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A HIERARCHY OF SUPERMULTIPLICITY OF SEQUENCES
IN A SEMIGROUP

GH. TOADER*

wd: January 22, 1997
subject classification : 20M 15

ABSTRACT. -- In this p}lper are defined the classes of convex, starshaped and

supermultiplicative scquences in a semigroup. Also some relations among them
arc proved.

I. Introduetion. In [17] it was proved that all the convex functions are
shaped and these are all superadditive. This property was named in [4]
archy of convexity of functions. In [7] we have proved a similar property
real sequences and now we want to transpose it to sequences from a semi-
ip. But it seems to me to be more adequate to call the property ,hierarchy
apermultiplicity” because all the sequences are supermultiplicative.

In the next paragraph we shall give the notions relative to semigroups
¢h we need in what follows. Some of them are taken from [3] but the others
be new because we couldn’t find them in the accessible literature. Then
dfine the classes of convex, starshaped and supermultiplicative sequences
1 semigroup and prove some relations among them.

2. Semigroups. By a semigroup (G,-) we shall mean a non-empty set G
shich is defined an associative binary operation. We suppose that the semi-
ip is commutative and has an identity ¢, thus:

ex = x, Vx € G.
A semigroup can have a zero, the is an element z with the property:
zx =2, Vx € G.
= %, the €lement x is called idempotent. .
A basic relation which we need in what follows is the divisibility:
alb3Ix =G, b= ax.

Also, we shall consider semigroups in which some kinds of reduction$ are
d.

pEFINITION 1. The semigroup (G, .) is cancellalive if :

xa = xb=a = b. (1)

* Polytechnic Institute, Depariment of Mathemaiics 3400 Cluj-Napoca, Romania






SEQUENCES IN A SEMIGROUP \ 5
remains true that x = y if and only if 2, = 4;, ¢ =1, ..., n. We have also
me consequences :

CLEMMA 1. If the semigroup (G,.) has a base, then hold the following impli-
lons for cvery x, y, z € G, m, n> 1:
A wr =" =m; ‘
b) xz2 =yi=>2x=y;
o) = y=>x=1y;
) |yt = xly.
| Proof. All the affirmations follow from the unicity of the representation

ithe base B. For example, for the last implication, we suppose that y* =
vz where :

" n " .
x =TI, y =TI z=T]
i=1 i1 =1

e nh; = nk; +j;, for i=1,...,n So j, = ng,, where g = h; — k;, and
fting :

have y = xw, thus x|y.

Remark 3. Thus, if the semigroup has a base it is cancellative, has radi-
sand preserves the divisibility. But, because of the property a), it cannot
finite. Examples of semigroups with base are (N, +) with B = {1} and
,.) with the base consisting of all prime numbers.

3. Sequenees in a semigroup. Let (x,),>, be a sequence of elements of the
igroup (G,.).

DEFINITION 5. The sequence (x,),s; is comvex if it verifies the relation :

x?, | Xn+1%p—1, Vun z 1. (5)
LEMMA 2. a) If:
=11y, nx1 (6)
i=1

re (¥, )nn1 05 arbitrary, then the sequence (x,),s; S convex.

b) If (G, .) is cancellative, then cvery convex scquence may be rvepresented
(6) with adequate (v,)ys, -

Proof. a) From (6) we deduce:

Knt1%n—1 = X3 Vut1
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b) For » =1, (6) is x, = v,, which we consider. Suppose (6) vali
#n € m. Then (5) gives an ¥,4( such that:

m—1 .
wn—1

m

2(m—1- 1)
I Iyi VY1 = X4 I | Yi
i=1 =1

and by cancellation we get (6) for » =m + 1.

DEFINITION 6. A sequence (x,),»; is called starshaped if:
O, Yz L
by LEMMA 3. a) If the sequence (x,),51 1S starshaped, then it may be repres
At ﬁ PR

122

with an adequate sequence (2,)ys1 -

b) If (G,.) has radicals and the scquence (x,),s, 1S represented by (§
it 15 starshaped.

Proof. a) We take z; = x,. Suppose (8) be valid for m — 1. Then {J)
a 2z,.; such that:

" mi-1

xmvl-l = X Zim il
So:
m
m! (m+1)! {(m-=1)Yii—1 (n—1)"1
Xm+1 = 21 ) nzin V=1 '?m+1
i=2 .
that is (8).
b) From (8) we have:
n! (i) (n-1)! (n—~l)!‘
Xatr =%, -

and taking the (# — 1)! — th radical we get (7).

DEFINITION 7. A sequence (x,),»; is called supermulliplicalive if it v
the relation : '
XX | Xy, V2, m2 1

Rvemark 4. We can consider also sequences (%,),>o but then the r
(7) must be replaced by:
X X%, Yz 0
and (9) by:
X% | Xpgm%e, Y2, m= 0.

Otherwise we must suppose x, = e.
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b) If (G,.) preserves the divistbility, then holds also :
S* C S. "

Proof. a) If the sequence (x,),»; is in K’, it may De represented by f
and so:

"
n--1 % k—1
Xy = Xp—1 °* I I 2
k=2

thus it belongs to S*. The second inclusion follows from Lemma 3.
b) From (8) we get:

(m+n—1)! _ _(min—1)! (m+n—1)1
m4n = Xy * Xy ¢
min—1 Znm - k) " 1 g 1) (R 1) |k 2!
* H k * I—[ k T Enm
k=m+1 ke nil

and as the semigroup preserves the divisibility, we deduce that the sequic
(%,)u>1 1s supermultiplicative, that is we get (12).

COROLLARY If the semigroup (G,.) is cancellative and prescrves the divisibill,
then hold the inclusions :

KCS*CS.

Proof. Indeed, then K = K’ and (11) and (12) are valid.
Remark 6. In the case (R, +) more results may be found in [7].
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IDEAUX EN TREILLIS NON-COMMUTATIFS DE TYPE (G)

GH. FARCAS*
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S subject classification : 06505

REZUMAT. — Ideale in reticule necomutative de tip (G). In lucrare sint defi-
nite si sint studiate proprietdfi ale idealelor §i idealelor duale intr-un reticul
necomutativ de tip (G).

Le triplet (L, A, V), oit L est un ensemble et A et \/ sont deux opéra-
us binaires délinies en L, s’appelera de treillis non-commulalif de type (G )
pour tout «, b, ¢, € L vérifie les axiomes:

(leAwAc=aAwA@
@V BV e=a\ (Vo)
(B) {a/\(a\/ b) =a
a\/ (@a Ab)=a
© {a/\b:(a/\b/\c)\/(b/\a)
a\fb=(ayVbVec) AV a)

En [2] on montre que, si (L, A, \/) est treillis non-commutatif de type (G),
1s pour tous a, b, ¢ € L sont vraies les égalités:

~f[aANa=a
S la\/u=a
()[a/\b=(a/\b)V(b A a)
aVb=(aVb AbVa
(i) aAN@bVa)=a
a\ (b Aa)=a
i [2AOV O =a ALV
a\/ b Ac)=aV\ (c Ab)
w [FACAd=aAlAY)
a\ bVe)=aV (VD

* L'Institut d’Enseignement Supérvieur Tirgu-Mures, 4300 Tirgu-Mures,” Romania



10 GH. FARCAS

(Vi)[a/\b/\a=a/\b

aVbyya=a\/b
(vii)[(av b)) ANa=a
(@aAb)V a=a

On obtient un exemple de treillis non-commutatif de type (G) si dansl
produit cartésien P(M) X P(M) = {(A, B)]A < Mct B = M}, ot M et w
ensemble non-vide, on définie les opérations binaires A et \/ ainsi:

(Al» Bl) N (AZ’ Bz) = (Alﬂ Az» Bl)

(Al’ Bx)\/ (Az:ABz) = (A1UA2’ Bl)

~ On constate que dans (P(M) x P(M), A, V) les lois de commutativité i
sont pas verifiées.

", Dans ce travail on délinie et on étudie les propriétés des idéaux ¢ ds
idéaux duals d'un treillis non-commutatif de type (G).

Soit (L, A, V) un treillis non-commutatif de type (G). Les notions &
idéal et idéal dual se définissent également comme dans le cas des treill,
c’est-a-dire le sous-ensemble non-vide I de L est idéal dans le (L, A, E
pour tous a, b € L est vraie l'équaivalence:

acsletbelsa\/bel,

et si pour tous a, b L est vraie l'équivalence:
asletbelsalbesl
alors I sera nommé idéal dual en (L, A, V).

(1.1) Si (L, A, V) est le treillis non-commutatif de tvpe (G), alors le sus
ensemble non-vide I de L est idéal dans le (L, N\, \/) st et sculement si pow
tous a, b, ¢ € L nous avons:

aclabel=s>aybel (
ac€lec=cANa=cel (

Démonstration. Soit I-un idéal dans (L, A, V). Sia e et hel dn
de la définition de idéal on a a\/ b €I, mais s1t ¢« €1 ¢t ¢ =¢ Aq, ado
a\/ c=a\ (c Aa), donc ¢ € I. '

Inversement, soit I un sous-ensemble nou-vide de L qui possede les prie
priétés (1) et (2). Sia €[ et b = I, alors a\/ b = I, mais si a\/ b € [, aln
de a=a A(a\b) et b=>bA(a\/ b) on obtient que a [ ¢t bhelu
conséquence I est idéal ‘dans le (L, A, V).

En prenant en considération aussi le fait que le systéme d’axiomes di:
nissant les treill’'s non-commutatifs de type (G) est autodual on peut formul:
le. suivant théoréme sans démonstration :
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(1.1") Si (L, A, V) est le treillis non-commutatif de type (G), alors le sous-
wsemble non-vide I de L est idéal dual en (L, A, \/) st et sculement st pour
ws a, b, ¢ € L nous avons:

aclebel=>aANbel 3)
. acletc=c\a=ce<l 4)

(1.2) Si (L, A, V) est le treillis non-commutatif de type (G), alors le sous-
wsemble non-vide I de L est idéal en (L, N\, \/) si et seulement si pour tous
b, ¢ € L nous avons :

acelebel=>aybel (5)
asleta=a\ c=>cel (6)

Démonstration. Soit I un idéal dans le (L, A, V). Si a €1 et b = I, alors
e la définition de idéal on a a\/ b€l maissia sl et a=aVc, alors
Ve=a AfaV ¢), donc ¢ € I.

Inversement, soit I un sous-ensemble non-vide de L qui posséde les pro-
iétés (5) et (6). Sia €T et b eI, alors a\/ b € I, mais si a\/ b € I, alors
1 utilisant les propriétés (vi) et (i) on obtient que a\/ b = (¢ \/ b))V a et
Vb=1(a\ b\ b donc a €I et b €I, en conséquence I est idéal dans

(1.2%) gz (L, A, V) est le treillis non-commutatif de type (G ), alors le sous-
wsemble non-vide I de L est idéal dual en (L, N, \/) si ¢t sculement si pour
us, a, b, ¢ € L nous avons:

aelabesl=>alAbel (7)
acslceda=apNc=>cel 8)

(1.3) Si (L, A,W) est le treillis non-commutatif ac type (G), alors le sous-
semble non-vide I de L est idéal en (L, N, \/) st et seulement si pour tous
b, c € L nous avons:

aeleabel>aybel 9)
aslI=>cAa<sl (10)

Démonstration. Soit I un idéal dans le (L, A, V). Siaeletbdbel
ws de la définition de I'idéal on a a\/ b € I, mais si a € I, alors en utili-
nt la propriété- (iii) on obtient que a = aV\/ (c Aa), donc ¢ Aa 1.

Inversement, soit I un sous-ensemble nou-vide de L qui posséde les pro-
iétés (9) et (10). Si aslet b e, alors a\/ bl maissi a\/ b €1,
ws en utilisant (10) on obtient que ¢ A(a\/ b)) =a €l et b AN(a\/ b) €1,
ne I est idéal dans le (L, A, V).

(1.3 Si (L, A, /) est le treillis non-commutatif de tvpe (), alors le sous-
semble non-vide I de L est idéal dual en (L, N, \/) st ct sculement si pour
is a, b, ¢c € L nous avons:

aclctbelsaNbel (11)
asl=c\acl (12)
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(LYY Si (L, A, V) est le treillis non-commutatif de type (G), alors le sous-
wemble non-vide I de L est idéal dual en (L, A, \/) si et sculement st pour
ws a, b, ¢ € L nous avons:

aclebel=>apANbel 3
. acletc=c\a=ce<l (4)

(1.2) St (L, A, V) est le treillis non-commutatif de type (G), alors le sous-
wsemble non-vide I de L est idéal en (L, N\, \/) si et sculement su pour fous
b, ¢ € L nous avons:

aceleabel=>a\ybel (5)
aslea=a\ c=>cel (6)

Démonstration. Soit I un idéal dansle (L, A, \/). Sia €I et b € I, alors
e la définition de idéal on a a\/ b € I, mais si a € I et a = a\/ ¢, alors
Ve=a Af(a\ ¢), donc ¢ € I.

Inversement, soit I un sous-ensemble non-vide de L qui posséde les pro-
iétés (5) et (6). Sia € Tet b =1, alors a\/ b € I, mais si a\/ b € I, alors
1 utilisant les propriétés (vi) et (i) on obtient que a\/ b = (a\/ b))V a et
Vb=(a\/ b))\ b donc a €I et b I, en conséquence I est idéal dans
( (1.2 }9/1, (L, A, V) cst le treillis non-commutatif de type (G), alors le sous-
isemble non-vide I de L est idéal dual en (L, N, \/) st cf sculement si pour
us, a, b, ¢ € L nous avons:

acsleabel=>aANbel (7)
aceleda=aANc=>cesl 8)

(1.3) Si (L, A, W) est le treillis non-commutatif ac type (G), alors le sous-
semble non-vide I de L est idéal en (L, N, \/) st et seulement si pour tous
b, c € L nous avons:

aceleabel>a\ybel 9)
asl=>cANaesl (10)

Démonstration. Soit I un idéal dans le (L, A, V). Siaeletbdbel
s de la définition de 1'idéal on a a\/ b € I, mais si a € I, alors en utili-
nt la propriété (iii) on obtient que a = a\/ (¢ A «), donc ¢ Aa = 1.

Inversement, soit I un sous-ensemble noii-vide de L qui possede les pro-
iétés (9) et (10). Si asl et b e, alorsa\/ b <], mais si a\/ b = I,
s en utilisant (10) on obtient que a A(a\/ b)) =a sl et b AN(ay b) €1,
ne I est idéal dans le (L, A, V).

(1.3 St (L, A, /) st le treillis non-commutatif de type (G), alors le sous-
semble mon-vide I de L est idéal dual en (L, N, \/) st ¢t sculement si pour
s a, b, ¢ € L nous avous:

aclcdbel=>alNbel (11)
asl=c\/ae<l (12)
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(1.4) Si (L, A, V) est le treillis non-commutatsf de type (G), alors le sous
ensemble nown-vide I de L est idéal en (L, N, \/) st ct sculcment si pour lous
a, b, ¢ € L nous avons:

acesleabel=>a\ybel (13
a\fcelI=>cel (14

Démonstration. Soit I un idéal-dans le (L, A, \/). Si a € L et b = I, alos
de la définition de I'idéal on a a\/ b € I, mais si a\/ ¢ € [, alors ¢ €],

Inversement, soit I un sous-ensemble non-vide de L qui possede les pro
priétés (13) et (14). Si a =l et b = I, alors a\/ b € I, mais si a\/ el
alors en utilisant (2) on obtient que » = I, mais s1 en utilise (1} on obtit
que b\ (a\ b) =b\ a €1, donc a = I, en conséquence I est idéal dans k
(L, A, V).
(1.4") Si (L, A, ) est le treillis non-commutalsf de type (G), alors le sons
ensemble non-vide I de L est idéal dual cn (L, A, \/) st el sculement sipowr
tout a, b, ¢ € L nous avons:

aceldbels>aANbel {13
aANcel=cel (16)
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\

REZUMAT. — Asupra multimilor slab convexe. In lucrare sint studiate citeva
proprietidti ale functiilor convexe definite pe muljimi slab convexe. Rezultatele
sint in legiturd cu notiunile de functie conjugatd si subdiferentiala.

Introduetion. In the last years several authors intestigated the optimization
problem of the functions defined on a o algebra of of an atomless finite mea-
sure space (X, of, ) (see Morris [8],Lai [4], {5], [6], [7], Chou [2]).
In these papers necessary and sufficient conditions for optimality are given,
an analogous to the Fenchel duality theorem for convex functions is proved and
also various properties for the subdifferential of convex functions and their
conjugates are given.

In this note we investigate some properties of the convex functions defined
on weakly convex sets. A set is said to be weakly convex if its closure is
convex. For example, the set of the characteristic functions of measurable sets
of an atomless finite measure space is weakly convex (see Ex. 2 below).

In this way the theory of convex set functions and also the theory of
ordinary convex functions, naturally are included in an unitary theory. The
p-convex functions which were studied for example in [4], [9], [1] and [3]
can also be included in the class of the convex functions defined on weakly
convex sets.

The results of this note relate to conjugate functions and subdifferentials
of convex functions defined on weakly convex sets. In a further note we shall
investigate the optimization problems for such functions.

The authors are grateful to Professor I. Muntean for his useful suggestions
concerning this paper.

1. Weakly convex sets and convex functions.

DEFINITION 1. Let E be a real locally convex space. A subset M of
E is said to be weakly convex if Ax + (1 — Ny € ¢l M for any %, v €« M and
A= [0, 1], where ¢I M is the closure of M.

THEOREM 1. A set M < E is weakly convex if and only if cl M is convex. Moreo-
ver it holds :

M =clcoM,
where co M is the convex hull of M.

* University of Cluj-Napoca, Faculty of Mathematics, 3400 Cluj-Napoca, Romania

*



14 I. KOLUMBAN, L. BLAGA

Proof. For the first we assume that M < E is weakiy convex. We have

MccecoM
and thus
cddM < clcoM.

We will show by induction that
coM < I M.
Actually, by definition, for any x;, x, € M and » & [0, 11, we have
(1 — Nx, + axy € M
Let us suppose that any convex combination of the most » — 1 elemats
of M belongs to ¢/ M and %et be xg= co M, x5 = z": N, with 4, > 0,17 = 1,
=1

7" } . - . ”n "oy
M=1andx € M, { =1, . Now, notting by « = hoand v o= YN Loag
we have A 4 a=1 and xy = Mz, + ay. _

By the induction hypothesis‘ v € ¢l M. Then there exists the net ().,
with z; € M and z;}—y (f € I). Let us note by z/: = A\x, + azf, i €1 We
have z{ € ¢/ M, ¢ « I by induction hypothesis. This implies that there exids
a net (2 ;)jey with z; ; € M for any j € J and ¢ € I fixed, so that z ;— 7.

On the other hand it is clear that 2z} — x,.

Let V be a neighborhood of x,. The convergence z{ — x, implics that
7 € V for sufficiently great 7, + € I. Much more, from z;,; € M and z ;-
we have that the neighborhood V of x,, arbitrarily choosed, intersects M and
thus x, belongs to the closure of M.

The implication: (/M =clco M = M is weak convex) is immediatcly
if it takes into account that co M < clco M.

