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ON A CLASSIFICATION OF COMPUTER BASED SYSTEMS
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NS swbject classification : 68MO05

REZUMAT.. — O eclasilicare a sistemelor bazate pe ecaleulator. Se incearci o scurtd
prezentare a unei clasificari bazate pe tendinta de convergentdi a diverselor dome-
nii ale informaticii.

| Introduetion. The present paper presents an outline of a larger work
wcerning a classification of computer based systems. Its basic idea is the
dssification of such systems based on their functionality (the actions they
e able to perform) and its aim is to provide a basis for a unified method for
ifining data base, functional, logical and decisional systems. I'he classification
sumes a uniform representation of knowledge for each type of system con-
idered.

;2. The Clasifiction

In the followings we shall consider a computer hased system (CS) to be
isystem which can perform the aquisition, processing and producing of infor-
‘mtions using a computer. The basic functions of such a system are:

— reception of informations,

— reperesentation of informations,

processing of informations based on the representation,
transmition of informations.
{though the reception and transmition of information are very important
fom the point of view of communication with the environment the basic acti-
ity of the above mentioned systeins is the information processing based on
the representation used. The information processing capabilities are going to
te the basis of classification of €S-s in the followings.

At each moment a €S contains the representation of a part of the world
alled s universe. The universe may change in time. The changes depend on
the (S's communication with its environment and on the processings it can
priorm. These processings are determined by the mechanisms incorporated in
the (S, The me:chanisms may be either processors of the computer used by the
{S or procedures implemented on such processors. Depending on the incorpora-
ted mechanisms we classifiy C9-s in the following hierarchy :

— data base type systems,

— functional systcins,

® Research Institute for Computer Technigues 109, Republicis strest, 3400 Cluj-Napoca, Romania



4 M. E. BALAZS

— inferential systems,

— decision systems,

We consider this classification hierarchical in the sense that each type i
by enriching the previous one by specific mechanisms.

— Data hase type systems. These are €5-s which only includen
for storing and retrieving informations. By sforing we mean the
updating the universe by adding or substituting informations. U pda
process of scarching the universe Tor informations matching certain ¢

This tvpe of systems carry out the most elementary intellectua
which consists of storing of intormations and returning them with no
tions.

The main problem with this type of syvstems is that of search
The field of data base management which covers the study and desig
systems is rich in both thcorctical and technical results.

— Functional systems. This type of systems assume the existena
universe of a special class of objects called functional relations (or simply 1
and include mechanisms for handling these objects. The specific acti
cerning functions is their evaluation. Evaluation is the process hv wt
informations arc prodiiced starting from the existing ones in the unive
on the functional dependencies defined by a function.

Since functions arc defined on objects of the universe, evaluating me
take advantage of retrieving mechanisms. This is true even if the und
universe is very small, say just a few variables of a program. The storing
nisms are uscful for updating the universe with intermediary or final n

the evaluation.

Functional systems perform an intellectual activity of higher level «
to data base type systems since they produce new informations uot e
present in the universe. The limitations of such systems are duc tol
that new informations obtainable are in a special (functional) relation v
contents of the universe.

The most important requirement for such a system is the cificiency
evaluating mechanisms.

Inferential systems. Inferential svstcins are those which include:
nisms for producing new informations from those existing in the univers
nonfunctional relations. These mechanisms use various scarch sirafeg
obtaining these new informations. The use ol storing and retrieving mech
is motivated exactly by the same reasons as in the case of functional s
Since evaluating mechanisms are more efficient than search, inferential s

take advantage of them in obtaining the so called computable inter
informations.

The intellectual activity closest to that performed by these systems
of reasoning. This is of higher level than the one performed by functior
tems, since the new informations produced depend on the informations
universe through more general relations than the functional ones.

This type of systems constitute the main object of study of the h
part of artificial intelligence.
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~ Decision systems. All the systcms of the above mentioned type perform
Ldi\'iti(s accerding to .goals either encapsulated in them or set by the user.
wasien systans should be able to set their own goals depending on the in-
mmations in the universe and certain criterions of choice. After sctting a goal
i type of systcms may use any of the mechanisms from the lower levels
v reach it

The intellectual activity this type of systems try to perform is that of choosing
mong various alternatives based on given criterions. An example of decision
miem may be the command systemi of a robot.

Based on a uniform representation of the universe including functions, re-
tions and decision criteria and taking into account the above presented classi-
wation may be the basis for a unificd definition and specification methodology
irall types of €8-s may be developed. This may lcad to a better integration of
arious fields of computer science and to a new instrument for designing the
tire computer generations.

3. Conleusions

In this paper we tried to give a short presentation of a classification of com-
putcr based systems which is bhascd on the obvious tendency of convergence
i various fields of computer science. There is a lot of work to be done in
s direction although the basis of this work is mainly contained in the results
dtained in data base management, functional programming, logical systems
ad decision theory.
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REZUMAT. — Un algeritin fuzzy de instrulre Se di 0 metodi pentru instruirea
unui clasificator fuzzy hinar. Pentru instruire se utilizeaza o partifie binarid fuzzy
a unei multimi de instruire.

1. Introduetion. The aim of this note is to give a training procedure for
ifwezy binary classifier. For such a classifier the training classes are supposed
tohe fuzzy sets on a training set X.

Since many classes of real objects have not sharp boundrics the fuzzy set

my be successfully used to describe the classification structure of a data set
fee [11, [3], [4]). We suppose that the cluster structurc of the training sct
Iisgiven by a binary fuzzy partition {A,, A,} of X. This partition may be ob-
tined for instance by using the Fuzzy Divisive Hierarchical Clustering algorithm
[, [41, [6]).
" Let X < R? and f be a linear function on R4, f(x) = 1Tx. A measure of se-
pration of A, and A, by the hyperplane f(x) = 0 (or by the vector v) may
k defined. It is high desirable to find a separating vector v for which the se-
pration degree is as great as posisible.

In this paper we'll search for a hiperplane H such that for every class A,
the sum of distances (in this class) to H of the misclassified points be minimum
Wemay admit that H obtained in this way is a good separation hyperplanc. Ho-
wver we don’t know if H is the best hypeplane. i.c. it maximizes the sepa-
ntion degree of the fuzzy classes 4, and A,.

Let B, and B, be the classical sets corresponding to 4, and A4,. Iiven if
Byand B, arc not lincarly scparable it is possible to obtain a separation hyperplanc
br the fuzzy sets A, and A,. Moreover we are able to measure how good is
this hypeplane i.e. the separation degree realized by it.

2. Fuzzy partitions. Iet X Le a nonempty sct considered as the universe
of discourse. A fuzzy set on X is a function 4 : X —» [0, 1 . A(x) is the membership
degree of x to A. If A and B are fuzzy sets on X wc may deline

(<1 n B)(x) = T(A(x), B(x)), Vxe X, (1)
(4 u B)(x) = S(A(x), B(x)), Vxe X, (2)

where T is a t-norm and S is its dual conorm (sec [47, [5]).

* Babies-Llolyas” University, Department of Mathematics and Compuler Science, 3400 Cluj-Napoca, Romanic



kel D. DUMITRESCU, V. CIOBAN

In this paper we consider the particular definitions

(A 0 B)(x) = Tw(A(x), B(x)) = max(0, A(x) + B(x) — 1)) ®

(A U B)(%) = So(A4(x), B(x)) = min(l, A(x) + B(x)). () &

Tet C be a fuzzy set on X. If 4, and A, are disjoint fu77v sets and thew:

union is C, then {4,, 4,} is called a fuzzy partition of C. It is easy to sec that

A, nd, =0

Ay 4, =C

‘The equivalence (5) holds 1f and only if the set operations are defined by usimg
a pair (T, S), with T =T, and S = S,, (sce [5]).

3. Training with fuzzy sets. Let X = {11, ..., 2P}, v/ = R¢ be a data st

Let us suppose that the cluster structure of X is given bu a binary fuzzy pes
tition {4,, 4,} of X. We have thus

Ax) + Ay(x) =1, Vxe X.

In what follows we’ll admit A, and A, are two training sets. These fuzzy tra
ning sets may be used to design a binary classifier. Therefore we’ll search for :
separating vector wv. The corresponding decision rule will be:

l© A44(%) + Ay(x) = C(x), Vxe X.  (5) &

x 1s assigned to class 1 if 271 > 0;
x 1s assigned to class 2 if »Tx < 0.
A fuzzy classifier may also be considered. Let us suppose that we have :

procedure to compute the membership degree of a new considered point % tc
the class A;. If the class A4; has the prototype L!, then we put:

Ay =—2D | (@) (6

d(x, LY + d(x, L)

where d(x, L') is the Fuclidean distance of x to prototype L'
The decision rule for the fuzzy classifier may be written as:

¥ is assigned to class 1 if A,(x) > 0.5 and vTx > 0;
x is assigned to class 2 if 4,(x) > 0.5 and vTx < 0.

Let g:R*> R be a discriminant function
g(x) = wTx + a, U\') (7

where x € R?, a € R. Let us dcnote by Y the space of the augmented vectors
y, where

Vo= (x ) , x= X.
- 1
The fuzzy set A4; induces on Y a fuzzy set A; :

Awh%umy=(y

1
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AR 1 < . . *
what follows we'll write ) instead of A4;. If we put

w
=(2):
a
. Iseriminant function (7) becomes
g(y) = o7y.
The non-separation degree of 4, and 4, with respect to g may be definea
- also [8])
M4y, 4, ) = inf{k = [0, 1]|[4:(y} < k, Vy € g7 (—00, 0] and .1,(v) <
th¥ye g0, 00)]) or [Au(y) <k Vy< g7 (—0,0] and A;(y) <k Vy<s
< g0, oc) I} 9)
% degree of separation of A, and A, by the hyperplane g(y) = vy = 0 may
k defined as
DAy, 435 8) = D(4y, dy50) =1 = M(4,, 4, g). (10)
feadmit that the fuzzy classes A, and A4, are t-lincarly separalle if there exists
weetor v for which D(A4,, 4,, v) =t > 0.
killy a vector v* so that

D(A,;, Ay ; v*) = maxD(4,, 4,; v),

wdeed. We'll give a procedure to obtain a separating vector ». The procedure
n't guarantee that the obtained vector is exactly v*,

~ We'll eliminate the points of equal membership to 4, and 4,. We considere
krormalization of the sample vectors defined as

z—[ if A(y) > 0.5 (11)
—y if 4,(v) > 0.5

kfuzzy classes of the vectors z are also denoted by A4,, ..
Let H be the hyperplanc of equation 97z = 0. The set E; of the samplcs of
eclass 1 misclassified by H is defined as
E; = {z|v"z < 0 and 4,(2) > 0.5}. (12

1d be a norm induced distance on R We denote by d; the distance in the
uy set A; induced by d. Distance with respect to A; between a point z and the
prplane H is (see [3] and [7') (iven by

di(z, H) = A (2)d(z, H) = A,(z) |—v72|. (13)

We denote by [J(v) the sum of the distances in 4; between the points of I
1 H:

v) = Y diz, H) = Y 4i(2)(—172). (14)

re L) 1S E;
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Cousider a citerion function J:R<4+!— R, where
J@) = Ji(v) + Ja(v)-
Therefore
Jo) =% FA)(—om).

