-l|=2|sina-y-|i2sh2-l^i < 2sh2i|i<Ma=2.198. . .,

for zeU and by Theorem 3 we obtain

Re SiJ z) >-i » for IzI < 1.830. . ., (8)sinz 2

where

S i U )  = p s i n u *  du = f *  s i n ţ d t .
Jo u Jo t

.We note that in [3] the inequality (8) was proved only for 
I zl <1.504. . .

Exemple 2. If we let g(z)«*(tanXz)/X, then g c A2 and if 
I Xl S arctanVMj “ 0.977...
then we deduce I g • (z) —ll » I tan2Xzl £ tan2l Xzl < tan2l Xl <, M2,

21



for z«U and by Theorem 3 we obtain

Re f1 tan u2 du > - for |z| < 0.977 .. . (9)Jo u tan z 2 11

We note that in [3] the inequality (9) was proved only for 
I zl <0.862...

PETRU T. MOCANU and XANTHOPOULOS I. XANTHOPOULOS
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REZUMAT. - Asupra univalenţei unui operator integral* In această
notă se obţine o condiţie suficientă de univalenţă pentru funcţii 
de forma (1).

In this note we obtain a sufficient condition for univalence 
of function

F.(z) ( 1)

where f(z) » z + a2z2 + . is a regular function in U - 
® {z:l zl <1> and a is a complex number. The following Lemma is due 
to Ch. Pommerenke ([1]).

LEMMA ([1]). Let f(z,t) - ax(t)z+..., ax(t) * 0 be regular 
for each tel = [0,-hx>) in U, and locally absolutely continuous in 
I, locally uniform with respect to U.

For almost all tel suppose

where p(z,t) is regular in U and satisfies Re p(z,t)>0, zcU.
If I ax(t) I --*«>, for t--4«> and f(z#t)/a1(t) forms a normal family in 
U, then for each tel, f(z,t) can be continued regularly in U and 
gives univalent /unction.

THEOREM l. Let a be a complex number, Rea>0 and f(z) *

Vniv&raity of Braşov, Department of Mathematics, 2200 Braşov, Romania
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■ z+..., be a regular function in U. If

<l-|z|2> (a-1) zf'(z) 
f(z) i 1 (2)

for ail z 6 U, then function (1) is regular and univalent in V. 
Proof. Let Ur = {z:lzl<r}, r>0. Because f'(0) = 1 there

f (T \exists r0e(0,l] such that — 1 + ^l2 + ••• * 0 for all z e 
It results that the function

is regular in

g(z) = f (z) i«-i = l+cxz+.

Ur for all aeC and henceIn

(3)

g.(z) = af*u*_1g(u)du = z*+c,— z**1+. . . =z*h(z)• Jo 1 «+1

where h(z)=l+ct “ z+...,
is a regular function in Ur# . Because h(0) = 1 there exists 
^€ ( 0 , ^ ]  such that h(z)  ̂0 in UIt and hence the function 

• Fa (z) =» z(h(z))1/“ = z+..., is regular in Uti for all a e C-{0>. 
It results that the function

H(z,t)

b2 (t)+b2(t)z+..

+ a(eat-l)I f(e~fcz) V e ‘*z (4)

is regular in Uri for all tel and aeC-{0>. Since bx(t) = l+a(e2t- 
-1)*0 for all tel, if Rea>0, there exists r2e(0,rj) such that 
H(z,t)*0 in for all tel and hence the function

f(z,t) = (e_tz) [H(z,t) J1/01 *» a1(t)z+a2(t)z2+. . . (5)
where a1(t) = e-t[l+a(e2t-l) ]1̂ a is regular in Ur> for all

24
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te I (for aţ(t) we choose a fixed branch). We observe that a1(t)#0 
for all t £ I and lim la1(t)l « ».t 00

If p(z,t) is the function, defined by

p ( z ,t) = (6)

then in order to prove that the function p(z,t) is regular and 
with positive real part in U it is sufficient to prove that the 
function

w(z,t) P(z,t)-1 
p(z,t)+1 (7)

i6 regular and lw(z,t)l<l for all zcU and tel. A simple 
calculation yields:

w(z,t) « (l-e-2t) (a-1) (8)f (e^z)
For t*=0, w(z,0) » 0 for all zeU.
For t>0, if I zl =1 then I e-tzl < 1 and hence by maximum 

principle we obtain
lw(z,t)l < max lw(z,t)l “ Iwfe^t)! (9)

1*1— 1

where 6 is a real number.
If u = then |u|**e_t and hence
|w(e16,t)|«|(l-|u|2)(a-l) I (10)
Because |u|<l, from (2), (9) and (10) we conclude that

lw(z,t)l<l for all zeU and t>0. Because w(z,0) - 0 for all zeU 
and lw(z,t)l<l for all zeU and t>0 it results that lw(z,t)l<l for 
all zcU and tel. From Lemma, for t » 0, it results that the 
function f(z,0) defined by (1) is regular and univalent in U.
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THEOREM 2. If f(z) = z+... is a regular and univalent 
function in U and a is a complex number such that,

I a-ll i 1/4, (11)
then the function (1) is regular and univalent in U.

Proof. If f(z) - z+... is regular and univalent in U, then 
we have

zt'(z) z
f (z) * 1- z

(l-|z|2) (a-1) z

for all z € U, and hence.

zt'{z) 1+ z
1- zf (z) ' •" 1-l^T (12)

= |ot-11 (l + |z|)2 < 4 |a-11
for all zeU.

By (11) and (12) it results that (l-|z|2) («-1) 
for all zeU.

From Theorem 1 it results that function Fa(z) is regular and 
univalent in U.

zi'(z)
f (z) s l.
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RESUMAT. - Asupra unşi condiţii suficisnto do univalenţă. In 
lucrare este dat un criteriu de univalenţă care generalizează 
rezultate obţinute de mai mulţi autori.

An interesting extension of the well-known condition for 
univalence due to Becker was obtained by S.Rùscheweyh ([3]).

V.Sing and P.N.Chichra in [4] generalize this result. 
Z.Lewandowski proved in [1] the next extension of univalence 
condition due to Sing and Chichara.

THEOREM*A. Let f(z) = z+... and h(z) = c0 + cxz + ... 
be analytic in U = {z:lzl<l> and f'(z) #0 in U. If there existsv
the numbers a>l/2, s = e+iB, a>0, BcR, k=a/a, such that

zt'(z) _ as a|s| <1 )
f(z)g(z) « a

and

2k zf'(z) 
f (z)g(z) (1 -Izp ) ( 4 ^ Ş L  + s  -52^*1)f(z) g (z)

as
a i (2>

a

for all zeU, then the function f(z) is univalent in U.
The aim of this note is to generalize the Theorem A.
We denote by Ur the disc {z:l zl <r>, r>0, Uj = U 'and by I the

University of Braşov, Department of Mathematics, 2200 Braşov, Romania
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interval [0,«o) of the real axis. The next Theorem is due to Ch. 
Pommerenke ((2 ] ). *

THEOREM B. Let £(z,t) - ax(t)z + ax(t) * 0 be analytic
for all tel in zeUro, 0<r0£l and locally absolutely continuous in 
1, locally uniformly with respect to Uro• For almost all tel 
suppose

where p(z,t) is analytic and satisfies Re p(z,t)>0 in U. If 
lim I (t) l = «> and ffZjtJ/a^t) forms a normal family in \Jro,then
t-*0D

for all tel, f(z,t) can be continued analytically in U and gives 
an univalent function.

THEOREM 1. Let f(z)=z+... be anaytic and f'(z) * 0 in U. 
If there exists a function g(z) = 1+0]^+... analytic in U and the 
complex numbers a,c,X, s = a+iB, a>0, BeB such that

(3)

Re(2aX-s)>0, Rea>0 
c[l+c(e2at-l)] * 0 for all tel

(4)
(5)

and

f (z)g(z)
zf'(z) (6 )

|z|2k( f (z)g(z)
zf '(z) - elk) + (l-|z|2k) (c - elk) s

s (cXk|
(7)

for all zeU, then the function f(z) is univalent in U.
Proof. The function
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h(z,t) - l+c(e2at - 1) g(e~at z) - b0(t) + bx(t)z + ... (8)
is analytic in U for all tel. Because Rea>o, from (5) we 
conclude that there exists a number p>0 such that 
I b0(t) I « ll + c(e2at - 1)1 ip for all tel.

It results that there exists a number r1( 0<r1il such 
that h(z,t)^0 for all zeUrl and tel, and hence the function

f(z,t) - f(e_8tz) [h(z,t) ]* = ax(t) z+ ... (9)
is analytic in Url for all tel (in (9) we choose a fixed branch)

By (4) and (5) it results that
a1(t) « e (2al_a)t[c+(l-c)e-2at]* * 0 (10)

for all tel and lim la.(t)l = «>. Thus f(z,t)/a,(t) forms a 
normal family of analytic functions in Ur0, r0 - rx/2.

By uniform continuity of the function df(z,t)/dt on 
Ur0 x [0,T], where T>0 is an arbitrarily fixed number, it results 
that f(z,t) is local absolutely continuous in I, uniformly with 
respect to Uro.

In order to prove that the function

p ( z . t )  - * a t % - C> /  M ( ^ t l  ( I D

is analytic and with positive real part in U or all tel, it is 
sufficient to prove that the function

w(z,t) - }p(z, t) + 1

is analytic in U and lw(z,t)l<l for all zeU and tel. 
By a simple calculation we obtain

( 12)
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, t) m (1+S) A ( Z, t ) + 1 - 2a ♦ 8 
' (1-8) A(z,t) + 1 + 2a - s ( 1 3 )

A (z, t)*e -a.t e~atzf/(e~ltz) - 1 «•

♦ (

cXf (e'atz)g(e*atz)
x 0 -2»t)f e,~atzf/(e~,tz) + e~»tzg/(e~*tz) \ 

V Xf(e"atz) g(e‘atz) J

(14)

fcz) g I
Because f'(z)*»0 in U and from (6) it results that f(z)g(z)/z*Oin 
U, we conclude that the function A(z,t) is analytic in U for all 
tel.

The ineqality lw(z,t)l<l is equivalent to the inequality
I A(z,t) + 1 - kl < I kl , k = (15)

or

ic -2«t/ e~*tz f / (e~,tz) _ ic) +
( cXf  (e~atz ) g ( e “atz) )

+ ( 1. e -2«t)( e~atz f / (e~6tz) + e ^ z g ^ e ^ z )  _ A  < ,k|  
V X f ( e ‘atz g ( e " atz) )

(16)

For t = 0 by (6) it results that

|A(z, 0) + 1 - k| zf'(z)
ckf (z)g(z) < |k|

for all zeU.
If t>0, because a = Re s>0, we have I e-8t zl < 1 for all z,
Izl = 1 ,  and hence

lA(z,t) + 1 - kl 5. max lA(z,t) + 1 - kl = (17)I zl =1
= I A(eie,t) + 1 - kl ,

where 6 is a real number. If u = g-et+id^ then I ul = e“at 
and e_2at - I ul2k, k=a/a.

By (14), (16), (7) and (17), because u e U we obtain
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|A(Z,t) ♦ 1 - *1 < IM“( uf Mu) 
elf (u)g(u) ♦

* ( i  -  ^ i k

It results that the ineqality (15) holds true for all zeU and 
tel. Because the function A(z,t) is analytic and lw(z,t)l<l 
for all zeU and tel, by (13) it results that the function w(z,t) 
is analytic in U for all reI.

By Theorem B, for t»0, it results that function f(z) is 
univalent in U.

Remarks 1. If Re 01/2 then condition (5) of the Theorem 
1 holds true.

2. If in Theorem 1, a is a real number, a>l/2, X-s 
and g(z) -h(z)/c, where h(z) » c+c1z+... is an analytic function 
in U, then from Theorem 1 we obtain Theorem A.

THEOREM 2. Let f(z) “ z + ... be an analytic function and 
f'(z) * 0 In U. If there exists the complex numbers 1, k such 
that Rek>0, Re(kX)>l/2, I kl - ll <1 and

(1 - |z|aR*k )I(i-A) zf'(z) 
f (z) +x 1+ zf"(z) 

t'(z)
- Ik I < |X|Rek (18)

for all zeU, then the function f(z) is univalent in U.
Proof. If in Theorem 1, c**l/(Xk), g(z)->zf ' (z)/f(z), then

Re(2aX-s)«> aRe(2kX-s/e)>0, Rec » Rel/(Xk) > 1/2, because
1 11 1111 — 1=- < -s-!- , . y . -/■ . - elk = 0 and hence the conditions

Xk I I Xk| f(z)g(z)
(4), (5) and (6) hold true. Replacing in the inequality (7) c 
with 1/Xk and the function g(z) with zf'(z)/f(z) we obtain
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|(l-|z|ak) f(z) \ f'(z) ) I i |Xk| (19)

For z - 0 and Rek>0 the inequality (19). holds true. If z #0, 
zcU and Rek >0 we have

|l-|z|21t| » |i-e2klnlzl| = |2 kln|z|^1e 2kUn|,|dt| <

£. |2kln|z|| fl|e2ktlnlzl|dt = |2kln|z| f1eatR,klB*xldt| -
Jo Jo

_  h .1 i - e 2Reklnlz l _  |k I 
" 1 1  Rek "Rek <l-|j|aR«k)

and hence

I H z H  * J|l<i-|z|aR*k> (2°)

By (18) and (20) it results that

|l-|z|ak|-|(l-X) + x(n- ) - Xk| * -M|X|Rek-|Xk|

and hence the inequality (19) holds true.
From Theorem 1 it results that the function f(z) is univalent in 
U .
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RESUMAT. - Condiţii suficienta da oonvaxitata da ordin a fi da 
univalenţX cara folosesc darivata lui Schwars. Fie f o funcţie 
olomorfă pa diacul unitate U din planul complex, de forma

f(z) - z+an+1zn+1+... , nil
8a notează cu K(a), a<l, clasa funcţiilor da forma da mai sus, 
cu n • 1, cara sint convexe de ordin a. Atunci K(0) - K este 
clasa funcţiilor convexa. Fia A * C. în lucrare sa determini 
domenii D,D', cara depind de a, A ţi n, pentru care au loc 
propr ietăţ ila

<p(f,P;z)»P Z^'}Z) +Z 2 {f ; z} €D, Z€U -► f6K(«) f/(z)
q>(f, P;z) =[ +i ! +pza{f ;z)€D', Z6U -* f€K

V f (z) /
unda prin <f;s> s-a notat darivata lui Schwarx a lui f In s. 
Particularizind apoi pa A ţi lulnd a» -1/2 slnt obţinute condiţii 
suficiente de univalenţX.

1.Introduction. Let U be the unit disk in the complex plane. 
We define A to be the class of all analytic functions f on U 
normalized by f(0)»0 and f'(0)-l. An analytic function f on U is 
said to be convex order a, a<l, if the following inequality is 
satisfied

Re [ zf"(z)/f'(z) + 1 ] > a, z e U.
We denote by K(a) the class of all such functions f which 

belong to A. Note that K(0)=K is the class of convex functions.
a

It is well known that a function fcK(a) is univalent if a £ -1/2. 
For an analytic function f on U and for zeU let {f;z> be the
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Schwartzian derivative of £ in z

{f;z} =

The following theorem was obtained in [1]: if f < A and 
p(u,v), u,v £ C is a complex - valued function which satisfies 
some given conditions then

Re p(zf "  (z)/f•(z) + 1 , z2{f;z>) > 0 * fe K.
’ Some particular cases of this result, which were obtained 

by particularizing the function p, are also given in [ 1 ]. We
insist here on two of them:

Re B i 0, Re [zf "  (z)/f•(z)+1+Bz2{f;z>] > 0 * f K (1)
Re [ (zf "  (z)/f•(z) + l)2 + z2{f;z>] > 0 * f K (2)
The purpose of this paper is to find domains D c C, D' c C, 

for which the following statements are true:
9 ( f , B ; z ) = Bzf "  (z)/f•(z)+z2{f;z> e D * feK(a) (3)
9 ( f, ft; z) = (1 + zf''(z)/f’(z))2 + Bz2{f;z> D' * fcK (4)

where f e A, 6 € C and a<l. The domains D' obtained for the 
assertion (4) are larger than the right half-plane However, for 
some casses of the assertion (3), depending on a and 6, it is 
necessary to consider f of the special form f(z) « z+an+1zn+1+, . . , 
with n£l. This stronger hypothesis assures in some casses that 
D contains the right half-plane, so (3) generalizes (1), or in 
some other casses even the existence of D. The idea to consider 
f of this form for the reasons mentioned above belongs to 
professor P.T.Mocanu, to whom the author is indebted.
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2. Preliminaries. Let p and q be analytic functions on U. 
We say that p is subordinated to q and write p(z) ■< q(z) i f q i s  
univalent, p(0) ” 0 and p(U) c q(U). Let P be the class of all 
analytic functions p on U with positive real part normalized by 
p(0) “ 1. It is obvious that p«P if and only if p(z)-<(l+z) / (1-z). 
The folowing lemma will be repeatedly used:

LEMMA 1 ([2]). Let p be analytic on U.If p has the form 
p(z) ■ l+pnzn+..., nil, and p f P then there exists a point z0eU 
such that p(z0) = is, s c R, z0p'(z0) s - n(l + s2)/2 .

He shall also use the next lemmas.
LEMMA 2. If s(f,B;z) is analytic on U, where if is defined 

by relation (3) and f e A, 6 e C then f'(z) * 0 for all z c U.
Proof. Let us presume that there exists a zero z0 of order 

m i l  for f'. Then z0 * 0 and f"(z)/f'(z) - m/ (z-z0) + ..., so

<p(f,P;z) Zoin(m+2)
(z-z0)a

It follows that m(m+2) - 0, contradiction.
LEMMA 3. Let B be a complex number satisfying B * 2m/(m+2) 

tor every Integer m, m i 1. If the function ÿ(f,0;z) defined by 
(4) is analytic on U, where f « A, then f  is a nonvanlshlng 
function on U.

Proof. Presuming again that z0 is a zero of order m i l  for 
f  we obtain

*<f,P;z) - z02m(m - P - ----1—2 (z - z0)3
so 6 - 2m/(m+2) which is impossible.
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3. Main résulta. Let f e A be a function of the form 
f(z) = z + an+1zn+1 + ..., n * 1 ,

(5) and let a be real, o < 1 and 0 - flj + 102 e C. Let f(f,B;z) 
be the function defined by (3). We denote by y(s), s c E, the 
following curve

y(s) = ( 1 - «) ( Yi ( s ) + iYj(s))
Yl(8) = q-.-.-g3» . p2s + _ Pi
Y2(e) = (Pj - o)s - p2

Consider now the closed set G(a,B,n) defined by
G(a,0,n) = {u+iv e C: 3s e E such that u s (l-o)Yj(s), 

v “ (l-o)Y2 (8)>« under the hypothesis that a,0 ,n are such that 
G(a,6 ,n) does not contain the origin. Then we may define the 
domain D(a,0,n) as being the connected component of the 
complement of G(a,0,n) which contains the origin. As is easy to

I

see, G(a,B,n) may be a closed set which has a parabola as border,j 
or a line, or a half-line, while D(a,B,n) is the interior or thej
exterior of parabola, or a half-plane, or a plane with a slit;I
along a half-line. Under these hypotheses and considerations the 
following theorem is thrue.

THEOREM 1. If 9 (f ,6 ;z) belongs to D(a,B,n) for every z e II 
then f € K(a).

Proof. Let p be defined the relation (l-a)p(z) + o =
= zf*'(z)/f•(z) + 1. Then j

<p (f, P;z) =P(l-«) (p(z) -1 ) [2 zp'(z) -2 ap(z) -
-(l-a)p2(z)+l+a] j

Since 9 (f,0 ;z) is analytic it follows from Lemma 2 that fj'
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is a nonvanishing function, so p is analytic on U. Considering
(5) it is obvious that p has the form p(z) - 1 + pnzn + ... It is 
also easy to see that f e K(a) if and only if p e P. Let us 
presume that p f P. Applying Lemma 1 we get a point z0 e U such 
that p(z0) “ is and z0p'(Zo) £ -n(l + s2)/2 , s e I. If we let 
t(f,B;z0) “ u + iv then relation (6 ) gives u s (l-a)Yi(s), v » 
(l-a)v2(») so f(f,B;z0) t G(a,B,n).

But this last assertion contradicts hypothesis and the proof 
is finished. He concentrate now on the assertion (4).

THEOREM 2. Let t too in A and lot fi bo real and posltivo, 
B*2m/(m+2) for all intogora ml. If ţ(f,B;z) is defined toy (4)

and

then f t K.
Proof. From Lemma 3 it follows that f'(z) * 0 for all zeU 

so p(z) - 1 + zf ' ' (z)/f ' (z) is analytic on U and p(0) - 1. We 
have fcK if and only if p c P. Using p the function ţ gets the 
form

♦ (f,P;z) = p a(z) + -6- (2zp/(z) + 1 - p a(z)] (7)

Presuming that p ( P we find by Lemma 1 a point z0 « U such 
that p(z0) - is, ZqP '(z0)“t ^ -(l+s2)/2. So, by (7),

i|r(f,p>z0) = -sa + (2 t + 1 + sa) i -sa i 0

which contradicts the subordination from hypothesis and the proof 
is finished.

SUFFICIENT CONDITIONS FOR CONVEXITY OF ORDER a AND UNIVALENCE
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Remark. 1f we etate in the hypotheses of Theorem 2 which 
concern B only that 6 £ 0 the theorem remains valid under the 
supplemental assumption that f'(z) * 0 for all z < U.

The next theorem can be obtained in an analogous way ae 
Theorem 2.

THEOREM 3. Let fcA and let 6 - A1+iB2 with B1 £ 0 and 02*0. 
If f(f,£;z) is defined by (4) then the following assertions are 
true ;

a) If &2 > 0 and f(f,B;z) e D1 for all z e U then f e K.
b) If &2 < 0 and ÿ(f,fi;z) e D2 for all z e U then f < K.

Here D2 - {u+iv e Cs u>0 or v>0}, D2 = {u+iv « Cs u> 0 or v<0 >.

4. Particular oases. In this section we shall point out some
important consequences of Theorem 1.

Case I. B = 0. For o M  we have

D (a, 0, n) = {u + ivi u > - ~ ~ - v 2 + (1 + « - n)} .
2 «2 (l-«) 2

COROLLARY 1. a) If a < 0, £ e A and z2{f;z> e D(af0,l) for 
all z t U then f e K(a).

b) If a € (0,1), f has the form (5)with n i 2 
and z2 (f;z) e D(a,0,n) for ali z e U then f e K(a).

Taking a = -1/2 in the above corollary we obtain the 
following sufficient condition of univalence:

THEOREM 4. If £ € A and z2{f;z> € D(-l/2,0,1)for ali z e U 
then f is univalent on U.

For o = 0 the following corollary is valid:
COROLLARY 2. If £ has the form (5)with n £ 2 then
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z2{f;z) « 2(n-l) * -• £ € K.(1 -z) 2

Case II. 6 • o + iB2, whare a < 1 and B2 * 0.
COROLLARY 3. a) 1/ £ e A and fl2 > 0 then 

Im [Bzf' ' (z) /£' (z) + za{£;z>] > (a-l)B2, z « U 4 £ e K(a). 
to) If t € k and B2 < 0 then

Im [Bzf "  (z)/f (z) + z2 {£;z }] < (a-l)B2, z e U 4 f e K(a) .
If a = 0 Corollary 3 becomes 
COROLLARY 3•. If f 6 A and x e R then 

Re [zf••(z)/f•(z) + 1] + x Im z2{f;z} >0, z e U 4 f e K. 
Case III. 6 » a.
COROLLARY 4. If a < 1 and f has the form (5) with n + a>l

then

tt + 2 a{f;z^  2 (1 -a) (n + « - 1 )---2—  -  f € K(«) .f'(z) (1 -z) 2

Case IV. fl > 0, 6 4 a.
COROLLARY 5. a) If f e A and a S 0 then

Bzf "  (z)/f'(z) + z2 {f;z> € D(a, 6 , 1), z « U 4 f « K(a).
b) If f has the form (5) with n £ 1 and a « 0

then Bzf''(z)/f'(z) + z2{f;z) e D(0, 6 , n), z e U 4 f e K.
c) If a e  (0,1) and f has the form (5) with

l+o-n-2fl < 0 then
Bzf''(z)/f'(z) + z2{f;z} c D(a, B, n), z « U 4 f « K(a) .
In this case we have

D(a,P,n) - (u+ivs  u > -— ----"g. .v2 + ( -p\(l-«) ) •
2 (1 -a) (p-a) 2 \ 2 /

Remark 1. Taking a - -1/2 in Corollary 3 and in Corollary
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5, a), we can obtain other sufficient conditions of univalence.
Remark 2. Taking n - 1 in Corollary 5,b), we find the result

(1 ) from [1 ].
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RESUMAT. - O taoraai da tip Bogolubov pantru incluziuni 
funţional- diferenţiala cu derivat! Bukubara. Sint studiata 
incluziunile funcţional-diferanţiala (1) in care derivata esta in 
sensul lui Hukuhara. Rezultatele obţinute extind rezultatele mai 
multor autori.

0. Introduction. The purpose of the present paper is to give 
a basic theorem of the method of averaging for functional- 
differential inclusions with Hukuhara's derivative, i.e. for 
inclusions of the form

DhX(t) e F(t,Xt) (1)
Here DhX denotes the Hukuhara's derivative ([3]) of a 

multivalued mapping X, Xt î e --» Xt(e) - X(t + e) for e e[-r,0], 
r > 0 and F is a map from [0,T] x c0 into CC(Kn), where CC(Kn) 
denotes the collection of all nonempty compact subsets of the 
compact, convex subsets of Euclidean space Rn i.e. with conv ttn, 
and Cq is a metric space of all continuous mapping ţ : [-r,0 ] 
conv Rn.
In Section 1 we shall give some fundamental definitions and 
conventions. Section 2 contains the proof of the existence 
theorem for (1). The results obtain in this section generalize 
the results of Filippov ([5]). Further on, in Section 3 we prove 
the Bogolubov's type theorem for inclusions (1). The results of 
this section generalize the results of A.W. Plotnikov ([7]) and 
of M. Kisielewicz ([6 ]).
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1. Notations and définitions. Lofs donote toy conv Rn the1 
family of all nonempty compact and convex subsets of n- 
dimensional Euclidian space Rn endoved with the Hausdorff metric 
H defined by

for A,B e conv Rn .
It is known ([4]) that (conv Rn,H) is a complete metric space. 
Let CC(Rn) denote the space of all nonempty compact subsets of 
conv Rn. By d we will denote the distance between two collections 
A,B e CC(Rn) i.e.

for a,b e conv Rn.
Let us denote by p a distance between A e CC(Rn) and B « 
conv Rn defined by

Let X : [a,B] — » conv Rn be a given mapping. Using the definition 
of the difference in conv Rn the Hukuhara derivative DhX ([3]) of 
X may be introduced in the following way:

DhX(t) = lim-i (X(L+h) -X(t) ] = lim-i (X (t)-x (t -x) J , (2)
h-o- O h-0* «

where X is assumed to belong to the class D (clearly not empty) 
of all functions such that both differences in (2) are possible. 
The mapping X : (ot,B) — ► conv Rn will be called Hukuhara 
diferentiable in (a,B) if DhX exists for every t e (o,6).

H(A,B) = max / sup inf|a-b|, sup inf|a-

d(A,B) = max t max min H(a,b), max min H(a,b)
\ RCA b€B b€B R€A

p (A, B) = max I sup inf H(a,b) , sup inf H(a,b)
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A function X > [a,6 ] --* conv Rn is called absolutely 
continuous ([1 ]) if for every positive number e there is a 
positive number S such that

k
g  H(X(P1) . x f c ^ ) )  < e

whenever « 1 < flj £ « 2 < 62 S ♦••£ ak < Bk and

g  Oi - «i> <

The Aumann's-Hukuhara integral for multifunction F:[a,B] — ►
CC(Rn) is the colection G e CC(Rn) defined by

«
G - {g e conv R": g ■ f*£ (t)dt for f (t) e F(t)}

where f:(a,B] ► conv Rn and integral of f on a set [a,6 ] is the
Hukuhara integral defined in the paper ([3]).

Finally, denote by Ca the metric space of all continuous 
mapping *:[-r,a] — ♦ conv Rn, where a £ 0 , r > 0 , with metric pa 
defined by

= sup H(*(t),T(t)) for *,TeC..

We say that X is a solution of (1) with the initial function *eC0 

if X is a absolutely continuous function from [~r,T] into 
conv Rn with the properties:

(a) X(t) * *(t) for t e [-r,0],
(b) X satisfies (1) for a.e. t e [0,T].
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2. Existence theorem. Let F:[0,T] x c0 — * cc(Rn) satisfy 
the following conditions:
1° F(•,U) : [0,T] — ► CC(Rn) is measurable for fixed U e C0 ;
2° F(t, • ) : C0 — ► CC(Rn) is Lipschitzean with respect to U, i.e. 
there exists a Lebesque integrable function K : [0,T] R+ such 
that d(F(t,U), F(t,V)) S K(t)p0 (U,V);
3° there exists a M > 0 such that d(F(t,U),{0}) £ M for (t,U) 
€ [0,T] x C0.

THEOREM 1. Let £:[0,T] — » R be a nonnegative Lebeaque

integrable function and let * € C0 be absolutely continuous. 
Suppose F : [0,T] x c0 — ► CC(Rn) satisfies 1° - 3° and let 
Y : [-r,T] — ► conv Rn by an absolutely continuous mapping spch 
that:

4° Y (t) » *(t) for t « [-r,0];
5° p(DhY(t), F(t,Yt)) S i(t) for a.e. t e [0,T].

. Then there is a solution X of the initial value problem

(3) j DhX (t) € F(t,Xt) for a.e. te[0,T]
\ X(t) = $(t) for t e [-r,0 ]

such that

H(X(t),Y(t)) 5 t(t) for t e [0,T] and (4)
H(DhX(t) ,DhY(t)) 6 (t) +K(t) ( (t) for a.e. t e [0,T] (5)

where
t

4 (t) * f *4 (s) exp [m(t) - m(s) ] ds and m(t) - flC(t)dt.
0 o

Proof. We shall define a Cauchy sequence of successive
approximations (Xn) , such that their derivatives (0hXn) form also
a Cauchy sequence on [0,T].
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Let Y i [**7 ,7 ] conv En be a given absolutely continuous 
function satisfying conditions 4° and 5°. Since (in general) 
DhY(t) ( F(t,Yt) for a.e. t e (0,T) then there exists a 
measurable function V° such that V°(t) e F(t,Yt) and 
H(V°(t),DhY(t)) - p(DhY(t),F(t,Yt)) S *(t) for a.e. t e [0,T]. 
Let us call X1 the absolutely continuous function defined by

X 1 (t) - ®(t) for t 6 [-r,0j
X 1 (t) ■ 4>(0) + f tV°(s)ds for t € [0,T]

• Jo

In this definition we mean the integral in Hukuhara sense.
We have

H(Xl(t) ,Y(t) ) - H(*(0) Y(0) + £ CDhY(s)ds) *

i H (♦ (0) ,Y(0) ) + i

i j*fcH(V°(s) ,DhY(s) )ds i j tb(B)da

for t « [0,T].
We shall define now a sequence of absolutely continuous functions 
(X*) in the following way

X i(t) - *(t) for t 6 I —r, 0 ]
X 1 (t) * 4M0) + J tV 1‘1 (s)ds for a.e. t € [0,T] and ijtl

where V 1 - 1 is a measurable function such that Vt_1 (t) e F(t,Xt_1)

and .DfcX^Mt)) - p(DhX i'1 (t) .FU.xţ'1) )
for a.e. t e [0,T]. Hence for a.e. t e[0,T) we obtain
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HtDfcXMt) ,DhX 1-Mt))-p(DhX i-1 (t>,P(t,Xt‘-‘))*
-p(V‘-a(t) ,P(t,Xt1*l))id(F(t,Xt1'a) ,F(i.xţml))t
SK<t) PotXt1"1^»1'2) -K(t) sup H(Xa”a (t+ô) ,X 1'* (t♦©) ) t
£K(t) [ sup ( sup H(X1_1 (t) ,Xl’a(t) ) ) ] i
sK(t) sup H(X1_l(t) , X 1_a (t) ) sK(t) supH(X1' 1 (x) ,Xi a<t)) . -tittc Oitit

By the definition of X2 we have

X 2 (t) » G(t) for t € [-r,0]
X a(t) » «(0) + f tV 1 (s)ds for a.e. t e 10,T)

Jo

Therefore

DhX a(t) = V M t )  € P(t,Xt) and H (DhX a (t) ̂ „ X 1 (t) ) =
« p(F(t,Xt1) ,DhX 1 (t) ) = p(F(t,x£),V°(t))s d<F<t,Yt) ,F(t,x£))s 
£ K(t)p0 (Yt,x£) = K(t) sup H(Y(t+e) ,X1 (t+e) ) £

-ItOiO

s K(t) t sup ( sup H(Y(x),X1 (T)))]i K(t) ( sup H(Y(t),X1 (t))]s-z*a« o -tiTit*» -r»t»t
£ K (t) I sup H(Y(t ),X1 (t))] £ K(t) /* *A (s)ds.

0 * ?« t  Jo

Furtheremore, for t 6 [0,T] we have

H(XJ(t) ,xMt)>£ H|£lV 1 (3 )ds,£tV°(s)dsJ £ £ tH(V1(B) ,V°(s))d9£

£ /■td(F(s,X.1),F(s#Y.))ds £ ]TtK(s)p0<xi,Y(1)dBs 
/ o  / o

$ [ ^ A  (s)ds]dr£ £ fcA(s) [£*K(r)drJdss

£ f CA ( s ) [m ( t ) -m < s ) ] ds.
Jo

Ueing the induction we can show that for every i £ 2

T. JANIAX «nd K. LUCtAK - KUM0RSK
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K(t) 1*6(8) de (6 )

for a.e. t c [0,T] and

H(Xi(t),X1'1 (t))i P  'm ■ t/4~nll8,) -1 1  6 (e) ds for t€ [0,T] . (7)(l-l) !
Assuma wa hava defined our functions X1 up to i-n. Let us 

consider (Xn). By measurability of a multivalues mapping F(*,U) 
there exists a measurable function Vn such that

V “(t) 6 F(t,Xtn) and H(Vn(t),DhX n(t))« p (F (t, Xtn) ,DhX “ (t) )
for a.e. t € [0 ,T].
Define now Xn+1 by setting

xn*Mt) - « (t) for t € l-r,0]
xntl(t) - « (0) * f\«(e)dB Jo for a.e. t € [0,T]

We have »

H(DhX n‘Mt) ,DhX n(t) ) - H(V“(t) ,Vn l(t) ) i d(F(t,Xtn) .FU.X?'1) ) S

i K(t)p0(xtn,xr1)* K(t) /0* ■ 7n_mi')Y ̂ ” 1 6 (s)ds
for a.e. t e [0 ,T].
He obtain

H (X"*1 ( t) , Y ( t) ) S H (X"*1 ( t) , X n (t) ) + H(X n(t) ,Xnl(t) ) + . . . +

+ H (X1 (t), Y (t) ) & J efi (s) ds+j* (s) [m(t) -m(s) ] ds+. . . +

+ fTft (s) --- 3 .dsi f *6 (s) exp [m(t) -m(s) ] ds - {(t)
Jo n 1 Jo

for t « [0,T]. Similary for a.e. t € [0fT] we have
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H(DhX n*1 (t) ,DhY(t) ) < ô (t) K(t) j" C0(8)exp(m(t)-m(8 )]ds-
- Mt) + K(t)U°t) .

The inequality (6 ) and (7) imply that (Xn) is a Cauchy sequence 
of C|0 (Tj, where C(0>Tj is the metric space of all continuous 
mapping of [0,T] into conv Rn.
Let X = lim X n. Similary from (6 ) it follows that (Vn) converges 
pointwise almost everywhere to a measurable function V. Hence, 
passing to the limit as n-*« in (8 ) we get

X(t) = *(t) for t € [-1 ,0 ]
' X ( t) *= «(0) + CV ( s)ds for a.e. t e [0,T]Jo

But for a.e. t e [0,T] V n(t) e F(t,x") and H(V"(t) ,DbX n(t) )- 
- p (DhX n ( t ) , F ( t, Xtn) ) .

Therefore for a.e. t € [0,T] we have

H (V n ( t) , DhX " ( t) ) - p(DhX “(t) ,F(t,Xt")) «; p(DhX n(t) ,F(t,Xt) ) +
+ d(F(t,Xt) ,F(t,Xtn) ) .

Hence we obtain

{X ( t) = (t) for t e [-r,0]
DhX(t) e F <t,Xt) for a.e. t e [0,T]

which completes the proof.

T. JANIAK and B. LUCZAK - KUMORSK

3.The Bogolubov's type theorem. In this part we will study 
differential inclusions of the form

DhX(t) 6 eF(t,Xt) for a.e. t e [0,~) 
X(t) = $(t) for t 6 [-r,0 ] (9)

where F : (0,«>)xCo ♦ CC(Rn) , 9 : [-r,0] conv Rn is a given
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absolutely continuous multifunction, e > o is a small parameter. 
He shall consider (9) together with the middling inclusions

/ DhY(t) 6 *F0(Yt) fox a. e. t i O  ,10»
I Y (t) - $(t) for t e [-1 ,0 ]

where F0 : C0 — ► CC(Rn) and
6° lim d(F0 (U) , •^fTF(t,U)dt) = 0

T - »  T Jo

where the integral is in Aumann's-Hukuhara's sense.
THEOREM 2. Suppose F:[0,«o)xc0 CC(Rn) satisfies the

conditions 1° - 3° and 6°. Then, for each p > 0 and T > 0 thore 
exists e° (p,T) > 0 such that for every e e (0,e°] the following 
conditions are satisfied:

(i) for each solution Y(*) of (10) there exists a solution X(*) 
of (9) such that:

H(X(t,Y (t) ) «; m for t « [-r,T/e ) (11)
(ii) for each solution X(*) of (9) there exists a solution Y(*) 
of (1 0 ) such that (1 1 ) holds.

Proof. In the first step of the proof we show the boundary 
of mapping F0 :C0 — ► conv Rn. Observe that

d(Fo(U),{0}) S d(F0 (U) TF(s,U)ds + d(-i/‘TF(8 /U)ds, (0)) i
T Jo T Jo

s d(F0 (U) ,-^fTF(s,U)ds) + ± f Td(F(s,U) , (0))ds s 
T Jo T Jo i

i d(F0 (U) ,-ifTF(s<U)ds) + M.T Jo
Hence, passing to the limit as T -• « and by virtue of 6° we have 
d(F0 (U),{0}) S M.
Furthermore the mapping F0 satisfies the Lipschitz condition with 
a number k£ 0 because
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d(F0 (U) ,F0 (U) ) - d(lim-ifVF(t,U)dt, lim-i /“TF(t,0)dt -T"« T JO T-m T J0

= lim-id(f TF(t,U)dt, f TF(t,U)dt) *T—  T Jo Jo
s. lim-i (fTd(F(t,ü) ,F(t,ü) )dt s lim-if^Potü.üJdt T—  T Jo T—  TJq
- kp0(U,U) .

Now we can prove the inequality (11).
Let Y(-) be a solution of (10) on (-r,«). To prove this 

theorem we shall consider the solution X(*) in such a way that, 
for te[-r,0], X(t) = Y(t) = *(t), hence H(X(t),Y(t)) « 0 < p. 
We will prove inequality (11) on the interval [0,T/e]. To do this 
divide the interval [0,T/e] on m-subintervals where t4

= iT/em. i = 0,1,2,... ,m-l and write a solution Y(*) in the 
form

Y(t) « #(t) for t € [-r,0]
Y (t) - Y(t1) f ej^tV(T)dt for t 6 It1,t1.1]

where V(t) e F0 (Yt) . Let us consider a function Y1(*) defined by

Y 1 (t) = •(t) for t € (-r,0]
Y l(t) - Y(tt) + eUMtji) (t-tj) for t € Ct4,t4u) (13)

where u1(*) is measurable multifunction such that U 1 (t) e P0 (Yt1t) 
and

By virtue of (12) for every t e (t4,t4.,.4) we have

H(Y(t), Y 1(t1) ) « H |Y(t1)+e|tV(T)dt,Yl(t1)J s H(Y(t1),YMt4>) ♦
+ eMit-tj) i 0i+eM(t-ti) where ôj= H(Y(t4) ,Y1(t1) ), i*l, ... ,m-l
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Furthermore for t e [ti#tl+1], d(F0 (Ye) ,F0 (Ye\) ) s kp^Y^Y*1,). 
But

p0<Yt,Yt\) S p0< W  ♦ Po<**,'<> -
» sup H(Y(t+s),Y(t1+s)) + sup H(Y(tA+s),Y1 (ti+s) ) .-itato -r< s * 0

By the definition of Y(*) and the properties of multifunction 
Fq we have

sup H(Y(t+s) ,Y(ti+s) ) ieMltj-tl i —  for tctt.^t...! .-tiafO m

Furthermore

sup HtYţti+s) ,Y1 (t1+s) ) • sup H(Y(t) ,Y1 (t) ) -
- r * s * 0

■ sup [h (Y(t«) + «rV(s)ds/Y 1 (t1) + e (t.)ds) J s
J t 4 1 J t t 1 J

i sup (iKYtt,), YMt.) ) + eH(rV(s)ds, f,U 1 (t1)ds) I s
J t ,  Jt, )

I 1 1 + sup sf\i(F0 (Y,) ,P0 ( Y t ) sup e (f’d(F0 (Y,), { 0 } ) + 
♦ d(F0 (Yt\) , {0}) i 6± *2eMr.

BOQOLUBOV'S TYPE THEOREM FOR FUNCTIONAL DIFFERENTIAL INCLUSIONS

Then for t€[tt,t1+1] we have

d(F0 (Yt),F0(Yt1i)) + 2eMr|. (14)

By virtue (12),(13) and (14) it follows

- HtYUi) ̂ ‘(tj) ) -
- H |y (tj.ĵ ) + e|eClV(t)dT , Y 1 (ti.1) + e£tl U M t ^ d t j  s

s H (Y(t1.1) #Y 1 (t1.1)) + e H ̂  /** U 1 (t1.1)dtjs

* 6 ,., ♦ e h( J£*F0 <Yt)dt , /t*‘F#(Y^)dt) * Bt.t +
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+ « f H(F0 (Y,) , F^Y,1,.,) ) dx i ♦

+ e k(ô1. 1 + + 2e + 2eMr) (t4 - ti.1) »
ôi.i + —  (ôi-i + —  + 2eMr) - d ^ d  + -1^) ♦ —  (—  ♦ 2eMr) m m  m m mm
fti.xd + - ) + - ,  

1 1  m m
Hence

ôi S ô ^ d + i )  + -s i d+i) ibt.aii*±) * -£] ♦ -2 - 
1 1 m m m 1 2 m m m

« <1 + - ^ ) 2 fii.a + ( 1 + -)-^ + -^s. . .ill + i ) 1 ô0 + m 2 m m m
<1 + — ) 1_1 —  + ...+-£ = ^(i+(i +± ) +. . .+(l + J:)i-i) -m m  m m  m m
= b ((!+*.)i-l) s £(©»>_!) = ü  (T+2emr) <ekT-l)

(15)

a m  a

where i - 0 ,1 ,2 ,...,m-l.
For t e [ t ^ t ^ ]  we have

m

H(Y.(t) ,Y(tA) ) - H ̂ Y(t±) +e|ttV(T)dT,Yt(ti) j i eH |£*V(T)dT, (0) js
i if H(V(t) , {0))dt < eM|t-tJ s —  and H(Y1 (t) ,Y1 (t1) ) i —  

J  t, 1 m 1 m

Hence, we obtain

H(Y(t) ,Y1 (t) ) i H (Y (t) , Y ( tj) ) + H(Y(t1),Y1 (t1)) + 
+ H (Y1 (t.), Y ‘(t) ) s —  + —  + -M (T+2emr) (ekT-l) .

*  m  m  im

(16)
m m

Now we shall consider the function
m

Y 2 (t) = *(t) for t «• [-r,0]
Y 2 (t) - Y 2 ( tt) + e f  CUa (t) dt for t € ltiftl4l]•ti

(17)

where t, = , i = 0,l,2,. .. ,m-i, U 2 (t) e F(t, Yi) .em 1

Let us notice that by virtue of condition 6° for each > 0 
there exists a L0( n ) such that for every L > L0 we have
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inequalities:

d( y  /0L f <t,Yt\)dt,P0(Ytlt)| < n.

By virtue of the Hausdorff metric condition (see [2], Lemma 1
(i)) we have

d ( JoIF(t.,Yt11)dt, £ LF0(Ytt)dtJ £ L|i.
TIn particular, for > L0 and for every i e (0,1,...,m-l>em

d(/i“ £,t.Yt‘,)de. /„"i-.Odc) < l i » (18)

and

Ü  (X»1) T  U * 1) T  \ _
“  F(t,Yt )dt, / «  F0 (YtMdtU(l+i)-I|l. <19>

o Jo 1 / cm
Let us observe that (l+i)T _

em = ti*i iTand —  - t,. em 1
By virtue of (18),(19) and the Hausdorff matric condition (see
Lemma 3 (vi) , [2]), we have

d ( 0 “'Yt\)dt,
£d(f"F<t,Yt\)dt , /;-r„(Y«*,)dt )
d(fP<t,Y^)dt, f fclF0 (Yt,) dtj £

£ (l+i)T + -ilu = JL»(2i+l) £em H em em

Hence H
i *

« [ t l iF(-t■'«i , Yt,) dt,

for T
em > L0<H> •

em
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Moreover e-Ş J*i'lV(t,Yll)dt,F0WJ b Mi * (2m+l)n

T I*»for —  > L0 ( -■-~  ) ,then for e < e0 (|i,m)em 2m+l

Hence it follows that
n>L|,( 2m+î*

Then h [ f*1*1 U a(t)dT, (x)dt| and
 ̂ Jtt J c t ) em

H(Yl(ti,1) ,Ya(tm ) ) sH ( Y ‘(t1),Y2(tl)) +
♦ e/‘t,*1H(U2(t) ,UMt))dx s IMYMt^ ,Ya(tt))

HXT+ ■ im s m jV£
m HiT.

♦
( 20)

where i«0 , 1 , 2 , , m - 1

Using the inequality (20) and the fact that for t e [tifti+1]

H(Ya(t) ,Y2(ti) ) s —  and H(Yx(t) ,Y1(t1) ) s M  we havem m

H(Y1(t),Y2(t)) iH(Y1(t),Y1(t1)) + H(Y1(tl),Ya(ti) ) ♦
♦ (Y2(ti)/Y 2(t)) 5 m?- + HjT. (21)

1 m
By assumption 2° it follows that

d(F(t,Y?) ,F(t,Yt\)) s kp0 (Y*, YXl) i k ( - M  ♦ |ixT) .
e

By virtue of (17) we have

p (DhY 2 (t) ,eF(t,Yt) ) > p(DhYa(t),eF(t,Yt\)) +
♦ d<eF(t,Ye\) ,eF<t,Y*) ) s k e ( - ^  + p t ) .

1 m

Now, on the ground of existence theorem (see Theorem 1) then
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•xists ths solution X(*) of (1) that for t 6 [0,— Jc

H(Ya(t) ,X(t) ) i [*tk ( «. |i T)exp(ek(t-s) )ds £ Jo m
£(-~I ♦ UjT) (exp(kT) - 1) .

Using the inequality (16) and (21) it follows

H(X(t), Y (t)) £ H (X(t), Y a ( t)) + H(Ya(t),Y 1 (t) ) + H(Y1 (t),Y (t)) s
£ ^ ^ ekT + u,TekT + 2eMrekT. m

12MTô*t il liTherefore, choosing m > ------- , ji, = — -̂sr* and e < ---c— —U 3TeOT SMre"
we get the inequality

H<X(t),Y(t)) £ |i for t e [0, — ] .€

Adopting now the procedure presented above we get condition (ii).
TIn this way the proof is completed for t 6 (-r,—  ] .c
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RESUMAT. - Principii' do aaxia pontru sistono do «cuaţii 
diforonţiolo cu arguaont modificat şi aplicaţii. In lucraro so 
stabilesc principii do maxim pontru siotomo do ocuaţii 
diferenţiala cu argument modificat. Apoi, ca aplicaţie a 
acestora, ao demonatreazl o teoremă de existenţă yl unicitate 
pentru o problemă la limită relativă la sisteme de ecuaţii 
diferenţiale cu argument modificat, şi se stabilesc principii de 
maxim pentru anumite clase de ecuaţii diferenţiale de ordinul 
patru, liniare şi neliniare, cu argument modificat.

1. Introduction. Let us consider the following second order 
system of differential equations with deviating arguments

Lk (y) (x) s -yk (x) +pk (x) yk (x) +qk (x) yk (x) +
m n (i)

+ J C  r k . j , i  <x > V j  ( 3 k ,  j , i  <x>  ) - 0

where xe[a ,b] , k-1 ,...,n, and the following systems of
differential inequalities

Lk(y)£0 0 k»l,...,n (2 )
Lk(y)>° 0 k-1 ,...,n (3)
Lk(y)so 0 k-1 ,...,n (4)
Lk(y)<° 0 k-1 ,...,n (5)

where pk,qk,rk j l ,gk>jleC[a,b], k«l,...,n, i-l,...,m, j-l,...,n 
and a1 5gkj ^(xjibj, V x«[a,b], axia, bibj, y ( y 1#... ,yn) .

The aim of this paper is to establish maximum and minimum 
principles for the solutions of the systems above and to give 
some applications. Maximum and minimum principles for
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differential equations with deviating arguments are studied in 
many papers such as the papers of Rus A.loan [6 ), [7], Bellen and 
Zennaro [1], Zennaro [10], Lasota [4].

By definition a solution of one of these systems of 
differential inequalities is a function yeC([a1 ,b1] ,Rn)ft 
flc2([a,b],Rn) which satisfies the inequalities of the system for 
k=l,...,n.

2 .Maximum and minimum principles.
DEFINITION 1. If y,Z€C([a,b], Rn) , y-(yx, .. •,yn) , 

z«*(zlf..., zn) then ysz if and only if ykszk for k=*l,...,n.
If yeC([a,b], Rn) and MeR, then y£M if and only if yk£M for 
k-1 ,...,n.

DEFINITION 2. A function y«C( [a^bj] ,RB)ftC2( [a,b] ,Rn)
satisfies the maximum principle if
(max yk(x) = M>0 and y^M) implies
{xctaj,^] I yk(x) = M} c [a^a] U [b,bx].

DEFINITION 3. A function yeC( (a^bj) ,Rn) satisfies the
minimum principles if
(min yk(x) = m< 0 and y>m) implies 
xeta^bj
{xet&i/b1]l yk(x) = m>c[a1 (a]U [b,bx].

We have
THEOREM 1. (see [6 ] ) . Let yeC( [a^bj] ,Rn) ft C2 ([a,b],Rn) 

be a solution of (1). If rk j i(x)k0, xe]a,b[, k~l,...,n, 
i=l,...,m, j=l,...,n and qk(x) + I t rw H . (x) <0 , xc]a,b[,

, then y satisfies the maximum principle and the
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minimum principle.

THEOREM 2. ,(see[6 ]). Let y be a solution of the system (2) . 
If pk, qk, aro as Theorem 1, then y satisfies the

maximum principle.

THEOREM 3. (see[6 ]). Let y be a solution of the system (4). 
If pk, qk, rk j(i are as in Theorem 1, then y satisfies the 
minimum principle.

The proofs of the Theorems 4,5 may be made similarly to the 
proof of Theorem 1 (see[6 ]).

THEOREM 4. Let y e Cfla^bţ], Rn) fl C2 ([a,b],Rn) be a

solution of the following system of differential Inequalities

Ljc(y) 0 0 > 0 » k«l,...,n (3)
If rk j t(x)^0 for xe]a,b[, k-1,...,n,i-1,...,m,j«l,...,n (6 )
and qk(x) + £ ^ r k j>i(x) SO, for x«)a,b[ , k=l,...,n (7)
then y satisfies the maximum principle.

THEOREM 5. Let y«C( [a^bj] ,Rn) f) C2 ([a,b],Rn) Jbe a solution
of the system (5). If qk and rk<j L satisfy (6 ) and (7), then y

satisfies the minimum principle.

THEOREM 6 . Let yeC( [a1 ,b1] ,Rn) (1 C2 ([a,b],Rn) be a solution
of (1). We assume that qk and j satisfy (6) and (7) . If there
exists a component yk of y such that max yk(x)*=M£0,

xe [a^bj]
ySM, and there exists C6]a,b[ with yk(c) » M, then yk(x) «* M 
for all xe[a,b].

Proof. Suppose the contrary, there exists de]a,b[ such that 
yk(d) <M. We shall prove that this assumption leads us to a 
contradiction.

(i) The case d>c. Let us consider the function
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*"(*1 «*2#•••»*n)» where

zk(x) - e*k<x‘el - 1, k - 1 .... n

with alla2 ,...,ak > 0 to be chosen suitable.
We have:
zk(x) < 0 , for all xe]a,c[
zk(c) » 0

zk(x) > 0 , for all xe]c,b[ ,
and

Lk(z) (x)-[«^«kpk(x) +qK(x) ( 1 -e'*'■ <x~c>) ] e*k<x"c> ♦
+ £  £ r k . « (x) (e*)<9k l l<x)'c)-l) > o , k-l.... n

i - u - i  'i'

for a1 ,a2 ,.../an > 0 sufficiently large, from (6 ) and (7).
Let w=(w1 ,w2 ,...,wn) , where

Wi(x) = yt(x) + z^x) ,i*k

w k(x > = Yk(x ) + ekzk<x ) »
M - y I, (d)0 < ek< --(5)----  • for ve have yk(d)<M.

We have
wk(x) < M , for all xe]a,c[ 
wk(c) = M
wk(d) = yk(d) + ekzk(d) <Yk<d) + M - yk(d) - M, 

because zk(d) > 0 .
Therefore wk has a maximum larger then M in the interior of 

]a,d[ . But, for all i#k, Lt(w) (x) «= Lt(y) (x) + Li(z)(x) =
- L1 (z)(x) > 0, for <*! chosen before, and Lk(w)(x) - Lk(y)(x) + 
+ ekLk(z)(x) - ekLk(z)(x) > 0 for ak chosen before.

Hence w is a solution of the system
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L^W) > 0, i*l, . . . ,n
qk#rk^j#1 satisfy (6) and (7) for ]a,d[c]a,b[, and wk has a 
maximum larger then M in the interior of ]a,d[ . This represents 
a contradiction with Theorem 4, so Theorem 6 is proved.

(ii) the case d < c. We make a similary argument for the 
function z = (z1#z2,...,zn) , where

zk (x) =e'ak(x_c)-1 , k = l,...,n

and we obtain a contradiction with Theorem 5.
The following result generalises the maximum principle and 

the minimum principle for systems of linear differential 
equations with deviating arguments (Theorem 1).

THEOREM 7. Let yeC( [a^b-J ,Rn) 0 C2([a,b],Rn) solution

of (1), where rk ^fl(x) £ 0, x € ]a,b[ , k~l,...,n, i=l,...,m, 
n. If there exists a function weC([ax,b1], Rn) 0 

C2([a,b],Rn) with
w > 0
Lk(w)(x) < 0 

then the function

for all xe]a,b[
;=[— , — ....lWl W2 wnj

(8 )

( 9 )

satisfies the maximum and

the minimum principle.
y .

Proof. Denote zk=— - We have yk = zk*wk, soWk
Lk(y)(x) = wk(x)•z"k(x) + [2w'k(x) + pk(x)wk(x)]z'k(x) + 

+[w"k(x) + pk(x)w‘k(x) + qk(x)wk(x)]zk(x) +

for k - l,...,n. Dividing by wk > 0, we obtain
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//. . ^ / w^(x) . wk (x) . w£(x)
Z* (X) +2 ( +P*(X) > Z“ (X) * ( w TÎx T +P‘ <X) -^ü) f

+qk(x))zk(x) ■WJ...(̂ ^ ^ .)<X) ) zj(gk j t(x) ) .0 ,k-l.... n
i

But rk ^fi(x)kO for ail xe]a,b[, k = l,...,n, i - l,...,m, 
j = and because of (8 ) and (9), we are in the conditions
of Theorem 1. Hence, the function

(y y y \—  , —  —  I satisfies the maximum and
W 1 w 2 w n  )

the minimum principle.
Remark. This theorem generalises the maximum and the minimum 

principle. If we consider the function
w e C( [a^bjJ ,Rn) fl C2 ([a,b],Rn) , w = (1,1,. ..,1), from Theorem 
7 we get Theorem 1.

EXAMPLE. Let [a,b] c [a1 ,b1] c R* and consider 
wcC( [a^bj] ,Rn) fl C2 ([a,b],Rn) , given by . 
w(x) = (x,x,...,x) , for all x e[a,b].
Then, we have w(x) > 0 for all x e[a,b] and the condition 
Lk(w)(x) < 0, xe]a,b[from Theorem 7, gives us the following
maximum principle.

THEOREM 7'. If y e  C ( [ 1, Rn) fl C2 ( ( a , b], R“)
is a solution of (1 ) and if
rk,j,i(x) £ 0  , xe]a,b[ , k = l,...,n,i = 1 , —  ,m,j = l,...,n
pk(x)+xqk(x)+bi t t rk j t(x) < 0 , x e ]a,b(
then the function I —  , —  , , —  satisfies the maximum and theV x x x )
minimum principle.

3. Boundary value problem. We consider the following
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boundary value problem for a system of differential equations 
with deviated arguments

and feC([alfa], Rn) , [b,^] ,Rn) .
The object of this paragraph is to establish an existence 

and uniqueness theorem for the problem (10) + (11)* In this
purpose we shall use the maximum principle (Theorem 1), and the 
following surjectivity theorem.

THEOREM 8. (see [9]) . Let X be a Banach and A : X-»X a linear 
and compact operator, The operator A - lx is surjective if and 
only if is injective.

We shall prove the following 
THEOREM 9. If rkfj^(x) > 0, xe]a,b[,

(1 0)

(11)

( 12 )

(13)
then the problem (10) + (11) has exactly one solution.

Proof. Let A»(X1, • . . , Xn) €C( [ a1,b1]/Rn) given by

<pk(x) , X  6 [a1#a]
Xk(x) - • ^ + k(b)+^ < p k(a) , xe] a, b [ * b-a * b-a K»|»k(x) , xelb,^]

where <p = (<pj »n> » ♦ “ (fl *k) •
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Then the problem (10) + (11) is equivalent to the system o I 
integral equations

yk(x) =-j^b5(x,s) fk(s) -qk(s)yk(s) - £  È r k>J(1 (s)yJ (gktJ<l(s) ) 
+Ak(x) , x e [a^bj , k=l, . ,n

ds +

(14)

where G (x, s) =
0 ,

S(x,s) , 
0 ,

x e [a1#a] 
x 6 ]a,b[ x e [b.bj

and G is Green's function

G (x, s)
<B-aMb-x) , 8 s x
.■(Sraj."(b 7 8i. x

b-a

Let us consider the operator A:C( [a1 ,b1] ,Rn) C( [a1 ,b1] ,Rn) 
where A - (hlt...,Ak) ,

Ak(y) (x) b )qk(8 )yk(s) + £  £ r k . 1 (s)y1 (gk , ^s)). i-lj-l ds

for k ** 1 , ..., n.
Then the system (14) is equivalent to the system

yk(x) =Ak(y) (x)-j*bü(x,s)fk(s)ds + lk(x) , k=l,...,n (15)

Denote F = (Flf...,Fn) , where

Fk(x) =Jb5(x,s)fk(s)ds-Xk(x) , k=l,...,n

Obviously F e C( [a^bj] ,Rn) . Now, the problem (10) + (11) It 
equivalent to the system

yk “ Ak(y) + Fk , k = l,...,n
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or

' (A-lc<lal.bl],RB))(y) M F (i6)
The operator A is obviously linear. We shall prove that A 

is compact. In this purpose is sufficient to show that A(U) is 
a relative compact set in C( [a^bj] ,Rn), where 
U - {.y«C( [a^bj] ,Rn) : |y| £1}, and the norm in C( [a^bj] ,Rn) 
is the Chebyshev norm, given by
lyl “ ,»ax max {I yk(x) I :xe[a^bj] } , y - (y1#.. ..,yn).
We shall prove that A(U) is uniormly bounded and equicontinuous 
in C([a1 #b1 ],Rn).

First we show that A(U) is uniformly bounded. We have, for 
all x£[a,b] and for all yeU.

|Ak(y) (x) |-|/hÔ(x,s) q k ( s ) y k( s ) + iţ ijţ i r k. J,1 ( s ) y J(gk(;, i l ( 8 ) ) dal

Let L, Mk, Mk<j<1 be as bellow
L « max {G(x,s) i (x,s) e [a,b] x [a,b]> t 0
Mk = max {lq(s)l : s e [a,b]> , k «■» l,...,n
Mk,j,i “ max {• rk,j,l<8>! 5 8 «[»/*>]} » *“1 , • • • ,n, i-l, .. . ,xn,

j=l,...,n
Then

|Ak(y) (x) |sLf [Mkiy| + |y|,È  Ê M k ja 

sL (b -a)|Mk+ £) ÊMk J(ij.
dss

Therefore
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|A(y) (x) |=max{|A,.(y) (x) i k»l,n) smax{L(b-a) (Mk+ £ , .) ,i>lJ4 Jk-l,.. .,n)
Hence, A(U) is uniformly bounded-
We prove now that A(U) is equicontinuous, that is V e > 0, 

3 6(e) > 0 such that, if I Xj - x2l < 6(e), x1,x2 e [a,b], we have 
I A(y) (x2) - A(y) (x2) I! < e , V y e U.

Let c > 0. The mapping G(x,s) [qk(s)yk(s) + 
rjt, j,i(s)yj (9k, j,i(s) ) ) continuous for all x c (a,b).

Therefore 3 6(e) > 0 such that, if I Xţ - x2l < 6(e)

< - b-a+1
Then, for x1,x2 e[a,b] with I xx - x2l < 6(e) we have 

|A(y)(xi) - A(y) (x2) || = max {lAk(y)(x1) - Ak(y) (x2) I :k=l,n>s

Hence A(U) is equicontinuous.
Now, A(U) is uniformly bounded and equicontinuous in 

C([a1,b1], Rn) , so A(U) is relative compact in C([al,bl}, Rn) . 
That implies that A is a compact operator.

We prove now that the problem (10) + (11) has at most one 
solution. This thing happens if and only if the following 
implication holds

- o , k«i, 
“ °  '  v I c b . K l (y = 0) (17)

Now, we prove (17). If y<0, then, by Theorem 1, if there
exists a component yk of y such that max yk = M > 0,

x«C«l»blJ
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y i M , then max yk - M.
xeta^ajU [b.bj]

But y(x) - 0 for all x « [a1 ,a] U [b,bx]. Thus we have y £
0. By a similary argument we prove that y t 0. Hence y » 0.