Example 7. Let E be a real normed space and E’ its dual space. Then the
unit ball B in E is weakly convex in the o(E", E’) — topology. Much more
¢l B = B” where -E” is the bidual space of the space E and B” is the unit
ball in E",

Example 2. Let (X, of, p) be an atomless finite measure space with
Li(X, A, p) separable. Let be E and E’ defined by E = L(X, A, p), E'=
= Ly(X, of, p) and let E’ be endowed with o(E’, E) topology.

Then
‘ M:={y.:4 =}
is weakly convex.

Indeed, by Definition 1 we must show that ay, + (1 — Nyp = cI M for any
X X8 €M and A = [0, 1],

It foliows from the atomless measure space that (see [8]) for given 4, B
in ofand A € [0, 1] there exist L,(X, of, p) -—sequences (XAn) and (yu) such
that

X4, — Ata—p and Xz, > (1 — N Xp-4a
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Hence by [2], Lemma 2, it holds

Xa,uBunn = M+ (1 — Mg
ud this complets the proof.

In the next we will use the notation R = R | {+o0}.
DEFINITION 2. Let E be a real locally convex space and M he a weakly

mvex subset of E. A funetion f: M — R is called comvex if for any %, v € M,
€ [0, 1] and for any net (z;);e; with z; € M and z; — A+ (1 — Ny, 1€ 1,
ke following inequality holds:

lim sup f(z) < /(x) + (1 = 2f().

PEFINITION 3. Let M < E be weakly convex and f: M —» R a {unction.
(i) f is called lower semicontinuous at x € M if

f(x) < liminf f(x,)
iel
rany net (x,);ey with x; € M and x, — x(¢ € I).
(i1} f is called upper semicontinuous at x € M if
f(x) = lim sup f(x,)
code]
rany net (x,);e; with x; € M and x, — x(¢ = I).
(ii1) f is called comtinuous at x = M if
Fl) = tim (x)
rany net (x,);e;r with x; € M and x; —» x (1 € I).

THEOREM 2. Let M < E be weakly convex and f: M —- R. If fis convex then
is upper semicontinuous on M.

Proof. 1f f(x) = +oo for any x € M, then the statement of-the theorem
obvious. .

For any x € M let (x;);c; be a net in M such that x,— x(/ € I). Let
€ M so that f(y) < oo and A = 1. It holds

lim sup fx) < 1+ f(%) + (1= Df(y) = f(»),

hich shows that f is upper semicontinuous on M.

Remark. It is obvious that any convexset M < Eis also weakly convex.
1e convexity of the function f: M —- R introduced by the Definition 2 implics
s upper semicontinuity. For convenience, we maintain the name ,,convexity”
th the hope that this fact will not produce confusion.

COROLLARY 1. Let M < E be weakly convex. Then any convex and lower
micontinuous function f: M — R is continuous.
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DEFINITION 4. Let M < E be weakly convex and f: M -+R.
The set epi f: = {(«, x) € R X M: f(x) < o} is called the epigraph o

THEOREM 3. Let M < E be weakly convex and f: M — R If s conu
then clepi f1s convex in R X E.

Proof. We shall prove that epi f is weakly convex. For this let he {1, r,
(s, ) € epi fand A € [0, 1]. M being weakly convex, there exists a net ).
such that z;, € M, ¢+ € I and

zi— x4+ (1 — Ay,

*

From the convexity of f it follows:
lim sup f(z) < M(x) + (1 — 2)f(») < w+ (1 — N)s
iel

Hence, for any # € N* therc exists an index 4, € I such that the followi
inequality holds:

flz) <)\r—|-(1__;\)s+__ :

for any + € I with 7 > 1,, therelore (,, z) € cpi f. So (M 4 (1 — s, k-
+ (1 — 7\)\') e clepi f and by Theorem 1, follows the convexity of clepif:
R

DEFINITION 5. Let f: M - R, M < E. The set
dom f:= {x € M: f(x) € R} is called the ¢ffective domain of the function !
£ is said to be proper if dom f # @.

THEOREM 4. Let M < E be weakly convex and f: M — R, If fis con
then dom f is weakly convex.

Proof. Let be x, v € dom f and » € [0, 1]. By the Definition 5 we s
%, ¥ € M and f(x) € R, f( ) € R. By the definition of convexity of M thx
exists a net (z;);e; with z; € M, z; — (1 — M)x 4+ Ay (# € I) and by the a
vexity of f it follows

lim sup fz) < (1 — Wf(x) + ¥(5).
Without loss of generality we may assume that f(z;) < oo for every i€l
This implies that z; € dom f, 1 € I and thus
(1 —2)x+ 2y €cldomf,
hence dom f is weakly convex.

2. The eonjugates of convex funetions.
DEFINITION 6. Let E’ be the dual space of E.
(i) The function f*:E’'— R defined by

fH) = sup {¢x, &'y — f(x) % = M}, ' < E

is called the comjugate function of f.
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(i) The function f**: E — R defined by
f":*(x) _ [sup {{x, 2" — f*¥(x'): 2" € ?}’ .if x < domf
~+00 , if x & dom f
called the bicomjugate function of f.
By the definitions of f* and f** we have the inequalities
f¥(x") + f(x) = (x, 2"y (Young’s inequality), K (1)
[*(x) < f(x) (2)

rall x € dom f and x' € dom f*.

The next theorem will show that if f is lower semicontinuous then the
dality in (2) holds.

THEOREM 5. Let M < E be weakly convex and f: M — R a lower semicon-
wous convex function on dom f Then

() d()mf* )
i) f(x) = f**(x) for all x € M.

Pmof. It follows from Corollary 1 that f is continuous on dom f. .

Let D =domf and F = f[{D be the restriction of the function f to the
tD). It has been proved that the set 1) is weakly convex (Theorem 4). It
obvious that the function I is convex and ¢/ ¢pi F is convexin R X E.

We have (f(x), x) € ¢pif for all x = dom f. Let be x & dom f and
<f(x). Then (v, x) & clept f. Applying the separation theorem we can find
nonzero functional («, x) € R X E’ which strictly separates the point (7, x)
d the set ¢l epi F. Thus there exists ¢ > 0 such that

sup {ah + Cy, 2y 1 (%, ¥) = epi F} <.ar + (%, &' —¢
It follows that
&y, 2 4 ak < x, 2> 4 ar — ¢ (3)
rall y & D and A > F(y).

Note that « < 0; otherwise, letting A —» 00, we obtain a contradiction.
tually a < 0. For putting in (3) ¥y = x and A = F(x) we obtain that

—a(F(x) —7) 2 >0
Since » < F(x) it follows that « < 0. Now, in (B)put A=F(y), y' = — 1y
d then divide both sides of (3) by —a. We obtain -
5 ¥y —F(3) << 9 —r+ =
By takmg the supremum over y € D, we obtam
FHy) <<% ) =7+ = < 4w
d so y' € dom F*. This establishes the statement (i). |

~'Mathematica 4/1990



18 I. KOLUMBAN, L. BLAGA

But from the upper inequality it follows that
r<r—— {x, ¥'> — F*(¥") < F**(x)

This shows that for any » << F(x) we have
v < F**(x)
and even more:
F(x) < F**(x), for all x € D ' i
Consequently, from (4) and (2) we obtain
F**(x) = F(x) for all x & D
Thus f**(x) = f(x) for all x = dom f.
If x & dom f, then f(x) = f**(x) = +oo0. Hence
Sf(x) = f**(x) for all x & M.

THEOREM 6. Let M < E be weakly convex, f: M — R convex and f* i
conjugate function. Then
(i) f* is convex (in the usual sense);
(1) epi f* is a comvex and closed set.
Proof. For any x;, x5 € E’ and any A € [0, 1], we have
FEI0— N+ 2] =sup {<x, (L — Mg + dg) — f(x):x € My=
= sup {(1 — N(¢x, x> — f(*)) ,+
+MCm 2> — [l % = M) <
< (1= Nsup Kz, 27y — fix): x = M} +
—l— Asup {<x x> — f(x):x & M} =
= (1 — Nf*(x) + V*(x2)
from which it results that f* is convex.
To establish the statement (ii) it is sufficient, by virtue of the Theorem$
and convexity of f*, to show the closedness of epi f*.
Tet («;, %;) € epif* be such that
(ot;, %i) = (o, %').
We shall show that (a, %) € epif*.
For every ¢ € I, («;, %) < eps f* implies that
o = [T (%) = (%, x> — f(x), for any x < dom f.

Then holds .
a2 (%, x> — f(x) for any x = dom f and thus

o« > sup {<x, x> — f(x): & = dom f} = f*(x').
It shows that («, x") € e¢pi f*. Hence ¢pi f* is a closed set.
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3. The subdifferential of eonvex funetions.
DEFINITION 7. Let M < E be a weakly convex subset of E. An element

e E' is called a subgradient of a convex functien f: M —R at x, € M if
utisfies the inequality

f(x) = f(xg) + (x — %, ') for all x € M. &

The set of all sybgradients of the function f at x, (denoted by 9f(x,)), is

led the subdifferential of f at x,. The next theorem gives an answer whether
1 equality in (1) holds or not. )

THEOREM 7. Let M < E be weakly convex, f: M — TR proper comvex, f* its
yugate and x4 € dom f, x4 € dom f*. Then

(i) x5 = of(xg) if and onlv if f(xo) + f*(x) = {x0, %0);
(i) xq & f*(xy) if and only if flxg) + f* (%) = {(xor %D.
Proof. (i) If x5 = 9f(x,) then by definition, for any » € M, we have
F(%) = flxo) + <x — %o, %>
is implies that
{xg, %oy = flxg) + (&, xg> — f(a), for all x € dom f
| hence
{xo, %oy = f(xo) + sup {<x, x> — flx):x € M}
It follows that
» (X0 %) 2 fl%0) + [*(x)
i by Young\s inequality this implies the equality
{For %g) = f(%0) + f*(x0)

Conversely, if {(x,, %;> = f(x,) + f*(x,), ther by the definition of conjugate
ctional, we have

{xo, 29> = f(xo) +/*(x5) = flwo) + <%, x> — fl#)
all x = dom f, and hence
. S®) — flxe) 2 {x — xo, %) for all x = dom f.
This implies that x; € 9f(x,).
(ii) For x4 € df*(x,) we have

FEx) = fH(xh) + (xo, &' — x> for all &' & dom f*

Croy 20> > FH(R) 4 (xg &> — f¥(&") for all ¥ & dom f*,
ollows that

(o B > FH(E) + sup {(rg, ¥ — fH(x'): & < E).
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That is, by the Theorem 5
(Ko %o> > [*(x) + (o).
Hence by Young’s inequality we obtain
] ' ’
v SH(xo) + flxo) = (%o, %5
Conversely, if f*(x,) + f(x,) = (%g, %>, then
Koy %oy = f(%o) + [*(%0) = (%o &) — [¥(x) + f*(x)
(see Theorem 3) for x'€ E’, or
F*E) = [*(x%g) + {xq &7 = x0).
This means that x, € df*(x,).

-

REFERENCES

1. A. Aleman, On some generalizalions of convex sets and convex functions, Anal. Numér. This
Approx. (Claj) 14 (1985), 1-6.

2. J.H.Chon, W. S. Hsia, T.Y. Lee, Second order optimalily conditions for malhenutis
programming with set functions, J. Austral. Math. Soc. (Ser B) 26 (1985), 284 - 292,

3. 8t. Cobzas, I. Muntean, Duality relations and characlerizations of best approxinati:
for p-convex sets, Analyse Numér. Théorie Approx. 16 (1987), 95--108.

4. E. Deak, Uber Konvexe und interne Funktionene, sowic eine gemeinsame Verallgemeiners.
von beiden, Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 5 (1962), 109--154.

5. H.C. Lai, S.8. Yang, G. Hwang, Dualitv in Mathematical Programming of
functions : On Fenchel duality theorem, J. Math. Anal. Appl. 95 (1983), 223--234.

6. H. C. Lai, S. 8. Y.ang, Saddle point and dualily in the optimization theory of cones
Sfunctions, J. Austral. Math. Soc. (Ser B) 24 (1982), 130—137.

7. H. C. Lai, L. J. Lin, The Fenchel-Mareau theorem for set functions, Procecdings of tt
American Mathematical Society, vol. 103, no. I, May 1988, 85--91.

8. 8. Koshi, H. C. Lai, N. Komuro, Convex programming on spaces of weasurable fi:
tions, Hokkaido Math. J. 14 (1985), 75—84.

9. N. Kuhn, On the structure of (s, t)-convex functions. General inequalities, 5 (Oberwolfu
1986), 161—174.

10. R J.T. Morris, Optimal constrained selection of a measurable subset, J. Math. Anal. p:

0 (1979), 546— 562.

11. I Muntean, A multipliervule in p-convex programming, ,,Babm;. Bolyai’” University, Fai
of Mathematics, Research Semlnarq, Seminar on Mathematical Analysis, Preprint no. 7, I
149—156.

12. C. H. Scott, T. R. Jefferson, Characterizations of optimalily for continous convex »m’
matical progmms Part. 1. Linear contraints, J. Austral. Math. Soc. (Ser B) 21 11979), 7

13. 8. Simomns, The continuity of infsup, with applications, Arch. der Math 48 (1987), 4”*
437. : ’






292 S. S. DRAGOMIR, N. M. TONESCU |

< <[J(a/(1—a i=1
i1
where the equality holds in all wequalitics off ay = ... = a,.

« Proof. Consider the mapping (see also |1])
g:(0, 1) =R, gla) = (a/(1 — a)).
Simple computations yield that:

d%(In g(a)) __ 1 1 0
da? a(l — a) + T—ar =

Hence Ing is strictly convex on the interval (0, 1). Applying incquality {

for f=Ing, p,= ... =p, =1, we derive:
1 ”
lnl—”a/ 1 - Ly~ :i=lai<
n 1___21 ! 23 1=El H =
{ k+1
" Bt B41 Ty 2o i
! E In|— a, /Il — ! a, T g
nktl A R4+ 16~ k1 =
By ey By = 7=1 . j=1

which implies:
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IE USE OF QUADRATURE FORMULAE IN OBTAINING INEQUALITIES
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REZUMAT. — Folosirea formulelor de ciadraturi la obtinerea de inegalitdti. in
lucrare sint prezentate doud procedee de utilizare a formulelor de cuadraturi Ia
obtinerea de inegalititi.

If [a, b] is a finite interval, we shall call L[4, b] the class of functions
) Lebesgue — integrable (summable) in [a, ] and AC*[a, b] the class of
ctions f(x) whose k-th derivative f*¥(x) is absolutely continuous in [4, b]
=0, 1, 2,

We shall call quatrature formula relative to the function f € Lia, b] and
the nodes x;, %, ..., x,, any formula of the type

[ Flrdx = 35 4,(2) + Raf). (M)

e constants A, are the coefficients and R (f) is the remainder of the qua-
iture formula ( ).

The number y € N with the property that
R,(f) =0 for any f € P,
and there is g € P,;, so that R(g) #0

named the degree of exactness of the quadrature formula.

The problem which arises regarding to a quadrature formula is to deter-
ne the parameters 4,, ¢+ =1, m, and %, i = I, % in some given conditions
1 to study the remainder term R(f) for the obtained values of 4; and x,.

For a broader information on quadrature formulae the works [5 — 9, 11]
1 be consulted.

Further on we shall present two procedures of using the quadrature for-
lae in obtaining inequalities.

I. If in a quadrature formula (1) all coefficients are non-negative, then
f € Lla, b}, removing the quadrature sums, we obtain inequalitics of the
e

b

S f(®)dx > R,(f) if f(x) > 0 for any x < [a, b] 2)

a

* University of Sibiu, Deparimeni of Mathematics, 2400 Sibiu, Romania
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or

f(x)dx < R,(f) if f(x) < O for any % € [a, b]. 4]

D, o

The equal sign is reached for functions of the form

F(®) = h(x) TT(x — %)%, & =N, h = L[a, b] with h(x) > 0

i=1

for x € [a, b] in the case of the inequalities (2) and &(x) < 0 for x € {4, §’
in the case of the inequalities (3).

This method has been used by F. Locher [10] to obtain certain in
qualities with polynomials, inequalities used in solving some cxtremal problem
for the quadrature formulae.

Let’s consider Gauss— Jacobi’s quadrature formula [8]:

1

S (1 — x)*(1 + )8 f(x)dx = §A£:' D Fs ®) + R, h

-1

> —1, B> —1, in which the nodes #1484 — 1 m, are the zeros
Jacobi’s polynomial P (x), and the coefficients A% ®, i = 1, m are positive
For a function f € AC2»-1[--1, 1] the remainder is written under the fom

o +BH2mtl | P o HDIR+m+ T(a- B+ m+ 1) )

Ry, = —(EL,
an-1(/) («+ B+ 2m + D(I(x +*B + 2m + )2 (2m)*

£e (=1, 1).

For « =8 =0 we obtain Gauss quadrature formula.

If in (4) we take as f an arbitrary polynomial p,,(x) of the degree 2
Pom(x) = 0 on [—1, 1] and with the dominant coefficient equal to 1, then th
inequality

1
S(l - x)a(l + x)BPZm(x)dx 2 R2m—l(ﬁ2m)~
-1
Thus we have obtained the inequality given by ¥, Locher in [10]

PROPOSITION 1. For any polynomial p,,(x) > 0, x € [—1, 1), wilh th b
minant coefficient equal to 1, the inequality : ]

[ "o

1
§ (1= 21 4 o 5 LNk DTGt D b
- (&« + B+ 2m + D(T(x -+ B+ 2m + 1))
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true, in which the equal sign is veached only if

2mm ! e+ B+ m + 1) (o, B)
Gttt (pm ( ))

Pg:,,(x) =

For « = f = 0 we obtain the inequality

1*

: 2 2m(m 1)2\2
; > ,
| bt > 2o (55T
-1
h the equal sign reached for
2m( I
Panls) = (Tt ) Bule)™

Locher [10] also demonstrates that:

PROPOSITION 2. For any polynomial py, (%) 2 0, x€ [—1, 1], of the degree
A+ 1 and with the dominant cocfficient equal to 1, the inequalily

1

§ (= 2+ Do)z >

N -1

2a+9+2m+2m!11(a +m+ )I(B + m+ 2) (e + B + m + 2)
(o + B+ 2m + 2)(F(x + B+ 2m + 2))

=

valid, with the equal sign veached for

2mm I D(e 4+ B+ m 4 2) (e, B-+1)
M- = 1 " 2-
Pom+1 (%) ( T+ B+ 2m+ 2) ) Sl )

PROPOZITION 3. For any polynomial pe,.1(x) < 0, x € [—1,1] of the degree
+ 1 and with the dominant cocfficient cqual to 1, the wncquality

1
S 1 —- x "I— x)Bﬁz::: l(x)dx <

-1

QA2 Do o+ TR+ m+ NP+ B4 m + 2)
(¢ + B 4+ 2m + 2)(T(x + B + 2m + 2))?