On aim is to minimize J. In this respect a gradient descent procedurei
Let v* be the vector solution at the k-th step of the procedure. Then

vh+l — ‘U. + a'hl,

where a, is a positive number and %* is the antigradient of J in o*, ie,
2
Bk — —v](*) =Y ¥ A,0).
1=1 z€ E'.

For our purpose it is sufficient to consider a4, = ¢ > 0.
If the sample vectors are cyclically considered a sequence (2);5y is0

i =, m =012, ...
The trainign procedure can thus be written as:
A. Choose an arbhitrary vector v e J4+!
oF b e di(z), it A (%) > 0.5 and (@*)Tk < 0

%, otherwise,

B. Put ¢+t =

This training procedure is a gencralization of the well-known pef
algorithm (see [2]). Thercfore we may call it the Fuzzy Perceptron Algd

If v is the separating vector obtained by our procedure, the separatin
sure of the fuzzy classes A, and 4, by v is given by D(A4,, A,; 7).

In a further papcr we’ll study the convergence properties of the alg
and some numerical examples will be given.
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REZUMAT. — O bibliogratie preliminard acupra elasifiedrll cu wulfimi tuzzy
si domenii conexe. Se judicd principalele orientiri in acest domeniu si se i
o listd continind 285 de lucrdri.

A clustering algorithm is a procedure by which a collection of objects is
wrtitioned into disjoint subsets or clusters. In the fuzzy clustering every data
wint helongs, with some degrees of membership to all clusters. A cluster of
wints corresponds to a fuzzy set on the data set X. The cluster structure of
drais generally given by a fuzzy partition of X.

Fuzzy clustering should be useful in applications where the clusters touch,
overlap, there exist bridges between clusters or there are isolated points.

The notion of fuzzy set was first introduced by Zadeh [281] and the use
of fuzzy sets in clustering was first suggested by Bellman, Kalaba and
fadeh [14].

Negoita [203] has used a separation theorem of fuzzy sets to describe
2 cluster based information retrieval system.

Ruspini [224] has introduced a notion of a fuzzy partition to describe
the cluster structure of a data set.

Gitman and Levine [132] have proposed an algorithm to dctect
the unimodal fuzzy sets. The obtained clusters are not fuzzy sets.

Dunn [115] has generalized the minimum-variance clustering procedure
to a Fuzzy ISODATA clustering technique.

Bezdek [15] has generalized Dunn’s approach to obtain an infinite
family of algorithms known as the Fuzzy c-Means (FCM) algorithms.

FCM procedure has been generalized to obtain the cluster substructure
of a fuzzy class by Dumitrescu [80]. A convenient notion of partition
of a fuzzy class and a method to derive the criterion function have been used.
Based on the Generalized FCM procedure a hierarchical clustering method
has been proposed [101]. This method produces a fuzzy hicrarchy and is a
solution for the cluster validity problem.

Roubens [223] has considered a non-metric approach of the fuzzy
clustering problem.

Backer [8] has proposed a clustering method that simultaneously gene-
rates a pair of optimal hard and induced fuzzy partition.

¢ Babes-Bolyai University, Faculty of Mathematics, 3400 Cluj-Napoca, Remania
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Thomason [263) and L ¢e [180] have suggcsted to use cf t
languages to pattern recogniticn.

The use of fuzzy relations to clustering have been considered Ly ¥
and Turner [126], Tamura ct. al. [259], Dunn [118] Ye
Bang [280], Bezdek and Harris [24]

In the following it’s proposed a preliminary hibliography on fuzy
ring and related fields that we hope to be of a 1cai utiiity 1o those
interested in this field.
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A COMBINED ITERATIVE METHOD FOR SOLVING
OPERATORIAL EQUATIONS IN FRECHET SPACES
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REZUMAT. — O metodd iterativi combinatd pentru rezolvarea ecuatillor ope-
ratorlale in spafli Fréchet. In lucrare sint date rczultate similare cu cele din
[2] si [3], dar in spatii Fréchet. Aceasta pentru ci existd spatii cvaesinormate
care nu sint normate i existd posibilitatea de a dcfini familii de cvasinorn:e
folosind o norma.

I. In order to apply the methods of Newton-Kantorovici tvpe for solving
e operatorial cquations

P(x) =9 (1)

e XY, to each iterative step, is used the inverse of linear map: the
mechet derivative of the first order (sce, the Newton-Kantorovici method)
i« the divided differcuce of the {irst order (see the chord mecthod).

This difficulty can be eliminated taking both the sequence (x,) of itera-
fires and the sequence (4,) of linear operators, where (4,):Y - X, sequence
wich is convergent to the inverse linear operator which appears in the iterativ
nethod. :

S. CPm [it gives a method for a simultancous approximation both for
the solution of (1) and for the inverse of the Fréchet derivative,

A. Diaconuand I. Pavaloiu (121, [31)arestudyingsuch a combined method,
in Banach spaces, which generalizes the Ulm-s method.

In this paper we are given such results in Iréchet spaces. This, not only
fom the reason that there exist quasinormed spaces which are not normate spa-
s {31, but also because there existes the possibility to define a family of quast-
pormes, using a norme, and to choese the family of parameters such that
the convergence conditions of the corresponding iterative method to be satistied.
2. Let be the iterative method 2°

Vypa1 == Xy — “]:.'])("'n)
Apey = 4,021 — Tx,, 2,4, PLL), 220, 1 ... (2)
obtained from the method of chord, where x, is an arbitrary sclected point

in the Fréchet spaces X, I the identity opcerator on Y.

Dabes-Bolyai” University, Facully of Mathematics, 3400 Cluj-Napoca, Romania
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The operator P: X — Y is a continuous one and 4 < (Y, Xp:
{Y, X)* is the space of lincar and continuous operator defined onl-
values in X, an iterative operator associated of the operator P, i.c. anox
for which the solution x* of the equation (1) is a fixed point,
We denoted with [x,, x,4,:; P] the gencralized divided diflera:
P on nodes (x,, x,41) and by )|-[(:X — Ry, the quasinorme indu
an invariant distance d = X XX —» Ry, i.e. d{(x, y) = d(x — v, 0) and)]
= d(x, 0).
In connection with the iterative method (2), we have the followy
THEOREM. Jf the following conditions arc verified in the hall S=d
Jx—x|(< R}
1°. the operator P has an inversable divided difference of first ord
JITx, v P17ty £ B << 4o, Vx, yE S
and has a divided difference of second order with
JI[x v, z; PI{ < M < 400, Vx, 5, 2€ §;

2°. the A, tis a bounded opcrator and)|A,|( < 2B;
3°. the following imequality holds
max{4M B2) |P(x,) |(, (1/9)u)| I — [x4, x,; Pl |(}2 < cd
v p cd _
when u = A/4MB?)| P(x,| (, d<1, R = MBI 2T’ c=1/9

752__”"2‘/‘%— — ¢ fos any e< 10, 1],
hen
(i) the sequences (x,) and (A,) given by (2) are comvergent ;
(ii) the equation (1) has the solution x* < S and

lim x, = x*;

n——>0

(1ii) If A*=1lim A, then A* =lim [x,, x4 P17
n——>ea n——>00

(iv) the following tnequalities are salisfied :

dp"™(p-1)

JIx¥ — 2, (<
" leMB(1 — a?Me-1)y
&nd

2B 34?"
JA* — A (<=2 1M w001, ...
S +1_(1P"(P—”

Proof. We shall prove, by induction, the following relations:
a) r,€ S, n=20,1 .

b)) 7, = 4MB* ) P(x,|( < 0,d% < (1,9)d?; n =0, 1, ...
by) dy = )11 = (tasy, %3 PIAL|( < cudin < (1)9)dnt; 1 =0, 1, ...

’
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) are sequences generated by the relations

B,41 == 6247 1 0,0,_, + 0,,d" %

Casr = (6, d™7% 4 6, d™ 7 6, )

sth 8 = 0, = ¢, = 1/9, (a,), (b,) are sequences generated by the relation
by = 2a,_,

{a»+1 =a, + a5

shere (6,) and (c,

thay=1, ¢, =2, b, =1;
M (<2B, n=1,2, ... .
Indeed, from the previous hypothesis we have, x, € S.
Using 3° it results, for n = 0, 7, < (1/9)d and ) |4,|( < 2B. For n =1, b,

tecomes d; < (1/9)d. o
Next, we assume that the relations &)—c) are true for » = k > 0, and

v show that they are true for # = k& + 1.
Using (2) we have

) tnri—2a 1(< 3 Fors =5 1 (€ 3 14 1() 1PG) | <

=0 im0
d ]
RS 2 -1 .o Ph-1 =
< B36MB.(1+dﬁ + + ar*-1 <
d . d
p—1 Mp-1)) ¢
< 18M 3t (it +d ) < 18ME(1 — d?7Y) R

kcause k(p—1) < p*—1, and so x4, € S,
To prove the property b;), based on Newton’s interpolation formula, we

have
NP(xr1) 1 < ) 1P(xr41) — P(xy) — [%4r, %5 Pl(xapr —20) 1(+

P + e, % Pl —x) <
< N % o PG xaen 2 [0 (X0 — 21 l(+
F )P + [oen, x5 Plxren, — % |(
and, by the induction hypothesis, we get
JIP(xxs) | (M) [Ag]| (+) [P(x) |(-
SOV ARTC) 1P() 1 () 1A L () 1P(wsy) 1 () + (5)
) 1P(x) | () M — [xaer, %5 PlAg|).
Also
Y — [xp psr; PlAupa | (<) [T — 2[%, xag1; Pldy +
+ (Do 215 PLAG?E 1 ()T — [t 201 PlAGI(E S
<O = -1, % P14 () | [X41, 25 Pl —
— [x0 2epa s P [P <) 1L — (% 2o PlA | (-
A AR ) T e % Zagrs P LG O [ — 2] () [ — a3

(6)
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Because ) |4, |( € 2B, in base of (3), (6) and with notation from}.
b,), we have

Thpr S 75 rprey A 7y d,
divr < (dy + 1 + 7)™
From these relations, like in [3], it follows
Frgr < Oppd < (1/9)a#**!
Ayt < Cpd®et < (1/9)d?*
and so the b) properties are true for n = % 4 1. ‘
To prove the property ¢), we have
MNAgsr] (=) | [ X1 P17+ Appr — [0 X P17 (<
<) b Do Fgrs P17 L(F) 1 — [ % PlAga| () <
< BO + dir) < B(1 + (1/9)d*) < 2B.