Hence the problem (10) + (11) has at most one solution. 
That means that the equivalent equation (16)

(A - 1 c((»l,b1i.8B) ) (y) = F has at most one solution, when F
( C ([a1 ,b1], Rn) , therefore the operator A - lc( |ai,b,) ,k»i is 
injective.

Theorem 8 implies that A ~ Iciu^bj,**» is also surjective, 
so A - l c ( (rn) is bijective. It results that the equation 
(16) has exactly one solution in Cfta^bţ], Rn).

Thus, the problem (10) + (ll) has exactly one solution.

4. Fourth order differential equations with deviating
arguments. Let us consider the following fourth order linear
differential equation with deviating arguments
yIV(x)+p1 (x)y* "  (x)+p2 (x)y' ' (x)+p3 (x)y(x)+ £ qk(x)y(gk(x) ) - 0

k- 1 (18)
where p1eCi[a,b], P2 /P3 fqk,gkeC[a,b], a1igk(x)£b1 , 
xe[a,b], k = l,...,n , a2 s a , b s bj.

- 4 - / XPi<t)dtLet us denote »(x) = -e 2 * . W e  shall prove the
following

THEOREM 10. Let y e C[a1 ,b1] 0 C4 [a,b] be a solution of 
(18). We assume that:
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(i) px(x) < 0 , for all x € ]a,b[
(ii) qk(x) i 0 , for all x e ] a,b[ , k-l. ... ,w.

(iii) pl(x) +2pi(x) +4pa(x) +4p,(x) sO for all x € )a,b[
(iv) Pi (x) +2pl (x) +4pa (x) +4 > 0 and

p, (x) -p, (x) +<p2 (x) + £ g t(x) < 0 , for all xe]a, 2>[.
k*l

J/i these conditions the vector function 
x - (y(x),y"(x) + 9(x)y (x))

satisfies the maximum principle and the minimum principle.

«
Proof. By the substitution y" + <p-y = - u, with 9 chosen 

before, the equation (18)' can be reduced to the following system

u'^x) +px (x)u'(x) + [q> (x) +p2 (x) ] u (x) + [2 <p'(x) +px (x) <p (x) ]y'(x) +
+ W  (x) +<p' (x) px (x) +<p (x) pa (x) -p3 (x) +<p2 (x) ] y (x) +
+ £ q k(x)y (gk) (x) ) *0

k-1
y"(x) +<p (x) y (x) +u (x) =0

But 9 is a solution of the equation 2 9’(x)+p1 (x)f(x) « 0 
so, the system becomes

u 7/(x) +Pj (x)u'(x) + [<p (x) +pa (x) ] u(x) +[<pw(x) -tVtxJPj (x) +
■ +<p (x)p2 (x) -p3 (x) +«j>2 (x) ]y (x) + £ q k(x)y (gk(x) ) » 0

k - l
y"(x) +g> (x)y-(x) +u(x) = 0

which is a system of second order linear equations with deviating 
arguments. We want now to apply the maximum principle from 
Theorem 1. If

»"(x)+<p' (x)p1 (x)+(p(x)p2 (x)-p3 (x)-H(>2 (x) i 0 , x € ]a,b( 
qk(x) i 0 , x £ ]a,b( , k = l,...,m
9 (x) + p2 (x) + »M(x) + ((('(xJPitx) + *(x)p2 (x) - p3 (x) +
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*2 (x)+ £  qk(x) < 0 ,x e ]a,b[k-1

ş(x) + 1 < 0 , x 6 ]a,b[
then the vector function (y,u) satisfies the maximum and the 
minimum principle.

We have
ç"(x) + »'(x)Pl(x) + *(x)p2 (x) - p3 (x) + *2 (x) 2»
Ü *"(x) + *'(x)p1 (x) + *(x)p2 (x) - p3 (x) - 
» --i tPi (x) +2pi (x) +4pa (x) ] e 21* -p3 (x)
But px(x) < 0 , x « ]a,b[ , so: e 2,4 > 1

We get
*»(x) + »'(x)p1 (x) + ş(x)p2 (x) - p3 (x) + *2 (x) >
> --j- [p*(x) +2p/(x) +4p2 (x)+4p3 (x) ] i 0 , V x <]a,b[ from

(iii).
Then

<p(x) + p2 (x) + <p"(x) + »'(x)p1 (x) + (f (x) p2 (x) - p3 (x) + f2 (x) + 
+ îqk(x) = [Pi (x) +2p/(x) + 4p2 (x) + 4]e +P2 (x>-
P3(x)+»2(x)+ JE qk(x) < 0 , V x e ]a,b[ 
from (iv) .

- 4  p ,( t )d tObviously <p(x) + 1 *■ - e 27i + 1 < 0, V x e]a,b[.
Hence, by Theorem 1, the vector function (y,u) satisfies the 

maximum and the minimum principle, so, the function (y,y" + <py) 
satisfies the maximum and the minimum principle. ’

We shall prove, using the above theorem, the following 
THEOREM 11. Let us consider the boundary value problem:

y TV(x) +Pj (x)yw/(x) +p2 (x)y//(x) +p3 (x)y (x) + £ q k(x)y (gk(x) ) =f (19)
I I lt"1

v i l . , , » )  ■ v  » y||b,b,) -  +  < 2 0 )  .
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where feC[a,b] , 9 cC[aţ,a], ţ cC[b,bx]. It the conditions froa 
Theorem 10 hold, then the problem (19) + (20) has at most a 
solution.

Proof. The problem (19) + (20) has at most one solution if 
and only if the following implication holds:

y IV(x) +px (x )y ' " (x )  +pa( x ) y //(x) +p3(x )y (x )  + f ) q k(x)y (gk(x) ) -0
' , , k-1 —

“ 0 • ylib.b,) ~ 0

* (y - 0 ) (2 1)
Now, we prove (21). If yiO, then, by Theorem 10, if ther*

exists a component Yk, k *= 1,2, of the vector function
Y *= (y,y" + «y) such that max Yk ** M > 0, Y <, M,

«[a^bi]
then max Yk « M . But Y(x) = 0, for all xe(alra] U

xeta^ajU [bjbj]
U [b,b1]. Thus we have Y £ 0. By a similary argument we prove Y 
£0 , and we obtain y = 0 .

S. The nonlinear oase. Consider the following nonlinear 
second order differential operators with deviating arguments; 

Lk(y) (x) :=yk,,(x)+fk(x,yk' (x) ,yk(x) #yi(gk,i,i(*) ),...,

yi<gk,i,m(x )) *y2(9k,2,i(x )) » • • • 'y2<gk(2,m<x )).....
yn<Sk,n,l<x) ) » • • * *yn(gk,n,m(x) ) ) « <22>

where x e [a,b], aj i gk>;j ^(x) s i>i» k=l,...,n and fk
: [a,b) x Rnro+2- R.

We have
THEOREM 12. (see(7)). Let yeC((aj,bi),Rn)flc2 ((a,b),Rn)
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be a solution of the following system of differential equations

Lk(y) (x) « 0, for all xe[a,b] and k - 
Assume that Lk, k = satisfy the conditions:

fk(x,0 ,r,...,r)<0 , for all r>0, xe[a,b], k = (23)
(t,seRnm, tss) implies fk(x,0,r,t) s fk(x,0,r,s) (24)

for all x e [a,b], r> 0 and k =
fk(x,0,r,...,r)>0, for all r>0, xe[a,b], k = l,...,n (25)
(t,seRnm, tis) implias fk(x,0,r,t) £ fk(x,0,r,s) (26)

for all x e [a,b] , r<0 , and k =
In these conditions y satisfies the maximum and the minimum 
principle.

Now,let us consider the following fourth order nonlinear 
diferenţial equation with deviating arguments

yIV(x)+p1 (x)y*••(x)+p2 (x)y‘•(x)+p3 (x)y(x)+f(x,y(gx(x)),...,
y(gm(x)))=0 (27)

where p ^ C 1 [a,b], p2 ,P3 ,gk e C(a,b], axsgk(x) s;bx# 
xe[a,b], k=l,...,m , axjsa<b£bx and f : [a,b]xRm+1 -.R.

Let us denote ç(x) = -e . We shall prove the
following

THEOREM 13. Let y€C[ax,bx) 0 C4 [a,b] be a solution of '27). 
We assume that:

(i) px(x) < 0 , for all xc(a,b]
(ii) f(x,r,...,r) < 0 , for all r > 0 , x«[a,b]
(iii) pj (x) +2p1/(x) +4p2 (x) + 4 > 0 and

p2 (x) - p3 (x) + <p2 (x) < 0 for all x € (a,b)
(iv) (t,seRm, t<s) implies f(x,t) < f(x,s), for all x€[a,b)
(v) Pi (x)+2p/(x)+4p2 (x) + 4p3 (x) <, 0 for all x € (a,b).
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In these conditions the vector function (y»y"+yy) satisfis 
the maximum and the minimum principle.

Proof. By the change of function y"+f*y ■ -u, with 9 chos« 
before, the equation (27) turns to the following system

u"(x)+Pi(x)u' (x) + [*(x)+p2 (x) )u(x) + [2*' (x)+pl(x)»(x) )y'(x) 
+ [*"(x)+*' (x)p1 (x)+<*(x)p2 (x)-p3 (x)+»2 (x) ]y(x)+f (x,y(g3 (x)) 
•••,y(gm(x) ) ) = 0  

y"(x)+9 (x)y(x)+u(x) = 0

Taking in consideration that 2q>' (x) +p3 (x)9 (x) =0, 
for 9 chosen before, the system becomes

«"(xJ+PitxJu* (x) + [ 9 (x) +p2 (x) ]u(x)+[*"(x)+*' (x)p1 (x) + 
+*(x)p2 (x)-p3 (x)+»2 (x) ]y(x)+f (x,y(g1 (x) ),... ,y(gm (x) ) )=o 
y"(x)+9 (x)y(x)+u(x) = 0

which is a system of second order nonlinear equations wit 
deviating arguments. He want to apply the maximum principle fro 
Theorem 12.

Denoting
f1 (x,u' (x) ,u(x) ,y(x) ,y(g!(x) ),... ,y(gm(x) ) )*p1 (x)u* (x) +
+ [<P(x)+p2 (x) ]u(x)+[9 "(x)+9f’ (x)p1 (x)+ş(x)p2 (x)-p3 (x)+»2 (x)J- 
y(x)+f(x,y(g3 (x)) ,...,y(gB(x))), and 
f2 (x,y'(x),y(x),u(x))=»(x)•y(x)+u(x) , 
the system may be written:.

u"(x)+f1 (x,u*(x),u(x),y(x),y(gx(x)),...,y(gro(x) ) ) - 0  

y*(x)+f2 (x,y (x) ,y(x) ,u(x)))-0 .
The conditions (23) - (25) from Theorem 12 become in ou

case
fj(x,0 ,r ,...,r)<0 , for all r>0 , xe[a,b]
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(t,seRm+1 ,tss) must imply f1 (x,0,r,t)^f1 (x,0(r,s) 
for all r>0 , xe[a,b]
f2 (x,0 ,r,r)>0 , for all r<0 ,xe[a,b] and 
(t,s«R,t£s) must imply f2 (x,0,r,t)£f2 (x,0,r,s) 
for all r<0 , xe[a,b].

He shall prove that all these conditions are fulfilled in 
our case. Let r>0
f3(x,0 ,r,.. .,r)«[*(x)+p2 (x) ]r+[*"(x)+*' (x)p1 (x)+ç(x)p2 (x)- 
"P3 (x)+*2 (x)]r+f(x,r,...,r)=
- r  { -jlP*<x)+2Pl/(x) +4p2 (x) +4 ] e ^ * P,<t)dt+p2 (x)-p3 (x) V ( x ) }  + 
+ f(x,r,...,r) < 0 , for all x e [a,b], from (ii) and (iii). 
Now, let t,seRm+1, tie. We must prove that fjfx.O^t)^ 
Sfj(x,0 ,r,s) for all r>0 , xe[a,b].
He have
f1 (x,0 ,r,t)-f1 (x,0 ,r,s)=[*"(x)+f'(x)p1 (x)+»(x)p2 (x)-
-P3(x)+*2(x) ] (t1-s1)+[f (x,t2,... ,tm+i)-f (x,s2,--- ,sB+1) ].
But ¥"<x)+*'(x)p1 (x)+*(x)p2 (x)-p3 (x)+»2 (x)iO, for all 
xe[a,b], from (i) and (V), in the same way as in the proof of 
Theorem 10. Using (iv) and fact that tţ-s^O (for t£s) , we get 
f1(x,0 ,r,t)-f1 (x,0 ,r,s)i0 , xc[a,b], r>o, which is 
f1 (x,0 ,r,t)if1 (x,0 ,r,s) for all r>o, xe[a,b].

The condition f2 (x,0,r,r)>0, for all r<0, xc[a,b] 
becomes r(ç(x)+1 }>o ,that is »(x)+l<0 , which is true for f chosen, 
from (i).

For the last condition, let t,seR, t£s. He must prove that 
f2(x,0 ,r,t)£f2 (x,0 ,r,s) , for all r<o, xe[a,b], that is <p(x)r+t£ 
£ <p(x) r+s which is obviously true.
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Hence, we are in the conditions of Theorem 12, so, the 
function (y,u) satisfies the maximum and the minimum principles, 
that is, the vector function (y,y"+(py) satisfies the maximum and 
the minimum principle.
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ABSTRACT. - Caractérisations of best approximation element and 
cheby - chefian subspaces in Q- inner-product spaces by the use of 
continuous linear functionals are given.

1. Introduction. Q-inner product spaces are real vector 
spaces X endowed with a Q-inner product, i.e., a positive 
definite and symmetric mapping qs X4 -, & which is linear in the 
first variable and satisfies an inequality of Cauchy-Schwarz 
type. Among these spaces we include the usual inner product 
spaces, the real Lebesque spaces L4 (m ) end Lp(/i) with p>4 if 
#*(n)«*>, equipped with appropriate Q-inner products generating 
their inner products and their norms respectively.

DEFINITION([3]). Given a real linear space X, a mapping q 
t X4->R is called quaternary Inner-product or Q-inner product, for 
short, if it satisfies the conditions:
(i) q(ax1+a'x,1,x2,x3,x4)«aq(x1,x2»x3,x4)+a'q(x1,x2,x3,x4)

for all a,a' 'in R and all x1 ,x,1 ,x2 ,x3 ,x4 in X;
(ii) q(xo(1 ),xa(2),x0 (3 ),xo(4)) - q(x1 ,x2 ,x3 ,x4) for all x1 ,x2 ,x3 ,x4 

, in X and any permutation a of indices (1,2,3,4);
(iii) q(x1 ,x2 ,x3 ,x4)>0 for all nonzero x3 in X;
(iv) I q(x1 ,x2 ,x3 ,x4) I 4 ift for all xt in X
i i~i < • • •, 4 )

* O/i i - axaity of Timişoara, Department of Mathematics, 1900 Timişoara, Romania
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A pair (X,q) is said to be a Q-inner product space if X li 
a real vector space and q is a Q-inner product on it. It is easy 
to see that a Q-inner product space (X,q) will be regarded as a 
normed space (X,l *lq) with the norm defined by I xl q 
:=[q(x,x,x,x) J1/4.

If p is an inner product in a real vector space X, then the 
function q : X4-*R defined by:
q(x1 >x2,x3 ,x4) :=3-1 [p(x1 ,x2)p(x3 ,x4)+p(x1 ,x3 )p(x2 ,x4) + 
+p(x1 (,x4 )p(x2 ,x3) ] is a Q-inner product on X generating the inner 
product norm I ‘Ip* Let also (n, A, be a measure space. If
x1 ,x2 ,x3 >x4 are in L4 (m ),

q(x1 ,x2 ,x3 ,x4):= f0 x1 (s)x2 (s)x3 (s)x4 (s)dM(s), (1 )
then this defines a Q-inner product in L4 (m ) generating the non 
I I 4 in L4 (/j) . This Q-inner product cannot be recaptured from any 
usual inner product in L4 (m ). When M(n)<«>, then formula (1) 
defines a Q-inner product in each space lP(p) with p>4.

THEOREM l.([3]). Every Q-inner product space (X,q) is 
uniformly convex and its norm is GAteaux differentiable, 
Moreover, the GAteaux differential r(xfy) of I *lq at xeX\{0} (n 
the direction y«X is given by
r(x,y) “ lira (I x+tyl - I xl )/t « q(x,x,x,y)/ |x|4.

t-*0

Given a Q-inner product space (X,q), we say that an element 
x in X is Q-orthogonal to another element y in X if q(x,x,x,y)»0 
and we denote this by xJqy. By the use of R.C.James result [4] 
we observe that x-^y iff x-^y, i.e., x is orthogonal over y in 
the sense of Birkhoff (1], [3).
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2. The am in results. He start to the following 
characterization theorem.

THEOREM 2. Let (X,q) be a Q-Inner product space and E be Its 
nondense linear subspace. If x0eX\ E , x'cE, then the following 
statements are equivalent:

(i) PB(x0) “ {x* > ;
(li) there exists a unique x'^E-tq such that x0 - x'+x"; where 
PB(x0) denotes the set of best approximation elements refering to 
x0 and E-*-q denotes the Q-orthogonal complement of E ( see also 
[3] ) •

The proof follows to the fact that x'cPB(x0) iff x - x ,J-BE 
if x0 - x'-LqE and since (X,l -!q) is strictly convex. We omit the 
details.

THEOREM 3. Let (X,q) be as above, f be a nonzero continuous 
linear functional on it and x0eX\Ker(f), g0eKer(f). Then the 
following sentences are equivalent:

U)' PKer(f)(xo) - <90>;
(ii) g0 is the unique element in Ker(f) such that

f (x)*»f (x0 )q(x,x0 - g0, x0 - g0, x0 - g0)/ |x0-g0|* (2 )
for all x in X.
Proof. " (i)=* (ii) ". If 9oc^Ker(f ) (xo) then the element 

w0:=x0 - g0 is Q-orthogonal over Ker(f) and since f(x)w0-f(w0)x 
belongs to Ker(f) for all x in X, hence q(f(x)w0- 
-f(w0)x,w0 ,w0 ,w0 )=0, what implies the representation (2). If gô 
is another element such that (2) holds, then x0 - gô -*-BKer(f) ,
i.e., gô e PKer(f)(xo)
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which implies g0 - gô and the implication is proved.
"(ii)«»(i)M. It's obvious.
COROLLARY. Let (X,q) and E be as in Theorem 2 and 

x0cX\ E ,g0eE,. Then the following statements are equivalent:
(i) pe (x0) = {g0>;
(ii) g0 Is the unique element in E such that for all

continuous linear functional f on E • Sp(x0) with 
Ker(f)=E the following representation holds: .
f(x) = f (x0 )q(x,x0 - g0 ,x0 - g0 ,x0 - g0)/ |x0-g0|£ 
for all x£E e Sp(x0).

Now, we shall give a characterization of chebychefian linear 
subspaces E, i.e., the closed linear subspaces E with the 
property that PB(x) contains a unique element for all x in X.

THEOREM 4. Let (X,q) be a Q-lnner product space and E be a 
nondense linear subspace in it. Then the following assertions are 
equivalent :

(i) E is chebychefian;
(ii) E is closed and the following decomposition holds:

X - E © Eia (3)

The proof is obvious from Theorem 2 and we omit the details.
Remark 1. If E is finite-dimensional then (3) holds and if 

(X,l lq) is complete, then for all closed linear subspace E in 
X the decomposition (3) is also valid. Note that the last 
statement improves Theorem 2.4 from [3].

Now, we state the main results of our paper.
THEOREM 5. Let (X,q) be as above and f be a nonzero
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continuous linear functional on it. Then the following statements 
are equivalent:

(i) Ker(f) is chebychefian;
(ii) there exists a unique element u£eX, I ufl «1 such that:

f (x) - I fl q(x,u£,u£,u£) for all xcX. (4)
Proof. "(1 )4 (ii)". If Ker(f) is chebychefian, then there

exists w0eX\{0>, Wq-Lj Ker(f). As in Theorem 3 we have the 
representation f(x) - f(w0) q(x,w0 ,w0 ,w0)/ |w0|J for all x in X. 
Putting u£:=w0/l WqI q if f(w0)>0 or u£:=-w0/l WqI q if f(w0)<0 one 
gets (4).

On the other hand, f(u£) = I f I , i.e., u£ is a maximal 
element of the norm one and since (X,l -lq) is strictly convex, 
then by Krein's theorem (see for example [5], p.102) we conclude 
that u£ is the unique element with the property (4).

"(II)*(i)". It's also obvious from Krein's theorem and we 
omit the details.

COROLLARY. Let (X,q) be as above and E be its closed linear 
subspace. Then the following statements are equivalent:

(i) E is chebychefian in X;
(ii) for every xQeX\E and for all fe(EeSp(x0))* such that 

Ker(f) = E there exists a unique element ux<| f e 
E®Sp(x0), |uXj/£| =1 with the property that:

f(x) = |f Ib®Sp(x0)<3.̂X 'Ux(),£'Ux(1,£'Ux0.c) for all x e E©Sp(x0) .

Remark 2. If E is a finite-dimensional subspace in (X,q) 
then for all f a nonzero continuous linear functional on E there 
exists a unique element u£ B cE, I u£ El =* 1 such that
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f(x) - I fl Eq(x,uf<E,ufjE,uf>E) for all xeE.
If (X,l lq) Is complete, then for all nonzero continuous linear 
functional f in X there exists a unique element u(cX, I û l » 1 

such that the representation (4) holds. Note this fact improves 
Theorem 4.3 from [3] and generalizes the clasical theorem of 
Riesz which works in Hilbert spaces.
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REZUMAT. -Problemei* de besă ale teoriei metrice a punctului (ia 
reviaitat* (II). In anul 1983, In lucrarea (93), am formulat 
anumite probleme de bază ale teoriei metrice a punctului fix, in 
cazul operatorilor multivoci. In prezenta lucrare ae reanalizează 
problematica de bază a acestei teorii, din perspectiva 
rezultatelor obţinute ir perioada 1980-1990.

1. Introduction. In 1983, in the paper [93], we formulated 
some basic problems in the metric fixed point theory for 
nultivalued mappings. The aim of this paper is to analyse these 
problems from the light of the results given in 1980-1990.

Throughout the paper we follow terminologies and notations 
in [93] (or see [91]). For the convenience of the reader, we 
recall some of them.

Let (X,d) be a metric space and T: X-°X a m-mapping. Then 
P(X) {A c x I A * $},
Pb(X) := {A e P (X) I A bounded],
Pci(X) *- (A e P (X) I A- X },
Pcp(X) := (A e P (X) I A a compact set},
I(T) := (A c P(X) I T(A) c A},
Ib(T) s- (A e I (T) I A a bounded set},
6(A) : = sup (d(a,b) I a,b e A},
6(A,B) := sup (d(a,b)l a e A, b e B},
D(A,B) := inf (d(a,b) I a e A, b e B},
H(A,B) := max (sup (D(a,B) I a £ A}, sup (D(b,A) I bcB}).

* University of Cluj, Faculty of Mathematica, 3400 Cluj-Hapoca, Romania
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2. Multivalued mappings on metric apaoes. Let (X,d) and
(Y,p) be two metric spaces. A mapping T : X-P(Y) is

(a) bounded if A £ Pb(X) implies T(A) £ Pb(Y)»; '
(b) compact if A £ Pb(X) implies T[A)£ Pcp(Y);
(c) upper semicontinuous (u.s.c.) if for each closed subset 

AcY, T-1 (A) is a closed subset of X;
(d) lower semicontinuous (l.s.c.), if for each open subset 

AcY, T-1 (A) is an open subset of X;
(e) continuous, if it is u.s.c. and l.s.c.;
(f) closed, if for each x0 e X we have

(xn -, x0, yn -, y0, yn e T(xn)) implies (y0 £ T(x0)).
Remark 2.1. For the basic notions in the theory of 

multivalued mappings see: [8 ], [9], [10], [11].
Let (X,d) be a metric and T : X-.Pb>cl(X) a m-mapping. In the 

last thirty years many papers have appeared which establish 
various fixed point theorems for such type of mappings. In these 
theorems, the mapping T satisfies various conditions. In what 
follow we present some of such conditions:

(1) (Markin(1963), Nadler(1969)). There exists a£ (0,1[ such 
that H(T(x),T(y)) £ a d(x,y), for all x,y £ X;

(2) (Reich(1971)). There exist a,b,c e R+, a+b+c<l, such 
that
H(T(x),T(y)) < a d(x,y) + b D(x,T(x)) + c D(y,T(y)), 
for all x,y e X;

(3) (Iseki(1974)). There exist a,b,c e R+, a+2b+2c<l, such 
that H(T(x),T(y)) s a d(x,y)+b(D(x,T(x))+D(y,T(y))} s 
+ c(D(x,T(y) ) + D(y,T(x))], for. all x,y e X;
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(4) (Ciri6 (1972)). There exists a c (0,1[ such that 
H(T(x),T(y))£a max{d(x,y), D(x,T(x)), D(y,T(y)), l/2[D(x,T(y))+

+ D(y,T(x)) )}, for all x,y c X;
(5) (Rus(1972)). There exists a e (0,1[ such that 

H(T(x),T(y)) i a d(x,y), for all xeX, y«T(x) ;
(6 ) (Rus(1972, 1975, 1979)). There exists 9 : R5+ R+,

such that
H(T(x) ,T(y) )£<p(d(x,y) ,D(x,T(x) ) ,D(y,T(y) ) ,D(x,T(y) ) ,D(y,T(x) ) ) 

for all x,y £ X;
(7) (Reich(1972)) . There exist a,b,c e R+, such that a+b+c<l 

and S(T(x),T(y)) ă a d(x,y)+b tf(x,T(x)) + c *(y,T(y)), 
for all x,y e X;

(8 ) (Avramescu(1972)). There exist a,b,c e R+, a+b+c < 1, 
such that

d(yi/y2)*a d(xlfx2)+b dfx^y^+o d(x2 ,y2), for all
y ^ T ^ )  ;

(9) (Rus(1975,1979) ) . There exists <p:R8+-+R+ such that 
*(T(x) ,T(y))S9 (d(x,y), i(x,T(x)), «(y,T(y)), *<x,T(y)), 
S(y,T(x)), V x,y € X.

(10) (Smithson(1971)).
H(T(x),T(y)) < d(x,y), for all x,y e X, x # y;

(11) (Rus(1983,1990)). There exists ae[0,l[, such that 
6(T(A)) S a S(A), for all A e Ib(T);

(12) (Rus(1983,1990)).
6(T(A)) < 6(A), for all A e Ib(T), S(A) * 0;

(13) (éiriô (1972)). There exists a e (0,1(, such that 
«(T(x))UT(y))<a max{d(x,y),H(x,T(x)),H(y,T(y)),

BASIC PROBLEMS OF THE METRIC FIXED POINT THEORY REVISITED(II)
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l/2[D(x,T(y))+D(y,T(x))] for all x,yeX.
Remark 2.2. Some metric conditions are degeneracy 

conditions. For example, in [83] the authors use the following 
condition:

There exists a e [0,1[, such that
H(T(x) ,T(y) ) £ a {D(x,T(x)) D(y,T(y) ) }1'2, for all x,y « X. 

This condition implies that if x0 e FT, then T(x) = T(x0), for 
all x e X.

3.Invariant subsets. Let T:X-«X be a m-mapping. By 
definition an element x e X is a fixed point of T if x e T(x) and 
a strict fixed point of T if T(x) = {x>. We denote by Fx the 
fixed point set of T and by (SF)T the strict fixed point set of 
T. By definition a subset AcX is an invariant subset under T if 
T(A) c a . The following results are well known.

LEMMA 3.1. Let T : X P(X) be a m-mapping. Then
(i) Tn(X) e I(T), for all n e N;
(ii) (SF)t is a fixed set of T.

LEMMA 3.2. (Berge, Martelli; see[97]). Let X be a compact 
topological space and T : X-.P(X) a m-mapping. Then there exist* 
a nonempty closed subset Y c x such that Y = T(Y) . If T is u.s.c. 
with closed value, then Y = T^Y) .

In general, FT is not an invariant subset for T but we have 
FtcT(Ft)(see [94]). The following problem arises:

PROBLEM 1. Let (X,d) be a metric space and T : X-» X a 
m-mapping. Which are metric conditions, on T,.which imply that 
T(Ft)= Ft ?

84



BASIC PROBLEMS OP THE METRIC FIXED POINT THEORY REVISITED*II)

References: [2], [5], [34], [61], [62], [6 6 ], [94], [97]. 
He have

THEOREM 3.1. Let (X,d) be a metric space and T:X-.Pbc l (X) 
be a fli-mapping. If there exists a function <p : R4+-R+ such that
(i) *<o,r'2 ,0 ,r'4) s 9 (0 ,r"2 ,0 ,r“4), for all r'2, r«2, r " 4 

r ' 4 e R+, r *2 s r"2, r *4 s r"4.
(ii) r-ş(0 ,r,0 ,r) £ 0 implies r = 0 .
(iii) H(T(x),T(y)) £ 9 (D(x,T(x)),D(y,T(y)),D(y,T(x)),D(x,T(y))), 

for all x,y e X.
Then T(Ft) = Ft. Moreover x,y e FT implies T(y) « FT.

Proof. First we remark that
D(x,T(y)) £ H(T(x),T(y)), for all x e FT, y e X,

and
D(y,T(y)) <, H(T(x) ,T(y) ) , for all x € X, y e T(x).

Now, let x £ Ft and y £ T(x). We have
H(T(x),T(Y)) s <P(0,H(T(x) ,T(y) ) , 0,H(T(x) ,T(y) ) ) , and 

from (ii), it follows that H(T(x),T(y)) = 0. Thus T(y) «= T(x) and 
T(Ft) = ft.

4.Fixed points.
PROBLEM 2a. Let (X,d) be a complete metric space and 

T:X-°X. Which are metric conditions on T which imply that FT+$?
References s [1], [2], [15],. [16], [17], [20], [21], [34], 

[36], [41], [43], [44], [45], [46], [47], [54], [65], [67], [84], 
[85], (8 6 ), [90], [91], [92], [93], [97], [110], [114].

We have
THEOREM 4.1. Let (X,d) be a complete metric space and
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T:X Pb>cl(X) a m-mapping. We suppose that there exists 
comparison function 9 :R+-.R+ such that

(i) H(T(x),T(y)) i 9 (d(x,y)), for all x«X, y«T(x).
If

(ii) T is a closed m-mapping. 
or

(iii) There exists a function 9:R5+-R+ such that
(a) ♦(0 ,0 ,r,r,0 )<r, if r>0 ;
(b) if ux<u2, v ^ v 2, then
9 (u,u1 ,v,w,v1) < ♦(u,u2 ,v/w,v2), for all uL,vLru,v,wfH
(c) H(T(x) ,T(y) ) s *(d(x,y), D(x,T(x)), D(y,T(y))
D (x,T(y)), D(y,T(x))), for all x,y«X.

I
then, Ft * <p.

Proof. Let us have (i) + (ii). For (i) + (iii) see [92], 
Let q>l be such that q<p is a comparison function. Let x0«X and 
Xţ£T(x0). If H(T(x0),T(Xj)) = 0, then T(x0) = T(Xi> 3 Xj. Let 
H(T(x0) ,T(x3) ) * 0. Then chere exists (see[84] or (93]) x 2€T(Xj] 
such that d(x3 ,x2) £ qH(T(x0 ),T(xx)). This implies that d(x1 (x2) 
* q<P(d(x0 ,x1) ) . If H(T(x3) ,T(x2) ) - 0, then T(x3) = T(x2)5x2. 
Let HtTtXj) ,T(x2) ) # 0. Then there exists x3£T(x2) such thaï
d(x2 ,x3) £ q<p(d(x1 ,x2) ) . In this way we prove that there exişti 
a convergent sequence (xn ) na0 such that xn+1cT(xn) . Let 
x* : = lim xn . From (ii) we ţiave x*eT(x*) .

PROBLEM 2b.Let (X,d) be a bounded complete metric space anl 
T:X-°X. Which are metric conditions, on T, which imply FT * <p\

References: (17), (22), (61), (78), [89], (93), (96), [97], 
(1 1 0 ).
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PROBLEM 2c. Let (X,d) be a compact metric space and T : 
X-»X. Which are metric conditions on T which imply that FT* <p ?

References t [17], [33], [48], [82], [93], [96], [97], [105],
[ 110] .

PROBLEM 3. To extend the theorems of Maia's type to the 
setting of m-mappings.

Referenoes: [78], [93].
We have

THEOREM 4.2. Let X be a nonempty set, d and p two metric on 
X and T: X-tPb>ol(X,p) a m-mapping. Ne suppose that

(i) d(x,y) 5 P(x,y), for all x,y e X;
(ii) (X,d) Is a complete metric space,
<iii) T: (X,d)-t(X,d) is a closed mapping;
(iv) there exists a comparison function ç:R+-*R+, such that 

Hp(T(x),T(y))s*(p(x,y)), for all xcX, yeT(x).
Then FT * <fi.

Proof. From (iv) there exists a fundamental sequence 
(xn>naO' in (X *P)/ such that xn+1 « T(xn),- neN. By (i) this 
sequence is fundamental in (X,d). From (ii) it is a convergent 
sequence. Let x* be the limit of this sequence. From (iii) we 
have x*cT(x*).

Remark 4.1. The Theorem 4.2 will remain true if condition
(iv) is replaced by

(iV) Hp (T(x) ,T(y) ) s a d(x,y)+b D(y,T(y)), x « X, y « T(x); 
a,b e R+, a+b < l.

PROBLEM 4. To extend the theorems of Caristi's type to the 
setting of m-mappings.
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References: [19], [59], [65], [93], [101], [121].
In this connection the following problem may be of interest:

PROBLEM 4a.(J.P.Penot(see[59])). Let (X,d) be a complet* 
metric space, <p:X-.R+, be a l.s.c. function and T: X-Pcl(X) 
satisfyng the following condition

D(x, T (x) ) <<p (x) - inf {^ (y) I yeT(x)}.
Does T have a fixed point in X?

5.Strict fixed points.
PROBLEM 5a. Let (X,d) be a complete metric space and T i 

X-°X. Which are metric conditions, on T, which imply (SF)T* 0 ?
References: [13], [17], [19], [21], [22], [24], [30], [43], 

[6 6 ], [79], [84], [8 6 ], [87], [89], [92], [93], [94].
PROBLEM 5b. Let (X,d) be a bounded complete metric space and 

T:X-«X. Which are metric conditions, on T, which imply (SF)T*0?
References: [17], [33], [54], [93], [94], [96], [97].

One of the main results for this problem is the following:
THEOREM 5.1([97]). Let (X,d) be a bounded complete metric 

space and T: X-.P(X) a (6, if) -contraction. Then 
(a) (SF)t = {x*>.
( b ) Ft = ( b F ) ̂ .
PROBLEM 5c. Let (X,d) be a compact metric space and T: X-°X. 

Which are metric conditions on T which imply (SF)T * <p ?
References: [17], [33], [54], [85], [93], [94], [96], [97], 

[105].
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Ts XiP(X) a 6-condensing m-mapplng. Then

(SF)T - {X*>.

6 .Successive approximations. Let (X,d) be a metric space and 
T: X-iP(X) . By definition a sequence of successive approximation 
of T at x0 is a sequence (xn ) na0 such that xn+1 e T(xn), for all 
n c Z+. The mapping T is asymptotically regular at x0 with 
respect to a sequence of successive approximations, (xn)nj,0, if 
D(xn,T(xn) )-0 as n-oo.

PROBLEM 6 . Which metric conditions imply that T is 
asymptotically regular?

References: [34], [45], [105], [109], [8 8 ].
PROBLEM 7. Which metric conditions imply that for all x0eX, 

there exists a sequence of successive approximations for T, what 
converges to a fixed point of T ?

References: [2], [20], [34], [61], [64], [89], [93], [105], 
[109], [113], [114], [117].

PROBLEM 8 . Which metric conditions imply there exists a 
successive approximations such that T(xn)-*FT as n-.» ?

References: [2], [34], [61], [89], [93].
PROBLEM 9.Which are metric conditions which imply all the 

following statements:
(i) Ft 1* <p.
(ii) There exists a sequence of successive approximations 

for T what converges to a fixed point of T.
(iii) T(y) = Fx, for all y e FT.
References: [2], [34], [61], [89], [93], [113], [114].
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7. Stability of fixed point set. We begin with some remarks 
on comparison function. By definition (see[93]) a function 
p:R+-*R+ is a comparison function if

(a) <p is monoton increasing,
(b) (pn(t)-.o as n-.», for t£0 .

A comparison function is a strict comparison function if
(c) t-<p (t)-.-h» as t-,+«o.

If ţ is strict comparison function, then let 
t„(<P) : = sup{tl t-<p(t) £ n>- 

We remark that tq (<p) -> 0 as tj 0.
PROBLEM 10a. Let (X,d) be a complete metric space and 

T,Tn:X-P(X), neN, such that
(i) (Tn)n converges uniformly to T,
(ii) FTn and FT * neH.

Which are the metric conditions which imply that H( FTj> , FT)-.0 
as n -t » ?

PROBLEM 10b. Let (X,d) be a complete metric space, Y a 
topological space and T:XxY-.P(X) be a continuous m-mapping. Which 
are metric conditions on T(-,y), which imply that the mapping 

P: Y-» (P(X) ,H) , y-oFT(. y), 
is continuous ?

References: [67], [60], [72],[93],[118],[98].
We have:

THEOREM 7.1.Let (X,d) be a compact metric apace and 
T,S : X Pcl(X).We suppose that

(i) There exists a strict comparison function, such that
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H(T(x),T(Y)) £ <p(d(x,y) ) , for all x,yeX,
(ii) T(Ft) = Ft,
(iii) Fs £ Pcp(X) and S(Fs) = Fs,
(iv) there exists i)>0, such that H(T(x),S(x)) £ i).

Then, H(FT,FS) < tn (<p) .
Proof. First we remark that
(a) the condition (i) implies, H(T(A) ,T(B) ) (H(A) ,B) , for

all A,B €Pcl(X);
(b) the condition (iv) implies, H (T (A) , S ( A) ) £ i) , for all 

A,B € Pcl(X);
(c) the condition (i) implies that FT # f, and FT e Pcp(X) . 

We have
H(Ft ,Fs) - H(T(Ft),S(Fs)) < H(T(Ft),T(Fs)) + H(T(Fs),S(Fs))S
£ ş (H(FT, Fs) ) + t) . So, H(Ft ,Fs) <

8 . Monself m-mappings.
PROBLEM 11. To analyse the Problems 2a, 2b, 2c, 3, 4, 5a, 

5b, and 5c in the case of nonself m-mappings.
References: [6 ], [7], [17], [48], [103], [116].
Let X be a nonempty set and YeP(X) . A mapping p:X-,Y is 

called a retraction of X onto Y if p| Y =lr  A m-mapping, T:Y-uX, 
is retractible onto Y by means of a retraction p:X-»Y, if FpoT=FT. 
We have:

LEMMA 8.1. Let (X,S,M°) be a (strict) fixed point structure 
(see [97]). Let yes and p:X-«Y a retraction. Let T:Y-»X be such 
that

(i) poT € M°(Y),

91



IOAN A. RUS

(ii) T is retractible onto Y by p.
Then FT+<p ((SF)T«*0).

Proof. From (i) we have FpoT * 0 ((SF)poT * 0). From (ii) we 
have FT ** 0 ((SF)T*0).
From Lemma 8.1 it follows:

THEOREM 8.1. Let X be a Hilbert space and T:B(0;R)-.Pcp(X). 
We suppose that:

(i) there exists a comparison function <p:R+-.R+ such that 
H(T(x) ,T(y) ) £ <P(d(x,y) ), for all x,y e B(0;R),
(ii) T is retractible onto B(0;R) by the radial retraction.

Then FT ** 0. '

9. Fixed point set. The following result is well known
THEOREM 9.1 ( ( 3 ] ) . Let <p:R5+ -.R+ a strict comparison function 

*
and T:R-.Pcpcv(R) a g>-contraction. Then FT€Pcp CV(R), i.e., FT is 
nonempty compact convex set.

The following problem arises:
PROBLEM 12. Which are metric conditions on T : R-*Pcp>cv(R) 

which imply that FT e Pcpcv(R).
References : [100], [3].

For other proporties of the fixed point set of a m-mapping 
T: (X,d)-> (X,d) see: (27), (3), [100], [70], [74].

10. Common fixed points. Let (X,d) be a metric space. In the 
last twenty five years many papers have appeared which contain 
various common fixed point theorems for a pair, T,S:X-°X, of 
m-mappings. Here are some of the metric conditions which appear
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(1) (Avram(1975) ) . There exists a,b,C€R+, a+2b+4c<l,such that 
£(T(x),S(y))£a d(x,y)+b[6(x,T(x))+6(y,S(y))]+

+c[6 (x,S(y))+S(y,T(x))], x,yeX.
(2) (Fisher(1980)). There exists ae[0,l[, such that

6 (T(x),S(y)) s
$ a max(d(y) ,6 (x,T(x) ) ,6 (y,S(y) ) ,<S(x,S(x,y) ) , 6 (y,T(x) ) > 
for all x,y in X.

(3) (Papageorgiou(1983) ) . There exists ^:R3+-*R+ such that 
H(T(x) , S (y) )£<p(d(x,y) ,D(x,T(x) ) , D (y, S (y) ) ,for all x,y«X.
The following probem arises:

PROBLEM 13. Which are metric conditions wich imply (one of, 
all of,...)

(i) F̂ /lFs * 0 ;
(Ü) (SF)t n (SF)g # 0 »
(iii) ft=f s 0 ;
(iv) (SF)t = (SF)g * 0 ;
(v) (SF)t = (SF)g = {x*};
(Vi) Ft = (SF)J - Fs = (SF)
(vii) Ft U f s # 0 ;
References: [12], (16], [18], [25], [28], [29], [31], [32], 

[35], [38], [50], [51], [52], [53], [57], [69], [71], [73], [76], 
[77], [78], [80], [99], [104], [106], [107].

11. Other problems.
11.1. Metrical fixed point theory for m-mappings on 

cartezian product: [17], [23], [14], [93], [110], [115].
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11.2. Approximation for fixed point of m-mappings: [7], 
[17], [64], [93], [102], [110].

11.3. Metrical fixed point theory for generalized metric 
spaces: [17], [23], [36], [71], [81], [93], [110].

11.4. Nonexpansive m-mappings: [26], [17], [36], [58], [93], 
[103], [119], [120].

12. Applications.
1 2 .1 .Surjectivity theorems.
PROBLEM 14. Let X be a Banach space and T : X-.P(X) a 

m-mapping. Which metric conditions imply that lx - T : X-°X is 
a surjective m-mapping ?

We have
THEOREM 12.1. Let X be a Banach apace and T:X-.Pb>cl(Xj a 

m-mapping for what there exista a comparison function such that

H(T(x) ,T(y) ) <<p (d(x,y) ) , for all x,y 6 X.
Then lx - T is a surjective m-mapping.

Proof. Let yeY. We have, T(x) + y 3 x*<* x-T(x) 3 y.
Let S(x) = T (x) + y. We remark that

H(S(x1) ,S(X2) ) <, ş(d(x1 ,x2)), for all xlfx2 e X.This implies 
that (see &4) S has at least a fixed point.

12.2. Coincidence points. Let X and Y be two sets and 
T,S:X-.P(Y) two m-mappings. By definition xeX is a coincidence 
point for the pair T,S if T(x)ftS(x)# <p.
Let C(T,S) := {xeX lT(x)fls(x) *<p). We remark that

PROBLEM 15. Let (X,d), (Y,p) be two metric spaces and
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C(T,S) #4> - Ft . s-, * 4>.

T,S:X-°Y. Which are metric conditions which imply that C(T,S)*0? 
References: [93], [37], [75], [8 8 ].

12.3. Optimization theory (see [22]). Let X be a Banach 
space. By definition a con CcX is a subset with the following 
property:

(i) AeR+, yeC=»Xy eC;
(ii) C (1 ( C) = {0}.

Let A be a set and f : A-.X. Let T : X-.P(X), x-° [f (a) I aeA, 
f(a) e C+x>. We have:

THEOREM 12.2 ([22]). f(a0) is a maximal element of 
(f(A), Sc) iff f(a0) €(SF)t.

12.4. Other applications. For other applications of the
fixed point theory see : [8 ], [17], [39], [40], [6 8 ], [98],
[111], [112], [113], [114].
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REZUMAT - (e,f) - contract!! nuitivoce local* *1 aplicaţii. Sa
introduc* noţiunea de (e,ţ) - contracţie locala multivoca si se 
demonstrează doua teoreme de punct fix pentru acest tip de 
multifunctie. Se obţin ca si consecinţe citeva rezultate mai 
generale decit cele date in [1], [2], [8], [10], iar in final o 
aplicaţie la o problema Cauchy multivoca este prezentata.

1. Introduction. In [3] M. Edelstein proved that if X is a 
complete e-chainable metric space and f:X-*X is an (e, X) -uniformly 
locally contractive mapping then there is an x0cX such that

x0=f<xo)•
S.B.Nadler jr. generalizes this rezult to multivalued 

mappings. In [4], Nadler defines a multivalued mapping 
F:X-tPb>cl (X) to be (c , A.)-uniformly locally contractive (where e>0 
and Ac(0,1)) provided that if x,yeX and d(x,y)<e then 
H(Fx,Fy)sA-d(x,y). This definition is modeled after Edelstein's 
definition for singlevalued mappings (3).

One year latter N. Covitz and S.B. Nadler jr. proved (see
[2]) that if X is a complete generalized metric space, F:X-.Pcl(X) 
is a (e, A)-uniformly locally contractive multivalued mappings 
(where Pcl(X) is endowed with the generalized Hausdorff metric) 
and x0cX, then following alternative holds: either:

(i) for each iterative sequence (xn)neN. of F at x0, 
d(xn_i,xn)>c, for each n=l,2,... or,
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(ii) there exists an iterative sequence (xn)neN. of F
at x0, such that (xn]neN. converges to a fixed point 
of F.

R. Wegrzyk generalizes Covitz-Nadler's result to multivalued 
ç-contraction (see [1 0 ]).

On the other hand, M. Turinici (see [8 ] and [9]) using th« 
notion of normal (strong) multivalued contraction proved two 
fixed point theorems and gives some applications to multivalued 
Cauchy problems.

The purpose of this paper is to prove some fixed point 
theorems for a class of multivalued mappings, from which we can 
obtain some consequences which generalize results given in [1], 
[ 2 ] ,  [ 8 ] ,  [ 10 ] .

2. Basio results. Let (X,d) be a complete generalized metric 
space, xeX, Ycx and e>0. Throughout this paper we use the 
following symbols:

£(Y):= sup{d(a,b) I a,b£Y>
D(Y,x):= inf(d(y,x) I y«Y)
S  (  Y , c  ) = { x c X l  D (  Y , x )  < e  }

P ( X ) = ( Y c x l  Y *<p}

PC1 (X)={YeP(X) I Y «Y)
Pb,clW={Y€P(X)l ? =Y, *(Y)<«}
Let H:Pcl(X) x Pcl(X)-> be a mapping defined by:
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H (Y, Z)
inf {e>0|YcS(Z,c),ZcS(Y,e)},

if (c>0|YcS(Z<c) , Z<=S(Y,e) } *0 

, otherwise

The following lemmas are very useful in the fixed point theory: 
LEMMA 2.1. ([2]). (Pcl(X),H) is a complete generalized metric 

space.
LEMMA 2.2.([8 ]). Let Y,Z be two nonempty, closed subsets of 

X such that H(Y,Z)<e. Then, for every ueY(resp Z) there is a 
veZ(resp Y) with d(u,v)<e.

LEMMA 2.3.([8 ]). Let Y,Z be two nonempty, closed subsets of 
X and e>0 such that, for every ucY (resp Z) there is a veZ 
(respY) with d(u,v)£e. Then, necessarily H(Y,Z)£e.

DEFINITION 2.1. ([5J). Let <p,ÿ :R+-«R+ two mappings. We say 
that ÿ is <p-summable if:

(i) for each t«R+
the sequence (<pn(t) }n6N. converges to zero, as n-.» and (2 .1 )

S  (i|ro<p)n(t) <°° (2 .2 )
n«l

(ii) <p is a monoton increasing function on R+
DEFINITION 2.2. ([7]). A function (p:R+-»R+ is a comparison

function if it satisfies:
<pis monotone increasing (2.3)
(<Pn(t))n«N converges to 0 , for all t£0 . (2.4)
Remark 2.1. ((7)). If <p:R+-.R+ is a comparison function then 

(P(0 ) = 0 and <p(t) < t, for every t>0 .
DEFINITION 2.3. A function ÿ :R+-.R+ is an expansion function 

if it satisfies the following conditions:
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♦ (0) - 0 (2.5)
i|i(t) > t, for all t>0 . (2 .6)
DEFINITION 2.4. Let <p,i|> : R+-R+ be two functions. We say

that <|> is strong <p-summable if:
ÿ is <p-summable (2.7)
♦ is an expansion function (2 .8)
<|io<p is a comparison function. (2.9)
DEFINITION 2.5. Let F:X-.Pcl(X) be a multivalued mapping

(briefly m-mapping)
F is said to be (e, <p) -locally contractive mapping (where e>0 and 

<p:R+-.R+) if it satisfies:
x,ycX, 0<a£e d(x,y)<a4 H(Fx,Fy)iç(a) (2.10)

The main result for (e,<p)-locally contractive m-mapping is thn 
following:

THEOREM 2.1. Let (Xfd) Jbe a complete generalized metric 
apace, F:X-.Pcl(X) a m-mapping and t a strong ip-summable function. 
We suppose that:

F is a(e ,<p) -locally contractive m-mapping (2.11)
there is an x0eX such that D(x0 ,Fx0)<e. (2.12)

Then Ff * 0. (i.e. there is a fixed point of F) .
Proof. Let x0eX be such that D(x0 ,Fx0 )<e. If x0eFx0 then 

x 0£Ff. We suppose x0$Fx0. From (2.12) there is an element xx£Fx0 

such d(x0 ,x1)<e.
For x0 >x1eX and a=e : d(x0 ,x1)<o =* H(Fx0, Fxx) £<p (a) •
<p(c)<(+o<p) (e) .
From Lemma 2.2. there is an XjfiFXj with d(x^, x2) < (i|io<p) (e ) . 
Using (2.11) for x1 ,x2eX and a «(tjiof) (e ) < (e ) :
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d(xlfx2)<(<iof) (e) 4 H(Fx1 ,Fx2)i<p(i|io(p) (e)<(*o<p)2 (e).
Again invoking Lemma 2.2., then is a x3 6Fx2 with d^2 ,x3) <
< (ÿof)2 (e), etc.
By induction, we get an interative sequence <xn}ncN satisfying: 

xn+lcFxn, for every n«N ' (2.13)
d(xn,xn+1)<(*o*)n(e), for every n«N (2.14)
H(FXn,FXn+1 )<(+oş)n+1 (e) , for every ncN (2.15)

From (2.14) and definition 2.2.{xn}ncN is a Cauchy sequence, so 
{xn)n<N converges to an element x*«X, as n-.». We now prove that 
x* is the required fixed point for F. By (2.11) F is a continuous 
napping, so Pxn-*Fx*, as n-t« and since xn+1eFxn, for every ncN 
conclusion follows if we take the limit as n->«. Q.E.D.

Remark 2.2. From theorem 2.1., it follows that d(xn,x*)s 
(<|ro<p)K(e) ,for every neN.

k -n

Remark 2.3. As an important particular case, let the mapping 
defined by ţ(t)«at, for every t«R+ and some a<(0 ,l). Then, 

the mapping ÿiS+-tR+ defined by 9 (t) «*bt, for every t^R+ and some 
be ( 1 ,1 /a) is strong 9 -summable.

In this way, the above theorem generalises theorem 1 of /2/. 
Remark 2.4. A m-mapping FtX-.Pcl(X) is said to be a normal 

multivalued contraction with respect to a <p:R+-.R+ (see /8 /) if it 
satisfies:
x,yeX, a>0 d(x,y)*a «♦ H(Fx,Fy) s 9 (a)
(or equivalent F is a multivalued 9 -contraction, see /7/ and
/10/).
If F is a normal multivalued contraction with respect to 9 , then 
F is a (e,9 ) -locally contractive m-mapping. Theorem 2.1 of /8 /
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is a consequence of the above theorem (see also /9/ and /1 0 /).
DEFINITION 2.6. F:X-Pcl(X) is said to be a strong («,?)• 

locally contractive m-mapping (where e> 0 and <p:R+-.R+) if it
I

satisfies the following condition:
if x,yeX, 0<a<e satisfy d(x,y)«* (2.16)

then, for every ueFx (resp. Fy) there is a veFy (resp. Fx) with 
d(u, v) <<p (a) . ( 2 .16)

Remark 2.5. From Lemma 2.3. every strong (e, <p) -locally 
contractive m-mapping is, necesarily, a(e ,<p)-locally contractive 
m-mapping.

Now, the second main result of this note is:
THEOREM 2.2. Let (X,d) be a complete generalized metric 

space, F:X-.Pcl(X) a m-mapping and p a comparison function. We 
suppose that:

F is a strong (t,p)-locally contractive m-mapping (2.17) 
there is x0eX such that D(x0 ,Fx0)<e. (2.18)
Then, we have F

Proof:Let x0eX be such that D(X0 ,Fx0)<e. If x0eFx0 then

We suppose x0 tfFx0. From (2.18) there is an element XjCFXq with 
d(x0 ,x1)<e. For x ^ x ^ X  and a=e : d(x0 ,x1)<a implies (taking into 
account (2.17)) that there is an element XjCFXj with 
d(xx, x2) <<p (a) =<p (e ) .
Now, for Xj,x2cX, x2eFx1 and a=<p(e)<e:
d(x1 ,x2)<<p(e) implies again that there is a x3cFx2 with 
d(x2 ,x3 )«p2 (e) , etc.

By induction, we get an interative sequence (xn}ntN
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satisfying d(xn,xn+1)«pn(e), for every ncN.
The last part of the proof is the same as in theorem 2.1. 

Q.E.D.
Remark 2.6. From Theorem 2.2. it follows that: 

d(xn,x*) < £<pK(e), for every neN, where x* is a fixed point of F.k-n
THEOREM 2.3. Let (X,d) be a complete e-chainable generalized 

metric space (e>0), F:X-.Pcl(X) a strong (e,y)-locally contractive 
in-mapping (if is a comparison function of R+ into itself) . Then 
Fp +<t>.

Proof. Conclusion follows from Theorem 2.2. (see also [2]).
Remark 2.7. The above theorems might be compared with those . 

of [1 ], which contain more restrictive assumptions.

3. An applioation. In this section we use terminologies and 
notations from [8 ] or [9].

In what follows (Rn,l I ) is the euclidean n-dimensional 
space endowed with a given norm.

We use the following symbols:
X“ { x:R-.Rn I x-continuous >
A={ a:R+-.R+ I a-continuous >
Ae={ a«Ala(t)<e, (V)teR+ } (e>0)

For every xeX define I xl eA by I xi (t) = I x(t)l , for every tcR+ and 
for every geA, let I *1 g:X-.R+ be defined, for an arbitrary xeX by:

» . J  inf UeRj|x|slg} ,if (XeRj IxJ^Xg} #«t>
1 "9 \ +» .otherwise

It is simple to verify that (X,t I g) is a generalized Banach 
space (respectively, a complete generalized metric space, by the
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standard construction of its metric).
For every geA denote also 
Xg = (xexl I xl g<«} and 
Cg(X) - {Ycxl Y is I lg -closed)

Now, let k:X->P(X), x-.k(x) be a m-mapping and x0cRn a fixed
element.

He consider the multivalued Cauchy problem:

in p \ / x/(t) ek(x) (t) , for every teR,
' ' m) \x(0 )=x°.

The following existence result concerning the solutions of (C.P.) 
may be stated:

THEOREM 3.1. Suppose that there exists a mapping h:A-A, a 
real number Ail, gcA^, <p a comparison map and e> 0 such that: 

for every xeX the set K(x) of all ÿ e X with ÿ (t) =* 
x°+yty(s)ds , V tcR+ ( for some y e k(x)) is a I • I g -closed 

set. (3.1)
If x,y £ X, a e Ae satisfy I x-yl <a, then for any u e k(x) 

(resp.k(y)) there is a vck(y) (reap.k(x) ) with I u-vl £h(a) . (3.2)

f th(gt) (s)ds<<p (t)g(t), (V)t>0, (V) teR, (3.3)

there Is an element y°eX such that

|y°(t) -x°-f \i(s)ds|<eg(t) , (V) teR* (3.4)
Jo

(for some uek(y0)).
Then, there exists an element zcy° + Xg solution for (C.P.). 

Proof. Let F:X-.Cg(X) be a m-mapping defined by:
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F(x) - K(x), for every xeX (3.5).
From (3.4) it follows that there is an element ucF(y°) such 
that I y° - ïï I 9 < c and so we have Dg(y°,Fy°) < e.
Let a e ft be such that 0<a£e/X£e, and let x,yeX be such that 
I x-yl g<aie.
From the definition of I -I we have I x-yl <a g
Let Û cFx (resp Fy). From (3.5): ïï(t)*x°+f*u(a)ds,

Jo
(V)t « E+> for some u < k<x) (resp. k(y)).
Let a :R+ -.R+ denote a mapping defined by a(t)-ag(t).Because 
geAjL, it follows that a(t)£e/X X<-e, for every teR+.
So, for x,yeX, oteA, : I x-yl <a and uek(x) (resp k(y)) there is an 
element veky (resp. k(x)) with I u-vl £h(a)-h(ga).
Let v eX be defined by v(t) - x° + f*v(s)ds, for every t«R+ 
Clearly, v eFy (resp Fx) .
We have:

|u(t) -v(t) ‘lufsj -v(s) |dss I* ̂ (ga) (s)ds<«p (a)g(t),
Jo Jo

for every tçR+, i.e. |ïï-v|g<<p (a) , showing that F is a strong 
(e, <p)-locally contractive m-mapping. Thus, theorem 2.2 applied, 
and the conclusion follows. Q.E.D.

Remark 3.1. A m-mapping F:X-t Pcl(X) is said to be weak 
(e,<p)-locally contractive if:

x,y<-X, d(x, y) <e*H(Fx, Fy) (e )
Open problem: Give some sufficient metric conditions 

implying existence of fixed points (or c-fixed points, see [6 ]) 
of a weak (e,9 )-locally contractive m-mapping.
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RESUMAT. -Conexiuni afine cu torsiune birecurentă generalizaţi, 
în lucrare se studiază spaţii cu conexiune afină cu torsiune 
birecurentă generalizată, definite prin (2), ce apar ca o 
generalizare naturală a '.ui (1) stabilindu-se propoziţiile 1,2, 
şi 3. Pentru cazul conexiunilor semi-simetrice şi a E- 
conexiunilor semi-simetrice Be stabilesc relaţiile (12), (13), 
(15), (16) şi (20), pe care le verifică tensorii Qjkrs Şi Şra 
precum şi sistemul (21).

Let An be a space with affine connection r. In a coordinate 
system, we denote by rjk , the components of the affine 
connection, by Tjk the components of the torsion tensor of the 
connection r and by Tk ■ Tik the components of the torsion vector 
(the Vrânceanu's vector).

The space An is called space with birecurrent torsion or 
T-birecurrent space, [4] if there exists a covariant tensor of 
second order urB so that:

Tjk,i« “ “rs ^
where comma denotes the covariant derivation with respect to r.

A natural generalization of the relation (1) is obtained in 
the following way:

DEFINITION 1. The space An is called space with 
generalized birecurrent torsion, if we have:

* University of Cluj, Faculty of Mathematics, 3400 Cluj-Napoca, Romania
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T jk .ra  *  <P,8 T j l  ♦ O/kr» <2 >

where <pre is a covariant tensor of second order and Q jkt8 

a skew-symmetric tensor in j and k.
Remark 1. Here too, one observes that being given the 

tensor <pro, the tensor Qj! r8 is completely determined by (2 ) .
Remark 2. The fact that (2) is a natural generalization of 

the relation (1) results easily. Indeed, relation (1) can be 
written immediately

T jk .r e  “ <Pre T jk  + ( ^ t a  “ V ia  ) T jk

and the space is with generalized birecurrent torsion, with an 
arbitrary <prs and

Ojkra ■ ( « , . -  <Pr8 ) T j i  ( 4 )

We have therefore:
PROPOSITION 1. The An T-blrecurrent spaces are also with 

generalized birecurrent torsion, with an arbitrary er 8 and Q 
given by (4).

Remark 3. If in (2)

Ojkis “ aIB Tjk <5>
then, from (5) and (2) it follows (1) and the space is 
T-birecurrent with ure = şre + ara.

If in (2) we apply a contraction in i and j we have:

Tk.re “ Qxe Tk + Okrs

where QkrB = Qikra and it follows.
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» ,
DEFINITION 2. The An spaces which satisfy (6 ) are called 

spaces with generalized hirecurrent torsion vector.
From the way (6 ) was obtained with (2) as it follows: 
PROPOSITION 2. The An spaces with generalized birecurrent 

tosion are also with generalized birecurrent torsion vector.

Remark 4. The converse of the assertion 2 is generally not 
true. In this paper we will give also a case in which the 
converse takes place.

The An spaces for which exists a convector or and a 
tensor Q ^ r  so that:

T jk .r  “  <•>£ T jk + Qjkr ( 7 )

ware called spaces with generalized recurrent torsion [3].
Derivating covariantly (7) with respect to, r we have:

T jk .ra  ■ <*>!,■ T jk + T j i , .  + Q jkr, a 

and taking count of (7) it follows:

T j k , i s  ■ ( a»I ( ,  + ) T jk  + (I)r O jk* + Q jk r ,■

and the space is with generalized birecurrent torsion with

’ <*)

and

Qjkr a = u rQjk» + Qjkr, a

therefore:
PROPOSITION 3. The An spaces with generalized recurrent 

torsion are also with generalized birecurrent torsion with <prB 
and Qjkr;, given by (9) ; (10) .

AFFINE CONNECTIONS WITH GENERALIZED BIRECURRENT TORSION
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We consider now the space An endowed with a semi-symmetrli 
affine connection r (n>'l) therefore [2 ]:

Tjk = Tk - 6l T,) (11)

Derivating covariantly (11) twice and taking (2) and (( 
into account, we have:

Qjki. = Okr. ~ *k O jr .)  < «l

relation of the same kind as (1 1 ), therefore:
PROPOSITION 4. In a generalized birecurrent torsion I 

space, n > 1, with semi-symmetric connection, the tensor Q/k[, 
and his contracted Qkrs * Q ikr8 satisfy the relation (12).