<
lrue, with the equal sign reached for

2um ! (a4 B 4+ m 4 2) |2 (@41, p)
20 X)) = x—l - .
Pamia (1) = (ST EE RS (1 — (A P()
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PROPOSITION- 4. For any polynomial p,,(x) <0, x € .[—1, 11, of the degra
2m and with the dominant coefficient equal to 1, we have the inequalily

1
S (1 — 0)2(1 4+ x)8po(x)dx <

-1

.

2 tBHImET () D IT(a 4 m4+ DPE+m 4+ D(a+ B+ m+ 2
(¢ 4+ B+ 2m + 1)(T(e + B -+ 2m + 1))2

< )

with equality only if

' e DIT(x + B+ m + DV a2 — 1) (pleth B e
Punld) = (T e = ()

In [3] we have demonstrated that :

PROPOSITION 5. For cach polynomial p,,(x) = O of degree 2m and wih fi:
dominant cocfficient equal to 1 the 1nequality

S x4 po(x)dx 2 m I D{e + m 1), a > —1,
0

is valid, with ecquality omly if
Pam(®) = W (1) (%)%,

where pSN(x) is the Legendre polynomial.

PROPOSITION 6. For cach polynomial pomi (%) = 0, x € (0, 00), with the é-
minant coefficient equal to 1, the inequality

S 2% *Ppopir(X)dx = m! (e + m + 1),
0

is valid, with equAalit_y only if

PZW-H(&) = (M!)zx(pS:H)(x))z:
{e+1)

where by, (x) is the polvmomial of degreec m out of the system of orthog
polynomials on the inicrval (0, o) refering to the weight x* e+,

The proof of Proposition 5 is obtained from the Gauss—Laguerre quad:
ture formula [8]

[es)

{ el = }_3 A (%) + Rons(f)

0
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iwhich the coefficients 4;, 1 = 1, m, are positive and the remainder is given
y

'I‘ 1 142 » * )
| Row(f) = 2EEERED B0 2 < (0, o).

he proof of Proposition 6 is based on the Gauss—Radau quadrature formula
[13])

@ m

S xre~*f(x)dx = Bf(0) + EA}f(xi) + Ran(f)
here ’

A;>0,i=1,m B>0
nd

'F(a + m + 2) + v
Rzm(f) :% f(2‘" 1)’ QE (0, OO).

he gencralizations for the results from the Propositions 1—6 were presented
WEIN

II. If in a quadrature formula (1) we have R (f) > 0 respectivdly R, (f) <0
tf & Lla, b],'then we may write '

spectively”

urther on we present applications.

1. Let’s consider the trapezoidal quadrature formula

{ fx)aa % [fla) +/0)] —L=L 1), ¢ < (a, B), ®)

here f € ACl[a, b]. This quadrature formula has the degree of exactness
ual to one.

If f"(x) > 0, for any x = [4, b], then from (5) we obtain the inequality’

§ fdx < 252 1f@) + 70 ©)
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and if f”’(x) <0 for any x € [a, b], we obtain the inequality

{ fxdx > 222 17(@) + 7001, i

Both in (6) and-in (7) the equal sign is reached for polynomial of the degre
one. .

If in (7) we insert f= 1ljx, x € [a, 8], 0 <a < b, then we find the ine
quality

Int~splze

b+ a

a

(1121, 3.6.17)

2. Let’s consider the rectangular quadrature formula [5—9, 11))

b

§rtade = 0 —ar (“22)+ L5 1), 0 = () y

24

where f € AC'[a, b]. The formula has the degree of exactness equal to on,
If f”(x)2 0 on [a, ], then from (8) we obtain the inequalily

b

§readx> ¢ —a) (<32 9

a

which is known as Hadamard’s inequality [12].

If f(x) <0 on [a, b], than we have the inequality
b

S flr)dx < ( (10

In (9) and (10) the equal sign is reached for the polynomial of degree one.
3. Let’s consider Simpson’s quadretrre formula ([5—9, 11]):

) o]+ RO) (1w

where

— (b— a) 4 =
R(f) = = L= fugo). ¢ = (@, B),

and the degree of exactness is three.
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If fe AC3a, b] with f®(x)> 0 on [a, b], then from (11) results the
quality

fl)ax < 2=2 [f(;z) + 4f (“*”) + f(b)]- (12)

6 2

|V ey o

fi(x) <0 on [a, b], then from (11) results the inequality

b

{ iz 225 (110 + 47 (S5 + /0] (13)

2

(12) and (13) the equal sign is reached for polynomials of at most the third
gree.
4. Now let’s consider the genéralized formula of the rectangular ([1]):

b

[ f@ar =33 dffat dit -+ b %)+

1 Y 3 r
ta(E ) c=w. (14)
ere dy, dy, ..., d, are the lengths of the 7 subintervals in which the

erval [a, b] has been divided.

If we choose f so that f”(x)> 0 on [a, 0], then from (14) results the
quality
"

b
{ fmax > 3 djf(a tdi b dat b+ ) (15)

7=1
ich generalizes Hadamard’s inequality.
If f7(x). < 0 on [a, b], then we obtain the inequality
hd
: dj
flods <25 d,.f(a i+ + 2. (16)

J

|/ L™ o

the inequalities (15) and (16) the equal sign is reached for the polynomial
degree one. ‘

For f(x) = 1/x, x = [a, b], 0 < a <b, from (15) we find the inequality

b Y, dj
ln—>8d,1/(a+dl+ oo dil + 2.
a =1 : 2
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For f(x) = ¢*, x € [a, b], from (15) results the inequality
— et é dﬂ“""‘il'f“"~"'dj—-1"‘ij/Z . (]7)
=
and from here for dy =d, = ... =dy = (b — a)/y results

b
(,b — f >

e X ) j
E ot (2i--1)h--a)f2y “8!
71

From (18) for a =0 and 5 = x > O results the mctht\

¥ o o
> L3> vl 41,
Y

7—=1
We notice that the quadrature formulae are a rich source of inequalitics.

We notice that, by using cubature formulae, we can build up ineqgualitic
for functions of two or more variables.

For examples, going out from the formula of the rectangular extended
functions of two variables ([6]), we can demonstrate that:

1) if fa(x, ¥) = 0 fo(x, ¥) 20 and flik(x, )= 0
on the rectangular [a, 0] X [¢, d], then we find the inequality

Sf(x Nady > (b — a)d — Of (*T>, =)

R >

2) if fa(x, ¥) <O, fu(x, ») <0 and fifs(x, ) < 0.

on the reactangular [a, ] X [¢, 4], then we obtain the inequality
, 8

Sfx y)dx dy < (b—a)(d—c)f(i;'—b, c’;d).

TR ey o

If we use Simpson’s formula extended to functions of two wvariables ([6]):

d
|/t )i dy = E=LE= [fla, ) 4 fla d) + 0, ) + £ )+

R ey o

R e R R e B L R A R b

+16f (21, S|+ RO
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iere

__b=a)fd—0) (4 _ (b—a)d—¢c)®
R(fy= — — 22X~ Y V- ane—o
() D29 2D

_b-ad= o @®
T omsor fx‘y (&2 7]2)~

Pz ¥ 20, i2x, ¥) 2 0 and f&\x, ¥) > 0
the rectangular [a, b] X [¢, d], the inequality

§§fx vdxdv\-—d__c[fa &) + fla, d) + f(b, ¢) +
+ f(, d)—|—4f( )_|_4f(a+b )+4f(a, dJ+
o ) e [ (19)

‘

(x ¥) <0, fx, v) <0 and f&(», v) <0 on the rectangular [a, b} X
[c, d]’in (19) the sens of the inequality changeb
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ON SOME IMPROVEMENTS OF CEBYSEV’'S INEQUALITY
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REZUMAT. — Citeva imbundtiitiei ale inegalitagli lui Cekisev pentru sirurl si
Integrale. In lucrare se stabilesc citeva inegalititi care rafineazi binecunoscuta
inegalitate a lui Cebisev.

1. Let a =(ay, ..., a,), b=1(b,, ..., b,) be n-tuples of real numbers.

pair (a, b)is called synchroneif (a, — a;)(b; — b;) > 0 for all 4, j =1, ..., n.

We shall introduce the following subset of R* for a, b synchrone: -
S(a, b): = {x € R*|(a + x, b) and (¢« — x, b) are synchrone}.

The following simple lemma of characterization holds.

LEMMA 1. Let a, b € R*, a, b # 0 such that (a, b) 1s synchrone. Then the
wing Statements are equivalent :

(i) x = S{a, b);

(i) For all i, j =1, ..., n; the following tncquality holds :
[0 — b))%, — %) | < (a; — a;)(b; — By). 1)

Proof. It is clear that x = S{a, b) if

(@ % — a4 — %) — ) > 0 and (&, — % — @, + %)(b; — )30
rall 4, =1, ..., »; what is equivalent to:

(@; — a;)(b; — b)) + (0 — b;){x; — %)) > 0 and (a; — a;)(b; — b;) —
-(b;, — b;)(x;, — x;) = Oforalls, =1, ..., »n; what is equivalent to (1).
Denote S(a) = S(a, a). Then we have the following:

COROLLARY., Ifa € R*, a # 0, then the foliowing sentences are equivalent :
(i) x & S(a);
(i) For all i, j =1, ..., n,; we have:

l(a, — a)(x; — %)) | < (a; — a,)%. (2)

Now, we shall point out some fundamental properties of the set S(a, b).

* Secondary School, 1600 Bdile Herculane, Caras-Severin County, Romania
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PROPOSITION 1. Let a, b € R*, a, b # 0 and the pair (a, b) is synchron.
Then

(i)
(i1) S(a, b) is svmmetric and a, —a = S(a, b);

(iii) If x = S(a, b) then |x| & S(a, b) where |x| = (|x), ..., |x,]) od
la| € S(a, b).

Proof. (i). Let x, v € S(a, b) and «, £ >0, « + B = 1. Then we hae.
| (b; — bj)(oex; + By, — ax; — By,) | < al(b, — b))(x, — %) | +
+ BIb; — b))y — )1 < (a; — a;)(b; — b))

for-all 4, j.=.1, ..., n; i.e., ax + Bv € S{q, b).

If Al <1 and x € S5(qa, b) then ax € S(a, b).

(ii). It’s abvious by Lemma 1.

(iii). If x € S(a, b) then:

l b, — b (lx,| — Ix) 1 < 1y — b)) (x; — x;)| < (a; —aj)(b, — b)
forall ¢, j=1, ..., n; ie, |x| € S(a, b).

Remark 1. The above properties are also valid for S((1>
Now, let us consider the following linear functional on R#, T,(., a, p) with

a s R”\{O} and p € R\ {0} and:

T,(x, a, p): Ef) E z”: iaigpixi‘

S(a, b) is convex and balanced ;

The next result holds.

THEOREM 1. Let a, b € RN\ {0} and the pair (a, b) is synchrone. Then ut
have the inequality :

0 <sup |T,(x, b, p)| < T,a, b, p). 3

x€5S(a, b)
Proof. We shall give two arguments of this fact.

1. If x = S(a, b) then (@ + x, b) and (a — x, b) are synchrone and by
Ceby%ev’s inequality we have:

Ty a+x b p)20and T(a— x5 p)20
By linearity of T, in the first argument we obtain :
T,a, b, p) + T,(x, b, p) =0 and T,(a, b, p) — T,(x, b, p)20
what implies (3). |
2. If x € S(a, b) we have:
P2ibilb; — b))%, — %) | < pipjla; — a;)(b; — b;)

foralls, j=1, ..., n
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Summing these inequalities, we deduce:

z:m b))(x; — ;) z:pm(b b) (% — %)) | <
EP,PJd—a)(b—b)
i since: '
T,(x, b, p) ——Elbibf (x_xj)

deduce the desired inequality.

COROLLARY 1. Let a, b € R\N\{0} and (a, b) be synchrone. Then
0 < max {|T,(la}, b, p)I. |T,(a, 6], p)I, IT,(lal, Ib], p)I} <
< T,(a, b, p). (4)
Proof. By Theorem 1 it is clear that:
[T, (lal, &, p)I, 1T ,(a, 1b], p)I < T,{a, b, p).
On the other hand: '
I(la;] — la; (161 — 1B, D] < (a; — a;)(b; — b))

all 4, 5 =1, ..., #; what implies, by a similar argument to that in the
rof 2 of the above theorem :

IT,(lal, 6], p)I < T,(a, b, p)
d the proof is finished.

Remark 2. For another proof of this fact for isotonic functionals see [2]
ere further consequences are given.:

COROLLARY 2. Let a & R\{0}. Then the followiing inequalitics are valid :

0 < ;gng(x a, p)| < T,(a, a, p) (5)
i
0 < IT,(lal, a, )| < T,(a, a, p) (6)

Further on, we shall consider another functional defined on R* in connec-
n to Ceby%ev’s functional T,.

Let @ € RN\{0}, p € R\ {0} and put:
To(x a, p):=T,(x, a, p) — Tu_i(x, a, p), ¥ € R~

It is well-known that (see for example [4]) if (x, a) is synchrone, then

(¥, a, p) 2 O
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THEOREM 2. Let a, b € RN\{0} such that (a, b) is synchrone. Then we
the incquality :

0 <sup|T,(x b, p)| < T,(a, b, p). i

z< S(a, b)

Proof. We also give two arguments of this fact.
1. If x € S(a, b) then (@ + «x, b) and (a — %, b) are synchrone and byti

above inequality we have: ,

Ta+ x, 0, ) = 0 and T(a—x b $)=0
what easely imply (7).
2. We use the identity:

Tn(xJ a, P) = nZSPiPn(% - xn)(az - an)'

The proof follows as in Proof 2 of the above theorem and we omit th
details.

COROLLARY 3. Let a, b be as above. Then:
0 < max {|T,(lal, b, )|, |T.(a, 16l )1, IT,(lal, 6], P)I} <

< T,a, b, p). 8
COROLLARY 4. Let a € RN\{0}. Then the following incqualitics hold:
0 <sup T,z o p)| < Ta, a, p) b
and e
0 < IT,(al @ p)| < T, a p). {

The proof is abvious and we omit the details.

2. Let f, g be two continuous functions on [a, b]. The pair (f, g) is calld
synchrone on .[a, b] if:

(f(x) —f(¥)(e(x) — &(»)) 2 0 for all x, y = [a, b].
We shall introduce the following subset of C[a, b] for f, g given as abovu
S(f, g ={k=Cla, b]|(f+ %, g and (f — &, g) are synchrone on [q, b]}.
The following simple lemma of characterization holds.

LEMMA 2. Let f, g € Cla, b]NJ{0} such that f, g arve synchrone. Then the il
lowing sentences are equivalent :

(@) & =5S(/, &;
(ii) For all x, y € [a, b] we have:

| (g(x) — g){k(x) — £ < (flx) — f¥)(elx) — g)-
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The proof is similar to that of Lemma 1 and we omit the details.

As in the discrete case we have the following proposition which contains
properties of S(f, g).

PROPOSITION 2. Let f, g be as above. Then:

(i) S(f, &) #s convex and balanced ;

(i) S(f, g) 4s symmetric and f, —f € S(f, &)

(i) If & < S(f, &) then |k| < S(f, &) and |f| < S\f, ).

Now, let us consider the following linear functional on Cla, 0], T,., f, p)
re f, g belong Cla, b] and p > 0, given by:

T(k, f, p): g plx)dx gk )p(x)dx — Sf(x)zﬁ(x)dxsk(x)ﬁ(x)dx.

It is well-known that if %, f are synchrone, then T'(%, f, p) > 0. Further
we shall improve this fact.

THEOREM 3. Let f, g € Cla, b1N\{0} such that f, g are synchrone. Then we
¢ the inequality :

0 <sup |T(k g P T(f, g p (11)

kES(f &)

Proof. 1. If k < S(f, g) then (f + %, g) and (f — &, g) are synchrone and
CebySev’s inequality we have:

I(f+k g p)>0and T(f—k g $) 2 0.
The inequality (11) follows by the linearity of T in the first variable.
2. We shall use the following integral identity:

T(h g ) = ( [ p0POIEG) — RO — eOMdsdy  (12)

Now, suppose that %k € S(f, g). Then by Lemma 2 we have:
px)P) [(k(x) — R())g(x) — g <
< PP (%) — F(¥)(e(x) — g()
all x, y € [q, b].

Integrating this inequality in rectangle [¢, b| X [a, ] and using identity
we derive easely inequality (11).

COROLIARY 5. Let f, g, p = Cla, b, f, & be synchronc and p = 0, then
0 < max {|T(Ifl, & p)I, 1T, gl PYI ITCfL, 1gl, A1} <
< T(f & P (13)
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COROLLARY 6. Let f, p € Cla, b], p = 0. Then the following two incqualitis
are valid :

0 <sup |T(k f, p)I < T(f, f, P) {4

keS(f)
and

| 0 < IT(If1. £, DI < T(S, S, D) (1
where S(f): = S(f, f).
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3. Main result.

THEOREM 1. Let f(2) = 2z 4 ax? + ... be analytic in the unit disc U and
let o be a complex number. If the following conditions arc satisficd :

[a — 1] <1 (2
|a(1»_z2)(%—1)+a—11<1 8)
Jor all z wn U, then the function
s 1
b <[ 72
]

is analytic and wuwnivalent.

Proof. The function
_h(u):f—i:’)-=1—|-a1u—'l—...-I—a,,u"—}-... 5)

is Aanalytic in U and A(0) = 1. Then, it exists 7, 0 < 7, < 1, so that k)
does not vanish in U,,. In this case we denote by 4,(#) the uniform branch
of [A(u)]* which satisfies %,(0) = 1 and is analytic in U,,.

Tet

eA_tz
oz, 1) = « 5 By(w) - u=t - du = (c=t2)* + aj:l (e—tz)a+1 +
0
+ oo 2 (e~tz)atn ... for £20 (6)

It is clear that, if z € U,, then ¢~% € U,, and, because 4 is analytic
in U, and lim \/ IT‘ — lim 4[a,] it follows that hy(z, £) is also analyti
o n

in U,, for all £> 0, and
hy(z, t) = (e~'2)* « hy(z, t) where ]
, . a2 —is
lza(z,t)—l—l—l_l_aez—l—... @8
Let
hy(z, t) = hy(z, t) + (¢ — ke '2) )

Because %,(0, {) = ¢ # 0, we can choose r,, 0 << 7, < 7, so that k,(z, ¢ #0
in U,, for all £ > 0. Now, for { > 0, denote by /li;(2, {) the uniform branch of
[24(z, ¢)]U= which satisfies hy(0) = e®e.
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It follows, by this construction, in analytical steps, that the function )
Lz, t) = ¢~ - hglz, ¢) (10)
is analytic in U,, and L(0, ) = 0.
(2—a)t
It is clear that ¢=* . /,(0, t) = ¢ °
Now, we can formally write [using (6), (7), (8), (9), (10)]

f)=

Lz )= [o;f}a(a) cut e du o (= ) =

2—a)t

=z-e % 4+ ... (11)
Denote a,(t) = c@-o¥e, It is clear that a,(f) # O for all > 0.