In basc of a} — ¢}, it results

nt+m—1 ntm—1
Moniem — 2,1 (< 35 ) e — [ (<0 35 ) 14: 1 () [P(x) [ (<
; " P (p—1), m— , a?”
S—— [+ .+ <

18M B(1 — aP" -1

Because d < 1, it results that the scquence (x,) is a {fundamental one
therefore it is convergent to x*  S.

From b,) it results

lim P(x,) =0

n—o
and because P is continuous, we get that x* is a solution of the equatinj
Making, in (8) m — oo, we obtain the crror of which x, approximatef
solution x*:

qb" =1

n
18M (L - gf 0

where from it results, for # = 0
. ar-1
JIx* — (€ ———— IR
1I8MB(1 — d*1y

SO x*e S.

Py : eesssssssessdenn St NNE
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To establish the convergence of the sequence (4,) we have, by (2),
Vg — A (=) 1421 — il-\‘:'v Nipy s DA — A (<€
<) AN () 1 = Txg, i Pl <
2B (d; + 1, + risy) < 2B/9 (' 4 24977

ol s0

i=n
(v m 1 i 1 .
SIS D )
P L
i (v
»
D1 w a?
e ()]3 Y] 4)“ 1_:_(/)11 n, 1_7. \7—77_ ,
1 gl

thich denotes that the convergence A(n) <

(Y, \)* is fundamental,
Because X,Y are Fréchet svacces,

it resuits

Hm A, == A*

N

) (A* — A, (< 2B9|2d#" " 3q#" ! )
pilS 2D l—dpn(f)_l)
We prove that the sequence (fx,, x,.; P’]7') is convergent to the 4%, too
We have

)M »r "’n r1 ; l)j_l E (<) ; [..l'”, Xn+1 X P]hll () !I - [“‘:nv xn»H ; -I)]An |(<

< 2B/9 (247" 4 af"),
ad so

) tl‘ *— Ex»' Xpt1 5 1)]_1[ (S)

A — A () W, — Tx,, a0 P (<
<)l — A, (2BJ9 (2487 + af)

fom where the statement results.
Hence, the theorem is proved.
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REZUMAT. — Un algoritm pentra descompuneres convexa a unei partitfii nuan-
fate. In Jucrare se prezintd un nou algoritm care realizeazi descompunerea coit-
vexd a reprezentirii matriceale a unei partifii nuangate. Algoritmul este comparat
cu algoritmul Minimux (MM) ol lui Bezdek $i Harris [1]. Seinfirma
astfcl o conjecturd din {11, Se dovedeste inconsistenta Teoremei 3 din [1 .

I Introduetion. Tet X = {1, ..., ¥} be a non-empty set and 4,
=1,...,n, are fuzzy sets on .N. Tt mayv be proved (see 2 — 57 that P =
4, ..., 4,} is a fuzzy partition of X if and only if the condition

”
EAi(x) == (1)
=
lds for every x € X.
Any fuzzy partition {4, ..., 4,} of X may be represcnted by an n X p
mtrix. Dencte by 4 this matrix. The clanents of 4 are

a; = A7), i=1,..,n;7=1 ..., p. (2)

The sum of clanents of ¢very column in 4 is 1. By the convex dccompo-
gion of a fuzzy partition we’ll understand the convex decomposition of the
mociated matrix A. The matrices considercd in this paper are all matrices.
mresenting a finite fuzzy partition of X.

The problem of the convex decomposition of a fuzzy partition has bcen
idressed in the papers [1], [3], [6]. In this paper we propose a new algo-
ithm for the convex decomyposition.

2. Non-degenerate eonvex deecomposition. According to [1! we denote

” r

P, =lU 1= {0’1},‘@[2.14,]. =1, V]’,Eu,, = 0, Vil, (3)
i=1 i=1

P = IU O[S uy = 1, le, (4)
i=1

® ,Babes-Bolyai’” University, Faculty of Matematics, 3400 Cluj-Napoca, Romania
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P, = ‘UE [O,l]|iu,j =1, Vj,é 15> 0, V'i},

i=1

2 .
ano = {U 5 [O’l]uxP[E ni; = 1, vy},
i J

PP, is the space of the non-degenerate (degencrate) matrices repre

hard or classical partition on X
In 17 the following strict inclusionus are given:
conv P, < P,
Y, < conv P

no-

In "11is also claimed that ,the additional property in P,
distinguish it as a member of conv P is not vet known”.

In 3] a ncccessary and sufficient condition for a matrix Ade P, .
a couvex decomposition in hard non-degenerate partitions has beeng.
This condition is given by the next

THROREM 1 ('37). et Ae P, Jdeeonv P, if and only if the cu}

l)
Y\,(llj P 1,
5=

holds fdor every 7 =1, ..., 7.

Proof. The necessity is easy to prove {sec [31). For sufficiency, a o
tive proof has Dbeen given in [6]. This proof supplics an alorithm {
convex decomposition of a fuzzy partition. .

Remark. A {uzzy partition P = {A,, ..., 4} of X admits a @
decomposition in hard non-degencrate partitions if and ouly i

_/A,«(,\‘j) -2 U A PR '3
7=
3. The MMM decomposition algoritiun. Tet .1 he the matrix represent
of a fuzzy partition P={d,, ..., 4}, We are now able to propose a new algr:
for the convex decomposition of 4. This algorithm is very easy to pop
mate. Contrarv to other decomposition algorithins ({17, 761]) it doesn't &
citely use the notion of a path in the matrix. Some interesting properties of i
algorithm will be done.
In order to obtain the convex decomposition

A= 2 Cr L’k‘ |
k

where 0 € ¢, < 1, E ¢, = 1, and U% is a hoolean matrix representing a chy
%
partition of X, at the first step defines

¢, == omin max o«

iy
J=hooap i=1...n
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|
Wevery j == 1, ..., p denote

I,; = {l| .Ifliﬂ laglay > ¢} = ay}. (13)

m the expresion of ¢, it is evident that

L ;# 0, Vji=1 ..., ¢ (14)
If, for a fixed j, 1; is the unique element of I, ; we put
| Wy =1 (15)
o
u; = 0, for every i # i, (16)

fard 7, ;> 1 then i; is an arbitrary element from 7 ;.

L We obtained a matrix U! == (u;;). In the convex decomposition this matrix
s the coefficient ¢,. The process repeats for the matrix

R::A—é‘lUl. (17)

p continues iteratively until R == 0.
j the k-th step we have

¢ = min  max rij . (18)
F=1l,....p i~1,...,n
rd
I, ;= {1 | min rijlri; 2 af = r;). (19)
1

The boolean matrix obtained at the k-th stepis U,. Tor every =1, ..., p
k choose a single 7; [ ; and put

ufjj =1, uf,- =0, for 7 # ;. (20)

~ The convex decomposition algortihm we presented may be called the
fni-Minimax (MMM) algorithmm. This algorithm may be descrided as follows :

4 MMM Convex Decomposition Algorithm,
Sl. Put k: =1, R: = A.

$2. Compute
¢, = min  max 7
J=l..np i==1,....m

83. For j == 1, ..., p compute
Iy, = {0 tmin {r;jr; > ¢} = a;}
S4. Compute the matrix UP. For every j == 1, ..., p choose ¢ € I, ; and
put

& % . . .
Ui 5 == 1, u; =0, for v # ¢

- Mathematica 3/1990
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$5. Up-date the matrix R, R: =— R - ¢, UM
86. If R is the zero matrix, then stop.
Otherwise put 2: = %k + 1 and go to S2.

Let us now prove that the MMM algmlthm is correct. For cvay
j=1...,p we have ‘

= i Qij Z‘ 2 Ckllu

i=1 1==1

= k
= 22““@‘- ‘
kil

Therefore

E“E“v—

i=1

Since for every j=1, ..., p

we obtain

The correctness of the algorithm is then proved.

Remark. The algorithm doesn’t guarantee that the obtained hard pt
are all non-degenerate.

The number of coefficients in a convex decomoposition may be al
length of this decomposition.

3. Properties of the MMM-decompositions. In this section we'll wg
the results obtained by the MMM algorithm and the results of the M
rithm of Bezdek and Harris (1] ’1h1‘~. comparaison underlines some intem
properties of the MMM-decomposition.

Let us remember that in the MM algorithm at every step k 4y
((15,7).) .- . )(ipP)) in the matrix is considered. The pair (1), 7) Delongs t
parth i

r,j? 2= mgx Vije

If more than one index t occurs one of these is chosen. A matri)
obtained where

k_{l,ifi:i,. ;

g — R
0, otherwise
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kwefficient ¢, of U* is the same as for the MMM decomposition algorithm
the matrices generally differ.

With respect to the MM-decomposition the Theorem 3 from [l] states
tthe coefficient vector ¢ = (¢, ..., ¢,) of all MM-decomposition of a matrix
jlexicographically larger than the coefficient vector d = (d,, ..., d,) of any
br convex decomposition of 4.

In 1} is also claimed the following

s
Congecture. IEZC,,U” is any MM-decomposition of a matrix 4 and
k=1

:J fy is any other decomposition of A, then s < g.
i

Example 7. Consider the matrix
06 04 02 0.1
A4 = (0 03 05 0.5) (27)
04 03 03 04

There exist 48 MM-decompositions of 4. These decompositions have the
p

1100
. -—-0.4(00 1 1)+0.3U2+O.1U3+0.1U4+0.1U, (28)
0000
these decompositions are degenerate.
The MMM algorithm gives ounly two decompositions — a non-degencrate

a2 degenerate one. The non-degenerate decomposition is
; 0100 1000 1010 1001
4=04[001 O)+O.3 010 l)—l—O.’Z(O 00 1)-|—O.1 001 0}, (29
1001 0010 0100, 0100
|the degenerate decomposition is given by
01060 1000 1010 1001
A=O.4(O 01 0)+ 0.3(0 001 —}-0.2(0 10 1)+ ().1(() 11 0)‘(30)
100 1, 0110 0000 0000

The coefficient vector of every MM-decomposition of matrix A considered
e example is

¢ = (04, 0.3, 0.1, 0.1, 0.1}, (31)
the coeflicient vector of the MMM-decomposition is
d = (04, 03, 02, 0.1). (32)

The vector d is lexicrographically larger than ¢. The result stated by
wem 3 from [1] is therefore incorrect.
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Since the length od every MM-decomposition ¢f A is longer thanty
of the MMM-decomposition it follows that the Conjecture of Berdek a
fails.