For the fixed indexes r,s transvecting (12) by Qlr, v
have:

Q jk re Q ir e  » 0  (13)

and terefore:
PROPOSITION 5. Jn the generalized birecurrent torsion I 

spaces with semi-symmetric connection, (13) takes place.

The relations (11) and (12) give for these spaces, th 
answer to the remark 4. Indeed, from (11), derivating covariantlj 
twice, and taking (6 ) and (1 1 ) into account, it follows (2 ) witl 
Ojira given by (1 2 ).

We have therefore the converse assertion:
PROPOSITION 6 . The An spaces with semi-symmetrl 

connection and with generalized birecurrent torsion vector at 
also with generalized recurrent torsion with the same fr9 an
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with Ojkra given by (12) .
From thet relation of S.Golab [5] for semi-symmetric 

connections:

Tbj Tk8h + t£  Th8 + TSh T/k = 0 (14)

derivating covariantly twice, and taking count of (2) and (14) 
we have:

Qsjrp T k*h -  O k L p  T Bj  + Qsk lp T hj  ♦

+ Ohjrp Tak + Qship Tjk + 0jkrp T,h + (15)
+ Tgj,rTkh,p + Tak>rTh*p + TSh,rTjkp +
+ 1’s j ,pTkh,i + ♦ T ^ p T /k ., »  0

Therefore:
PROPOSITION 1. In the semi-symmetric An spaces with 

generalized birecurrent torsion, (15) takes place.

From (14) by contraction in i and j one gets the well- 
known [5] relation:

T, Tk* - 0 (16)
from which, derivating it covariantly twice with respect to r 
and taking (2 ), (6 ) and (16) into account, it follows:

Qjkh. T,. + Tjt 0 iX8 + Tjl.x Ti<e + T/,.. Ttil - 0 (17)
PROPOSITION 8 . In the semi-symmetric connection An spaces 

with generalized birecurrent torsion, (17) take place between the 
torsion tensor and the generalized! recurrency tensor.

If the semi-symmetric connection of the An space is an 
E-connection, therefore [2]
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Ti.J- TJ.i 3 0 U 8)
from [5]

Tjt., ♦ TklI(J ♦ Trj<k = 0 (19)

by covariant derivation and taking count of (2 ) we have:

<PreT j i  + V j .T k t  + <Pk8T r j  + Qjlcra + Q k r j.  + O r jk . »  0  ( 2 0 )

In (20) applying a contraction in i and r and taking 
count of (6 ) and (18) it follows:

<Pi. Tjl + 0/ki. - 0 (21)
we have therefore:

PROPOSITION 9. In the semi-symmetric E-connection An 
spaces and with generalized birecurrent torsion, the tensor <pra 
is a solution of the n linear systems (21) and verities (20) .

Remark 5. The systems (21) can also be obtained from the 
vanishing of the divergence by covariant derivation and taking 
count of (2 ).

Remark 6 . In remark (1) we emphasized the fact that (;>} 
completely determines the tensor 0 jkrs if 9vm is given.
Now, for the semi-symmetric E-connection we can outline the fact- 
that being given the tensor QjkCe > the problem of the 
determination of a tensor <pr6 that verifies (2 ) one reduces to 
the compatibility and solving of the systems (2 1 ) with the 
conditions (2 0 ).

Remark 7. From the relations (4) and (9), naturally appears 
the case in which the tensor Q jkte is degenerate. Therefore one
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should impose a detailed study of the case in which Qjkr* is 
degenerate of various kind of degeneration.
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Rezumat. Noi suprafeţe acoperiş generate de tehnica Interpolării 
blending. Scopul lucrSrii este de a prezenta noi suprafeţe 
acoperiş obţinute cu ajutorul interpolSrii blending, folosind 
operatori de interpolare de tip Birkoff.

In some previous papers [3,4,5,6 ,8 ] there were studied app­
lications of blending interpolation in generating roof-surfaces 
for large halls.

The( goal of this paper is to construct some new such sur­
faces using as the start points the blending interpolation on the 
rectangular respectively the triangular domains.

Let D=[~a,a]x[-b,b] be a rectangular domain in the xOy 
plane. The problem is to construct a function F, F:D— >R that
satisfies the natural conditions: F|qd  = 0 (the roof is staying 
on its support - the border of D) and F(0,0)=h (the height of 
the roof in the center of D) . To control the position of the 
tangent planes or the inflaction lines of the surface, can be 
used some supplementary conditions.

Also, the parabolic points of the surface must be taken into 
attention, that are the maximum stress points of the surface (6 J.

1. For the beginning we take as supplementary conditions the

* On iversity of Cluj, Faculty of Mathematics, 3400 Cluj-Napoca, Romania 
pf'!y technical Institute of Cluj, Department of Mathematics,
? u)0 Cluj-Napoca, Romania
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following:

r < 1,0) ( - o f y ) = #,<1*°) (ttf y) = o, for ye [ -b, J>], a e [ 0 , a ] ,

and

r i 0 '  1 ) (x, -P ) = f ,(0' 1 ) (x, P) = 0 ,  f o r  x e [ - a ,  a ] ,  p e [0 ,  2>],

To interpolate the corresponding data, there are used the 
Birkhoff's interpolation operators and defined by

(BÏP) Cx, y) • Vl(x)F(C. y) with (x) - <*‘-«!>

(B%F) (x , y )  = i|r1 ( y ) F ( x ,  0) with ( y )  = ■
* h 2(2P2- h 2)

respectively
As, it is well known, the Boolean sum F ■ is a

blending interpolation operator that interpolates all the 
required data. So, we get the family of surfaces

F1(x, y) = Q1(x)F(0, y )  + ^f1 ( y ) F ( x ,  0) - <pt (x) i|rx ( y )  h

that depends on the univariate functions F(0,.) and F(.,0). By 
a suitable selection of these functions we can obtain various 
kinds of surfaces.

1.1. First, one approximates the functions F(.,0) and F(0, .) 
by the same Birkhoff's polynomials

F(x,0) ;= (B%F) (x, 0) =«p1 (x)F(0, 0)

respectively
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F(0, y) := (B%) (0, y) « ţfl(y)F(0, 0) . 

One obtains

F1 1(x,y,o,P) = <px (x,a) <|»j (y, P)h.

The parabolic points of this surface are given by the solu­
tions of the equation

G^U.y.a.p) -0, (x,y)eD,

with

*.(2,0) „(0,2) ,,,(1,1)
F11 F11 -('ll 2

or

<<Pi<pIM»i^I - (<P>i+«Piti)2) (x,y,a, p) - 0,

where

(p i(x ,« ) = 4x(xa-as), >|»i(y,P) - v i ( y , P ) »
ipï(x,a) = 4 (3x2-a) , ÿi(-y, P) " Vi <y. P) •

Particularly, we have

Fn (x,y,0,0) = — £-(x«-a*) (y*-b*) , 
a*b*

with the parabolic points given by the equations

xy - 0,

and/or
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i£l
a 4

+ zl + 7 **y*
b* 9 a*b* = 1 , (x,y) €D,

FX1 (x,y,4>4) = — £-r<*2-a2) (2x2+a2) <y2-b2) (2y2+b2), 2 2 a4b 4
and

Fn (x,y,a,b) = - £ _ ( x 2-a2)2 <y2-b2)2 . a4b 4-
Remark 2. The last surface was also obtained in [6 ].

1.2. The second case is obtained for

F(x,0) (x2-a2) (x2+a2-6«2) h 
a2 (6a2-a2)

and

F(0,y) ( y 2- b 2) ( y 2+b2-6P2) ^ 
b 2(6P2- b 2)

We have

u  a ‘ b ‘  2«‘ - a s 6|)‘ - b ’
x 2+a2-6 g 2 y 2+b2-2P 2 x2+a2-2«2 y2+b2~202 j ̂
6o2-a2 2p2-b2 2a2-a2 2 p2 -b2

Hence

F12<x,y, 0,0) - F,, (x,y, 0,0)

F i2 (x , y < 4 , | )  = U 2: a 2) ( / 27b 2) /„£Ë.x2y 2-tb2x 2+a2y 2+a2b 2\h,3 3 a4b4 \ 49 /

Fta(x,y,4'-> = — ^  -j-(a2b2-2b2x 2-2a2y 2-12x2y 2)h,2 2 a4b 4
and
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Fia(x,y,a,b) = x̂ ~a ^ ^  (5a2b2-b2x2-a2y2-3x2y 2)h,
5a*b2

1.3. Finally, we take:

Fix, 0) := ?2~*2 h; F(0,y) := ^2 ~[2 h. , a 2 b 2

One obtains:

Fai(x,y, a,P) (x 2-ji2) (y2-b2) . x 2+a2-2a2 y 2+b2-6$2 
a2b 2 a 2-2 a2 b 2-2 P2

x 2+a2-2 a2 y 2+b2-2 fl2 i^ 
a 2-2 a2 b 2-2 P2 ’

So,

^i3(x.y»0,0) = — <x2-a2) (y2-b2) (a2b 2-x2y 2) , 
a*b*

F13(x,y, -£) = (x2-a2) (y2-b2) (a2b 2-4x2y 2) ,
2 2 a*b*

and

F13(x,y,a,b) = F13(x,y, 0,0).

2. A second starting point is to construct the surface F 
in the conditions

a2F a2FF(0,0) =h, F|to=0, — — (-a,y) = — —  (a, y) =0, y€ [ -b, b] and«6[0,a], 
ox2 ox2

a2F a2F— —  (x,-P) = — —  (x,p)=0, xe[-a,a] and Pe[0,b] . 
oy2 oy2

To satisfy all these conditions is sufficient to take
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F2-B^ ©  E^F , where and defined by

(B%F(x,y) =if3MF( 0 , y ) , <p2(x) = (x2-a2) (x2+a2-6a2) 
a2 (6a2-a2)

respectively

(B^F(x,y) = i|»2(x )F(x , 0) , • i|»2 (x) = ( y 2- h 2) ( y 2+f?2-6P2) 
b 2(6P2- b 2)

are the Birkhoff's operators that interpolate the data:

So, we have

F2(x,y) = <p2(x)F(0,y) + i|r2 (y) F(x, 0) - y2(x)i/2(y) h

where

F(0,0) = h, F (- a, 0) = F(a, 0) =0, F(0,-b) = 0.

2.1. First, we choose

respectively

F(X/0) = ^ ! h  and =

One obtains
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F2l(x,y,o,P) =— <x2~a2) (y2-b2) [ * 2*a* 6,g2 a 2b 2 a 2-6a2
x 2+a2-6a2 y2+b2-6fl2 ,
a2-6a2 b2-6fi2

+ y2*b2-6fi2 
b2-6P2

So, we have:

■̂21 (x,y,0,0) = 1̂3 (x,y,0,0),

f’ai(x , y , - , - ) = - ^ Th (x2-a2) (y2-b2) <a2b 2-4x2y 2)=FXJ(x,y,-|,-|),

and

F21(x,y,a,b) -- —A— (x2-a2) (y 2-b2) (25a2b2-x2y 2) .25a*b*

2.2. For F(.,0)=<p2 and F(0,.)=i|r2 one obtains:

F22 (x,y,u, P) ( x 2- a 2) (y2-b2) (x2+a2-6a2) ( y 2+b2-6P2) ^ 
a2b2(a2-6a2) (b2-6p2)

Hence

F22(x,y,0,0) = Fxx(x,y, 0,0) = — £ - (x4-a4) <y4-b4) ,a 42>4

F22(x>y> > 4) =— r~T (x2-a2) (y2-b2) (2 x 2-a2) (2 y 2-b2) ,
2 2 a 4jb4

-- (x2-a2) (y2-b2) (x 2-5a 2) (y2-5b2) ,25a 4b4
and

F22(x,y, a b ) = FX1 (x,y, a.b) .
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2.3. If F(0,.) and F(.,0) are taken as in the case 1.2, we
have:

a2b2 2a2-a2 6 p2-b2
+ x 2+a2-6 « 2 y2+b2-2 ft2 x 2+a2-6 « 2 y2+b2- 6 ft2 j

6 a2-a2 2p2-bs 6 a2-a2 6 P 2-f>2

Two particular cases are:

F2*(x'y ' i ' V a*b< (x2-a2) (y2-b2) (a2b2+2b2x2+2a2y 2-12x2y 2)

and

F23(x,y,a,b) =------ (x2-a2) (y2-b2) (9x2y 2-25b2x 2-25aay a+25a2b2)
25a*b*

Next, one considers some surfaces over a triangular domain,
i. e .

Ta = {(x,y)eR2 I xiO, y*0, x+ysa}.

If Ta is taken as a quarter of the support, the roof surface F 
must satisfy the conditions: F(0,0)=h and F(x,a-x)=0, xe(0,a]. 
In [6 ] there were given some surfaces generated by the blending 
interpolation procedure on a triangular domain.

Here we give some more such surfaces using also the deriva­
tives in the starting conditions.

3. First, we are going to construct a surface F such that: 

F(0,0)=h, F(x,a-x) =0, F^ia-y.y)-0, F^(x,a-x)=0, x,ye[0,a].
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To this end, we use the Hermite's interpolatory operators 
and defined by

<«?> (x,y) 4x(2a-2y-x) F(a_y<y) +(a-y)2
x(x+y-a)

a-y

(a-y)1
Fx (a-y,y),

and

<fl£) (x.y) = 2 F(x,0) +Z l M l M z Z l FiXt a-x) ♦
* (a-x)3 (a-x)3

* r<x+r~a> Flx,a-X) .a-x y
Taking into account (1 ), we have:

(F?F) (x,y) = (xt-y-a)2 F(0 >y)
* (a-y) 2

(«£>) (x,y) = 2 F(x, 0) .14 (a-x)3

Since, F satisfies all the conditions (1), we
consider F3 =fl£©/f^F, i.e.

F3(x,y) =Sî+y-*l2 F(0,y) + JxiXZ*iiF(x,o) - JjElZzSll F (0 f 0) , (a-y) 2 u-yi 2 a 2(a-x):
o r

F2{x, y ) . J Z Ï Z Z * ï t f l l x ) + A ă ± y z â llf  (y) - ± w - * l 2ht (2) 
(a-x)2 (a-y)3 a3

where fj and f2 are defined on [0 ,a] and t1(0)^f2(0)<=h,

respectively f 1(a)=f2(a)=0..
This way, we get a family of surfaces F**F(fJff2,h) all of 

them satisfying the conditions (1). For an fixed h, each
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selection of the functions and t2 gives a surface from the 
family.

3.1. Let and f2 be given by f3:=H^F and f2:=H%F. From 
(2 ), one obtains

F31(x.y) = JălZlăllh.â
3.2. If f1:=L*F and f2 ; =L^F, where L* and are the

Lagrange's polynomials which interpolate the data f1(0)=h,

fj(a)=0, respectively f2(0)=h, f2(a)=0, one obtains:

F32(x,y) (a-x-y)2 (a2-xy) h 
a 2 (a-x) (a-y)

3.3. For ae[0,a], let be the Birkhoff's operator that 
interpolate the data: f3{0)=h, f3 (a) =f3 (a) *0 and f3 (a) *0 , i.e.

(Bxfi) (x) mlx-a) j(x+2a-J*lh'
a2(2a-3«)

and (B^f2) (y) = (y) . From (2), one obtains:

F33(x,y,a) = *+y+2*-2 * h .2a-3«
Some particular cases are:

F„U,y. 0) - h,
2 a 3

F33(x,y,a) =
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2 a 3

Finally, we consider the graphs of two such surfaces for 
1*20, b=»2 0 .

The surface F22(x,y,-Ş

The surface F23(x, y, -Ş ,
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REZUMAI. - Asupra funcţiilor slab continue II. în lucrare sînt
corectate unele rezultate din lucrarea (6).

The family of all feebly open (resp. semi-open, preopen) 
sets of a topological space X is denoted by a(X) (resp. 
SO(X) ,PO(X) ) . The affirmation "If Ux c SO(X) and U2 e PO(X), then 
(U^Uj) € a (X)" didn't result from [3, Lemma 3.1] as is said in 
the proofs of the Theorems 2 and 5 of [6].

LEMMA 1 [4]. Let A be a subset of a topological space X. If 
either AeSO(X) or AePO(X) then (Aflv) e ot(A) for every V e cr(X) .

LEMMA 2.[1]. Let AcYcX, Yee(X) and Aea(Y), then Aea(X).
From [5, Ex.5.4] follows that quasicontinuity and weak 

feebly continuity are independent notions. Also precontinuity and 
weak feebly continuity are independent notions.

The following Theorems are corrections of the Theorems 2,3,5 
and 6 of [6].

THEOREM 1. A function fsX-»Y is feebly continuous if and only 
if is weakly feebly continuous and precontinuous.

Proof. Let G be any open set of Y and xeX such that f(x)eG. 
As f is weakly feebly continuous at x there is UţeafX) containing 
x such that t cet(G). As f is precontinuous by (2, Theorem 1] 
there is U2ePO(X) containing x such that f(U2)cG. By Lemma 1 
(Uj/ÏU-j) ea(U1) . By Lemma 2 U=(U1(1u2) ca(X) . Thus xeU, Uea(X) and

* University of Bacău, Department of Mathematics, 5500 Bacău, Romania
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f (u)cg and by [1, Theorem 1.1] f is feebly continuous.
Conversely; if is feebly continuous by [3, Theorem 3.2] f 

is precontinuous. As f is feebly continuous, f is weakly feebly 
continuous.

COROLLARY 1. (Noiri [5]). If f:X-«Y is weakly feebly 
continuous and precontinuous, then f is weakly continuous.

THEOREM 2. A function f :X-.Y is feebly continuous if and only 
if it is weakly feebly continuous and quasicontinuous.

Proof. It is similar to the proof of Theorem 1.
THEOREM 3. A function f:X-.Y is feebly continuous if and only 

if is weakly feebly continuous and f-1(Fr(G)) is preclosed in X 
for every open set G<=y.

Proof.If f is feebly continuous by [3, Theorem 3.2] f is 
precontinuous and by [2, Theorem 1] the inverse image of each 
closed set of Y is preclosed in X, thus f_1(Fr(G)) is preclosed 
in X for every open set G of Y. If f is feebly continuous, then 
f is weakly feebly continuous.

Conversely, let G be any open set of Y and xeX such that 
f(x)eG. Then, f being weakly feebly continuous there is Vea(X) 
containing x such that f(V)cC£(G). Let us consider the set 
U=V-f-1(Fr(G)) = V 0 (X-f_1(Fr(G))). As f-1(Fr(G)) is preclosed in 
X,X-f_1(Fr(G)) is preopen. By Lemma 1, Uea(V) and by Lemma 2, 
Uea(X). As xeV and f(x)eG it follows that xeU. Let yeU. Then yeV 
and y € f-1(Fr(G)), thus f(y)eC£(G) and f(y) € Fr(G), thus 
f(y)eG. As U is feebly open, xeU and f(U)cG it follows by [1, 
Theorem 1,1] that f is feebly continuous.

THEOREM 4. A function f:X-»Y is feebly continuous if and only
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it f is weakly feebly continuous and f_1(Fr(G)) is semicloaed in 
X for every open set GcY.

Proof. It is similar to the proof of Theorem 3.
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a n i v b r s X r i

PROFESSOR IOAN MUNTEAN AT HIS 60th ANNIVERSARY

Muntean loan was born in Mai 27, 1931, in Sintimbru, district Alba, 
Romania. He studied mathematics at the universities of Cluj (1950-1952) and 
Moscow (1952-1955), and he joined the Faculty of Mathematics of the Cluj 
University where he became professor in 1976. He gave courses and seminars in 
classical analysis, qualitative theory of differential equations, optimal 
control, operational calculus and functional analysis.

Professor Muntean obtained results in the following domains (the numbers 
in the brackets indicate the works in the enclosed list, where the 
corresponding results are presented):

Qualitative theory of differential equations: bounded, periodic and 
almost periodic solutions, l.imit cycles [1-6, 10-15, 22, 23, 44], stability 
and exponential convergence (18, 19, 24-26], asymptotic behavior [16, 8].

Optimal control theory: controllability [33, 34, 39, 73, 82], optimal 
control of thermodynamic systems [38, 40], optimal machine maintenance (53, 
57).

Approximation theory and numerical analysis: condensation of 
singularities for interpolation, Fourier series and quadrature formulas (35, 
49, 92, 93, 100], numerical methods for solving equations [41, 43, 104].

Topology, optimisation theory and functional analysis: compact mappings 
and quasiuniform convergence [7-9], Dini convergence theorem (84, 85), fixed 
point theorems (20, 21, 29, 30, 60], inner product spaces [31, 32, 76), 
convexity and optimization [17, 37, 42, 62, 66, 80, 91), functional analysis 
[27, 47, 48, 61, 70, 99, 100, 104].

Real analysis: derivatives and approximate derivatives (45, 50-52, 54, 
59, 69, 72, 74, 87, 94], arctangent functional equation (55, 56), elementary 
functions [81, 102, 103), classification of some sets of real functions [58, 
67, 71, 75, 77, 79, 83, 89], teaching calculus [28, 36, 46, 63-65, 68, 78, 
86,90, 95, 101].

Some of these results are cited, improved or developed by about 80 
mathematicians. Since 1976 Professor Muntean has been a guide of doctoranda.

SCIENTIFIC WORKS OF MUNTEAN IOAN

Below we adopt the following abbreviations for name of some publications 
and expressions:
AIM => Analele Ştiinţifice ale Universităţii "Al. I. Cuza" Iaşi, Secţia 1. 

Matematică,
GMP - Gazeta Matematică, Perfecţionare Metodică şi Metodologică in Matematică 

şi Informatică,
ISE » Itinerant Seminar on Functional Equations, Approximation and Convexity, 
MC « Mathematica (Cluj),
SDM = Lucrările Seminarului de Didactica Matematicii,
SMA >= Seminar on Mathematical Analysis,
SUM “ Studia Universitatis Babeş-Bolyai, Series Mathematica-Mechanica,
UCM *■ "Babeş-Bolyai" University of Cluj, Faculty of Mathematics,
H *  Hungarian,
R - Romanian.

Mathematical papers:
1. Bounded solutions and periodic solutions for some systems of differential 

equations (R). Studii şi Cercet. Matern. (Cluj) 8(1957), 125-131.
2. A boundedness criterion for the solutions of a nonlinear system of
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R E C E N I I X

P a t e r  M e e t ,  
Introduction to Suparaynnetry and 
Supergravity,
W o r l d  S c i e n t i f i c  P u b l . C o .  P t e .  L t d . ,  
1 9 9 0 , 425 p. •

This is the extended second 
edition of the book published by the 
same Company in 1986. The Contents 
presents the plane of the work, 
fragmented in 27 chapters, its 
origins and motivations.

After the two prefaces, the 
supersymmetry algebra is introduced 
going from the "No go Theorem" of 
Coleman-Mandula. Other approaches of 
the supersymmetry is related with the 
existence of the Fermi-Bose symmetry, 
which is linear. On the other side 
the supersymmetry is a symmetry 
mixing the particles of different 
spin, that is the fermions and 
bosoms. This kind of symmetry was 
linearly realized in a four­
dimensional model for Wess-Zumino. 
This construction is typical for a 
general supersymmetric theory.

An essential step in defining 
the supersymmetry algebra is given by 
th6 generators Q'a (i=l,2,...,N) 
carrying out a representation of the 
Lorentz group and being interpreted 
as supercharges. The case N»1 is 
ilustrating by considering an Abelian 
gauge group, the supersymmetric gauge 
theory, the Yang-Mill's theory and 
Noether technique. The irreducible 
Representations of the supersymmetric 
group of the states at rest are 
considered, together with their 
interpretations. The procedure can be 
generalized to any semi-direct 
product S®T with T an Abelian group. 
The simple supergravity is presented 
as its invariance. Then are treated 
also the Theories of extended rigid 
supergravity (for N»l, N=4), the 
local tensor calculus concerning the 
coupling of the supergravity to 
Matter, the superspaces (for N-l, 
N=2), the superspace formulation for 
rigid supersymmetric theory and 
supergravity.

The supersymmetric theories 
allow to calculate the quantum 
effects. Super-Feynman rules are 
constructed for Wess-Zumino model and 
N=1. The general formalism is 
presented as well as some related 
applications. The finiteness of a 
large class of extended rigid 
mspr symmetric theories is a

significative renormalization 
property.

Spontaneous breaking of 
supersymmetry and comments of the 
Realistic Models are given. The 
currents in supersymmetric theories 
are presented in the Wess-Zumino 
model and in the Super Yang-Mills 
Theorie’s. A short introduction in the 
2-dimensional supersymmetric models 
and superstring actions are 
p r e s e n t e d .  T w o - d i m e n s i o n a l  
Supersymmetry Algebras for Minkowski 
and Euclidean spaces are considered 
as well as their irréductible 
representations from a physical point 
of view, and some models for these 
spaces are constructed. In a 
geometrical framework the euperspace 
formulations of two-dimensional 
supergravities, the superconformal 
group, * the Green function and 
operator product expansions in some 
superconformal models are given. The 
Gauge covariant formulation of 
strings at different levels concludes 
the general presentation.

It follows three Appendixes 
containing (A) "Explanations of the 
Conventions", (B) "List of Reviews 
and Books" and (C) "Problems on 
afferent Chapters". The references 
includes 260 books, papers and 
proceedings.

The book is aimed mainly to the 
theoretical physicists but by its 
exposure furnishes a good didactical 
introduction in the subject. For that 
reason it was also translated in 
Russian and commented by P.P. Kulysh, 
being published by the "Mir" Co., 
Moscow in 1989. By the way, the work 
excludes the extended supergravity 
theories, the superstring theories, 
the extensive disscussions and other 
phenomenological implications. 
However it is of great interest even 
for the mathematicians working in the 
fields of Algebra, Diferenţial 
Geometry and Topology, for the 
applications of the new techniques in 
the physical theories.

M. ŢARINX
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Q u a l i t a t i v e  T h e o r y  o f  
D i f f e r e n t i a l  E q u a t i o n s .  Colloquia 
Mathematica Societatia JÂnoa Bolyai, 
5 3 .  N o r t h - H o i l a n d  C o m p a n y  A m s t e r d a m ,  
1 9 9 0 ,  6 8 3  p a g e s ,  e d .  B .  S z . - N a g y  a n d  
L .  H a t v a n i .

T h i s  v o l u m e  c o n t a i n s  e x p o u n d e d  
v e r s i o n s  o f  6 0  l e c t u r e s  g i v e n  a t  t h e  
T h i r d  C o l l o q u i u m  o n  t h e  Q u a l i t a t i v e  
T h e o r y  o f  D i f f e r e n t i a l  E q u a t i o n s  h e l d  
a t  S z e g e d  ( H u n g a r y ) ,  A u g u s t  2 2 - 2 6 ,  
1 9 8 8 .  M o s t  p a p e r s  c o n t a i n  c o m p l e t e  
p r o o f s ,  e x c e p t  s o m e  s u r v e y  a r t i c l e s  
p f  i n v i t e d  l e c t u r e r s .

T h e  t o p i c s  c o n v e r e d  b y  t h e  
p a p e r s  c a n  b e  s u m m a r i z e d  a s :  
a s y m p t o t i c  p r o p e r t i e s  o f  o r d i n a r y ,  
f u n c t i o n a l  a n d  p a r t i a l  d i f f e r e n t i a l  
e q u a t i o n s ,  s t a b i l i t y  p r o b l e m s  o f  t h e  
s o l u t i o n s  o f  t h e  o r d i n a r y  a n d  
f u n c t i o n a l  d i f f e r e n t i a l  e q u a t i o n s  a n d  
s t a b i l i t y  o f  t h e  d i s c r e t i z a t i o n  
m e t h o d s ,  m e t h o d s  o f  a b s t r a c t  
d y n a m i c a l  s y s t e m s  a s  w e l l  a s  
a p p l i c a t i o n s  i n  m e c h a n i c s ,  p h y s i c s ,  
b i o l o g y  a n d  c o n t r o l .  #

I n  w h a t  f o l l o w s  w e  s h a l l  
b r i e f l y  r e v i e w  s o m e  p a p e r s .  T h e  
c h o i c e  o f  t h e  p a p e r s  r e f l e c t s ,  w i t h  
n o  * d o u b t , t h e  r e v i e w e r ' s  i n t e r e s t s ,  
a n d  t h i s  d o e s  n o t  m e a n  a n y  v a l u e  
j u d g e m e n t  c o n c e r n i n g  t h e  o t h e r s .

W h e n  a n  e x i s t e n c e  p r o b l e m  f o r  
s o l u t i o n s  o f  a  d i f f e r e n t i a l  i n c l u s i o n  
i s  a p p r o a c h e d ,  i t  i s  p o s s i b l e  t o  t a k e  
r n t o . a c c u n t  t h e  a p p r o x i m a t i o n  o f  t h e  
g i v e n  m u l t i f u n c t i o n  b y  m e a n s  o f  a  
c o n t i n u o u s  s i n g l e - v a l u e d  m a p p i n g .  
U s u a l l y ,  i t  i s  a s s u m e d  t h a t  x - . F ( x )  i s  
u p p e r  s e m i c o n t i n u o u s  w i t h  c o m p a c t  a n d  
c o n v e x  v a l u e s .  I n  t h e  l a s t  y e a r s  m a n y  
a t t e m p t s  h a v e  b e e n  m a d e  t o  a v o i d  t h e  
c o n v e x i t y  a s s u m p t i o n -  I n  G . A n i c h i n l ' a  
p a p e r  * A p p r o x i m a t e  S e l e c t i o n  a n d  
p e a n i  a n - v a l u e d  m u l t i f u n c t i o n s ” i s  
p r o v e d  t h a t  a n e c e s s a r y  c o n d i t i o n  f o r  
a n  u p p e r  s e m i c o n t i n u o u s  a n d  c o m p a c t  
v a l u e d  m u l t i f u n c t i o n  t o  a d m i t  a  
c o n t i n u o u s  s i g l e - v a l u e d  a p p r o x i m a t i o n  
i s  t h e  c o n n e c t e d n e s s  a s  w e l l  a s  
l o c a l l y  c o n n e c t e d n e s s  o f  t h e  3 e t s  
F ( x )  .

A n o t h e r  p a p e r  o n  d i f f e r e n t i a l  
i n c l u s i o n s  i s  " B o u n d a r y  v a l u e  
p r o b l e m s  f o r  s e c o n d  o r d e r  n o n l i n e a r  
d i f f e r e n t i a l  i n c l u s i o n s "  b y  L . E r b e  
a n d  W . K r a c e w l c z .  T h e  a u t h o r s  
i n v e s t i g a t e  t h e  e x i s t e n c e  o f  
s o l u t i o n s  o f  a  d i f f e r e n t i a l  i n c l u s i o n  
o f  t h e  f o r j p  y"«F{t,y,y * ) ,  y e B ,  
F : I x R nx R n-» 2R , I = [ 0 , 1 ] , B  b e i n g  
b o u n d a r y  c o n d i t i o n ,  w h i c h  m a y  b e  
n o n l i n e a r ,  p e r i o d i c  o r  e x t e n s i o n s  o f  
t h e s e .  T h e  r e s u l t s  a p p l y  t o
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c o n t i n u o u s  f u n c t i o n s  a s  w e l l  ai 
C a r a c t h e o d o r y  m u l t i f u n c t i o n s .

T h e  w - l i m i t  s e t  i s  th« 
c o l l e c t i o n  o f  t h e  c l u s t e r  p o i n t s  o f  i 
t r a j e c t o r y  a n d  p l a y s  a n  i m p o r t a n t  
r o l e  i n  t h e  s t u d y  o f  t h e  l o c a l  and 
g l o b a l  b e h a v i o u r  a n d  o f  t h e  e t a b i l i t y  
o f  d y n a m i c a l  s y s t e m s .  I n  Zvl 
A r t s t e i n ’ s  p a p e r  " O n  c o l l e c t i v e  l im it  
s e t s "  a r e  s h o w n  s o m e  a d v a n t a g e s  of 
t r a c k i n g  t h e  e v o l u t i o n  o f  a  s e t  of 
p o i n t s  i n  t h e  s t a t e  s p a c e .  The 
c o l l e c t i v e  s e t a  a r e  a n a l o g s  o f  the 
o m e g a  l i m i t  s e t s ,  w h e n  s e t s ,  ra th er  
t h a n  p o i n t s ,  a r e  t r a c k e d .

V a r i o u s  c o u n t e r e x a m p l e s  are 
c o n s t r u c t e d  i n  o r d e r  t o  e n l i g h t e n  
s o m e  b a d  f e a t u r e s  o f  t h e  s t r u c t u r e  o 
t h e  s o l u t i o n  s e t  o f  o r d i n a r y  
d i f f e r e n t i a l  e q u a t i o n s  i n  i n f i n i t e ­
d i m e n s i o n a l  B a n a c h  s p a c e s .  B .M .G aray  
i n  " S e c t i o n s  o f  s o l u t i o n s ,  fu n n e le  
a n d  c o n t i n u o u s  d e p e n d e n c e  o n  i n i t i a l  
c o n d i t i o n s "  s h o w s  t h a t  t h e  c r o a a -  
s e c t i o n  n e e d s  n o t  b e  c l o s e d  a n d  it 
m a y  h a p p e n  t h a t  t h e  c l o s u r e  o f  an 
i n v a r i a n t  s e t  i s  n o  l o g e r  i n v a r i a n t  
i n  c a s e  o f  s o l u t i o n s  w h i c h  d o  not 
d e p e n d  c o n t i n u o u s l y  o n  i n i t i a l  data , 
T h e s e  r e s u l t s  t o g e t h e r  w i t h  the 
f a i l u r e  o f  P e a n o  p r o p e r t y  ( G o d u n o v ’ s 
t h e o r e m )  m a k e s  a  q u i t e  d i f f e r e n t  
p i c t u r e  i n  r e s p e c t  t o  t h e  o r d i n a r y  
d i f f e r e n t i a l  e q u a t i o n s  i n  f i n i t e ­
d i m e n s i o n a l  s p a c e s .

A s h o r t  s u r v e y  p a p e r  "R e c e n t  
a d v a n c e s  i n  t h e  s t a b i l i t y  t h e o r y  of 
n o n l i n e a r  s y s t e m s "  by 
L .  L a k s h m i k a n t h a n ,  b a s e d  o n  Lyapunov 
f u n c t i o n  t e h n i q u e s ,  p r e s e n t s  a 
s y s t e m a t i c  a c c o u n t  o f  t h e  re c e n t  
t r e n d s ,  d e s c r i b e s  t h e  c u r r e n t  s ta t s  
o f  t h e  t h e o r y  a n d  p r o v i d e s  a  u n i f i e d  
g e n e r a l i  s t r u c t u r e  a p p l i c a b l e  t o  a 
v a r i e t y  o f  n o n l i n e a r  s y s t e m s .

T .  A .  B u r t o n  i n  " L y a p u n o v  
f u n c t i o n a l s  a n d  p e r i o d i c  s o l u t i o n s 11, 
b a s e d  o n  L y a p u n o v ' s  d i r e c t  method, 
i n t r o d u c e s  q u a l i t a t i v e  r e s u l t s  on 
o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s ,  
f i n i t e  a n d  i n f i n i t e  d e l a y  e q u a t i o n s  
a n d  V o l t e r r a  e q u a t i o n s .  I n  a  s tron g  
c o n n e c t i o n  w i t h  t h e  p r o b l e m  of 
e x i s t e n c e  o f  a  p e r i o d i c  s p l u t i o n  nay 
b e  c o n s i d e r e d  A . P e l c z a r ' s  paper 
" G e n e r a l i z e d  p e r i o d i c  p r o b l e m s  for 
o r d i n a r y  a n d  p a r t i a l  d i f f e r e n t i a l  
e q u a t i o n s "  .

MARIAN MUREŞAN
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RBSUMAT. - Citavt inagalităţi întărit*. CIteva inegalităţi 
cunoscut* sint întărit*, folosind o metodă din lucrar** [9].

1. Let 0<a<b and let n be an integer, ni2. Let
x~(xlf...,xn) e [a,b]a. We shall use the following notation:
V ( * l + -. ,+xJ/n, Gn-(xx.. .x„)^n, Sn(x) (Xj-Xj)2

I<3
log(x) = (log(x1),... ,log(x„) ), • • • ’\pO

Then:

2bn
;S^x)iAn-Oni— -Sjx)

For the long history of (1) see [3]-[5], 
us remark that the counterexample to (1), 
inconclusive.

We have also (see[6]):

(1)

[8]-[10], [12]. Let 
given in [ 12 ], is

1
n(n-l) SB(Jx) 6AB-Qni ± S a(Jx) (2 )

2. Let /eC2[a,b]; let 2m and 2M be the minimum, respectively 
the maximum of f" on [a,b]. Then 2 and are convex
functions on [a,b]. '

This elementary remark, combined with an appropriate choice

* f a c u l t y  o f  T e c h n o l o g y ,  B a r u n a  F i l i p o v i i a  1 2 6 ,  4 1 0 0 0  Z a g r e b ,  C r o a t i a

** P o l y t e c h n i c  I n a t l t u t e ,  D e p a r t m e n t  o f  M a t h e m a t i c s ,  3 4 0 0  C l u j - N a p o c a ,  
Homs it l a



of f, leads to results comparable with (1) and (2). Namely (see
[9]):

___________________________J. E. PEfimié and I. RAŞA__________________________

exp ■- -* js*exp—
2n2b2 G 2 (3)

-5_S„(log(x)) sAn-Gns-^I 5J1(log(x) ) (4)2 n 2 il

- ^ 5 n( ^ ) SAn-GnS^ 5 „ ( A )  (5)on an

Other results obtained by the same method are to be found 
in [1] and [2]♦

3. We shall apply the above method In order to improve some 
results of A.O.Pittenger [8].

Let <£ be a real-valued function defined on an interval I, 
possibly unbounded. Let t0el. Y will denote a random variable 
whose range is almost surely in J.

THEOREM ([8]). Suppose Y has finite mean m and variance o2, 
and <£(30 finite expectation. If fimt0, set a0~t0 and p0=1/
otherwise set a0=ii+o2/ (ii~t0) and p0“ (M-t0) 2/(a2+ (ii-tQ) 2) . Then if 
3f£t0 a.s., and i/ the /unction (<£(t)-<£(t0) ) / (t-t0) is concave on 
(-«e,t0)/?I, we have

po0(ao) + (l-p0)<£(t0)£E(<£(y)) (6)
Eguaiity is attained /or the random variable Y0 which equals a0 
with probability p0 and t0 with probability 1 -p0. 1/ in addition 
0 is convex, the ie/t side o/ (6) dominates Ail the
/oregoing hold for YZt0, provided that the function (<£( t ) -<£ ( t0) ) / 
/ (û—û0) is convex on (t0,oo)/?r.
4



SOME IMPROVED INEQUALITIES

Remark 1. If I is bounded, the inequality (6) is equivalent 
to the inequalities given (with different proofs) for n=2 in 
[11,p.279].

Remark 2. It is easy to verify that if <p is 3-convex (in 
particular, if 0 <3>£O), then (0(t) -0(to) ) / (t-t0) is convex on 
(t0,»)/?!.

Using Remark 2 it is easy to check the convexity of 
(0(t)-0(to))/(t-t0) in all examples considered in [8]: it 

suffices to verify that 0<3>£O. Moreover, the inequalities given 
in those examples can be improved.

For example, let y be a random variable, 0£F£l, with mean 
H and variance a2. Using the above theorem for t0 = 0 and 0(t) = 
- t log(t), 0(0) = 0 (note that 0*3* £ 0), Pittenger obtains in 
[8]

E(Y log(Y))&* log(n+a2/fi) (7)
Using the Jensen inequality for 0 (note that 0 <2*£O) he 

obtains m 1o9(M) £ JS(Flog(y)) and, finally, the following elegant 
result

0 £ E(Y log(F)) - ploq(n) i filoq(l+a2/n2) (8)
Now, in the spirit of Section 2, let us consider the 

functions 0x(t) - 0(t) + t3/6 and 02(t) = 0(t) - t2/2.
Then ^0 and 022,iO for 0<t£l. By using Pittenger's technique 
with 4>1 and 02 instead of 0, we obtain

a212 <. E{Y log(F) ) - »loq(n) £ /Uog(l+o2//i2) - 6/6 (9)
vhere 6 » E(Y3) - /i3(l+o2/n2)2 is positive by virtue of the last 
Inequality in [8].

A similar treatment can be applied to the other examples

5



discussed in [8].
_________________________ J. E. PE6a RI6 şnd I. RAŞA
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RESUMAT. - Puneţi1 eu eoaficiunţi nagativi n-atalata da un ordin
complex. în lucrara oo pun In evidenţă unele relaţii intra clasa T_, a 
funcţiilor cu coeficienţi negativi n-stelate fi clase Tn b de funcţii cu 
coeficienţi negativi n-stelate de un ordin complex b .  '

1. Introduction. Let A denote the class of functions
m '

f(z) « z + ^ a kz* which is analytic in U » {z e C ; \z\ < 1}.
Ha denote by N  the set of nonnegative integers (N  -
{0| 1; 2 I  e e e } ) e

DEFINITION 1 ([3]). We define the operator D” ; A -+ A, 
n e N ,  by s a) D°f(z) - f(z); b) DIf(z) « Df(z) » zf'(z); 
c) D'Vffz) - Dflp-tfiz)), z e U.

DEFINITION 2 ([3]). A function f « A is said to be n­
b tar like if R e { D n+1f(z)  / D'VfJz) ]  > 0, z e U, n e N. We denote 
by Sn the class of n-starlike functions.

We remark that S0 = S* is the class of starlike functions 
and Sj “ Sc is the class of convex functions. In [3] it is proved 
that all n-starlike functions (n«A/) are univalent and Sn o Sn+i.

DEFINITION 3. We say that / e A is n-starlike of complex 
order b (b is a complex number and b+0, ncJV) if £>”/(z) / z * 0,

* " A . V l a i c u "  U n i v e r s i t y ,  D e p a r t m e n t  o f  M a t h e m a t i c s ,  2 9 0 0  A r a d ,  R o m a n i a

** F a c u l t y  o f  S c i e n c e ,  D e p a r t m e n t  o f  M a t h e m a t i c s ,  D a m i a t t a ,  E g y p t
s

U n i v e r s i t y  o f  C l u j ,  faculty o f  M a t h e m a t i c s ,  3 4 0 0  C l u j - N a p o c a ,  R o m a n i a
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(z € U) and

Re 1 + D**l£iz) 
D af(z)

> o,z€U.

We denote by Sn t> the class of n-starlike functions of complex 
order b.

M.A.Nasr and M.K.Aouf introduced and studied the class S0b 
of starlike functions of complex order b ([1]). He also note that

s„,i - sn.
DEFINITION 4. Let neN and let b be complex and b * 0; we 

define the class Tn b  by

Tnb - [f£Snb; f(z) = z - j£akz k, ak*0, k=2,3,...}.

A function f e Tnb  is said to be a function with negative 
coefficients n-starlike of complex order b.

The classes T01_a and T11_a, a e [0,1) were introduced and 
studied by H.Silverman [4] and the classes Tnfl_a, a e [0,1), 
neN, were defined in [2].

In this paper we give some relationships between the classes 
Tn,b (b complex) and Tn I .

We will use the following lemma
LEMMA A. Let n e N  and let a e [0,1); a function

m

f(z) = z - ^2&kzk is ifl Tn,i-a and only if
••

^  Jc"(/c -  a) a* £ 1 -  a .

The proof of a more general form of this lemma may be found in
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m .
>

2. Main rasult. He denote by £ the set {z t C, \z - 1/2|
S 1/2 and z # 0> » {z e C; Re —  £ 1}.z

THEOREM 1. Let n e N  and let be in B; then Tn/b c Tn J .
•»

Proof. Let / be in Tn band * z - ^ a kz k 
(ak i 0, J c - 2 , 3 T h e n ,  by Definition 3, we have

Re i + j. f r>ntlf (z) > 0

or

1 ♦ tfe [ 4

This last inequality is equivalent to

1 + Re [
-  y k n(k - 1 ) akzk~x

i — k _______________i >] > 0.

By letting z -*■ 1 , z real, we obtain

- T
1 .Re ----------

o ~
1 '

è o

and this inequality can be rewritten as
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*

R* i
1 S**'*-1’**i 1 (1)

By using the condition b e B  which is equivalent to Re(l/b) £ 1, 
from (1) we deduce

g * a(* - Da*
i 1

Jcna„
(2)

But we have 1 - ^ £ " 3 *  > 0 because l/*t(z) / z =
- 1 - * 0 (Definition 3) and lim[£)nf(z) / z] = 1;Ê2 -
from (2) we obtain '^kn,1ak i 1 which, by Lemma A, implies

feTn,l-
COROLLARY 1. Jf f is a function with negative coefficients 

starlike of complex order b and b e B, then f is starlike (feS*).
COROLLARY 2. If f is a function with negative coefficients 

convex of complex order b and beB, then f Is a convex function 
(t€S°). ,

3. Remarks, l) . If b e B and b * 1, then we can find 
functions f in Tn l such that f are not in Tn b (i.e. Tn l<f-Tn b). 
Indeed, let f(z) = z - z2/2n; then / is in Tn I , but for b e B ,  
1/b - p + ig, we have

1 + 1 ( Dn'lf ( z)
b D nf (z)

1) (p * 1 * iq) z - 2 
z - 2

and

10
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+ 1 Dn,1f(z0)
* b ' D nf(z0

for z0 - 2/(p+l+ig) e U, because p> 1, and this implies / < rn,j>*
2). Let Jb be a complex number with |Jb| = r > l and for neN 

we consider the functions

fB(z) = z - 2 n(r + 1)
. n,

then fn e Tn jb< 
Proof. By

but /n € rntl (fn is not a n-starlike function), 
using Lemma A we have

g  kâ ak = 2n*1a, 2r
r + 1 > 1

and this implies f f Tn,l •
Let denote by t/(c;p) the disc {z£C;|z - c| < p). We prove

that

1 D ^ f  (z)l + -i<--, S ■ - 1) 6 t/(l;l) . zeU - U(0;1). (3)
b 9"fn(z)

But (3) is equivalent to (Pn+ifn(z) /Dnfn(z) -1) fb e U and we also 
have i

1  (£ ~ lffl<z) _ D  . A  ( z-2rZy  (r.l) _ ^  _  1£— e
r D nfn(z) r z-rz / (r+1) r+l-rz

€  U( - r
2r + 1

r + 1 
2r + 1 ) c a(0;l) = U.

If we denote by 6 the argument of h (b *= r e1®) , then we also 
have

li
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1 ( Dn"fn(z) 
* D nfn ( z)

__ ____ Z
r ♦ 1 —  e 16 e (/ rz

and we obtain that (3) holds.
From (3) we have / € Tn
3). For b  real the last result (Remark 2) can be extended. 

So, by a simple calculation, we also can obtain the next result; 
if -1/2 < b < -1/3 and 1/2 < 6 < -Jb/(l+b) or if b s -1/2 
and 1/2 < B < 1, then ffl(z) » z - Bz2 € T0fb and
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Raiuaat. - Rasa d* stelaritata a funcţiei eroare. în lucrare se 
determini razele de stelarltate pentru funcţiile / definite prin 
relaţia de mai joe. Acestea se exprimi cu ajutorul rădăcinii 
ecuaţiei (3) din intervalul (tr/2,ir).

The purpose of this note is to find the radii of 
starlikeness for the functions

f„(z) **f *exp(-t ") dt , zeC , neN" .
Jo

Particularly, for n=l, the result obtained by P.T.Mocanu in
[2] which gives the radius of starlikeness for the exponential 
function will be refind and, for n=2, the radius of starlikeness 
for the error function Er£(z)=£2(z) will be obtained.

Let £ be an analytic function around the origin, with f(0)=0 
and £'(0)*0. The radius of starlikeness for £ is defined as being 
the radius of the largest disk centered at 0 in which £ is 
starlike. According to [1], this radius equals min|z| where z is 
a root of following system:

Re [z £•(z)/£(z)]=0 
Re [z £•• (z)/£' (z) ]+l=0 

For the function £n this system becomes

* University of Cluj-Napoca, Faculty of Mathematics, 3400 Cluj-Mapoca,
Romania ■
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Re ( f1exp [z "(1-u ") ] du) 'J*0 Jo (1)

Re zn=l/n. (2)
Denoting by the radius of starlikeness of

relation (2) gives (Im zn)2= r2n -i/n2, so, it follows by (1) that 
r is the smallest positive root of the equation

f1exp t (1-u ") /n] cos ( (1-u ") <r2"-l/na)1/a] du*0
Jo

Consider the equation

Fa(x) “j 1exp (-u n/n) cos [x(l-u *) ] du*0 (3)

Then r2n*(xn)2+l/n2, where xn is the smallest positive root 
of the equation (3).

Let now n*l. Then repeated integration by parts in (3) gives 
the following equation for xx:

x sin(x)+cos(x) = 1/e , 
so,as in [2], we obtain r* (/x)»2.83...

For n>l we have

f L(x ) *-fl (1-u ") exp( -u n/n) sin tx(l-u ") ] du*0 
Jo

so Fn is a decreasing function on [0,tr]. It is obvious that 
Fn(n/2)>0. We shall show now that Fn(ir)<0.

Let
gn (u)-exp(-un/n) cos[w(l-un)].

Using the sign of gn and the inequality exp(-uA/n) <,
£ exp[-l/(2n)] valid for un i 1/2 we obtain

14
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r- -Fn(it) < J sg„(u) du+exp [-1/ (2n) ] (1-2 ") .

But for ue[0,l/2] the following inequalities hold 
exp(-un/n) £ exp(-u), 

cos[n(l-un)] 5 cos[»r(l-u)] <, 0, 
so

gn(u) «s exp(-u) cos[ir(l-un) ] <; g^u).
Integrating by parts it is easy to obtain the next relation

f^gl(u)du=.^^^L-i.l.2) < _± .
Jo  1 + x 2 4

Finally we get the following inequality
F„(n) < -1/4 + exp[-l/ (2n) ] (1-2-1/").

If n<t3 using exp[-l/(2n)]<1 it follows that 4 Fn(ir) <
< 3-4X2"1/" < 0. If n=2 we have exp(-l/4)x(i-2-1/2) < 15/64 so 
Fn(ir) < 0 for every nz2.

We can conclude rtow that xn is the unique root of the 
equation Fn(x)~0 situated in (n/2,n) and

r*(fn) = [(xn)2 + l/n2]1/<2">.
By computation the following value is obtained for the 

radius of starlikeness of the error function:
r* (f2) = r*(Erf) = 1.504...

Solving again equation (3) for n e {3,4,5} we obtain
r*(/3) = 1.268. . . 
r*(f4) = 1.178. . . 
r*(f5) = 1.131...

Remark. Since the numbers r*(fn) are greater than 1, every 
function fn is starlike in the unit disk.
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RESUMAT. - Asupra unai subordonări prin funcţii convexe. în
lucrare elnt determinate condiţii pentru ca g<f, unde / este o 
funcţie analitică convexă, iar g este dată de (2).

1. Introduction. Let A be class of all analytic functions 
/ in the unit disc U normalized by /(0)*=0, /'(O)-!. A function 
feA is said to be convex in U if

where y>“‘i and *>(z) is analytic in with $(z)*0.
In this paper we determine conditions on <p(z) so that g<f. 

For $ (z)*X real or complex number, this problem was solved in [7] 
for X real and y = 0 / in [6] for A real and all y > - l  and in
[4] for A, complex.

2, Preliminaries. We will need the following lemmas to prove 
our results.

LEMMA 1. ([2]) Let p be analytic in U, let q be analytic and 
univalent in Ü, with p(0)=g(0). If p is not subordinate to q, 
then there exists points z0eü and C0edU and an m> 1 for wich

* Polytechnic Institute, Department of Mathematics, 3400 Cluj-Napoca,
R o m a n i a
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Let feA be convex in U and let
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P<l*l<l*ol> c <}(U)'
(i) P(z0) “ <7(C0) and
(ii) z0p'(z0) = mCog’(C0)

LEMMA 2. ([1] and [8]) If feA satisfies (1), then

Re- w - > i  • 111
LEMMA 3. ([3]) If feA satisfies (3), then the function

g1( z ) = ± [ ' f U ) V idC (4)
Z ’ Jo

satisfies

Re zg'i(z) 
Pi (z) >ft(Y) , Z€U (5)

where

4(Y) = _______111_______2F(1,y +1,Y+2,-1)

and F(a,B,y,z) is the hypergeometric function:

( 6)

p/„ a v - V  «(« + D  ••• (o+n-l)P(P+l) ... (P+n 1) „„ 
F ( « , p , y , z )  ------------- n i Ÿ ( YV i j :  7 . < ÿ + â - ï )  2

3. Main result*.
THEOREM. Let feA be convex and let g be defined by (2). It 

f(z) is analytic in V with f(z) * 0 and satisfies :

*0 , z€U (?)
( z )

18
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(Y*20<Y))Re-^y -Re z»'(z)
(»(«))*

Y
<p (z )

zy'(z) x 
(<p (z) )J -1*0,

Z€U
( 8 )

vhere $(y) is given by (6), then g(z) <f(z), zel/.
Proof. Without loss of generality we can assume that t and 

f satisfies the condition of the theorem of the closed disc 0. 
If not, then we can replace f(z) by fr(z) « f(rs), f(z) by 
f(z)~f(rz) and hence g(s) by gr(a) - g(rz), where 0<r<l. fr(a) is 
convex on O. We would then prove gr(z) ■<fr(z) for all 0<r<l. By 
lstting r-»l~ we obtain g(z) ■</(a), ael/.

From (2) we deduce:

Y , . ff'U) 
*(*)' (*(a) )aj'gtz) +

zg'(z)
*<z) /(z) ( 9 )

If g is not subordinate to f, then by Lemma 1. there exists 
points s0cU and (QtdV and an mil such that:

g(*0) - f ( C 0) and a0g*(a0) - mC0/'(Co) (10)
From (9) and (10) we obtain:

hence

f(z0) Y Z^'(Zq) 
<g» (z0) )a /(C0) ♦* Cq/^Cq)

<P<Z0)

f(a0)-f(Ç0) f
Co/'tCo) l ♦

■in

_Y  z0v'(zQ) ] f  (C0)

<*o> (*<z0))a JCo/^Co)
*(y<*o> ?<*<>>
( g ( z 0) ) 2 j z0g '( z 0) ‘

+
* ( * o >

Since g(z) “ f(a)g1(a), where gx(z) is defined by (4), if we
note w-— ■—  from (S) and (7) we deduce 

z0g’(z0)

19
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Re —  >b(y) or L- - ~  . ■ L — y^-r 
W  I 2Ô <Y> I 2&(y )

Using this result combined with (8) and mil, we obtain:

Re Q=ni Re <j>(z0) 2Ô (y) I <p(z0) (<p (Zq) )
+Re f Y *<,*'(*•> _ X ____1

\<P(*o> (<p(z0))2 2 b((Y> )

ZpV'fZo) 1V 
U 0))3 )

liroRe [
»(z0>

-Re j*___ ZqV'IZq)
2ft (y) "1 <p(z0) (*(z0))2

which is equivalent to

-lh 1 Y
2ft(Y> <Mz0)

*<,*'( zo> -1 ] iO ,

azg jf(z0) -f(C0) 
Co^tCo)

( 11)

Since C0f' (Co) iB the outward normal to the boundary of the 
convex domain f (U) at f((0), (11) implies that f(zQ)ff(U). This 
contradiction shows that g<f.
If we let f(z)*A, complex number, in the Theorem, we obtain the

5result of [4]:
COROLLARY. Let feA be convex and let g(z) =—  f *f(() (r~xd(,zY Jo

If A la a complex number which satisf ies :

(Y+2ft (y) )Re- l ' 1 -lüO

where S(y) is given by (6), then g<f.
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RESUMAT. Subclasa da funcţii analitica. Scopul aceatai lucrări 
asta da a obţină cltava proprietăţi interesante ale unor subclasa 
da funcţii analitica. ’

1. Introduction. Let A be the class of analytic functions 
/ in the unit disc U, normalized by f(0) * f•(0) - 1 = 0.

Definition [2]. Let R be a set in C and let g be analytic 
and univalent oh V  except for those (edu for which lim g(z) -«>.

*-»CHe define f(n,g) to be the class of functions ţ:CJ x U - ->U for 
which ţ(r,s,t;z)€n when r - g(C) is finite, s = mtq'(Ç),
Re (1 + — )im Re (1+ ) and zeU, for mï;l and I (I - 1.

8 q '(0
In the special case when R is a simply connected domain and 

h is a conformal mapping of U onto f) we denote the class by
t(h(U),q) or ţ(h,q).

If h(z) « g(z) - ' then
(1) g(U) - n **h(U) » {w; Re w>0>.

LEMMA A[2] Let the function ţeţ(fl,q), where 0 and g are 
defined by (1). If p is analytic in U, with p(0)-l and if p 
satisfies

Re t(p(z), zp'(z), z2p'•(z);z)>0, zcU, 
then Re p(z)>0 for all z e U .

* University of Cluj-Uapoca, Department of Hathematica, 3400 Cluj-Napoca,
Romania
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2. Main raaulta
THEOREM 1. Let M(z)=az" + an+kzn*k + ..., N(z) - bzn + .... 

be analytic in the unit disc U, a.b+O, n,kzl. Suppose

M(z)
N(z) **0 , zeU , Re a N(z) 

H zN'{z) >6 , where Osfi<Re— ,

p>0 and aeC with Re o>0. If

Re (1-g M*(z)
N'(z)

(2 )

then

Re| M(z) N(z) f 2+b-k for z€U .

Proof. Let p(z)  - / V* , then p is analytic in ü and\ n (z ) /
P(0)-(if ■

From (2) we deduce that

Re p(z) + N(z)
zN'(z)

zp'(z) >p (3)

We will obtain the real number 9 , for which (3) implies 
Re p(z)>9 , for zeU.

Let g(z) »------ [p(z)-<p] , then g is analytic in U and
(I)''*

g(z) •» 1 + Ckzk + ...
If we define the function 9:C2 x U C

t  ( W j ,  w2 ; z) =(ir- w, + a N( z)
1 P  zN'(z)

then from (3) we deduce Re 9(g(z), zg*(z); z) > 0 and
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♦(1,0; z) « ('§)'* ” * > °» for a11 zeU‘ 
For ss --j(l+r2), reR, we obtain

Re i|r (ir, s; z) *Re * „ffi?.)— 1(/i r . »
V zN'(z) Jll *>/

s - ô | ( 1+r*)[(| ),‘ - V]+<p-p , i f  ♦ * ( ! ) '

s+<p -P s

Since max|<p:<p-P-fi-^ (l+r*)|-̂ J'*-<pjsO; rej?| *
2p

— 2T t k ' * - we have Mirand
2 )2 0 , for « 0 ,  «  -±(1*1*) and «♦„.

From Lemma A we deduce that Re q(z)>0, for zeU and Vf£f0. 
, Hence Re p(x)><p0, zeU.
If we let fi-1 in Theorem 1, we obtain
COROLLARY 1. Let M(z) ” azn + an+kzn+k + N(z) - bzn +..

to analytic in U, a.b * 0, n,kzl.
Suppose that Re N(z)

zN1 ( z) >b , where 0 £ 6 < Re—  andn

Re
N(z) u>(z) >P , where «6C , Re«>0 , P < 4  »b

then

Re M(z)
N(z)

>
2P+6/c4jP
2+bk for zeU.

This result was recently obtained by T. Bulboacă [1).
If we let a = b - l, n - 1/2, N(z) “ z, M(z) - f (z) ,

n * /c * 1 in Theorem 1, then we deduce
COROLLARY 2. Let £tA, — *0 Rea>0, p<l and supposez

that
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Re f(z) >P .

then

ReJ-QgI>^ z 2+Rea

Proof• From (4) we have

f(z) >p
By using Theorem 1 we obtain Rê J > u(ft) , where

u(ft) =■ , A6(0,Rea] . _____
But sup(u(6) ;ft€[0,Rea])=u(Re«) = hence Re» >- - ̂ *-R- “2 +R© tt \ Z 2+R©Cl

The case ot>0, 0£ p <l in Corollary 2 improves the result of 
Shigeyoshi Owa and C.Y.Shen [3].

If we take M(z) - zf'(z),feA, N(z) « a>0,

0£ p <1 in Theorem 1, then we deduce the result of Shigeyoshi Owa 
C.Y.Shen [3].

THEOREM 2. Let *Z+ E , Jtil be analytic in U,
----- *0 in U and suppose that

Rej ( l-a ) +a f ' ( z) p 1

where 0£ P <1, a^O, ji>0.

>P , z€U , (5)

Then R©^ | /or zet/, where
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( 6 )

Proof. Let p(z) =. 
p(z) “ l+CjjZ*+...

He will obtain the real number y for which Re p(z)>y 
If we aet q(z) =-^-^\p(z) -y] , then q is analytic in U and

î(0)-l.
A simple calculation yields:
Re t(9(z), zg'(z); z)>0, where 

ţ(wl,w2} z) - (l-y)2*! + 2y(l-y)w1 + 2 ±(i-n)w2.
((l-y)w1 + y) + y2 - P •
He have
Re +(ir,s;z)z -r2[(l-y)2 + (l-y)yA] +
+ [y2 - P - Jcy(l-y)] s 0 , if osysi 

and (1-y)2 + —  (l-y)yJt2:0
y 2 ( l +  —  k) - —  A y  -  P £ 0 .H |i r
These inequalities imply ycfOrYjJ where yx is deined by (6) . 
For y=y1<l we deduce Re +(lr,szeU, s<, (l+r2) and

by Lemma A we obtain Re g(z)>0, hence Re p(z)>ylf for zeU.
For p-1/2, A*1 from Theorem 2 we obtain.
COROLLARY 3. Let f(z) - z + a2z2 +... be analytic In U. 
Suppose that

where OS P <1, aiO.

m
then p is analytic in U and
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Then Re
\

fUl  „ a+]/a*+4p ( l » « j_ for z€t/ . for ztUm 
z 2(l+a)

This result was recently obtained by Shigeoyshi Owa and 
Zhworen Wu [4].
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REZUMAT. - Condiţii suficienta do uaivalenţX obţinut# cu aotoda 
•ubordonXrii. Sint g&aite mai mult# condiţii da univalenţX cu ajutorul 
metodai subordonlril.

1. DEFINITION 1. Let f(z), g(z) be two regular functions in 
B - {Zi \z\ < 1>. We say that f(z) is subordinate to g(z) , written 
t(z)<g(z), if there exists a function ţ(z) regular in U which 
satisfies g»(0) - 0, |<p(z)| < 1 and

f (z) = g(<p(z) ) \z\ < 1 (1)

DEFINITION 2. Let f(z) be a regular function in U and 
f'(z) * 0 for z € U. The function f(z) is said to be convex if

R e + i > o, z € U. 
f  (z)

(2 )

Let S denote the class of functions f(z) regular and 
univalent in the unit disk U,  for which f(0) = 0, /* (0) =■ 1.