From (2) it follows immediately that Re —ia;(])—ilj— > 0, and, hence
— (& —
Re 2= ¢ > 0.
o
(2—a)t ¢ Re 2-a =
Then lim |a,(t)] = lim|e * |=lime @
ta o0 t—=o0 t—00

)

L(z, ¢)]a,(t) is analytic in U, for all ¢ > 0 and, hence, the family {L(z, f)/a,(t)}
(2, t)/

s uniformely bounded in U, . From Montel’s theorem, it follows that [L(z,

2
o)} is a normal family in U, .
)
Using (9), (10) it follows that
r, L
AEH) o [l (halz, £)° 2D 4 e, t))“] (12)
ot L« ot

Because 7,(0, #) = ¢# # 0, it follows that we can define an uniform . branch
1

1
— -1

- -1
br [hy(z, £)]1%  which is analytic in U, (0 <7, < % and [4,(0, H]* =

1 - 1
. a|— -1 . - 1 . .
E (“ ) - 75 1s choosen so that [/4(z, £)]*  do not vanish in U,,.

It is clear that 0h,(z, ¢)/ot is analytic in U,, and then, &G 1 4 also. Tt
bllows that L(z, ¢) is locally absolutely continuous.
Let
P(Z» t) - zé)l,‘(z, 1) / é)l,('z, ) (13)
gz ot
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In order to prove that the function p(z, f) has an analytic extension with
positive real part in U, for all £ > 0, it is sufficient to prove that the function

w(z, t) = M is analyticin U, for ¢t 2 0 (1)
P )+ 1
and
lw(z, t)| <1 for all z € U and ¢ 2 0. (15)

Using (5), after simple computations, we obtain :

(a0 — ett) - hle7tz) + afel — e N)f'(e7tz) - ot

W(Z; t) = e - h{e~tz)

Because %(¢c~'z) do not venish in U,, and is analytic, it follows that wlz, {
is analytic in U,,, for all £ > 0, Then, w(z, {) has an analytic extension i U
denoted also by w(z, ¢).

For t =0, w(0, t)| = la — 1] < 1 (from (2))
Let ¢ > 0. In this case, the function w(z, f) is analytic in U because
lew* -z} < et<< 1 for any z € U. Then:

|w(z, t)] < max|w(z, t)} = [w(c®, t)| where 0 is real. (17)
|z§=1

In order to prove (15) it is sufficient that

lw(e®, )] <1 for all t > 0. (18)

If u=ct. e ue U then |u| = ¢~ and from (16) we have:

( : )f(")+a(_1"—|ul) el - f'(u)
|2 }? ||

w(e®, §)

1 E (19

lul®

- f(w)

(el u]? — 1)f(u) + aetre(l — |1|?) f'(u)

—la-ul =14 afl — a3 _””“”:

flw) flu)
=|alupp—a+a—1+al —[u] "J{(’i’;) =|a(l—{u) “f e 1)“ 1'
and inequality (18) becomes
‘(1 | uj2) l)+a~ll<l ()

Because # « U, relation (3) implies (20). Combining (17), (18), (19) and
(20) it follows that |w(z, £)| << 1 for all z € U and ¢ > 0.
Then,. from Pommerenke’s theorem it follows that Lz, ¢) is a subord:

nation chain and, hence, the lunction Lz, 0) = gu\?) defined by (4) is analytic
and univalent in U.
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COROLLARY 1. Let f(z) = 2z + ap® + ... be analylic in the unit disc U and
lt « be a complex number. If the following conditions are satisfied :

{ (i) |a—1]< 1,
(i) (1 — 23 -

if(a) ll < 1 —ja—1] inU
1) 1 ’

: il ,
then g(z) = [a S [ du] *is analvtic and wunivalent in U.
u
0

Proof. Condition (i) is similar to (2) in Theorem 1 and (ii) is equivalent
to:

*
2f'(2) Y
— 1)@ —zp — 1] < L.
\a( I H( 128 + o — 1]

But (3) is'a weaker condition because

() 2f%(z)
o —= —1}1(1 —|z|? at-—lgcxz————-—l)l—z2 a—1|<1
= (For = 1)@ —1zp) + o) (L KV IR Y
and then, from Theorem 1 it follows the assertion.
COROLLARY 2. Let f(z) = z + ap2® + ... be analvtic in the unit disc U and

let o be a real number with
(i) ‘O$< a <1,
If
(i) (1 — [z |2L9Q — 1) <1 for all z €U,
‘ i f(2) 1
then gq(2) = [ot S f:(—‘") du]_a is analytic and wunivalent in U.
0

—|le~-—1]

Proof. If « is real and 0 < « < 1 it follows easily that !

and |o — 1| << 1. Then, by corrolary 1 it follows the assertion.

4. Some particular cases. Example 1. If a is real, 0 << o < 1, then the
function

[a]

£ 1

flz) = [aZ“ S v du] * is analvtic and wumivalent in U.
(2 + 1u)*
0

Proof. z = x + 4y where x and y are real numbers. |z| < 1 implies x > —1
and consequently

4 4 4x + 2 + »® > 22 + »%, which is equivalent to

|2

|z 4+ 22 >]z]* and hence P < 1, which means

2|
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2z

(a) LHON. < 1 where f,(2) = T z 4 ... is analytic in U. But |z]<
r4

' filz)
<1 and then (1 — |z]?) < 1, and because of (a), it follows that

(1= |z - il'(z_)_1’<1,

flz)
By applying Corollary 2 it follows that

z 1

o -
f(z) == [oc ( #— d“] si univalent.
0

Remark 1. By the demonstration jof P. T. Mocanu, the function f from
the previous example is starlike and, tfnen, univalent, This result was obtained
usingjanother method.

THEOREM 2. Let b be a veal number, b > 1 and let a be a complex wumber,
We denote by m the maximum between Re a and Ima. If the following asscriions
hold :

() 2= Cand |o — 1] < 2=

b4 1
(i) m e (=0, —=b — 11U [+ 1, +o0)
then f, defined in the unit disc U by

z 1

fle) = [aa"‘ R du] “ ‘

(a + u)*
0
is analytic and wuwivalent in U.
b—1. . 1—|a—1| 1
Proof. |a — 1| < i1s equivalent to —————— > —, and because |¢|
b+ 1 14ja—1] b
€14 |a—1]it follows that:
l—[a—l]}l—la—H?lw 2l
| e} 14 je—1} b :
If we define g(z) = il: =z + ..., we obtain that gis analytic in U and
a 4

80 I2)

502 |= o+ 2] , . .
from —1<x<1, —1<y<1 it follows, after simple computations that

, If 2= x4 4y, where ¥ and y are real, from (i) and

|a + 2| > b. Taking into account that [z| <1 it follows immediately that
I2] < L which is equivalent to &0 1| < L Because 1 — |zf2 <1 and
|a 4+ 2| b g(z) b

from (21) we obtain that:

1—1zI2 ﬁlﬁ_l'g_s
{ ll)l g(z) : b fol
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THEOREM If f is a convex function on U and z € U with |z| =r, then

/5 21 <

2)2
and the bound is sharp.
2. Preliminaries. Let P be the class of analytic functions p on U with
positive real part and with p(0) = 1. It is well knowa that p = P if and only

if p has the form p = (1 4- ¢)/(1 — 9), where ¢ is analytic on U, ¢(0) =0
and |o(2)|< 1, z € U.

We will also use the following

LEMMA ([1], p. 319). If ¢ 1s an analvtic function on U with-|(z)] < 1
Sfor every z € U, then

, 1 — ()12
() | < 2= LDE

1 --512
3. Proof of the theorem. We may presume that f € K. Then p € P, where
p() =14 2f"(z)[f (z). If we put p = (1 4 9)/(1 — 9) we obtain
'@ _ o )
f@) (1 — o(2))

where ¢(0) = 0 and |p(z) | < 1in U. It follows immediately that the Schwarzian
of f has the form

’

z

Uidb=74 cp(z (Q(Z)),'

Let §(z) = CP(Z) . Then ¢ satisfies the hypothesis of the lemma and

fira= —(—)); $'(2).

Applying the lemma we obtain

1— | 4() 2
f ol =
/3 23 < \1 (1 —r |92 lEl=r

But
. max{i:xe[o, 1]}: ! .
(1 — rx)? 1 — 42
so
1/ 2 < ,),
We will show now that the bound is sharp by considering the function
1 1 ¢
fult) = 10g 1= e = 1,
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which maps U on the band {w: - -} <Imw< % } . By direct computatiom

we find out that {f;; £} = 24%(1 — a%?)~%, s0 | {f,; 2}| = 2(1 — £2)? if we take
¢ = 7[z. The proof is finished.

Remark. The sha.rp bound given by the theorem is actually valid for the
larger class

{g:g analytic on U,gzaj':'z, a, b, ¢, deC,feK},
of -
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A SUFFICIENT CONDITION FOR UNIVALENCE
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REZUMAT. — O conditie suficientd de univalentd. In lucrare este datd o con-
ditie suficientd pentru univalenta unei functii regulare in discul unitate.

~

In this note we prove a sufficient condition [or univalence of a regular
iction in the unit disc U = {z: |z| < 1}.

Pommerenke has proved-the next lemma:

LEMMA ([1]). Let vy be a real number, vy € (0, 1] and U,, = {z: |2| <7}
Ef(z, 8) = a,(t)x + ..., a(t) # O be a regular function for all t = I = [0, o)
2 € U, and locally absolutely continuous in I, locally uniform with respect
U,,. For almost all t € I suppose

e LG8 pe, 48D e U, M
0z at

ere h(z, t) is vegulaw in U and satisfies Re h(z, t) >0, z € U, t € I.

If tay(t)| = 00 for t — o0 and f(z, t)[a,(t) forms a normal family in U, then
reach 1 €1, f(z, t) can be continucd regularly in U and gives a univalent
nction.

THEOREM 1. Let m be a real number, m >0, o be a complex number such
at

’a_m-)l-l‘<m+l (2)
2 2

i f(z) =2+ ... be a regular function n U. If there exists a regular function
. Ug(z) =z + ... such that

(i) 20 10, vieU if Lisa positive integer
2 o

(f(_z))m—l f'(2) _m—|—1 <m—|—l' Vze U
glz) £ 2 2

(i1)

* University of Brasov, Department of Mathematics, 2200 Bmp‘c.?v, Romania
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(iii) for all z € U:

|Z|m+1 [(&)a—l @_ _ m+ 1] + ]z|m+1) [(a _ 1) 24'(2) + (3)
z g'(2) . g(2)

zg"(2)
IS ST R
* g'(z) + 2

then the function f(z) is univalent in U.

1 1
m + ]lsm-;-

Proof. If there exists z, € U such that g(z) = (z — ) () where p is

a positive integer and ¢(z) is a regular function, _( o) # en
y " 1
(a _ 1) zg'(z) + Zg/ (Z) _ (px + ¢( ) (4)
g(z) &) 2= %

where {(z) is a regular function in U.
If Lisn't a positive integer, then pa — 1 # 0 and hence
o

1) zg’(2) 2g"(2) = o0 (5)

lim (o —
z2, 8(2) &'(2)

Because (5) is in contradiction with (3), it results that g(z)/z # O for all ze U.

By (ii) it results that f(z) - f'(z)/z # O for all z € U and hence for the

function (Z’ ((Z)) " we can choose the regular branch in U, equal to 1 at the
origin. '
Let a and b be positive numbers and b — m. Because the function
(g)[f(2))*-t =1+ ¢z + ... is regular in Uu it results that there exists 7,
<7y < 1 such that

=1 o p-aty | 842 ]“‘1 W) 6
Ma, ) = 1+ aler — o) [MZ9 ) 2D, 0

for all t € I and z € U,, = {2: |2| < 7, and hence the function
S, 1) = flemaa) bz, )= @)z + ... 0

is regular in U,, (in (6) and (7) we choose the branch equal to 1 at the origin).
In (7) a,(t) is given by

{a+b—aa)t —(a+b)t_1/a

aty=c¢ * [a+(1—a)e ] 8)
By (2) it results that Re « >0 and hence
Re [a 4 (1 — a)e=@+0] > 0 and a,(f) # O for all ¢ = I.
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We observe that

Re lotlb-2) _ pemtl_x_ a

o % Jof?

Re [— |aft + a(m + 1)]> 0.

Then, from (2) we conclude that lim a,(!) = o (we have chosen a fixed branch

. {200
for a,(t)).

It follows that f(z, f)/a,(t) forms a normal family of regular fuctions in
Uy 71 = 7of2.

Let p(z, ¢) be the function defined in U, X [0, o) by

_ . ofe. y af(z, 1)
plz, t) =z - / Lot e I. ©)

In order to prove that the function p(z, ¢) has an analytic extension with
pozitive real part in U, for all ¢ e I, it is sufficient to prove that the func-
tion
plz, &) — 1
w(z, ) =""_ 10
(2 ) ES (10)

s regular in U for ¢ € I and .

flwz )] <1, Y2 U, Vt el (11)
By (6), (7), (9) and (10) we obtain
| w(z t) _ (1 +a)4(z, )+ 1 -8 (12)
| ’ A—ad@e H+ 1+ :
where
! f( —utz) a—1 f'( ~—alz)
| Az, t) = e—latbr [( - ) ° — 1] + (13)
gle™) gl

+ (1 — e—ta+dn) [(a P (Gt RS e—uz.g"(e‘“”)]
gle™2) gle™%s)

and hence the function w(z, ) is regular in U for all ¢ € I.
Let X =Re A(z, ¢), Y =Im A(z, ). Then from (12) we have

lo(z, ) 2= LU QX £ ) +1—bF _ [+ @)X 1P+ [0+ VP
’ (= a) (X +i¥) + 1+ b2 [(1—a)X + 1+bf+ (I ~ @)V

fxz Y2442t x_ b <0 or
a

| 4(, t)+l—m+1|<m+l,that is (14)
I 2 . 2
e+ — 1)<t (15)

m+ 1
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If A*(z, t) is the function defined by

!

A*(z, §) = Az, &) + 11— 1=
m+41
_ 2Tl [(f(e"“‘z)')“—‘ fle=)  m+ 1] +
om+ 1 [gle™ %) g'e™%z) 2

+ 2(1 — o—la+b) [(« —1) e %z g'(e™%2) + e %z g(en ) +1— m + 1]
m+ 1 gle™%s) gle™%z) 2

then from (15) it results that the inequality |w(z, #)| <1 is equivalent to
| A*(@z 1) 1 <1
From the condition (if) of .the Theorem 1 we obtain
[A*(z, 0)| <1 for all x & U.

Let’s observe that if # > 0 then the function A*(z t) is regular in U and
hence :

| A*(z, t)|<max|A (2, 1) ] —-|4*(e"’ 1), (16)

|z |=1

where 0 is a real number. }

If £ =¢-o .¢% then |§| = e¢~% and

e=(@ti)t — | E|m+1 where m = LA
a
Replacing in (16) we obtain
) o f(%) £) m + 1

A*Z, ¢ m+-1 ___.) f =L |
4% ” lﬂa &) +
+ e - R 2 g2 (17)

4¢3 &%) 2 1

for all z € U and t‘> 0.

Because § € U for ¢ > 0, by condition (iii) of the Theorem 1 and by ine-
quality (17) it results that | A*(z, ¢)| << 1 for all z € U and ¢ >0 and hence
|w(z, §)| < 1lforall z € Uand# > 0. From Lemma it results that the function
f(z, t) is regular and univalent in U for all # € I and hence for { = 0 we con-
clude that the function f(z) is univalent in U.

REFERENCE
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2. The proof. Let’s consider the sequence (x,) defined by x, = }2” for

Dy i

v2lznn
any n > 2. We shall assume that x, possesses an asymptotic series representa.
tion

- [2 ). o .

ay,
Inx, = —

t]
= wnk

meaning that there exist the limits

limln x, = ay,
=00,

lim #n(ln x, — ay) = a;.
n-=0

: p : a,
lim #?* (ln X, — Qg — ——) = a,,

$%— 0

Here a, = 0, as it is mentioned above and a@,, a, ... are constant coefficients
. . . B

to be determinated. We have to obtain, of course, g, = —/(/—:L“l—) for any k21,
el/e
since a function can have‘at most one asymptotic series.

We have
S R S LTI R
’w+1 €

Using the expansion

ln(l—}—x:E i

k=1

for x =l< 1 and inserting it into (4) we obtdin

n
= exp E —1"1(—-—*—1 ) ! or
EZTRRY 2(k — 1) ph—1

_ 0 o E—1 1 )
= &P {E %t 1) uk } i

k=1

Xni1
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On the other hand, according to (3) we get

Y =
=X
Ky P = nk 21 (n + 1)k
0 o0
= exp Sk 3> o (6)

Applying now the binomial series

)k ss+D...(s+E-1) x*
k!

(L0 =143 (-

k=1

s=mand x = = < 1 we immediately obtain

n
1 -1 + i (_l)k—m mm +.1) ... (k—1) _
(1 + l)m k=m+1- (h — m)! nh—m
”
= | (k — 1)! (—1yn 0 (= Dk — 1)
1 — 1)k — = Y
+ 2 ( ) (m — ])'(k - m)!n,k"’” (m — ])l (k . m)| ”k—m ( )

k=m+1 ke

nce by (6) and (7) we conclude

\

- & (=Uma, & (=D —1!)
g nk El (m — L)l um _2’" (k-—m)!n""’” ]'—

X

:exp[

Fnt1

—exp |35 % 4 5~ (1 — 1) Zk; (=" ey,
" = k- m)l (m— 1)! nk )

=
f
-

us

o 3y k _lml
= exp E[ak—l—\ DER - 1) E /e-—m)'(m—l ]nk}

The identity of expansions (3) and (8) enables us to write the equality
the coefficients of 1/n*:

k n-lg YW ok—1

— (— 1)+
Z? (k—m'(m—l)' =(=1) 2k(k + 1)’

A\

a, + (—1)HE — 1)

we separate the g, term in the summation we obtain

k—1 m-1
h—2t.- 3> = e L x50
kh—m)! (m — 1)t 2k + 1)!

m=1
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By k: = %k 4+ 1 and solving the equation for a, we obtain the recurrence rela-
tion
k-1 _1)m~la 1
a4y = (—1) [(k— 1)1 ( mw .0
p=(=1) P ) ;;w—m+wwm_n! (—HM+4] (
1

-1
, 4y =0, 4y =—,

valid for any £ > 1. From here we easily find that.a, = =

—
[

a, =0, a; = , ... and we obtain the series
1260
-y 1 1 ' 1
n! = \j2nn nre—" exp — — b
12n 360n° 126015

Now we show the connection of the coefficients a, with the Bernoull
numbers, namely we establish starting with (9) that a, = T/H“—l) for any
(ke -+
k> 1, as it is well known.

From recurrence relation (9) we get

g Bt (1" Yy(m 4+ e k
Na, = (—1) ! n .
Bk + Da, = (—1) [(k+1) 2 T mea Ty

Let’s denote k(k + 1)a, = byy, for any k> 1, hence

1kl k42 k
b — 1)* 1)m—1 " R A—
k+1 — ( ) [k 2 E : ( ) ( + 1) b +1 20k 2)]

m=1

By k: =% —2 and m: =m — 1 this can be written in the form

k-2
by = (—1) [.l T (- 1):::(’*) b, — 2= 2], k>3
) {2

k m=2 ” . 2k

or in the more compact form

-
\ bp_y = (— 1) [ E m‘:;) b, — 1], k=1, (10

where by =1, b, =‘—%.