Example 2. For the matrix

0.6 03 04 04
B0 04 0.1 ().5)

04 03 05 0.1

there exist 35 MM-decompositions. These decompositions are cighte
form

‘1000 0111
B =04 (0 10 1]+03 (O 00 ()) + 0.1v; 4 0.1v, -+ 0.1y
0010 1000

ot they may Dbe written as

0010 1100
Thercfore every possible MM-decomposition of B is degenerate. 4

1000 0011
B =04 (() 10 1) + 0.3 (O 00 0}+ 0.1, + 0.1W, 4 0.11,

The possible MMM-decompositions of B are again two. Fvery da
tion is non-degencerative. These decompositions are:

0011 1100 1000 1000
B=0.4(010 0 +0.3(000 1)+0.2 0001]4 01 0010)
\1000 0010 0110 0101

and

0011 100 0y? 1100 110
B:0.4(O 100 +0.3(() 00 1)—{« 021000 1)—{—0.1(0 014
1000 01190 00190 0001
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7 being a non-negativ 1nteger such 27 << p. The vectorial equation

ding to this case is: .
250 S Y20 B2 68 AT I B NG EE I 0

m—rn—s

Ses(t ”)..,zo.}-v&/'r i nasi®) [Pij + w0 (Praij — Py +

+ 0(Pisrj — Py) + uv(Porisy; — Pisyj — Poyii + Pyl

for (u,v) « [0,1] x [0, 1].

Can be observed that for (r,s) = {0, 1} x {0, 1} the equation {4\
of the form (1).

Alsop anilifiddwe have! given the formulas for the "derivates B
B (1, 9] B Ty B (i, 7), B9 (0, 0), B® (7, 0), B (1, o), B
and amﬂg,rn’j;b;lit e,,dﬁ;}va’tes of “function S,

These fprmulas.show.us the possibility to control the shape of ti
surface correspondmg to function S, (%, v), for the fixed points Py (i =t

,m; =01, n), by choosing conveniently the natural numbers

" Another way "to control the shapes of a Bezier surface is to i
two new real nonetiegative parameters p and ¢ as follows:

‘\.H S g 20 " rt L)bn sJ( ) [I)ij+ uP(P"“ - P"f) +
Piy) +

+ vP(Py o1y —
or #,v € [0,1].

‘X1 The dependence of the shapes of Bezier surface by the parameters
and ¢ is illustred in figures 1—12 corresponding to the following set o

Py (i=0l,...,5,j=0,,....5).

V(P yisyi — Pisvi — Poyij+ Dij;

At N 0 1 2 3 4 5

0 ©02 | 021 | 033 | 054 | 093 | (062
1 202 | 322 | @233 | (1,44 | 153 | 253
2 3,02 | 420 | 430 | 452 | @62 | 371
3 502 | 523 | 6.4 | 661) | 685 | (473
4 6,02) | 61,5 | 630 | (7,50 | (543 | 6863
5 8,02 | 6,22 | 6,40 | 942 | 954 | 774

The surfaces are seen, by aun observer, {from the point which doesy
nes x0z and x0v the angles « = 30°, respectively p = 15°,
From (5) are deduced the following special cases:
Cme—r g—g .
S’o:.)soo(u, 'U) = 2 Z bm—r,i(”)bn—s,j(v) I)ijv

i=0 =0

S:: u, 'U Z Z "— r; u’)bn s;(v) Pr+i,s+i'
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SR, 0) =Y, Y bmri(8)bass®) Pryis. 9)
i=0 j§=0.

S, 0) = Y S By ii)b—ss(0) Pi 1 (10)
i=0 7=0

Finally, we consider the vectorial equation:

gm,'i(u)(on,j(v) I)ij; U, v E [O: OO) (11)

M=
g

G(u, v) —

1=0 7=0

-
1

(N
&wU)=?(Z)”(1+~0‘K t € [0, o0),

s Bleimann-Butzer-Hahn basis.
This equation determincs a surface of Bezier type which lies only on point
Jand :

lim G(#, 0) = P, limG(o,v) = P,,, lim G(u, v) = P,

#—0 V0 U—+®
v— 0

Mso, we have for the derivatives:
G(P,Q)(o’ 0) = B(P,q)(o’ 0)’

lim G®a(u, o) = Bwa(1,0),

) %0

lim G®#9(o, v) = B®9(0, 7),

| oo

lim G0 (u, ) = B®a(7, 7).
V=W
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1. Let be the equation S DA SIS 0

. P(x, @) =0 . : (1)
s - ! b =y [

e P:X XM — X is a nonlinear’ Contllyuou; operator, X isa Fre\chet space
) M is & quasinormed space, § eing"the null elénerdt!

| Suppose that. the equation (lo\is majqu/ed 2] hy: the equation, ¢

j o Qe =0, S (1)
ke QD < IR X IR » II\{, D _}[z Z ] [b b I i‘s a re_al Cony"t‘im}ous fuilction
ltwo real variables. : ' ) et

In order to obtain the solutlonlr"f (a) s A 01 the cqugtlon (1) we use the
mtive method
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i EEEZR (N SRV \\\y\\\n
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. [,,,,, ip—1; Q ] N (2,)
M 'r{ PR SN TR [o) (O D) ) b
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where [2/, 2" ;Q®W] and %', 3", 2”"; g®], the first and second partid i)
difference of () are denoted. v

E
i

In the paper [3], in the case of equation
majorized by the real equation

the following theorem was proved:

THEOREM A. If the following properiies are valide for the inilis
MAtions x_y, Xy, X9 € S © X, vespectively z_,, z_y, 7 from [z, 7]

1. There is the operator A = —[x, x); P17V and the quasinom
[4]) satisfied the relation
JIAI(€ ———— < B, vl e$S

a0, 22 @

(i =1, 2), where S 1s defined by

Yx — x| (< 5" — g, and )jx, — x,i(<7, —
2. ) |1P(x) (€ Qzi), 1= —2, —1, 0;
3. ) ], a0, 20 Pl ), 2 2050

iy, $ = -2, -1

e S e iy, T 1, 3;

ey v Ny

A) 2, 2@, 4, 30 P [0, 20, 0, Q)

2@ e S, 20 e [z, 1 =14;

then the equation (1) has a solution x* « S, solulion which s the lm
sequence gemerated by the method analogous to the Chebyshev method, h:
gence ovder being given by the umequality

Jx* — x (< 2% — x4

z* being the unique solution of equation (2'), solution given by the melhi
tangent hyperbolas.

2. The Theorem A will be used on proving the existence of thes
of the operator equations depending by one parameter, like the eguat

For the partial divided difference, we will use the notation:
D @ [ g g@ cpeln ] — (gD q@ - ) @ - |0
» y > p . s s I ’ ’ 1) ] !
Ex(l), x2) ) x®) - p(") e {x.(l), x4 Ex(")' x® ;p(!)l(‘)]
fx), 2@, x| a) @ ; p@0 ] = [, g ; fx), x x@ ; |}

We prove the following
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cmroneM 1. If, for the initial approximations x,, x_y, v_3 « X, respectt-
Wig 21, e (2, 27) the following conditions are salisfied :
15 The operator Ny ., == — [Xq, %y P71 there exisls and

I : 1
) 15004, ( < [:.' Yy Q(b) } 0,b,

2 ) IP(xi, dg) < Qi ba), §= —2, —1, 0
3 ) a0, 2@, a® ple | (g [, 2@ 2@ ; Q]

)”A'“), x@) @ x4 I)(Nz)ﬁ‘i i( < [g(l), 33, 50 2 - Q(b:)J

N
l

é.\z
-
I

V=S, where S is given bv )|x — xol{< 2 — 7,
== lr ’

£ ) Ta, a® ;plea? (LB, @ Q] Vel @ o

e

o beig given by )ja — ap| (Kb — by < b — by, t+ =1, 2
3% )ila, x@, g, @@ pEsln] |(

< T3, 5@ 28 | hO | pE) 5 Qs ],

VW eSS ateeg 1=1,3; =1, 2;

B2 ) a0, 2@, 40, x4 | 4, @ ; p@ls) | |(<

< T3, 5@ @) 9 | B0, bR ; QWsle ],
Vi €S, 1 =1, 4and ad e g, 1=1, 2

ln, from the existence the solution 2*(b) € [zq, 2'] (for any b < [by, '] of
walton (1) which is the limit of the sequence gemerated by (2'), if resulls lhe
wsence of the solution x*(a) of the equation (1), for any a <= a, solution which
tthe limit of the sequence generated by the iterative method (1), the convergence
tler being given bv the tnesualily

JIx5(a) — ol (< 2%(b) — 7. (3)

Proof. The conditions 1°—3° of the theorem can be applied in the casc of
pations independent of parameters, i.e. for equation such as P(x, ) = 0
i Q(z, by) = 0, a, and b, being fixed. For these equations the existence of
solution x*(ag) results from the Theorem A.

We prove that these conditions of Theorem A are satisflied for any @ € 6
id b e [y, H'1

a) Let us consider the operator

I 4 Aoa,[%g, x_1; p®] ==
r2z Ag,',‘.( (X, X_y; PWT — [x,, x_; pW]) =

= Ava o ¥y | 6, ag i DU (& — a).
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Taking into account the condition 5° of Theorem A, we can wit
VI 4 Aog,[%0, X2y ; PO (< Bog,[20, 221 | 0, b ,Q0B] (b —by) =
= Bop,( {70, 221; QW] — (2, 21 ; QWO]) =

, [202-1; Q®)]

= T X =

20, 2—1; Q0]

By hypothesis, we have [z, 7_1;Q®] << 0 and from the exisy
solution z*(0) € [z, 2], Vb < [by, b'] it results

[20, 21 ; Q0] < 0.

If this is false, from 4° and 2° rcsults Q(z, &) = Q(z, b) > Q0
and so the equation has not solution in [z, 2’ 1.

It results then ¢ < 1, and from Banach’s thcorem it follows the e
of the operator

H71 = [[ — (I 4+ Ay x5 x4 p@)—1 =

= — Aog, ', Xy P

Then it results the existence of
H Aoy = [ Agay Yoo ¥ 13 POTITT A, =
= —[xg, Xy i Noa
for which, in base of 1°, wc have

) [Aoa] (= — :

7

—— DBy, oo e —m = Bg
1—¢ " (20, 2-1; Q)] ©.e)

so the condition 1’ of Theorcm A is verificd,

b) To prove that in the conditions of Theorem 1, the condition ¥
theorem A is veritied, we consider the inequality

JIP(xg @) { =) 1P(xg @) + Py, ag) — Plxy, o
which, using the condition 2°, mayv bhe \}'l'iticll
VIP(x0r @) (<) L5 o)L () Pl @) — P, a) [{ =
== Oz ,0y L) Ta, ay ;PO (@ - ay) (.
On the base of 49, we have
JIP(xg, @) ((SQ(z0, o) A T, by s QUo 1 (b -~ ) =
= Q20 bo) + Qlz0, b) — Qs by} -+ Q700 b)
In the samie way we can obtain

VP(x, a) ((<QGL h), 7= -2, —L
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' ¢) We consider the reiation
[x®), 3, x® " P@ | = [x0), x@), x® ; Pad]
+ [x), @, x® ; P@ ] — [x0), x@) %0 ; Ped] =
| = 2, 2@, 4O ; PE)] 4 [x0), 2@ x® ja, g, ; P@19] (@ — a,)
ich, using the conditions 3° and 5°, becomse
Y[, 2@, 2@ 5 PET|( g
< [0, 20, 25 QU o [0, @), 23 (b, by Q@] (b — by) =
= [20, 2@ 20 ; QD] 4 [z, 2@, 53 ; QW] —
— [, 2@ Q0] = 200 22 23 ; QY]
d) Considering the relation
(XD, x@, x8) x4 ; P@)] =
= Tx(), x@, x® 4@ ; P@)] 4 [x0), x@ x®) x4 ; Pa] —
— [, 2@, @ ;P =[x, x@ xO x4 ; Pas] 4
4 [xW, x@ ) x5 a, ap; PEIDT (a — a,)
sthe condition 1° and 6°, it follows
) [[a®, x@ 13 x4 ;P ] |(< [z, 2@, 20, 28 ;Q(b’)] +
+ [0, 23, 2@ 0 1h, by ; Q9] (b — by) =
= [z, 20 20 20 Q] A [0, 20 2O, 20 ; Q)] —
— [;;(1)' 23 200 () ;Q(bs)] e [2(1)’ 2, 238 x4 ()(”')]

The hypothesis of Theorem A being true, it results the conclusion of Theo-
m 1
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REZUMAT. -- Coleulul d-complexitatii cuvintelor prin sirarli aproape-Fihonaeci.