F.G. Avhadiev and L. A. Aksentiev [1] have proved the 
following theorem:

THEOREM A. Let f (z) = z + ... and g(z) « z + ... be two 
tegular functions in U. If

University of Braşov, Department of Mathematics, 2200 Braşov, Romania
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zg"(z) i 1 (3)
g'(z) 1 - \z\2

for ail z e U and Log f'(z) < Log g*(z), Log /'(O) * Log g'(0) 
» 0, then the function f(z) is univalent in U.

A generalization of this theorem was obtained in [3]: 
THEOREM B. Let f(z), g(z) be regular functions in U, 

f(z) - z + ..., g(z) - z + ..., and let a be a complex number, 
0 < Rea £ 1. If Log f'(z) -< Log g ‘(z), Log f  (0) ■ Log g* (0) » 
0 and

(1 - \z\2) zg"(z)
g'(z)

s Re a, (4)

for any z e U, then the function

a

F,(z) - [a f u*‘1f/(u) du]1/m 
o

is regular and univalent in U.

In [2] it is proved the following theorem:
THEOREM C. Let B and y be complex numbers and let 

h(z) - c + hj« + ... be convex (univalent) in U with

Re [f).h(z) + y] > 0. (5)

If p{z) - c + pjS + ... is analytic in U then

p(z) + a Zf —  « h(z) — p(z) t h(z) . (6)
P p (z ) + y

In [5] it is proved the next univalence criterion: 
THEOREM D. Let a and c be complex numbers for which 

I or I < 1, |c| ü 1, c * -1, « [ 1 »°°) •ft + 1
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If g(z) «= z + ... is a regular function in V, and

(i)

(ii)

Sl^l # 0 in U when — -—  e z a ♦ 1 N # » { 1 / 2 _____}

i l for all z in U,

then the function g(z) is univalent in U .

2* In this note we obtain by subordination method new 
conditions for univalence. First we will prove a consequence of 
Theorem D.

THEOREM 1. Let g(z) - z + ... be a regular function in U
with .Si?\ 3 {?) # o for all z € U, and let a, y be complex 

z
numbers. If the regular function

F(z) / [ ^ l/T[g'(u)]1/,Y du (7)

is univalent in 17,

M  < i*
and

2y + 1 
« + l « U.»),

111 |a|‘ l W T  if 11,1
1111 '*| s T T 7 m î  lf |T|<!
then the function g(z) is also univalent.

Proof. We will show that the differential equation

zg'tz) zgr//(z) 
f f ( z )

= a ♦ ay zF^(z)
F'(z)

has a regular solution F(z), F(0) - 0, F'(0) = 1 in U. 
Integrating (8) from 0 to z we obtain:

( 8 )
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F ' ( Z )  -- | ^ ÿ I J 1/T[ g ' ( Z ) ] » / « »  (9)

The function ( j1/T is regular because -2-™- a u
(we choose the branch which is equal to 1 at the origin)
He have also g* (z) * 0. Then #*' (z) from (9) is regular and the 
differential equation (8 ) has the regular solution

F(z) ‘ /[-S^ - ] 1/Y^ /<if)l1/“Tdu' (10)

for which F(0) - 0, F'(0) = 1.
For c -> -2ay the relation (ii) from Theorem D becomes:

«Y [-2 |z|2 + ( 1 - |z|2) ♦ e(l - |z|2)F'(z) s 1

Because F(z) = z + is univalent, we have
-2|z|a + (i - |z|2)

F'(z)
s 4|z|, therefore:

«Y [-2 |z|2 4 (1 - |z|2 )  zF"}z) ] + o(l - |z|2 )
F'(z)

s |o y |4|z | + I o I ( 1  - |z|2 ) = |«|[-|z| 2 + 4|y ||z | + 1 )  • 
Calculating the maximum value of expression

E = I o I [ -|z|2 4 4|y ||z | 4 l 3 for |z| < 1  w e  obtain:

E i
4 |« y |

|o|(l 4 4 |y |2)

u  Ir I *

iflïl < f

From Theorem D and conditions (i) and, respectively (ii) ol 
Theorem 1 we conclude that g(z) belongs to S.

THEOREM 2. Let g(z) - z + h(z) = z + ... be regular
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functions in U, and let aty complex numbers. If iiiSlft 1Si # o,z

^  I £ --- L— — for (11)
g'(z) I 1 - |z|2

and

1*1 < 1* f (1,~),

1*1 * 

1*1 < 1 + 4|y |j

i f  Iy I 

i f  Iy I < \

( 12)

(13)

L°g j1/Y()i/(z) ]1/<T| ■< Log g'(z) , (14)

then the function h(z) belongs to the class S.
( for ( — ]1/Y lh'(z)] 1/miwe choose the branch which is equal 
to 1 at the origin, and for logarithmic functions the branches 
aqual to 0 at the origin).

Proof. Let f(z) ■■ [ h(z)j i/v )1/,Y.z
From (11), (14), Log /* (0) » Log g* (0) - 0, and Theorem A we 
deduce that f(z) e S. Now, applying Theorem 1 with ) » f(z) 
ve have:

F'(z) = il}ilL)i/i[h'(
z

that is (9) with g(z) - h(z) .
Then Theorem 1 shows that h(z) belongs to the class S . 
THEOREM 3. Let g(z) - z + . .., Log F 9 ( z ) - axz + ... be 

regular functions Ln U, let Log G9 (z) - bxz + ... be convex 
(univalent) in U, und let a, B, y, 6 complex numbers.
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jt y<g>g;<z> *0,
Z

(1 - \z\2) zG" ( z) 
G1 (z)

i

[fi'(z)}«» = [.SLLeL]* g'(z) for all z € U, 
z

and

(15)

( 1 «)

Re y > 0, fie [Log eY G ’*] > 0, |ttI < 1, «  2t  * 1 € [1, 1 «  + 1 ),

|aA| s.
M  *

_1
4 1

1 + 4 |Ô|J

i/ 1*1 * \
if i* i < i

(17)

Log F'(z) + zF"(z)
F'(z) Log(eYF'>) < Log G'(z) (18)

( for logarithmic functions we choose the branches equal to 0 at 
the origin), then the function g(z) belongs to S.

Proof. Let p(z) - Log F> (z), which is regular, and 
h(z) - Log O*(z) which is convex (univalent) in U. Then

p(z) + zp'(z) 
$P<z) + Y Logiez) + zF"(z)

F/(z)Log(eYF ,>)
By (18) and Theorem C we obtain :

Log F' (z) -< Log <3* (z) (19)
From (15), (19) and Theorem A it follows that F(s) e S. 
Because all the conditions of Theorem 1 are satisfied, vt 
conclude that g(z) belongs to the class S.
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RBSUMATi - O noul gsasrillitis t criteriului âu univalsnţt ul lui
Méhari. In aceastl notţ ae obţine o generalizare a unui bine cunoacut 
rezultat de univalenţl al lui Nehari.

Ha danota by U the unit disk { z:|z| < 1 >. The aim of 
this paper is to obtain a generalization of the following well- 
known result due to Nehari.

THEOREM A [1]. It f(z) “ z + a2z2 + ... is a rugular 
fonction in U, and

where

I{f;z} I i 2
<1 - |z|2)2 ' V z € U ( 1 )

{f;z} I f "(z) V if f "(z) \2
\ f'(z) j 2{f'(z))

( 2 )

then the function f(z) is univalent in U.
In the following demonstrations, we shall use the result due 

to Pommerenke.
THEOREM B [2]. Let r0 toe a real number, r0 « (0,1],

UIf ■ ( z : I z I < r0) and let f(z,t) - ax(t)z + ..., a2(t) * 0, be 
analytic in Ur# , for all t t 0 and locally absolutely 
continuous in I - [0,«), locally uniformly with respect to UIo

U n i v e r m i t y  o f  B r a ş o v ,  D e p a r t m e n t  o f  M a t h e m a t i c a ,  2 2 0 0  B r a ş o v ,  R o m a n i a
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Supposing that tor almost all t e l ,  f  ( z , t )  satisfies the 

equation

_ df(z.t)
z d T ~ P(z,t) df(z,t) 

Ôt ' * e uv (3)

where p(z,t) is analytic in U and Re p(z,t) > 0 for all t 
c I, z e U. If |aj(t) I -► oo for t -* «o and if { f(z,t)/a1(t) } 
forms a normal family in Ut< , then for all t e l ,  f (z,t) has 
an analytic and univalent extension to the whole disk U.

THEOREM 1. Let a be a real number, c be a complex
number, |c| < 1  and f ( z ) - z + a 2z2 +... a regular function in 
the unit disk U. If

and

11 - «
11 + a + 2c

1 + a < 1 (4)

1-g
1+a — —  ce'at* 1+a + Pif 6"?) Z2(1 . e *2t“)31+a l+c < 1 (5)

for all z e U, t £ 0, where

p(z) I fi*) V _ if f/7<z) y  
{ t'(z) ) 2  ̂ f / ( 2 ) J '

(6)

then the function f(z) is univalent in U.
Proof. If the function f(z) is regular in U, then

f ' ( z ) f  i (z) 
fa(z) (7)

where the functions fx(z) and f2(z) verifies the relations
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f*(z) + -£^lfK(z) =0  (K = 1,2)«

and

f2(0) = 0, f/(0) = 1
f2(0) - 1, f2'<0) - 0.

Let's consider L(z,t) a regular function L: UIg x [0, 
r0 6 (0,1), defined by

f, (e'“ z) + - e"t#) zf^e^'z)t M  1 1+cL(z,t) » ------------- -----------------------  -
f.(e-“ z) + — i-te6* - e-ta)zii(e-tmz)2 1 +c

» a2(t)z ♦ ...

where

a, (t) = e*" + — (e^ - e^") .1 1+c

Let's prove that aj(t) * 0 for all t 2: 0. We observe 
if a1 (t) - 0,then from (11) results that c - - e-2ta e (-» 
Because from hypothesis c f (-«,-1], it results that ax(t) 
for all t i. 0.

From (10) we obtain

= {[f1,(e-t-z)f2(e-t«z) - f2 (e'tBz) f2 (e '^z) ] •

e^+ce'** + 1_____ (l-e~2t*) 1>p(e~t*z)
1+c ‘ (l +c)2 (etm-e-tm)-r 2 *

iU(,(e-u z) + -i-(efc« - «-‘‘Jzf^e-^z)]2);2 l+c

( 8 )

(9 )

») -  C, 

(10)

(ID

that 

* 0,

( 12 )
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= {z[f1/(e-t«z)fa(e-“ z) - ft (e “ z) f2'(e “ z) ) •

a (eta-e~tm) _ 1 (1 - e 2t*z) iap(e'u z) ■, .
1+c (l+c)* ($“  - e'11) ‘‘ 2 (13)

: ( [f j (e‘t€z) + (etm - e *") zf2'<e'“ z) ] *} .

Let's prove that L(z,t) is a Loewner chain in U. It is easy 
to prove that the function L(z,t) is locally absolutely 
continuous in I and locally uniformly with respect to Utg . The 
family of the functions {L(z, t) /ajjt)} forms a normal family ol 
regular functions in UIt ■ (z:|z| < tj}, 0 < xt < r0. From (ll) 
we obtain ajjt) -» », for t -+ ». Let we consider the function 
0 ! U, X  I - C, by

Q ( z, t ) = zJLk<ţj±l / 9 Lj?f , Z e U (14)
v  Z  ( /  C

From (12), (13) and (14) it results that

Q(z,t)
(e“ +ce '*•) ♦ B {e z a ( 1 -e ~at> )•( e ■“  - e •“  )______________2 (1 * c)____________________
(e^-ce^*) - za(l-e-a“ ) (e^-e'**)2(1 + c)

(15)

In order to prove that L(z,t) is a Loewner chain it is 
sufficient to prove that, there exists a real number r e (0,1), 
such that L(z,t) is a regular function in Ur - {z:|z| < r), for 
all t > 0, the function Q(z,t) defined from (15) to be regular 
in U for all t > 0 and

Re 0(z, t) >0, (16)

for all z e U and t > 0.
Let's consider the function
40
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K(z, t) = f-te'^z) + — Ï— (e “  - e t*) zf27(e taz) (17)

We shall prove that the function K(z,t) * 0. Because f2(0) 
= 1 and f2(z) is regular in U, it results that there exists a 
number re (0,1) such that K(z,t) * o for any z e Ur and hence the 
function L(z,t) is regular in U for all t z 0.

In order to prove that the function Q(z,t) is regular in U 
and with positive real part in U, for all t e l ,  it is sufficient 
to prove that

|R(z,t)I < 1 (18)

for all z e U and t £ 0, where

R(z,t) Q(z,t) - 1 
Q<z,t) + 1

From (15) and (19) we obtain

(19)

R(z, t) * -l- ~ *- + ■ e-2t« + /P<e;;:2) z2(1-e ~2t*)2. (20)1 + a l + o  (l+o)(1+c)
By (5) and (20) it results that the inequality (18/ holds true 
for all z e U and t £ 0.

Using Theorem B, it results that the function L(z,t) is 
regular and univalence in U for all z c U and t £ 0.

It results that L(z,t) is a Loewner chain, and hence the 
function

L.(z, 0) - f1(z)/f2(z) »f(z)

is univalent in U.
THEOREM 2. Let a be a real number, c a complex number, 

Ic J < 1 and f(z) = z + a2z2 + ... a regular function in u.
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If

and

♦ — — — I < i 1 + a 1 + «I ( 2 1 )

_ 2 Ç _ | z |a + — i ------- E l 5 i _ e 2 i# ( l  -  Iz I2) 2 I < 1 (22)1 + a ' 1 + a 1 + a 1I 1 + a
for all z e U and 6 a real number, p(z) » {£;z>, Chen the 
function f(z) is univalent in U .

Proof. Using the notations from the Theorem 1 it résulta 
that the function R(z,t) defined by the relation (20) is regular 
in U for all t > 0. It results that for all t > 0, we have

max I R(z, t) I = I R(eia,t) | * l*l-i

1  ~ « * _ 2 c _ e -2‘« + _ _ L _  P ( e ^ 16.) e 216( l  -  e - 2t*)'1 4 a  1 4 «  1 4 « 1 4 c
(23)

where 0 e R. If ( - e-ta+i8  ̂ then |C| - e“ta < 1 and hence 
applying the maximum principle to the function R(z,t) we have

l-«
l+a

|R(z, t) I < max |R(z, t) | - l*l-i
_2Ş_|(p + _L_ ^ Ü L e 2i#(i - Id2)2 l+a 11 l+a 1 + c 11

(24)

Because ( e U, from (22) and (24) we obtain

I R(z,t) I < 1

for all z e U and t > 0.
From hypothesis we observe that for t » 0

(25)

R (z, 0) ! - a + 2c I < x (26)1 4 o 1 + a I
The inequality (25) holds true for all z c U and for all
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t i 0, and, hence by Theorem 1 it results that the function f(z) 
is univalent in U.

Remark 1. For or *> 1 and c - 0 we obtain Nehari's 
criterion of univalence.
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RESUMAT. - Asupra unor funcţii analitic* cu partaa r*all positivi. Pic
o un număr real şi n un număr Întreg pozitiv. Pie P  şi Q funcţii 
analitice in diacul unitate O , cu P I * )  * 0, care verifică inegalitatea 
(3). Se arată că dacă p(z) » 1 + pnz" + ... este o funcţie analitică in 
V ,  care verifică ecuaţia diferenţială (4), atunci Re p(«) > 0 in II. 
Acest rezultat este Îmbunătăţit in cazul clnd funcţia Q este o 
constantă reală.

1. Introduction. In this paper we shall show that under 
certain conditions on a, P and Q the solution p(z) = 1 + pnzn + 
...of the differential equation (4) has positive real part. This 
result is improved when Q is a real constant and we obtain an 
extension of the "open door” Theorem in [3].

As a simple application we obtain a sufficient condition of 
starlikeness. The results are obtained by applying the theory of 
differential subordination. A survey of this theory and 
applications may be found in [4].

2. Preliminaries. Let An be the class of analytic functions 
f in the unit disc U-{z; |z|<l> of the form f (z)=z+an+1zn+1+ . . . ,  

where n£l.
Denote A ■■ Aţ * A function f e A is said to be starlike if 
fie [ z f'(z) / /(z)] > 0 in U. Denote by S* the class of the 
starlike functions.

Let F and G be analytic functions in U. If G is univalent,

* O n i v r a i t y  " B a b a f - B o l y a i " ,  F a c u l t y  o f  M a t h e m a t i c a ,  3 4 0 0  C l u j - N a p o c a ,  
Romania

ThaaaoB-ThaeeoB Kavala, Oraaca
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then we say that F is subordinate to G, written F •* G or 
F(z) < G(z) if F(0) =G(0) and F(U) c G(U) .

We will need the following lemma to prove our results.
LEMMA A. Let n be a set in the complex plane C and iet

n be a positive integer. Suppose that the function F: C2 x u<
C satisfies the condition

F ( is, t; z) ' ( n (1)
for all real s, t s - (n/2) (1 -i s2 ) and z c U.

In the function p(z) - 1 + pnzn + ... is analytic in U and
F [p(z) , z p(z) ; z) e n, (2)

for z € U, then Re p(z) > 0 in U.

More general forms of this lemma can be found in [1],[2] and 
[4]. .

3. Main results. .
THEOREM 1. Let a be real and let n be a positive integer. 
Let P and Q be analytic functions in U, with Re P(z) * 0 

and suppose that

(2a + n) Im Q(z) l2 
Re P(z)

2 Re [P(z) %T(z) ] 
Re P(z) + n > 0 (3)

for z € U.

If p(z) - 1 + pnzn + ... is analytic in U and satisfies 
the differential equation

z p' (z) + ap2(z) + P(z) p(z) + Q(z) = 0 (4)
then Re p(z) > 0 in 17.

Proof. Let F ( wJf w2 ; z ) = w2 + awt2 + P(z)w1 t- Q{z)
If we let n *= {0}, then equation (4) can be written as
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P [p(z) , z p* (z) ; z) e Cl (5)
In order to apply Lemma A we show that P satisfies condition 

(1), i. e .
t - as2 + is P(z) + Q(z) * 0 (6)

for all real s, t i -(n/2)(l+s2) and zeU.
If for some s,t and z satisfying the above conditions the 

equality
t - as2 + is P(z) + Q{z) = 0 holds, then 
t - as2 + s I m P + Q = 0  (7)

and
s Re P + Im Q = 0 (8)

From (7) we deduce
t •= as2 + s Im P - Re Q £ -(n/2) (1 + s2) 

hence s satisfies the inequality

2a + n s* + s Im P - Re Q + —  * 0  (9)2 2

Since Re P{z) * 0, from (8) we deduce

c Im Q 
Pe P

and from (8) we obtain the inequality

( 2 a + n )/-|2L2j'1 - 2 \ Re Pj R? ~ + n s o'
P e  P

which contradicts (3). Hence condition (6) is satisfied and by 
Lemma A we deduce Re p(z) > 0 in If.

If the function Q is a real constant then Theorem 1 can be 
improved by the following result.

THEOREM 2. Let n be a positive integer and let a and Ô
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be real numbers, with 2a + n > 0 and 2ft + n > 0. Let H be the 
/unction

H(z) = P - « + ? (g+p +n)z + zgu (10)1 - z2
Let P be analytic function in U satisfying P < H.

If p{z) ■ 1 + pnzn + ... is analytic in U and satisfies the 
differential equation

z p'(z) + ap2(z) + P(z)p(z) = P (11)

then J?e p(z) > 0 in U.
Proof. As in the proof of Theorem 1 we have to check the 

condition (1) of Lemma A, i.e.

t - as2 + isP(z) * P (12)

for all real s, t £ -(n/2)(l + s2) and z e U.

If for some s, t and z satisfying the above conditions the 
equality

t - as2 + is P(z) = ft
holds, then

t - as2 - s Im P - ft (13)
and

s J?e P = 0 (14)
If Jte P{z) * 0, then form (14) we deduce s = 0 and using 

(13) we obtain t - ft > - n/2 which contradicts 
t s - (n/2)(1 + s2) s - n/2.

Therefore, in this case condition (12) is satisfied.
Suppose now that Re P(z) *• 0.

If s > 0, from (13) we deduce
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Im P(z) = —  - as - -B- s --^L ( 1 + s2) - as - =s s 2s s

- --j~[(2 a+n) s + (2P +n) —  ] ■ <p (s)
2 3

It is easy to show that the maximum value of f(s) is given
by

- /('2a + n) (2p + n) .
Hence Im P(z) £ - /(2a + n) (2p + n) .

Similarly, for s < 0 we deduce
Im P(z) £ /(2a + n) (2p + n) .

Therefore condition (12) holds if either 
Re P(z) * 0 or Re P(z) m 0 and |lm P(z) | < /(2a + n) (ip + n) .

If we let
C - /(2a + jj) (2P + n) and

G(z) = 2 C -- ^— -
1 -  z 2

then H(z) = G (■ --- \ , where 2 C — -—  = p-a.\ 1+azf ' l-a2
We deduce that H(U) - G(U) is the complex plane slit along 

the half-lines Se w » 0 and |lm w| £ C and H(0) = 6-a.
From the above analyisis we deduce that condition (12) holds 

if P < H. By applying Lemma A we deduce Re p(z) > 0.

4. A starlikeness condition
THEOREM 3. Let t e A_, with o in i; andz

suppose that

I + g f"(z) _ / (z)  ̂ 2(2 * n) z (15)
f'(z) z f'(z) 1 z2

Then f  e S  .
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Proof. If we let a m B «* 1 then in (10) we have

H ( z ) = 2J2_L n U1 — T 2

If we denote p(z) = z- £.r(z) then (15) becomes

and if we take 
then

p(z) + Z  p'(z) 
p(z)

1
p(z) <  H ( Z )

P(z) __1_
p(z) - p(z) z p'(z) 

p(z)

P(z) < H(z) = tf(-z)
and from Theorem 2 we deduce Re p(z)>0, which shows that f i s'

COROLLARY. If f € A_, -f(z) f'(z) # 0
z

and

Im . z f"(z) 
. /'<z>

f(z) 
z /'(z) < 2 + n

then f e S*.
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REZUMAT. - Daforaarat liniilor do nivol ala funcţiilor capacitate 
prin transformări K-qc. Fie R şi R* două suprafeţe Riemann 
deschise cu frontierele ideale f şi f ', iar p r  şi p*-,, funcţiile 
capacitate ale celor două frontiere. în lucrare se studiază 
imaginea printr-o funcţie f  a liniilor de nivel ale lu^ pr{,zQ) 
în raport cu cele ale lui pr/( , z0)und® f x  R - * R 9 , f (  Z0) »Z0 este o 
transformare K - q c  (omeomorfism K-cvasiconform).

0. Introduction. The capacity functions have introduced by 
L.Sario [ 7 ] . Let R be an open Riemann surface, f its ideal 
boundary, z0 a point in R and D an arbitrary but fixed parametric 
disc containing z0. The capacity function of the ideal boundary 
f of R with respect to z0 and D [7], [8,p.l79] is a function 
P/~(* /̂ o) “ Pp(* ’zo) the following properties:

1) pj- is harmonic on R\z0,
2) pf(z,z0) » log(z-z0|+h(z) , Z€D, where h(z) is a harmonic 

function with h(zo)«0, and
3) pj~ minimizes the integral

in the family of the functions <p:R\z0 -► R which verify 1) and 2) , 
where fn is the boundary of a regular region [1, p.26] nn from a 
countable exhaustion of R with z0err0.

One knows that

Dedicated to Professor P. T. Mocenu on his 60*  ̂ snniverssry

* U n i v e r s i t y  o f  B u c h
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kr~àff P[*dPr=8»fPr(z’ zo>T

is the Robin constant of R with respect to z0 and D, while 
Cp-e'^ is the capacity of f with respect to z0 and D, the Riemarui 

surface R being hyperbolic or parabolic according as kj-<+«> or
kf’— KO.

In the hyperbolic case,

Pf{• ,z0) + G/"(‘ >zo> “ kr> • (°-1)
where Gf(• ,zQ) « gr(- ,z0) is the Green funotion on R with the
logarithmic pole z0, [8, pp.180-181], [10,IX,I], which ii 
characterized by the following properties:

1) Gr{- ,z0) is harmonic on R\z0,
2) Gr (z ;zq) - log- Z-Z„ + v(z) , zeD, where v is a harmonic

function, and
3) g r (' ,z0) » inf{P:P is positive and satisfies to 1) and

, 2 ) > .

In what follows we consider two open Riemann surfaces R and 
R* with the ideal boundaries f and [• respectively, two 
arbitrarily fixed points z0eR and zi eR', two parametric discs 
D>z0 and D ‘ 3 z* and the corresponding capacity functions 
Pf(' , z0) and pp/(',Zo) . We denote by z and z* points in R and R' 
as well as parameters on these surfaces.

Suppose that there are K-qc mappings (K-quas icon formal 
homeomorphisms) f:R-R‘ with f(z0) » Zoand denote by 9  their 
family and z'»/(z).

If £ would be a conformal mapping pp(z', Zq) *pj(z, z0) (by a 
convenient choice of the parameter of D'), hence level lines of
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Pf(" >z0) will be mapped by f in level lines of pp(\Zo). 
Generally this property does not hold for K-qc mappings.

Our aim is to study the image under f of the level lines of 
Pf(' #2r0) by means of the level lines of pp(', z'0) . For hyperbolic 
surfaces we first treat this problem by working with the Green 
functions GR(• ,z0) and GR/(‘,z£) and taking into account (0.1). 
This way enlarges the possibilities of application in as much as 
the form of the results for the Green function is more adequate.

In the proofs we use the following
LEMMA [3]. Let R and R' be arbitrary Riemman surfaces which 

are not conformally equivalent to C and C . If z0eR and z0eR', 
the family &  of the K-qc mappings f’.R->R' with f(z0)~ zi is 
normal and closed.

Compacity property will play a main role in the paper. Thus 
ve consider only Riemann surfaces of olass Rp, i.e. Riemann 
surfaces on which there exists a capacity function with compact 
level lines [8, p.30], (6, p.231]. As it was proved by M.Nakai, 
this class contains all parabolic Riemann surfaces [8,IV,§1]. The 
interior of a compact bordered Riemann surface gives an example 
of a hyperbolic Riemann surface of class Rp. 1

1. Level lines of the Green function.
1.1. Let be R and R ‘ two hyperbolic Riemann surfaces of class 
Rp, z0 and z£ two points in R and R ‘, GR(- ,z0) and GKA ‘,Zo) 
the corresponding Green functions and 9 the family defined above.

We designate by C^ the level line GR(z,z0) = A where 
Ac (0, +«*) , by Hx the regular region {zeR:GR(z, z0) >1} and for
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A2<A1 by CiiAj the curve family (C^ : XclX^Xţ]} and 
n»A -nx \n* . Further we introduce on R ‘ the notations c'x, - the 

level line GKt(z', z'0) *X' , A '« (0,+«o) , and similary 11.', , c[,., andA *IA|
, x'<x't.
The modulus of n iXj defined as the modulus of the curve 

family separating CXi from in II* is given by the modulus of 
CXiX (2] , namely

Mode** 2n ( 1 . 1)

Since ReR-, we can define for every fe& t h e  functions:

x£(X,f) »min{X/*G!jr/(z//Zq) iz'efc*}
and

Ao(X,f) ->min{X/*<3J,/(z/, Zo) sz'efc*}.
PROPOSITION 1.1. The functions X^(X,f> and A'0 (X,f) are 

strictly Increasing with respect to A, and verify the 
inequalities:

X'0 (X,f) S 1' S ^  (X,f) (1.2)
and

X'1 X'0 (X,f) <, X S X A£(X,f). (1.3)
1) Proof that A£ (X,f) is a strictly increasing function of A. 
We remark that fC* descomposes R* in /H* and R'Xfll*-: Q* , that 
max(GJl/(z/, Zo) : z'eS^} -Ai(X, f) and C^(X f)cffl*. Further if X*>X2, 
then fCxcQx . Suppose that C^a () does not intersect ;
since it has at least a common point with fCxj hence with Ql,, 
it follows that Ai(X2,f) < max.{GRi(z', z‘Q) : z'€Ù'x ) »a £ (Xx, f) . If 
C£a intersects fCXi then A£(X2,f) <, Ai(X*,f); however,
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equality cannot occur, since otherwise there would exist a point 
in fC, ne*.,.. hence in 0(n/IL *0 .
2) Proof of (1.3). According to (1.1) and to the Grtttzsch 
inequalities
(2it) _1Ao (X, /) “ModCi[,(i f)0- the modulus of the curve family 

separating C1. , ,, from P on *Mod fC. iAT^ModC. =(2«/0‘1X.Â \A,£) Xq\A.£) *0 *0
Similary,
(2x) _1X£ (A, f) mModC.V, <A'Mod.f"1C',/ <JC the modulus of the 

curve family separating from f on RXIÎ  - K Mod CXo- (2ir)-1KA.
PROPOSITION 1.2. If Xj > À2, then 

X_1[ * 0 ( ^ 1 , / ) -  A£ (X2, f ) ] s  Xj-Xa £

S X( Ai(Xlf/)- X'o (X2,/)). (1.4)
The inequalities (1.3) are a particular case of the 

inequalities (1.4). They can be obtained from (1.4) by taking 
ij-X and X2-0, since a £(0,/)- Xq (0,/)*■<). However the proof of 
(1.4) is also similar to that of (1.3):

(21.) - [A'0 (A,, f) -A'<X2, f) ] -ModC^ m ,(Ai 
iModfq^iJCHfodq^- (2nK) (X^X^)

»nd, if Xj(Xi,/) > A# (X2,f),

(2n) 1(Xo(X1/f) -Ao( X2, f ) ) -Modc' , ^ e)&

*ICModf->c;UXi /)AiUj /!̂ M o d C M i -(2R)-^(X1-X4) .

Remark 1.1 The image fC^ of a level line of GR( ,z0) is 
included in A/(X f) so that its distorsion from the level
lines of Gki( , Zq) could be measured by

Mod<ia,miu.n • <2*> “ <Ao U, *> -*oU, «  ) •
In the family &  there are K-qc mappings with the property:

____________DISTORSION OP LEVEL LINES OF THE CAPACITY FUNCTIONS________
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£Ci*Cxi, for X'=X'(X,f). For such a function, if we write 
Xj = X'(Xj,/), j-1,2, the inequalities (1.3) and (1.4) become

X_1X' ă X £ K X 1and (1.3')
X"1 (Xi-Xj) 5 Xj-Xj £ X (Xi-Xa) . (1.4')

This case implies the equality in some of the inequalities used 
to prove (1.3) or (1.4). The results in [2] show that equality 
in the right- (left-) hand side of (1.3) and (1.4) is assured if 
we add to this property of f the conditions: the dilatation 
quotient of f is the constant X and the major axes of the 
characteristic ellipses are orthogonal (or respectively tangent) 
to the curves Cx a.e. in R. Then we have e.g.

X'“X_1X (or X'=XX, respectively). (1.3")
If X-l, the equality holds in both sides, X'-X, and expresses the 
conformal invariance of the Green function as in the Lindeldf 
principle.

Remark 1.2. If we denote by X0(X',f-1) = min{GR(z,z0) : ze 
€ and by A0( Xq ,/-1)“max{Gj,(z,z0) : ze ,
then we obtain

X0( Ai(^,-f),^_1)-X=A0[ Xj(X)J.
1.2. Till now we studied the functions Xo(X,f) and A q(X,/) 

which correspond to a X-gc mapping fe&. We now introduce two 
functions which delimit the distorsion of the Green level lines 
with respect to the whole family of mappings 9. Namely we define 

Xo (X) = inf{ X'o (X,f) : fe&l

and
A q (X) = sup{ A q (X,f) : fe&\.

PROPOSITION 1.3. If R and R ‘ are hyperbolic Rlemann surfaces
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of class Rp, there exist extremal mappings fotx and Fo,\e&  such 
that X^(X) = X£(A,/0fX) and A'0 (X) = Â , (X,F0/X) .

Proof. Let X be an arbitrary but fixed positive number and 
{/„} be a sequence in 9  such that Xq (X,fn)-* Xq (X). According to 
the Lemma quoted in Introduction the family &  is normal and 
closed, such that {tn> contains a subsequence again denoted by 
{fn> which uniformly converges in the compact subsets of R to a 
mapping Let us choose for any n a point zn e CVj such that
GRi(fn(zn) , Zq) =Xo(X, fD) . As ReRp, the sequence {zn} contains a 
convergent subsequence with a limit z * e C By a new change of 
notations we may suppose that {fn}c&uniformly converges on the 
compact subsets of R to f0,X' that GR/(fn(zn) , Zq) =Xq (X, fn) and 
that zn-+z*. Since f„(zn) ~f0 x(z*) , X'0(X) =lim G^/(fn(z„) , z'a) =
•GK/(fo X(z,),Zo)2:A./0(k,folL). It follows thus by the definition 
that Xo(X) =Xq (X, jf0 x) . The proof for A q(X) is similar.

PROPOSITION 1.4. The functions X'0(X) and Ao(X) are strictly 
increasing. They verify the inequalities

X'o(X) sX'sAiU) . (1-5)
where X ’= GR,(z't Zo)for z' = f(z) and zeCx,

K 'XUX) sXsAAi(X) , and if X,>X2 (1-6)

K 1 [Xo(X,) -Ao (X2) 1 ̂ X1-X2iK[Ao (Xt) -XUX2)1 . (1-7)
Proof that A(,(X)is strictly increasing. Suppose that Xx>X2. 

From the definition of the function Ao(X) and since A^X.f), 
it9, is strictly increasing, we deduce:

A 'Q(Xx) kA o(Xj,F0_Xj) >A i(X2,fo.Xj) =Ao (X2) .
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The proof for X'0(X) is similar.
Proof of the inequalities. From (1.2) and (1.3) it follow

directly (1.5) and (1.6) respectively, by passing to inf (sup)
t-r t-f

in the left-(right-) hand side. Starting from (1.4) one obtains 
(1.7) by means of the inequalities

AUK'f) -X'o (X2, f) sA'0 (X2) -X'o (X2) and
f) -Ao (X2,f) iXUxj -Ao (X2) respectively.

Remark 1.3. Proposition 1.3 shows that the functions Ag(l) 
and A^(X)are finite and Proposition 1.4. permits us to obtain a 
uniform majorant. If Xlr X2 e [m,M], 11 > X2, then

K  iXt) -X'0 U 2) sAi (W) -X'0 (m) .

2. Level lines of the oepeoity function.
8.1. We now consider two arbitrary Riemann surfaces R and R’ of 
class Rp, and - as in Introduction - the capacity functions 
Pf{ t*o) and . z<j) of the ideal boundaries f of R and f ’ of R*
with respect to z0eR, the parametric disc D and zţe R ’,D‘ 
respectively. I

We denote by cT the level line pf- (z,z0) » t , where 
t«(-«,Iĉ -) and by IIT the regular region {zeR: pj-(z,z0)<t ). For 
t1<t2 let ctitj-(ct : and 11^-11^X11^. The modulus of BV|
is now given by
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Mod Ct , = - *■- — • (2.1)

Further we introduce similar notations c',,c',i ,11./ ,II././ on R',* tjtj * *1*1
we consider the family 9  and we define as in 1.1. the functions

x£(x, f) =min{T,=pr/(z/, z£) : z'efc,)
and

^(x, f) =m&x.ix'=py(z', z'0) : z'efc,).

By the same device as in 1.1 which is now applied to the 
capacity function instead of the Green function (in the 
hyperbolic case by using (0.1)) we prove the following results.

PROPOSITION 2.1. The functions x'0(x,f) andT'0(x,f) are

strictly increasing with respect to r. They verify the 
inequalities

x'0(x, f) ix'iT'oix, f) , (2.2)
and in the hyperbolic case

K'1 ticj-/ - T£(t , f) ) i kţ - x i JT[icjv - x'0(x, f) J . (2.3)
PROPOSITION 2.2. If Tx < r2, then

K 1 (*o(f2' -To (*i. f) ) ix^x^Kl T£ (x2, f) -x'0(xlt f) ] . (2.4)
Remark 2.1. Once again equality in the right-(left-) hand 

side of (2.4) takes place for a mapping ft.!?with the properties: 
fc,=c',, , for a function t ,-T,(T,.f) (then x£(x, f) » To<x, /) -x7) , 
the dilatation quotient of f is the constant K and the major axes 
of the characteristic ellipses are orthogonal (tangent) to the 
curves cT a.e. in R. Then (2.4) becomes x2-xj => X_1(t2-t1), ( or 
’X(t2-t1) respectively). Inequalities similar to (1.3’) and 
(1.4*), and equalities as in Remark 1.2. are valid.
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2.2. As in 1.2. if we introduce the functions

xé(x) =inf(x£(x, f) J fey)
and

t£(t) =sup{T£(x, f) : fey)

we obtain
PROPOSITION 2.3. Let R and R' be Rlemann surfaces of class 

Rp not conformally equivalent to C. There exist mappings /0 t ard 
F0ir ty such that Xq ( x ) = x £ ( x , f0 t) and T£(x) «Ti(x, F0 ,) .

PROPOSITION 2.4. The functions Xq ( x )  and T£(x)are strictly 
increasing and verify the inequalities '

x£(x)ix'£ t0ix) (2.5)
where x'-pp (z1, zi), z'=f(z) and zecx ,

K 1(Xq (x2) -Tj<xx) ]sx2-x,s X( t0 (xa) -xi(xx) ] (2.6)
for < t2 , and

X'1 [fcp -T£ (x) ] i Xj- - x iX [/cp - Xo (x) ] (2.7)
in the hyperbolic case.

Remark 2.2. If Tlfr2 e [m,M], Xi<t2, then

T£(x2) -XotXj) st0(M) -Xo(m) 
so that we have again a uniform majorant.

Remark 2.3. The compact Riemann surfaces can be also studied 
with this method - as parabolic surfaces hence surfaces of class 
Rp - namely if S and S'are two such surfaces (for Propositions 
2.3 and 2.4 not conformally equivalent to C), one deals with R 
» S\zœ and R 1 = S ‘ \ zL for two arbitrary points z^eS, zL « S'. 
The family y  consists now of all the K-qc mappings f:S-S’ with
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- z'h '
h=0,<*>,zoeR and z(, e R'.

Remark 2.4. These results have been applied in [4] in order 
to generalize a Gehrlng's theorem. The paper [4] contains also 
proofs of Propositions 2.1.-2.4. Let us mention that our main 
tools - the functions Xo(X,.f) » Ao(A,f) and x'0(x,f), To(x, f) - 
generalize classical functions considered in the plane by 
different, authors and which have various applications. As an 
example we quote [9] where for the level lines of the capacity 
function in the plane (the Evans-Selberg potential) with respect 
to 0, cr:|z| - r, the function M(r,f) = max(|/(z)| : zecr) is
used to thoroughly study the growth of the entire quasiregular 
functions.
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REZUMAT. - Aplicaţii local biLipachitliana ca o aubclaaX da 
homeomorfisaa cvaaiconforaa in spaţii normate. în lucrare se dau 
dou& caracterizări ale clasei aplicaţiilor local biLipschitziane.

In this paper, I show in a normed space X, the locally 
biLipschitz mappings f:D*D' (D,D‘ domains in X), the local quasi­
isometries and a certain subclass of quasiconformal mappings 
(considered in my paper [2]) and characterized by the quasi­
invariance of a certain kind of module mod«f of an arc family 
[, coincide. I show also that the distance dD(E0,Ex) between two 
sets E0,EX relatively to a domain D coincide to the extremal 
length \Z(E0, Elf D) of the family f (E0,EX,D) of the arcs y joining 
E0 and Ex in D and defined as the inverse of the module 
mod*[~(£,0, EX,D) . This allows us to give another characterization 
of the subclass from above by means of the quasi-invariance of 
the relative distance.

Now let f be a family of arcs y<~D (by abuse and for 
simplicity sake, I shall denote it by f cx>) and let 
F°(f ) * {p/p'tO, p|C£)=0, bounded and continuous in D and such that

be the corresponding class of admissible functions.Then, we 
define the module of f as

Dedicated to Professor P. T.  Mocanu on h is  60th an niversary
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modff * inf supp(x)
» c r ° ( n  XMr°(n - inf |p|, 

pfpD<n
We recall that the origin of this concept of nodule (cf our paper 
[1]) is the n-dimensional module

In this paper, a map / means a homeomorphism f:D+D#, where 
D,D* domains of the normed space X.

Let us denote by (E0,EltD) the family of open arcs ycD - an 
open arc being the homeomorphic image of the linear open interval 
(0,1) - such that the closure y of y is a homeomorphic image of 
the closed linear interval [0,1], the endpoints of y belonging 
to E0 and Ex, respectively.

A homeomorphism f is X-quasiconformal if V E0,E1<=J), the 
double inequality

holds, where Ejr f(X*) (Jc~0,l). A quasioonformal mapping is a X- 
quasiconformal one with non specified K . In this paper, by K- 
quasioonformal mapping, we understand only the mappings of the 
subclass characterized by (1).

We recall that the relative distance dE(EQtEi) (with respect 
to a set E) between two sets E0tE1 is

taking into account that, for p continuous
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d^B^Etf = inf HX( Y),
Y«r rwhere H1 is linear Hausdorff measure. If | (E0,EltE)=Q, then, we 

consider dB(E0,E^)=».
PROPOSITION 1. Æq ^ cD -

modff (E0, EltD) 1
dD(E0,E1)

(P. Car aman [2], lemma 5)-.
Taking into account that the extremal length 

preceding proposition yields the following
the

COROLLARY. dD(EQlE1)~ \Z[(E0,EltD) .
PROPOSITION 2. f is K-quasiconformal iff V Eq ^ cD,

df>{EV.EÛ, s dD,(Ei.Ei) £ KdD(E0, Et) . (2)

(P.Caraman [2], lemma 7).
COROLLARY, f is K-quaaiconformal iff V Eq^ ^ D ,

A?!" (E0lEltD) 
K i Xi\(Ei,Ei,D') £ /aSr(S0,ff1#O) .

A mapping f is said to be a local C-isometry with o<C«o if
V x e D, there exists a neighbourhood Uxd> such that

s If (y) -f (z) I s C\y-z\

V y,zeUM.
THEOREM 1. f is K-quas icon formal iff it is a local K- 

i some try. '
Proof. Suppose f is X-quas iconforma1 and consider an 

arbitrary point x e D. Next, let Ux = B(x,r)cD. Then, on account 
of the preceding proposition in the particular case E0“ {y}'
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E^m{Z},
\f(y)-f(z)\ s dD, [/(y),/(z) ] s KdD{yfz) « X|y-z| (3)

V y,z € Ux. But also the converse is true. Indeed, let x'c P* b« 
an arbitrary point and Vx, - B(x,,r‘) c p». Then, on account of 
the preceding proposition, in the particular case E0={y} ,£1-{z),

iy-zl£dp(y,z)£Kdp, (y‘ ,z‘ J-Xly'-z* | “X| f (y)-/(z) |
V y,ztVx - This relation, together with (3), yields

* |/(y) -f(z) I < X|y-z|

V y,z c uJ\f-x(Vx,).
Now, let us prove also the opposite implication. Assume / is a 
local X-isometry (1 £X<«), x0eP, t/x=B ( x0, r0 ) cp. Then,

dD{x,y)-|x-y| sx| f (x) -f(y)I *KdD, (x*,y' ) (4)
V x,y e 170. But, also conversely, if x0eP and V0 is a 
neighbourhood of x0 such that f (V0) cB[f (x0), r'0 ] c p*, then

dD • (x', y ' ) -I f (x) -f (y) | sx| x-y| sXde (x, y )
V x,y e yQ/ hence and on account of (4), we obtain

"  (x* ,y* ) £Kdp(x,y) (5)
V x,y € WQcU(f\V0.

Next, we observe that there exist two sequences 
(x^)cAo» {y«} such that

dD,(sl,Ei) -inf dDt(x'.y') -limdD,(x'n,y'n) -
»'«»i (®)

-lim inf H1 (y'„) .

And now, V e>0 and V ncN, there is an arc y*ne[(y'n, z'„, D*) such 
that
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dD(x'n,y'n) > Hx (Yn) -* ; (?)
but Ÿ^-jf-l(ŸÎ) is compact, hence diÿ^.dD) “<*„>0. Then, latxkeyB 
such that xâ~xn* f l{xâ) ,x„p=*y„*f(y^) and d(xk,xktX) <dn Uc-0,jn-l) . 
But, on account of (5) and (7 ),

< V * n*yn) x£u ) dB,(x'k,xktl) i
p ,

-KHl( Y„> <KdD,(x ,y) +Kt,

where y if is the subarc of Yn joining x^k and x̂ **1, hence, 
letting e-»0, it follows that

di><xn>y^ * KdD,(x'n.y'n) , 
whence and since xa€B0,yntEx, we obtain

do (i:0,r1)id1)(xn/yn)i KdD/(xn,yn) V new, 
so that, taking into account (6), we obtain

d^ E ^ E j  4 ATlimcfD/(xn/yn) = KdDi(E'0, Ê ) . (8)

In order to establish the opposite inequality, we use a similar 
argument. We observe first that there exist two sequences

<xn>'<y/i> ®uch that

dD^o< “limdD(xn,yn) =lim inf H1 (y„) , (9)n—  n—

hence, V neN, and e>0, there exist yne|" (xn,yn,D) such that 
^D<xn>yn)>Hl(Yn)~t. Since Vn‘TŢŢJ is compact, di^.dD1)-d'n>0 
so that we may choose x kçyn (k=0,1, . .. ,p) so that x„0«xn/xnp»y„ 
and d(xk, x k*x) <dn. But then, taking into account (5), we get
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dD>(xnty'n) i T  d(xk,xk*l) dDlxk,xktl)Jt-Ô
P

Jc»0
H 1 (y5) *KWl (y„) <KdD(x„, yn) +tK 

and, letting e -* 0, we deduce that

dD/(x',y') s KdD(xn,ya), 
which, taking into account (9), yields

dD,(Eo,Ei) ilimd^x'.y') sKlimdI)(xn,yn) ̂ KdD(E0, E^ ,
n— n—

which, together with (8), yields (2), implying (by the preceding 
proposition) the X-quasiconformality of /, as desired.
Arguing as in the preceding theorem, we obtain the

COROLLARRY. f is K-quasiconformal iff V x,yeD,

idD>(x',y') iKdD(x,y) .

A mapping f is said to be uniformly locally Lipsohits with
the constant M>0 if V xeD, there exists a neighbourhood UxcD such 
that V y,zcUx, (f(y)-f (z) l|iM|y-z8f is said uniormly locally 
biLipsohits with the constant M>0 if f and f~l are uniformly 
locally Lipschitz with the constant M. .

THEOREM 2. f is K-quasiconformal iff it is uniformly locally 
bilipschitz with the constant K.

Proof. If f is K-quasiconformal, then, according to the 
preceding theorem, f is X-isometry, hence f and f-1 are uniformly 
locally Lipschitz with the constant K. The converse follows by 
a similar argument.

COROLLARY. A K-quasicon formal mapping f:B(x0,R)*D' is
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Lipschltz with constant K.
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RESUMAT. - Asupra uaai con jac tur i a 'lui Horn in taoria
coincidenţei. Conjecture lui Horn afirmi ci doi oparatori 
continui şi comutativi ca invariasi un compact convax dintr-un 
spaţiu Banach, au cal puţin un punct da coinoidanţi. In prasanta 
lucrara sa dau mai multa proposiţii achivalanta cu conjactura lui 
Horn. In finalul lucririi sa introducă noţiunaa da structuri da 
coincidenţi şi sa stabilaşta o taorami generali da coinoidanţi.

1. Introduction. Horn's conjectura ([1]) states that if two 
commutative mappings, onto a compact convex subset of a Banach 
space into it self are continuous, .then this pair of mappings has 
at least a coincidence point. In this paper we present some 
equivalent statements with the Horn's conjecture.

2. Measures of nonoompaetness. Let X be a Banach space. By 
a weak measure of noncompactness on X we mean a mapping, 
aiPb(X)-*R+, which satisfies the following conditions:

(i) a (A)“0 implies I t Pop(X),
(ii) « ÇcôA) =« (A) , for all A e Pb(X) .
By definition a weak measure of noncompactness is a measure 

of noncompactness if satisfies the condition 
X e Pcp(X) implies a(A)=0.
For example, ak (Kuratowski's measure of noncompactness) and 

aH (Hausdorff's measure of noncompactness) are measure of 
noncompactness and £ is a weak measure of noncompactness.

*Univ«rsity o f  C l u j - N a p o c * ,  D e p a r t m e n t  o f  M a t h e m a t i c s ,  3 4 0 0  C l u j - M a p o c a ,  
R o m a n i a
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3. Invariant subaats. Let X be a nonempty set and let 
f,giX—X be two mappings. We denote

1(f) : = {AcXl A*<p, f(A)cA),
I(f,g):=I(f)(\l(g),
Ffi={xeXI f(x)=x), 
c(f,g):={X€Xl  t(x)=g(x)}.
We have
LEMMA 1. Let X be a nonempty set, fiiP(X) -* P(X) a clasure 

operator, YeF^ and t,g\Y-*Y such that fog~g»f. Let Ajcy, Â tp. 
Then there exists A Qc y  such that

(i) A0=>Alt

(ii) AqcF^,

(iii) AQ€l(f,g),
(iv) M^AojUgtAojUA^-AQ.
Proof. Let 8s“{BcylB satisfies (i)+(ii)+(iii)>. We have 

08*8* Let A0:“fl8* We remark that ji(f (A0)Ug(A0)UAj) e 8 and 
M(/(A0)Ug(A0)llA1) <=■ A0. This implies (iv).

4 . a-oondensing pair. Let X be a Banach space, Y c x  and
f,giY-*Y. Let QiPb(x)->R+. The pair (f,g) is 6-condensing if

(i) AePb(Y) implies /(A), g(A) e Pb(Y)
(ii) 6 (f(A)Ug(A) < 6(A), V Aelb(f,g), 0(A)*0.
Example 1. Let Y € Pb(X) and let f,giY -* Y be two compact 

mapping. Then the pair (f,g) is a^-condensing.
Example 2. Let Y c Pb(X) and let f,gxY -* Y be two 

^-condensing mapping. In general, the pair (f,g) is not 
^-condens ing. '
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Now we consider
Statement S(8). Let y be a bounded closed convex subset of 

a Banach space X and let f,g:Y Y be commuting continuous 
mappings; If the pair is 0-condensing, then C(f,g) * <p.

The main results of this paper is the following:
THEOREM 1. The following statements are equivalent:
(i) (Horn) Let Y be a compact convex subset of X and let 

t,g\Y -* Y be commuting continuous mappings. Then C(t,g) * g>.

(ii) Statement S(ak).

(iii) Statement S(a), for an a - a measure of noncompactness
on X.

(iv) Statement S(a) for all a - measures of noncompactness 
on X (i.e., {S(a)la e the set of all measure of noncompactness 
on X}

(v) Statement S(a) for all a - weak measures of 
noncompactness on X (i.e., {S(at)lae the set of all weak measures 
of noncompactness on X}.

Proof. The proof follows from the following implications:

' (iii) *(v) —  (iv) (i) * (v).
 ̂ (ii) '

Vie will prove (i) *♦ (v) . Let Ax «= Ft and p(A) ** "co A. By 
Schauder's fixed point theorem, Ff * <p. We have f(Ff) » Ft and 
g(F{) c Ft. By Lemma 1, there exists A0 c y such that 

cÔ(f(A0) U g (A0) U Ft = - A0.
Since, F/cf(A0)Ug(A0) , hence cô(/(A0)Ug(A0))“A0. We have
a( ~cô(f (A0)Ug(A0) ) *» a(/(A0)Ug(A0) ) - a(A0)
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Thus implies that A0ePCP)CV(X) .
From (i), we have that, C(f,g)*$.

5. Coincidence property. Let X be a nonempty set and YeP(X). 
We denote by M(Y) the set of all mappings, f:Y-»Y. A triple 
(X,S,M) is a coincidence structure if

(i) ScP(X), S+<p,
(ii) M:P(X) - o  U M(Y), Y >-» M(Y)cM(Y), is a mapping

YeP(X)
such that, if Z<=Y, Z+$, then M(Z) =>{/l M:feM(Y) and f(Z)cZ},

(iii) (YeS, f,geH(Y), t°g=gof) imply C(f,g)*<tt.
For example (see [1]), if X=R, S-{[a,b]\ a,beR} and

M(Y)*C(Y) :-{/:y-*yl /-continuous}, then the triple (X,S,H) is a 
coincidence structure.

Let (X,S,H) be a coincidence structure. A pair (6,m ) is 
compatible with (X,S,H) if

(i) 6 :Z-P+, ScXcP(X),
(ii) p:P(X)-»P(X) is a clasure operator, Scp(Z)cZ, and 

0(M(Y))-0(Y), for all YeZ,
(iii) Fj\ ZqcS .
The Theorem 1 suggests us the following very general results 
THEOREM 2. Let (X,S,H) be a coincidence structure and (0,#i) 

a compatible pair with (X,S,M). Let Yep(Z) and f,geM(Y) such that
fogmgof.

We suppose that
(i) 0(f(A)Ug(A))<0(A), for all Ael(£,g), a(A)<*0;
(ii) Ff+4>.

Then
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c(f,g) * 0 .

Proof. Let From the Lemma 1 there exists A0<=Y such
that

M ( / ( A 0 ) U g ( A o ) U F f ) = A 0 .

since (0 , / i )  is a compatible pair with (X,S,M), it follows
e(M(/(A0)Ug(A0)UFf))=e(A<)).
This implies 6(A0)»0. Thus, A0eFj\Zp.
S0,A0 € S, i.e., C(f,g)+<t>.
Remark 1. In the Theorem 2, insted of the condition (ii), 

we can take the following
(ii1) xeY AeZ implies AU{x}eZ and 0 (aU(x >)=0(A).
Remark 2. For the 0-condensing mappings see: [2] [3]. 
Remark 3. For the coincidence theory, see [4].

_______________ ON A CONJECTURE OF HORN IN COINCIDENCE THEORY________________
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REZUMAT. Zntarpolara Birkhoff bidinaneioneli pantru date
arbitrare. Se étudias! formule de interpolare de tip Birkhoff 
pentru funcţii de două variabile definite pe un domeniu plan 
oarecare, obţinute prin generalizarea cazului rectangular.

0. In a previous paper [1] there was considered the 
following general scattered data interpolation problem (SDIP): 
let f be a real valued function defined on a given domain DcR2, 
rp={D*cD|Jc-l,... ,N> a given partition of D and Lkf some given 
Informations on the function f at Dk, k~l,...,N. Find a function 
g, from a given set of functions, say A, such that LkgmLkf, 
Jc-1,... ,N.

Remark 1. The usual informations are the values or some 
medium values of the function f and of certain of its derivatives 

, ( / j ,  v )  «N2 .

Remark 2. If n«{D1, .. . ,DW> is a set of discret points then 
the (SDIP) is a punctual interpolation problem and it is a 
transflnite interpolation problem otherwise.

Particularly, if Lkf are the Lagrange informations (Lkf =
■ f(xk,yk)) then the (SDIP) take the clasical fashion (the 
scattered data-fitting problem).

Remark 3. The (SDIP) can be also a deterministic or a non­
deterministic problem if Lkt are deterministic or non-

* U n i v e r s i t y  o f  C l u j - N s p o c a ,  F a c u l t y  o f  M a t h e m a t i c s ,  3 4 0 0  C l u j - N a p o c a ,  
R o m a n ia
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deterministic informations.
DEFINITION 1. The degree of exactness of the interpolation 

formula defined by the informations Lkf, will be
called the exactness degree of these informations.

Remark 4 . For the bivariate case we cane have the total 
degree of exactnees and the degree of exactness on regard with 
each variable.

We remark two ways for solving a (SDIP):
1) to generalize the tensor product or the Boolean sum techniques 
from a regular domain D (rectangle or triangle) to a unusual 
shape on.
2) to generalize or to modify the Shepard's method.

The goal of this note is to derive some scattered data 
interpolation formulas using first way and the Birkhoff 
informations of the function f.

X. For the begining, one supposes that Lkf «* t(xk,yk), 
k-1,...,W .

Now, if the partition II is

l"M (x1,y1)eD\ i*0,1.... m  j-0,1, . . . ,n)

then the solution of the corresponding (SDIP) is given by the 
tensor product of the univariate Lagrange operators Lm* and L„y 
corresponding to the nodes x±, i»0,l,...,m respectively 
yj,j-0,1,...,n, i.e.
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(x,y) U(X)
(x-xx) u* (xj

v(y)
(y-yi) v* (y}) f(xityj)

where u(x) - (x-x0)...(x-xm); v(y) - (y-y0).. • (y-y„).
In [5], J.F.Steffensen had given a first generalization of 

the Lagrange interpolation problem for the partition

n={ (xltyj)9D\i*0,1,... ,m; j= 0 ,1 ,... ,nx and i^eN)

One obtains

(Pxf) (x,y) u(x)
(x-xj u* (xi)

Vj(y)

(y-yi) vi(yj)
fix^yj)

where vi (y) - (y-y0) . . . (y-ynj) .
In 1957, O.D.Stancu [3] had given a new extension of the 

Lagrange interpolation problem, that is also a generalization of 
the Steffensen problem, taking

l"M (x^y^JeDli-0,1, . . . ,m; j-0,1, . . . ,7^ with N}

i.e.

(P2f ) (x,y) u(x)
(x-x^ u' (x̂ )

Vj(y)
(y-yij) (y^>

f(xi,ylj)

with v* (y) = (y-yJ<0) • • • (y-yi,ni> •
He note that in both generalization are given expressions 

for the error functions ( f - P , i**l ,2) in terms of divided 
differences.

He, also, remark that P2f is a solution for the clasical 
(SDIP), i.e. a Lagrange's scattered data interpolation 
polynomial.
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Next, we consider the (SDIP) with the punctual Birkhoff's 
type informations on /.

2. Let M—{ (xk,yk) , k=1,.. . ,N) be a given set of points in D.
Following [1], on considers the partition Mi i=0,l,...,p of 

the set M, where is the set of all points (xk,yk) eM with 
xkTxi' *=0,1,...,gi and x ^ X j  for i.e.
Ki=i(xi'Yij) I Jm°> for i-0,l,...,p.

Let (Xi'Yij)/J-0,1, . . . ,q1i i-0,1, . . . ,p and
*J±j with Ji/JijcN< be informations of the Birkhoff type 

of the function f, while Ljff-f <,‘'0, (xi, . ) respectively 
Ljf=f(0,v> (. ,yj) will be considered as partial informations of the 
function f on regard to x and y.

2.1. For the begining one considers the rectangular case,
i.e. D^[x0,xp]x[y0,yq], M={x0, ... ,xp}x{yQ, .. . ,ygy and
with I J0|+.. . + | Jp | =m+l, IJ0| + . . . + | Jff|=n+1. If B/andB/ are the 
Birkhoff's interpolation operators corresponding to the partial 
informations L^f^f <(‘'0) (xt, . ) , i=0,l,...,p; per, respectively 
Ljf<=£<0'v) (. ,yj) ,i«0,1, . . ., q; veJj then the well known bivariate 
interpolation formula is

f - B & B ' f + R X f  , (1)
where R£and R *are the corresponding remainder operators. More 
precisely »

( x , y )  = £ 5 2  £  ]C  t>iv(x)bJv( y ) ( x ityj)
1 -o ŢZo veĴ

and for feCm+i,n+1(D),
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xh>
(R£®R*£) (x.y) « f$m{x,s)£l*"-°Hs,y)ds +

*0
y*

* f^n^y> f  (0'ntl) (X, t) dc - fj$m{x, s) >|rn(y, c) f*1*1-»*1 (a, t) dadt 
yo o

where bift and JbJV are the fundamental interpolation polinomials, 
while 4>mand i|rn are the Peano's kernels.

Remarks 5. It is obviously that the degree of exactness of 
the formula (1) is (m,n) (m on regard to x and n on regard to y) .

2.2. One considers now the general case.
So, M=M0v...uMp with Mi={ (xi/yij/) | j-0,1, . . . ,gi> . Let be 

the same operator that interpolate the data f ,,t'0> (xi, . ) for 
i=0,l,...,p and neli with |I0|+...+|Ip |=m+l. Using this operator 
we obtain, in a first level of interpolation, the formula

f = + Rm*f (2)
where

(B„f) (x,y) = V  X) Jbi(1(x)f <*‘-0) (xlty)I-o (iei,

Now, let R be the Birkhoff's operators which interpolate, 
respectively the data £ (xi,yii) ,j=0,1, . , . , q1 and veJ1j with 
l‘̂i,ol + * • • +ljri,dJl=ni+1 and Hnt the corresponding remainder

operators, for all i=0,l,... ,p and iaeli. Applying these operator, , 
from (2) one obtains, in a second level of interpolation, the 
final scattered data interpolation formula
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fix, y)
P «i

E E E  E1-0 J»0 H»/, **Ji}b^ix)biJy
(y) f <•».*) {xitytJ) *{Rf) ix,y) (3 )

with

(J?/) (x, y) ■ iR„f) ix.y) ♦ V  £  i>i(l(x) (/?„'/) (xity) .
1-0 (l«*i

PROPOSITION 1. The degree of exactness of the formula (3) 
is (m,r), where r=min{n0,... ,np}.

The proof is a consequence of the theorem 1 from [1].
From the Peano's kernel theorem we also have:
PROPOSITION 2. If f (. ,y)eJfm+J[x0,xp] and 

f i*'ni*u (xi,.)eHn‘*x[y1<>,yl ni] for all i-0,l,...,p, then

**
(Rf) ix,y) -j$B(x, s) (s,y) ds+

*»
p *.»i
É E * j,<*> / ♦»i(y' Uj, t) dtHo iSTi yj#

where

and

a) (x-a)?
ml E  E  biM(x)To it*i,

( x r a ) T *  
(m-|i) I

♦n, (y- t) (y-t)?'
njl (y) (n^v) I

Remark 6. From the first proposition it follows that the 
best case, from the degree of exactness point of view, is 
obtained for n,^*. , ,=np. In this case (3) is a homogeneous 
interpolation formula on regard to the variable y [1]. But, the
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structure of the interpolation formula depend on the given 
informations. So, if the initial informations do not permit to 
construct a homogeneous formula (there exists ...,p},

i*j such that n^nj) then there exist two posibilities: to 
generate new informations on t or to try to interpolate the 
function / first on regard with the variable y and than on regard 
with x. Anyhow, an interpolation formula as closed as possible 
of a homogeneous one is recomandable.

Summarizing the given procedure we have:
1. Input data:

Mi~[(xi,yij) I j=0,1, . . . ,gj} .... p;
11> • I / li • ■ • / Qi;i“0,1, ... ,p;
f ",'v) , pel*, j=0,1, . . ., qi} i=0,1.... p.