For k=1, 2, 3 and 4 relation (10) yields b, =1 = By, b, = — - =15,

[ICH I

by, = % = B, and §; = 0 = B,. We now prove by induction that b, = B, iu

anyn 2 0. Suppose b, = B, foranyn < k — 2, k >4, then one obtains [rom(l

bo_t = (— 1)* [ "); —1)»»(”1) Bm-—1]= 1 [ (M(")B -
_9 (f) Bl) - 1];(—1)k [% (—(kf 1) Bi_, —I—/c) _ 1]:: (—1)1 By,
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ing the following familiar properties of the Bernoulli numbers :

k—1
By = 0 for any m > 1 and E (k)Bm =0 for any % > 2
m—0

m

If 2 — 11is even we have b,_, = B,_;,and if 2 — 1is odd then B,., =0 =
b._; and obtain that b, = B, for any #» > 0, as required.

3. Final remarks. Using the series (2) and the series expansion of the expo-
ntial function one can derive the following asymptotic series of #!

. —_— : ='¢] ¢ .
nl= 2mn wre=n L1+ 3 RLEN (11)
: = e
. . .. 1 1 —139 --571
here the first four coefficients ¢, are ¢;= — |, ¢ = —, ¢g==———, ¢4, = —_—
12 288 51840 2488320

ite recently G. Marsaglia and J. C. W. Marsaglia [2] gave an
teresting direct derivation of the series (11). They call the attention to the
ct, and we also want to underline this, that the asymptotic series (2) and
1} do not converge, although they provide valuable informations about #»!.
o further general properties of the asymptotic series we refer once agam to
e book of K. Knopp [1].

I am grateful to Professor Jozsef Kolumban for useful discussions.
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PICARD MAPPINGS ‘
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REZUMAT. — Asupra solufiilor unei ecuatii funetionale folostnd aplleatii Picard.
In lucrare sint prezentate solutii ale ecuatiei functionale (1), in cazul in care f
este o aplicatic Picard. Acestea sint exprimate prin intermediul unei serii care
poate fi convergentt dar gi divergentd dar sumabild printr-o metodd de sumare
datd (Césaro, Abel, Toeplitz).

0. Introduection. This work is concerned with the solutions g of the func-
tional equation (1). The solutions are given in the form of convergent series or
divergent series but summable by some method of summability.

1. Preliminaries. Let (X, d) be a complete metric space, Y a real Banach
space and let us consider the following functional equation:

g(f(x)) + g(x) = F(x), for all x € X (1)

where f: X — X, F: X —+ Y are given maﬂpings and g: X —Y is an unknown
mapping. '

When f, F and g are functions of a single real variable x € [a, b], the
solutions of equation (1) have been studied by many authors {1}, [3], [5].
Thus, .the work [3] of Kuczma extends some results duc to Hardy,
respectively Steinhaus, [1] extends [3], [5] extends [1] etc. (for more
details see the first section in [5] and also [4], [3]).

The present work may be regarded as an extension of a part of the results
given in the papers quoted above, especially in [1]. One can treat similarly
other results in [1] and [4], e.g. theorem 3.1 and theorem 4.1 from [5].

In the papers [1], [3], [5] fis assumed to satisfy the following conditions :
fis a continuous and strictly increasing function on [a, b]; f(a) = a, f(b) = b
and f(x) > «x, for all x = (q, b).

Under thase assumptions it can be readly verified {2] that the sequence
of the iterates of f, (f*(x))uso, defined, as usually, by f© (x) = x and f(x) =

=f(f»-(x), for > 1 and for all x € [a, b], converges to b, i.e.
' lim f*(x) = b, for all x € (a, b] (2)

#—00
Let us observe that only the condition (2) is essentially in the proof of theorem
[ from [1], and, consequently, we may consider a slower condition on f, i.e,
Vis a Picard mapping [6].
[}

I * Str. Republicii, Bl. 5, .4800 Baia-Mare, Romdnia



64 V. BERINDE

This weakness is effective, as is shown by

Example 1.1, The function f: [0, 17— [0, 1], f(0) =0,
(%) = 6x* —% x+ 1, for x € (0, —l—] and f(x) = 1, lor

x € l%, 1] is not continuous, also not strictly increasing on [0, 1], but it
can be easily verified that
lim fr(x) = 1, for all x « (0, 11.

H-=X

The aim of this note is to show that the theorem I in [1] remains valid
under these weak conditions.

2. Picard mappings. For the delinitions, examples, properties and other
results concerning Picard mappings we refer to [6].

As usually, we denote by I, the set of all fixed points of a mapping /.

DEFINITION 2.1. Let (X, d) be a metric space. A mapping f: X —Xis
said to be a Picard mapping if therc exists b € X such that

Fy = {b}
and
(f*(x))nex converges to b, for all x € X.

Example 2.1 Let (X, d) be a complete metric space. A contraction map-
ping f: X — X is a Picard mapping.

Example 2.2. Let (X, d) be a compact metric space. A contractive mapping
f: X — X is a Picard mapping.

Example 2.3, [3] Let:f: [a, b] —- [a, b] be a continuous and strictly in-
creasing function on f[a, ], f(b) =b and f(x) > %, for all x € [q, b). Tha
f is a Picard mapping.

DEFINITION 2.2. A function ¢: R, — R | is a comparison function if satis
fies the conditions

i) ¢ is monotone increasing.
ii) (¢"(f))sen converges to 0, for all ¢ > 0.

DEFINITION 2.3. Let (X, d) be a metric space. A mapping f: X —X iss
p-contraction if ¢ is a comparison function and

a(f(x), f(9)) < 9(d(x, ), for all v, y = X.
Now let us recall (see [6], p. 33—34) some results which give sufficient
conditions for the mapping f be a Picard mapping.
THEOREM 2.7. Let (X, d) be a- complcte metric space and ¢:R,—R.e
Sfunction which satisfies condition i) and the following two conditions

iii) o(t) < ¢, for all t >0;
iv) ¢ 1is right continuous.
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If f: X — X is a mapping such that

a(f(x), f(») < o(d(x, ), for all x, y € X, then f is a Picard mapping.

THEOREM 2.2. Let (X, d) be a complete metvic space and f: X — X a ¢-con-
traction. Then f is a Picard mapping.

THEOREM 2.3. Let (X, d) be a complete metric space and ¢:R, — [0, 1)
a monotone decreasing function. If f: X — X is such that

a(f(x), () < eld(x, »)) - d(x, »), for all %, vy = X,
then f is a Picard mapping.

THROREM 2:4. Let (X, d) be a complete mctric space and ¢: R, >Ry a
function such that o(r) >0, for »r > 0.

If f: X~ X is a mapping such that

d(f(x), () < d(x, ) — o(d(x, ¥)), for all x, y = X,
thenw f 1s a Picard mapping.

3. Sequences and series. In this section we recall some definitions and
properties concerning sequences in a metric space, series in a real Banach space
and we also introduce some concepts of summability of divergent series in
Banach spaces, analogous to those for number series in [2].

For simplicity, in the sequel we shall assume, without any special mention,
that (X, d) is a complete metric space and Y is a real Banach space.

o0
DEFINITION 3.1. A series 2 4 in Y is suid to be convergent with the sum S,

n=0
0 .
and we write S = a, if the sequence of partial sums (S,),x converges to S
» q P : ) g

n=0
{in norm),

B o0
A series of operators , X =Y, is convergent on X to f if, for all
p n n g
n=0

t = X, the series

X,

3> fa(x) converges to f(x) €Y.

n=0

o0 .
D;EFINITION 3.2. Let E %, be a series in Y. We denote, as usually, by
n=0
S,)nen the sequence of partial sums, and let us consider the sequence (S{)ien,
efined by S@ =S, and, for 2> 1,

S = SE=1 4 SE-1 4 . 4+ SE-D, (n =0, 1,2, ...)

L - Mathematica 4/1990
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If, for some %, the. sequence (C¥),en

1
1
CH = —— SB n30,

n+k w'r
(")

(where ("4] k) is the binomial coefficient) converges to S, we say that t
e ]

0
the series E %, is Césaro-summable or C, — summable with the sum S.
n==0"

DEFINITION 3.3. Let (S,),<n be the sequence of partial sums of the ser
(2]
E %, in Y. Let us consider an infinite matrix 7" == (a,) of real numbers a

n—0
let us construct the following series

i [I];,,Sn, (k:(), 1, 2, ...)
n=0

We assume that the seies (3) is convergent, with the sum S;, 2 =0, 1, 2,

A
If the sequence (Si)ren converges to S, then the series E x, is said to be T
n-=0

plitz-summable or T-summable with the sum S.

0
DEFINITION 3.4. A series E %, in Y is summable by Abel’s method of su

n—0

mability, or A-summable, with the sum S, if the series L‘ *x, converges for
N n=0

t € [—r, 7], > 1, and there ex{sts

. ! X 1]

lim (E t"x,,) —s.

t=1-0 \5=%

(If 2:R X Y—Y, the limit
lim A{t, x) =1,

t—1—-0
must be understood as
lim || &, x) — 1, || =0).

t—=1—-0

y L}
Since theorems 1 and 2 [2] pp. 404—405 are important for this work"
quote them here, adapted to Banach spaces.
THEOREM 3.1. Let (2,),<n be a scquence, 2, € Y, for cvery n =0, 1, 2, ..
and imz, =0 Y. If T = (aw,) is an infinite regular matrix whose clema

n—00
ar, € R satisfy the conditions
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Proof.

a) Substituting g(x) given by the series (5) in (1), we obtain that t
first* statement holds.

b) Putting

1 n : ,
Su(x) = F@) + 30 (=1 [F(fi(x)) —F(®)], »n=0, 1, 2,
i=0
and
Si(x) = S, (%), (k=0,1,2 ...)
it results from the T -— summability of the series (5) that

g(x) = lim Si(x).

ka0

On the other hand, we have

Salf(x)] = F(x) — S,(x) — (-—1)""fl(f""‘( ) — L0

and consequently

SH) = 35 anF () = Silx) =3 (1) e E 1 00) = FO 0

From tl1), t2) and the continuity of F in b, it follows that

lim {(—1)"*1[F(f**!(x)) — F(b)]} = 0

n—=00 |

hence, applying theorem 3.1 we obtain

lim (i (— 1)+ [F(f141(x)) — P(b)]) 0

k= \,7oo

It is also obvious, using theorem 3.2 that

k=

lim (i ak,,F(x)) ~F(x), for all x = X

n==0

and therefore, taking 2 -+ o0, (6) becomes

glf(x)] = F(x) — g(x).

c) The proof is similar with that of the third part of theorem 1 [1] and
the unnecessary details will be omitted.
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If we denote by S,(x), S, ( f(x)) the partial sum of the series (5), respectively
of the series obtained from (5) replacing x by f(x), it results by an elementary
calculation

Wy " CE 1)
Cn (x) " + 1 n—l(x) + n + 3 Sn (x)y
(" )
and ’
() () _ _ k (&=1) .
CR() + CR@) = Flx) ~ e FO) e SE(f(). ()
(" )
Now, in (7) we take #—» o0 and follows, from the C, — summability of the

series (5), i.e.

lim CP(x) = g(w),

n—-0

that ) )
) + &lf(x)] = F(x).

d) This follows from theorem 1 [1], d).
The proof of theorem is now complete.

Finally, let us observe that all results in this paper remain valid if X
and Y are complex rather than real spaces.

The author would like to thank Professor I. A. Rus for helpful suggestions in preparing
this article. ’
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and the space A, is T-birecurrent. Therefore we have:
PROPOSITION 2. The T-recurrent A, spaces are T-birccurrent with T-bire-
currency tensor
Prs = Pr,s T @195 ()

Suppose now that the connection of the A, space is semisymmetric, the-
refore [3], [4]

i 1
=
4 n—1

(3T, — 8T;) (6)

we remark that from (6) and (2) it follows (1), therefore, from the T-birecur-
rency of the Vranceanu’s vector it follows the T-birecurrency of the A, space.
We have therefore :

PROPOSITION 3. The A, spaces with semi-symmelric connection will the Vrin-
ceanu’s vector T-bivecurreni, are T-birccurrent.

From the relation of S. Golab [4] for spaces with semi-symmetric con-
nection

T;J Ty —+ TfkTZj + ;hM;'k =0 0]
by a two-times covariant derivation and taking count of (1) and (7) it follows:
T;j,rT;ch,p + Tsij,pT;h,r + T;k, Thiop + Tsik,pTlstj,r +
+ T it o+ Ton, pTie,r = 0 ®)
We have therefore:

PROPOSITION 4. In an A, space with T-birecurrent semi-symmetvic connection,
the torsion temsor verifies (8).

In the A spaces with semi-symmetric connection, take place [3], [4]:
wT, =0, )

Derivating covariantly two-times the relations (9) and taking count of
(1) and (9) it follows:

jik, rTi, s + ]]'k, s’[‘i, r = 0 (10)

.

if in (8) we contract with respect to ¢ and j and take count of (10) we have
Ts, Thi,p + Tor,pThirr 4 Ton, Titp + Tonp T, = 0 (1)
and therefore : k

PROPOSITION 5. Iman A, space with T-birccurrent semi-symmetric connection,
take place the relations (10) and (11).
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If the counection of the A4, space is an semi-symmetric E-convection [3],
that is ’

T.;,=T;; (12)
derivating covariantly with respect to T, and taking count of (1) we have
¢ Ti— 9 T; =0 (13)

therefore

PROPOSITION 6. Inan A, space endowed with a T-birecurrent scmi-symmetric
E-connection, the T-birccurremncy tensor wverifies (13).

From the vanishing of the divergence of the torsion in an A, space with
semi-symmetric E-connection [3], [4]

=0 (14)
by covariant derivation and taking count of (1) we have
Theis =0 (15)

and therefore

PROPOSITION 7. Inthe A, spaces endowed with a T-birccurrent semi-symmetric
E-connection the T-birvecurrency tensor is a solution of the homogencous systems (15)
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.

REZUMAT. — Telnici de element frontierd cu valort complexe in hidrodina~

mica pland. In lucrare se foloseste o noud metodd numericii, metoda elementului

frontierd cu valori complexe, in studiul unor probleme de hidrodinamicd plani.
i

This paper is devoted to the use of a new numerical technique — boundary
elements’ method with complex values (CVBEM) — in some problems of the
plane hydrodynamics.

More precisely it will be cousidered namely the fluid flow, produced by a
general rototranslation in the mass of an ideal fluid of an airfoil with an angu-
lar point. The technique used could be easily extended to a system of profiles,
performing independent displacements in the mass of the fluid, in the possible
presence of some fixed walls. For more generality the ideal fluid is supposed
having an ,,apriori’”’ given basical flow which could present singularities as vor-
tices, sources, etc.

It is known that all the boundary elements methods require an integral
representation of the approached boundary problem, and a corresponding inte-
gral equation on the boundary. But in the case of the plane hydrodynamics
even the Cauchy’s formula — used for the solution of the involved boundary
problem — is in fact such an integral representation which leads automatically
to an iptegral equation with Cauchy singularity on the boundary. An appro-
pidte interpolating system of functions allows then a quite accurate solving of
this integral equation on the boundary. The procedure doesn’t use any appro-
simation of the boundary or any numerical quadrature. .

Let now be a plane incompressible potential inviscid fluid flow. It is well
known that it.is always possible to join to such a flow an analytic function
flz) — called the complex potential of the flowswhose knowledge is entirely equi-
valent with the complete determination of the flow.

i Conversely any holomorphic function in a given domain could be inter-
preted -as a complex potential of a plane incompressible potential inviscid flow
pending addition of some logarithmic terms (multiform functions) in the case
of multiply — connected domains.

If we consider only a simple conunected domain — like the outside of an
bstacle (C) — the complex potential of a fluid flow with the qualities men-

¥ University of Cluj-Napoca, Faculty of Mathematics, 3100 Cluj-Napoca, Romania
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tioned above, around the obstacle (C), this will be an analytical function in
every finite point, having in the neighborhood of infinity the development

@y

ftz t)=ww2+—2—r—.1§z+uo+—+—+
. 112

We denoted here by
we = lim £
|z ]|=x dz

the complex velocity of the fluid at great distances, by I' a real function of
time (which could be a constant or even zero) called the circulation ol the flow
and which represents the multiformity period of the real part of thecomplex
potential f, and by #, the time which could explicity appear, the flow being
then a nonstationary one. ,

Additionaly the imaginary part of the values of the function f(z () (i
the stream function ¢) are given along the contour C. Supposing that the
obstacle (C) is performing a general rototranslation in the mass ol fluid then,
if I(¢), m(t) are the components of the translation velocity in a point 7, €(0)
— evaluated in a mobile system of coordiantes Oxy centered in z; == 0 — and
o the instantaneous rotation of the profile, the boundary coudltlon for the
function ¢ in the points of C is

| =ly —mx+ —:—’— (22 + 32) + arbitrary funclion of time
C C

We remark that if instead of the complex potential f(z, ) we would construct
the complex velocity

this will be holomorphic function in the whole outside of the profile (C) which
also includes the point at infinity. In the neighborhood of this point the func
tion w(z; t), has a development of the type

w(z; ) = We

+

278z

-

Just this regularity of the complex \elomty determine us to use the
(above mentioned) CVBEM for this function w(z; f) and not for theicomples
potential as we would have been témpted.

Concerning the boundary conditions in the points of the contour C it wil
be written for the function w(z; {) under the form:

There is a real function _V([S) so that for every B = [0, 27m) we have

w(Z(B) = V(8)

(B) - zd]:
l C(ﬁ)l
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where { = Z(P) the'parametrical equation of the Jordan rectifiable curve C,
is a 2.1t—periodical function, bounded and derivable in [0, 2x) so that Z(B) #0
and {(B) < M when M is a finite constant.

Finally, the posible multlforrmty of the function f leads to the fulfilling
of the equality

f w(z, t)dz = T(t)

where T'(f) is the circulation ,,apriori” given: In the.case of the ])roflles with
an angular point in z, =2z € C where the semitangent’s angle is equal to
= —un (-1 € w<0), the behaviour of the complex \LA()LIIL} in this point

ie. w(z; 1) =o0 [(z — Zp) "“] imposes — to avoid the unboundness of w in z, —
to choose the circulation such that I' = LI + Mm + New where the cocfficients
L, M, N, uniquely ‘determined depend upon the considercd profile (C).

In what follows we want to illustrate how CVBEM works for determining
the fluid flow induced by a displacemment (rototranslation) in the mass of the
{ftuid, of a profile (C), the fluid having already a given basical flow of complex
velocity wp(z) and which -superposes on the first flow.

.For more generality we shall suppose that the profile (C) has an angular
point and the basical flow presents some given singularities (vortices, sources,
etc). Obviously the envisaged problem contains also -the particular case of a
flow past a fixed profile (C), the condition with an ,,apriori” given circulation
becoming the famous Jukovski condition. More, the same method could be
used to an arbitrary system of profiles performing independent displacements
in the mass of the fluid, in the possible presence of some walls, i.e. practically
to the majority of the models of plane hydrodynamics.