Articolul studiazd complexitatea cuvintelor, care se defineste ca numiirul sub-
cuvintelor distincte ale unui cuvint. Ca misurd a complexititii se foleseste d-
complexitatea (introdusid im [1}).

1. Introduction. The complexity of words is of great importance not only
nthe computer science, but also in other domains. We give here some results.
nthe computation of the d-complexity of words using Fibonacci-like sequences.
The definitions and notations used in this papers are from [1].

Let X bean alphabet, and X* the sct of all words of the length k over XL

DEFINITION. 1. Let d, 2 and s be positive integers, p = 1%, ... 1, € X*
I d-subword of p is defined as g = x;x;, ... x5,
there 7, > 1
Osij“—i <d for 7=1,2, ...,5s—1
i, < k.
DEFINITION 2. For p € X* the d complexily Ky(p) is the number of all
fifferent d-subwords of p.
v. In this word

Example. T.et X be the English alphabet and p == beer.
there are three l-subwords of length 1 (b, ¢, 7), three l-subwords of length
Lbe, ce, er), two l-subwords of length 3 (bee, ecr), and a single l-subword of
kngth 4 (beer). Then Ki(p) =3 +3 + 2 4- 1 == 9. The above l-subwords are
ksubwords too, and therce exists a single new 2-subwords (her), then K, (p) 10.
To compute the 3-complexity of p, let us [ind the 3-subwords which aren’t
L or J-subwords. There is only ine: br. Then Ky(p) 11. Because of length
dp, Ki(p) = 11 for all 4 > 3.

Notation. In the case of words of length %, consisting ol diffcrent symbols,
lie d-complexity will be denoted by N(k, d).

DEFINITION 3. If p is a word, consisting of different symbols and d a
psitive integer, then «;.(p) will denote the number of d-subwords of P which.

rminate in position 1.
The followings au true (from RUE
a. For any 2 > 1 and p < X* hold

k< Ki(p) <

* ,»Babes. Bolyaws” University, Facully of Matkematics, 3400 Cluj-Napoea,

kik 4D (1)
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b.Fornz2 k3 1,d>1and p € X}

R<Kap) <22—1 (2 ©
c. If R 21, p & X* consisting of different svmbols, then
aia(p) =1+ a; 14(d) + a;24d) + ... + ai—d,d(]‘))(.i)‘) S

for i =1, 2, ...,k
Another relations are given in [2].

2. Computing the d-complexity of words. The d-complexity of a worc
with different symbols can be obtain by the formula :

A
Nk, d) = Y ai4(p) (:g\ (4
i=1
where p is any word of % different symbols.

ccause of (3) we can write

%4+ dTll- = (ai—l,l + ;) + ...+ (fle-u + ! )

d—1 d—1
for d > 1. .
Let be
a=(d—1)uq+ 1 (s) (53
Then

Cig = Ciya+ Ciozas .o + Ciga
and the sequence ¢;4 is one of a Fibonacci-type.

For any d we have a;, = 1, and from this ¢;4 = d results. Therefore
the numbers ¢;, are defined by thé following recurrence equation:

Cng = Cu—14 + Cu2a + ... + Chga for n >0
toa =1 for w <0

It is easy to prove that this numbers can be generated by the following gene-
rating function :

. 14+ (d— 27— 22— ... — 28
Fd(z) = Z Cadi® == p P
nz0 1—2z4 %7

Because of (5), the d-complexity N(&, d) can be expressed with the numbers
¢;4 by the following formula:

Cia — k) for d > 1,

and N(k 1) = %
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From this the following formula results:

N(k,d) = N(k — 1, ) + - !

N (Ck,d — 1),

Fif the c,q are known, the N(%, d) may be calculated in O(1) time.
Let F, (with F; =0, I, = 1) be denoted the Fibonacci numbers.

!have' Cuz = F,,+2
g
| k
N(k, 2) = Z‘I”‘H,g — k= Fk+4 —~k -3
i=1
Taking into account the formula of F,, we have
= k4
N(x, 2) =l_‘:(‘+45 | +iJ"k“3=
{INE 2 2

_l7¢5+1s (1+2J5')k —f—%]— b3
Yis can be written as
[3.0652475 (1.6180339)* + 0.5] — & — 3
he table 1 lists the N{(%, d) values for k < 10 and d < 10.

51

Then,

The following proposition gives the value of N(&, d) in almost all cases.

PROPOSITION. For k > 2d — 2 we have
Nk, bk —d) =28 —(d —2) . 24-1 — 2

(6)

Proof. Let k > 2d — 2. Then N(k, k — d — 1) may be (omputcd as 10110ws
Between the N(k. k — d) subwords there are exactly d - 2¢-1in which 7, — 1; =
=k — d for some j (see definition 1), because of the d cases of the choosed po-
itions with distance # — d, and 2¢-1 cases of choosing the other letters. (The dis-
tance between the other letters must be less than k& — d, then b —d 41 >

pd— 1 or k> 2d — 2). Then
Nk, kh—d—1) =Nk k—d) —d . 241
For d=1,2,3,... we have
Nk, k—2)=Nk k-1 —1
N(k,k—3)=N(k,k——2)—2-21
Nk kR —4) =Nk E—=-3)—3 - 22

Nk k—d) =Nk k—d+1)+(d—1)- 242
Adding the obvious relation
Nk k—1) =2 -1
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-and summing all these, we obtain
Nhk—d)y=2"—1— (142 203224 . A (d—1) 2
. =2t -1 —(d—2).2¢1 1
28 — (d —2) - 2¢-1 — 2 qu.ed.
{The sum in the bracket may be obtained by computing f'(2) in two vy

S =14 x4+ .0 4 a4,

A more conveniable form of this formula is

Nk, d)y =2 — (k —d — 2) - 2441 — 2 for

(I

-2

£d g k-1

9

&

But, the following may be easily obtained, also:

N(k. d) = N(k,d — 1) + (k —d) - 24— for 222 < d < k-1

&

Another way to compute the N(%, d) is that which compute the numb
sequences of lenght k of zeros and ones, with no more than d — 1 adi
zeros. One 1 in such a sequence represents the presence of a letter of aw
in a given d-subword, but one (0 the absence of the corresponding letter.
bxa denote the number of sequences of zeros and ones, of length %, in which
first and the last position has 1, and adjacent zeros may be atmost d-

Then may be proved that

bh,d =z bhw-l,d + bh—z,d + R bk~d,d for % > 1
hl,l =1
bra =0 for all £ < 0
or
bk,d =2 I)h—l,d — bh—l—-d,d

This second formula may be proved ecasily. There are by_y 4 dsequence of ki
& — 1 with desired property. Adding one 1 or 0 in the e.g. (b — 1)® posic
in cach scquence, we obtain 2 - by, sequences, but between these b,
have d adjacent zeros. This sequences byg are of Fibonacci type.

Adding zeros on the left and/or right to these sequences, we can obtain
number N(k, d), as number of all these sequences. Thus

Nk,d) =bra+2 by a+3 boogat+ ...+ k- by

To
Values of X(k, d)
&\ 12 3 4 5 6 7 8 9 10
k
I I 1 i i 1 1 1 ] 1
2 3 3 .3 3 3 3 3 3 3 3
3 6 7 7 7 7 1 71 7 71 1
4 |10 15 15 15 15 15 15 15 15
5 15 2 80 81 3L 31 31 31 31 31
6 | 21 46 S8 62 63 63 €3 63 63 63
7 |28 79 10 122 126 127 127 127 127 127
8 | 36 133 206 238 250 254 255 255 255 255
9 | 45 221 383 62 494 506 510 511 511 511
10 | 55 364 709 894 974 1006 1018 1622 1023 1023
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HREZUMAT. — Metodid de imbunitiire a rezultatelor unor algoritinl de clasificure.
In acest articol se propune o metodi de clasificare in doud etape care reuneste
avantajele metodelor bazate pe teoria grafelor, respectiv pe reprezentarea clus-
terilor prin prototipuri. In primele doui pirtise formnleazi o problemi de clasifi-
care $i se aratd cd, in anumite conditii, metoda inlintuirii simple furnizeazi par-
titia cerutii. Apoise enunti un alt algoritm care generalizeazi algoritmul lui Prim
de determinare a arborelui de acoperire minimal, aratindu-se ¢i genereazi aceeasi
partitie. In incheiere se compara complexitatile celor doi algoritmi si se descrie
metoda de clasificare in douil etape urmati de un exemplu numeric.

1. Introduction and mnotations. Standard clustering algorithms based on
the representation of clusters by prototypes and the minimization of a certain
functional, such as k-Mcans or Fuzzy c-Means, often misclassify points situated
at the border of the clusters. On the other hand, graph-theoretical mecthods usually
produce accurate classifications but have high complexities. In this paper, we
propose a two phase clustering procedure which gathers the advantages of the
two types of methods inentioned above.

Let us consider a finite set of objects O = {0y, 0,, ..., 0, and a set of centers
C=1dc, ¢y ..0,¢,}. Put X =0y Candlet p:X X X > R, be a dissimilarity
coefiicient. The triple (0, C, ¢) will be called a configuration. We formulate
the following problem : classify the objects from (), associating them with the
centers from C according to the dissimilarity coctiicient g (we are not concerned
now about what the ceaters represent and how they were obtained). This
means we must find a partition £ of X so that:

Card € (la)
fchelegd (V1<ij<ni#j Ped (1b)

In this paper we discuss some classification algorithins for the problem sta-
ted above under a certain condition, which simplifies the results, the genceral
case being treated in a further paper. This condition, which wili be precisely for-
mulated in the next paragiaph, is a rather natural condition ; roughly speaking,
we demand that the centers are not arbitrary points in the configuration of X;
but authentic ,,prototypes’” for » clusters; therefore we call this a homoge-
neity condition for a certain configuration of X.