2. One determines the fundamental interpolation polynomials bifJ 
and bir solving the linear algebraic systems:

bkj} (x̂ ) - 0, v+k, relv,
bV lxk) - 6jr, i€lk,

for jelk and k, p-0,1, . . . ,p,

respectively

bikl(yu) m 0/ **k, selir,
' bi& <yjk> “ V -  s«Jlk, 
for \ielki k, r=0,1, . . ., q̂ , 
for all i=0,1, . . . ,p.
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3. Compute F{x,y);

Fix. y) = £ ] £ £  £  bitt(x)bljv(y) f'»-" (4)
7-0 7-0 n«Ij vtJ,,

EXAMPLE. The test function is

/(x,y) x 2+y2+l*
with the graph in fig.l. The input data are:

M0={(-1,-1);(-1,0);(-1,1)); 
^-((-1/2,0));
Ma=( (0,-1); (0,0); (0,1)) ; 
W3={(1/2,0)}; 
/#4-((l,-l);(l,0);(l,l)).

c700={l}; <701= {0} ; J02={1);
J10-(0,l,2) ;
J20={1}; <721={0); Jaa = {1 ) ;
X30-(0,l,2) ;
J40-{1} ; «/41-{0) ; J42-{1) .

So, it is used a Lagrange's interpolation with regard to x 
and a Birkhoff's interpolation with regard to y.

The graph of the interpolating surfaces computed by (4) is 
in fig.2.
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Fig.2 .
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REZUMAT. - Asupra mişcării circulare £n jurul unui elipsoid de rotaţie. 
Se studiază mişcarea iniţial circulară a unei particule test în cîmpul 
gravitaţional necentral al unui elipsoid de rotaţie. Se stabileşte o 
formulă analitică pentru perioada mişcării, cu o precizie de ordinul al 
doilea in raport cu parametrul caracterizînd turtire elipsoidului, 
generalxzîndu-se astfel rezultate anterioare (ale altor autori şi 
proprii).

1. Introduction. Consider a point mass orbiting an 
attracting body (under the only gravitational influence of this 
one) at a distance r. We shall describe the relative motion of 
the point mass with respect to a Cartesian right-handed frame 
originated in the mass centre of the attracting body by means of 
the Keplerian orbital elements { y e Y ; u >, all time-dependent, 
where:

Y ■ ip, q ■» e cosu, k = e sine, n, i>, (1)
and p *= semilatus rectum, e - eccentricity, <■> - argument of 
pericentre, fl = longitude of the ascending node, i - inclination, 
u = argument of latitude.

Many authors studied such a motion (for a brief survey see
e.g. (2)) with very various hypotheses. First and (sometimes)
second order perturbations of the orbital parameters were
analytically estimated, as well as first order perturbations of

f
the nodal or anomalistic period (1,2,6,7). We must emphasize the

A s t r o n o m i c a l Observatory, 3 4 0 0  C l u j - N a p o c a ,  R o m a n i a
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fact that the anomalistic period cannot be used to the case of 
very low eccentric (and especially circular) orbits; that is why 
we use in this paper the nodal period. Also, as far as we know, 
nobody determined second order perturbations of the nodal period 
for a specified perturbing factor.

We shall estimate analytically the nodal period, with a 
second order accuracy in respect of a small parameter a on which 
the perturbing factor is depending, in the following hypotheses:

(i) The attracting body is a rotation ellipsoid with a 
corresponding mass distribution.

(ii) The initial orbit of the point mass is circular.
(iii) The initial orbital elements are considered in the 

ascending node of the orbit.

2. Equations of motion. Considering hypothesis (i), let us 
choose the Cartesian right-handed frame mentioned in Section 1 
as follows: The basic plane is the equatorial plane of the 
ellipsoid, while the third axis (normal to this plane) is the 
rotation axis. Since we study the nodal period, we describe the 
perturbed motion with respect to this frame by means of the 
Newton- Euler system written in the form (e.g. (3,5)):

dp/du - 2 (Z/p)r3T,
dg/du « (Z/p) {r3kBCW/ (pD) + r2T(r(g + A)/p + A) -*• r2BS) ,
dk/du “ (Z/p) (~r3qBCM/ (pD) + r2T(r(k + B)/p + B) - r2AS) ,
dn/du = (Z/p)r3BW/(pD), (2)

* *di/du = (Z/p)r3AW/p,
dt/du = (Zr2(pp)~1/2,
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where ^“gravitational parameter of the dynamic system, A=cos u, 
B = sin u, C = cos i, D = sin i, Z = (1 - r2CÙ/ (|ip)1/2)_1, while 
S, T, W stand respectively for the radial, transverse, and 
binormal components of the perturbing acceleration.

For the needs of Section 4, it is to be specified that we 
consider, as usually, that the elements (1) have small variations 
over one revolution, such that they may be taken as constant and 
equal to y0 « y(u0) = y(u(t0)), y e Y, in the right-hand side of 
equations (2), and these ones can be separately considered. So, 
we can write y - y0 + Ay, where, according to hypothesis (iii):

U

Ay * J (dy/du)du, y 6 Y. (3)
o

These integrals are estimated from (2) by successive 
approximations, with Z «1, limiting the process to the first 
order approximation.

In what follovrs, for simplicity, we shall no longer use the 
subscript "0" to mark the initial values of elements (1) and of 
functions of them. In fact, every quantity which does not depend 
on u (explicitly or through A,B) will be considered constant over 
one revolution.

3.Perturbing eooel<«ration. Since the gravitational field 
generated by the attracting body is not Newtonian, the point mass 
will undergo a perturbing acceleration. Having in view the 
hypothesis (i), the components of this acceleration are [2,7]:

S = - (3/2)c.20^ 2r“*'(3D2B2 - 1),
T - 3C2OtiR2j--*102AB, (4)
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W - 3C20nR2r~ACDB,
where R = equatorial radius of the ellipsoid, while c20 is a 

small parameter featuring the oblateness.

4. Variations of orbital elements. Firstly remind the orbit 
equation in polar coordinates: r ■ p / (1 + e cos v), where v 

» true anomaly, or:
r - p / (1 + gA + kB) . (5)

Replacing (4) and (5) in (2), taking into account hypothesis 
(ii), in other words g(0) - k(0) » 0, then performing integrals
(3) as we showed in Section 2, we obtain:

Ap - 3c20 (R/p)2pD2B2,
Ag - (c20/2) (R/p)2(7D2AB2 + (2C2 + 1) (1 - A)),
Ak - (c20/2)(R/p)2(7D2B3 - 3B), (6)
An - (3c20/2) ( R / p ) 2C ( u  - AB), '
Ai - (3c20/2)(R/p)2CDB2.

5. Modal period. As we showed in [4], the nodal period can 
be written as:

i’ll “ To + Aî n + A2rH, (7)
where T0 is the Keplerian period for u - 0; with hypothesis (ii):

Tq - 2trp3/'2M"1/2. (8)
The first order ( i n  a ) perturbation is [4]:

2k
* ith “ P V V 1/2/ t ~ 2(Jq * Jk) * (3/2) p 1Jp + P V 1̂ .! du, (9)

where, with hypothesis (ii):
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Jp - Ap, Jq = AAq , Jk = BAk. J, = Bo (CW/D) (10)

As to the second order ( in a ) perturbation, this one has the 
expression, according to [4]:

2H
A 2T„ =  P 3 /V 1 /2 |  ( 3 ( j - w  + Jjuc + 2 i7 ,* )  -  S p ' 1 ^  + J , * )  ♦

0
+ (3/8)p-2Jpp * (7/2)p|i"1»7p<( + (11)
♦ P V 1 • < -5 J „  -  5J*C ♦ J0o ♦ J-io) ♦

♦ (1 /2)pVV„)du,

where, with hypothesis (ii): •
Jxy ~ Jxf7y' x € <P/<?/*}' 7 « {p,g,A,a>, (12)
Jao - An<J„)0, JJo - Ai(Js)if J00 - B2o2(C2W2/£>2)oa. (13)
We must emphasize the fact that the subscript a in the 

right-hand side of the last formula (10), and the subscripts n, 
i, and aa in the right-hand sides of (13) mark the respective 
partial derivatives. As to the subscripts added to J in (9) - 
(13), they are simple identifying notations.

6.Results. Substituting W from (4) in the last formula 
(10) and calculating the required partial derivative (the part 
of o is played by c20) , then substituting (6) in (10) and the 
results in (9), and finally performing the integral (9) , we 
obtain:

A1T)| - 3n c20 R2p~1̂ 2n~1/2( 3 - 5 D2/2). (14)
Analogously, replacing W in the last formula (13) and 

calculating the partial derivative ( o  =  c 2 0 , too) , then
introducing (6) and the previously calculated (10) in (12) -
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(13), substituting the results in (11) and performing the 
integral, we obtain:

A 2Tw * (ji/32)C20JÎ4P'S/V 1/S(1527D4 - 3180P2 + 1620). (15)
We must mention that (14) confirms the results of [2,7], 

while the result (15) is entirely new. Moreover, this result 
constitutes a first application of our formulae given in (4] to 
the case of a concrete perturbation.

With (8), (14), and (15), the nodal period (7) can be
written as: I

- T0(l + Kfx(D) + K2f2{D)), (16)
where K “ c20(R/p)2 , and:

f1(D) » (18-15D2)/4, f2(D) - (1527D4-3180P2+1620)/64. (17)
This new, better approximation for the real (perturbed) 

nodal period could be very useful in the case in which the 
ellipsoid is strongly oblate and the point mass orbits in its 
immediate neighbourhood. According to K and to the orbital 
inclination, the contribution of f2 ( which can act as or
inversely) in altering the period could be sensible.
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RESUMAT. - Asupra unai aetode da element pa frontier! cu valori 
compexe pantru "efectul da parata". Prima parte a lucrării 
conţine o trecere in reviatX a unor consideraţii matematice 
legate de mişcarea fluidă generată de deplasarea unui profil in 
prezenţa unui perete nelimitat, rezultata ale autorului care au 
fost deja prezentate pe larg in (2]. Partea a doua dezvoltă o 
metodă de element pe frontieră cu valori complexa (CVBEM), pentru 
care se stabilesc o schemă de utilizare in problema propusă ca şi 
un rezultat final de convergenţă.

1. Let us consider as given a plane incompressible, 
potential, inviscid fluid "basic" flow of complex velocity wB(z) . 
This fluid flow could have some singularities, too, takes place 
in the presence of an unlimited fixed wall 6.

Let now the plane fluid flow, produced by a general 
displacement (rototranslation) in the mass of an arbitrary 
profile (C) , in the presence of the same wall 6 and which 
superposes over the basic flow. We assume that during its 
displacement the profile (C) doesn't cross the singularities of 
the given basic flow.

A general method to determine the fluid flow which results 
from the mentioned superposition, method establishing also the 
existence and the uniqueness of the solution of the joined 
mathematical model, has been already developed by us [2]. In what 
follows we intend to make a sketch of a complex variable boundary 
element method (CVBEM) which could easily be used for the studied

* University of Cluj-Napoca, Department of Mathematics, 3400 Cluj-Napoca,
Romania
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problem and whose convergence has been already established in the 
case of the unbounded flow (3, 4].

Concerning the unlimited wall 6 and the contour C, we 
suppose that their parametrical equations z=a(<p) and respectively 
z*°B(i|i) , defined for versus a fixed, rectangular, Cartesian
system of axes, are 2n periodical functions on the interval 
(0,2fr), with a(0) = » and 0(0) taking a finite value, which 
define Jordan positively oriented curves with continuous 
curvature1.

In what concerns the given function wB(z), it belongs to a 
class (a) of functions having the properties [2]:

la) They are holomorphic functions in the domain D, bounded
by the wall 6, except a finite number of points {z*) placed
at a finite distance, and which represent singular points of 
these functions; let Dl*Dj\ {zk}kmT̂  ;

2a) They are continuous bounded functions in V(<»); let
lim wB(z) - ws (oo) ;
1*1 —

3a) They are hdllderian functions in the points of £\{«>} 
satisfying also the following boundary condition:
3 VBi(0,2n) -*• R so that wp ( cTÇtpTT=VB ( <p ) à (<p)/\&(<p) | , V«pe(0,2w)

With regard to the unknown function w(z), the complex 
velocity of the fluid resulting by the considered superposition, 
must be determined among the functions of class (b), i.e.:

lb) They are holomorphic functions in the domain £>=£>x\ {InTTI

1 This last condition is equivalent to the assumption that 
the functions l/(a(<p)-z0) (where z0 is a point placed on the
"right" side of S) and (*(♦) are from C2(0,2n) having also a 
nonvanishing first derivative.
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except the same points [zk] kmT̂  which are singular points of the 
same nature as for wfl(z);

2b) They are continuous bounded functions in V(«>) where they 
have an identical behaviour with wB(z) and consequently 

lim w(z) = w,,, ■ w-(oo) ;
| Z | - K O

3b) They are holomorphic functions in the points of C Ui\{«> 
where these functions also satisfy the following boundary 
conditions:
3 Vx: (0,2w) -* R so that w(a(«p))=V1(<p)<k(«p)/|A(<p) | , V<p€(0,2w);

________ON A COMPLEX BOUNDARY ELEMENT METHOD FOR THE "WALL EFFECT"_________

3 V2i [0,2tr) -* R so that w(0 (i|r) ) -V2 (i|>) 0 (ÿ) /|0 (<p) |+l+im+i« (0 (i|r) -zA)
V*«{0,2 i t )  ,

Iwhere (l,ra,o) are the given functions of time corresponding tp 
the components of the rototranslation of the profile (C) 
evaluated in the point sA e {Int C);

4b) They satisfy the equality:

j^w(z) dz = f ,

where f is an "a priori" given constant (circulation).
2. As a consequence of the requirements imposed on the 

functions wB (z) and v(z) we remark that the function g(z)«w(z)- 
-vB(z) , known together with w[z), is:

- holomorphic in the fluid flow domain D which also contains 
the points (zk}kmX7̂  ;

- continuous and bounded in 75 (the point of infinity
included, where lim g(z) *= 0); lz |-«”

- hëlderian on C U £\{«°}/
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- satisfying the condition |zTg(z)|6 < A, where (A,r) is a 
suitable pair of real numbers.

The last condition will ensure the existence (in the Cauchy 
sense) of the integral taken on the unlimited curve 6 [2].

Let us consider now Cauchy's formula for the function g(z) 
and the domain D. According to the behaviour at far field of this 
function, we can write (l]s '

This formula, which is in fact the integral representation 
associated with the proposed boundary problem, allows us to
determine g(z) (i.e. w(z)) once found out its values on the

£
boundary C U 6. But the determination of these values through a 
classical BEM requires the construction and, obviously, the 
solution of an integral equation on boundary, which could be 
obtained, for instance, making z->C0eC and z-*r0e6, respectively, 

In what follows we shall succeed to avoid the construction 
and solution of the boundary integral equations mentioned above, 
which means a serious and essential step in simplifying all 
algorithms. The technique used and described by us in the case 
of the unbounded fluid [3, 4] represents a so-called "improved" 
CVBEM.

Let d and d* be two divisions of the curves C and 6, 
consisting of the nodes z0,z1,...,zn (z0«zn) on C

(counterclockwise oriented) and, respectively, z[,zl2, . . . , zn on 
6 (clockwise oriented). We denote by Cj (]—l,...,n) the 
corresponding boundary elements (arcs) on C , and by cL , cj I
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(j~l,...,n), cL the boundary elements on 6. Let us consider now 
the approximations 0d(O in the points of C, and, respectively, 
<7j(?) in the points of j\{ c'.JJcL) of the function g(z), where 
gd(C) and £d(t) are suitable interpolating spline functions 
related to the divisions d and d' accordingly.

At once, for every z e D, we have the approximation g* (z) 
of g(z), i.e.

g'(z) 1 f dC t 1 f
2 niJc  C-z x-z

where the right side could be calculated explicitly sometimes 
even precisely (3, 4]. Accepting then the existence of 

limp* (z) («g* (zk) ) and limg‘ (z) (*gm (z'k) ) ,
z~zk z-zi

by separating the real and imaginary parts of the approximate 
equalities

9 k m 9 ( * k ) m9 *  (**) and 9 k m9 ( Z k ) m9 ' ( z ' k )  . 

we finally get an agebraic system in the unknowns uk,vk, u'k, vk ,

i.e. the real and imaginary parts of gk and gk .Obviously, while 
solving this system we should take into account the data 
connected with the values of g(z) on C U S (in fact it is a 
boundary value problem of Hilbert type for g(z)) and, of course, 
the circulation given "a priori"2. Once solved this system, via 
the already written Cauchy formula, one gets the approximate 
solution g*(z) valid in all the points of the flow domain.

2 In the particular case of a "piecewise” Lagrange 
interpolating system, which is essentially an approximation by 
spline functions of first order, the algebraic system becomes 
linear and it has a unique solution, due to the "a priori" given 
circulation.
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In respect of the convergence of the method, if we admit the 
••acceptability" of the divisions d and d' (i.e. for every teC; 
or t e Cj there exists max{ | t-Zj | , | | }<\zj-Zj_1 | , j=l, . . . ,n),
the uniform continuousness of the approximation § in the 
points of cU{z/,z^] allows to prove, like in the case of the 
unbounded flow [3, 4], the following final result:

THEOREM. For every point z e D, 
lim g*(z) = g(z) ,
n -x o

(S,S'-+0)
where S and S’ are the norms of the acceptable divisions d and 
d', respectively.
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World Scientific Publ.Co., Singapore, New Jersey, London, Hong-Kong, 1991, 
p.585-604.

4. T.Petrila, K.G.Roesner, An Improved Complex Variable Element Method for
Plane Hydrodynamica, Proc. 4th Int. Symp. on Computational Fluid Dynamics, 
University of California, Davis, 1991. .
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A N I V E R S Ă R I

PROFESSOR PETRU T. MOCANU AT HIS 60th ANNIVERSARY

Professor Petru T. Mocanu was born in June 1st 1931 in BrSila, Romania. 
He attended primary and secondary school in BrSila, then universitary studies 
(1950-1953) and higher studies (1953-1957) at the Faculty of Mathematics, 
University of Cluj. In 1959 he defended his doctoral thesis "Variational 
methods in the theory of univalent functions" (under thş supervision of the 
greaţ romanian mathematician G. CSlugSreanu). He worked at the University of 
Cluj ("Babeş-Bolyai University) as assistant professor (1953-1957), lecturer 
(1957-1962), associate professor (1962-1966 and 1967-1970), full professor 
(since 1970) and he was visiting professor at Conakry (1966-1967). He has 
tought the basis course of Complex Analysis and many special courtes 
(Univalent Functions, Measure Theory, Hardy Spaces etc.).

Professor P.T.Mocanu obtained scientific results in the following 
domains (see "List of publications, Scientific papers")i extremal problems in 
the theory of univalent functions [1-5, 8, 9, 12, 13, 15, 17, 18, 20-22, 24, 
25, 27, 37, 42, 47, 72, 91], new classes of univalent functions [7, 10, 14-16, 
19, 23, 26-32, 34-36, 38, 40, 41, 43, 46, 65, 70, 95, 99, 102, 103, 109), 
integral operators on classes of univalent functions (44, 45, 48, '85-58, 62­
64, 66, 67, 69-71, 73, 76, 78, 80-83, 88-90, 92-94, 96-98, 100, 102, 103, 106, 
110, 111], differential subordinations (49, 50, 52, 53, 61, 64, 68, 74, 77, 
79, 85-87, 101, 104, 105, 107], extentions of certain geometric conditions for 
injectivity to the case of nonanalytic functions (51-54, 59, 60, 75, 95]. Some 
of this results are cited by about 150 mathematicians in more then 300 papers.

Professor P.T.Mocanu was appointed dean of the Faculty of Mathematics 
(1968-1976 and 1984-1987), head of the chair of Functions Theory (1976-1984 
and since 1990) and he is vice-rector of Babeş-Bolyai University since 1990. 
He is also editor of Mathematica (Cluj) and member of the editorial board of 
Studia Univ. Babeş-Bolyai, Bulletin de Mathématiques and Gazeta Matematici.

Since 1972 Professor P.T.Mocanu has been a guide of doctoranda (twelve 
atudentB had taken Ph.D. degrees and other ten are preparing their 
dissertations). He is the chairman of the Seminar on Geometric Function Theory 
at Babeş-Bolyai University and the head of the Romanian School of Univalent 
Functions.

PUBLICATIONS OF PROFESSOR PETRU T.MOCANU

Scientific Papers

1. O generalizare a teoremei contracţiei în clasa S de funcţii univalente, 
Stud. Cerc. Mat., Cluj 8(1957), 303-312.

2. Asupra unei generalizări a teoremei contracţiei în clasa funcţiilor 
univalente, Stud. Cerc. Mat., Cluj 9(1958), 149-159.

3. Despre o teoremă de acoperire în clasa funcţiilor univalente, Gaz. Mat. 
Fiz., Ser. A(N.S) 10(63)(1958), 473-477.

4. O problemă variaţională relativă la funcţiile univalente, istudia Univ. 
Babeş-Bolyai, 111,3(1958), 119-127.

5. O problemă extremală în clasa funcţiilor univalente, Stud. Cerc. Mat., 
Cluj 11(1960), 99-106.

6. O teoremă asupra funcţiilor univalente, Studia Univ. Babeş-Bolyai 
1,1(1960), 91-95.

7. Asupra razei de stelaritate a funcţiilor univalente, Stud. Cerc. Mat., 
Cluj 11(1960), 337-341.

6. Asupra unui domeniu extremal., in clasa funcţiilor univalente, Studia 
Univ. Babeş-Bolyai, I,l(i9$l), 221-224.

9.  Domenii extremale în clasa funcţiilor univalente, Stud. Cerc. Mat.,
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10. Sur le rayon d'étoileirient et le rayon de convexité de fonctioni 
holomorphes, Mathematica (Cluj), 4(27)(1962), 57-63.

11. Despre raza de stelar itate şi raza de convexitate a funcţiilor 
olomorfe, Stud. Cerc. Hat., Cluj 13(1962), 93-100.

12. Asupra unei probleme extremale relativa la funcţiile univalente. Stud. 
Cerc. Mat., Cluj 14(1963), 85-91.

13. On the equation f(z)>a/(a) in the class of univalent funcţiona, 
Mathematica (Cluj), 6(29)(1964), 63-79.

14. Asupra razei de convexitate a funcţiilor olomorfe, Studia Univ. Babe)- 
Bolyai, Ser. Math. Phye., 9,2(1964), 31-33.

15. Funcţii univalente pe sectoare, Stud. Cerc. Mat., Cluj, 17(1965), 925* 
931.

16. Convexity and starlikeness of conformal mappings, Mathematica (Cluj), 
8(31)(1966), 91-102.

17. Generalized radii of starlikeness and convexity of analytic funcţiona, 
Studia Univ. Babeş-Bolyai, Ser. Math.-Phya., 11,2(1966), 43-50.

18. About the radius of starlikeness of the exponential function, Studii 
Univ. Babeş-Bolyai, Ser. Math.-Phys., 14,1(1969), 35-40.

19. Une propriété de convexité généralisée dans la théorie de li 
représentation conforme, Mathematica (Cluj), 11(34)(1969), 127-133.

20. Sur la géométrie de la représentation conforme, Mathematica (Cluj), 
12(35)(1970), 299-308.

21. An extremal problem for univalent functions associated with the Darboui 
formula, Ann. Univ. M.Curie-Skiodowska, A, 18(1968/1969/1970), 131-135.

22. Sur deux notions de convexité généralisés dans la représentation 
conforme, Studia Univ. Babeş-Bolyai, Ser. Math.-Mech., 16,2(1971) 13­
19.

23. On generalised convexity in conformal mappings, Rev. Roumaine Math. 
Pures Appl. 16(1971), 1541-1544. (with M.O.Reads).

24. On the homomorphic product of Haar measures, Mathematica (Cluj), 
13(36)(1971), 229-233.

25. Equations fonctionnelles aux implications, Studia Univ. Babes-Bolyal,
Ser. Math., 17,1(1972), 33-*36. "

26. All a-convex functions are starlike, Rev. Roumaine Pures Appl. 
17,9(1972), 1395-1397. (with S.S.Miller and M.O.Reads).

27. A generalized property of convexity in conformal mappings, Rev. 
Roumaine Math. Pures Appl.,17,9(1972), 1391-1394.

28. Sur une propriété d'étoilement dans la théorie de la représentatloi 
conforme, Studia Univ. Babeş-Bolyai, Ser. Math. 17,2(1972), 55-56.

29. On BazileviC functions, Proc. Amer. Math. Soc., 39,1(1973), 173-174. 
(with M.O.Reads and E.Siotkiewicz).

30. All a-convex functions are univalent and starlike, Proc. Amer. Math. 
Soc., 37,2(1973), 553-554. (with S.S.Miller and M.O.Reads).

31. Mumericai computation of the a-convex Koebe funotions, Studia Uni*. 
Babeş-Bolyai, Ser. Math. Mech., 19,1(1974), 37-46. (with Gr. Moldova 
and M.O.Reads).

32. Bazilevifi functions and generalized convexity, Rev. Roumaine Math. 
Pures Appl., 19,2(1974), 213-224. (with S.S.Miller and M.O.Reads).

33. On the functional / (z.j)//' (z2) for typically-real functions, Rev. Anal. 
Numer. Théorie Approximation 3,2(1974), 209-214. (with M.O.Reads and
E.Zlotkiewicz).

34. On a subclass of Bazilevifi functions, Proc. Amer. Math. Soc.,
45,1(1974), 88-92. (with P.Eenigenburg, S.Miller and M.Reade).

35. The radius of a-convexity for the class of starlike univalent
funotions, a-roal, Rev. Roumaine Math. Pures Appl., 20,5(1975), 561­
565. (with M.O.Reads).

36. Alpha-convex functions and derivatives in the Nevanlinna class. Studii 
Univ. Babeş-Bolyai, Ser. Math., 20(1975), 35-40. (with S.S.Miller).

37. An extremal problem for the transfinite diameter of a continuu, 
Mathematica (Cluj), 17(40), 2(1975), 191-196. (with D.Ripeanu).

38. The radius of a-convexity for the class of starlike univalent
functions, a-real, Proc. Amer. Math. Soc., 51,2(1975), 395-400. (will 
M.O.Reads).

39. The Hardy class for functions in the class MV(a,3c), J .  of Mach
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Analysis and Appl., 51,1(1975), 35-42. (with S.Miller and M.Reads).
40. Janowski alpha-convex functions, Ann. Uni. M.Curie-Skiodowska, 

29,A(1975), 93-98. (with S.S.Miller and M.O.Reade).
41. On generalized convexity in conformal mappings II, Rev. Roumaine Math. 

Pures Appl., 21,2(1976), 219-225. (with S.Miller and M.Reads).
42. The Hardy class of functions of bounded argument rotation, J.Austral. 

Math. Soc., A,21,1(1976), 72-78. (with S.S.Miller).
43. On the radius of alpha-convexity, Studia Univ. Babeş-Bolyai, Ser.Math., 

22,1(1977), 35-39. (with S.S.Miller and M.O.Reade).
44. The order of atarlikeness of a Libera integral operator. Mathematics 

(Cluj), 19(42), 1(1977), 67-73. (with M.O.Reade and D.Ripeanu).
45. A particular starlike integral operator, Studia Univ. Babeş-Bolyai, 

Math., 22,2(1977), 44-47. (with S.Miller and M.Reads).
46. The order of starlikeness of alpha-convex functions. Mathematics 

(Cluj), 20(43),1(1978), 25-30. (with S.S.Miller and M.O.Reade).
47. Second order differential inequalities in the complex plane, J. of 

Math. Analysis and Appl., 65,2(1978), 289-305. (with S.S.Miller).
48. Starlike integral operators, Pacific J. of Math., 79,1(1978), 157-168.

(with S.S.Miller and M.O.Reade). -
49. Proprietăţi de subordonare ale unor operatori integrali, Sem. itin. ec.

funcţ., aprox. şi conv., Cluj-Napoca (1980), 83-90. |
50. Subordonări diferenţiale şi teoreme de medie In planul complex, Sem. 

itin. ec. funcţ., aprox. şi conv., Timişoara (1980), 181-185.
51. Starlikeness and convexity for non-analytic functions in the unit diso. 

Mathematics (Cluj), 22(45), 1(1980), 77-83.
52. On classes of functions subordinate to the Koebe function, Rev. 

Roumaine Math. Pures Appl., 26,1(1981), 95-99. (with S.Miller).
53. On a differential inequality for analytic functions in the unit disc, 

Studia Univ. Babeş-Bolyai, Math. 26,2(1981), 62-64.54. Sufficient conditions of univalency for complex functions in the class 
C , Rev. Anal. Numer. Théorie Approximation, 10,1(1981), 75-79.

55. On the order of starlikeness of convex functions of order a, Rev. Anal. 
Numer. Théorie Approximation, 10,2(1981), 195-199. (with D.Ripeanu and
I.Şerb).

56. The order of starlikeness of certain integral operators, Mathematics 
(Cluj), 23(46), 2(1981), 225-230. (with D.Ripeanu, I.Şerb).

57. Operatori integrali care conservă convexitatea şi aproape-convexitatea, 
Sem. itin. ec. funcţ. şi conv., Cluj-Napoca (1981), 257-266.

58. On the order of starlikeness of the Libera transform of starlike 
functions of order a , Sem. of Functional Analysis m d  Numerical 
Analysis, Babeş-Bolyai Univ., Cluj-Napoca, Preprint No.4(1981), 85-92. 
(with D.Ripeanu and I.şerb).

59. Spirallike nonanalytic functions, Proc. Amer. Math. Soc., B2,1(1981), 
61-65. (with H.Al-Amiri).

60. Certain sufficient conditions for univalency of the class C1, J. of 
Math. Analysis and Appl., 80,2(1981), 387-392. (with H.Al-Amiri).

61. Differential subordinations and univalent functions, Michigan Math. J., 
28(1981), 157-171. (with S.S.Miller).

62. The order of starlikeness of the Libera transform of the class of 
starlike functions of order 1/2, Mathematics (Cluj), 24(47), 1-2(1982), 
73-78. (with D.Ripeanu and I.Şarb).

63. Convexitatea unor funcţii olomorfe, Sem. itin. ec. funcţ., aprox. şi 
conv., Cluj-Napoca (1982), 207-210.

64. Sur l'ordre de stelarité d'une classe de fonctions analytiques, Seminar 
of Functional Analysis and Numerical Methods, Babeş-Bolyai Univ., Cluj- 
Napoca, Preprint No'.l(1983), 89-106. (with D.Ripeanu and I.Şerb).

65. On some particular classes of starlikp integral operators, Seminar of 
Geometric Function Theory, Babeş-Bolyai Univ., Cluj-Napoca, Preprint 
No. 4(1982/1983), 159-165. (with S.S.Miller and M.O.Reade).

66. General second order inequalities in the complex plane, Idem, 96-114.
(with S.S.Miller). -

67. Some integral operators and starlike functions, Idem, 115-128.
68. On a Briot-Bouquet differential subordination, General Inequalities, 

3(1983), 339-348. (with P.Eenigenburg, S.Miller and M.Reads).

103



STUDIA U fi IV. BABEŞ-BOLYAI, HATHEHATICA, XXXVI, 2, 1991

3(1983), 339-348. (with P.Eenlgenburg, S.Miller and M.Reade).
69. Convexity and close-to-convexity preserving integral operators, 

Mathematics (Cluj), 25(48), 2(1983), 177-182.
70. On starlike functions with respect to symmetric points, Bull. Math. 

Soc. Math., RSR, 28(76), 1(1984), 46-50.
71. On some classes of regular functions, Studia Univ. Babeş-Bolyai, Ser. 

Math., 29(1984), 61-65. (with Gr.SălSgean).
72. Sur un problem extremal, Seminar of Functional Analysis and Numerical 

Methods, Babeş-Bolyai Univ., Cluj-Napoca, Preprint No.1(1984), 105-122. 
(with M.Iovanov and D.Ripeanu).

73. Convexity of some particular functions, Studia Univ. Babeş-Bolyai Ser. 
Math., 29(1984), 70-73.

74. On a Briot-Bouquet differential subordination, Rev. Roumaine Math. 
Puree Appl., 29,7(1984), 567-573. (with P.Eenigenburg, S.Miller and 
M.Reade).

75. On some starlike nonanalytic functions, Itin. Seminar on Funct. Eq., 
Approx, and Convexity, Cluj-Napoca (1984), 107-112.

76. Subordination-preserving integral operators, Transactions of the Amer. 
Math. Soc., 283,2(1984), 605-615. (with S.Miller and M.Reade).

77. Univalent solutions of Briot-Bouquet differential equations, J.of Diff. 
Equations, 56,3(1985), 297-309. (with S.S.Miller).

78. On starlike functions of order a, Itin. Seminar on Func. Eq. Approx, 
and Convexity, Cluj-Napoca, 6(1985), 135-138.

79. On some classes of first order differential subordinations, Michigan 
Math.J., 32(1985), 185-195. (with S.S.Miller).

80. Starlikeness conditions for Alexander integral, Itin. Seminar on Funct. 
Eq., Approx, and Convexity, Cluj-Napoca, 7(1986), 173-178.

81. Some integral operators and starlike functions. Rev. Roumaine Math. 
Pures Appl., 21,3(1986), 231-235.

82. On a class of spirallike integral operators. Idem, 225-230. (with
5.5. Miller).

83. On starlikeness of Libera transform, Mathematics (Cluj), 28(51), 
2(1986), 153-155.

84. On a theorem of M.Robertson, Seminar on Geometric Function Theory, 
Babeş-Bolyai Univ., Cluj-Napoca, 5(1986), 77-82.

85. Mean-value theorems in the complex plane. Idem, 63-76. (with
5.5. Miller).

86. The effect of certain integral operator on functions of bounded turning 
and starlike functions, Idem, 83-9o. (with M.Iovanov).

87. Convexity of the order of starlikeness of the Libera transform of 
starlike functions of order a, Idem, 99-104. (with D.Ripeanu and 
I.Şerb).

88. Best bound of the argument of certain functions with positive real 
part, Idem, 91-98. (with D.Ripeanu and M.Popovici).

89. Subordination by convex functions, Idem, 105-108. (with V.Selinger).
90. On strongly-starlike and strongly-convex functions. Studia Univ. Babeş- 

Bolyai, Ser. Math., 31,4(1986), 16-21.
91. Differential subordinations and inequalities in the complex plane, J. 

of Diff. Equations, 67,2(1987), 199-211. (with S.Miller).
92. Marx-Strohhkcker differential subordinations systems, Proc. Amer. Math. 

Soc., 99,3(1987), 527-534. (with S.S.Miller).
93. On a close-to-convexity preserving integral operator. Studia Univ. 

Babeş-Bolyai, Ser. Math., 32,2(1987), 53-56.
94. On starlike images by Alexander integral, Itin. Seminar on Eq. Funct., 

Approx, and Convexity, Cluj-Napoca, 6(1987), 245-250.
95. Alpha-convex nonanalytic functions, Mathematics (Cluj), 29(52), 

1(1987), 49-55.
96. Best bound for the argument of certain analytic functions with positive 

real part (II), Seminar on Funcţionai Analysis and Numerical Methods, 
Babeş-Bolyai Univ., Cluj-Napoca, 1(1987), 75-91. (with M.Popovici and 
D.Ripeanu).

97. Some starlikeness conditions for analytic functions. Rev. Roumaine 
Math. Pures Appl., 33(1988),1-2,117-124.

98. Integral operators and starlike functions, Itin. Seminar on Funct. Eg.,
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99. Conformal mappings and refraction law, Babeg-Bolyai Univ. Fac. of 
Math., Research Seminars, 2(1988), 113-116.

100. On an inequality concerning the order of starikeness of the Libera 
transform of starlike functions of order alpha, Seminar on Mathematical 
Analysis, Babeg-Bolyai Univ. Fac. of Math., Research Seminars, 7(1988), 
29-32. (with D.Ripeanu and I.Şefrb).

101. Second order averaging operators for analytic functions, Rev. Roumaine 
Math. Pures Appl., 33(1988), 10, 875-881.

102. Alpha-convex integral operator and strongly-starlike functions,Studia 
Univ. Babeg-Bolyai, Ser. Math., 34,2(1989), 16-24.

103. Alpha-convex integral operator and starlike functions of order beta, 
Itin. Seminar on Functional Equations, Approx, and Convexity, Cluj- 
Napoca, (1989), 231-23S.

104. The theory and applications of second-order differential 
subordinations, Studia Univ. Babeg-Bolyai, Ser. Math., 34,4(1989), 3­
33. (with S.S.Miller).

105. On a simple sufficient condition for starlikeness, Mathematica (Cluj), 
31(54),2(1989), 97-101. (with V.AniSiu).

106. Integral operators on certain classes of analytic functions, Univalent 
Functions, Fractional Calculus and their Applications, 1989, 153-166. 
(with S.S.Miller).

107. On an integral inequality for certain analytic functions, Mathematica- 
Pannonica, 1, 1(1990), 111-116.

108. Univalence of Gaussian and confluent hypergeometric functions, Proc. 
Amer. Math. Soc., 110,2(1990), 333-342. (with S.S.Miller).

109. Certain classes of starlike functions with respect to symmetric points, 
Mathematica (Cluj), 32(55),2(1990), 153-157.

110. Integral operators and meromorphic starlike functions, Mathematica 
(Cluj), 32(55),2(1990), 147-152. (with Gr.Sălăgean).

111. Classes of univalent integral operators, J.Math. Analysis Appl., 
157,1(1991), 147-165. (with S.S.Miller).

112. On a classe of first-order differential subordinations, Seminar on 
Mathematical Analysis, Babeg-Bolyai Univ., Cluj-Napoca, Research 
Seminars, 7(1991), 37-46.

113. On a Marx-Strohhkcker differential subordination, Studia Univ. Babeg- 
Bolyai, Ser. Math., 36(1991) (to appear).

114. On certain analytic functions with positive real part, Idem, (to 
appear), (with X.I.Xanthopoulos).

115. On certain differential and integral inequalities for analytic 
functions, Idem, (to appear), (with X.I.Xanthopoulos).

116. Averaging operators and generalized Robinson inequality, J.Math. 
Analysis and Appl. (to appear), (with S.S.Miller).

117. A special differential subordination and its application to univalency 
conditions, CTAFT(92), (to appear), (with S.S.Miller).

118. Differential inequalities and boundedness preserving integral 
operators, (preprint), (with S.S.Mil1er).

119. A class of nonlinear averaging integral operators, (preprint), (with
S.S.Mil 1er).
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Textbooks

1. Funcţii complexe, Babeg-Bolyai University, 1972.
2. Analiză matematică (Funcţii complexe), Editura Dldact'.că gi Pedagogică, 

Bucuregti 1982 (with P.Hamburg and N.Negoescu).

Other Publications

1. Academician profesor George Călugăreanu, Gazeta Matematică, Ser. A, 
voi. 71, 10(1966), 391-399.

2. Analiză matematică (Funcţii complexe), E d .  Did. Ped., Bucuregti, 1902. 
(with P.Hamburg and N.Negoescu)-

3. Variaţiuni pe o temă de concurs, Lucrările Seminarului de Didactica
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Matematicii, Univ. Babeş-Bolyai, 1905/86, 123-128.
4. Asupra unei probleme de concurs, Idem, 1986/87, 1S0-1S9.
5. Profesor doctor docent Cabiria Andreian-Cazacu, Cazeta Matematică, 

No.3(1988) 102-104.
6. Citeva consideraţii asupra conicelor, Lucrările Seminarului de 

Didactica Matematicii, Univ. Babeş-Bolyai, 1987/88, 149-154.
7. Analiză complexă. Aspecte clasice şi moderne (Cap. liAspecte geometrice 

in teoria funcţiilor de o variabilă complexă), Ed.St.Enc., Bucureşti, 
1988.

8. O proprietate de acoperire a cardioidei, Lucrările Seminarului de 
Didactica Matematicii, Univ. Babeş-Bolyai, 1988/89, 173-176.

9. Creativitate în matematică. Idem, 177-190. (with I.A.Rus and M.Ţarină).
10. Demonstrarea conjecturii lui Bieberbach. Teorema lui de Brangee, 

Probleme actuale ale cercetării matematice, Univ. Bucureşti, Fac. 
Math., vol. I, 1990, 15-28.

11. O noţiune de stelaritate generalizată, Lucrările Seminarului de 
Didactica Matematicii, Univ. Babeş-Bolyai, 1990, 207-210.



în cel de al X X X V I-lea  an (1991). Studia Universitatis Babeş-Bolyai apare în 
următoarele serii:

mathematică (trimestrial) 
tizică (semestrial 
chimie (semestrial) 
geologie (semestrial) 
geografie( semestrial) 
biologie (semestrial) 
filosofie (semestrial) 
sociologie-politologie (semestrial) 
psihologie pedagogie (semestrial) 
ştiinţe economice (semestrial) 
ştiinţe juridice (semestrial) 
istorie (semestrial) 
filologie (trimestrial)

In the X X X V I-th  year of its publication (1991) Studia Universitatis Babeş— 
Bolyai is issued in the following series:

mathematics (quarterly) 
physics (smesterily) 
chemistry (semesterily) 
geology (semesterily) 
geography (semesterily) 
biology (semesterily) 
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Dans sa X X X V I-e  année (1991) Studia Universitatis Babeş-Bolyai paraît dans 
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Rezumat. Arbore» binar de clasificară basat pa mulţimi fussy. în 
aceaată lucrara aeta descris un algoritm da proiaotar* şi 
implementare a unui claeificator binar. Acest algoritm Îşi 
propune Îmbunătăţirea algoritmului propus de Fu şi Hui (3). O 
mulţime de date de test este utilizată In construcţia 
clasificatorului. în abordarea acestei probleme, Fu şi Mul 
folosesc proiecţia datelor in plan şi inspecţia vizuală ca metode 
de separare a clusterilor. Abordarea de faţă propune o separare 
automată, bazată pe mulţimi fuzzy.

Th* dmsign of the binary tram classifier.
A method to design a binary tree classifier has been 

proposed in [3]. According to Fu and Mui, there are three major 
tasks to be implemented, to design a binary tree classifier:

a) a tree skeleton or hierarchical ordering of class labels
b) the choice of features at each nonterminal node
c) the decision rule to be used at each nonterminal node. 

These tasks involve the specification of the following 
parameters t

a) the number of descendant nodes at each nonterminal node
b) the number of features used at each nonterminal node
c) an appropriate decision rule to be considered at each 

nonterminal node.
Since any conventional single stage classification scheme can be 
represented by a binary tree classifier which has exactly two 
'mmediat descendant nodes for each nonterminal node [3], we

U n i v e r s i t y  o f  C l u j - N a p o c a ,  F a c u l t y  o f  M a t h e m a t i c s , 3 4 0 0  C l u j - M a p o c a ,  
R o m a n i a



IOANA MARIA BOIER

consider the number of descendant nodes at each nonterminal node 
to be two. The next parameter to be specified is the maximum 
number of features used at each nonterminal node. Ihis number 
depends on the specific classificati . problem and it is a 
constant for the problem. Let us denote it by K. To determine K, 
the number of all features, the size of test sample and the 
average number of samples per class are to be considered. The 
decision rulé chosen at each nonterminal node is:

if d(X,L1) £ d(X,L2) then X is classified into calss Aj (l) 
otherwise X is classified into class A2, 

where X is the feature vector of the unknown sample to be 
classified, L* is the prototype of the class Ai (i=l,2) [1] ana 
d is a norm induced by distance in Rp:

<Ux,y)-ix-yl.

The next steps we have to perform are to design the tree skeleton 
or hierarchical ordering of class labels and to establish the 
actual features used at each nonterminal node. The fundamental 
problem which appears when the tree skeleton is built is the 
separation of the two groups of classes in each nonterminal node 
and the choice of features which are effective in separating 
these groups of classes. But, generally, the choise of the most 
effective features depends on the classes to be separated and the 
separation of the classes depends on what features are used. A 
method to break this deadlock is proposed in what follows. Using 
General Fuzzy Isodata algorithm [1] a fuzzy class is divided into 
two groups. Then, a method similar to the one presented by Fu and 
Mui [3] is used to chose the features which are "most effective"

4
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in separating the two groups of classes.
Let us assume that the predetermined number of classes is 

n and that the classes are labeled 1, 2,...,n. We also assume 
that the dimension of the features space is p. Suppose we have 
reached with the construction of the tree skeleton to a 
nonterminal node. Let C be the fuzzy set describing the 
membership degrees of class label i to this node, for all i from 
1 to n. For example, at the beginning, when the nonterminal node 
is the root, the membership degrees are C(i)=1.0 for all i from 
1 to n. Further, using the General Fuzzy Isodata algorithm, a 
fuzzy partition [1] P » {Ax, A2> of C is detected. According to 
the definition of a fuzzy partition, we have:

C(i) * A1(i) + Aa (i) , i=l,n

For the classification accuracy, the following correction rule 
is used:

if A](i) <0.1 then A2_Jn(i) -C(i) and A^(i) «0.0 , i-i,n, j=1,2 

In determining the partition P, we use n feature vectors, 
representing the mean values of the features for each of the n 
classes. However, it is possible that not all the p features are 
needed to split the class C into A1 and A2. Using the set of test 
samples, we shall find the "best" up to K features in separating 
the two groups of classes. First, the best single feature is 
selected an this feature is used to perform classification based 
on the decision rule [1]. The result of the classification is 
computed and represents the number of test samples well 
classified. The "best 2" up to the "best K" feature subsets are

5
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obtained. The feature subset which give the best classification 
result of the K "best" feature subsets is chosen as the feature 
subset for the node considered. When an unknown sample to fc* 
classified reaches this node and we the decision rule to ot.)
further, only those features from the feature vector of the 
unknown sample which correspond to the feature subset associated 
with the current node will be considered in order to compute tH 
distances to the prototypes of the descendants.

The flowchart which describes the binary tree classifies 
design process is given below:

1. Start
2. Find the mean values of the 

features for each of the n 
classes

3. Obtain separable clusters 
using General Fuzzy Isodata 
algorithm

4. If needed, use the 
correction rule

5. 1 * 1
6. Find the "best 1” features
7. Perform classification 

using these 2 features
8. 1 = 1 + 1
9. Is 1 > K ?
10. Find the best 

classification result froi 
the result corresponding to 
each of the K "best" feature 
subsets

11. Use the best result 
obtained to build up the 
decision tree

12. No new nonterminal node?
13. Get a new nonterminal node
14. Stop
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Results. The method described above has been used to design 
a binary tree classifier for the classification of 147 samples 
of Iris spread over 3 classes (2J: Iris Setosa, Iris Virginica 
and Iris Versicolor. There are 4 characteristics taken into 
consideration: petal width (PW) , petal length (PL), sepal width 
(SW), sepal length (SL). Considering for each of the 3 classes 
the mean values of the 4 characteristics listed below and the set 
of test samples as consisting of the first 20 samples from each 
class listed in Anex A, the following tree classifier is obtained 
(JC-2):

Although all the lass labels (1,2,3) appear in each node, 
only those which have the membership degree to thé node i 
(i*l,...,5) greater than have been represented for the node i in 
the figure above. Beside each nonterminal node is the set of 
features used.

7
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Setosa Versicolor Virginica
PW 0.2 1.4 2.5
PL 1.4 4.7 6.0
SW 3.5 3.2 3.3
SL 5.1 7.0 6.3

mean values of the 4 characteristics 

The classification results are as follows:

samples no. well classified percent
Setosa 49 49 100%
Virginica 49 26 51.02%
Versicolor 49 49 100%
Total 147 127 85.03%
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Anexa A
Iris Setosa IriB Versicolor IriB Virginica
SL SH PL PW SL SW PL PW SL SW PL PW
5.1 3.5 1.4 0.2 7.0 3.2 4.7 1.4 6.5 5.3 é.ô 2.5
4.9 3.0 1.4 0.2 6.4 3.2 4.5 1.5 5.8 2.7 5.1 1.9
4.7 3.2 1.3 0.2 6.9 3.1 4.9 l.b 7.1 3.0 5.9 2.1
4.6 3.1 1.5 0.2 5.5 2.3 4.0 1.3 6.3 2.9 5.6 1.8
5.0 3.6 1.4 0.2 6.5 2.8 4.6 1.5 6.5 3.0 5.8 2.2
5.4 3.9 1.7 0.4 5.7 2.8 4.5 1.3 7.6 3.0 6.6 2.1
4.6 3.4 1.4 0.3 6.3 3.3 4.7 1.6 4.9 2.5 4.5 1.7
5.0 3.4 1.5 0.2 4.9 2.4 3.3 1.0 7.3 2.9 6.3 1.8
4.4 2.9 1.4 0.2 6.6 2.9 4.6 1.3 6.7 2.5 5.8 1.8
4.9 3.1 1.5 0.1 5.2 2.7 3.9 1.4 7.2 3.6 6.1 2.5
5.4 3.7 1.5 0.2 5.0 2.0 3.5 1.0 6.5 3.2 5.1 2.0
4.8 3.4 1.6 0.2 5.9 3.0 4.2 1.5 6.4 2.7 5.3 1.9
4.8 3.0 1.4 0.1 6.0 2.2 4.0 1.0 6.8 3.0 5.5 2.1
4.3 3.0 .. 1.1 0.1 6.1 2.9 4.7 1.4 5.7 2.5 5.0 2.0
5.8 4.0 1.2 0.2 5.6 2.9 3.6 1.3 5.8 2.8 5.1 2.4
5.7 4.4 1.5 0.4 6.7 3.1 4.4 1.4 6.4 3.2 5.3 2.3
5.4 3.9 1.3 0.4 5.6 3.0 4.5 1.5 6.5 3.0 5.5 1.8
5.1 3.5 1.4 0.3 5.8 2.7 4.1 1.0 7.7 3.8 6.7 2.2
5.7 3.8 1.7 0.3 6.2 2.2 4.5 1.5 7.7 2.6 6.9 2.3
5.1 3.8 1.5 0.3 5.6 2.5 3.9 1.1 6.0 2.2 5.0 1.5
5.4 3.4 1.7 0.2 5.9 3.2 4.8 1.8 6.9 3.2 5.7 2.3
5.1 3.7 1.5 0.4 6.1 2.8 4.0 1.3 5.6 2.8 4.9 2.0
4.6 3.6 1.0 0.2 6.3 2.5 4.5 1.5 7.7 2.8 6.7 2.0
5.1 3.3 1.7 0.5 6.1 2.3 4.7 1.2 6.3 2.7 4.9 1.8
4.8 3.4 1.9 0.2 6.4 2.9 4.3 1.3 6.7 3.3 5.7 2.1
5.0 3.0 1.6 0.2 6.6 3.0 4.4 1.4 7.2 3.2 6.0 1.8
5.0 3.4 1.6 0.4 6.8 2.8 4.8 1.4 6.2 2.8 4.8 1.8
5.2 3.5 1.5 0.2 6.7 3.0 5.0 1.7 6.1 3.0 4.9 1.8
5.2 3.4 1.4 0.2 6.0 2.9 4.5 1.5 6.4 2.8 5.6 2.1
4.7 3.2 1.6 0.2 5.7 2.6 3.5 1.0 7.2 3.0 5.8 1.6
4.8 3.1 1.6 0.2 5.5 2.4 3.8 1.1 7.4 2.8 6.1 1.9
5.4 3.4 1.5 0.4 5.5 2.4 3.7 1.0 7.9 3.8 6.4 2.0
5.2 4.1 1.5 0.1 5.8 2.7 3.3 1.2 6.4 2.8 5.6 2.2
5.5 4.2 1.4 0.2 6.0 2.7 5.1 1.6 6.3 2.8 5.1 1.5
4.9 3.1 1.5 0.2 5.4 3.0 4.5 1.5 6.1 2.6 5.6 1.4
5.0 3.2 1.2 0.2 6.0 3.4 4.5 1.6 7.7 3.0 6.1 2.3
5.5 3.5 1.3 0.2 6.7 3.1 4.7 1.5 6.3 3.4 5.6 2.4
4.9 3.6 1.4 0.1 6.3 2.3 4.4 1.3 6.4 3.1 5.5 1.8
4.4 3.0 1.3 0.2 5.6 3.0 4.1 1.3 6.0 3.0 4.8 1.8
5.1 3.4 1.5 0.2 5.5 2.5 4.0 1.3 6.9 3.1 5.4 2.1
5.0 3.5 1.3 0.3 5.5 2.6 4.4 1.2 6.7 3.1 5.6 2.4
4.5 2.3 1.3 0.3 6.1 3.0 4.6 1.4 6.9 3.1 5.1 2.3
4.4 3.2 1.3 0.2 5.8 2.6 4.0 1.2 5.8 2.7 5.1 1.9
5.0 3.5 1.6 0.6 5.0 2.3 3.3 1.0 6.8 3.2 5.9 2.3
5.1 3.8 1.9 0.4 5.6 2.7 4.2 1.3 6.7 3.3 5.7 2.5
4.8 3.0 1.4 0.3 5.7 3.0 4.2 1.2 6.7 3.0 5.2 2.3
5.1 3.8 1.6 0.2 5.7 2.9 4.2 1.3 6.3 2.3 5.0 1.9
4.6 3.2 1.4 0.2 6.2 2.9 4.3 1.3 6.5 3.0 5.2 2.0
5.3 3.7 1.5 0.2 '5.1 2.5 3.0 1.1 6.2 3.4 5.4 2.3
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Rezumat. - Asupra seturilor independente de grafe.Lucrarea trece 
în revistS unii algoritmi de determinare a mulţimilor 
independente (mulţimi interior stabile) referitoare la un graf. 
în prima parte se prezintă cîţiva algoritmi care au la bază 
expresii şi/sau ecuaţii booleene precum şi un algoritm recursiv 
şi anume algoritmul dat de Taulbee şi Bednarek. In final autorii 
dau un algoritm recursiv inspirat din acest ultim algoritm.

1. Definition, properties. Let G = (V,T) be an undirected 
graph where:

- V is the set of vertices and |V.| = n;
- T : V -* V is the aplication which defines the graph. 
DEFINITION : Let S c v. S is an independent set (IS) iff

V v e  S, Tv n S - 0 .
(where we denote T(v) by Tv) .
In other words the vertices of 5 don't have any edges 

between each other.
Observations :

1° We may define G « (V,E) where E is the set of edges, E c 
<= V x V , an edge is [x,y], x,y e V and [x,x] € E.

2° Let S be an JS. S is called maximal if S is maximal by 
sets inclusion.

3° We denote by 8 the set of all maximal IS of G.
We remember that:

a) a(G) is the number of internal stability:

* University of Cluj-Napoce, Department of Computer Science, 3400 Cluj- 
Napoca, Romania
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a (G) =max|S| 
sea

to) y(G) is the chromatic number of G, y(G) is the 
smallest number of IS, c'l; jo.'nts, which cover G. 

4° Moon and Moser have proved that:

e (G) i

n
3 3 , if n=3Jc

^l-i4*3 3 , if n=31c+ln-2
2*3 3 , if n=3ic+2

2. Algorithms for dstormining IS. In many problems it is 
important to find the IS family.

There are some algebraic or combinatorial algorithms to find
IS.

2.1. Maghout and Weissman'S algorithm based on boolean 
expression.

2 . 2 . Malgrange algorithm's which finds every squared matrix 
containing only 0 (zero) of the adjacent matrix where:

A - ; i“l,u ; j*l,n with

( 1 , if [vi# Vj] €E
^  I 0 .othèrwise

2 . 3 . The Rudeanu's method, using the boolean equations which 
caracterize the IS family.

Let G - (V,E), where V « {vlf...,vn>.
If 5 c v is an IS then we associate to each vi e V an 

boolean variable b± define by :

12
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fl , if vi€5
I 0 , if vt$S

We have the following result:
If * 1 then it results a±j*£>±*bj “ 0 (1)
(because v i  € 5 and v^ C S, see the diagram).

So from (1) it results that Y  bi*bj Ô iff ^  by* 
iff (E7V5;)-l iff V ^ * ^ - • •:5̂ =1 *«jri

So, for each factor * 5^. . .15̂  » 1 we have an IS :

S = lx*. , x * , . . . , xk ).

2*4. Bednarek and Taulbee's recursiv algorithm 
Let G » (V,E) be an undirected graph:

- V Ic ■ l,.,.,n we denoted by Vk - {vx, . . ., v*} ;
-  for each subgraph with Vk - {vx, • • • , v^} ; we 

denoted by Lk the maximal IS family;
- we also denote Yk » {y € Vk / [x*,y] € £}.

The steps of the algorithm are:

13



V.CIOBAN, V.PREJNEREAN and S«MOTOONA

SI. Let Yx m {vx}, L1 = {Vx}, k=1.
82. One finds the next family: Ik={S/S=MCiYk+1, MeLk} .
S3. One finds I* =  {I /  J c  I maximal with respect to

sets inclusion).
84. One finds family, for each M e Lk :
a) if M e  Yk^  - M u  {vk+1} e L^x
b) if M * 3fA+1 - M e l;+1 and {v*+1} u (M O y*+1) € Z,;+1 

iff m n y*+1 e i'k
The L*+1 family contains only these sets of S4.
85. One finds the maximal family Lk+X from L*+1wich respect 

to sets inclusion.
86. Repeat S2,S3,S4,S5 for k~2,...,n-l. Finally we have Ln 

which contains the maximal IS of G.
Example :

Let G - (V,E) be an undirected graph with
{1,2,3,4,5), {[1,2],[2,3],[3,4],[3,5]}

O —d>

In the next table we have:

k r*+i Ik 4 L U L * + l  U

1 { 2 } 0 0 U>, <2> { 1 } » { 2 }  I

14
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2 {1,3} ®,{1} {1} {1,3},{2}, {2},
{3} {1,3}

3 {1,2,4} ®,{1},{2} {1},{2} {1,3},{1,4}, {1,3},
{2,4},{4} {1,4},

{2,4}

4 {1,2,4,5} 0,{1},{1,4} {1,4} {1,3}, {1,3},
{1,4,5}, {1,4,5}
{2,4,5},{5} { 2 , 4 , 5 }

- L - {{1,3}, {1,4,5}, {2,4,5}}
2.5. In what follows we suggest the next algorithm:
The notations used:
Let G - {V,E} be an undirected graphs and: 
vk “ {vlf...,vk}, \V\ - n,1 s k S n;
Lk = the sets family of IS associated with Vk, 1 s k <, n. 
The steps of the algorithm are:
81. Lx * {vx}, Jc-2.
82. One finds Lk :
a ) if M  € 2 14 M 6 L k•
b) if M e and V y c M with [Y,xk] $ E - M u {xk} e Lk.
c) {v*} c Lk.
Repeat S2 for Jt=2,3,... ,n.
S3. Reducing Ln with respect to sets inclusion:
V M,N e Ln and M c N - Ln = Ln \ M.
For the previous graph we have:
Lx : {l}.



1/2 • {1}, {2>.

L3 : {1}, {2}, {1,3}, {3}.
L4 : U>, {2}, {1,3}, {3}, {1, 4}, {2 4}, {4} .
L5 : {1}, {2}, {1,3}, {3}, {1, .2 4}, {4},

i 1.4-JLL, {2,1,5} , {4, 5}, {5}.
Applying S3 we obtain !
L : { {1, 3), {1,4,5}, {2,4 ,5} }•
The algorithm is very simple and it works only with a single 

sets family.
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REZUMAT. - Asupra unor aotodo paralel* in algebra liniari. Sint 
studiata din punct da vadara al complexităţii mai multa matoda 
numerica de inversare a metricelor ţi de resolvare a sistemelor 
algebrice liniare.

The parallel computation had became an actual problem in 
many application fields.

Of course, not each mathematical method can be efficientely 
projected in a parallel version.

To characterise the depth of the parallelism of a given 
method there exists specifically criterions. Such criterions are 
the speed and the efficiency. The goal of this paper is to discus 
some methods in linear algebra from the parallelism point of 
view.

Let X be a linear space, X0 a subset of X, (Y, | .|) a normed 
linear space and S,Si X0 •* Y, a given operator. The problem; for 
given c>0 and x « X0 find an y e Y such that |S(x) - y|s e is 
called a S - problem, x is the problem element, S is the solution 
operator and s  ~ S(x) is the solution element, g * Y for which 
I 5 “ *1 S * is called an e - approximation of the solution a.

In order to solve a S - problem there are necessary some 
informations on the problem element x. So, let 2 be a set (the 
set of informations). The operator 8: X -♦ Z is called the 
informational operator and 9(x) , x e  X0, is the information on

* Univermity of Cluj-N*pocs, Faculty of Mathamatlca, 3400 Cluj-Napoca, 
Romania
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x. To compute a solution of a S - problem for a given information 
3(x) we need an algorithm, which is defined as an application a: 
$f(X0)-*Y. So, for a given x e X0, a (3(x)) is the approximation of 
the solution S(x) given by the algorit.b i a with the information 
3(x) as the input data. If a (8(x)) is an t - approximation o. 
S(x) then 8  and a  are called e -  admissible. So, to solve a S -  

problem means to find an c - admissible informational operator 
and an c - admissible algorithm for it.

DEFINITION 1. A couple (3,a) with ÿ:X->Z and a : 8 (X0)-/ is 
called a method associated to a S - problem.

If 3 and a are e - admissible then the corresponding method 
is called also e - admissible.

Next, one denotes by M(S) the set of all admissible methods 
for the problem S. A method n€H(S), n = (3,a), is called a serial 
method if all the computations are described as a single 
instructions stream (a is a serial algorithm). If the 
computations are described as a multiple instructions streams 
then n is called a parallel method (a is a parallel algorithm).

To distinguish the two kind of methods one denotes by Mt(S) 
the set of all serial methods for the problem S and by Mp(S) the 
set of all parallel methods for 5.

For a method ntM(S) one denotes by CP(h j x) , x 6 X0, its 
computational complexity for the element x or the local 
complexity, while

CP(p) = sup CP(p;x)
X 6 X 0

is the complexity of the method m for the problem S(global

ie
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complexity) [3].

DEFINITION 2. The method p e Ms (S) for which

CP(p) = inf CP(p)

is called the optimal method with regard to the complexity.
Now, let p be a serial method, n e Mg (S) .
Generally speaking, by a parallel method np e Mp (S), 

associated to n we understand a method in which all the 
operations, independent to each others, are performed in parallel 
(in the same time). So, we can image the serial method divided 
in many parts (segments - streams of instructions) independently 
or partial independently from the computation point of view, say 
Hlt...,He. Then

CP(pp) = max CP(pi) m»r

is the complexity of the corresponding parallel method np.
DEFINITION 3. Let S be a given problem, fip e Mp(S) a 

parallel method and c Mm (5) the optimal serial method with 
regard to the complexity.

Then

S(pp) CP(p#)
CP(pp)

is called the speed of the parallel method np.
Remark 1. The speed is also denoted by S(/tp;r) , where r is 

the number of the instructions streams of the method np. 
Obviously, S(np; r) <, r.