Retaking for sake of simplicity the case of only one profile (), the pro-
posed problem can be formulated as follows.

Let give the function wg(z), the cdmplex velocity of the basical flow, func-
tion which belongs to a class (a) of functions having the properties:

la) they are holomorphic fonctions in the domain D, (the whole plane
Oxy, the point of infinity being included) except a bounded number (g) of
points z, placed at a finite distance and which represent singular points for
these functions; let D} be the domain D, from which one has taken off the
singular points {7}, and let w_g(ow) be the value of the limit lim wg(z)

|z |-

which obviously exists and it is finite. )
2a) if I'p is the circulation of the basical flow, this is equal to

-

L,

r=1

i.e. with the summ of the circulations of all the given singularities of the flow.
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Concerning the unknown function w(z) — the complex velocity of the
resultant flow obtained by the above mentioned superposition it will be looked
for in a class of functions (b) which satisfy the properties:

1b) they are holomorphic functions in the domain D = D\(C) except the
same points {z,},~r7; which are the singular points of the same nature as for

wp(2) ;
at infinity the behaviour of them is identical with that of wp(z) i.c. limw(z) =
|2} 4%
= w(0) = ws() ; y

2b) in the neighborhood of the trailing edge z, = {(B,) € C where the semi-
tangent’s angle is # — ux, we have

w(z) = (= — z,) T g(z), g(z,) #0;

3b) in the points of the curve C ‘the functliops w({(B)) belong to the class
H* i.e. they are Holderian functions on C except the angular point z, = {8,
in whose neighborhood one has

w*(Z(B))
©

[%(B) — &(Bo)1 !

w(L(B)) =

where w*  H, in the same neighborhood/that means w*({(B)) is scparately
Holderian on the upper side and on the lower side of the profile in the ne-
ghborhood’ of 2z, = {(B,)/;

4b) in the points of the curve C they satisfy, except the angular point
the following boundary condition :

There is a real continuous function V(B) such that for every 8 « i,
2rm)\{Bo} one has

w(Z(B)) = V(B) % 4+ 14 im 4+ io () — z,] where

zy = (C) and I(t), m(), o(f) are the given functions of time determining the
rototranslation of the profile (C);

5b) they fulfil the equality
o S w(z)dz =T
[

where the circulation of the flow I' is choosen so that one has the boundnes
of the velocity in zj,' ie. '=L.-l+4+ M- -m+ N .un where the coefficients
L, M, N are given with the obstacle (C).
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Let now the function w(z) — wp(z) be. This function known together with
w(z) being holomorphic in the outside of (C) the Cauchy formula is valid in
D and we immediately have

w(E) = ws(E) — —— ( 2 g, +LS "’B‘z; dz for £ € D

2ri z2—E 2ni 7 —
C

Finnaly in order to use the boundary condition on C we perform §—
— § = {(B*) = C\{z,} and so we get

w(L(B¥) = wa(¥(p*) — — f]; nEE) X0 gy L J; )10 g

2 \('3
0

This is the boundary integral equation which will be used for the effective
construction of an approximative solution by CVBEM. Considering then a
system of nodal points z,, 2, ..., Z-1, %p, Zpt1, ..., Z, = 2, On the curve C
all together with the system of the piecewise 1nterpolat1ng Lagrange functions

on each arc C; (system which takes into account the behaviour in the neigh-
borhood of z[,) we can write

n

(CB)) — wp(L(R) = E (w; — ”}Bj)Lj. where

=1
St for ¢ = C,
25— Fjy
L (C) L — 2, .
j#Ep—1 p p+1 P for T & Cin
0 otherwise.
While for the cases j=p — 1, p, p 4+ 1 we. will now have
(_C_—_z_ki_’ for L € Cp_y,
Zp1 —" Zp_g )
Ly-1(8) =4 T
(_c_—_zk_) * s for C = Cf” -
Zpr — 2
0 otherwise.
[ B
1_
1_(ﬁ) u’forCEcp,
Z{_’—l - ZIP .
L, (%) =1 b
—_ -
1 - (—c—zp') ’ for CE C[”[‘l)
Zpar — %p
{O otherwise.
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system which will be completed in this case by the complex equation

> ij Li(%)dq =T or, equaivalent with
j=1 2
]Zj_l, u; Re S L{(8)dt + v Im S L(dt =T,

[

[

i: u; ITm S Ly(0)dtl = Yn_: 7 RQSJ,]-(C)JC.
a G ! ¢

These last two real equations allow fto determine an unique solution of the
above homogenous system which includes also the data.,on C. This unique
solution once introduced in the integral representation of the problem (i.e
in our case the Cauchy formula) leads to the complete determination of the
complex velocity in every point of the domain to the flow.

Regarding the singularities {z,},-75 of the fluid flow admitting that they
are vortices (and so I', # 0) the absence of external forces implies the {ulfil-

. k=1,¢q L. .
ling of a so called ,,freedom condition” for them i.e.

dz,

+ 1+ im + ioz = lim [w(~) 4 ] r=1, q.
dt z.,z’ Z‘ — 2y
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REZUMAT. — Teoreme de punet fix psaatru perechi de funeflt expansive. In
aceastidl notd sint demonstrate trei teoreme de punct fix pentru perechi de func-
tii expansive, teoreme care generalizeazd rezultatele din [2]— (5]

Rezultatul principal este urmitorul:

Fie (X, d) un spatiu metric complet si f, g: (X, d) = (X, d) dond functii
surjective satisficind inegalitatea (1) pentru orice », ¥ din X, unde ¥ satisface
proprietitile (B) si (B*)cu > 1, Dacd proprietdfile (C*) §i (U) au loc atunci
f si g au un punct fix comun uniec, \

In [1]1—[5] some fixed point theorems of expansion mappings are proved.
In this note using a combination of methods used in [2]—[4] other fixed point
theorems for pair of expansion mappings are proved, which generalize some
results from [2]—[5]. '

Let R, be the set of all non negative real numbers and ¢: R} — R, be
a real-valued function.

DEFINITION 1. A real valued function ¢:R3} — R, satisfies property (B)
if for every u, v € R, such that u > {(v, #, v), then u > hv where {(1, 1, 1)=
=hz1[1]. '

DEFINITION 2. A real valued function ¢:R3 — R, satisfies property (B*)
if for every u, v € R, such that u > {(v, v, u), then u > hv, where {(1, 1,
H=4h2 1

DEFINITION. 3. A real valued function ¢:RY — R satisfies property (C*)
if is continuous.

DEFINITION 4. A real valued function ¢:R3% — R, satisfies property (U)
if ¢(u, 0, 0) > u, for all w >0 [3].

THEOREM 1. Let (X, d) be a metric space and f, g be two self mappings of
X, satisfying the inequality

a(fx, gx) = $(d(x, ), d(x, fx), d(y, &) (1)

or all x, v in X, where { satisfies property (U). If.jr and g have a fixed point
z, then z is a unique common fixed point for f and g.

* University of Bacdu, Department of Mathematics, 5500 Backu, Romania
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Proof. Suppose that f and g have a second common fixed point z' #2,

Then d(z, 2') = d(fz, g2') 2 $(d(z, ), d(, f2), A, g')) = $(d(z, #), 0, 0)>

> d{z,-z’), which implies z = z’. Contradiction.

COROLLARY 1 (Theorem 1; [3]). Let (X, d) be a metric spacevand f a self
mapping of X, satisfying the mequahty

d(fx, fy) =2 d(d(x, %, fx), aly, /) B (2)

Jor all x, y in X with x #y, where q; satzsfws property (U). If f has a fixed
point z, then z is & umique fixed point for f.

THEOREM 2. Let (X, d) be a complete metric space and f, g two suvjective
self mappings of X satisfving the inequality (1) for x, v in X, where y salisfies
properives (B) and (B*) with h > 1. If propertics (C*) and (U) hold then f
and g have a wunique fixcd point.

Proof. Let x, € X. Since f is surjective there is a point x, = f}(x,). Since
g is surjective thereis a point x, € g7!(x,). »Continuing in that manner one ob-
tains a sequence {x,} with x,7) € f"(xs,) and xu, .2 € g7 xa,.1). Supposc
%9, 11 = Xy, for some .

Since d(xg, .11, %2,) = d(g%2n+2, fX2,11) by (1) we have:

A Xant1, Xon) — A(g%2n+2, Sx2u41) = U(d(%20 41, Xy i2), @(Xaugr, [Eaain),
d(x2n+2: gx2n+2)) = q)(d'(xanln x2n+2), d(xzn-uy Fau). A(Xonq2, Fuyi1))
which implies by property (B)
0> hd(X2ms1, X2042)

which implies %3,11 = %2,+2 The condition xs,11 = %, implies that x, is a fixed
point of f since %p,42 = X2,41, %2, is a fixed point of g. Similarly xg,42 = %y
leads to xg,41 being a common fixed pomt of f and g. Assume x, = x,;, for
each #. From (1)

d(x2n: x2n+1) = d(fxznﬂy gx2n+z)'> ql(d(xzn-l-l. Ko 10), d(xm F1s x2n):
A(%2n 42, x2n-|—l))
which implies by property (B*)

A(%X2n, Xonir) 2 hA(Xzws1, %)

and
1 .,2n

1
d(x2n+1, xZn) < —”‘ d(x2n+1, Xgy) € ... < {;) d(xl, xo)

then" by a routine calculation one can show that {x,} 19 a Cauchy sequence
and since X is complete there is a x € X so

Jim x,, = 1
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Let v = f~}(x). Then we have
FXan s, %) = d(gxonr2, ¥) 2 V@ (X2ns2, ¥), A, ), d(Xouse, Z¥oni2)) =
V= P wongr, fY), Ay, ), @(Xawrz Xour))
Letting # tend to infinity we have by continuity of ¢
0> (@l 9), dly. ), 0)
which il‘llpii(ﬂS by properties (B*)
0> dd(x, y), d(x, ¥), 0) % hd(x, ¥) ’
and thus y = x, then x = f(x).
Let z € g7(x). Then we have
Ax2pi1, %) = Ax2us1, 82) 2 Y(A(F241, 2), d(X2uir, [H2us1), Az, &) =
= $(d{x2 R 2)), d(%on+1, %24), A(2, %))
Letting # tend to infinity we have by continuity of ¢:
0> ${d(x, 2), 0, d(x, 2))
which implies by properties (B)
0= $(d(x, 2), 0, d(x, 2)) = hd(x, 2)
and thus z = x,.then ¥ = z = g(¥).

So x is a common fixed point of f and g. By property (U) and Theorem
1, x is a unique common fixed point of f and g.

COROLLARY 2. (Theorem 2‘; [31). Let (X, d) be a complete metric space and
fi(X, d) =X, d) a surjective mapping satisfying the incquality (2) for -all %,y
in X with x # v where § satisfies properties (B) with b > 1. If properties (C)
and (U) hold, then f has a unique fixed point.

THEOREM 3. Let (X, d) be'a complete melric space and f, ¢: (X, d) — (X, @)
two surjective mappings. If there are non ncgative real numbers a, b, ¢ with
b<1,c< 1 .and a+ b+ c>1 such that

a*(fx, gy) > ad*(x, y) + bd*(x, fx) + cd*(y, gy) (3)

where k=1 for cach x, v in X, then f and g have a cominon fixed point. If
a > 1 then the common fixed point is unique. '
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Proof. Let

Yd(x, 3), d(x, fx), Ay, &) = lad*(x, 5) + bdM(x, f2) + cd(y, &)]"

Then we have

—_

u > (av* 4 bur + cv”)%
ut > av* 4 bu* 4 c*
w1 —B) > (a + bt

' :

a-rc * .
qu[l—b) zv(f@+b+¢) =l

Similarly we have
1

u> (avt + bv* 4 cut) *
u* > av* + bv* + cut
1 1

a+b)k>v(a—|—b+c)h—_—hv

1—¢

Uy v (

On other hand, if a > 1 we have {(«, 0, 0) = au > u. By Theorem 2 follows
that f and ¢ have a unique common fixed point.

COROLLARY 3. Let (X, d) be a complele mcetric space and f: (X, d) — (X, d)

a surjective mapping. If there are non negative real numbers a, b, ¢ with b <1
and a + b + ¢ > 1 such that

afx, fy) z ad*(x, y) + bd*(x, fx) + ca(y, fy) )

Jor cach x, y in X, with x # y, then f has a fixed point. Further if ¢ > 1 lhn
the fixed point 1s unique.

~Remark. For k = 2 we have Theorem 1 of [2].
For 2 =1 we have Theorem 2 of [5].

COROLLARY 4 (Theorem 1, [4]). Let f, g be surjective self mappings of a
complete metric space (X, d). Suppose there is a constant a > 1 such thut

_a(fx, gx) > ad(x, 5) )

for cach x, vy in X. Then [ and g have a unique common fixed point.
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REZUMAT. — Operatorl biliniari si spatit de aproximare. Se considerdi o gene-
ralizare a spatiilor de aproximare X“[S] [7]. [3], care in cazul spatiului &(F, F) &
coincide cu idealul Lorentz- ’V[arcmklewxcz 5‘2 (1: F) [1]. Se studiazd o categorie
de operatori biliniari pe aceste spatii gi din proprlutat'le lor se deduce stabilitatea
la produsul tensiorial al idealelor E(p’ e pentru unele functii ¢ §i 0 < ¢ < oo [11].

0. Introduction. Let be (X, |l |lx) a quasi-normed abelian group and
(G)n=0 a sequence of subsets of X such that ’

 Gy=1{0), (1)

G, CGuy; n=0,12, ..., : (2)

G, + G, CGuym, n, m=20,1,2 .... @)

Given any f € X, put
E()=inf{|f—gllxig <G} n=12 ...

In this way we associate to each f € X the decreasing sequence of non-
negative numbers (E,(f)).

Let 0 < o < o0 and 0 < ¢ < 0. The classical approximation space X; con-
sists of all f € X' which have a finite quasi — norm

1
q

1o = LS 0eE,() - 1]

These spaces have been investigated by many authors [5], [7], [3].

If X = &(E, F) — the space of all linear and bounded operators T : E—F
where E and I are Banach spaces and G, = {R = &(E, F):rank R < n}
n=20,1, 2 ., we obtain E (f) = q,(71) — inf{ 1T — R||: R G,_1} 6], {11,
[10]. '

_Then Xy =2, (E, F), where &, ,(E, F) are the Lorentz operator ide-

;',q

1

als [1], [6], [10] (£, (E, F) = {T: S(n? a,(T))n~t < 0)}.

" * University of Cluj-Napoca, Faculty of Matlwmatics,-J'IOO Cluj-Napoca, Romania
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In this paper we consider a generalization of the spaces X and some
bilinear operators on these spaces are studied. In the final we deduce the tensor
stability of some Lorentz—Marcinkiewicz operator ideals. (This final result is
also obtained in [11]). The limit case of X, (with « = 0) is investigated in {31

1. The spaces X;. We denotc by & the set of all continuous [unctions
@: (0, o) — (0, ©) with ¢(l) =1 and such that

o(st)
su
S>}U) @(s)

< w0 for every £ > 0.

.For 0 < ¢< 0, the approximation space X§ consists of all f e X which
have a finite quasi-norm :

1
q

A, = [ZleE.(f))m] ", where ¢ < &.
.\’q

For ¢(f) =# (« = (0, «0)) we obtain the spaces X or X, [3]if a=0.
Remavk. If X = &(E, F), the space X; coiucides with the Lorentz—Mar-

1

cinkiewicz oi)erator ideal &, ,(E, F) [1], [11] and more, if o(f) == £ (1 -+ |log )Y,
we obtain the Lorentz—Zygmund ideals £, ,(E, IF) [1], [2].

Next we desctibe the behaviour of some bilinear operators under X7 —
spaces. ; '
Take three quasi-normed abelian groups X, Y, Z and let (G,), (F,), (H,)
be sequences ‘of subsets in X, Y, Z respectively, satisfying conditions (1) to
(3). Let B:X X Y—~Z be an operator. We assume that there is M <o
such that for all f, f,, f; & X and all g, g, g, €Y the following holds:

(a) B(fo + f1. & = Bl(fo 8 + B(fy, &)
(b) B(f, g0 + &) = B(f, &) & B(f, &)

© 1B, 9l < MIIfllx- llglly .
) B@G,, F,) CH,, for m, n=0, 1,2, ...

In the paper [3]is proved that the operator B: X, X Y, — Z, is bounded
for 0 < ¢ < 0. Here we prove this fact for the case of X spaces.

Let & be the subclass of & containing the functious ¢ for which there
exists a constant ¢ such that

e*(n) = max {((¥)): ¢t = {m?, w241, ..., (n+ 1)3}} < ¢ - p(n)

for all natural numbers #; (¢ = (0, )).
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Using a similar argument to one in [8] we prove the following :

s 1.1 Let X, Y, Z and B as above. Then there is a conslant ¢ < o
wndependent of f, ¢ and n such that

E,,z (lf(f, g)) < C[En(f) I |g| |Y + Eu(g) : ||fl It\' ]t W= 112’

Proof. Lett ¢;, ¢; be the constans of the quasi-triangle inequality in X and
Z respectively. Given any ¢ >0, find

fo € Guoy With {1 f — fol | <E,(f) + ¢ and g, € F,_, with || g — g,| v <
< En( g) + ¢

y (d), B(f, go) € H,—; and hence, using (a), (b), {(c), we 'get
E«(B(f, €) <11 B(f, & — Bfo, &)1z =11B(f — fo, & — Bifo & —
— &)l lz < ML —follx - Hglly + 1o —F+ /llx - 118 — &oll¥]
< M Ef) + o) gl Iy + elBulf) + = + 11/ 1DE) + 9] <
< egMUE(f) + <) lglly + e[/ ]]x + )EL(E) + )] -+

Since e is arbitrary it results the relation, with ¢ == 2Mc¢,c,. From this result
we obtain
THEOREM 1.2. For all ¢ € & and 0 < ¢ < o0 the operator B X§ X Y22
1s bounded.
Proof. Since the sequence (E,(f)) is decreasing we can write
1
[Z(e(mE,(B(f, 9)n1 " < [E(2r + Do*(m)E.w(B(f, g)n?]
1 1

< 37 [B(c - g(mEa(B(f, ) - n] 1

(@) [ZME, ()11 2]y + Edg) 11f 1 1x)n 1]
< U UB@ME () m) [l ly + (EME) || fl1x)m™) 11< w.
For fe X7, [If1le = E(f) < [If]]x¢ <oo. ‘

It X7 =8, ,E, F)={T &E, F): (Z(q)(n)a,,('1‘)‘171‘“1)7< o}, 1], is the Lo-
rentz—Marcinkiewicz operator ideal and the Dbilinear operator is ‘the tensor

-&|—

1
! <

product operator T, ®- T, [2], [4], [8], where 7 is a tensor norm, we obtain
the following:

COROLLARY 1.3. For all ¢ € & and 0< q< oo lthe operator ideal £, , ts
tensor product stable,

This result is obtained in other way in [11].
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"Remarks. If o(t) = (1 4= [log £])7, —o0 < y << o0 we have the Lorentz—Zyg
mund ideals €, ,.(E, F) [2]. From the comlldry 1.3 it results that €. ., is
tensor product stable for 0 < ¢ < o0. In [2] is proved, in other way, the sta-
bility for 0 << ¢ < 1. For y = 0, In [3], is proved the stability lor 0 < ¢ < o,
but this result is known [9] since

€0, = {T: Zay(T)n 1< o0} coincides with the ideal [ {T Lasn(T)< o).