¢ Babes-Bolyai”  University, Faculty of Mathematics and Computer Seience, 3400 Cluj-Napoca, Romanis
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Under the homogeneity assumption, the single linkage method genen
a partition of X with n clusters, each cluster containing a center. This m.
that selecting the edges from X X X in the increasing order of the g
milarity between their extremities, paths between two centers may not e
The COmpl&:xll) of this algorithm is O(m3). Another clustering algorithm,
complexity O(m”), is then presented as a generalization of Prim’s algorithm . !
Prim 1957) ; in comparison with the single linkage algorithm, this one redy
the set in which the least dissimilarity edge is searched for and » dendroga:
are also constructed. In order to prove that these two algorithing generate t
same partition of X, we characterize this partition in terms of an ultramds
on X.

We now introduce some notations. Let 1 == y X* the sct of paths in |

k>2
WU, V)=={pelllp= (2,2, ...,%), v, € U, v, € V, k& N} the st.
paths between U and V; for P = (2 %, ..., \k) & I we 1\0tc with Iy
= suplp(xi_y, x) [t = 1,2, ..., k} and with § the 10110\\mg ult rametric:

3(x, y) =inf {/(p)|p € W(x, v)}].

For U, V € X, we put (U, I') =inf{d(v, v) v e U, v = I'l. \ccords,
to Bezdek and Harris (1978), this ultramectric u)rrtspouds to the mimg
transitive closure of the fuzzy relation associated with 8. Iet o R, and R¢
c X ¥ X be ddfined as {follows:

AR, v <> §(x, y) -7«

Then R, is an cquivalence on X X X and the sot of partitions *X'R_ « el
coincides with the set of partitions gencrated by the single lllll-\d”L method
and with the sct ol balls P DB(v, ) v« X}.x « R For details, see Zal
(1971), Duda and Hart (1973).

2. The Single Linkage Methed vnder the Homogeneity  Assumption, I
this paragraph, we formulate the homogencity condi tion for a certain configr
ration and study its implications upon thg single linkage method.

DEFINITTON 10 A configuralion salisfics the homogenetty condition (1s ho
geneous) 1f the follmm’nq relation holds :

sup d(x. C) v € OV < infid(ci, ¢;)'1 < 4, j < n, (%)} (4
In other words, we damnand that point-to-centor dissimilaritics are less thy
intercenter  dissimilaritics.  ‘I'he homogeneity condition can casily be formul
ted in relation with the single linkage imecthod ; it means that the single liy.
kage mcthed | rccognizes” the centers, keeping them in separate clusters durmg
the classification of thc objects from O.
PROPOSTITON 11 L configuration is homogencous if (here cxisls o € R g
that the partition X|R, satisfies conditions (Ta) and (1h).
~ DProcf. Sup sposing that (2) ho](].s,'\\e choose o 'ml .,8(1‘,-, il <d i
1 # 7. On the one hand (¢, ¢;) 2 « for every i # j implies (¢, ¢;) ¢ R, ad
Card (X/R,) > #: on the other hand §(x, C) < a for cvery v & O implies Card
(X/R,) < 7 and henee (la) and (Ib) are deduced.
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Conversely, the existence of «, with X/R, satisfying (1b) mlplus 3(ci, ¢;) >
» « for every ¢ ¢ j. Since Card (X/R,) = n and each center is in a separate
duster, for every x & O we deduce the existence of a center ¢, & C so tha
v, ¢,) < a QE.D.

The following proposition indicates that any configuration may he conver-
ted into a2 homogeneous one if we eliminate from O all the objects which do

ot satisfy the homogeneity condition.

PROPOSITION 2! Let (O, C, ¢) be « configuration and 0" — {x € O 8(x, () <
<inf{3(c, ;)1 €4, j<m t#3}, X' =0y C, ¢ =p| X" > X Then (0,
) is a homogencous configuration.

Proof : Obviously we have &'(x, v) > 8(x, y) for every x, v € X', [lor x €
€ (' we shall prove that 8'(x, C) = 8(x, C). Let ¢, € C and p « H{(x, ¢,) so
that I(p) = 3(x, C). Suppose 8'(x, ¢,) > 3(x, ¢,), which means that p contains
node v € ONO’. We have:

int{3(c,, ¢;) It # j} > 8(x, C) = 3(x, ¢,) = max {§(x, v), 3(v, ¢,)} >
> 8(y,c,) = 3y, C) > inf {8(c;, ¢;) 7 # j].
This is a contradiction which proves 3'(x, C) = 3(x, C). Hence:
sup {8'(x, C)jx € O’} = sup {3(x, O)jx € O’} <
<inf {3(c;, ¢;) |t # j} < inf {8'(c;, ¢;) 13 # j}.

This means (O, C, p’) is homogeneous Q.E.D.

From now on we suppose that the homogeneity condition holds. Let {X,
Yo oot X)) (o= X, i=1,2 ..., 1), be the partition of X satisfying (la)
and (1b) generated by the single linkage method. The following proposition
gives two properties of this partition, the first one being a characterization of
it.

s

PROPOSITION 3: For 1,7 e {1,2, ..., nl, we have:

a) 3(x, )’S(tt),ifi#],xek.,‘;

B Bn c) = Bn ) = 3x O) =i = .

Proof: a) Tet « €« R. so that X/R, - !X, X,, ..., X,}. Then x = X,
and v & X; imply:

3(v, ¢) << a < 3(x, ()
b) There exists £ so that ¥ & X,. Then 3(x, C) < 3(x, ¢;) <Z a = 3(x, ¢;) =
=¥r ) <a=mrxe X, xeX »>i=j=r
3. Generalized Prim’s Algorithm. In this paragraph we give a new graph-
theoretical algorithm equivalent with the single linkage algorithm for homoge-
neous configurations. The algorithm, which is a generalization of Prim’s algorithm
{see Prim 1957), is described below :

Step 1. Let b:=1; Ny =0; Xi:= el i= 1,2 ..., n;
Step 2. Let T, = N, X (X NNy

Search for (x,, v,) & L s(x, V) == min {a(x, v)i(x, v) = I}
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Step 3. For i1: =1 to n do
if v, X%y {c} then let Xi*': = X7y {m}
else let Xit': = X},
Step 4. Let Nyyii= N\ {%}; k: =k +1;

Step 5. If N, # & go to 2 else print (X} i=1,2..., 1) stop.

The algorithm finishes after exactly s iterations. The output partiti
X is given by X, = Xt 4 ==1,2, .., n. The set N, contains the o
not yet classified before the iteration k. The set L, in which the Jeast .
milarity edge is seaiched for contains fewer elements than in the single iy
method. Although the least dlssmnlarlty edge at a certain iteration may
be unique, the output partition is. At every iteration, exactly one ol)](ct;
O is associated with a center ; unlike this algorithm, the smgle lmkage met
has iterations which unify two classes of obJects without assomatmg 1
with a center, while other iterations associate a whole class with a cepter !
# = 1 we obtain Prim’s algorithm.

THEOREM If {X,, ..., X,} is an oulput partition of the algorilhm abow,
we lave

V) 4,7 €{1,2, ...,n}, 1% 4, (V) x € X;: 8(x, ¢;) < 8(x, ¢
Proof : We shall prove this theorem by induction with respect to &, them:
ber of the iteration. For & = 1 the assertlon of the theorem is evident. Supy.
it now valid for a certain % and y, € X!. We have to prove that 3y, 0
< 3(xp, ¢;), (V) 7 # 4. Indeed, if 7 # 4, using 3(yy, ¢;) < 8(3y, ¢;), we obtain
3(m, ¢i) < max {3(x;, 34), (¥ )} < max 3{(x, ), (v, )} <

< max{ 3(x, i), 8( Ve M), 8(xy, ¢;)} = max {3(x, ), 8(m, )} <
<max {p(x, M), 3(%, )} = 8(x, ¢)).

The last equality follows from the existence of an edge from L, belonging tot:
minimal path between x, and ¢; and from the minimality of (x;, 3,) in L,. Ha
3(xp, ¢i) < 3wy, ¢j), (V) j#1= 8(x4, ¢;) = 8(x,, C). I there would exis :
# 1 50 that 8(x, ¢;) = 3(x, ¢;), according to proposition 3b) follows i =j, «
tradiction. This proves 3(x,, ¢;) < 3(xp ¢5)y (V) 7 # 0. Q.E.D.
‘ The theorem guarantces the uniqueness of the output partition. Fromt
theorem and proposition 3a) follows the equivalence of the generalized Prin
algorithm and the single linkage algorithm for homogeneous configuration
T 4. The Complexity of the Algorithms. In order to implement the al.
ithms presented in the previous paragraphs it is necessary to describe them:
a rather different manner. We shall denote by p(d, B) = mm plx, v).

‘ . yEB

Algorithm 1’ (single linkage)

Step 1. Let O;: ={o;}, 1 =1,2,...,m; C,: =

I:=1{,2, ..., m}

5.
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Step 2. Search for 4y, j,:p(0s, C;) = min {p(0;, C)li € I, =1,2 ..., u}
Step 3. Search for 4, > j,: p(0;, 05,) = min {p(0;, 0,) i, 7 = I, i > j}.
Step 4. If (0, C;,) < p(0;, 0;) then C;, 1 = C;, u O;; I = IN{4p}

else 0;,: =0,y O,; I:=I J4}.
Step 5. If I # & then go to 2

else print (C;, j=1,2, ..., n) stop.
Algorithm 2’ (generalized Prim’s algorithm)
Step 1. Let O;: = {o;}, 1 =1,2, ..., m; C-' ={Li=12 ...,n;
Ii=1{1,2 ..., }.

Step 2. Search for 4y, 7, :0(0;,, C;,)) = min {p(0;, C;) i € 1, = 1,2, ..., n}
Step 3. Let C;,: =Cj;,u 0;,; I I {ip}
Step 4. If I # J then go to 2

else print (C;, y=1,2, ..., n) stop.
At the end of algorithm 1’ and 2’, sets C; will contain the objects of O
wsociated with ¢, 7 =1, 2, , n. The follovung iterative relation for the esti-

mation of the m’cerset d1551m1]ar1ty is used:
e(4, u 4, B) = min{p(4,, B), p(4,, B)}.

We shall now evaluate the complexities of the two algorithms as a function
of the complexity of the comparison operation: CP (<). The complexity of
the minimal dissimilarity estimation at the iteration m — &k + 1 is:

[/m -+ udl

(kn —- 1) CP (<), in algorithm 2'.
The complexity of the estimation of the dissimilarity between the unified
dass and the cthers at the iteration m — & -+ 1 is:
(k — 1)CP (<) in algorithm 1’, when O;, and C;, are unified
(# + & — 2)CP (<), in algorithm 1’ when O, and O;, are unified
(A — DCP (<), in algorithm 2"
Adding these complexities for 2= 1,2, ..., m, we obtain:

(—l— m? 4—%)112 + 3"; m) CP(<) < CP(1") <

k—1)

1|CP (<), in algotithm 1’,

1 1 . 9n — 16
< (—m3 + Z T mz 4 2= = n] CP (<)

2 ; 2 m) CP(<).