19



Q H EO R Q HE COMAS

Remark 2. A more practical value to judge the parallel 
version np of a serial method na is

a(\ip;r) CP( tO 
CP(nc)

He also have s (np;r) i. S(fip;r). 
DEFINITION 4. The value

*<MJ -

is called the efficiency of the parallel method np.
As 0 1  S(np;r) £ r it follows that 0 £ E{np) <. 1. 
Next, we consider first some examples.
1.1. Let 9 be the following expression :
9  m p t2 P ••• P tn

where p is an associative operation.
The serial computational complexity of 9 is 
CP(9) - (n - 1) CP(p) ,

where CP(p) , is the complexity of the operation p .
A parallel version 9p of the expression 9 is obtained as 

follows: in the first step we compute, say : - t2i-iP ^2i* tor 
all possible i. To do it more clear, let meN be such that l*-1 < 
< n £ 2". If n < 2m then we supplement the expression 9 by

tn+1 »... » t2m =0 ,  i.e.
9 m p tj p ... ptn p t„+j p ... p fcj.

so,
I “  ^ 2 i - l  P ^ 2 i  > ^  "  1 ,  • . • , 2 " ”^ .  

In the second step we have
ti p , i - 1,...,2W‘2
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and so on
ti : = p C*;1 , i = 1,. .. ,2m~k .

for k = 3,...,m. Finally, we have S’ = t" .Hence, the necessary 
steps to compute S’ is m. Taking into account that 2m~} < n £ 2”, 
one obtains m » [log2n], where [x] , x e R is the integer with 
the property x £ [x] < x + 1.

It follows that
CP (STp) - [log2n ] CP (p) .

S o, we have

s(«L; In/2] ) » ^p [log2n]

and

£(SP) > — J2--- i---  » --- 2— _
p In/2] [log2n) llog2n)

where [x] is the integer part of x.
Remark 3. If we consider the binary tree associated to the 

expression S’ then the complexity of the parallel computation of 
S’ is the depth of the tree [5].

1.2. Let be X - Mn(R), X0 « X , Y = R and S : X - Y,
A-*det A. Hence, S is the problem to compute the determinant detA 
of the matrix A. The method used consists in the transformation 
of the determinant

an ai2 ' •• ain
det A « a22 • ‘• a2n

ani a„2- •• n̂n



in the form

det As = a,1,*. *ar
1
0 1

a ln

0 0

using the operations :
ah  : “ aij / - 1,... ,n

a ip1 : =— f 1 * P + !»•••*«
aPP

afj1 : *a5 _aj5*afp1 , i,j = p + 
for p = 1,...,n-l.

So, we have 
det A = a111*a2a*. . . *a,gl .

Remark 4. Next we suppose that CP(+) = 1 ( a unit time) and 
CP(*) = CP(/) = 3.

If one denotes by pB the serial method to compute det A, 
one obtains
CP(ps) = 4 (n-1) (8n2+5n+18) .

A parallel version of the considered method using n parallel 
instructions strems (n processors) is : 
begin

det As * 1;
for p; = 1 step 1 until n -1 do
begin

(det A: = det A * a^\ (p + 1 5 j £ n) agj1:*?—  ) ;
a pp((p+1 £ j £ n) for i:=p+l step 1 until n do
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afr-.-afj-afrafr)

end
det A := det A * a^

end
Remark 5. (J, ( 1 £ Jc £ m) Ik) means that the instructions

I, J1# . .., Jm are performed in parallel.
For a better illustration of the parallel method, say /xp, 

we give the next diagram (£>:=« det A) :

The complexity of the parallel method np, as it can be easy 
seen, is:

CP(Mp/n) * n(2n - 1).
So,

p 1= p+l)

and

2 3
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e (vd) * 4

B.3. For X = Mn (R), X0= {A | det A <* 0, A e X > ,
Y - M„ (R) and S(A) * A-1 , S is the problem to compute the 
inverse of a matrix.

We use the method based on the succesive transformations of 
the matrix [A | In] in the matrix [In | A], where In is the unit 
matrix of order n. The transformations are : first one denotes 
the elements of the matrix [A | !„] by t\j , i-1 
jml,...,2n. How,

tpj1 ! “— > j ^ P *  1 1 ••• t 2 ntpp

tfj , i - i+p ; j*p+l, . . .,2n

t n̂ , j»n+1, . . . ,2n ,

for all p - 
So,
A 1 - (t*") i -1, n ; j - n + 1 , 2n

If nm is the corresponding serial method then

CP(ps) = n (4na - 5n + 3) .
A parallel method, /ip, can be projected as follows :

begin
I

for ps<-l step 1 until n - 1 do 
begin for j:=p+1 step 1 until 2n do
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; (lsisn, i+p) tf? :=tfj-tfrtfi1
\

(n+liji2n) fc„"
end
He have

CP(Mp;n) - 6(n2 - n + 1)
and

s(|ip;n) - n - -i

respectively
E(np) « 1.
Remark 6. From these three examples we can see that the 

matrix inversion permîtes a very good parallelism (E(np) « 1), 
while for the determinant computation E(jip) » 2/3 and in the 
first example

E(&p) « 2/ [log2n] .

Linear algebraic systems.
If X = {[A|Jb]| AeM„( R), beMn/1 (R)}, X0={[A\b]eX | det A*0> 

S( [A|ib] )=A_1Jb then S is the problem to solve the system As-b.
Next, there are discused serial and parallel versions for 

some well known numerical methods for the solution of linear 
algebraic systems. '

I. Cramer's method. Taking into' account that the solution 
is given by e± ... ,n, where P-det A and Pi is the
determinant obtained by D changing the i-th column vector by b.
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So, we have to compute n + 1 determinants of order n, with the 
complexity CP(na) from the example E2, and n divisions. It 
follows that the serial complexity of Cramer's method |ice is 
CP( |i*) =(n+l)CP(Ms) +nCP(/), i.e.

CP(^) = -i(8n4 + 5n3 + Ion2 + 13n - 18) . (1)6
A natural parallel method here is to compute in parallel the 

(n+1) determinants and than to perform the n divisions. So,

CP(n£) = -i (8n3 - 3n2 + 13n) ’ (2)o

where (Jip is the mentioned parallel method.
Hence, one obtains

and

s{|i|; n+1) = (n+1) 18
8n3-3n2+13n » n+1

E(|ip) » 1. (3)
As a conclusion we can remark the very good parallelism of 

Cramer ' s method (e  ( |ip) =l).
II. Gaussian elimination method. As, it is well known first 

the given matrix [A|Jb] e X0 is transformed in the matrix 
[Tn I 5] > where Tn is an upper triungular matrix (Tn = (a/j) 
i=l,...,n; j=i+l,...,n; a/j=l) using the relations
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âpj: = app / app, j=p+l, . . . ,n; jbp / app
af/1 : = afj - afp * afj , i,j=p+1, .. . ,n
bf*1 s = bf - afp * jb/ , i = p+1, . . . ,n 

„ b"for p = and i>„ : =— —  , where for the begining
aiM

aij: =ai:/» b1i~b1, . . . ,n.

The complexity of this computation is n(n2-l)/3*[CP(+)+CP(*)] + 
+ n(n+l)/2 * CP(/). Now the triangular system Tns - b is solved 
by back substitution method:

’n‘
nn

si : “b/ - Y' a/j * x}, i~n- 
J-I+i

with the computational complexity n(n-l)/2 * [CP(+) + CP( * )]. 
It follows that

CP(p2) = —  (8n3 + 21n2 - lln) . (4)
6

A parallel version |ip of the Gauss method is :
begin
for p:=1 step 1 until n-1 do 

begin

a > )(p+lsjsn+l) a/Jt=— ; 

for i:=p+l step 1 until n do
begin ((p+lzjsn+l) af)1 : «a/J-a/^a/J) ; bf*1 : »jb/>-a£*jbpp end
end;
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a™for ki=l step 1 until n - 1 do 
((kiiin-i) a£i.n.ifa£i.a.i-aa_ltn_k.1t*a£k. 
end 
where
So, Sjî-ai”,,*! , i«l, . . . ,n.

It follows that

CP(p®;n) - 2n2 * 5n - 11 (5)
and

B(ttţm) « i. n + A

respectively

*<|# - 4  • (6)

III. Total elimination method. The matrix [A|i>] e X0 is 
transformed in the matrix [ In | Jbn] .
First,

aij! “aij' aL>+imbi’ ....n -
Now, one applies the succesive transformations

p
a p J 1 : = — j=P+l. • ■ ■ ,n+l;

aJL
affi-afi-afp+afi1; i-l,...,n; i+p: j-p+l,...,n+l 

for all p « 1,...,n.
So, the solution is Bi;°af*̂ tl, i=l,...,n.
The computational complexity of this method in the serial 

version (pj) is
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CP(pJ) = A ( 4 n 3 + 3n2 - n) .A (7)

As a parallel version of the total elimination method 
is the following : 
begin

a 12 1
a 12

« 1 1for p t**l step 1 until n * 1 do 
begin

for j :“p+1 step 1 until n do 
*p!j+1!*— £4ri; i+p) «ij1 ! afj-afp'apj1

! M £ : ier* ; i^ P ) a f*n*l : =*t.n*x-*?p+*S*l

end
*n,n*l•

mP*1 aP*l.P*2
»“ n, n*l /i  ̂  ̂_  « \ „ n*l . _ n .  /n _ n*l

" “ / 1 )  a i , n * i 1 * a i ,n * l  ~a i n * a n, n»l

end
He have

CP(nl) - 2n2 * 2n + 3. ( 8 )

So,

s(|ip in) " n - -i

and

£(|*p) «  1. (8)

IV. Iterative methods. One considers two iterative methods. 
IV. 1. Jaeobi iteration. For a given x <0) » (x^0*, . .. ,xn(0> )T, the 
sequence of the succesive approximation x (IB+1> is given by
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X'i(«♦D 1
ali

a,.xijxJ
(ml i • 1,...,n.

If CPJ(pJ) is the computational complexity of one iteration then 
the serial complexity of the Jacooi vtifc\.uo.i is

CPirf) =mj(t) CPI(\lj„) ,

where mj (e) is the iterations number for which x lmjU)) is an 
e-approximation of the solution. So, we have

CP(^a) * (4n 2 - n ) Wj(t) . (l°v
A parallel version of the method it. is to compute, in 

parallel, each xjm*v ,

Hence,

It follows that
a(Hp;n)=n

and

*

CP{\ip m) - (4n-l) /nT (e) (11)

IV. 2. Oauss - Siedel iteration. Starting with x <0>, the 
iterations are given by

xi(m*l) a y r '* * 11 -  Y  ^ i j X j m) ) , i - 1 ,  . . . , n .  
jtti

The serial complexity of the Gauss-Siedel method is

- (4n2 - n) mas(e) , (13)
where mgs(t) is the iterations number.
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It is obviously that the parallelism of the Gauss-Siedel 
method is more less than of the Jacobi iteration. Certainly we 
solve for Xa'"*1’using already the "new" value Xi”*11, for Xj"1*11 it 
is used the "new" values x1(” 1̂> xa(”+1,and so on. Hence, Xj^èan be 
computed only when the computation of x1,m<1) is finished and the 
computation of Xj^kust wait for x1<*4l) and x2<m*v and so on. It 
follows that a parallel version tip" is to do the computation 
begining with the first line ( x/"*11) than the second one 
( Xj**11) and so on. One obtains 

CP(p“ )-n( [logan] +6) m^ie)
and

E(\if) 4(1 - 1 In) 
[log2n] + 6 '

Conclusions. Taking into account the serial and parallel 
complexity of the above methods for linear algebraic systems it 
follows:

PROPOSITION 1. CP ( |*2) < CP ( Ps) < CP ( (O , Vn> 2.
The proof follows directly by (1), (4) and (7).

Remark 7. Of the Gauss - Siedel procedure may be viewed as 
an acceleration of Jacobi method, so we generally have mos(»)^ 
mj(t) i.e.

CP(p2®) <CP(|*2) .
Now, from (2) and (10), it follows :

PROPOSITION 2. If maa(e) £ [n/3] then 
C P f p f )  <CP(pf) .

Remark 8. For the systems with a lagre number of equation 
(such that [(n/3) + 1] iterations are sufficient to get a good

31



OHEORO HB COHAN

approximation the Gauss - Siedel iteration is better than of the 
Gauss elimination method.

The following two propositions give some informations 
regarding with the parallel methods.

PROPOSITION 3 . C P (Pp) <CP(pp) <CP(p£) Vn>2 .
The proof is based on the relations (2), (5) and (S).

Remark 9. For the parallel version p® and pj we have 
CP( Pp)>CP( Pp) just if in the serial case the relation is 
CP( p°)<CP(p*). So, generally a good serial method does not 
conduct to a good parallel version.

PROPOSITION 4. If mr(e)<[n/2] then CP( pJ)<CP( pj).
Remark 10. In the parallel case it can be done just [n/2] 

iterations without passing the complexity of the best parallel 
method pJ

Finally, from (3), (6), (9) and (12) it follows that the
best parallelism is possessed by the Jacobi iteration method 
(E( Pp)-1). Also, a good parallelism has the total elimination 
method (S(p£) *1--^ )and the Cramer's method (£(pp) »1) . But the 
complexity of the Cramer method is, in both serial and parallel 
versions, a polynomial function on degree with a unity greater 
than the other ones. So, the Cramer's method is never recommended 
from the computational complexity point of view.
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ON THE CONVERGENCE OF THE THREE-ORDER METHODS 
IN FRECHET SPACES
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RESUMAT. - Asupra convsrgsnţsi aatodalor da ordinul trai in 
spaţii Prêchât. In lucrara sa demonstrates existenţa şi 
unicitatea existenţei ecuaţiei (1) precum şi convergenţa metodei 
iterative (2), renunţInd la uniform mărginirea operatorului A - [x*,x";P) .

1. It is known that the rapidity of convergence for the 
sequence of approximates (xn) of solution of the operatorial 
equation

P(x) - 6 ( 1 )

given by an iterative method, can be improved if the first and 
the second order divided differences, which enter in the 
algorithm exprimation, are taken on special nodes.

In the case of operatorial equation
P(x) ■ x-F(x) - 6 (2)

using the metod
* „ ♦ 1 * *n-An(J-l*fl/uji/vn/p] An p (un> An )-1 P(xn) (3)

where
An “  [ * n 'un /,>r 1 ; A„ -  [ u ^ V ^ 'P ]"1

and

u« “ *■(*«)> vn“p (un) “ (?(*„)) '

this property is proved in the paper [1]. The following theorem

* U n i v e r s i t y  o f  C l u j - M a p o c a ,  F a c u l t y  o f  M a t h e m a t i c s ,  3 4 0 0  C l u j - M a p o c a ,  
R o m a n i a



are proved:
THEOREM A. If for x0eX, there exist' fi0,B> M>1 and N so that 

the following conditions:

1) ) I P(xo) I ( < m0;
2) For any x ' ,x' ' ,x' ' ' ,xlv e S(x0,R), R remaining to be

defined, we have

a. A - tx',x' •;P]_1 exists and )| A l< < B?
b. >1 [x\x* •;F] |( < M;
c. >1 [ X * ,X '• »x *'';P] |( < K;
d. >1 [ X ' ,X '' , xIV;P] - [x,/x',,x,,•}P) K  <

< N )l *IV - X ' "  |(
3) G0h0 < 1 where h0:=B2MKfi0 < 1/2 and

0 ‘ (l+h0)2(l-2h0) [ + BK2)

hold, then the equation (2) has the solution x*eS(x0,R) , where

i?=(l+M)p0+W2<? and ( G ^ ) 3*-11 ~n0 m-o

solution which is the limit of the sequence genereted by (3) , the 
rapidity of convergence being given by

)|x*-xj( , (GoV1*-1*?.

THEOREM B. In the conditions of Theorem A, the solution of 
equation (2) is unique.

In the following, we will change the condition 2a of Theorem 
A, removing the uniform bounded of the operator A.
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2. Let us consider the equation
P(x) - x-F(x) - 0 ' .

where P:X-*X is a continuous operator considered with its 
generalised divided difference [2] np to the second order, 
inclusively, X is a Fréchet space with a quasinorm induced by a 
distanae invariant to translation, i.e )| x |( * d(x,6), x,6 c 
€ X [31.

To solve the equation (2) we consider the algoritm (3). 
Concerning the convergence of the method (3), we prove 
THEOREM. It for x0 t X exists vT0, H > 1, K  and 7) Much 

that the following conditions :
1° for any x* ,x"’ ,x« ' • ,xIV c S, where 5 - {x | ) |x-x0| ( <J?>,

R ■ (1+R) Ü  ; 3  - ^

we have:
a. A ■- [x\x* •jP]*"1 exists;
b. >1 A[x*,x '•trj |( < »;
c. >1 A[x',x '',x'•> fP] K  < X;
d. >1 A ([x'fx' " ,xIV;P] - [x1',x * • ,x" • ;P] )

< *  >1xIV - X ' "  |(
2° ) |  AP(x0) | (  < p0;

3° 7Sg 7ţ < 1 where 7T0 : - M 1 < 1/2 and

<

im**!!,){ n X p 0( i + m / . 
(l+h,)a (1-2^) V Ka)

hold, then the aquation (2) has the unique x*cS(x0,R), which is
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the limit of the sequence genereted by (3) , the rapidity of
S '

convergence being given by

) I x*-x„ I ( < (S0 So)3"*" -fc>.

Proof. We consider the equation

~P(x) = 0 (6)

where
? (x )  = AP(x) = A (x -P (x )  ) , A* lx ',  jr,/;-P] _1

equation which is equivalent to (2).
Indeed, if x* is a solution of equation (2), i.e. P(x*)«0, 

due to liniarity of A, it results

AP(x*) »?(x*) =e. (7)

Reciprocal, if x* is a solution of equation (6), i.e.

P(x*) -A P (x ‘ ) -0

from the existence of operator A, it results A-1“ [x' ,x' ' ;P] 
which, applied to the left of the equation (6), leads to P(x*)-0.

For solving this equation, we have the iterative method

Using the induction, one can prove that for x0*xô, u0»Z£, v0=v,

38



ON  T H E  C O N V E R G E N C E  O F  T H E  T H R E E -O R D E R  M ETH O D S

the sequence given by (8) is identical with the sequence (3).
For the operator B , the conditions of Theorem A and B are 

true. Indeed
1° ) I *  <*o>I< - > |AP(x0)I( < p0;
2° For any x ,,x,,,x,,c ,xlv e  S(x0,P), we have

a) [x'jX''; B  ]-1 ■> (A[x',x'' ;P]-1 *1, then 
X  exists and ) | X  | ( *» 1 - B  ;

b) ) | [ x ' , x " ;  B  ] | (  * ) I A [ x '  , x '  ' ;F]  I ( < H  ;

c) ) | [x# , x "  ,x" ' ; B  ] i ( “ ) I A[x' ,x' • ,x" ' ;P] | ( < *
d) ) I [ x ' , x " , x IV; B ) -  [ x ' , x "  , x ' "  ; B ] | ( -

- ) |A([x',x",xIV;P] - [x",x",x'"/P]) | ( <
< T t ) | x l v -  x "  • I ( ;

3° Zr0750 < 1 , where 750 1 »B“ < -i and

It results that the hypotesis of Theorem A are satisfied by 
P, hence the equation (6) has a solution x*eS, which is the limit 
of sequence generated by the algoritm (3) or (8), the rapidity 
of convergente being given by (4).

Because (6) is equivalents to (2), the statement results.
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Rsauast• Software pantru clasificare. Articolul presintă un 
sistem de programe destinat clasificSrii automate a unei colecţii 
de obiecte caracterisate prin valorile mai multor parametri. 
Programele au fost elaborate de autor ţi se bazează pe o serie de 
algoritmi din literatură, precum ţi pe unii originali. 
Principalele componente ale sistemului sinti extractorul de 
caracteristici, clasificatorul ierarhic divislv, clasificatorul 
neierarhic, clasificatorul bazat pe arborescenţa de acoperire 
minimală ţi componenta destinată interpretării calitative a 
partiţiilor obţinute. Pentru fiecare componentă se presintă 
structura ţi funcţiile ei, algoritmii implementaţi, datele de 
intrare ţi ieţire.

0. Introduction. The ain of this paper is to describe a 
program system designed for pattern preprocessing, classification 
and interpretation of data sampled from a non-homogeneouo 
population. The programs, which belong to the author of the 
paper, implement classical algorithms as well as some original 
ones. The main components of the system are: the pattern 
preprocessor, the divisive hierarchical classifier, the single­
level classifier, the minimum forest classifier and the component 
which enables a qualitative interpretation of the obtained 
partitions. The input of the system is the collection of objects 
to be classified, characterized by the values of d variables 
recorded within a usual text file.

1. The pattern preprocessor. This component performs the 
transformation of data from the original pattern space to the 
feature space. The output is also a text file in which s features

* " B A B E Ş - B O L I A I "  U n i v e r s i t y , F a c u l t y  o f  M a t h e m a t i c s ,  3 4 0 0  C l u j - H a p o c a ,
R o m a n i a
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(s 5 d) for each object are recorded.
This program has several processing options: normalization 

of the original patterns, Mahalanobis distance, principal 
component analysis and combinations ^  the above options. Th» 
first processing type is a simple scaling of the original 
variables by the overall mean and standard deviation such that 
they become comparable. The second option implements the 
Mahalanobis distance by an appropriate coordinate transformation. 
The principal component analysis projects the original patterns 
onto the eigenvectors of the covariance matrix of parameters 
corresponding to the first s eigenvalues in their decreasing 
order. A given threshold indicates what percentage of the 
original information should be preserved after data compression.

2. The divisive hierarchical classifier. This component 
implements the fuzzy divisive hierarchical algorithm [2], and its 
corresponding hard version. These algorithms perform a 
hierarchical descendant classification, iteratively splitting the 
current fuzzy (hard) cluster into two fuzzy (hard) subclusters 
until the clustering degree of this binary partition [3] becomes 
less than a given threshold; in this case, the cluster is 
considered homogeneous.

The input of this classifier is the file containing the 
features of the objects to be classified. There are three output 
files: one containing the hard partition (in the fuzzy case, it 
is obtained by defuzzification), another containing the fuzzy 
partition (in the fuzzy case) and the last one containing the
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prototypes of the partition clusters.
The structure of the classifier is presented in fig. 1.

Module HIER performs the hierarchical classification. Module 
SPLIT implements the generalized Fuzzy ~-Means algorithm with two 
clusters, which is used to split the current cluster. It consists 
of the reiteration of modules: CENTRE (computation of

the sub-clusters centres), PART (computation of a new partition - 
fuzzy or hard) and COMP (comparison of the last two partitions) . 
Module DEGREE computes the clustering degree of the current 
cluster binary partition. Module CLUSTER displays the clusters 
from the hierarchy and records within an output file final 
clusters (which are no longer, splitted).

3. The single-level olaasifier. This classifier implements 
the following algorithms: Fuzzy c-Means, Fuzzy c-Lines, fuzzy 
clustering algorithms with linear manifold prototypes,
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combinations of them [1] and hyperellipsoid prototypes [8], as 
well ae their hard versions* This classifier performs a non­
hierarchical classification, hence the number of clusters must 
be given by the user.

The input files of the classifier are: the file containing 
the features of the objects to be classified and a file 
containing an initial partition (fuzzy or hard) or an initial set 
of prototypes. Thus, the output of the divisive hierarchical 
classifier may become the input of this classifier, in order to 
obtain an improved partition. Moreover, if the input is a set of 
prototypes, this classifier may be used as a trainable 
classifier: the prototypes are computed from a training set anc* 
then unknown samples are classified according to the 
dissimilarities with respect to these prototypes. The output 
files are the same as those of the divisive hierarchical 
classifier.

The structure of this classifier is presented in Fig.2.

Module CLASIF performs the single-level classification. It 
consists of the reiteration of modules: CENTRE (computation of
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the centres of the clusters), DIRECTION (computation of the 
directions of prototypes), PART (computation of a new partition - 
fuzzy or hard) and COMP (comparison of the last two partitions) 

until the last two partitions coincidă (in the hard case) or the 
maximum difference of corresponding membership degrees does not 
exceed a given error level (in the fuzzy case).

4. The minimum spanning forest (MSP) classifier. From 
numerical experiments we noticed that Fuzzy c-Means and other 
related algorithms often misclassify samples situated at the 
border of the clusters. One way to prevent this situation, if the 
distribution of the cluster samples is close to a normal one, is 
to use hyperellipsoid prototypes. If the distribution is 
arbitrary, we propose Prim's MSF clustering algorithm [9] which 
is based on a graph-theoretical approach.

The MSF classifier first detects the subclusters containing 
samples which were surely correctly classified by a Fuzzy c--H>.ans 
type algorithm and states them as "centres"; this operation, 
implemented in module SELECT (fig. 3), is done by selecting thos^. 
samples which have the membership degree in the corresponding 
fuzzy cluster higher than a given threshold. The remaining 
samples represent the "objects" (according to the terminology 
used in [9]) and will be reclassified. Module DISSIM computes 
Object-to--centre dissimilarities as point-to-set dissimilarities, 
i.e. the least dissimilarities between the objects and the 
samples in the centres. Module MSF, implementing Prim's MSF 
clustering algorithm, associates the objects one by one with the

_________________________ S O FTW A R E  F O R  C L A S S I F I C A T I O N ______________
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centres. Thus, misclassified samples are reclassified and will 
probably get into the correct cluster.

As input data we need the features of the samples, the fuzzy 
and the defuzzified partitions. The output is a hard partition.

5. Interpretation of the obtained partitions. We first give 
a theoretical model of partition qualitative interpretation. Let 
X be the set of samples partitioned into the clusters A1 M .,,AC. 
Consider a qualitative feature (or a combination of qualitative 
features) F defined on X and taking a finite number of values 
{jf1# such that k £ c. We are lookink for the onto
function

<p : (l, . . . , ki - il, . . ., ci

which maximizes the cardinality of overlapping clusters from the 
initial partition of X and the one induced by the feature F:

s, - £ l

This problem can be formulated as a maximum matching problem for 
which we apply the Hungarian algorithm. Thus the cluster Aj may
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be interpreted as a mixture of the qualitative values from the 
set

{fjjp (i) = j)

We also define the matching degree as

which is a sub-unitary value and characterizes the proportion in 
which the qualitative feature can explain the partition of X.

The component of our program system which enables the 
qualitative interpretation of obtained partitions enters 
quantitative and qualitative features of the classified samples 
fulfilling certain criteria concerning their features. Then a 
second module classifies the selected samples into groups as it 
was done by previous clustering procedures or according to the 
values of grouping features. Groups are identified as codes (for 
qualitative features) or intervals (for quantitative features). 
Quantitative features transformations can be performed. If two 
partitions are thus obtained, they can be compared as it was 
shown above. Selections, groups and transformed features can be 
stored in output files. Scatter plots of one quantitative feature 
against another can also be obtained and are useful in examining 
the performances of the clustering algorithms we used, the 
discrimination power of the two features and the regions 
delimited in the plane by the clusters.

6. Facilities of the software. This software gathers in a
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unitary conception various aspects of classification: 
hierarchical and single-level classification, fuzzy and hard 
partitioning, pattern preprocessing and postprocessing, graph- 
theoretical methods and methods based „ the minimization of ; 
certain functional, supervised and unsupervised classification. 
Here are now some of the implementation facilities of this 
system:

- portability, as being written in Pascal language;
- simple text file structure of input and output data, which 

enables its use in a sequence of processing stages;
- independence of the system components, which permits 

interchanging their order during processing, omitting or 
reiterating them in order to obtain improved partitions;

- possibility of modifying the memory limits for data 
according to the capacity of the computer (this is done simply 
by modifying some constants and recompiling the programs);

- listing file option for obtaining a list with intermediate 
or final results;

- supplementary possibilities to limit the execution of 
iterative procedures by setting time, number of steps and maximum 
level in the classification hierarchy limits;

- other options which enable a flexible execution of 
programs.

This software was applied in geology, to the determination 
of certain types of mineralizations and to the parallelization 
of tuff horizons [5], in geography, to the regionalization of 
hydroenergetical potentials [6] and water resources (7] and in
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biology, to the determination of plants associations specific to 
certain environment conditions [4].
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Raiuaet. - (iitaa da geatiuna a datelor topografica. Articolul 
prezintă un siatam original de gestiune a datelor topografice 
implementat sub sistemele de operare RSX şi PC DOS. Informaţia 
preluat! de pe hărţi o constituie coordonatele punctelor de 
observaţia (puncte In care s-au efectuat anumite determinări 
calitative sau cantitativa), precum şi entităţile grafice curbe, 
regiuni, semne convenţionale, texte). Culegerea datelor se 
realizează prin digitizare, sub controlul unui editor grafic. 
Exploatarea bazei de date presupune extragerea şi reprezentarea 
datelor situate In fereastra de lucru, definirea de noi entităţi 
grafice, calcule simple (arii, medii ale unor funcţii de 
parametri cantitativi).

0. Introduction, The aim of this paper is to present an 
original topographical data management system for the acquisition 
and processing of data taken from maps. We may also consider, 
instead of maps, any kind of drawing consisting of curves, 
regions, conventional signs and texts. This system was 
implemented under the operating systems RSX and PC DOS.

l.Map entities. An item (data element) on a map will be 
called topographical entity. Two kinds of topographical entities 
are considered: observation points and graphical entities. 
Observation points are those points on a map where certain 
qualitative or quantitative parameters were determined. For 
instance, on a geological map, mineral resources and 
petrographical types are qualitative parameters while percentages 
of certain chemical elements are quantitative parameters. 
Graphical entities are curves (opened or closed), regions (areas

* “BABEŞ-BOLYAI" University, Faculty of /ka%hématicà', 3fQfr'Çluj-Napoca, 
Romania f  v : ; \

\  A 7



C R I S T I A N  L E N A R T

delimited by a closed curve and filled with a certain colour), 
conventional signs (circles, triangles, cross-marks, etc.) and 
texts. Graphical entities are characterized by three features: 
their type, the plotting mode (for *r<oe the type ;.nd the 
colour of line for curves, the filling colour for regions, the 
character set for texts) and the user code. This last feature is 
an integer associated by the user with each graphical entity in 
order to handle it easier. The position on the map of a graphical 
entity is defined by a variable number of points in a given order 
in the case of curves and regions and by a fixed number of points 
for the other two entities; thus, one point is needed to indicate 
the position of a standard conventional sign or text, while two 
points are needed for variable radius circles or inclined texts.

Observation points are numbered; their qualitative and 
quantitative parameters as well as the coordinates of their 
positions on the map are stored in separate files. A group of 
graphical entities is formed by a single entity with variable 
number of points or by several entities with fixed number of 
points and the same features. Three files are used to store 
graphical entities: an entity file, a coordinate file and a text 
file. The first one contains a record for each group of graphical 
entities; this record consists of three features of the graphical 
entities from the group (entity type ET, plotting mode PM, user's 
code UC) and two pointers FP, LP to the first and the last point 
in the coordinate file which define the position of entities. The 
coordinate file contains sequences of (x, y, z) - coordinates 
corresponding to the groups or graphical entities from the entity

52



TO PO G R A P H 1 C A L  D A T A  M AN AGEM EN T S Y S TE M

file. Points indicating the position of a text have instead of 
the z - coordinate a pointer to the corresponding text in the 
text file. This file contains all the texts from the map; the end 
of each text and the letter of which position was indicated in 
the coordinate file (if not the first one) are marked. The 
described structure of graphical entities is given in fig. 1.

Entity f i l e

Coordinate
file

Text Pile

2. Data acquisition. We are now concerned only with the 
acquisition of coordinates which indicate the position of 
topographical entities. This is done by means of a digitizer. The 
map may be fastened to its plane table in any position since the 
acquisition programs make a corrective rotation. The absolute 
coordinates are then computed according to the map scale and the 
coordinates of its origin. Thus, maps of adjacent zones can be 
assembled to form the general map.

Observation points can be digitized consecutively, in the 
order specified by the user, examining only not yet digitized 
points from a given interval or a certains group of points at a
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time. In this latter case, we have to provide a file with the 
number of group to which each observation point belongs.

The acquisition of graphical entities is performed by a 
graphical editor which plots the entiuicü on the display as they 
are stored into computer. A graphical cursor may be moved in the 
current window represented on the display (corresponding to a 
rectangular area from the map) by means of the arrow keys of the 
keyboard or a mouse and its coordinates are indicated. The 
position of the digitizer cursor on the display can also be 
indicated.

Graphical entities which are edited at a time are stored in 
the computer memory hierarchically, on four levels. Thit- 
structure enables a quick performing of editing operations. 
Graphical entities are divided into fragments which are portions 
of curves or groups of conventional signs or texts placed or not 
in the current window. Fragment points are divided into sequences 
which are stored in certain memory locations called pages. We are 
now able to describe the tree structure of edited data (fig. 2). 
The first level is a two-way list of data groups referring to 
groups of graphical entities. Curves which do not intersect the 
current window at all do not appear in this list. A data group 
consists of the three features of the corresponding graphical 
entities (entity type ET, plotting mode, user's code VC) and two 
pointers FF, LF to their first and last fragments. On the second 
level are placed the two-way lists of data groups referring to 
fragments. Chaining of curve fragments observes the order in 
which they are placed on the curve. A data group contains the
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fragment type FT (inside or outside the current window), a 
pointer GE to the group of graphical entities to which it belongs 
and two pointers FP, LP to the first and last point of the 
fragment. Only points of fragments inside the current window are 
stored in the internal memory; thus, for fragments outside the 
window, pointers FP and LP point directly to the coordinate file. 
On the third level are placed the two-way lists of pages, each 
one containing a pointer PF to the fragment to which it belongs 
and the sequence of data groups referring to points. Such a data 
group consists of the (x, y, z) - coordinates and two pointers 
PI, P2, which chain in a two-way list the points placed in the 
same square on the map. The number of squares into which the 
current window is divided is given by the user. This chaining 
enables a quick retrieval of points given a certain neighbourhood 
of them. For instance, when digitizing a point which has already 
been digitized, we can search for this point in a neighbourhood 
of the curently digitized point and replace the coordinates of 
the latter by those of the former. Connection of curves can thus 
be carried out without errors.

The following editing operations can be performed:
- acquisition of a graphical entity (coordinates from the 

digitizer, features and texts from the keyboard);
- prolongation of an open curve (the corresponding extremity 

of the curves is indicated using the graphical cursor);
- connection of two open curves or of the extremities of an 

open curve to form a closed one (the extremities of the 
curves/curve are indicated using the graphical cursor and then
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the new curve fragment is digitized);
- modification of a curve fragment (a certain curve fragment 

is deleted and then its extremities are connected by a new 
fragment); ■

- deletion of a curve fragment, of a curve entirely, of a 
conventional sign or text (the corresponding graphical entities 
are indicated using the graphical cursor);

- change of the features of a graphical entity;
- hardcopy of the current window;
- asking for help on the editing menu;
Deletion and feature change operations can be performed on 

several graphical entities at a time without viewing their 
effects. These entities are also selected by indicating their 
features (wild cards are permitted for some of the features).

3. Data base enquiry. Observation points retrieval is 
carried out. in terms of the following criteria: point number, 
qualitative and quantitative parameters. Qualitative parameters 
are specified as codes while quantitative ones as intervals. 
Selected observation points can be classified according to the 
value of a grouping parameter; hence cluster identifier is a 
supplementary retrieval criterion. Retrieval criteria for 
graphical entities are their three features. Accessing of a map 
entity is followed by plotting it on the display. A curve can be 
plotted by joining its points with straight-line segments or by 
smoothing it. Smoothing can be carried out using a cubic spline 
interpolation or an original method which iteratively halves the

T O P O G R A P H IC A L  D A T A  M AN AG EM EN T S Y S TE M
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angle between two neighbour straight-line segments until these 
segments become sufficiently small. Thus, the user can construct 
a map of an area he desires and containing only the information 
he indicates. Moreover, he can add graphical entities, perforin 
some elementary computations and blow up a rectangular area.

Once the map is thus constructed, certain entities on it can 
be identified using the graphical cursor. A temporary selection 
of observation points is considered. He now explain how entities 
are identified and what kind of operations can we perform on 
identified entities.

a) Operations involving a single observation point:
- viewing the observation point with a given number;
- finding the number of an observation point;
- inserting/removing an observation point in/from the 

temporary selection;
- displaying the guantitative parameters of an observation 

point or elementary functions of them.
b) Operations on groups of observation points. A group of 

observation points is formed by the points of a cluster, by the 
temporary selected points or by the points placed in a 
rectangular or arbitrary region indicated by the user. The 
following operations can be performed on such groups:

- displaying the numbers of obseryation points from the 
group;

- inserting/removing the points of the group from the 
temporary selection;

- means computation of the group points quantitative
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parameters or functions of them.
c) Operations on graphical entities.
- adding/deleting a graphical entity on/from the display (we 

indicate its position using the graphical cursor);
- storing/removing a graphical entity in/from the data base;
- modification of graphical entity features;
- displaying the area of a region and the number of 

observation points placed in it (these parameters can be used 
together with the quantitative parameters of the observation 
points to compute the value of certain elementary functions 
depending on them);

- displaying the coordinates of the graphical cursor.
We conclude by mentioning that the system developed in this 

paper is a useful tool for the management of a data base 
containing topographical data which can be then used by other 
software to construct 3D plottings. Referring to the parameters 
of observation points, the system is also useful for a primary 
data analysis and for the interpretation of statistical 
processing or clustering results.
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Rezumat. Un bodel teoretic privind progrusrst paralelă şi
orientată-obiect. Lucraraa prezintă unele aspecte principale ale 
unui model algebric pentru specificarea unor concepte de bază din 
limbajele de programare. Legătura cu alte lucrări din domeniul 
specificării algebrice este prezentată in partea introductivă. 
Secţiunea 2 prezintă pe scurt conceptul algebric de ierarhie HAS. 
Conceptele de obiect, metoda şi clasa, specifice programării 
orientate-obiect sint expuse in secţiunea 3. Secţiunea 4 este 
destinată conceptelor de algoritm secvenţial, algoritm paralel, 
proces secvenţial şi proces paralel.

1. Introduction. Generally, the specification of a 
programming language has two purposes. The first purpose is the 
specification of the data types proper to the language to be 
specified, which include the primitive (predefined) data types 
and the composed data types. The second purpose involves the 
specification of the operations (statements) which act on the 
data types. The algebraic approach of a language specification 
constitutes the topics of a great number of papers. We shall 
mention further down some such works directly related to the 
present paper.

In [3] and [4] T. Rus presents a hierarchical and algebraic 
specification model. A context-free algebra is associated to a 
context-free grammar. The specification aiming at such a model 
involves a cascade of heterogeneous algebras. The last algebra 
from the cascade (hierarchy) corresponds to the complete 
specification of the language. In this model, the hierarchical
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order (hierarchy depth) depends on the context-free grammar which 
specifies the syntax of the language. My paper, which uses an 
algebraic model [2], starts from the algebraic definition of 
certain primitive data types (defined in the form of homogeneous 
algebras). These will be organized into a specification base 
(signature) for the whole hierarchy of heterogeneous algebras 
which will constitute the specification levels of the programming 
language to be specified. This time the hierarchical order (the 
number of levels of the hierarchy) depends on the complexity of 
the elements of the language to be specified. The proposed model 
defines in a personal manner the concepts of object, method and 
class, proper to the object-oriented programming.

An algebraic approach of a language specification for 
abstract data types specification can be found in [6]. Unlike 
this paper, in my paper the concepts of object and method are 
defined on complexity levels (corresponding to the hierarchical 
levels), allowing in this way a relatively easy implementation 
of the model. The final result of a language specification will 
look like a multi-level tree, unlike (1) where the specification 
appears as a tree with a single level. At each level the data 
types and their corresponding operations are defined.

Lastly, on the basis of the algebraic definition of the 
concepts of parallel algorithm and parallel process [5] implanted 
on the specification levels of the proposed model, the algebraic 
specification becomes concurrent algebraic specification.
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2. HAS hierarchy concept. The concept of HAS hierarchy was 
presented in detail by T. Rus in [3] and [4]. This concept is 
based on the following two principles:

pi. Every homogeneous algebraic structure is a HAS of zero 
hierarchical level in a HAS hierarchy; 

p2. Every i-level HAS can be chosen as a base for an (i+1)- 
level HAS.

Let HAS1 be the i-level HAS given in the form of the pair:
HAS1 = < A1 , n1 >,

where A1 is the support, while (1* is the collection of operations 
defined on the support Ai. The support of the HAS1 is used as 
index set for the specification of the HAS**1. Consider the n-ary 
operation aed1, and a - a (alfa2,...,a„), where a,alra2, • •. ,an e 
€ Ai. The set of operation schemes is defined as follows:

“ {o m<n, w ,a^a2...aria> / a-o(ax,a2, . . . ,an> }.
Since the operations specified by means of the operation schemes 
a are heterogeneous operations, we consider the symbol of the 
operation u to be distributed upon it6 operands. In other words, 
the operation scheme o becomes o**<nfs0s1...sn,a1a2...ana>. For a 
complete specification of the HAS1*1 by the HAS1 , consider a 
function F which associates to each operation scheme aeSw, wen*, 
a heterogeneous operation specific to HAS1*1. If o-<n,B0...sn, 
a1...ana>, then Fg is a specific operation in HASi+1, that is , 
the function:

Fg : A^xA^x. . . xAaJn —  A 1 .

In these conditions HAS1*1 is specified on the basis of HAS1
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and has the form:

HAS1*1 * <Ai*1*(Aj*1)a€J,i,£=(Ett)wc0i,.F> .
On the basis of the concept of hierarchy, in Section 3 

we shall present schematically a model for the specification of 
a programming language. The terms of object, method, and class, 
specific to the object-oriented languages, are found again in our 
model. Section 4 presents briefly the algebraic formalization of 
the concepts of parallel algorithm and parallel process [5] 
adapted to our model.

3. Object-oriented hierarchical speoifioation. An abstract 
object is defined as heterogeneus algebra as follows:

Object name • NAME;
Supports • NAME}, NAME2, . .., NAMEn ;
Operation schemes • / • • • »
Variables •• LIST} : NAMEi}

LISTj : NAMEi2

LIST* : NAMEi*
Axioms •• W}i-W}2.

w21*‘w22>

wpl=Vp2‘>

end NAME.
We choose as zero level of the HAS hierarchy (HAS0) the 

following partial homogeneous algebra:
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HAS0 = <A0,n°,fl0:A° -  I>, 
where:

A0 = support of the algebra, consisting of a set of 
predefined abstract objects (Aj)JeJ specified 
as homogeneous algebras;

n° » the set of operations defined on the objects 
(Aj) , jeJ)

H° <■ function which associates a measure to every 
at A0;

I - the set of the measures printed out by the 
function H°.

The level one of the HAS hierarchy (HAS1) is defined on the 
basis of HAS0 and has the form:

HAS' - < Ai-(Aj)lej , &  : A 1 -  I, F1 > ,

wherei
A* » a family of subsets with the property that the 

same measure H°(a), aeA} , iel, is associated to 
all elements of such a subset;

£ » the set of operation schemes specified by the
operations corresponding to the zero level;

H1 - the same definition as in the case of Jf°;
F1 - symbol of a function {F1 : Æ*,)M€Û« OP(A1)J,

where OP (a1) is the set of all operations defined 
on A1.

For ocn°, aicA°, i-1,2,...,n, a>u(a1,a2,. ..,an) , an operation 
scheme
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a=<n,s0s1.. .8n,^i(a1)^i(a2).. .H°(aJH°(a)> 
is associated.

If o e Z  is an operation scheme, then , , defined as
follows:

. x A hcu b) "«•(•)

is a heterogeneous operation in HAS1.
The function H° associates to every aeA1 a characteristic 

called measure. Another characteristic associated to an aeA1 is 
the interpretation mode. For a given measure H°(a) associated to 
an element aeA1 there can exist several interpretation modes 
(integer, real, boolean, character, etc.). Hence the 
interpretation mode for an aeA1 is the significance (integer, 
real, boolean, character, etc.) assigned to the representation 
(encoding) of a. We particularize the function H° as follows: for 
every aeA1, J/°(a)“1(a), where 1(a) is the representation length, 
representing a in the computer storage. The conection between the 
interpretation mode and the measure (representation length) of 
the unstructured type data can be performed by a bi-dimensional 
matrix. One considers'a^^l if for the representation length i 
there exists the interpretation mode j, and a^-0 in the opposite 
case. The row index of the matrix (i»l,2, . . . ,n) signifies the 
possible representation length of the data from A1, while the 
column index (j*=l,2,...,m) is the index associated to the 
elements of the set of the interpretation modes. Having these 
elements, we define the level two of the HAS hierarchy (HAS2) on 
the basis of the preceding level:
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HAS2-<A2b (A*j) E = (E J  -€0PMl). H2 :AlxM-NxM, F2>

where:
Ajj = the support of the data type i interpreted in 

the mode j ;
So » the set of the operation schemes generated by 

the operation oeOPfA1) ;
N « a  set containing all possible representation 

length;
M » a set containing all possible interpretation 

modes;
H2 » function which establishes by its values the

index set for the family of sets A2 ;
V (a,j)eA1xMfH2(a,j) = (H1(a),j}aHl(a)J.
F2 - the symbol of a function which associates to an

operation scheme
. .Bn/H2(a1,j1)Ha(a2,j2) . . .H2 (an,jn)H2 (b, j,H l) > 

a heterogeneous operation on the data set A2. 
The zero level HAS0 points out the primitive (predefined) data 
types together with the operations defined on them. The level one 
HAS1 points out the data division in subsets, the criterion of 
differentiation being the representation length. The level two 
HAS2 differentiates the data according to a characteristic 
supplementary to the preceding level, that is, the interpretation 
mode. This allows the specification of data types (short integer, 
long integer, real on different length, character, etc.). The
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composed data types are specified at this level, too.
Let us denote by O P ( H A S ^ ) the set of the heterogeneous 

operations defined on the three hierarchical levels. An 
equivalence relation, denoted HAS*, is defined on this set. Two 
operations e1# o2 e (WA5i)im0>1 2 are, by definition, called 
equivalent if they have the same definition domain. Consider ĉ :

Ail+1 ' “ 2 : B:lxB2x ...xBij -♦ Bn+1, <ü1HAS*iù2 , where

a 0Ai * if <^60°
z 1'VUj) ' if je£,o=< n, s0s1. . .sn,

H°(a1) ,. . ,H° (a„) H° (a) >
a*
***<•!. Ji), if oe£,o*<n,s0Si. • -s„,

H3 • •.H2(a„,j„)
i-1,2,...n+1, and is obtained in a similar manner. Follows 
that , A2-B2, •.., An-Bn (equality of sets). Let B »
- OP(HAS^)i-o, 1 ,2/^AS* be the set of the equivalence classes. An 
equivalence class eeE consists of all operations with the same 
definition domain. Let CxxC2x...xCn be the common definition 
domain for the operations belonging to the equivalence class e. 
We call object an n-uple (c1,c2,... ,cn) cC1xC2x.. .xCn, while the 
set of all objects of this form will be called the class of 
objects associated to the equivalence class e. Let us denote by 
K the set of all classes of objects. We add to each class of 
objects keK the object nil* which constitutes the nil object of 
the class k. An object of the class k is either the object nil*
or an instance of the class k. The specification of a class k 
consists firstly of the specification of the form of the objects 
belonging to the class k . The form of a class k specifies the n-
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uples which can appear as values of the instances of the objects 
belonging to the class k. On the other hand, the specification 
of the class k consists of the specification of a colection of 
methods belonging to the class k, too- An operation uee acts on 
the class of objects k according to a law well defined during the 
stage of hierarchical level construction. Such an operation on 
a class of objects k will be called method. The set of methods 
is classified on hierarchical levels, but there also exists 
hybrid methods whose definition domains originate in several 
hierarchical levels.

The number of levels in the HAS hierarchy is arbitrary. It 
depends on the needs of defining certain objects of high 
complexity degree. We stopped at the level two of the hierarchy, 
considering it to be sufficient for a concise exposition of the 
model.

4. Concurrent hierarchical specification. Let <A,OP> a 
homogeneous algebra, where A is the support and OP is the set of 
the operations defined on A. If the set OP also contains 
relations, then <A,OP> will be called algebraic system. The 
concept of heterogeneous algebraic system is obtained 
analogously.

Let us consider the heterogeneous algebra HA-<KL,ME>, where 
KL is the set of the classes of objects, while ME is the set of 
the methods specified in Section 3. We define the concept of 
algorithm over the given heterogeneous algebra HA as being the 
heterogeneous algebraic system AL“<Kl,Me,R>, where:
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Kl = a finite set of classes belonging' to the support HA;
Me = a finite set of methods belonging to the set Me;
R = a relation indicating the order of execution of the 

methods from Me on the objects of XI.
If the ordering relation R is linear (or total) on Me, then 

the algorithm is called sequential algorithm.
If the ordering relation R is partial on Me, then the 

algorithm is called parallel (or concurrent) algorithm.
Since the set Me of the methods specifying an algorithm is

\

finite, this one can always be decomposed into the subsets Melt 
Me2, • • • ,Mek, such that every Meit i«l,2, . . . ,/c, is linearly
ordered by the execution of the methods. Let us denote by R± the
linear relation defined by the order of execution of the methods 
in Me±. If for every i,j,i+j,i,j=l,2,...,k, the subset X^cXl on 
which the methods from Mei are acting and the subset Xl^cXl on 
which the methods from Moj are acting are disjoint each other, 
then the algorithm <Kl,Me,R> gives rise to a family of sequential 
algorithms <Xli,Mei/Rj>, i=1,2,... ,k. These sequential algorithms 
can be parallelly executed and keep the consistence of the 
computations specifiedţ by the original algorithm.

In this context a processor is identified with an abstract 
agent able to execute any method featuring the HA specification. 
The concept of process over the HA specification is defined 
through the couple Process (HA)=<Processor,AL>.

A process P«=<Processor, AL> will be called sequential if the 
defined algorithm AL is sequential.

A process P=<Processor,AL> will be called parallel (or

70



T E O R E T I C  A L  S U P P O R T  F O R  O B J E C T -O R IE N T E D  AND I A R A L L C L  PP.OGAAM NI'.l 3

concurrent) if the defined algorithm AL is a parallel algorithm.

5. Conclusions. The basic theoretical concepts (belonging 
to the programming languages) specified by means of the proposed 
model constitutes a theoretical nucleus for the simultaneous 
approach of parallel programming and object-oriented programming. 
The nucleus, semantically and syntactically defined, could 
constitute a reference basis for any other semantic construction 
réductible to one of the semantic forms from the nucleus by 
established transformation rules.
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REZUMAT. - Integrarea formal! a unor clas* da funcţii. Lucrarea 
prezint! o metodă de determinare analitică a primitivei unei 
funcţii raţionale. Legat de aceasta, sînt expuşi şi algoritmi de 
manipulare simbolică a polinoamelor precum şi de factorizare a 
polinoamelor peste Z(X]. Este descrisă de asemenea determinarea 
substituţiilor prin care problema integrării funcţiilor din 
anumite clase se poate reduce la cazul raţional.

1. Introduction. The symbolic computation represents the 
entrance in a new computer usage era, in which the computer 
becomes smarter and powerful enough to do complex scientific 
computation, for example the formal integration. We can notice 
here the software packages for scientific computation MACSYMA, 
REDUCE, MATHCAD and MATHEMATICA.

In this paper we present the formal integration of rational 
functions with integer coefficients (R(x)) and related to this, 
the formal integration of functions from the classes R(exp) and 
R(sin, cos, tan) where the arguments of the exp, sin, cos and tan 
functions have the form kx with keZ.

With these algorithms I realized a Pascal program for IBM 
PC compatible computers running MS-DOS, which can be easily 
extended for larger classes of functions.

\

2. Substitutions. Since the problem of the formal 
integration of rational functions is simpler than the same 
problem for another function types, we try to reduce the given

* University of Cluj-Napoca, Department of Mathematics and Computer 
Science, 3400 Cluj-Napoca, Romania ,



1
function to a rational one by using suitable substitutions. For 
this reason the determination and the effectuation of the 
suitable substitution represents one of the most important part 
of a formal integration program.

In our case, we can apply the classical substitutions.
If the function belongs to the ft(exp) class, the suitable 

substitution is exp(x)->t and all the terms expm (nx) become tmn.
’ If the function belongs to the J?(sin, cos, tan) class we can 
transform the function to a equivalent function / from the £(sin, 
cos) class. We have three cases:

/(-sin, -cos) = f(sin, cos) 
f(-sin, cos) = -/(sin, cos)
/(sin, -cos) =» -/(sin, cos)

The corresponding substitutions are tan(x)-*t, cos(t)-+t and 
sin(x)-*t. If our function doesn't verify any of these conditions, 
the suitable substitution is tan(x/2)-»t.

Through these substitutions we transform our function in a 
R(x) class function.

3. The formal integration of a R(x) class function. Suppose 
we have to integrate the function /(x)=p(x)/g(x) where p,qeZ[x) 
are primitive polynomials, deg p(x)<deg q(x) and gcd(p(x),
,g(*))-l.

Obviously, every polynomial qeZ[x] has a unique squarefree 
decomposition:

g(*)-5<?i(*) (g2(*))2- • • (g*(x))*
where q^eZ[x] are squarefree polynomials (some of them can be

__________________________________ D R AG O Ş PO P_________________________________
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constants 1) and gcdfg^fx), gJ(x))=l for 1 si, j^k and
This decomposition can be obtained with Yun's algorithm 

described in section 4.
Using the simple fraction decomposition method, described 

in section 5, we obtain the polynomials p±(x) so that

Certainly, if gi(x)*l then pi(x)=0.
In order to reduce the numerator's degree and to extract the 

rational part of the result we use the Hermite-Ostrogradsky 
method (described in section 6) and we determine the polynomials 
s±(x) and r±(x) for which:

r Pj (
' (gi(x))idx

sAx) r------- r-r + I - ■■ ■ dx(Qj (x) )J 1 J qAx)
Kiik

 ̂ s ( x)In this moment, --- -----—  represents the rational part of
Tl (Qi (x) )

the result. The remainder integrals will give us logarithmic or 
arctangent terms.

We need now the factorization of the polynomials q± over
Z[x].

Qi (x) mqn (x) • . -Qin̂ x)

where q±j(x) are irreducible polynomials over Z[x] .

This problem cian be solved by using the Berlekamp-Hensel 
algorithm described in section 7.

Using again the simple fraction decomposition algorithm, we 
determine the polynomials r±j{x) for which:
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■Tj (x) _ ^  rjj(x)
Qi(x) ~ fa q^ix) -

Now we have to compute f Z^\X \ dx : :is.k, lijin,.J Qn(x) i
If (x) (x) (acQ) then the result is the logarithmic term

a lnfg^fx)). However, if deg rî (x)=deg g^-fx)-! we can extract 
a logarithmic term ln(g^(x)) in order to reduce the degree of 
the numerator at the highest deg s±j(x)-2.

If deg gî (x)=2 then we have an arctangent or a logarithmic 
term depending on the sign of the discriminant.

If deg q±j(x) c{3,4> the equation q±j(x) can be solved 
through radicals and therefore we can factorize q^-fx) in a 
product of two polynomials of degree 1 or 2, over a radical 
extension of Q[x].

If deg q±j(x)>4 we shall search for a substitution in order 
to reduce the denominator's degree. Let's suppose we have to 
determine:

f u(x) 
J v ( x )

d x

with veZ[x] a irreducible polynomial over Z[x], deg v(x)>4 and 
that we can effectuate the substitution g(x)-*t. In this situation 
there exist the polynomials f,heQ[x] so that:

u(x) _ g'(x) f(g(x) ) 
v(x) h(g(x))

If deg g(x) = a then follows:
deg u(x) = a-l+a deg f(x)
deg v(x) ■= a deg h(x)
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u(x) = g' (x) f (g(x) )
V  (x) = g'(x) h'(g(x))

This relations shows that we can search g'(x) (the 
derivative of the possible substitution g(x)) among the divisors 
of gcd(u(x) , v' (x)) with the property that 1+deg g' (x) - deg g(x) 
divides gcd(1+deg u(x), deg v(x)).

4. The squarefree deoemposition Yun's algorithm. It is
fairly easy to show that if geZ[x] and g^(x) is a polynomial such 
that it's roots are the i order roots of g, then g^e^fx], all the 
roots of g^(x) have the order 1 and (q±(x))1 divides g(x).

Let'8 suppose that all the roots of g(x) have the order less 
or equal to keN. In this case:

<3r(*)-tfi(*) (g2(*))2- • ♦ (<?*(*))*•
Furthermore, since for i*j g^(x) and qj(x) haven't common

roots
gcd(gi(x), g^'x)) - 1.

We can now see that:
«

q'(x) *ql(x) . . . (qk(x) )*+. . .+kqt(x) . . .g*(x) (qk(x) )*'*
' c(x) »gcd(g(x) ,q'(x) ) =g2(x) (g3(x) )2. . . (qk(x) )**1

s(x) »gcd (c(x) ,r(x)) »g2 (x) . . .qk(x)
I / yjIn this moment g, (x) = and we see that making g(x)<-

c(x) and repeating the above operations unt^.1 g(x) become 
constant, we obtain the polynomials qx (x),...,qk(x) . We also 
remark that r,c,ztZ[x].

The above relations represent the mathematical basis of the
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Yun's algorithm. The complete description can be found in [2].

5. Simple fraction decomposition algorithm. Assume 
p,u,teZ[x] and gcd(u(x),t(x)) = 1. This algorithm will compute 
the polynomial reQ[X] so that:

u & n \ X) - 5 $ and ae’ ' -*•» "<*>• “h‘"
seQ[x] can be computed analogously.

From the above relation we obtain that:
P (x) - r(x)t(x) + u(x)s (x).

and
r(x) ■ r(x) mod u(x).
This implies that:
p(x) mod u(x) ■ r(x)t(x) mod u(x)

■ (r(x) mod u(x)) (t(x) mod u(x)) mod u(x)
■ r(x) (t(x) mod u(x)) mod u(x).

Since gcd(u(x), t(x)) » 1, there exist the polynomials 
v ,w €Q[x ] such that:

u(x)v(x) + w(x)t(x) = 1.
(The polynomials v and w can be computed using the Extended 

GCD Algorithm).
By dividing this relation by u(x) we can see that: 
w(x) ■ t(x)"1 mod u(x) 

and this tells us that
r(x) ■ (p(x) mod u(x)) w(x) mod u(x).

6. The Hermite-OstrogradsKi algorithm. This algorithm 
computes the polynomials a,b e 0[x] so that:
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f - P. M  d x _____a. ix)- ■
J (g(x))n (g(x))"-1 •/ b(x)

q(x) dx

where p,q e Z[x] and g is squarefree.
It is easy to show that gcd(g(x) ,q' (x) ) ** 1 since q is 

squarefree. Therefore we can use the Extended GCD algorithm in 
order to determine the polynomials v,w e Q[x] so that: 

v(x)g'(x) + w(x)q(x) - 1.
If we multiply this relation with -p(x)/(n-l) and: 

s (x) = , t(x) = -p(x)w(x)J2-1
we obtain that s(x)q'(x) + £(*??<*> = -£±*L andn-l n-l

-(n-l)s(x)g'(*) - P(x) + t(x)g(x).
Consequently,

six) » ' m s'{x)______(n-l) s(x) q'(x) _
(g(x))”-1J (g(x))”-1 (g(x))n

= g/(x) + p(x) + t(x) q(x) B p(x) + s'(x) + t(x)
(q(x) )n'1 (g(x) )n (g(x) )” (g(x))"-1

This means that if r(x) - s'(x) + t(x) then

f dx = __ ________ f___ £i*>__ dxJ (g(x) )n (g(x))”-1 J (q(x) )n_1
It is now clear that using this algorithm for n-l times, we

will obtain

f , PU) , dx= + .
J (g(x))n • (g(x))"-1

(X)
(g(x) ) / i>(x)

g(x) dx

and thus a(x) - s^x) + s2(x)g(x) + ... + sn_1(x) (q(x) )n~2.

7. The Berlekamp-Hensel algorithm. Let f(x) - anx/1+...+ a2x+
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+ a0 be a squarefree and primitive polynomial with integer 
coefficients.

Also let 
5 « ao+ • . .
M(f) « 2nS (1)
g > M (/) , gcZ
The algorithm presented here computes reN and the 

polynomials ulf . ur € Z[x] irreducible over M[x], such thit 
f ( X ) - U j ( X )...ur(x).
It can be prove that if beZ[x], b(x) - Jb0+Jb1x+.. .+bjc* and 

b divides / then |b̂ | < M(f) i**0,s. (see [4])
This means that if b±>0 then

bi - bi mod q e |o, -2J -

and if b± < 0 then

bi mod q » g-b* e |-2,gj (2 )

These observations lead us to the idea that the 
factorization of £ over 2ff[x] could be fairly closed to the 
factorization of f over Z[x], since if 

f(x) - p(x)t(x) with p,teZ[x]
then

f(x) ■ p(x)t(x) mod g
and according to (2) we can determine the coefficients of p(x) 
mod g which correspond to negative coefficients of p(x),

The Berlekamp-Hensel algorithm is based on these conclusions 
and it has the following steps:
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51) Determine a prime number p, the least possible, for which 
deg f(x) = n (g doesn't divide the leading coefficient of 
f) and f remain squarefree in Zp[x].

52) Use the Berlekamp's algorithm (see [3]) for the 
factorization of f(x) over Zp[x]

f(x) * Uj(x)...um(x) mod p ^
53) Compute M(f) given by (1).
54) Pass from the factorization of f over Zp[x] to the 

factorization of f over Zpi [x] , . . ., Zq[x] using the formula 
given by the Hensel's lema (see [3]), until g~p* > 2M(f). 
This step computes the polynomials u1A, ..., uak e Zq[x] 
such that

/(x) ■ u1A(x)...umk(x) mod g 
uiA(x) ■ ui(x) mod p, i»l,s.

55) Compute the product of each possible combination of 
1,2,... ,s uiJc(x) polynomials in Zq[x].
Normalise the coeficients of the product according to (2) 
by subtracting g from the coefficients greater than -S.
If this normalised product divides f  then it represents a 

factor of f and the uik{x) polynomials which compose the 
product will be excluded from further combinations since f  

is squarefree.
Note that this is a polynomial time algorithm. There also 

exists the Kronecker's algorithm which is simpler and more 
intuitive but it requires exponential time and it become very 
inefficient for polynomials of degree greater than 5.
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Xeiuut. în lucrare ae prezintă un sistem formal de demonstrare 
prin respingere a teoremelor. Condiţia necesari ţi suficientă 
impuşi acestui sistem se bazează pe metoda lui J.Hsiang de 
demonstrare a teoremelor cu ajutorul sistemelor de rescriere a 
termenilor.

1. Introduction. Let T be a set of linguistic, algebraic or 
symbolic objects (as, for instance, first-order terms, programs) 
and let - be an equivalence relation on T.