"It X =1[a, A] is an operator ideal [6], [10] and G, = {R € @: rank

R <u}, n=0, 1,2, ..., then E,|(T) = a,‘f(T) —inf {A(T — R): R €G,_y}
and X? = {T € a: S(p(n)a; (T))n"! < «} = £ (E, F) is a new operator ideal
which is tensor product stable, if ¢ € & and A(T, @T T,) < ¢ A(T) - AT,

.
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1

and binormal components of the perturbing acceleration. Let us describe the
motion by ‘means of the Newton—Tuler system written in the formm [4]:
apldu = 2(Z]u)rPT,
dgldu = (Z[w)(PRBCW [(pD) +rT(r(g + A)p + A) + 7BS),
dkldu = (Zju)(—r*¢ BCW(pD) + »*T(v(k + B)]p + B) — r*4S), (3)
aQldu = (Z|u)rBW|(pD),
difdu = (Z]u)rPAW[p,
dtjdu = Zr¥(up) 172,
where p = semi-latus’ rectuin, ¢ = ¢ cos @, & = ¢sin o (¢ == cceentricity, o =
= argument of perigee), Q = longitude of the ascending node, 7 = inclination,

A=cosu, B=sinu, C =cosi, D) =sin4, p = Iarth's gravitational para-
meter, and:

Z = (1 = rCO(pp)e)-. W

Let 2z = z;(u), 7 =1, 5, be the elements of the set {p, ¢, k, Q, 4}, and
consider, as usually, that their variations over one revolution are small, such
that they can be taken as constant (and cqual to z;, = z;(u,), where u, = u{l,))
in the right-hand side of the equations (3), and these ones can be separately

consjdered. The orhital elements can be written as z; = z;, 4 Az, the varia-
tions Az of z in the interval [u,, u] being determined {rom:

AZJ ::S (dZ]/dM) d%, ] = 1,—_5» (5)

"y

where the integrals can be estimated from (3) by successive approximations,
with Z ~ 1, limiting the process to the first order approximation.

Replacing now (4) into the last equation (3), and expanding this onc in
binomial series, we obtain to first order in o:

dtjdu = (up)= 1 + PCOJ(up) = f(5: o ), j = T, 5. ®)

The expansion of the function f in Taylor series on the hypersurface H* =

= H*(z,, 6 =0; u), 7 =1, 5, with respect to the small quantities Az and
¢ yields:

=S B @flen)oss; + @fles)as + .. )

where the index ,,0” refers to # = u,,.

Lastly, consider the orbit equation in polar coordinates:

7 = pl(1 + e cos v) = p|(1 + 4q + Bh), ®)
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where » = true anomaly, and replace (8) into (6). Now, calculating the partial
derivatives required by (7), neglecting the terms of the form (d(r3CQ/(pp))]
]éz) Azj, § = 1, 5, which contain 62, and substituting the resulted f = d//du into
(2), we can write:

4 .
To =Ty + AT = Ty + 3 I, ©)
i
where : ’
Ty =fo=piPu=1?(1 4 Aqy + Bky)72, (10)

and AT is just the difference we search for. Its terms are:

e

I, :% pizy- v S (1 + Agq -+ Bho)tApdn,

o

2m

I,= —2p}ru-1e S (1 4+ Agy + Bky)3AAq du, (11)
[¢] »

Iy = —2pip-ii S (1 + Agy + Bko)BAk du,

0
21

I, = S ‘(a(;»4c§§/(gf)),/aa)adu.

0

These formulae are general from two viewpoints: the nature of the per-
turbing factor is unspecified, and the orbit may have any subunitary cccen-
tricity. The method was {irstly applied in {12] for quasi-circular orbits and for
a gravitational perturbing factor.

3. Cireular ease. Iet us impose the condition (i). In this case (¢q =0
hence g, = ko = 0), (8) becomes:

7o = Do (12)
while (11) acquire the form:
2r
I, == j)‘/Q[J._mS Ap du,
0
2
I, = —2p32p-1 S Aq du, (13)
0
27
I, = —2p3p~1i S B AF du,
0

I, = ﬁgp—lco S (8% 90) 0 du.

(]
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For simplicity reasons, in the following sections we shall no longer use
the index ,,0” to mark the initial (4 = u,) values of z;; j = 1, 5, and of func-
tions of these ones (unless necessary, and then this fact will be specified).
Every other unspecified index ,,0” appearing in our calculations is a simple
notation and does mot refer to u = wu, In fact, every quantity which does
‘not depend on # (explicity, or through 4 and B) will be considered constant
(over one revolution) and equal to its value at # = u,.

4. Perturhing aeeeleration. Consider now that the perturbing acceleration
is due to the aerodynamic drag. Its components will be (c.g. {11]):

S == _‘081"!‘311’1)
T = —p8u,y(v, — rCw), (14)
W = —pdv,,7DwA,

where § == drag parameter of the satellite, w = constant angular velocity of
rotation of the atmospliere with respect to the Farth’s axis, v, = satellite
speed with respect to the air flow, v,, v, = radial and transversal components
of the satellite velocity with respect to the Earth’s centre. The velocities are [6]
Vi = (W P)P(1 + 249 4 2Bk + ¢* + k3)'52,
v, = (w[p)*(Bg — Ak), (15)
/ v, = (u/p)™(1 + Aq + Bk)

With (15) and (12), and taking into account the last sentence of Section 3,
the expressions (14) become:

S=0,

T — ed(lp)P(Co — p- i), (9
W = —p8(up)2DwA.

5. Equations for the orbital elements. By virtue of the considerations made
in Section 2, we shall separately have in view the first five equations (3)
Since at the analytic calculation of the integrals (5) we take Z = 1, we shall
write these equations omitting in advance the factor Z. So, by (16) and (12),
the mentioned equations acquire the form:
dplau = 2pb(x + y)e,
dglau = 2b(x + y)dop,
dkjdu = 2b(x + v)Bp, (17)
dQdu = —b(x|C)A By,
dildu = —b(Dx|C)A%,

where we used the abbreviations:
b = po2p-12§, x = Cw, y = —p~32pl2 = —2z|T,,. (18)
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6. Expression of the density. In order to write the equations (17) into a
suitable form for performing the integrals (5), we still have to express the
density as function only of # (through A, B). For this purpose, according to
the condition (ii), we used the T'D thermospheric model, whose variants TD 86
[9] and TD 88 [10] differ by certain quantities (k,;, Bj, g, see below), but
use the same analytic formulae. This model expresses the density as:

7
p = XO Z hngn! (19)
n 1
o -
where :
Xy = 10781 + a (', — Fy)){ay -+ f,)00 -4 ag(K, — 3)) (20)
features the general dependence of the density on the solar and geomagnetic
activity (I, == radio solar flux on 10.7 cm for the previous day, I, = radio

solar flux on 10.7 cm averaged for three solar rotations, KX, = three-hourly pla-
nctary geomagnetic index, f, == (Fb — 60)/160). The height-dependence of the
density is described by: -

3
E kyexp (120 — B)B)), (21)

where k,; = 10%,; (k,; = numerical constants tabulated in the TD model) are
at most of the order of unity and were introduced by us in order to assign
to X, the part of the small parameter o (see Section 2); & = height (km);
By = 0 B; = (40 7)~'in I'D 86 model, B; = (29 /)~ in TD 88 model (j=1, 3).

Laetly, the terms g, (allowing respective]y for: mean density, individual

dependence on the mean radio solar flux, North-South asymmetry, annual
semiannual, diurnal and semidiurnal variation) are:

g1=1, &= f, + a; (ID 86) or g, = £,/2 + a, (ED 88),.
gs =sin (@ — pg) sin @, g = (a.f,, + 1) sin (d — 154),
gs = (asf, + 1) sin (2(d — ps)), (22)
86 = (a1f,, + 1) sin (¢ — pg) cos ¢,
= (asf, + 1) sin (2(f — pr)) cos? g,
where d = day count in the year, ¢ = latitude, £ = local time (in Hours) ; the

constants a, (i = 1, 8) and the phases p, (# = 3, 7) are tabulated in the TD
model.

The height is given by:
h=r— R(l1 — ¢sin?g), (23)

where R = mean equatorial terrestrial radius, ¢ = Farth’s oblateliess. With
sin ¢ = DB and with (12), we derive the following expansion :

exp ((120 — #)B,) = A,(1 + ¢RD?B;A2), j = 0, 3, (24)

7 — Mathematica 4/1990
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where A; = exp (B;(120 — p + R — ¢RD?). Replacing (24) into (21), and de-
noting :
3
Ko =3 kijdj, Ku =3 kije RD*A;B;, (25)

3
=0 7=0

the terms %, acquire the general form:
h, =Ky + KnA% n =1, 7. (26)

Examining now the terms g, we remark from (22) that only g, g and
g; change during one revolution of the satellite. From sin g == DB we have
immediately :

gs = sin (d — pa) DB, (27)

while from sin (& — Q) = CBJjcos 9 and cos (¢ — Q) == A/cos ¢, where « is the
right ascension of the satellite, and introducing the notations L =Q — e —
— ps+ 7w, L' =2(Q — ap — p; + w), where 25 is the Sun’s right ascension,
we obtain for g and g, (2, 5]:

g = (azf,, + )(CBcos L. + A sin L), (28)
g = (asf, + 1)(2CAB cos L' 4+ (1 + C?) sin L' — C2sin L). (29)
Finally, using.(27)—(29), and denoting:
G, = Dsin (@ — p,), Gg = —(asf,, + 1)C¥sin L',
G, = (a,f, + 1)sin L, G, = (asf,, + 1)(1 + C?) sin L', (30
Gs= (a,f,, + 1)Ccos L, Gs = 2(agf,, + 1)C cos L',

we rewrite (22) as:

gl = 1: g2 = GOJ ga = GlBr g4 = G2’ gs = Gar (31)
& = G,A + G, B, g, = Gg + G, A% + G4AB,
all coefficients G;, j = 0, 8, being constant over one revolution.

We replace now (26) and (31) into (19), and, using the abbreviating nota-
tions :

MO = 'K10 + KZOGO + K40G2 + K50G3 + K7OGGA NO = K30G1 + K60G5ﬁ

My = KgG,, Ny = KyGs,
M, =K+ K21Go+K4162+K51G3+K71G6+K7OG;, 2=K31G1+K61G51 (32)
M; = K, A‘Na = K;iGy,

M, = KuG,, "‘. 1\% =0,
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the density appe'gﬂ; las a’ function ’61‘11}"01‘.! ’w‘(thl’ou'gh'“A" and B)(Eirl;:'[,;-, il

: 4 . Lot R
a0 oy =Xy, 2 (M4A7 4 N3AB), » a)de Lo / (33)
i 7=0 !
7. Varigtions of the orbital 1-l¢mm;t€ Replacing (33) into 17) and intro;
ducing artlflClally N.,=N_,=N; = M5 = 0 we obtain :

(M A? + N AJB)

"Uu., it /

B @Wndmwu+w

i

[\j;.

dgldu = 2X h(x 4 ). M AU NSATR),

l"l*f

7=0
c ‘5 ’
; dk/du——2X0bx+y) (V;— N] AJ +M AJB) . (34)
=0 P I .
5
dQ/dM = —Xob(x/C) E ((;NL N —2) AYJ o+ M A““)B(
gt " : yb'«"f” Ll L ..‘\
dijdu = — X b(Dx/C) 2 (M ;A2 N,A/"'ZB) ,';\’ L
70 o
N

Examining (13), one remarks that the 1ntegrals (5) must be performed only
for - Bwt and ki Selecting. therefore the first three equations. (34), pexfonmlng

the 1ntegrals (5), and adopting the Antermediate: notations - jvi (lion i
Po=9 e Pa=0 . 0 Pam0 s

PH = —No; P21 =0, P31 = —Mo\#.' Ve

P12 = TlNﬁ/%{;' s Pze"\— ’*‘No/zf i VAN P% = M/U‘Z; \

P13 = —N2/3» Pza = “‘Nl/3 Paa = Mz/'g\()u . (35)
Py = —Ny/4, Py = —N,/4, Py, = —M /4 I

Py =0, Py = —N,/5, Py = —My5, winhde ou
Pio = M, + 2M,/3,  Pj Ezv[OJr'QM'\Z]sﬁrsMg/fis, Pil = N3 + 2N,/15,

Piy = My|2% + 3My[8, . Po = M2 4-3Myf8, ... .. Pa.5 v Nof%sh-Da/8,

Ply = My[3;: + i i Pyyre= M§/3‘$‘4M§,‘/15‘;7 2 Pag === N8 4+ NG5, )
Pis = M,/4, Piy = MyJ4, Py = —Ny/4, ' (36)
Pi, =0, Pl =My5, o’ Ve Py = —Nyf5,

Pls-—O I “§P25--0J ,:;. v.;.,, 'zi,j,, ;,,Pas—r- Pt Leri

P =M, + Mg/:z F3M8, By = M2t Bik8, Py = NoJ24N8 3‘(‘)

= (g (Pyd! +PyAIB) 4 Pru)m' i1 T, 0 (38)

SRV HE T R pn) wbot l[)ltn/n St at et w’i‘.r.'w.v_:u e
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the variations we search for acquire the very coinpact form:

5 ,
Az, = 2X e blx + ) (z: (P47 + P4AIB) + Piu +F:-), i=13 @

j=0
with.2, =p, 2, =¢q, z; =%k, ¢, =p (constant = p,), ¢, =¢; = 1.
8. Results. To obtain I;, I,, I;, we substituted (39) into (13) and perlor-

med the integrations. Then we used (33)—(37) to express the results in terms
of M, N;, and introduced provisionally the abreviation:

Y = nX p¥2u-120/186. (40)
As to I,, we used the last equation (3) and the fourth equation (34), then we
performed the last integral (13), assigning to X, the part of the small para-

meter 5, and used (40). The results are:

I,.=Y(x + y)(—24N, — ON, + 12=(8M, + 4M, 4 3M,) 4- 96I3),

I, = Y(x + »)(16N; + 8Ny), (41)
I, = Y(x + 9)(64N, — 16N, + 16N, — 8N,),
I, = Yx(—4N, — 2N,). ‘

Lastly, performing AT = I, + I, + I; + I,, introducing (40) and (18) into
the result, ‘and using the abbreviating notations:
H = (64N, — 28N, + 16N, — 11N, + 12r(8M, + 4M, + 3M,) +
-+ 96F1)/16, (42)
J = (64N, — 24N, + 16N, — 9N, + 12=(8M, + 4M, 4+ 3M,) +
+ 96F1)/16,

we obtain :
AT = =X p'u 1 8(HCw — 2 ]|T,). (43)

9. Particular eases. Suppose that the atmospheric rotation is neglected
(w = 0). In this case, taking also into account (18), the difference (43) redu-
ces to: '

AT = — X opol2u-1123 ] (44)

Observe that the same formula (44) is obtained from (43) if w # 0, but C=0,
In physical terms, for polar circular orbits, the difference AT due to the aero-
dynamic drag does not depend on the atmospheric rotation.

Suppose, for another particular case, that the initial values of the orbital
elements refer to the ascending node (#, = 0). Imposing this condition to (38)
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Professor RADO is among the editors of ,, Journal of Geometry” (rigth from the start) and of
,,Aequationes Mathematicae’. More than 20 years he acted as reviewer for , Mathematical Reviews”
and ,,Zentralblatt fiir Mathematik”. o

He gave talks at Universitics in Bucharest, Tassy, Timisoara, Budapest, Debrecen, Giessen, Bo-
chum, Waterloo, Montreal, Hamilton, Buffalo, Frankfurt, Pavia, Hamburg, Hannover, Braunschweig,
Miinchen, Kiel, Duisburg, Oldenburg, Toronto, Pittsburgh, New York (Courant Institut), Brockport,
New Brunswick, Tel Aviv and Haifa. In July 1982 he spend one month at the University of Ham-
burg being asponsored by W. Blaschke Jtund. on the recommendatioh of Prof. Benz. In 1985, of
the invitation of Prof. Aczél he asted as a visiting research scientist at the University of Waterloo
for two months. He presented from his original rescarches on a series of mathematical mectings
and symposius, but was prohibited to attend many others due to the ever increasing restrictions
imposed by the Ceaugescu government. Moreover, he couldn’t go to the 1972 mecting on Iligher
Geometry, held in Oberwolfach, in spite of the fact that he was one of the organizers.

Some of Professor RADG's scientific results:

His studies in nomography comprise: i) criteria for various nomographic representability in
terms of functional équations without differentiability assumptions (1959); ii) projective transfor-
mation of alignment nomograms in order to obtain minimmal error. e showed that for a nomogram
in'a projective family to be optimal it is necessary and sufficient that the points of maximal error
on each scale fulfil a specific geometric condition (1964, 1969). Studies in this direction were con-
tinued by B. Orbdn, V. Groze, A. Vasiu. )

He generalized Malcev’s theorem concerning the conditions for a semigroup to be injectively
embeddable into a group. Giving to this problem a geometric form he established neccssary and
sufficient conditions for a semi-web to be injectively embeddable in a regular web (satisfying Rei-
demeister’s condition). This is not oaly a more gencral result, but the rather sophisticated Malcev's
chains appear in a simpler and natural manner (1965).

‘Tet S be a non-singular incidence structure such that to any point 4 and any line L there
exists a point P and aline D with 4 €D, P €D, P eL. Thea S can be injectively imbedded in
a projective plane with given general closure condition C if and only if all | projective conclusions”
of C hold in S (1969). ‘

A fundamental theorem of projective geometry states that any injective collineation of two
projective spaces over fields K and K’ respectively, is induced by a scni-linear mapping of the
underlying vector spaces, related to certain monomorphism s: & — K’ In 1956 W. Klingenberg
has extended this theorem for non-injective collineations of spaces of finite dimension. The role of
s is taken by a place (valuation moxplu;m) he worked with coordinates. RADO has generalized
Klingenberg’s theorem to projective spaces of arbitrary dimension, by suitable adjusting Artin's
method, instead of using coordinates (1969). This method was aferwards applied in many situati-
ons, especially for, ring geometries by K. Mathiak, J. Brandsteiter, P. Hartmann, T'. Machaly,
H: Havlicek and others. Related to these ideas is also RADO's following result.

Let P and P’ bhe Desarguesian projective planes and C a subset of P which contains three)
non-concurrent lines and a point not incident with them. Then any (non necessarily injective
collineation of C into P’ can be uniguely extended to a collineation of P into P’ (1970). Severa
refinements anl generalizations of this theorem are due e.z. to B. Orbdn and J. L. Zemmer: D. ¥
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Carter and A. Vogt have given a thorough study on collinearity-preserving mappings between De-
sarguesian planes. ‘ '

RADO also gave an example of a valuation of a skew-field such that the corresponding valua-
tion ring is non invariant. ‘Thus, in Schilling’s definition the invariance of the valuation ring is
not a consequence of the other axioms (1970).