For # fixed, we have CP(1l') = O(m®), CP(2') = O(m?).
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5. A Two Phase Clustering Procedure. The single linkage and the w
ralized Prim’s algorithms we studied in this paper are hierarchical as
clustering algorithms. The homogeneity condition which is supposed vali
in fact a compatibility condition between a previous procedure which deter
ned the centers and these algorithins.

We now present a two phase clustering procedure which combines two tv.
of clustering methods : graph-theoretical ones and methods based on ther
nimization of a certain functional. In the first phase, we perform for iy
the Fuzzy ¢-Mcans algorithm (sec Dunn 1973, Bezdek 1981) or a fuzzy hierg
cal algorithm (sce Dumitrescu 1988) ; then we defuzzify the fuzzy partitions
tained associating each object with the cluster in which it has the highest me
bership degree. For each hard cluster we consider the objects in it correctly ds
fied if their membership degree in the corresponding fuzzy cluster is hig:
than a certain threshold. The other objects will he reclassified by one of the;
gorithms presented above (obviously we shall prefer the generalized Pir'
algorithm). Denoting by C; the set of objccts correctly classified in the
cluster i, we take as centers the sets C,; the dissimilarity p(x, C;) means poin:
sct dissimilarity, i.c. the least dissimilarity between x and the objects inf,

This two phase clustering procedure gathers the advantages of the meth
it consists of : the accuracy of the classification provided by graph-theords
methods and the capacity of the Fuzzy c-Means algorithm to rapidly dag,
compact well-separated clusters. At the same time, some of the disadvant
of the two types of methods are eliminated : the incapacity of the Fuzzy ¢}
algorithm to correctly classify the objects situated at the border of thed
ters, especially in the case of unequal or nonconvex clusters (this being the mg
disadvantage which suggested the idea of this procedurc) and the high comp
xity order of graph-theoretical methods (on the one hand the complexity oty
generalized Prim’s algorithm is one order lower than the complexity of the sig
linkage algorithm and on the other hand ouly a few objects from the total numk
of objects to be classified are reclassified by a graph-theoretical algorithm,

Here is now a numerical example. We considered 120 points in the two¢
mensional Fuclidian space. The hard partition obtained by defuzzification fy
the fuzzy partition given by Fuzzy c-Means is presented in figure 1. Pointsh
ving the membership degree in a fuzzy cluster higher than 679, from the hig
membership degree in that cluster are considered correctly classified; oot
figure they were encircled and represent the centers of the clusters. It ise
to see that the homogeneity condition holds. The other points were reclassih
by the generalized Prim’s algorithm, the results being presented in figue!
These results are quite satisfactory. Let us notice that 17 {rom 34 points red
sified were wrongly classificd by Tuzzy c¢-Means.

6. Cluster Analysis on Real Data, In this paragraph, the two phase d
tering proccdure presented above is used to analyze data concerning phys
geographical conditions and hydroencrgetical potentials for a set of 123 hyd
graphical hasins located in the North of Romania. Our purpose is to deterd
the influence of the local physico-geographical conditions upon the theo

UV
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REZUMAT. — Asupra informatiei de ordinul o asocialéi wunor distribufil de
probabilitate. In aceasti lucrare se prezinti anumite probleme de bazi legate
de functia generatoare de informatie corespunzitoare masurii cantititii de infor-
matie de ordinul «. De asemenea, Jucrarea mai cuprinde o caracterizare informa-
tionali a distributiei gama generalizatd precum §i caracteriziiri informationale
pentru distributiile de probabilitate ce aparfin clasei distributiei gama generalizati,

1. The information generating funetion of order «. Let X be an absolu-
v continuous random variable, that is, a random variable heving a probabi-
y density function f(x) and which is defined on the probability space, in
e sense of Kolmogorov (Q, K, P).

DEFINITION 1. [3] The measure of the amount of informatien associated to
absolutely comntinuous random variable X (or the entropy of X) respectively,
¢ amount of information contained by the probability space (Q, K, P) is
ined by the following expresion

H(X) = — \f(x) - log.f(x)dx, (1.1)

a

ovided that the integral of the right of (1.1) exists) where [a, b] is the domain
definition of the probability density dfunction f(x).

Remark 1. If (Q, K, P) is a probability space generated by an random
gperiment A4 and A4,, A,, ..., A are the possible autcomes of random ex-
piment A, then

H(X) = H(4) = H(2) = — ¥, p, - log, $ (1.2)
there

pi=PA) >0, i =T, ;N pi=1,82=(py, .-, pu)s (1.2a)

presents the amount of information furnished by the random experiment

¢ ,Babes-Bolyas” University, Facully of Mathematics, 5100 Cluj-Napoca, Romania

- Mathematica 3/1990
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The quantity H(4) defined by (1.2) is interpreted either as a measure ®
entropy (i.e..of uncgrtamty) or as a measure of information. Both interpretatioe
afe Justlfled ‘AS a matter, of fact the difference between these two interpm
tations consists 'only i that : whether we imagine ourselves in“a moment
fore carrying out an experiment whose n possible results have the probabilita
1, Pas + .., pu (in which case H(A) measures our uncertainty concerning tw
résult of the experiment) or we imagine ourselves in a moment after the exge
riment has been carried out (in which case H(A) measures the amount of =
formation we got from the experiment). Also, we can speak as well ‘that th
quantity (1.2) represents the amount of information contained by the randae
variable X generated by the random experiment 4.

Rényi [5]introduced a new measure of the amount of information asos
ciated to a random variable X.

DEFINITION 2. The measure of the amount of information of order o asm-
ciated to a random variable X, has the form

l - log2(§ [f(x)]“dx). «>0, a# 1(13) (13
R

LX) = L{x; @) = -

if X is a continuous random variable, respectively, the form

LX) = Li8) = L(x; @) = 2 loms (3 #7), o <0, a2 L{1y) (14

if X is a discrete random variable.
It is interesting to note that on the basis of the relation (1.4) we have

lim [(8) = H@) = — Y, pi - logop (L5 (1.5

a—~1 i=1

i.e. we get back the ordinary Shannon entropy when « tends to 1. This means
that Shannon’s" entropy belongs to the family of information measures of of-
der o described in (1.4)“and corresponds to a = 1.

"The information Guantities of order a defined above are generally knowt
as Rényi’s information of- 6rder a.

Also one can see from (1.4) that

v 0 < L,(8) < logym, (A&) (16
and I,(2) = 0 can hold if and only if the distribution is degenerated (€ =
=(0,0, ..., 1), for instance) while I (&) = log,® holds if and only if p, =
=pp=...=p, = L . It is also easily seen that [, (2) is a monoton decrea-

! ” : B Y

sing function of a.
If in (1.4) we assume that « = 2, then we obtain

L,(8) = —log, (2 £)= —lom E@), (13 (17
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bre
E,(8) =Y, ¢! (1.8)

jist the Onicescu information energy [1] introduced in the information theory

ran analogy to the kinetic encrgy from mechanics.
From (1.7) it follows that

E (&) = 2-5id), (1.9)

perINTTION 3. The information generating {function associated to the Rényi
brmation of order a« has the following form

ku

Tx(u; o) = (i P?)‘_—“, «>0, a#1, u <R, (1.10)
t==1
Iis a discrete random variable, respectively, the form
ku
To(t; o) = (S [f(x)]adx)l_—?, x>0, a%1 ueR, (1.11)

R
Yis a continuous random variable, where
k = log,c. (1.12)

THEOREM 1. The information gencrating funcvion (1.71) has the following
wlamental property

nwwzllm&”mnwﬂzum. (1.13)

—
R

Proof. According to the relation (1.11) we obtain

ku

4 . . — NPT _——;__]‘_ i 2 11—« .love Y Tee

< [Telu; o)) = Th(u; o) lﬁu‘SLﬂnjdﬂ‘ toge( | [f(0)1%dx),
R R

pectively, the relation

THO; «) = L(X) = - u - loge(g [F(%) ]adx]‘,

i we have in view that
log,e - logeA = log,A, k = log,e. (1.14)

2. On measure of the amount ol infermation of order o associated to the
Ememlizo(l gomma distribution, T.ct X be a continuous random variable de-
ned on (Q, I, P).
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I'(s) = 5 -l e=*dx, s> 0 (2.8)
0

the Euler integral of the second kind or gamma function.
If we compute the derivative of the function T (u; «) we obtaia

Ti(u; a) = sz— (Tl a)] = (2.9)
13
-k @, ax® kn
= d R a l—a | le('—l) -e e dx)l—u .
l—« , r
R
a

@ —az®

loge(gxa('—l) . eb_dx) + o - log, a :
| a2l

0

, hence, using the property (1.13) we obtain

2 _oa s

Ti(0; a) = {1og,“ xxr=1) .o O dx)+
a

—_— %

4+ o - log, —“; . (2.10)
)

According to the relations (1.14) from (2.10) we obtain just the intcgral
t of the amount of information of order «, namely

© z*

L(x; « a,b,7) = 1_1 . logg[(;, 1\(”" . "_T)a dxl . (21])
TEE L

L a

Now, if we make the change of variables

t =2 a8 (2.12)
b
the information generating function (2.6) can be expressed as follows
1 |.F(1(y_ 1) - l)l lla kn
b a
u o) — . 2.13
Tx(u; o) B alr=1)+1 a ( )
,?j a.q Mi-a) (F(L’)l—u
: a

el>0, >0 «a>0, ajl, u s R
k4
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From (2.13) we obtain

1 ku

% [r(a(r—l)Jf—lHl_u
Ty(u; a) = | — ‘

a(r—1)+1 ) o

a-q fi-a P(L))l—a
a
1

L |I“——a(r~ 1)_Ll]|l—a
a
r

Le
alr—1)+1 ’

SEE (r(:““

and, whence if we have in view the relations (1.14) and, respectively, the fundz

mental property of the information generating function of order «, (1.13
we obtain

-kloge

Cam) (218

L(x;a,a,b7) =Ty0;a) =  (25) 215
e plesbay
=1 log, i - ’
1 — o °2 alr—1)+1 v )i
\ al—®. « a (r(:)J

el. just the measure of order « of amount of information associated to the ram-
dom variable X which follows the generalized gamma distribution. This comphe
tes the proof.

3. Particular cases. Let X be a continuous random variable which follows
the generalized gamma distribution, that is, its probability density functioz
has the form (2.1).

According to Theorem 2, for Ty(u ; «) and I,(x; «, a, b, ) we obtained the
forms (2.3) and (2.4).

In the next we will present some particular cases. These particular cases
are probability distributions which belong to the class of generalized gammz
distribution.