DEFINITION [2]. A computable function S:T -» T is called a 
canonical simplifier for the equivalence relation - on T iff for 
all s, t € Tt

S(t) ~ t 
S(t) ü t

(for some ordering £ on T) 
t - e -* S(t) - S(s)

For computer algebra, the problem of constructing canonical 
simplifiers is basic, because of the following theorem:

THEOREM [2]. Let T be a set of linguistic objects and - an 
equivalence relation on T. Then ~ is decidable iff there exists 
a canonical simplifier S for ~ .

Let T - T(F,V) be the algebra free generated by the set of 
variables V with the set of functions F; that is T is the minimal 
set of words on the alphabet F u V u {(,)> such that:
1. V c T

* U n i v e r s i t y  o f  C l u j - N a p o c * , F a c u l t y  o f  N a t h e m e t i c a ,  3 4 0 0  C l u j - F a p o c a ,  
R o m a n i a
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2. If f € F, a(f) is its arity, and if tlt. . . c T, then 
•••I (/) ) ® r

Let £ c T(F,V) x T(F,V) be a set of equations. By the 
Birkhoff theorem (1935) s and t are c^mantically equal in thr 
equational theory E(E *- a =■ t) iff s and t are provably equal in 
the theory E(E b s = t).

Let 8 ~ t be the equivalence relation defined by E b s = t. 
Then - is decidable iff there exists a canonical simplifier s for

S. Associated term rewriting system and the completion. Let
E be a set of equations E c T x T and let RE a term rewriting 
system (TRS) obtained such that 

l - * r e R E - t * * r e E  and
v(r) c v(f), where v(t) is the set of variables in the term 

(object) t e T. This system will be called TRS associated with 
E. The rewriting relation Rg has the inverse relation, 
transitive closure, the reflexive-symmetric-transitive closure 
denoted by £g, Rg and respectively. Also, we have:

r  *v
For a TRS denoted R let be the following definition (3),

[7], [8 ]:
DEFINITION. R is noetherian (R has the finite termination 

property) iff there is no infinite chain 
&b t2 t3 ME’’-

DEFINITION. R is confluent iff V x, y, z e T 3 u e T such
4*  ̂ ţthat if x g^z and x then z y
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DEFINITION. It x e T, x i e T, x £ x l and it does notiy,B
exist t such that x l j$t then x i is normal form for x in TRS 
R (denoted x i R).

If Rb which is associated with a system of equation E is 
noetherian and confluent (i.e. complete) then, for V x e T, the 
application S(x) « x 1 RE is a canonical simplifier. Then - is 
decidable, and we have :

8 - t iff s i RB « t I Re
Stated in the context of confluence, the idea of completion 

is straightforward:
Given a set of equations E we try to find a set of equations 

F such that: £mp and the relation ăF is confluent.
If this set of equations do not exists, then the completion 

must terminate with failure or the completion is impossible.
The first completion algorithm for rewrite rules is that of 

Knuth-Bendix (1967). For a general formulation of this algorithm 
some additional notion for describing the replacement of teems 
in terms are needed.

DEFINITION [1],[2],(5]. Let 0(t) be the set of occurrences 
of a term t. If a, t c T(F,V) and u e 0(t) then t[u - a] is the 
term that derives from t if the term occurring at u in t is 
replaced by the term s (t/u becomes a).

DEFINITION, a -* t iff there is a rule a -* b e Rx (or an 
equation ((a,b) e E) , a substitution r and an occurrence u e 0 (a) 
such that

a/u = t (a) and t « a [u «- t (b) ]
DEFINITION. The terms p and q form a critical pair in £ iff
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there are equations (a^Jt^) e E and (a2 ,b2) e E, an occurrence u 
in 0 (ax) and the substitution rlt r2 such that:

1 . a1/u is not a variable
2. Tjţaj/u) - T2 (a2)
3. p - Tjtaj) [u- t 2 (b2)] 

q - Tjtbi)
The algorithm Knuth-Bendix is based on the 
THEOREM: A TRS noatharian RE is confluant iff for all 

critical pairs (p,q) of E: p 4 RE ■ q J Rs.
Then it suggests to augment Rg by the rule p 1 RE -* q l RB 

or q A r e P * RE' This process may be iterated until, 
hopefully, all critical pairs have a unique normal form or it may 
never stops: the algorithm is at least a semidecision procedure 
for - .

The completion algorithm for rewrite rules (Knuth-Bendix, 
1967) is therefore [2]:

I n p u t : A finite set of equations E such that is 
noetherian.

O u t p u t :  1. A finite set of equations F such that 
* *

and relation Rf (therefore system Rr) is confluent (therefore 

is decidable) or
2 . the procedure stops with failure or
3. the procedure never stops 

Algorithm [2]:
1. Fi - E ;
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2. Ci - set of critical pairs of F;
3. while C # 0 do

3.1. if (p,g) e C and (p l RF + q l RF ) then
3.1.1.if plRr -* qlRr leaves Rr noetherian then RF:-RF u

(pii?, ->giJîj.} else if qlRF -* piRj. leaves RF noetherian 
then Rf : « Rr u { q l RF -» p i RF > 
else STOP (FAILURE)

3.1.2. C—C v { critical pairs in F u {(p i Rr , g t üf ))(
3.1.3. F-F u {(p i Rr - q 4 RF )>

3.2. Ci- C \ Up, q) }
4. STOP(Ar).

The above crude form of the algorithm can be refined in many 
ways. The sequence of critical pairs chosen by the procedure in
3.1. may have a crucial influence on the efficiency of the 
algorithm.

3. The J. Hsiang's completion procedure. It is well known 
that a formula in first-order predicate calculus is valid, iff 
the closed Skolemised version of its negation is false under 
Herbrand interpretation. Equivalentely, a formula is valid if the 
set of the clauses in its clausal form is insatisfiable. Hsiang 
[7] first suggested using a complete rewrite system in a 
resolution-like theorem-proving strategy.

Let C - Cn> the set of clauses of a formula in
first-order predicate calculus.

Let C1 - L1 V L2V...VLk be a clause where Lj is a literal, 
and let H be a mapping transforming terms of a Boolean algebra
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into terms of a Boolean ring:

1 if Cj is empty .lause
x+1 if Cj is x

" < c <> ■ ■ X  if C, i. X
H U ^  .. VL,) otherwise

THEOREM (Hsiang[7]: Given a set of clauses € in first-order 
predicate Calculus, € is inconsistent iff the system 

H(C±) « o, C* e *, i » l,n 
has not a solution.

Now, let BR be the complete TRS [7]: 
x + 0 -► 0 
X  +  X  -*■ 0 

X  * 1 -* X

x * 0 -► 0
X  * X  -* X

x * (y+z) - * x * y  + x * z

For each equation H(C^) « 0 let us consider the equation 
ajL’mbi, where is the biggest monomial of boolean polynomial
H(C±) and let E be the system corresponding in this fashion to 
the system of equations:

HiCj) - 0,i = T7n

The TRS RB having all the rules of the form ai -+ bi is noetherian 
[7]. In the TRS formed by Rs u BR we have:

*
S - t - S ~ t - 3 «--► t

H(Ci)-0 E RguBR

because a^ “ Jb̂  is equivalent with ai + b± - H(C±) * 0
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A critical pair (p,g) may be added to system RE not only in 
the form plRe -» qlRE or in the form qlRB -*piRE , but also in the 
form p'IRb -*q'IRe where p* is the biggest monomial of Boolean 
polynomial P + q. Hence, the polynomial p + q is an intermediate 
form to study for critical pair.

Then, the previous theorem becomes:
THEOREM [7]. A set of clauses 9 ain first-order predicate 

calculus is inconsistent iff by Knuth-Bendix completion algorithm 
applied to the TRS formed by P.E u BR, where E is the set of 
equations a^-b^, i - l,...,n (ai is the biggest monomial of 
HfC^)), the critical pair 1->Q is obtained. Let us observe that 
KB algorithm of completion is allways terminating by STOP.

4. A new method for proving a formula. Let 5 ** (E, F, A, R)
be a formal system, where E is the alphabet for the term in a 
boolean ring (including + and *), F is the set of boolean 
polynomials, A « e and R is the single deductive rule denoted 
"res" or i-:

fit fj t- iff -
f±, fj, fk « F and there exist the monomials a, fl e F and 

the substitution r 1 and r2 such that:
(a * r1 (fJ)) i BR - ( 6 • r2(fj) + fk) 1 BR 

where the equality is modulo associativity and commutativity.
For this formal system the following theorem is true:
THEOREM : Given a set of clauses • - {Clf. .. ,Cn} in first- 

order predicate calculus, 9 is inconsistent if in formal system 
S:
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H(CX) , . . . ,H(Cn) h 1.
The proof of theorem in propositional calculus consists of 

the following three propositions (the proof of theorem in 
predicate calculus is analogous).

PROPOSITION 1. If f±, h fk and f±, fj, fk are the clause 
polynomials then HT1 (fx) A (fj) -* JT*1 (fk) .

Proof. By the assumption: 
fim*ix * » • . ♦ aik , where .

a i , ”

a{ +1 
or , s-T7K

and . . *Jbji , where

V
If a- a + 1 , a, u € {ix,...,ik}, v e {jx,... ,jm}i

by the commutativity of operation * we can write: 
f± « (a + 1 ) * y 
fj - a * y

In boolean ring the following identity is obvious: 
$*(a+l)*Y * <5 * a * y+& * y 

By the comparison with the relation: 
ct + fx m to * fj + fk

(because rx - t2 * the identic substitution in propositional 
calculus), we observe that fk - 6 *  y, and that H~x (fk) « H~x (5) 
V IT1 ( Y )  .

In the propositional calculus the following implications are

^ . +l. or , t-i,e 
bn
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true:

(aVaJ'V. . .VaJ'MAtaVJbJ’V. . . Vb‘‘/) - (aJ’V. . .Vi»*,1’) 

where i8 + u, jt + v,

a , , a H e (o, l )  , s  *■ 1, k  , t  = 1, e

and

a, if a, » 1
•i. '• -1*a* ' - •__* a , if «, » 0

and analogously for b** .
The above implication is therefore:
JT1^ )  A H - H“1(/A)
PROPOSITION 2. If • - is a set of clauses,, and

if:

H(CX) , ...,H(C„) h U 
U is clause pollnomial, then

Cx A ... A C„ ■* H~l(U)
Proof: To prove this proposition we proceed by induction 

after the length i of the deduction of U from H(CX),... ,H(Cn) 
in formal system S.

If i - 0, then exists j such that U - H(Cj) and

The following implication is true:
Cj A ... A Cn -> Cj , j » 1 , ..., n 

We suppose that the proposition 2 is true for the length <, 
i - 1 of deduction, and let f0,...,fm « U a deduction of t/ with
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the length i.
For the three last polynomials /m_2» *m-1 * *m the sysţ®*® 

S there is the relation:
<* * fm-2 =  »  *  ^ * - 1  +  f *

Moreover, if fm is a clause polynomial, fm~2 and fm-i aie 
too, and fM_ 2 a n d  *m-l are obtained by the deduction of length < 
i - 1.
From the induction hypothesis we have:

C2 A ... A Cn -+ H- 1 (fm_2)
Cx A  . . .  A  Ca -  iT1 (/».!)
By the formula:
t- (A - B) - ( (A -» C) - (A - B A C) ) 

results by modus poneus:
h C x A  . . .  A  C n -  H _ x ( / ^ j )  A  H . J  

From proposition 1 we have:
t- H " 1 (/m_2) A H " 1 (fm_i) -* H ' 1 (fm) and by the rule of 

syllogism
»- C1 A ... A C„ - IT1 (fm) 

or
I- C1 A ... A Cx -* H_1 (t7) q.e.d.
PROPOSITION 3. If H(CX) , . . . ,H(Cn) i- 1 than f «* {Cj,...,Cn> 

is inconsistent.

Proof. From the proposition 2 we have: 
t- Cx A ... A Cn - tf- 1 (1) 

but H - 1 (1) is the empty clause, q.e.d.
But the condition (x) "BfCj) ,. .. ,H(Cn) i- 1 iff f «*

» {Cx, ...,C„} is inconsistent" is also true hence the implication
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MH(CX),...,H(Cn) h 1 -» * = {Cj,..., Cn} is inconsistent" is true 
even through not all the polynomials f1, fj, fk in the
propositions are the clause polynomials.

Exemple: (in propositional calculul rx * t 2 = identic
substitution) f *  (P V $ V P, ? V 0  V 1?, ? V U, p V  P, P V 7?)

H(CX) “ PQR + QR + PQ + Q
H(C2) - PQR + PR
H(C3) - PQ
H(CA) - Q R + Q + R + 1

N(C5) » PR + R
H(CX), H(C2) b PR + PQ + RQ + Q

(due to the fact that PQR + PQ + RQ + Q - (POP + PR) + (PR + PQ 
+ QR + Q)

PQ + PR + RQ + Q, U(C3) b PR + RQ + Q

PR + RQ + 0 , H(CS) b RQ + Q + R

(PR + RQ + 0 - R(CS) + QR + Q + R)
H(Ca), RQ + Q + R b 1
This set of clauses is inconsistent, and the triplet fx, fj, 

fk is not in each step the clause polynomials (like in 
proposition 1 ).

In fact the following observation is true: if Ax is the set 
of all the clauses with i positive variables (nonnegative):
Cx € Ax and C2 e Aj are two clauses,|i-j| i 2, and tt(Cx), H(C2) 
I- fk then fk is not a clause polynomial. Moreover, if C 1 c A± and 
C2 e A i+ 1 differ by a number n of variables, with n i  2, and 
H(CX), H(C2) >- fk then fk is not a clause polynomial.

The condition (*) results from Hsiang's theorem (§ 3) by
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following observations:
Let us observe that the deductive rule "res": £it £j h £k ** 

3 e,fl (monomials) such that (a * t (£^))IBP = (B*r2(fj) + £k)iBR 
is a special fashion to calculate u- clerical pair. Indeed, the 
biggest monomial in a*r1 (fi) (i.e. MP £±) and the biggest 
monomial in B*t2(£j) (i.e. MP fj) are equal and:
(£k)iBR - (a*T1(fi) + 6 *t2 (/j) ) 4BJ? - (MP ti + MP £j + REST £i + 
REST £] ) IB P  =  (REST £± + REST £j) 4BR
This is the case »'i(a1) - r2 (a2) and (p,g) - (Ti(*i)» r2 (b2) is . 
critical pair. The intermediate form p + g of critical pair (in 
our case £k) is studied.

THEOREM: The set o£ clauses f - {Cx, ... ,Cn} is inconsistent
i££

H(C1),...,ï(Cn)h 1
Proof: If < -■ (Cj, .. . ,Cn} is inconsistent, by Hsiang's 

theorem the system #(0 )̂ » o, i - l,...,n has not a solution, or, 
equivalentely, by completion in PE the rule 1 -* 0 is obtained. 
Therefore, a critical pair (1,0) or (£k, 0) is obtained. He have: 

(£k) I BJJ - 1 - (1 + P + P) 4 BP 
In formal system S we can write 1 + P, P h £k( «■ 1) 

where P is a boolean polynomial.
Conversely, if HfC^,... ,H(Cn) t- 1 then there exists a 

deduction £0,...,£k “ 1 from J/fCj),...,H(Cn) .
Therefore, there exists £± and fj such that £t, £j h £k(=l) . 

But £k is a critical pair corresponding to a rule l-»0, and by 
Hsiang's theorem C is inconsistent.
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REZUMAT. - Conv*xitat«a metrică in grafuri. In această lucrara aa
prezintă o sinteză a unor rezultate recente in domeniul 
convexităţii metrice in grafuri. Sint analizate diferite 
proprietăţi ale mulţimilor şi funcţiilor convexe în grafuri, 
caracterizările unor clase de grafuri cu ajutorul convexităţii.
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8. Characterization of hypercubes and Hamming graphs by means of 
convexity

1. Introduction. It is well-known that the ideas and results 
of convex analysis are of high importance for many mathematical 
disciplines. Convex analysis has shown itself as a powerful 
instrument usefut for applications. Therefore the development of 
mathematical structures and the enlargement of their 
applications lead to the creation of distinct analogies and 
generalizations of the notions of convex sets and convex 
functions (see, for instance, [31], [47], [73]).

Among them the notion of metric convexity introduced by 
K.Menger [52] is one of the most developed. Recall that a set A
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V. SOLTAN

in a metric space (X,d) is called convex provided for every pair 
' of points x,y e A, the metric interval

[x,y] = {z e X : d(x,z) + d(z,y) = d(x,y)} 
is contained in A. For any set B c x, its convex hull convB is 
defined in a standard way to be the intersection of all convex 
sets in X containing B. Since the intersection of any family of 
convex sets is again a convex set, convB is the least convex set 
in X containing B.

The notions of metric convex set and covex hull became 
fruitful in general topology, differential geometry and 
functional analysis. (A sufficiently complete list of results and 
references on metric convexity in metric spaces and linear normed 
spaces can be found in [13], [73].)

Later the notion of a convex function on a metric space 
(X,d) was defined (see [70], [71]); a real-valued function f on 
X is called convex provided

t(z) s * 4 |*t4 -/(y)d(x,y) d(x,y)

for all points x,y c X (x * y) and z e [x,y].
The actual period in the development of metric convexity is 

connected with investigations of discrete structures and of some 
extreme problems on them (see, for instance, [61], [62]). At the 
same time, a considerable part of the results on convexity in 
discrete spaces is concentrated around metric convexity in 
graphs. It is interesting to mention that the notions of convex 
eet and convex function in graphs appeared previously in 
connection with some location problems (see [25], [6 6 ], [6 8 ],
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[69], [82]). And only later, due to the development of
generalized convexity theory, some properties of metric convexity 
and related metric behaviour of graphs where studied by distinct 
authors.

In this article, we deal with metric convexity in ordinary 
(may be, infinite) graphs. Since this topic became too wide to 
be described compact, we will be concentrated below on some 
results closely connected with the author's interests in this 
field. Some additional information on metric convexity in graphs 
can be found in the literature placed at the end of the paper.

For the convenience, we mention here some necessary 
definitions connected with graphs.

Everywhere below G - (X,U) denotes a graph with vertex-set 
X and edge-set U. A graph G is called finite if the set X is 
finite. If cardX = n, then G will be denoted by Gn. By a subgraph 
H of G vie mean the induced one, i.e., two vertices x,y are 
adjacent in H if and only if they are adjacent in G. For any set 
Y c x, the subgraph in G induced by Y is denoted by G(Y).

A graph G is connected if for any two vertices u, v in G, 
there exists a finite chain containing u, v. We assume that all 
the considered below graphs are connected.

In order to consider metric convexity in G, we assume that 
G is equipped with standard metric: for any vertices x, y € X, 
denote by d(x,y) the'least number of edges in a chain connecting 
x, y. Is easily seen that d indeed is a metric on X, i.e., d{x,y) 
satisfies the following conditions:

1 ) d(x,y) £ 0 , with d(x,y) « 0 if and only if x » y,

5
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2 ) d(x,y) = d(y,x),
3) d(xry) < d(x,z) + d(z,y).
If vertices x, y belong to a connected subgraph H of G, then 

dH(x,y) denotes the distancé between x, y in the graph H. A 
connected subgraph H is called an isometric subgraph of G if 
dH(x,y) = dg(x,y) for every pair of vertices x, y in H.

A clique in G is a vertex-set having every two distinct 
vertices adjacent. If X is a cliqua, then G is called a complete 
graph. Kn denotes a complete graph with n vertices. The supremum 
of the cardinality of a clique in G is called the density of G, 
and is denoted by $.

A vertex z in G is called simplicial provided the set O(z) 
of all vertices in G adjacent with z form a clique. The degree 
deg(z) of z is the number of all vertices neighbor to z. Put 
E (z) = O(z) u { z } .

A sequence i -• (... , vx-i'vi' vi+i ’ * • - ; vertices in G such 
that every two consecutive vertices are adjacent is called a 
chain. A chain 1 is finite if it is of the form 1 = (vlf . ,.,vn); 
it is one-side infinite provided it has one of the forms 
1 = (vlfv2, •••), 1 • (•••, v2,v1); 1 is infinite if it has no 
end-vertex. A chain is simple if all its vertices are distinct. 
A circuit of length n in G is a chain of the form 
(vl'v2 '•••I% ' vl)• A circuit is simple if all its vertices 
Vţ, ..., vn are distinct. Let Cn denote the simple circuit of 
length n.

A simple chain 1 - (..., v^.j,vi,vi+i, ...) of vertices in 
G is called geodesic if any two vertices of the form v±-x, vi+ 1

6
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are not adjacent in G. A segment (a ray, a line) is a finite 
(respectively, one-side infinite, both-side infinite) geodesic 
chain in G.

A disconnecting vertex-set in a graph G is a set Y c x such 
that the induced graph G(X \ Y) is disconnected. A graph without 
disconnecting vertices is called a block. A tree is a connected 
graph without circuits.

A bipartite graph is a graph containing no circuit of odd 
length. The vertex-set of a bipartite graph X can be partitioned 
into two disjoint sets Y, Z such that every edge in G joins a 
vertex in Y and a vertex in Z.

Also recall that G is named a chord graph provided it 
contains no simple circuit of the length greater than three as 
an induced subgraph. A Husimi tree is a graph such that each its 
block is a complete subgraph.

A graph G is called planar if it can be placed in the plane 
such that every vertex of G is a point and every edge of G is a 
rectifiable arc with end-points in X satisfying the properties:
1) every vertex x of G is an end of each arc incident with x, 2) 
a common point of two arcs is a vertex for both of them.

2. Extremal structure of oonvex sets. In this section some
analogies of Krein-Mil'man's theorem about extremal points of 
convex sets in linear space are studied. Recall that Krein- 
Mil'man's theorem [50] states that every compact convex set in 
Hausdorff linear topological space is the closed convex hull of 
its extremal points.
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Since every vertex-set in G is closed, the closed convex 
hull in G is identical with the convex hull, and a set of 
vertices in G is compact if and only if it is finite. Therefore 
we will discuss below the following problem. To determine 
necessary and sufficient conditions for the implementation of the 
assertion: for every finite set A of vertices in G, its convex 
hull coincides with the convex hull of extremal vertices of A.

By analogy with the linear space, we introduce the following 
definition. A vertex z of a set A c X is called extremal in A if 
z ( [x,y] for all x, y e A \ {z>, where [x,y] is the metric 
interval with the ends x, y. By extA the set of all extremal 
vertices in A will be denoted.

It will be shown below that extremal vertices are closely 
related with simplicial vertices. The following well-known result 
(see [27], [51]) gives a sufficient condition for the existence 
of simplicial vertices in a graph.

LEMMA 2.1. Any nonempty finite chord graph G contains at 
least one simplicial vertex; if G is not complete, then it 
contains at least two nonadjacent simplicial vertices.

The following theorem strengths this assertion.
THEOREM 2.2. [74]. For a graph G = (X,U) the following

conditions are equivalent:

1) every nonempty finite set in X contains at least one 
extremal vertex,

2) every nonempty finite subgraph in G contains at least one 
simplicial vertex,

3) G is a chord graph.
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The relation between extremal and simplicial vertices is 
shown in the following lemma.

LEMMA 2.3. Every extremal vertex of a set A c X is 
simplicial in the subgraph G (A) . If A is convex, then every 
simplicial vertex of G (A) is extremal in A.

Now we can formulate an assertion analogous to Krein- 
Mil1man1s theorem.

THEOREM 2.4. [74]. For a graph G - (X,U) the following

conditions are equivalent:

1) convA = conv(extA) for every finite set A c x,
2) convA * u {[x,y]: x, y e extA} for every finite set 

A c X,
3) G is a chord graph containing no subgraph

Note that for finite graphs, the equivalence of items 1 ) and
3) in Theorem 2.4 was established independently in [37], [47], 
and [72], [73].

In connection with Theorem 2.4, we mention two interesting 
lemmas. We say that à segment (v1 ,...,vn) is a shortest path 
provided d(vlrvn) « n - 1 .

LEMMA 2.5. [47]. Let G be a finite chord graph. Then every 
its vertex belongs to a segment whose ends are simplicial 
vertices in G.

LEMMA 2.6. [45]. For a graph G the following conditions are

9
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equivalent:
1) every segment in G is a shortest path,
2) G is a chord containing no subgraph (1).
The following result shows some conditions for a graph G to 

satisfy conditions 2) and 3) of Theorem 2.4 for subgraphs and 
sets of any (may be, infinite) cardinality. These conditions are 
sufficiently cumbersome in the general case. Therefore, for the 
compactness of the description, we will restrict our attention 
on the class of graphs which contain no infinite complete 
subgraphs. Denote this class of graphs by JC.

THEOREM 2.7. [74]. For a graph G = (X,U) e K the following 
conditions are equivalent:

1) every nonempty set in X contains at least one extremal 
vertex,

2) every nonempty subgraph of G contains at least one 
simplicial vertex,

3) G is a chord graph containing no line and no subgraph

THEOREM 2.8. [74]. For a graph G - (X,U) € K the following 
conditions are equivalent:

1) convA - conv(extA) for every set A c x,
2) convA » u {[x,y]i x, y e extA} for every set A c X,
3) A “ conv(extA) for every convex set A c x t

10
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4) A = u {[x,y]i x, y e extA) for every convex set A c X,
5) G is a chord graph containing no ray and no subgraph (1) .
Another well-known result on extremal structure of convex

sets in linear space belongs to S.Straszewicz [81]: evéry compact 
convex set in finite-dimensional linear topological space is the 
closed convex hull of its exposed points. Recall that a boundary 
point x of a convex set A in a linear space is called exposed if 
there exists a hyperplane H such that A n H = {x>.

In order to formulate the respective analogous result for 
graphs, we need some definitions. A vertex-set H in G = (X,U) is 
called a half-space provided both H and X \ H are convex. A 
vertex z of a set A c x is called exposed in A provided {z> «
=» A n H for some half-space H c X. Denote by expA the set of all 
exposed vertices of A. It is easily seen that any exposed vertex 
of a set is also extremal for the set, i.e., expA c extA for 
every set A c x.

The following result is analogous to Straszewicz's theorem.
THEOREM 2.9. For a graph G « (X,U) the following conditions 

are equivalent:

1) convA = conv(expA) for every finite set A c X,
2) convA « u{[x,y]: x,y e expA} for every finite set A <= X,
3) G is a chord graph containing no subgraph (1) and none 

of

li
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THEOREM 2.10. For a graph G = (X,U) e K the following

conditions are equivalent:

1) convA « conv(expA) for every set A c x,
2) convA = u {[x,y]: x, y e expA} for every set A c X,
3) A « conv(expA) for every convex set A c= x,
4) A * u {[x,y]: x, y e expA} /or every convex set A c X,
5) G is a chord graph containing no ray and none of (1) or

(2).

At the end of this section we formulate two open problems. 
PROBLEMS 2.11. To describe the family of graphs G * (X,U) 

satisfying at least one of the conditions :

1) expA + <p for every nonempty convex set A c x,
2) extA “ expA for every convex set A c x.

3.Convexity of balls, ball neighborhoods, and dianetrally
maximal sets. It is well-know that some classes of convex sets 
are of special interest in the convexity theory. These are balls, 
ball neighborhoods, diametrally maximal sets, etc. Below we 
establish conditions under which these sets are convex in a 
graph. Recall that a set of the form

Er(z) « { x c X : d (x,z) £ r}
is called the ball with center x and radius r. A set of the form

12
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lr(A) = { x e X : d(x,A) < r}
is called the r-neighborhood of a set A c X. A set A in X is 
called diametrally maximal if diam(z u A) > diamA for every 
vertex z e X \ A, where diamK denotes the diameter of a set 
K c x.

Let M be a connected set in X. (M is called connected if the 
subgraph G(M) is a connected component in G.) For any vertex 
X  € M, put

QM(X) = {y € w : diamM - d(x,y) “ dM(x,y)}.
A pair {x,y} is called diametral in M provided y e 0N(x) (or 

x e 0M(y), which is the same),
THEOREM 3.1. [76]. Every diametrally maximal set in G is

convex if and only if the following conditions are fulfilled:

1) G contains no simple circuit isometric to C6 or Cn, n£8,
2) G contains no subgraph isometric to one of

3) if QT(y) » {x} for some vertices x, y in a simple circuit 
T + C4, then x is simpllcial in the subgraph G(T).

THEOREM 3.2. [76]. Every ball in G is convex if and only if 
the following conditions are fulfilled:

1) G contains no simple circuit isometric to C4 or Cn, n±6,
2) if QT(y) « {x} for some vertices x, y in a simple circuit

13
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T in G, then x is simplicial in the subgraph G(T).
THEOREM 3.3. [76]. For a graph G the following conditions 

are equivalent:

1 ) for any convex set Â c x and r z 0, the r-neighborhood 
lr(A) is convex,

2) for any vertices a, b e X, the 1-neighborhood 
I 1 (conv{a/Jb}) is convex,

3) G contains no simple circuit isometric to Cn, n £ 4. 
Note that Theorems 3.2 and 3.3 are repeated in [37] in an

equivalent form.
COROLLARY 3.4. If a graph G contains no simple circuit 

isometric to Cn, n 't 4, then the following conditions are 
equivalent :

1) every diametrally maximal set in G is convex,
2) every ball in G is convex,

3) every neighborhood of a convex set in G is convex,
4) G is a tree.

4. Convex functions. Recall that a real-valued function f 
on X is called convex provided

f(z) * 4 ^ 4 -fix) ♦d(x,y) d(x,y)

for all vertices x, y € X (x * y) and z e [x,y]. One can state 
the following simple properties of convex functions on X.

THEOREM 4.1. 1 ) For any convex functions f, g and real

number 1 Z 0, the functions f + g and Xf are convex,
2) the least upper bound of any family of convex functions

14



is a convex function*
3) the limit of any pointwise convergent sequence of convex 

functions is a convex function,

4) for any convex function f and real number 1, the sets
{z € X : f(z) £ A.}, {z e X : f(z) < A}

are convex.
Similarly to the case of linear space, we can define an 

affine function f on X as a real-valued function such that both 
functions f and -f are convex. In other words, / is affine if

H z )  -  ,  4 j 5 l 4 - / ( y )d(x,y) d(x,y)

for all vertices x, y e X (x * y) and z c [x,y]. From this 
definition follows immediately

COROLLARY 4.2. 1) For any affine functions flt f2 and real 
numbers Alf A2, the function A^j + A2f2 is affine,

2 ) the limit of any pointwise convergent sequence of affine 
functions is an affine function,

3) for any affine function f and real number X, the sets
{z e X : f(z) £ A}, {z e X : f(z) < A} 

are half-spaces.
A function f : X -* R is called quasiconvex if for every real 

number A, the set {z £ x : f(z) <, A) is convex. Equivalently, f 
is quasiconvex if

f(z) z max{f(x),f(y)> 
for all vertices x, y c X and z 6 [x,y].

THEOREM 4.3. l) For any quasiconvex function f and real 
numbers A k 0 , p € R, the function If + p is quasiconvex,

15
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2) the least upper bound of any family of quasiconvex 
functions is a quasiconvex function,

3) the limit of any pointwise convergent sequence of 
quasiconvex functions is a quasiconvex function.

Similarly, a function f : X -*• R is called quasiaffine if 
both functions f and -f are quasiconvex, i.e., f is quasiaffine 
if

min(/(x),f(y) > < f(z) < max{/(x),f(y)> 
for all vertices x, y e X and z e [x,y].

COROLLARY 4.4. 1) For any quasiaffine functions flt f2 end 
any real numbers Xlf X2, the function Xxfx + X2f2 is quasiaffine,

2 ) the limit of every pointwise convergent sequence of 
quasiaffine functions is a quasiaffine function,

3) a function f is quasiaffine if and only if for every real 
number X, the sets

{z e X : f(z) i X}, {z e X : f(z) < X} 
are half-spaces.

Below we study some properties of the classes of convex, 
affine, quasiconvex, and quasiaffine functions on X. Let A, D, 
CA, and CD denote, respectively, the collection of all affine, 
convex, quasiaffine, and quasiconvex functions on X, and let F 
(respectively, X) denote the family of all real (constant) 
functions on X. Trivially,

CA c CD c F 
u u 

X c A c D

THEOREM 4.5. [65], [75]. 1) The following conditions are

equivalent: A = F, D = F, CA “ F, CA = CD, CD = F, A = CD,

16
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D = CD, G is a complete graph,
2) any two of the classes A, D, CA coincide if and only if 

the two classes are trivial, i.e., are equal to I or to F.

THEOREM 4.6. [65], [75]. 1) A * I if and only if the graph 
G = (X,U) can be decomposed into at most countable family of 
pairwise disjoint complete subgraphs G± such that every vertex 
z in Gi is adjacent to all the vertices in G^.j u G i+ 1 and only 
to them,

2) for a finite graph G, one has D + I if and only if X 
contains a convex set Y with connected complement X \ Y such that 
every vertex z e Y adjacent in X \ Y is adjacent to all the 
vertices in X \ Y,

3) CA * I if and only if X contains at least one half-space,
4) CD * I (provided cardX > 1).
For any family H of functions on X, let ff+ denote the 

collection of all functions which are the sums of finite 
subfamilies of H. We have the relations

D = D+ c CD c CD+ « F
u u u u J c A  = A+ c C A c  CA+

THEOREM 4.7. [65], [75]. The following implications hold:
1) CA+ - A «—  CA = A,
2) CA+ *=■ D —  CA = D,
3) CD+ - CD holds if and only if G is a complete graph,
4) CA+ » CA holds if and only if the intersection of every 

collection of half-spaces in G is either empty or a half-space.
The supremum properties of convex functions play an 

important role in convex analysis. For example, at the base of
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the finite dimensional theory of duality of convex functions lies 
the famous theorem by Minkowski: every convex function is a 
pointwise supremum of affine functions. Below we investigate an 
analogous assertion for convex functions on a graph.

For any family H of functions on X, let HB denote the 
collection of all finite functions which are pointwise supreme 
of subfamilies of H. It is easily seen that the following 
relations are valid:

CA c  CAg c  CD = CDg c  F
V u  u u

I c  A c  Ag c  D « Dg

In our notations, the analogous assertion to Minkowski's 
theorem for convex functions on graphs looks as in item 4) of 
Theorem 4.8.

THEOREM 4.8. [65], [75]. 1) The following conditions are
equivalent: A = CA, A = CAS, Aa - CA, Ag « CAa,

2) A = Aa *--» either A = I or A = F,
3) CA ■ CAg holds if and only if the intersection of every 

collection of half-spaces in G is either empty or a half-space,

4) Am » D holds if and only if G is either a complete graph 
or a simple chain,

5) Ag •* CD holds if and only if G is a complete graph,
6) CAg - D — ► CA - D,
7) if G is a finite graph, then CAB - CD holds if and only 

if the intersection of every collection of half-spaces in G is 
either empty or a half-space.

As a logical consequence of this circle of questions, we 
will consider the family H„ which is the smallest collection of

18
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functions on X containing a family H of functions and is closed 
with respect to taking finite sums and finite supreme. We have 
the relations

D = D , c  CD c  CD, c  F 
U U U U

J  c  A C  A , CA c  CA,

THEOREM 4.9. [75]. The following implications hold:
1) A , = A <—  As -  A ,

2 ) A* = D «  A , -  D,

3 ) CA, = A CA -  A ,

4) CA, = CA «-■* CAfl - CA,

5) A* *= CA A* - CA* «-■* A - CA,

6 ) A* -  CD holds if and only if G is a complete graph,
7) the following conditions are equivalent: A - C D ,, D = CD, 

CA -  CD*, G is a complete graph.
In connection with the above results, we formulate some open 

problems.
PROBLEMS 4.10. 1) To determine conditions for the 

feasibility of any of the relations:

a) D * I, CAf = CA, CA+ *  CD, CA+ «  CD+ , CA+ -  F, CD+ = r ,

b) A, “ C D ,, CA, “ CD, CA, -  C D ,, CD, *= CD, CD, - F,
2) to determine conditions for the feasibility of the 

following property: the intersection of every collection of half­

spaces in G is either empty or is a half-space.

The remained part of this section is devoted to the study 
of separation properties of convex functions on X. Below we 
consider a graph G to be finite. A family H of functions on X 
will be said to have separation property if for any disjoint
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convex sets Y, Z c x there exists a function f e H such that 
inf {/(x): x e Y) > sup {f(x): x e Z}.

II the set Y (respectively, Z) is a singleton, then we will 
speak about upper (lower) separation property. If both sets Y and 
Z are singletons, we will say that H separates vertices.

THEOREM 4.11. [75]. 1) For the family A, separation

property, upper separation property, lower separation property, 
and separation property for vertices are equivalent and hold if 
and only if the graph G is either complete or a simple chain,

2) the following properties are equivalent:
a) D separates vertices,
b) D has lower separation property,
c) G is a chord graph,

3) the following conditions are equivalent:

a) D has separation property,
b) D has upper separation property,
c) G is a chord graph containing no subgraph (1).

4) a) CA separates vertices if and only if any two vertices
of G can be separated by some complementary half­

spaces,

b) CA has lower separation property «--» CA has upper 
separation property *—* convexity in G is regular,

c) CA has separation property if and only if convexity 
in G is normal,

5) CD has separation property.
Sometimes it is necessary to know about the existence in a 

given class of a function satisfying the respective separation
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condition. We say that a real-valued function f on X satisfies 
separation condition if for any disjoint convex sets Y, Z in X 
one of the inequalities

inf {/(x): x e Y} > sup {/(x): x c Z}, 
inf {/(x): x e Z} > sup {/(x): x e Y} 

holds. If one of the sets Y, Z is a singleton, we speak about 
weak separation condition.

THEOREM 4.12. [75]. 1) There exists a function f c A

separating vertices in X if and only if G is either a complete 
graph or a simple chain,

2) there exists a function f c CA separating vertices in X 
if and only if G is a chord graph containing none of the 
subgraphs

3) the following conditions are equivalent:
a) there is a function f c D separating vertices in X,
b) there is a function f c CD separating vertices in X,
c) G is a chord graph,

4) the following conditions are equivalent:

a) each of the classes A, D, CA and CD contains a 
function satisfying separation condition,

b) each of the classes A, D, CA and CD contains a 
function satisfying weak separation condition,

c) graph G is a simple chain*
2 1
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5. Convexity of Steiner functions. As we know, Steiner's 
problem (or Weber's problem, in a different terminology) on a 
graph consists in finding a minimum of a function

f(z) = lp(x)-d(z,x), (3)
where fi(x) £ 0 and the sum is taken over the set of all verces 
x € X. Unlike to the case of Euclidean space, functions (3) have 
no "good" properties like convexity, which guarantee the absence 
of local minima different from the global one. Therefore it is 
reasonable to find the class of all graphs for which Steiner's 
problem is confined to the scheme of convex analysis. An 
analogous problem will be studied below for functions

F(z) - lp(A)d(z,A), (4)
where n(A) £ 0 and the sum is taken over the family of all convex 
sets A in X.

THEOREM 5.1. [72], [79]. For a graph G = (X,U) the following 
conditions are equivalent:

1) every function (3) is convex,
2) for every vertex x e X, the function p(z) =* d(z,x) is 

convex,

3) every function (3) is quasiconvex,
4) for any vertices xlt x2 « X, the function

P(z) -  M id fa/X i)  + p2d(z'x2)> Mi ,M2 *  0

is quaslconvex,

5) G is a chord graph containing no subgraph of the form

From Theorem 3.2 follows
(1).
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COROLLARY 5.2. Every function p(z) = d(z,x) , x e X is 
quasiconvex if and only if the following conditions are 
fulfilled:

1) G contains no simple circuit isometric to C4 or Cn, 
n £ 6,

2) if QT(y) = {x> for some vertices x,y in a simple circuit 
T c G, then x is simplicial in the subgraph G(T).

THEOREM 5.3. [79]. For a graph G = (X,U) the following

conditions are equivalent:

1) every function (4) is convex,
2) for every convex set A c X with card* £ 2, the function 

p(z) = d(z,A) is convex,
3) every function (4) is quasiconvex,
4) for any convex set A1, A2 c X, with cardAx <, 2 and 

cardA2 £ 2, the function p(z) = d(z/A1) + d(z,A2) is quasiconvex,
5) G is a Husimi tree.
From Theorem 3.3 follows
COROLLARY 5.4. For a graph G - (X,U) the following

conditions are equivalent:

1) for every convex set A c X, the function p(z) - d(z,A) 
is quasiconvex,

2) for every convex set A c x with cardA S 2, the function 
p(s) ” d(z,A) is quasiconvex,

3) G contains no simple circuit isometric to Cn, ni: 4.
A function f : X -* R is called strictly convex 

(respectively, strictly quasiconvex) provided it is convex 
(respectively, quasiconvex) and
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f(z) < - ^ 4 - f U )  ♦d(x,y) d(x,y) J

respectively, f(z) < max{/(x) , f (y) >
ţ

for all vertices x, y € X (x * y) and z € [x,y] \ {x,y} in case 
f{x) * f(y).

THEOREM 5.5. For a graph G * (X,U) the following conditions 
are equivalent:

1) for every vertex x e X, the function p(z) = d(z,x) is 
strictly convex,

2) for any vertices xlt x2€X, the function p{z) *» d(z,x1) + 
+ d(z,x2) is strictly convex,

3) for every convex set A c x with carcLA £ 3, the function 
p(z) *■ d(z,A) is strictly quasiconvex,

A) G is a complete graph.

THEOREM 5.6. For a graph G * (X,U) the following conditions 
are equivalent:

1) for every vertex x e X, the function p(z) - d{z,x) is 
strictly quasiconvex,

3) for every convex set A c  X with cardA £ 2, the function 
p(z) - d{z,A) is strictly quasiconvex,

4) G is a Huslml tree.
THEOREM 5.7. [79], For a graph G with at most countable

number of vertices, the folloving conditions are equivalent:

1) every finite function (3) with p(x) > 0 for all x « X is 
strictly convex,

2) G is a chord graph containing no subgraph (1).
THEOREM 5.6. The following conditions are equivalent:
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1) every finite function (4) with p(A) > 0 for all convex 
sets A in X strictly convex,

2) G is a Husimi tree.
At the end of this section we put the following problem.
PROBLEM 5.9. For a graph G « (X,U) , to determine conditions 

for the feasibility of the following property: the function 
f(z) = £ {d(z,x) : x e y> is convex for every finite set Y <= X.

6.Convex sets in ohord graphs. It was shown above that chord 
graphs play a special role for metric convexity. In this 
connection, we collect here different properties of convex sets 
in chord graphs.

We say that convexity in a graph G « (X,U) has join property 
provided

conv(A u B) - u {[a,Jb] : a e A, b e B}

for any convex sets A, B in X, and that it has cone property if
conv(a u B) - u {[a,Jb] : b e B} 

for every vertex a and every convex set B in X.
For any set A c X, put P(A) - u {[x,y] : x, y e A}.
THEOREM 6.1. [7T]. For a chord graph G - (X,U) the following 

conditions are equivalent:

1) convexity in G has join property,
2) convexity in G has cone property,
3) conv{x,y,z} *« u {[x,y] : v e [y,z]} for any vertices 

x, y, z € X such that diam{x,y,z} £ 2,
4) convA » F (A) for every set A <= X,

5) convA - P(A) for every set A <= X with cardA £ 3 and
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diamA £ 2,
6) G contains none of the subgraphs

The following results complete Theorem 6.1.
THEOREM 6.2. [64]. For a chord graph G * (X,U) the following 

conditions are equivalent:
1) conv(a u B) * u {[a,b] : Jb c B> for every vertex a € X 

and every set B c x of diameter one,
2) conv{a,b,c} = [a,b] u [a,c] for every vertex a € X and 

every edge (Jb, c) e U such that diara{a,Jb, c> £ 2,
3) G contains no subgraph (5).
THEOREM 6.3. [77]. For a chord graph G - (X,ü) the following 

conditions are equivalent:

1) for any vertices x, y e X, the interval [x,y] is convex,
2) G contains no isometric subgraph
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LEMMA 6*4, [64], Lot G * (X,U) be a chord graph. For any
pair of vertices x, y e X such that d(x,y) £ 2, the interval 
[x,y] is convex.

For any sets A, B in X, the sets
A/B « { s c X i B O f u  [z,a] : a c A] * $},

A//B « {z € X : B 0 conv(z u A) * 0} 
are called, respectivelyweak and strong shadows of A relative 
to B.

THEOREM 6.5. [64]. For a chord graph G = (X,U) the following 
conditions are equivalent:

1) for any vertices a, b c X, the set a/b is convex,
2) for any adjacent vertices a, b € X, the set a/b is 

convex,
3) G contains no isometric subgraph (7) and none

(8)
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THEOREM 6.6. [64]. For a chord graph G = (X,U) the following 
conditions are equivalent:

1) for every convex set B c X and every vertex a e X \ B, 
the set a/B is convex,

2) for any pairwise adjacent vertices a, b, c c X, the set 
a/{b,c} is convex,

3) G contains no isometric subgraphs (7), (8), and no

subgraph

THEOREM 6.7 [64]. For a chord graph G « (X,C7) the following 
conditions are equivalent:

1) for any disjoint convex sets A, B <= x, the set A/B is 
convex,

2) for every convex set A c x and every vertex b € X \ A, 
the set A/b is convex,

3) for every edge (a,c) c U and every vertex b e X \ {a,c} 
such that max{d(a,b), d(b,c)} £ 2, the set {a,c}/b is convex,

4) for any pairwise adjacent vertices a,b,c c X, the sets 
a/b and {a,c}/b are convex,

5) G contains none of the subgraph (8) and
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THEOREM 6.8. [64]. For a chord graph G « (X,U) the following 
conditions are equivalent:

1) for any pairwise adjacent vertices a, b, c € X, the set 
{a,c}/b is convex,

2) G contains none of the subgraph (6), (9), and

THEOREM 6.9. [64]. For a chord graph G - (X,U) the following 
conditions are equivalent:

1) for any convex sets A, B <= X, the set A/B is convex,

2) for every convex set A c x and every vertex b € X, the 
set A/b is convex,

3) for every convex set A c X of diameter two and every 
vertex b € X, the set A/b is convex,

4) for every vertex a c X and every convex set B <= X, the 
set a/B is convex,

5) for every edge (a,b) c U, the set af{a,b} is convex,
6) G contains no subgraph

2 9
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Now we will discuss some separation properties of convex 
sets. A half-space in X is any convex set A c  X with convex 
complement X \ A. We say that two complementary half-spaces P,Q 
separate sets A, B if A c  p and B c (j, Convexity in X is called:

i) separating,
ii) regular,
iii) normal,

provided it is possible to separate by complementary half-spaces, 
respectively:

i) any two distinct points,
ii) any convex set and any its exterior point,
iii) any two disjoint convex sets.
THEOREM 6.10. [64]. For a chord graph G the following

conditions are equivalent:

1) every semispace in G is a half-space,

2) G contains none of the subgraphs (2).
THEOREM 6.11. [77] . For a finite chord graph G the following 

conditions are equivalent:

1) every half-space in G is a semispace,
2) G is a tree.
COROLLARY 6.12. For a chord graph G the following conditions 

are equivalent:

1) convexity in G is regular,
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2) for every set B c  x of diameter one and every vertex

a € B, the sets {a} and B \ {a} are separated by complementary 
half-spaces,

3) for every set B c x  of diameter one with at most four 
vertices and for every vertex a « B, the sets {a} and B \ {a} are 
separated by complementary half-spaces,

4) G contains no subgraph (2).
THEOREM 6.13. [77]. For a chord graph G = (X, 17) the

following conditions are equivalentt

1) convexity in G is normal,
2) any two disjoint edges (a,b), (c,d) e U such that the set 

{a,b,c,d} has at most one pair of nonadjacent vertices, are 
separated by complementary half-spaces,

3) any two disjoint parts of a set with at most four 
vertices in X are separated by complementary half-spaces,

4) G contains none of the subgraphs (8), (9).
Note that some sufficient conditions for the separability 

of vertices in a chord graph by complementary half-spaces are 
studied in [63].

We continue with some combinatorial problems on convex sets 
in chord graphs. Further 5 denotes the family of all convex sets 
in G. Put

S* - {A € S £ cardLA » k}, k - 0,1,...
THEOREM 6.14. t77]. For a chord graph Gn with n vertices, 

one has cards* £ n - k + 1.
1) cardS2 - n - 1 if and only if Gn is a tree,
2) for 3 £ k £ n - 1, the equality cards* « n - k + 1 holds
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if and only if Gn is a simple chain.

For any vertex z e X, call by a semispace corresponding to 
g any convex set in X \ {z> maximal with respect to inclusion. 
It is known that the family of sets consisting of X and of all 
semispaces in X forms the least base B of convexity; i.a., every 
convex set in X can be represented as the intersection of some 
elements from B, and every proper subfamily of B does not satisfy 
this property.

THEOREM 6.15. [77]. If B is the least base of convexity in 
a chord graph Gn, then cardB i n + 1. The equality cardB - n +1 
holds it and only it Gn is a complete graph.

Denote by P the family of all half-spaces in a graph G.
THEOREM 6.16. For a chord graph Gn, n i 4, one has 

oardP i 6. For n ■* 4, the equality cardP - 6 holds if and only 
if Gn is either a chain or a star, and for ni5, one has oardP - 
■ 6  if and only if Gn contains a complete subgraph Xn_3 such that 
every vertex in Gn - X„_3 is adjacent to all vertices in Xn_3 and 
only to them.

For a set A <= X, put
P0(A) - P(A), PA+1< A) - P(P*(A) ), k - 0,1,...

It is easy to prove that
A C P1(A) <=■ Pj(A) e . . .  c oonvA ■* u {P*(A) : k i 0}.

This method of convex hull construction gives us the 
following oharaoteristio number for convex hullst for any set 
A c x, denote by A(A) the least natural number k such that 
oonvA - Pa (A).

THEOREM 6.17. [77]. For any vertex-set A in a chord graph
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Gn, n i 5,one has 6(A) £n - 4,and 6(A) case 5.
Classical Helly [43], Caratheodory [15], and Radon [59] 

theorems about convex sets in linear space became a starting 
point for the following definitions. The Helly number of X is 
the least natural number h satisfying the property: any finite 
family of convex sets in X has a common point if and only if each 
its h-membered subfamily has a common point. The Radon number of 
X is the least natural number r such that every set A e 
containing at least r vertices can be divided in two disjoint 
subsets whose convex hulls have a common point. The Caratheodory 
number in X is the least natural number c such that for every set 
A c X

convA - u {oonvfl t B c A, oardB £ c}.
THEOREM 6.18. [21]. The Helly number of convexity In a chord 

graph G equals the density of G.
THEOREM 6.19. [21], [72]. it a is a chord graph with density 

ş, then for the Radon number r in G, one hast
1) 3 £ r £ 4  if f m 2, and r - 3 if and only it G is a 

simple chain,

2) 4 £ r £ 5 if f ■ 3, and - 4 if and only if G contains
no subgraph

THEOREM 6.20. [77]. Tor a chord graph G the following
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conditions are equivalent:

1) the Caratheodory number of convexity in is at most two,

2) G contains none of the subgraphs (5), (6).

7. t e a m  siapl* and quasisimple plana.? graphs. From the 
point of view of generalized convexity theory, graphs with the 
most poor collection of convex sets are of certain interest. 
Since any vertex, any pair of end vertices of an edge, and the 
whole vertex-set X in a graph are convex, it is interesting to 
study those graphs which contain no other convex set. In [59] the 
following definition is introduced. A graph G «■ (X,U) is called 
convex simple if every proper convex set in (i.e., a set 
different from empty set and the whole X) has at most two 
vertices. For example, the graph shown below is convex simple.

The class of all convex simple graphs is too large to have 
a suitable description. Therefore we concentrate our attention 
on planar convex simple graphs. The following theorem was first 
proved in [60] for finite graphs.

THEOREM 7.1. [20]. A planar graph G different from the graph 
of cube 0j is convex simple if and only if it contains no convex 
set of three vertices.

The following theorem gives an interesting characterization 
of convex simple planar graphs. Recall that means the
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family of all (respectively, all k-membered) convex sets in G.
THEOREM 7.2. [20], [72], [78j. For a finite graph Gn, 

cards i 3n - 2, cardS2 + cardS3 2. 2n - 4.
The following conditions are equivalent:

1) cards ■» 3n - 2,
2) G„ is different from the graph of cube Q3 and cardS2 +

+ cardS3 • 2n - 4,
3) Gn is planar and convex simple.
THEOREM 7.3. [19]. A planar graph G =* (X,(7) with cardX i 5 

different from the graph of octahedron F3 is convex simple if and 
only if it contains at least one vertex of degree £ 2, and every 
such a vertex has a unique dual vertex in G (a vertex z is dual 
for x provided O(z) ■* O(x)) .

Now we are going to describe convex simple planar graphs. 
Denote by T any tree with at least three vertices, and let T0 be 
a copy of a subtree formed by all the interior vertices in T. 
Denote by L(T,T0) the graph containing T u T0 with the following 
additional edges) any vertex z in T0 is adjacent to all the 
vertices in 0(z) and only to them (here zer is a copy of z and 
O(z) ■ (v c T t v is adjacent to z }) .

THEOREM 7.4. [18]. For any planar convex simple graph G

there is a tree T such that G = L(T,T0) .
In connection with the previous theorem, there appears the 

problem to describe those trees T for which th? graph L(T,T0) is 
planar and convex simple.

THEOREM 7.5. [19]. For any tree T with at least three

vertices, the graph L(T,T0) is convex simple.
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The class of all trees T for which the graph is
planar is not described. We know only one particular result.

THEOREM 7.6. [19]. If a tree T has at nost countable number 
of vertices, then the graph L(T,T0) is planar.

We are interested to know about the uniqueness of the 
representation of a planar convex simple graph in the form 
L(T,Tq) for a suitable tree T.

THEOREM 7.7. [19]. For any trees S and T, the graphs L(S,S0) 
and L(T,T0) are isomorphic if and only if S and T are isomorphic.

The obtained results permit a description of a more wide 
class of graphs. By definition (see [11]), a graph is called 
convex quasisimple if every proper convex set in generates a 
complete subgraph. In other words, a graph is convex quasisimple 
if the diameter of every proper convex vertex-set in G is at most 
one.

THEOREM 7.8. [19]. A planar graph G is convex quasisimple 
if and only if it contains no convex vertex-set inducing one of 
the following subgraphs:

THEOREM 7.9. [17]. Any planar convex quasisimple graph G
contains a convexly simple subgraph.

Let Tbe a tree with at least three vertices. Denote by J 
the family 'of graphs Robtained from by the addition of some
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new edges in correspondence with the following rules:
1) the distance (in T) between the ends of any new edge 

(x,y) is equal to two,
2) any new edge is incident to at least one end-vertex

of T,
3) for any end-vertex of T, its degree in R is at nost 

three,
4) if one of the vertices of a new edge (x,y) is interior 

for T and a vertex z lies between x and y in T, then deg^z - 2,
5) if T is not a star, then R contains no sinple circuit 

containing the end-vertices of T only,
6) if T is a star and R contains a sinple circuit containing 

the end-vertices of T only, then this circuit contains all the 
end vertices of 3*.

Let T0 be a subtree, consisting of all the interior vertices 
of a tree T. For any graph R c R(T), denote by L(R,T0) the graph 
containing R, T0 and the following edges: every vertex z « T0 is 
adjacent to all the vertices in C(z) , where z c T means the 
copy of z and OCz) - {v e T t v is adjacent to z>).

THEOREM 7.10. [19]. For any planar convex gumalalmplm graph 
G with cardX 2 4 dit tarant from complata graph X4, there is a 
tree T and a graph R e M(T) such that G - L(RfT0).

THEOREM 7.11. [19]. For any tree T with at least three
vertices and for any graph R e R(T), the graph L{R,T0) la convex 
quaaiaimpla.

THEOREM 7.12. [19]. If a tree T has at most countable number 
of vertices, than for any graph R < R(T) tha graph L(R,T0) la
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planar.

THEOREM 7.13. [19]. Let S and T be some trees, Q e R(S) and 
R € R(T). The graphs L(Q,S0) and L(R,T0) are isomorphic if and 
only if S and T are isomorphic.

8. Characterisation of hypereubes and Manning graphs by 
■•ana of convexity. Let s be any set. The graph of hypercube H(S) 
is defined as follows (see [28]): the vertex-set of H(S) consists 
of all finite subsets in S (the empty set inclusively) ; two 
vertices A, B in H (S) are adjacent if and only if the symmetric 
difference (A \ B) u (B \ A) of the sets A, B is a one-point set.

Below we assume that any graph isomorphic to a graph of 
hypercube also is called a graph of hypercube. Observe, that for 
a finite set 3 with cards -  k, H(S) is the graph of Jc-dimensional 
cube.

It is not hard to prove that the function 
d(A,B) - card[(A \ B) v (B \ A) ] 

is the induced metric on S(S); i.e., d(A,B) is equal to the 
number of edges in a shortest path in H(S) with the ends A,B.

A graph G is called median if for any vertices x, y, s « X 
their "median" [x,y] n [y,s] D [x,z] consists of a vertex.

THEOREM 8.1. [60]. For a graph G the following conditions 
are equivalenti

1) G is a hypercube,
2) G contains no three-vertex convex set, and any two 

disjoint convex seta in G are separated by complementary half­

spaces,
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3) G contains no three-vertex convex set, and any two 
vertices in G are separated by complementary half-spaces,

4) G contains no three-vertex convex set and convexity in 
G satisfies cone condition,

5) G is a median graph and contains no three-vertex convex
s e t .

For proof of Theorem 8.1 we use the following lemmas.
LEMMA 8.2. [4]. For a bipartite graph G the following

conditions are equivalent:

1) G is a hypercube,
2) every Interval [x,y] in G generates a hypercube.
LEMMA 8.3. [54]. Any median graph G is bipartite. Every

Interval [x,y] in a median graph G is a convex set.
The relation between hypercubes and median graphs is shown 

in the following lemma.
LEMMA 8.4. [4]. A graph G is a hypercube it and only it it 

is median and any two vertices in G have either two common 
adjacent vertices or have no common adjacent vertices.

Let {Su>, e e l  be a family of pairwise disjoint sets. The 
Hamming graph H is defined as follows: the family of vertices in 
H consists of all finite subsets A <= u Sw such that card (A 0 SH) 
£ 1 for each e e l ; two distinct vertices A, B in H are adjacent 
if and only if the symmetric difference (A \B) u (B \ A) of the 
sets A, B is contained in one of the sets S^3 e e l .  It {SM> is 
a finite family of finite sets, then H is the Cartesian product 
of complete graphs.

It is easily seen that for any vertices A, B in the Hamming
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graph H, the induced distance d{A,B) looks as

d(A,B) = £  sign card ( [ ( A \ B) u (B \ A)] n Su) .
<4

Recall that for any vertex x e X and for any set M c x, the value 
d(x,M) = min{d(x,u) : u c M} is called the distance from x to M, 
and the set

NX(M) = {z e M i d(x,z) - d(x,M)} 
is named the metric projection of x on M. For z € M, put 

Wm (M) « {x e X : NX(M) - {*>>.
A set M c x is named Chebishev provided Nx(Jf) is a one- 

vertex set tor every x c X.
THEOREM 8.5. [80]. A graph G la a Hamming graph it and only 

if the following conditions are fulfilled:

1) every three-vertex set in G Induced a complete subgraph,
2) every clique in G is a Chebishev set,
3) for every clique C in G and for every vertex z « C, the 

set WS(C) is convex.
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REZUMAT. - Medii şi convexitate. In lucrare ee conaideră o
noţiune de convexitate în raport cu o medie de puteri, numiţi 
r-convexitate. Se generalirează inegalitatea lui Hermite-Hadamard 
pentru funcţii cu inversă r-convexă aşa cum în [3] s-a procedat 
pentru funcţii cu inversă logaritmic convexă.

1. Introduction. In this paper we consider a notion of 
convexity with respect to a power mean called r-convexity. We 
generalize Hermite-Hadamard's inequality for functions with r- 
convex inverse. Then we apply it for the study of the monotony 
of the "relative growth" of generalized logarithmic means. We try 
to analyse so the position of the mean values of two numbers 
between those numbers.

As moust of the definitions and results which we need may 
be found in the book of P. S. Bullen, D. S. Mitrinovid and P. 
M. Vasid [1] we content ourself to refer mainly at it.

2. Means. We shall use in what follows some means of two 
positive numbers 0<a<b. They all belong to the familly of 
extended mean values defined by K. B. Stolarsky (see [1], p.345) 
for r+s, rs+0 bys

Era (a, Jb) - (.(r/s) (bB-aB) / (br-ar) ) <*-r>
the definition for other values being obtained by taking limits. 
As special cases we have the power means:

P r = E r,2r for r ’*°

* Polytechnic Institute, Department of Mathematics, 3400 Cluj-Napoca, 
Romania
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P r = S r , 2 r  for r#0

and
P0{a,b)-G{a,b)-{a-b)1*2

then the generalized logarithmic means defined by:
Lr=.E1#r+1, for r*-1, r#0

but
( a ,  b ) < ~ L ( a ,  b )  = ( b - a )  / ( logb-loga)

and
L 0 ( a , b ) ~ I ( a , b )  =  ( l / e )  ( t P / a * )  .

Also we use weighted power means defined for o£t£l by:
Prt(a,b) = (tar+(l-t)Jbr)1/r if r#0

and
P o t  (a , b )  =Gt (a, b )  - a 3 4* 1"*.

For t—1/2 we get the usual power means and for r—1 the weighted 
arithmetic mean Prt=At.

Among the properties of these means we are interested in 
their monotony with respect to the parameter. So we have (see 
[1], p.159) for r<s:

Prt(a,b)<Pat(a,b), 0<t<l (1)
and also (see [1] p. 347):

Lr(a,b)<La(a,b). (2)

3. r-Convexity. Let us consider the following notion: we 
said that the positive function f:[a,Jb]-*K is r-convex if: 

f(At(x,y))zPrt(f(x),f(y)), Vx,ye{a,b], te[0 ,l].
As we can remark, this notion differs from a similar one given 
in [1] called r-mean convexity.
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From (1) we deduce that if f is r-convex then it is also s- 
convex for every s>r. Also from the definition we deduce that / 
is r-convex if and only if: a) fr is convex, for r>0; b) log/ is 
convex, for 0 and c) fr is concave for r<0. Thus 0-convexity 
is in fact logarithmic convexity.

The paper [3] deals with functions which have logarithmic 
convex inverse. We consider also functions with r-convex inverse. 
Let us denote by Kz [a,b]the set of positive, strictly increasing 
functions with r-convex inverse defined on [a,b]. We have:

Kzla,b] c tf'ta.jb] , for r < a . (3)
It is also easy to check the following:

LEMMA 1. If the positive function f is twice differentiable 
then it belongs to Kz[a,b] if and only if:

f'(x)> 0 and 1+xf" (x) //' (x)£r, Vx€[a,b] (4)
Integrating the differential equation obtained from (4) we 

get functions which can be considered to be r-linear. As a 
special case we have:

LEMMA 2. The function fr defined by:

fz(x)

has the properties:

x r-a 1 , r > 0logx - loga , r » 0 
a r - x r , r < 0

(5)

fz (x) i0 , fz(x) >0 , 1 +xfz(x)/fz(x) - r , V xia .