In a joint paper by Aczél, Djokovi¢, Kannappan and RADO, the contribution of RADO is
the following: Let G, H he groups, S a subsemigroup of G -such that G= S - S7! and let f: S —
— H be a morphism. The f can be extended to a morphism of G into H in a unique way (1971).

‘In the usual definition of skew-field RADO has replaced the axioms of the existence of unit
and inverses by a weaker requirement, which can be stated as follows: Let (F, 4, ) be a distri-
butive nearring, I'* = F\{0}, M =  {xF U Fx|r e€F*} and N= {x €F|0 & xF*}. Then, (I,
+, +) is a skew-field if and only if M n N # 0.

W. Leissner has characterized by geometric axioms the plane geometry over a wea}dy 1-finite
ring (i.e. a ring with 1 such that ab= 1= ba==1). RADO gave an extension to arbitrary rings
with identity. The geometric axiom concerning the existence and unicity of-the line incident with
two non-neighbouring points 4 and B is now replaced by ‘the requirement that the intersection of
alllines incident with 4 and B be aline. Leissner’s other axioms remain essentially the same (1980).
Corresponding results for the multidimensional case were given by W. Leissner, R. Severin and
K. Wolf.

In the last years great effort have been made to characterize isometries (and semi-isometries)
of different inetric spaces under weak assumptions. Remind two theorems: A. D. Alexandrov’s
(1950) and F. S. Beckman—D. A. Quarles’ (1953). The first states that a bijection of the Minkowski
spacetime M, (n = 3) into itself, which preserves the zero pseudo-euclidean distances in both direct-
tons is necessarily linear (up to translation). By the second, for given » > 0, any mapping f of
the Buclidean space E, (n = 2) info itself such that | PO|= r=>|P/O/) = r must be a motion
(i.e. linear up to translation). Unlike BecEman-Quarles theorem, that of Alexandrov does not hold
in the two-dimensional case, but a bijective mapping f: M, — M, which leaves invariant one pseudo-
euclidean distance »# 0, in both directions, is a Lorentz transformation (i. e. linear up to transla-
tion), as was proved by W. Ben in 1977. RADO generalized this result going over from the real num-
bers to an arbitrary field K with char K# 2 or 3, i.e. he proved the result above for an Arti-
nean plame (noun singular, non-anisotropic metric vectqr plane over K) (1980). The main idea was
to draw in the proof Hua's theorem concerning the characterization of field monomorphisms. Then
W. Benz generalized further in the sense that f can be any mapping of the Artinean plan into
itself preserving the distances 1 in one direction; then f must be sewi-linear (up to translation),
provided the field K satisfies one of a list of assumptions (taking 1 istead of »# 0 is really no
restriction). The following important step was made by RADO in 1983 by reducing Benz’s assump-
tions only to char K# 2, 3 or 5 or K= GIF(3™), m > 1, Among RADO’s other results in this
area is worthwise to mention: Let V be a metric vector space over the field GF(p%), p> 2, 3 <

< dim V= n <0 ; given a mapping f: V' — V such that |PQ | = 1= | P/Q/| == 1, then f is semi-
linear (up to translation), provided n # 0, —1, —2 (mod p) or the discriminant of V satisfies a

cettain condition. The proof is Dbased on the condition for a regular simplex to exist in a Galois
space, which is of interest for its own sake, as well.

IIe formulated in 1963 the ,,branch and bound” method to solve the rhs]untlvc programming
problem, independently from the other authors who gave similar algorithms. In his review on
RADO's paper (published in romanian), E. Balas writes in the International Abstracts in Operations
Research 7, No. 1, 1967: ,, The basic principle of the branch and bpugd technigue devised by Land

and Doiriy for the integer programming problem and adapted by Little, Murty, Sweency and Karel

for- solving the travaling salesinan problem, is rediscovered here independently, stated in a more
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general form and used to solve a very important problem : linear programs with logical constrains..
Tt is to be noted that thls work precedes the important paper by P. Bertier <\nd B. Roy on the
S.E.P."”.

An extension theorem for Pexider’s equation, in a general setting is proved in a joint paper
with J. A. Baker, which is then used to generalize aggregatoin theorems for allocation problems
by Acz€l, Ng and Wagner (1987).

Among the varions problems of optimally locating a new service facility with respect to the
locations of » existing facilities, the Steiner problem arises when one seeks to mifiimize the sum
of the weighted distances from the new facility to the existing ones (if n = 3 and weights= 1,
it is:the 300 years old Fermat problem). E. Weiszfeld proposed an iterative algorithm for solving
the Steiner problem, but not until the 1970’s, however, did H. Kuhn and I. M. Ostresh demon-
strate that.this algorithm always solves the problem. In 1958 W. Miele proposed an extension of
theWeifelel algorithm to the Euclidean multifacility location problemn (with several new facilities).
RADO: hasiprovided, in an arbitrary dimensional Fuclidean space, for a slightly modified version
ofi Miele'sl algorithm Kuhn-Ostresh type theorems for convergence and optimality, both under mild
Assumiptions: (1988). 1213 -
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Ob]serpatu asupra unw szstem liniar mfzntt (Remarks on an infinite linear system,; romanian).

b Bu st. ‘sect. st. mat. fiz. 5 (1953) 285 292.

Wlﬁh Gl Calugheanu)”}l‘swpm “tikki ‘ﬁwoble‘)n'e ‘de -propagare a cdldurii (On a problem of heat

]u «j)ropwgatmn. vromaniam), - iBul.? gtunseet. 4t. s shat.ifiz., 6 (1954), 17-30.

13 1 Wxt.h L Bal). Doud. teoreme, referiloare la Sehargrea: vunqbzlelor in nomografic. Comunic. Acad,

; FP [ (195 )l 285— 90 (Two l/zeorcms Lonc;’rmng dhe separation of va-ialls in nomography),

)4”( With T;. B:ii Se}ba;area v abilélor in’ nomog;a ie (’1 he’ separation of variables in nomography),

“ohiComutic. ! Aeads RPIR, ) 5'(1955), 303 — 805,

- Bl Giondifii ude s depéndentd - liniard. pertru trei . funcm continue {Linear. dependence conditions for

i wypp contipyaus: fupctions). Studii si: cereet. Cluj, ;ser, I, 6 (1955), 51—-63.

? I1th Ger&el;,, L. Bal nd G, anescu) Despre nomoglamele romboulalo (On vhomboidal no-
‘mogrants ) Tuerarife” const. de” geometne diferénfiald, Timisoara, 361—366 (1955).

“B 1 Certilinies Proprictésides intégrales dis équatzons dszerentzelles linéavres. ILucrirxle celui deal IV-lea

):1Congres: al .-matematiciénilor . fomani, - 1986, . 162+ 163.

‘ﬂ",A.Y qlgquz egvenletek , nymerikus. megalddsdrol (On the mmwrical solution of the algebraic equa-
. Hons ;. hun(ranan) Bul. Univ. Babss $lr_B01}al editia 1, maghiard, 2 (1057), 13—24.
C’ea iad bzmd transfo; n(zcue prozectwa a Scdrilor la nomograme cu puncte aliniate (lh(' best pro-

“” Jective trahsformation” of the scales of ahgnment nomograms) Studii si cercet. de matematics,

-giQlug, 8 (1957),1:161--168.

104 :Desprg. contactele, nomag)wnelot cu trmnspment (On the contacts of the womograms with transpa-
(renls). btudn ;.1 c(_rcet e matem., Cluj, 8 (1957), 319 -329.

1 Ecuatufmwho)mle i lemhua cu nomog/afm (I mwnonal ecuations in wmmlton with nomography).

i Btullfi §ierdet. dé” matématicd Cluj, 9 (1978) 249 -320.

12, Bgiéationts ifoitionelles-daractérisant. lés woniogrammes avec trois echelle\ rectilignes. Mathematica,

Ao 5(24),fase. 1 (1909) 3 166. . .. . . .

13. Sm qzwlquu\ équations fonclzozuwlles avec pluszeurs fonctwm a detu vwmblm ibid, 1 (24), fasc.

(1959) 321—-339. ,

ryi (Wlth TP Al a,nd G Plukert) I\'omogmmme Gewabe und Ouaszg;up[)cn Mathematica, 2 (25),

o (1960), 5424, ‘

1aobespre Moblemu progmmaru lwzaze ( On the ﬁ)oblem of lmear programning ). Studii gi cercet,

de mat Cluj, Fase. anexd, 11 (1960), 167—177.

(\Vlth E. Munteanu) Calc utul sarjelor celor mai economice la cuploarele de lopit fonta (The calcu-

“Ritibn of the “most ecoriomit cha ges of ‘the fumaces to mslt cast iron). Studii i cercet. de mat.

2100luj, Fase/idnexd, <k (1960), 149 158, -
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48.

49.
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51.
52.
53.
54,
55.
56.
57.
58.

59..

60.

62.
63.
64.
65.
66.
67.
68.

—

10.

(With B. Orban) Nomograms with Minimal Global Error. 1,analyse numérique ct la théoric de
I'approximation, 6 (1977), 163—170. )

A generalization of the valued vector space, Mathematica, 19 (42), (1977), 203 - 209.

Affine Geometries and Affine Barbilian Structures. Luerdrile Col. Geom. si top., 22 24 sept.
1978, Cluj-Napoca, 27 —45.

On the Definition of Skew Fields. Archiv der Mathematik, 32 (1979), 441--444.

On the Characterization of Affine Isometries. Resultate der Mathematik, 2 (1979), 171 185.
On the Characterization of Plane Affine Isometries. Resultate der Math., 3 (1980), 7¢--73.
Affine Barbilian Structures. Journ. of Geom., 14 (1980), 75102,

Plane afine Barbilian (Affine Barbilian Planes). Lucririle colocv. nat. de geom. si top., Vaslui
—Valea Hogei— Bacidu, 27—30 iunie 1980, 87-94.

Pye-Euclidean Planes over Pwythagorean Fields and Orderable Fields. Toucridrile coloev. nat. de
geom. §i top., Bucuresti, 27— 30 junie 1981, Bucuresti, 1983, 316 - 322.

A Characterization of the Semi-Isometries of a Minkowski Plane over a Field K. Journ. of Geom,,
21 (1983), 164—183.

(With C. Tartia) A4 Characterization of the Isometries of the Ralional Minkowski Planc. Mathe-
matica, 26 (1984), 183--187.

Teoreme de tip Beckman-Quarles. in  plane Minkowshi generalizate peste un cimp. ( Beckman-
Quarles Type Theorems in Generalized Minkqwski Planes over Fields). Inceririle colocv. naf.
de geom. si top., Piatra Necamt, iunie 1983, Iagi 1984, 15-- 24.

On the Characlervization of the Semi-Isometries of a Galois Space. Lucririle coloev. nat. de geom.
si%op., Timisoara, 2—7 iulie 1984, 237—240.

. Mappings of the Galois Planes Preserving the Unit Euclidean Distance. Aequationes math., 29

(1985), 1—6.

(With I. Muntean) Un model al geometriei din manualul pentru clasa a IX-a. Lucririle semina-
rului de , Didactica Matematicii”, Cluj-Napoca, 1985, 67—82 (A4 model for the geometry pre-
sented in the textbook for grade I1X). .

On mappings of the Galois space. Israel Journal of Math., 53 (1986), 217--230.

On the Combinatorial Types of Polvtopes over an Ordered Skew Field. Rescarch Seminars, Faculty
of Mathematics,” Cluj-Napoca, no. 10 (1986), 3—8.

(With D. Andreescu and D. Valecan) Mappings of E* into E* Preserving two Distances. Research
Seminars, Faculty of Math. Cluj-Napoca, no. 10 (1986), 9--22.

On the Semi-Isometries of Metric Vector Spaces. Lucririle colocv. nat. de geom. gi top Tirgo-
vigte, 12— 14 aprilie 1986 ;. Bucuregti, 1988, 239— 244.

(With J. A. Baker) Pexider's Equation and Aggregation of Allocations. Aequationes Math., 32
(1987), 227—239.

On the Euclidian Multifacility Location Problem. Operations Res., 36 No. 3, (1988), 485492

. Lecture Notes, Textbooks, Books
. Analitikus mértan (Analytzc Geometry) (hungarian), Lithographed, Cluj, Ed. 1, 1954, Ed.2,

1958.

(With L. Bal) Lectii de nomografie (Lectures in nomography), Td. Tehnicd, Bucuregti, 1956,
(With V. Cseke and E. Kiss) Feladatgydijlemény kizépiskolai matematikai kérok szdmdra) (Exer-
cise book for mathematical cirvcles in secondary school). L. Tehnicd, Bucuresti, vol. 1, 1957;
vol. 2, 1959.

(With P. Szildgyi) Analitikus mérvtan példatir (Exercise Book for 4/La/ytual (wo;wlm) Litho-
graphed, Cluj, 1958.

. Curs de geometrie (A Course in Geometry), Univ. Babeg-Bolyali, Llu] 1972.

Lectii de programare liniard (Lectures in Linear Programming). Univ. Babes-Bolyai, Cluj-Na-
poca, 1975.

(With G. Galburd) Geomzirie (Geomsiry). Ed. Didactici si Pedagogici, Bucuresti, 1979.

. (With B. Orbédn, V. Groze and A. Vasiu) Culegere de probleme de geometvie (Ixercise Book for

Geometry ). Univ. Babeg-Bolyai, 1979. . 4
(With B. Orlgn) 4 geometria wmai szemmel (Geometry undeyr modern view point), Fdl. Dacia,
Cluj-Napoca, 1981.

Sistemul axiomalic al lui Bachmann ( Bachmann's Axiomatic System). Chapter I‘{ of the book

-, /The Roundatious. of Arithuetic and Geometry” by R. Miron and D. Brinzei). Iid. Academiei

R.S.R., Bucuregti, 1983, 218 —233.
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Mathematieal Models & Methods in Applied
Sciences (M3AS) (Editors N. Bellomo and
F. Brezzi), World Scientific Publishing
Company, Singapote, New Jersey, London, Hong
Kong, Volume 1, Number 1, March 1991, 123p.,
ISSN :0218-2025.

,,This journal is schedulet to be published
quarterly. The purpose of this journal is to pro-
vide a medium of exchange for scientists engaged
in applied sciences (physics, w v heyatical phy-
sics, natiral. and technological sciences) where
there exists a non-trivial interplay between
mathematics, mathematical modelling of real
systems and mathematical and computer me-
thods oriented towards the qualitative and quan-
titative analysis of real physical systems.

' The principal areas of interest of this
journal are : 1. Mathematical modelling of systems
applied sciences. 2. Mathematical methods for
the qualitative and quantitative analysis of
models of mathematical physics and technological
sciences.. 3. Numerical and computer treatment
of mathematical models or real systems.

Special attention will be paid to the analy-
sis of nonlinearities and stochastic aspects.

Within the above limitation, scientists in
all fields which employ mathematics are encou-

RECENZII

raged to submit research and review papers to
the journal. Both theoretical and applicd papers
will be considered for publication. High quality,
novelty of the content and potential for the appli-
cations to modern problems in applied sciences
and technology will be the guidelines for the
selection of papers to he published in the journal.

Book reviews, announcements and tutorial
articles will be featured ‘occasionally’.

Number 1 of Volume 1 (March 1991) con-
tents: Dissipative Dynamical Svstems in a Be-
havioral Context (8. Weiland & J. C. Wiliems),
The Influence of a Cubic Density ILaw on Pal-
terned Ground Formation (G. McKay & B. Stran-
ghan), Stochastic Partial Differential FEquations
and Turbulence (Z. Brzezniak, M. Capinski, & F.
Tlandoli), Dispersive Groundwater Flow and Pol-
hition (O. A. van Herwaarden & J. Grasman),
The Periodic  Bloch- Poisson
Equation (A. Arnold, P. A. Markowich & N,
Mauser), A New Discretized Model in Nonlinear
Kinetic Theory - The Boltz-
mann Equation (N. Bellomo & E. Longo).
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Semicontinuous
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CRONICA

I. Publicatii ale seminariilor de cercetare ale catedrelor de Matematicd (seria de preprinturi):
Preprint 1--1989, Seminar on Functional Analysis and Nunicrical Methods (edited by I. Piviloin);
Preprint 2--1989, Seminar on Mechanics (edited by P. Brideann);

Preprint 3--1989, Seminar on Differential Equations (edited by T. A. Rus);
Preprint 4— 1989, Seminar on Geometry (edited by M. Tarinii);

Preprint 51989, Seminar on Celestral Mechanics and Space  Research (cidited Dy AL PAD;
Preprint 6— 1989, Itinerant Svminar on Functional Equations, Approximation anl Convexity (edi-
ted by L. Popoviciu); .

Preprint 7—1989, Seminar on Mathematical Analysis (edited by [I. Muntean);
Preprint 8—1989, Seminar on Optimization Theory (edited by [. Kolumban);
Preprint ¢ —198‘-) Seminar on Computer Scicnce (edited by S. Groze);

Preprint 10-- 1989 Seminar on Complexity (edited by Gh. Coman).

II. Manifestiiri stiintifice organizaie de Facultatea de Malemalicd in 1989:
1. Sedintele de comuniciri lunare ale catedrelor de matematicd;
2. Seminarul ittnerant de ecuatii functionale, aproximare i convexitate (18 20 mai 1989);

3. Conferinta interdisciplinard de Astronoinie, Astrofizicd, $tiintele universului, $tiingele pimintului
(9— 10 iunie 1989).

LI RAPESA

\.i ~v- 'l“\;\\

""—»-u-.-‘.—o’

Iﬁ"j“ IMPRIMERTA ,, ARDEALUL ¢Cluj-Napoca, com. 34/1992,
N it “



In cel de al XXXV-lea an (1990) Studia Universitatis Babes-Bolyai apare in urmitoarele
serii:

matematicd (trimestrial)

fizicd (semestrial)

chimie (semestrial)

geologie (semestrial)

geografie (semestrial)

biologie (semestrial)

filosofie (semestrial)
sociologie-politologie (semestrial)
psihologie-pedagogie (semestrial)
stiinfe economice (semestrial)
stiinte juridice (semestrial)
istorie (semestrial)

filologie (trimestrial)

11 the XXXV-th year of its publication (1990) Studia Universitatis Babes-Bolyai is issued
in the [ollowing series:

mathematics (quarterly)

physics (semesterily)

chemistry (semesterily)

geology (semesterily)

geography (semesterily)

biology (semesterily)

philosophy (semesterily)
sociology-politology (semesterily)
psychology-pedagogy (semesterily)
econoniic sciences (semesterily)
juridical sciences (semesterily)
history (semesterily)

philology (quarterly)

Dans sa XXXV-e annce (1990) Studia Universitatis Babes-Bolyai parait dans les series sui-
vantes:

mathématiques (trimestriellement)
physique (semestriellement)

chimie (semestriellement)

geologie (semncstriellement)

glographie (semestriellement)

biologie (semestriellement)

philusophie (semestricliement)
sociologie-politologie (semestricllement) -
psychologie-pedagogie (semestriellcment)
sciences economiques (semestriellement)
sciences juridiques (semestriellemnent)
histoire (semestriellement)

philologie (trimestriellement)
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