4. Hermite-Hadamard•s inequality. For a function /:[a,b]-»S 
consider the integral arithmetic mean defined by:
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Ait ta, b) = f*f(x) .

Hermite-Hadamard's inequality (see[l], p.30) gives for a 
concave function f the evaluation:

( f(a)+f(b))/2^A(f;a,b)<f((a+b)/2). (6)

Also H.-J.S e i f f e r t proved in [3] that for a function 
from /£[a,i>] holds:

A(f;a,b) <,f ( I {a,b) ) . (7)
We remark that from (2) it follows:

I(a,b)=L0(a,Jt>)<L1(a/Jb)~(a+Jb) /2
thus (7) improves the right side of (6) for this special case. 
We can do the same thing for functions from with r*0.

In the proof of the relation (7) it is used the following 
result, proposed as a problem by R. E u  1 e r in [2]:

\l/n
lim TT (c+(i-l)/u)

\i-1
I(c, c+1) , V c>0 . ( 8 )

The expression from the first member of (8) is a geoMtric mean 
(of n numbers) . We can prove a similar relation to (8) for an 
arbitrary power mean.

LEMMA 3. If r+0 and c>0 then:

(

lim
I3—

Lr(c,c+1) . (9)

Proof. If r>0, the mean value theorem of the 
differential calculus applied to the function (x)**(x+l)r+1, x>0, 
gives:
( (x+l)r+1-xr+1) / (r+1) < (x+1) r< ( (x+2 )r+1- (x+1)r+1) / (r+1) . (10)
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For n> 1/c, we get by addition:

< Lr(c, c+1)

hence (9). For r<0, r#-l, we have to do minor changes in the 
proof, while for r*-l we must replace (10) by:

log(x+2) -log(x+l) < (x+1) -1<log(x+l) -logx.
Finally we remark that the case r—0, excepted from (9), is 
contained in (8).

Replacing (8) by (9) in the proof of (7) given in [3] we
get:

THEOREM 1. If the function f belongs to KÏ [a, Jb] then:

A(f;a,b)*f(Lr(a,b)). (11)
Let us remark that the function fr defined by (5)

verifies:

A(fr;a,b)-tr(Ljr(a,b)). (12)
We can improve also the left inequality from (6) for the 

same class of functions.
THEOREM 2. If the function f belongs to JCj[a,Jb] then:

A(f}a,b) i . ..
i(/(a) (Jb r-L/ (a, Jb).) +f (Jb) (Lf (a,b) -a1)) / (b z-a z)' 1

if r+0and

A(f;a,b)z(f(a)(L(a,b)-a)+f (b (b-a) (14)
if r«0.

Proof. For tc [a,Jb] we have:
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f(b)-f(a) f (a) + f(t)-f(a) f(b)-f(a) f(b) . (15)

So, if r>0, (f_1)r being convex:

tr f(b)-f(t) . f(t) -f(a) h r
f(b)-f(a) f(b)-f(a)

or

fit) i f(b)-f(a) tfl b z£{a)-a'f{b)
b z-a1 b r-a1 '

It is also valid for r<0. By integration we get (13). For 
r-0; log(/-1) is convex and (15) gives:

log t s. f(b)-f(t) , f(t) -f(a) 
f(b)-f(a) 9 f(b)-f(a) log b .

Isolating / (t) and integrating we get (14).

5. The relative growth. We consider the following 
expression:

Dz(a,b)
Lz (a,b)-a 1

b r-a r 
b-L(a,b) 

b-a '

, r*0 

r=0 .

which we call relative growth of Lr. It is easy to see that: 
0ZDr(a,b)*l, Vr; D1(a,b)~1/2.

THEOREM 3. If r<a and 0<a<b then:
Dr(a,b)ZDt(a,b). (16)

Proof. As the function fr given by (5) belongs to Kîia.b) 
and r<a, from (3) it follows that it is also in /f*[a,.fc] and so 
(12), (13) and (14) implies:

A(fr;a,b)-fr(Lr(a,b))ïfr(b)DB(a,b)

SO
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which gives (16). In fact we must consider separately the cases: 
0 <r<s, 0 =r<s,r<s=0 and r<s<0.

Remark 1. From (2) it follows that the evaluation given by 
(11) is improved by decreasing the value of the parameter r. The 
same conclusion is valid for (13) and (14) if we take into 
account (16). On the other hand, from (4) we deduce that for a 
strictly increasing and continuously twice differentiable 
function, there is a sufficiently large r for which (11) and (13) 
be valid.

Remark 2. An inequality similar to (16) for power means was 
proved by A.J.Goldman (see [1], p.203). On the other hand we 
remark that (16) contains many inequalities between means. For 
example, for r>l it is equivalent with Lr(a,Jb) iPr(a,b) and for 
0<r<l it gives Lr(a,b)£Pr(a,b). For r<0<a we get:

Ertr+1(a,b)iL(a,b)iEatB+1(a,b).
All these relations may be found in [1]. He also have:

Lrfr+1(a,b)L(a,b)iG3(a,b), for r<-1 but the converse 
inequality for -l<r<0.

Remark 3. From 0£Dr(a,b) 51 we deduce that it may be 
preferable to use instead Dr the differences 1/2, that is:

L / (a, b)-Pf(a,b) ^  > A(a,b) -L(a,b) r=0
b r-a1 ' b-a '

where A-A^j. These are between -1/2 and 1/2 and are decreasing 
upon r, as Dr is,

51
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THÉORÈMES DE POINT FIXE DANS LES ESPACES AVEC 
MÉTRIQUE VECTORIELLE

FLORICA VOICU

Reçu: (a 20 Decembre, 1991 
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REZUMAT. - IsorsM d* punct fix in spaţii cu natricl vectorială.
în această lucrare se stabilesc trei teoreme de punct fix in
spaţii cu metrică vectorială analoge teoremelor de punct fix pe
spaţii metrice demonstrate in lucrarea [3].

1. Notions préliminaires
DEFINITION 1.1. Soit X un ensemble ordonné. Une suite 

{rn}neN d'éléments de X (o)-converge vers un élément xeX s'il 
existe deux suites {aJ]}ncN et {i>n}neN d'éléments de X, telles que 
aa<Lxn<,bn (V) neN et a„tx, bnlx.

Nous désignons par x *» (0) - limxn ou xn SL x .
DEFINITION 1.2. Un ensemble ordonné X s'appelé ensemble 

réticulé si pour tous x,ycX (donc aussi pour tout nombre fini 
d'éléments) il existe xVy et xAy.

DEFINITION 1.3. Un ensemble réticulé X s'appelle ensemble 
réticulé relativement complet si pour tout sous-ensemble 
dénombrable borné de X il existe la borne supérieure et la borne 
inférieure.

DEFINITION 1.4. On appelle espace linéaire complètement 
réticulé tout espace linéaire ordonné qui est un ensemble 
réticulé relativement complet.

DEFINITION 1.5. Un espace linéaire ordonné X est appellé 
espace arcbimédien si A —  x *> O pour tout x>0, xeX.

neN ^
DEFINITION 1.6. Dans un espace linéaire réticulé archimédien

* C i v i l  E n g i n e e r i n g  I n s t i t u t e ,  B d .  L a c u l  T e i  1 2 4 ,  7 2 3 0 2 - B u c a r e s t ,  
R o u m a n i e
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X une suite {xn}niN d'éléments de X p-converge (ou converge avec 
régulateur) vers un élément x, s'il existe v>0 (appellé 
régulateur de convergeance) tel que: pour tout nombre e>0 il 
existe nceN de manière que:

|xn-x| i ev si n>nt 
On note x = (p) - limx„ (ou xn -ft. x)

ASi x = (p) - limx„ alors x = (0) - limxn
U ilDEFINITION 1.7. On appelle espace régulier tout espace 

linéaire réticulé archimedien tel que: tout suite (o)-convergente 
est (p)-convergeante.

2. Définitions et notations. Soit X un espace linéaire 
complètement réticulé et Z+e un ensemble. On définit une métrique 
vectorielle d: ZxZ->X et pour Acz on note le diamètre de A par 
i(A) - sup{d(zltz2)/z1,z2eA}.

DEFINITION 2.1. On dit que l'ensemble BcZ est d-fermé si 
tout {an}n<Ni V s - zn z implique zcB.

(il zB SL z — d(zn, z) SL 0 )
DEFINITION 2.2. Soit Bcj?. Définissons par:

B = izez  /  z-d-limz,. , zn€B }A “* *

LEMME 2.1. Si Z est d-complet la suite {Bn}l, BflcE,
B„ d-fermé et S(Bn)iO alors il existe z0eB unique tel que

‘ u ” }

DEFINITION 2.3. Soit l'ensemble Z+e d-complet. Une 
application f: Z-*Z s'appelle application de Picard s'il existe 
z*€Z telle que Fix(f) - (z*> et la suite {fn(ao)^n«N c*~converge 
vers z* pour tout z0tZ.

DEFINITION 2.4. Soit Z+e un certain ensemble. Une 
application f:Z-*Z est une application de Janos si
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fl f n(Z) = {z*} où {z*} = Fix(f) neN

DEFINITION 2.5. Soit Z*e un certain ensemble, f,fni Z~*Z, 
neN. La suite est assimptotiquement uniformément convergente 
(désignons par fB zz f) s'il existe v>0, veX tel que pour tout 
e > 0  il existe n0(e), m0 ( e ) c N  tels que d(fB (z),fm(z)) < tv pour 
tout n>n0, m>m0 et zeZ.

3. Théorèmes de point fixe dans les espaces avec métrique 
vectorielle.

THÉORÈME 3.1. Soit X un espace linéaire complètement 
réticulé, Z+0 d-complet, f: Z-*Z et $ : X+-Of+. Nous supposons que:

(i) «p est l et <p”(t) -°- 0 pour t > 0 et a - •
(c'est - à - dire: <p est function de comparaison)

(ii) 6 (f (A) ) £p (6 (A) pour tout AcZ tel que f(A) <=A
(c’est - à  - dire: f est (6,9) - contraction généralisés) 
Alors :

(a) f est application de Picard
(b) f est application de Janos

Démonstration a) Soit Ax « £{2) , A2 ■ f (Ax) , .... An.
An+lcAn'

, Aa+1 “ f (A„) 
et f(An)cAn pour tout neN.Alors nous avons :

D'autre part:
6 (Aml) «ô ( 7 T X J )  (f (A„) ) £<p (6 (A„) ) (fi (A^) ) sC. . . ipn(fl (Z) ) -Q.0

Donc 6 (An+1| iO. Alors d'après le_ LEMME 2.1 il existe z*eZ 
unique tel que fl A„-{z*} et /fl AJ c flAn , donc Fix(/)->{**}. 
Soit zQeZ et B„n-1{fan(z0) , f"*1 (z"V, . . . , z"*) . Comme 
f(B„) - {fn+1(z0)tf'1+2(z0)t ...,z‘} - Bn+1cBn et 
6(Bn) « 6(f(Bn))£f(6(Bn)) il résulte que «(Bn)4 0 pour n-*>, 
c'est - à - dire fn(z0)-+z*, n-<*0

b) z*efl f n(Z) c fl a „ = (z*) et donc fl f D(Z) = {z*} q.e.d.
neN n-1 * neN

THÉORÈME 3.2. Soit X un espace linéaire complètement 
réticulé Z<*0 d - complet, f: Z->Z une application ayant la 
propriété suivante: il existe nkeN* tel que fn* soit une (6,f) 
contraction généralisés.
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Alors:
a) f est une application de Picard
b) f est une application de Janos

Démonstration (a) + (b). Dans le théorème 3.1. nous avons 
Fix (fn*) = {z*} et b(f"k(Z)) iO pour k-*o D'autre part:
Z'of (Z) of2 (z) o. . . =/”*(Z) o, . . donc Pj f"k(Z) ={z*} q.e.d.

Jl-1
THEOREM 3.3. Soit X un espace linéaire complètement réticulé 

et régulier, ZA1 d - complet et f, fn: Z-*Z neN. Supposons que:
i) f est une application de Picard (On note Fix (f) = {«*>)
ii) fn £  f
Hi) Fix (fn)*e pour tout neN (On note Fix (fn) « {z^})
Alors: z’ JL z’

Démonstration. Nous avons:

d(z'B.z') -d(fn(z') ,z')-d(f?(z*) ,z-)i
id(f„(z*) , f"(z'0) ) +d(fa(Zn) , z*)

D'après (ii) il en résulte qu'il existe v>0, veX tell que pour 
tout e>0 ils existent n0(c), m0(e)eN: 
d(f"(zB),fn(z„)) < S-v quel que soit n>n0(c); m>m0(t).AD'après (i) il en résulte que pour tout neN nous avons:
d(fm(zB) , z') JL 0 , pour m-*«.

L'espace X étant régulier il existe un régulateur de 
convergeance v£v tel que: (V)e>0 il existe m(e ,n) im0(e ) tel que: 
d(f"(z’),z*) s ± w  (V) imm(t,n)

Donc on obtient:
d(z*,z*) s 4 V+-|- v t ci* pour tout n^n0(e)

,  A  ADonc: z„ JL z*
q.e.d.
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REZUM AT» -  O nouă seria Fourier exponenţial-Laguerr# pentru 
H-funcţiile lui Fox. î n  a c e a s t ă  n o t ă  e s t e  p r e z e n t a t ă  o  n o u ă  eerie 
F o u r i e r  e x p o n e n ţ i a l - L a g u e r r e  p e n t r u  H - f u n c ţ i i l e  l u i  F o x ,  i n  d o u ă  
v a r i a b i l e .

1. Introduction. The object of this paper is to introduce 
a new class of double Fourier Exponential-Laguerre series for 
Fox's H-function [4] and present one double Fourier series of 
•this class.

In what follows for sake brevity:

n p m

j~n*X
fj*B.

The following formulas are required in the proof: 
The integral [l,p.704,(2.2)]:

j^*cos2ux|sin-j| z|sin-Şj ** <ap,
fq)

, nz n+l
1 V "  **p+2, «7+2

(l-w1-2u,h) , (ap, ep) , (l-w1+2u/h) 
( ~ - w l f h ) , (b Qf f g) , (1 - w x, h)

( 1 . 1)

where h>0, A£0, B>0, |argz|< 1/2Bn, Re[l-2wJ*t2h(l-a^)/e^]>0,
(j)*8!9» • • ,n) •

The integral [2,p.711,(2.3)]:

* Department of Mathematics, University of Bahrain, P . O . B o x  32038, Isa
T o w n ,  Bahrain
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/;y w**ae-yLt(y)HÏ:^zy‘ <ap,e p)
(bç'fj dy-

_ (-1) v ujn,n*2 
“ V | n P*2,q*l Z

(-w2-a,k) , (-w3,k), (ap, ep) 
(bg, fq), ( v-w2,k), ( 1 . 2 )

where h>0, A^O, B>0, |argz|<l/2Bw, Re[w2+a+Jcbj] >-l (j*l,2,...,m), 
Rea>-1.

The orthogonality property of Laguerre polynomials [3,p.292- 
293, (2) & (3)]:

f“x ‘e-*L*(x)L*(x) dx Jo
0, m+n, Rea>-1;
r<a+n+l) _  _ 0_ _ . n— ------ — , m=n, Rea>0.ni

(1.3)

The following orthogonality property:

f* eilmxcos2nxdxJo

0, m+n
n
T  ' m=n+0

m=n~ 0

(1.4)

2. Double Fourier Exponential-Laguerre series. The double 
Fourier Exponential-Laguerre series to be established is

(sin-| )'2’' V ,,f£;£ z(sin-j) ~2l>y * (ap,ep) _
(bq,fq)\-

2
vT5T E Er*-« t-o

(-l)eT(a+t+l) e2i**L • (y) ( 2 . 1 )

rrm*l,n*3X Up*4 ' 3 Z

(l-w1-2r,h) , (-w2-a,k), (~w2,k) , (ap/ ep) , (l-w1+2r,h) 
(-i-W^h), ibq.fq), (1 -wlfh), (t-w2,k)

valid under' the conditions of (1.1), (1.2), and (1.3).
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Proof. To establish (2.1), let

fU,y)=<sin-£A z(sin-j) ~2hy k (ap,ep)

* E  E \ te2J% ‘(y> • <2-2)
r —»  e-o

Equation (2.2) is valid, since f(x,y) is continuous and of 
bounded variation in the region 0 < x < n, o < y < «o.

Multiplying both sides of (2.2) by y*e'yLv(y), integrating 
with respect to y from o to «, and using (1.2) and (1.3), we 
obtain

(-1) r(sin-|) ~2w' m, n*2
[p+2, q*2 z(sin— ) ~2h 2

(-w2- a , k ) , (w itk ) , (ap,ep) 
(bq. fq) , (v~w3,k)

- Az V.r(a + v+ l)  e2izx . ( 2. 3)

Multiplying both sides of (2.2) by cos2ux, integrating with 
respect to x from 0 to » and using (1.1) and (1.4), we get

AU, V
2(-1)v

y/ (n ) T(a + v+l) (2.4)

x H'p+4, q* 3
(l-w1-2u,h) , (-w2-a,k) , (-w3,k), (ap, ep) . (\-wx+2u,h) 
(±-wx,h), (bq, fq), (l-wx,A), (v-wa,k)

except that A0>v is one-half of the above value.
From (2.2) and (2.4), the formula (2.1) is obtained.

Since on specializing the parameters the //-function yields 
almost all special functions appearing in applied mathematics and 
physical sciences. Therefore, the result presented in this paper
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is of a general character and hence may encompass several casses 
of interest.
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REZUMAT. - Razele de aproape convexitate ale unor funcţii. î n
l u c r a r e  s i n t  d e t e r m i n a t e  r a z e l e  d e  a p r o a p e  c o n v e x i t a t e  a l e  
f u n c ţ i i l o r  s i n u s  i n t e g r a l  ş i  s i n u s  h i p e r b o l i c  i n t e g r a l ,  
f o l o s i n d u - s e  c o n d i ţ i a  d e  a p r o a p e  c o n v e x i t a t e  a  l u i  K a p l a n .

1. Preliminaries. Let / be an analytic function in the unit 
disk U . The function / is said to be convex if it is univalent 
in U and if f (U) is a convex domain. The function f is said to 
be close-to-convex if there is a convex function f on U such that 
Re(f1 (z)/<p* (z) ) > 0 for zeU. Using a well known criterion of
univalence, due to Ozaki and Kaplan, it follows from definition 
that every close-to-convex function is univalent in U. The 
following theorem is also due to Kaplan and gives a necessary and 
sufficient analytic condition for close-to-convexity.

THEOREM 1 [1]. An analytic function f in U is close-to- 
-convex if and only if f9 is a nonvanishing function in U and

for every rc(0,l) and 0^t1<t2<2Tr.
For a function / which is analytic around the origin we 

define its close-to-convexity radius as being the radius of the 
largest disk centered at 0 in which f is close-to-convex. It is 
obvious that the problem of finding the close-to-convexity radius 
of f is the same with that of determining the maximum value of

University of Cluj, Faculty of Mathematics, 3400 Cluj-Napoca, Romania
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the real and positive parameter A for which the function 
g(z)=f(Az) is close-to-convex in U.

Finding the close-to-convexity radius of a function is 
important as an independent problem and also because in this way 
is obtained a lower bound for the radius of univalence.

2. Main problem. We deal in this note with the problem of 
finding the close-to-convexity radii for the functions

Si (z) = sin t dt , z e C Jo t

Shi(z) = f * t dt , z e C Jo t

Note first that these functions have the same close-to- 
convexity radius, denoted by r0. This becomes clear from the 
relation Shi(z)»Si(iz)/i. The nonvanishing condition for the 
derivative implies that r0£ir.

Letting A “ {(t1#t2) iOZt1<t2<2n} Theorem 1 applied to these 
functions now gives

fe* Re (z ctg z) dt > -n (1)

I2(tx,t2) - fe,Re(zcthz)dt > -n
J‘i

(2)

where z«reat, for every r « (0,r0) and (t1,t2) c A. 
If we put
x«*x(t)“rcos(t) , y-y(t)**rsin(t) 
fiTi(t)”ysh(2y)+xsin(2x), g2 (t)=xsh(2x) +ysin(2y) 
hjJtJ-ReCz ctg z)-gx(t)/(ch(2y)-cos(2x))
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h2(t)=Re(z cth z)=g2 (fc)/(ch(2x)-cos(2y)) 
then the functions gx,h1,g2,h2 are even, periodical of period n 
and verify the relations

gj(t)-gjln-t) , hj(t)-hj(n-t), sgn hy-sgn gjt j-1,2 (3)
g2(t)^9x(t-n/2), h2(t)-h1(t-v/2).
Using the well-known inegualitis sin(a)/a <, l£sh(b)/Jb, 

cos(a) £ l^ch(Jb) , a,beR* and the sign of g[ if follows that gx 
increases on [0,w/2], decreases on [w/2,w], and rsin(2r) <, 
i g1(t) ^ rsh(2r). Consequently relations (1), (2) are fulfiled 
for r £ tt/2 because gj and hj are positive, so r0 e (tt/2,tt] -

Using the sign of hx it follows that the minimum points 
(t1,t2) of Ix with respect to T  verify tx e {0,w-t0,2ir-t0>, 
t2 e {t0,»r+t0,2ir> where t0 * t0(r) is the unique root of the 
equation gx(t) - 0 situated in [0,ir/2]. Aplying relations (3) we 
find

Ix (0, t0) -Ix ( 2ir-t0,2w)-Ix (n-t0, *+t0) /2<0
Il(ir“to,2»r)“Ii(0,ir+t0) .
So the minimum points (tx,t2) of J1 with respect to I  

satisfy the relation (tlft2) e{ (0,w+t0), (jr-t0,ff+t0) , (0,2tr) } . We 
distinguish two cases:

a) If lx(0,n-t0)^0 then I1(fr-t0,ir+t0)iI1(0,Tr+t0)iI1(0,2»r) so 
min{I1(t1,t2) : (t1,t2)€À>-min{I1(t1,t2) :(t1#t2)e Sj-Jj (ir-t0,w+t0).

b) If l1(0,rr-t0)<0 then I1(0,2w)<I1(0,ir+t0)<I1(w-t0,ir+t0) so 
min{I1(t1,t2) : (t1,t2) e Ï  }“inf{Ij(tj,t2) ! (tj,t2)€A}“Ij(0,2ir).

Consequently, with a previous use of relations (3), the 
close-to-convexity condition (1) for the function Si and for a 
fixed r becomes
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(0, t0) >-ff/2 and I1(0,»r/2)^-Tr/4. (4)
Consider now the case of the function Shi. Denoting by 

to = to(r) the root of the equation g2(t)ss0 situated in [0,tr/2] we 
have by (3) that t0 + to=n/2. Using again (3) and proceeding in an 
analogous way as before it follows that the minimum value of I2 
with respect to A may be

J2<to,w-to) - 2J2(to,n/2) -2J1(0,t„) 
or

J2 ( to, 2n-to) « J2(0,iO +2I2(tô.n/2) * 2 [ Ix (0, t0) +IX (0, it/2) ] .
So, the close-to-convexity condition (2) for the function 

Shi and for a fixed r becomes
-Ti(0,t0)>-»r/2 and 1^0,t0) + J1(0,tr/2)>-w/2. (5)
It follows now, from (4) and (5), that the following 

conditions are fulfiled when r equals r0:
■Ti(0,t0)— ir/2 or Ix(0,w/2) —  tr/4 (6)
Jl(0,t0)— jt/2 or IjJO.Ùq) + I1(0,ir/2)«— n/2. (7)
Presuming that J1(0,t0)>-w/2 for r-r0 we obtain from (6) and 

(7) that J1(0,tt/2)=-7t/4 and 1^(0,^) + I1(0,jr/2)=-tr/2, so 
J1(0,t0)>l1(0,n/2)=’-ir/4 which is impossible because is
negative on [o,t0] and positive on [t0,w/2].

Finally, the close-to-convexity radius r0 of the functions 
Si and Shi is the smallest root, situated in (n/2,n], of the 
equation

J, (0, t0(r) ) , dc , _ «Jo ch(2y) -cos (2.x) 2

where x-rcoa(t), y=rsin(t) and t0(r) is the unique root of the
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equation ysh(2y) + xsin(2x) = 0 situated in (0,tt/2) 
An approximative value obtained for r0 is r0~3.

_______________ T H E  C L O S E -T O - C O N V E X I T Ï  R A D IU S  O F  SOME F U N C T IO N S

R E F E R E N C E S
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GENERALIZED PRE-STARLIKE FUNCTIONS

S.R.KULKAKNI* and U.H.NAIK*

Received: Hey 7, 1991
AMS subject classification: 30C45

REZUMAT. - Funcţii praatalara ganaralisata. Lucrarea ae ocupi cu 
funcţii prestelare cu mai mulţi parametri, de ordinul a ţi tipul 
fl. Slnt stabilite unele inegalitiţi privind coeficienţii acestor 
funcţii.

Introduction. A function f(z) normalised by /(0)-/'(0)-1-0 
is said to be in the class S if it is analytic and univalent

se
in the unit disc £7~{z: |z|<l>. A function f (z) -z+J^ anz a is said 
to be in the class of functions starlike of order a, 0sa<l, 
denoted by S*(a), if

Further we say that f in S belongs to the class S(a,fi) if 
f satisfies

zf'(z)
f(z)

zf'(z)
f(z) +l-2«

<P

where &e(0,l], 0£a<l.
The convolution or Hadamard product of two power series

•e «a
f(z)“J^anz n and g(z)*J^hnz n is defined as the power series 

ji- 0  •» n-o
f*g(z) a„b„z ” . A normalised analytic function is said to be 

in the class of functions prestarlike of order a and type Ô,

* D e p a r t m e n t  o f  M a t h e m a t i c s , M i l l i n g t o n  C o l l e g e  S a n g l i ,  M a h a r a s h t r a  S t a t e ,
I n d i a
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0£a<l, Be(0,1], denoted by R%, if f*SatReS(a,6) where Sa B =z(l- 
6z)-2<1_a). For 8=1 we get the class Ra introduced by Ruscheweyh 
[ 2 ] .

Main Results. He need the following lemma due to Kulkarni 
S.R. [1]:

LEMMA: Let f be in S(a,3), then for z in U

J  zf'(z) L  1 -P  ( l - 2 « )  
I f(z) J 1+P

( 1 )

He also need,
LEMMA: Let

Sm p«z(l-Pz) *2<1“B) »z+J^ y (n, a, P) z ”, then' n-2

n
n  tp (ic-2«) ]

Y (n,a, P) = ^ — .— ţţ-,---  for n=2,3,4,...(n-1)!

Proof: He have

(2 )

5=z(l-pz)-2<1-“> =

( n 1

.

P  IP(k-2a)]
_n-l1 (n-1)! J

»z+
n-2

II [p (k-2a) ]
Jc-2

(n-l)!
Hence the result follows.



G E N E R A L IZ E D  P R E -S T A R L I K E  F U N C T IO N S

THEOREM 1. Let f be in R? , then

Re{G(z)} > (3)
\

where

K (1-Üz)2-2«J
Proof : Since f is in R% , F=f*SaB belongs to S(a,6)

Re

Re

lzf'(z) \ > 1-P (l-2«) 
\ f(z) I lTÇ

We have
F(z) - f*Sa>B(z) 
zF'(z) - f*z(Sa>B(z)) •

zF'(z)
F(z) +l-2a 2 (1-tt) f*(z (1-P^)'(3~2a>) 

f* (z(l-|iz) )

Hence the result follows.
m

THEOREM 2. If f(z)~ZkY'aDZ n bein R! and
rA

Sa>B - z ( l - B z ) t h e n

1+E  P)k-2_____________
P»-l+g  p»-*Y (*,«tP)

Proof : In view of Theorem 1, we can write 
with |Jb„| <, 1 .
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f * ( z ( l - P z )

Equating the coefficients of 
of (4), we have,

) = 1*T>bnZV /i-1
(4)

z71 in the power series expansion

71-1

Whence the result.
Note : For Ô-1, we get the result of Silverman and Silvia

[3].
ACKNOWLEDGEMENT : My thanks are due to Prof. Silverman and 

Silvia for their valuable discussion.
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ON A PARTICULAR n-a-CLOSE-TO-CONVEX FUNCTION 

TEODOR BULBOACĂ*

Received: July A, 1991
AHS subject classification: 30C45

REZUMAT. - Asupra unor funcţii n-a-aproapo convexa. în lucrare 
sint stabilite cîteva proprietăţi ale unor funcţii n-a-convexe.

1. Introduction. Let A be the class of functions f(z) which 
are analytic in the unit disc U={zeC : |z|<l}, with f(0)=f'(0)- 
-1=0. In [2] the author defined the class Kn a (S), the class of 
functions fcA which satisfy

Re
D nf(z) Dn*if(z)

where akO, £<1 and D nf(z)

>t , zeu

. z ( z n‘1f (z) ) (n)
(1-z)"'1 ’ ■ n I

where (*) stands for the Hadamard product (convolution) of power
SjZ j thenseries, i.e. if r(z)*^rjZJ and s(z)*^

(r*s) (z) ijBjZ* .
Note that the classes Kn a(6) and Zn(6)*Kn 0(6) were studied 

in [2] and the classes Kn a( 1/2) and Zn(l/2) were introduced by 
H.S.Al-Amiri [1] and S.Ruscheweyh [7] respectively.

We denote by ACn(S) (the class of n-close-to-convex 
functions of order 6) the class of functions feA which satisfy

P.c >« , zeu .
D“"gU)

where geZn+1(6) , S< 1 and let Cn a(6) (the class of n-a-close-to-

* University "Aurel Vlaicu",
Romania

Department of Mathematics, 2900 Arad,
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convex functions of order £) the class of functions fcA which 
satisfy

Re (1-g) +, DD'2f(z)
Dntlg(z) Dnt2g(z)

>b , zeu

where çeZn+2(S), S< 1. These classes were introduced in [3] and we
have presented in [4] • some properties by using sharp
subordination results from [5] and [6], and the classes
Cn a (l/2), ACn(1/2) were studied in [1],

••

Let yeC with Re y>-l and by (z) Y+^ z j . In [7],
ĵ i Y+J

S.Ruscheweyh showed that if Re y £ (n-1)/2 and feZn(l/2), then 
f*by e Zn(l/2).

In [4] we presented some new results concerning this 
function and in this paper we will give other new properties of 
the function by(z).

2. Preliminaries. We will need the next lemmas to prove our 
results.

LEMMA A. [4, Theorem 3]. Let y>-l and

If feZn(S) then

60= max {-211 , -22HL-1 * 6 < 1 0 \n+l 2 (u+1) /

f*by€Zn (£ (n. y, 6 ) ) where

j (n,y,6) 1
n+1 _____________________________^(1,2(n+1)(1-Ô),y+2;l/2) -y+n

and this result is sharp.

LEMMA B. [4, Theorem 4]. Let y > -1 and
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max n-y+1
n+2

s fi s 2n-y+3 
2 (n+2)J 2 (n+2)

If feACn(6) related to geZD+i(&) then f*byeACn(6) related to

9**>yeZn+1(6) .

3. Main results.
THEOREM 1. If -1 < y s 0, then f€Zn^ £ L J implies that

^ V z*^(/I'Y '‘H7ij) ' where

1 r(y+3/2) + n-y
(n+l)V* r(y+l) n + 1

and the result is sharp.
Proof. If -1 < y s 0, then max ( n~“ţ , \ and’ ' \n+l 2 (n+1) J n+1

by using Lemma A for 6 - (n-y) /(n+1) and a simple calculus we 
obtain our result.

THEOREM 2. If y i. 0, then /eZ„|-^ZÏ_) implies that

f+h 6Z /2”-VtMr 2 (n+1) /

and tÿiis result is sharp.
Proof. If y i 0 then max/-2^£ ,\n+l 2 (n+1)

in Lemma A and using the well-known relation2 (n+1)

2n-y 
2 (n+1)

F(l,a,a,;z)-l/(1-z) we have 
obtain our result.

2n-y \ _ 2n-y+l
2 (n+1) 2 (n+1)

taking

and we

Taking y - 0 in Lemma A we obtain the next result.
COROLLARY 1. Let — 2-sb<l and f€Z.(6) ; then11
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f*b0€Z„($(n,o,&)) , where

j(n,0,6)
1

n+1
1

n+1

1-2 (n+1) (1-ft) 
2 - 2î ( n * 1)  ( 1 _ 4 )

for 6* 2n+l 
2 (n+1)

2 ln 2 +n for ô = 2n+l 
2 (n+1)

and this result is sharp.
Taking n«*0 ln the above corollary we obtain:
COROLLARY 2. Let 0 s 6 < 1 and fcA with Re -f-/ ^ ->6 , z€CLf  (z)

Then Re ~ -r\) >k ,z€U where F(z) 9

2fl-l - „ 1
2-2>u-*> ' f * 2 

•f,,r *"§
and F(z)-f(a)*h0(z) , and this result Is sharp.

Considering n*0 and 6-0 in Lemma B we obtain the following 
result:

COROLLARY 3. Let 2syS3 and f,geA. Then Re >0. *6/7,
where Refl + JE2_Ji!l |> -i , zeu implies Re >0, z€U

\ g'(z) ) ^  G'(z)

where R e f l !-?■ |>-i , z€U and 
{ Q (z) )

F(z)-f(z)*br(z) , G(z)-g(z)*by(z) .

Taking n-0 and 6-1/2 in Lemma B we obtain the next result: 
COROLLARY 4. Let O^yil and t,gtA. Then 

Re > -jf- , z€U where Re|l + -52_l£L |>o , zeU implies
Ÿ ' ( z )  2 ' ^  g f ( Z ) ) ' ^

Re- {-)■ > —  , z€U where Refl* — )>0 , z€U and 
G'(z) 2 ' ” G'(z) j '
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F.(z)-f(z) *by(z) , G(z) =ff(z) *by (z) .
Considering n=0, y=0 in Lemma B and y=0 in Theorem 2 we

obtain the next two results concerning f*b0 respectively.
COROLLARY 5. Let 1/2 £ 6 < 3/4 and ï,g€A. Then

Re ̂ >ô , zeu where Refl + 2̂) |>20-1 , zeu implies
g'(z) ( g'(z) )

Re F / Z' >6 , zeu where Refl+ zG, ^  |>26-l , zeu and 
G'(z) { G'(z) )

F(z) =f(z) *b0(z) , G(z) *g(z) *b0 (z) .

COROLLARY 6. if fezn{ - ^  then 
and this result is sharp.
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ON A MARX-STROHHACKER DIFFERENTIAL SUBORDINATION

PETRU T. MOCANU

Received: July 5, 1991
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RESUMAT. - Asupra unşi subordonări diferenţiale Msrx-Strohhfccksr. 
Fie A clasa funcţiilor f ,  f ( 0) - /'(O) - 1 « 0, analitice in 
discul unitate U . Fie q  o  funcţie univalent! In U , cu 9(0) « 1. 
Presupunem cS slnt verificate condiţiile (5) şi (6), unde A(s) - 
= 9 (z) +2 9 '(2 )/9 (s). Resultatul principal al lucrării afirmi că 
dacă f e A  şi 2/"(2 )//'(2 ) -< z k "  (2 )/ k ' (2 ) atunci 2/'(x)//(x) -<
-< z k ’ (2 )/Â(2 ), unde k  este definită de (9). Se consideră caşul 
particular k \ z )  =» (elz - 1)/1 unde |l| S 4.

1. Introduction. If the function f with f  (0) * 0 is 
analytic in the unit disc U, then f is convex in U (i.e. / is 
univalent and f(U) is a convex domain) if and only if 
Re[zfM(z)//'(z)+1]>0 in U. Let A denote the class of analytic 
functions f in U, which are normalized by f(0) - 0 and /*(0)“1. 
A function f in A is starlike in U (i.e. f is univalent and f(U) 
is starlike with respect to the origin) if and only if 
Re(zf'(z)//(z)] > 0. If Re[zf'(z)/f(z)] > a, 0* a< 1, then / is 
called starlike of order a. A classic result due to Marx [2] and 
Strohhëcker [7] asserts that a convex function t in A is starlike 
of order 1/2, i.e.

feA, Re zf"t'z). + 1 > 0 (z€U) -  Re -i'}-?-- > UetT) . (1)
f'(z) f(z) 2

If F and G are analytic functions in U and G is univalent
then we say that F is subordinate to G, written F < G, or F(w)<
<G(z), if F(0) - G(0) and F(U) c G(O).

If we let k(z) » z/(l-z), then the implication (1) can be

V n i v z r z i t y  " B a b e ş - B o l y a i " ,  F a c u l t y  o f  M a t h e m a t i c s ,  3 4 0 0  C l u j - M a p o c a ,  
R o m a n i a
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rewritten as

f A zf"(z)  ̂ z£"(z) _ zf'(z)  ̂ zk'(z) 
' f'(z) k'(z) f(z) k(z) ( 2 )

In [4] S.S.Miller and the present author determined certain 
general sufficient conditions on the function k in A, for which 
the implication (2) holds.

In this paper we determine other sufficient conditions on 
k in A, for which (2) holds. For example these new conditions are 
satisfied if k(z) = (e** - 1)/X, where |A| <4. This example is 
an improvement of a recent result of V.Anisiu and the author [1]. 
In particular we offer a new and more simple proof of the 
starlikeness condition obtained in [1].

2. Preliminaries. We shall use the following lemmas to prove 
our results.

LEMMA 1. Let G be an analytic and univalent function on 0, 
with G'(C) * 0, for Ç e dU. Let F be analytic in U, with 
F(0) «« G(0) . if F is not subordinate to G, then there exist 
points Zq e U and Ç e dU, and an m z 1, for which

(i) F(Zq) = G (O and
(ii) z0F>(z0) “ mCG'(0.
More general forms of this lemma may be found in [3]. A 

recent survey on the theory and applications of differential 
subordinations is given in [5].

LEMMA 2.[1]. The radius of univalence of the function 
f(z) = (e* - l)/z is given by r - 4.83... , where r satisfies the 
system
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I ercostsin (r sint-1)+Sin t = 0 
\ ercost [r cos (r sint)-cos (r sint-1) ]+cos t = 0 .

LEMMA 3. If \z\ < r0 = 4.046... , where r0 is the root in 
the interval (0,2n) of the equation r[l + ctg(r/2)] = 2, then

Re(l+— ------I > o.I e'-l z)

Proof. It is well known that

5 _  . 1­'-1 2 fa
2n _2ji

(2 n)!z2n , z <

where B2n are the Bernoulli numbers. Therefore we have

w

e*-l z 2 &
B.2n £.2/1-1

(2/i) !

and we deduce

Re(l+— ------) ke *-l z) 2

Using the well known formula

zi (2 n!
2n_z2n-l

-^Ctg-5 - 1-Y -lhA..2 9 2 £* (2/1) I |z| » r < 2n ,

we easily obtain

Refi + —  ---— ) k A - A  + Actg-i ̂ e*-l z) 2 r 2 2

and from this last inequality we deduce the desired result. 
LEMMA 4.[6]. The inequality
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1 7Re ± z-- > O ex*-l
holds for all z e U, if and only if |X| < r*, where r* = 2.832... 
is given by

(3)

and y0 is the smallest positive root of the equation

ysiny + cosy = —  . (4)e

We note that r* is the radius of starlikeness of the 
function f(z) - e* - 1.

3. Main results.
THEOREM 1. Let q be univalent in U, with g(0) — 1. Let

and suppose that

h(z) =g(z) + 13LLŞLg(z)

h is convex in U

Re
q'(z)

> 0 , Z€U

(5)

( 6 )

If P is an analytic function in U, such that

P(z) ■< h(z)f (7)
then the analytic solution p of the differential equation

zp>(z) + P(z)p(z) - 1 (8)
satisfies p ■< l/g.

Proof. Condition (6) implies q(z) * 0 in U, hence the 
function 1/g is analytic and univalent.
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Without loss of generality we can assume g is univalent, 
with q(z) + 0 on Ü and q' (z) # 0 for z e dU. If not, then we can 
replace q, h, P, and p by qr(z) = q(rz) , hr(z) = h(rz) , Pr(z) - 
= P(rz) and pr(z) = p(rz) respectively, where 0 < r < 1. These 
new functions satisfy the conditions of the Theorem on 0. We 
would then prove pr < l/gr and by letting r -* 1 we obtain p<\/q.

Now assume that p * 1 /g. From Lemma 1 there exist points z0 
e U and C € du and m £ 1 such that p(z0) = l/g(C) and z0p' (z0) * 
« -jn C Ç*(C)/q2 (C)- Therefore from (8) we obtain

then from (6) and the fact that m £ 1 we deduce Re<$ > 0 ,  or 
equivalenty | arg 6 \ < rr/2. Since C h'(C) is the outward normal 
to the boundary of the convex domain h(U) we deduce that P(s0)t 
C h(U) , which contradicts (5). Hence we have p *< 1/g.

THEOREM 2. Let q satisfy the conditions (5) and (6) of 
Theorem 1 and let

If we let

P(z0)-h<0 (m-1) q'(C) g(C)A'(0 '

(»)

If f € A and

zf̂ _(z) <
f'(z) '

(10)

then zf'(z)/f(z) is analytic in U and
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zf'(z), zk'(z)
f(z) k(z)

Proof. From (9) we obtain

g(z) = and h ẑ  ̂ = q(,ẑ + zq'(z) _ lt zk"(z) 
g(z) ~ k'(z) *=  1 +

Since condition (10) implies f(z) * 0, the function P(z) = 1 + 
+ zfn(z)/f' (z) is analytic in U and satisfies (7). For this 
particular P equation (8) has the analytic solution p(z) =
= f(z)/[zf1(z)]. Thus all conditions of Theorem 1 are satisfied 
and we deduce p ■< 1/g. since l/g(z) + 0, this implies p(z) * 0 
and so l/p(z) = z/'(z)/f(z) is analytic in Ü. In addition from 
p < 1/q and g(z)  ̂ 0 we obtain 1/p -< g, i.e. 
zf'(z)/f(z) < zk'(z)/k(z).

4. A particular case. If we let

g(z) = Xz
ek*-l '

then from Lemma 2 we deduce that g is univalent in U if 
IAI £ 4.83... and in this particular case we have

k(z) l-e~lz
X and h(z) = 1-Xz .

On the other hand we have

h'(z)q(z) i

and by using Lemma 3 we deduce that

—  = i +=  1 + ex*-i Xz
1 1
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> 0 ' if 1*1 * r0 = 4.046...h'(z) q(z)

Thus if IAI <, r0 all conditions of Theorem 2 are satisfied 
and we obtain the following result.

THEOREM 3. Let r0 = 4.046... be the root in the interval 
(0,2n) of the equation r[l + ctg(r/2)] = 2 . If f e A and

f"(z)
f'(z)

s M  n r0 for z€U ,

then

- -4s-  • for IM - «  ■f(z) eXz-l

This theorem is an improvement of a result in [1].
By using Lemma 4, from Theorem 3 we deduce the following 

sufficient condition of starlikeness, which was obtained in [1]. 
THEOREM 4. Let r* *■ 2.83... be given by (3) and (4). If feA

and

f"(z)
f’(z)

s r* for zeu ,

then f is starlike in U and this result is sharp.

Example. Let f e A be defined by

f (z) » f *ekt*dt .Jo

From Theorem 4 we deduce that f is starlike if |X|sr*/2=1.41...
In particular, if we denote by p the radius of starlikeness 

of the error function
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er f (z) = f I 2 3 4 5 6 7e~c‘dt ,
J o

then p 2
T  *o —  =1.19... We note that the inequality p £ r*/2 in

[1] has to be corrected by p i r*
> 2
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CONVOLUTION OF UNIVALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS
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REZUMAT. -Convoluţii da funcţii univalanta cu cooficianţi 
negativi. în lucrare sint stabilite unele proprietăţi ale 
convoluţiilor de funcţii Btelate de ordin a şi tip B cu 
coeficienţi negativi.

1. Let A denote the class of functions of the form

f(z) =z-£ anz n , an ü 0, n=2,3,...n-2

that are analytic in the unit disc U = {zeC; |z|<l}. The function 
feA is said to be starlike of order a, ae[0,l), with negative 
coefficients, if

( z)Re Z.-V- > a, zeu. f(z)

We denote this class by S*(a). Let ac[0,1) and Be(0,1]; we define 
the class S*(a,B) of starlike functions of order a and type B 
with negative coefficients by

S*(a,B) - {feA; J(f(z);a)<B, zeU>,
where

J(f(z) ;a)
zf'(z)
f(z)

zf'(z)
f(z) +1-20

Remark 1. Let D be the disc with the center at a » (l-2aB2+ 
+ B2)/(l - B2) and the radius r = 2B(l-a) / (1-B2) when 6c (0,1) and

* University "Babeş-Bolyai" ,  F a c u l t y  of Mathematics, 3400 Cluj-Napoca,
Raman t.a
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ae[0,1), and let D = {weC; Re w>a), when 0=1 and ae[0,l). Then 
for zeU we have

J(f(z) ; a) < P -  ZÎ',(Z) e D f{z) ( 1 )

and we deduce that if feS*(a,B), then

Re > o , z e u ,f(z)

where a=o(a,fi) and

o(«,P) 1+2«P~P
1+&

We obtain 5*(a, 1) =S*(a) and S*(a,fl)cS*(ff), where o=o(a,B). 
Remarie 2. By using (1) we also obtain

a) if 0ia1<a2<l, then S*(a2,B)c5*(a1,B);
b) if 0<B1<B2sl, then S*(a,B1)cS*(a,62) .

Let t and g be two functions in A,

£(z) * z-J^anz “ and g(z) = z-^b„z" .
n-2 n*2

Then we define the (modified) Hadamard product or convolution of 
/ and g by

(f*g) (z) = z-Ç a„b„z " .

In this paper we show that if f, gcS*(a,B), then jf*gc 
eS*(a,y)nsm(i#B), where 0<y<B and ot<6<l.

We will use the following result due to V.P.Gupta and 
P.K.Jain [1].
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THEOREM A. A function f,

f(z) = Z-J2 anz " * a„ * 0 , n=2,3, . . .n* 2

is in S*(a,B) if and only if

E n-l+P (n+l-2a) 
2p(l-«) i 1 .

The result is sharp.
2. THEOREM l. Let f,geS*(a, 6), ac[0,l), Be(o,l]. Then

f*geS*(a,y(a,B)), where

Y(a,p) 2p2(i-a)
(3-2«)(P+l)2-2(l-«)

and 0<y («/B)<6. The result is sharp.
Proof. From Theorem A we know that if f,gtS*(a,6) and

then

f(z) ■ z-J2a„zn , g(z) ■ z-T'bnz n , 
Ŝ 2 tA

n-l+P(n+l-2«) „ _ ,
k  2p(l-«) a* ‘ 1

and

n-l+P (n+l-2ct) w 
2P(l-«) &

( 2)

(3)

From Theorem A we also know that f*geS*(a,y) if and only if
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E“ n-l+Y ( m l -2a) - t , , 
_ 2v(l-a) V ’n * 1 (4)

and we wish to find the smallest y=Y(a,B) such that (4) holds.
From (2) and (3) we get by means of the Cauchy-Schwarz 

inequality

n-l+P (ml-2«) 
2p(l-a) (5)

which implies

* n-l+P (n+l-2a) ' n=2‘3' - - 

We observe that the inequalities

n-l+Y(n+l-2a) u , n-l+P(n+l-2a) rr-p- n_? , 
--- 2 y (l-a)--- * -------- 2p(l-a)--- VaiA. * n"2'3' ■

imply (4). We also observe that (7) is equivalent to

n-l+Y (n+l-2a) r-~j- „ n-l+P (n+l-2a) _ 0 ,-----L-^------ \larPn * --------------  » n=2,3, . .

By using (6) we obtain

( 6 )

(7)

( 8 )

n-l+Y (n+l-2a) r̂ cr, 2P (l-a) (n-l+Y (n+l-2a) ) „_0 ,
----- y------ Va"®- S Y <*-1 + P0 i*1-2«>> ' n 2 '3'-'-
In order to obtain (8) it will be sufficient to show that

2P(l-g)(n-l+Y(n+l-2«)) n-l+P(n+l-2g) fl=2 3 
— (n-l+p(n+l-2a))y P ' > •■■■

These last inequalities are equivalent to

”li+n+l-2« * , n=2,3, . . .Y 2p2(l-a)
or
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Y * Y (n) =

We note 
choose

___________2p2(l-tt) (Ji-1)__________
(n-l+P(n+l-2a))2-2P2(l-a) (n+l-2a) 
that Y(n)SY(2) for all n = 2,3,

n=2,3,...

and then we

Y («,P) = Y (2) = 2p2(l-tt)
( 3 - 2 a ) ( P + l ) 2- 2 ( l - « )

We have y (2)>0 because 262(l-a)>0 and 
(3-2a)(6+l)2 - 2(l-a) - 2(l-a)(6+l)2 - 2(l-a) + 
+ (6+1)2 - 2 (1-a)(62+26) + (6+1)2 > 0.

We also have

p-v(«,p) = (i-P)2+ep(i-«) +4«P(1-P)+2«P2 > 0 
’ (3-2a) (p+1)2-2(1-a)

By Theorem A the function

- 2P(l-«)
1+P(3-2a) z 2

is an element of S*(a,6) and

(9)

(z) 4p2(l-g)2 
(1+P (3-2«) )2 €  5 * ( « , Y («» P) ) >

because
4P2 (1-tt) 2 

(1+P (3-2«) )2 
Then the functions f - g

when y = Y < « » P)2y (1~«)
1+Y(3-2a)
t-i are extremal functions for this

theorem.
COROLLARY 1.1. It t,geS*(a,6) , then f*geS*(a,6).
Proof. We use Theorem 1 and Remark 2 b).
COROLLARY 1.2. If f,geS* (a,6), then f*geS*(p(a,6)), where
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P («, P) ___ 4P2 (1-tt) 2
( P + l )  ( 5 P + l - 4 a P )

( 1 0 )

Proof. If f, geS* (a, fi) , then f*geS* (a, y (a, fi) ) cs* (o(a,y(a,fi))),
where

o (a, y (a* P) ) H-2ay(«,P) -Y(g,P) 
1+Y(«/P) p («,P)

and p(a,B) Is given by (10).
COROLLARY 1.3. If f, geS* (et) , then f * g e S *
Proof. We know that S*(o) = S*(a,l) (see Remark 1) and by

using Corollary 1.2 we obtain f*gtS* (p (a, 1) ) and p (a, 1) = .3 -2a
The preceding result (Corollary 1.3) are due to A. Schild 

and H.Silverman [2].
3. THEOREM 2. Let ae[0fl) and fi£(0,l]. If f,gcS*(a,fi), then 

f*geS*(6(ot,fi),6), where

ô (a,  P) = 1 2 p ( l - a ) 2 
5 p + l - 4 a P  '

and a<ft(a,B)<l. The result is sharp.
Proof. If f,gtS*(a,R), then (6) holds. By Theorem A we know 

that f*geS*(6,Ô) if and only if

E n-l+P(n+1-20) _ u 
2p (1-Ô) i 1 ( 11 )

and we wish to find the largest £»£(a,fi) such that (11) be 
satisfied.

We note that the next inequalities

n-l+P (n+1-20) /„■■■K- , n-l+P(n+l-2a) 
1^5 v*"*” * i - a n=2,3---  (12)

implies (11).
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By using (6) we have

fl-l+P (n+l-2ft) nr-tc- _ 2P(l-a) 
-------- ‘TTfi--------- y/a n*>n * V f t

and we deduce that

n-l+P (n+1-26) 
n-l+P(n+1-2a) ' n=2,3,

2P (1-ct) . n-l+P (n+1-26) n-l+P (n+l-2a)
1-Ô n-l+P(n+l-2a) 1-a

or
2B(n-l+B(n+l-2£)) (l-a)2£(l-£)(n-l+B(n+l-2a))2, n=2,3,... (13)
implies (12).

The inequalities (13) are equivalent to 
AS * B,

where
A - -4B2(1-a)2 + (n-1)2 + 2fl(n-l)(n+l-2a) +
+ B2(n+l-2a)2 - (n-1)(B+l)((n-1)(B+l) + 4B(l-a)) > 0

and
B - (n-1)2 + 2B(n-l)(n+l-2a) + B2(n+l-2a)2 -
- 2fl(l-a)2(n-l) - 2B2(l-a)2(n+l) -
- (n-1)(B+l)((n-1)(B+l) + 4B(l-a) - 2B(l-a)2).

We obtain

ft 4 B _ (n-1) ( p +1 ) +4P ( 1 -« ) -2P ( 1 -«) 2
A (n-1) ( P +1 ) +4 P ( 1 -a )

_____2P _____ = ft (n)(n-1)(p+1)+4p(1-a) ;=1--

We have
S £ 6(2) £ £(n), n - 2,3,... , 

because 6(n) is an icreasing function of n.
Now we choose

£(a,B) = £(2) = 1 - 26(1-a)2/(56+l-4aB).
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We have £(a,fi) > a because

ft (a, (J) -o =

and £(a,B) < 1, because

( 3 0 + 1 ) ( 1 - g ) + 4 a 20 0
4 0 ( 1 - 0 ) + 0 + 1

i-ft(«,0) = 2P (1 g)2 > 0 .40 (l-o)+0+1
The extremal functions are / = g = f2 given by (9).
Remark 3. By using Theorem 2 and Remark 2.a) we obtain again 

Corollary 1.1.
Remark 4. Since a (6(a,B) ,B) = p(a,B), where p(a,B) is given 

by (10), we obtain S* (6 (a,&) , B) cS* (p (a, B) ) . So we can prove 
Corollary 1.2 by using 2 and Remark 1.

Remark 5. We have £(a,l) = (2-a2) / (3-2a) , hence we can 
obtain Corollary 1.3 by using Theorem 2 and Remark 1.

Remark 6. For given a and B, a e (0,1), B € (0,1), the 
classes S*(a,y(a,B)) and S*(S(a,B),B) are inclused in S*(p(a,fl)), 
but they are generally distinct.
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REZUMAT. - Un criteriu de univalenţX de tip Kudriasov. în lucrare 
se obţin condiţii de univalenţă similare cu cele date de 
Kudriasov, condiţii care folosesc şi coeficientul a2.

Let A be the class of regular functions in 17= {z:|z|<l>, 
f(z) = z + a2z2 + ... and f(z)/z * 0 for all z e U.

THEOREM A [3]. Let f(z) be a regular function in U, f(z) =* 
- z + a2z2 + ...

If

f"(z) 
f'(z)

i. M ( 1 )

for all z € U, where M ■ 3,05, then the function f(z) is

univalent in U.
( In Kudriasov's results the constant M doesn't depend from 

a2. The result could be improved for valours of |a2| approaching 
to 0.

In this paper we obtain the conditions of univalence similar 
to the result of Kudriasov's type, conditions which use 
coefficient a2 too.

THEOREM 1. If f(z) is a regular function in U, f(z) -> a + 
+ a3z3 + ..., and

U n i v e r s i t y  o f  Braşov, D e p a r t m e n t  o f  M a t h e m a t i c s , 2 2 0 0  B r a ş o v , Romania
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f"(Z) 
f'(z)

s, 4 (2)

for ail z € U, then the function f(z) is univalent in U.
1 f n ( z)Proof. Let's consider the function g(z) = ---- ri— -, Using
4 f / ( z ) *

Schwarz's lemma [2] and Becker's univalence criterion [1], for 
the function g(z), we obtain

(l-|z|2) zf"(z)
f'(z)

(l-|z|2) \z\-4\g(z) I s 4 (l-|z|2) |z|2 i 1,

and, hence, it results that the function f(z) is univalent in U.
THEOREM 2. Let a be a complex number, Re a>0 and the 

function f(z) belongs to the class A.

If

f"(z)
f'(z)

S M (3)

for all z € U, where the constant M verifies the condition

1M S.

max|*|sl
I K 21**1

i \z\Rea 1 ' , 2\a2
M

1 +  - M

(4)

then, for every complex number B, Re 6£Re a the function

F,(z) = [pjT V - 1f/(u)du]'» 

is regular and univalent in U.

(5)

Proof. Let's consider the function f:[0,l] -*■ R,
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X+ 2|aa|
F(x) = --- L x  .Rea 2 a

M
; x  = |z|

l + - M

Because f |-|J * 0 it results that max F(x)>0. Let's
xelo.D

1 f 11 ( z)consider the function g(z) = — — ■ . Using the generalizationM  £'(z) „1 ( 7)of Schwarz's lemma [2] for the function g(z) = — —  ■ ■ , where
M  f'(z)

M is a real positive constant which verifies the inequality (4), 
we obtain

1 £"(z) 
M  f>(z)

2|aa|
M ( 6 )

for all z € U, and, hence we have

Re a
z£" ( z)
£’(z)

i M  • max l*l*i
(l-klaite«)

Re a
\z\- 2|a2

M
2|aJ . . 

1 + ~ M  ,Z|

(7)

From (4) and (7) we obtain

(l-|z|2Rec)
Re a

z£"(z) 
£'(z)

i 1 (8 )

for all z e U and from Pascu's univalence criterion [4], it 
results that the function Ffl(z) is regular and univalent in U. 

COROLLARY 1. I£ the function £(z) belongs to the class A and

f"(z)
£'(z)

<; M (9)
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for ail z e U, where the constant M verifies the inequality

M  i. ■ 1

max
|z|ll

(1 -|z|2 |z|*2«' 1) M  M1 ' 2|a,| . . 1+ 1 21 z 
M  1 1

( 10)

then the function f(z) is univalent in U.

Proof. From the THEOREM 2, for a = 1 and 6 = 1 ,  we obtain 
the COROLLARY 1.

Observation. From Kudriasov's result it doesn't result the 
THEOREM l,but from COROLLARY 1 for a2=0 we obtain the THEOREM 1.
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REZUMAT. - Mulţimi tsst in aproximarea Korovkin cantitativi.
Lucrarea conţine rezultate cantitative de tip Korovkin în care - 
în afară de funcţiile liniare - este utilizată ca funcţie test o 
singură funcţie convexă.

1. Let (X,d) be a compact metric space and let B(X) denote 
the space of all real-valued bounded functions on X.

Let C(X) be the subspace of B(X) consisting of all 
continuous functions on X. For f e  B(X) and 6 > 0 let

a(I,S) - sup {|/(x) - f (y)| : x,y e X, d(x,y) z 6}. 
Suppose that there exists a constant p > 0 such that

a(f,tS) * (1 + nt)a(f'S) (1)
for all f e B(X) and all t,S > 0. i

Let F be a nonnegative function in B(X2) such that 
F(‘ ,y) € C(X) for each y e X. (2)

Suppose that there exist constants g £ 1 and k > 0 such that
dq(x*y) £ kF(x,y) for all x,y e X. (3)

T.Nishishiraho [2] has proved
THEOREM 1. Let TiC(X) -*• B(X) be a positive linear operator 

such that T1 “ 1. Then
ITf(x) - f(x)I S (1 + pkS-V TF(• ,x)(x))u(f,6) 

for all f e C(X), x e X and 6 > 0.

2. Let £ be a normed real space and E' the dual of E endowed

* Technical University, Department of Mathematics, 3400 Cluj-Napoca, 
Romania
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with the usual norm. Let X be a compact convex subset of E.
For f e C(X), hx,...,hm e E ' and 6 > 0 let us denote
u(f;hlf...,hm) = sup {I£ (x) - £ (y)|: x,y e X,

Y) (hi(x) - h^y))2 s 1},
1̂ 1

n(f,6) = inf {Q(f;hlr...,hm) : m > 1, h1,...,hm e E', 
£ l h j 2 = S~2}.

In what follows let L:C(X) -*• C(X) be a positive linear operator 
such that LI = 1 and Lh = h for all h e E '.

For x e X  and 6 > 0 let us denote 
T(i,x) -sup { (Lhi (x) -hj (x) ): mil, hlt . . ., hmeE', ^  I/jJ 2» $~2}.

Then we have (see [1], (5, Th.1.4]):
THEOREM 2. Let £ e C(X) , x e- X, S > 0. Then
(i) 0 < < £2 imp-liss s n(/,£2) and

T(«i,x) £ t (£2 ,x )

(ii) lim fl(£,6) = 0
4-0

(iii) ILf(x) - £ {x)I < (1 + T(S,x))n(f,S).
In Theorem 1 the test set is {1} u {F(- ,x) : x e X>.
In Theorem 2 it is {1} u E' u {h2 : h e E'}.
Suppose now that there exists a constant c > 0 such that 

2 ( II x|| 2 + Byll 2) - «x + y»2 i c«x - y»2 (4)
for all x,y  c E (See[6,p.86], [7]). In this case we shall obtain 
quantitative results in which- besides the linear functions - 
- only one convex function is involved as test function.

Let us remark that c <> 1; moreover, c = 1 if and only if E 
is an inner - product space. Condition (4) implies that E is 
uniformly convex (see[5]).
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THEOREM 3. Let f e C(X), x e X, 6 > 0. Then:

\Lf(x) - f(x)| < (1 + LF(- ,x)(x)/cS2)e(f,S) (5)
\Lf(x) - f (x) I < (1 + (Le - e) (x) / cS2)fl(f, S) (6)

where e(x) - HxK2 and F(x,y) = 2(e(x) + e(y)) - e(x+y), xfyeX.
Proof. In this case (1) holds with n - 1 (see [2,Lemma 3]). 

By virtue of (4) we can choose q = 2 and k = 1/c; so (2) and (3) 
are also satisfied. Now (5) is a consequence of Th.l.

For x,y e X, a e [0,1] and f e C(X) let us denote 
(x,a,y; f) = (l - a)f(x) + af(y) - f((1 - a)x + ay)

From (4) it follows (see[4]) that (x,a,y; e) k ca(l-a)e(x-y) 
for all x,y e X. Let x e X. Then f e C(X) -* Lf(x) defines a 
probability Radon measure on X with barycenter x. It has been 
proved in [3] that for all f e C(X) there exist u,v e X, u # v 
and a e (0,1) such that

Lf(x) - f(x) = (Le(x) - e(x))(u/a/v; f)/(u,a,v; e).
Let h e E*. Then we have Lh2 (x) -h2(x) «■ (Le(x) - 
- e(x))(u,a,v;h2)/ (u/a/v;e) ^ (Le(x) -e(x))(h(u) -h(v))2/ 
/ce(u-v) ^ (Le - e)(x) »hK2/c
It follows that t (6, x) ^ (Le - e)(x)/cS2 and thus (6) is a 
consequence of Th.2.

Let us remark that in (6) the test functions are the 
constant function 1, the linear functions and the convex function 
e. On the other hand it is easy to verify that w < n.
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