3.1. Gamma distribution. If ¢ =1, b =1 and » = p > 0, then the con
tinuous random variable X follows the gamina distribution and we have

1

flx; 1,1, p) = f(x; p) = o k=t 75, x>0, p>0, (3.1.1.
1 hu C$.l.l)

Tx(u; @) =) —L— SE=D P0TEL D weR @12
« 1o () e (%12)

) 1 Plap — 1) + 1] ;
I 1 = e—_— 3.1-3
2% % p) = IOgZ{ TESEDS (I‘(p»“} (513) 13

where >0, a1, p > 0.
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3.2. Exponential distribution. If ¢« = 1, 8 > 0, r = 1, then the continuous
dom variable X follows the exponential distribution. The probability density
wtion, the information generating function and the amount of information
mspondirg to this probability distribution will be the followings

1
f(x;b)=%-e__’7’,x>(),b>0, (3.2.1)
Tyl @) = (——\", u = R, k= logy, (3.2.2)
otl'a
L(x; 2 b) = - L log, (+> «>0, a1, (3.2.3)
— o
al—a

3.3. Erlang distribution. If ¢ = 1, » = m, m € N, b > 0. then the conti-
wous random variable X has the FErlang distribution and we obtain

flx; b, m) S S m=1.¢ bV x> 0, (3.3.1)
™o (m— 1!
. 1 ]ku
{ofm — 1) + 1)
r b |Fl aln =L H -« . (3.3.2)
- — . : =
A(u’ d.) afm—1)+1 @ » U
« 17 ((m— 1)y t-e
espectively
1 pl—a Tla(m— 1) 4 1]
L (x; = . _ 3.3.3
ox; b, m) — logzLa(m—l)H (on — 1) " } ( )

shen o« >0, a# 1, k= log,e.

3.4, Chi-square (y?) distribution. If a =1, b = 262 and » == %, then we

obtain a random variable X which follows the chi-square distribution and wc
have

Fribs) =flx; 08) = ——— T LW 0 (340
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Iz(x; a, b, s) = l log, (2::)1—3 . Flc(% —_ l) + 1] |
B B T

where a >0, a#£ 1, 6> 0.

(34M
14.3)

3.5. Rayleight’s distribution. If ¢ =r =2, b> 0, the # the continnow

random variable X has the Reyleigh’s distribution and its probability densex
function has the form

f(x;b)=—-c—§,x>0,b>0. (35.0 (331

Also we have

Ty(n; o) :[ VB . [I"u:F 1)]‘_1——"}“ , U € R,('jﬁ]_) (3-

(i

a+1 ‘ 2
2. a?““”

2

Iz(x;a;b):l—l_u-logz[ b Hl.r‘(“‘j:‘)}(’im) (353
gl-a 2

where a >0, a# 1, 6> 0.
3.6. Maxwell’s distribution. If 2 =2, »r =3, 5 > 0, we obtain

flx; b) = J:f'ba ce=?, x>0, 6>0, (%6.1) (361
(2a + 1) VJrem) ™
Tx(u;m)=I ‘/’Z’:H [P[ 2 )] , <R (3.62
|2 G | o
1 e r(""“2+ 1))
I(x; @ b) = —— log, om-f—iﬂ‘ (125)“ {%.% (363

when a >0, a# 1, b > 0.

3.7. Cut normal distribution. If a =2, »r =1, b =262 6> 0, then the
continuous random variable X has the normal distribution cut leftsidedlv in the
point x = 0. For a thus random variable we have

f(x;c)Zﬁz.c-t'_ﬁ,x>0,a> 0, (33.4) (3.7.1
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where

b(r(f))'}_(,_l ot (2 by -

and D In T'() = §(¢) is digamma function.
Proof. Using the following notation

H(X) =—]r+1In

1-a P(a(r—l)—[—])

: :(r—1)+1' Yy 1« [‘13’) (45
e ) oabK
Ig.(x, \-t)a,b, )

we obtain a new form for the measure of the amount of information I,(x ;a,abr
namely.

a

Lix: 2 a,b,7) = - ' log, A(a). (4.8) 4s
Tl « .
‘By passing to the limit «a— 1, (4.8) follows imediate]y
. 1
X 7 — . _.
il-l;? IZ(x @ b, r) log,? a—tl A(=x) (L] 6 ) (-'

if we have in view that

A(l) = 1. (H’IO) . (4.10
Let us introduce the following notations
I—a
Afw) = b7 - F(“(_‘l“’_‘) (k1) (4.11
a
afr—1)+1
Aya) = al=%. & & .(r(i)“. thay) . (4.12
a
Differentiating (4.11) we get
e -
Ala) = ——log,b b . p(“<f~al>+1)+ r—al -b* -T(B) (13
L)
where
g =D+ 1 (. (4.13
T(p) = S =t o=tdt, p>0, (w.1db) (4.13t
0
0 a(r~—1)—:_—l
T4(p) =S t ° .log.t-etdt, Qm‘"”/) (4.13¢
0
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Also, d.ficreatiating (4£.12) we get

a{r—1)+1

Ajfa) = a'=%. « @ -(F(%))a{log, 1(;) + (4.14)
4 =1 - log.a —|—-°‘('—_-—1)—+—1—10g,a}.

Putting (4.13) and (4.14) in the right-hand of the relation
Ai(a) - Ay(a) — 4y(a) - 45(0)

A'(w) = 4.15
(«) [y« (+.15)
finally get
A'a) = A(@) {1 [(r — 1) - DIn T(B) — log, (b-¢- ar-1) — (4.16)
a
— a{r —1)] + log. T ——
14
@
fere
DinT(g) =18 o_2r=D+1 (4.16a)
T(E) a

From this last relation (4.16) we get

e A &=]

we have in view that

W =4 =

a=1

&i»—-

DInT(P) laci = DIn r(;) : (4.17a)

We now turn to the expression (4.9) and taking into account (4.17b) wec

b- (P(a_) )] - (4.18)

1 1
l()gez * ;

—(r—1)-DlIn F(%)} ,

r + log,

im I(x; o, a,b,7) =
a—1

avse A(1) = 1.
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BMaking usc of [2]

@

F(; ,
H‘(X)=,i r 4+ log,|& - -L) —(r—l)-l)lnI‘lL), 1
a /3

RPN

we find that

lim ly(x; &, a, b, r) = Hy(X) = k- HAX), k —=log,e. i

a—1

This completes the proof.
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OF FINDING THE SHORTEST PATHS OF A DIGRAPH

DANUT MARCU*

ud: March 12. 1990
S swiject classification : 68R10

REZUMAT. — Asupra determindrii drumurilor minime ale unut digraf. In aceas-
td lucrare se propune un program FORTRAN 77 pentru determinarea tuturor
drumurilor de lungime minimi intre oricare doud noduri specificate ale unui
digraf pozitiv-capacitat.

Introduction. For a given arc-weighted digraph D = (V, E), having
(W] =n), the set of nodes (vertices), E the set of arcs (edges), and C=
(), 4, g=1,2, ---, n the matrix of the arc costs, the shoricst path problem
I-3] is the problem of finding all the shortest paths (the paths for which the
m of weights is minimum) from a specificd starting node NOD1 € V' to
specificd ending nede NOD2 « T, provided that at least such a path
its (for a review of the extant algorithms for this problem see [1]).
What is often required in practice is not simply the shortest but also
ksecond, third, etc. shortest paths in a graph. With this information, one
wd then decide on the best path to choose, using also criteria which are
fher difficult to incorporate directly into the algorithms or which are subjec-
‘h'e in nature.

Moreover, the second, third, etc. shortest paths can be used in a sensiti-
fy analysis of the shortest path problem. In this paper, we shall give a
RTRAN 77 program, for the solution of the above mentioned problem, for

‘case where all ¢; are nonnegative, this case occuring often enough in
jctice (e.g., see [1—3]), to warrant the description of a sptual aigorithm.
Deseription of the method. We shall assume that matrix C does not
fisiv the triangulary condition, i.e., ¢; is not less than c¢; 4 ¢, for all
ij ahd %, otherwise the shortest path between v; and v; is always the single
1 (v, v;) and the problem becomes nonexistent. In particular, if an arc (v;, ;)
ks not exist in G, then ist cost will be assumed to have been set to «
g, see [1, 27).
dlution of the problem are independent of physical interpretation of the weights.
e unweighted digraph is merely a special case, interpreted as a weighted
graph with every weight equal to 1. The shortest paths given by the pro-
am will bhe then the paths of fewest arcs.
t (¥ = (¢f), 1, 7=1, 2, ..., n be, such that ¢j; is equal to the weight of
shortest path from v; to v; (if such a path exists) and to oo if there exist;
ipath between v; and ©;.

$str. Paswlui 3, Sect., 2, 70217 DBucuresti, Romama
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Let v; and v; be two distinct nodes of D, for which ¢j; # o0, i.c., ther:
at least a path from v; to v;. Obviously, (v, v;) is the last arc of a d

path from »; to »; if and oulv if

¢ = Cix + Cxj-
‘Thus, (f the indices k for which (1) holds are k,, k,, ..., &, then [ |
s=1, 2, ...,t arc the last arcs of the shortest paths from v; to v;. Tor- i
one of these indices, we repeat the procedure, i.c., we find the last ares:
form (w, v ), belonging to the shortest paths from z; to w,, by taking,
the role of »;, and so on. o .
If (1) does not hold for any k # %, j, then the arc (v;, v;) is the single s
path from v; to v;.
In this way, all the shortest paths from v; to v; can be generated (the m

described above, is summarized in the FORTRAN 77 program SPD (S
Paths of a D1graph) In the sequel, we have:

N = the nodes’ number of the digraph,

DD = the matrix C,

DM = the matrix C¥*,

INF = our ,infinity” (o), which is a very large number, say I¥

The subroutine MDM computes the matrix DM, from DD, according t
algorithm described in [2].

Example. For the digraph with matrix

J

1 2 3 4 5 3
1
1 0 1 4 foe] 0 o0
2 [es] 0 2 5 8 ]

C =

3 '] 0 0 2 5 0
4 0 0 0 0 3 5
5 [°s} 00 0 0 0 1
6 0 o0 0 o0 ) 0

the program SPD has found the following shortest paths from node 1 to w

(1, 2, 3, 5, 6).
{1, 2, 3, 4,5, 6,),
of weight equal to 9.

Conelusions. Considerable experimentations, on a PDP-11 computer,
conducted to investigate the efficiency (the efficiency of the program
measured in terms of the computational times required to obtain the sl
of the proposed method. Based on this computational experience, it m
said that the above program can be successfully used for large-sized dig:

generating all the shortest paths in a reasonably computer memory and o
tational tim



SHORTEST PATHS OF A DIGRAPH

REFERENCLES

N Christofides, Graph theorv — An algorithmic approuck, Academic Press, 1975.
D. Marcu, AMinimum distance between two
gaph (in Romanian), RT.Te., 2, 1980.

I. Tomescu, Introduction to combinatorics, Collet’s London and Wellinghorough, 1975.

L2 Ryt A 2 2 X 4 ]

n 1t
* PROCRAN -~ SFD »
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IR INT ST R L 8]

Thin progrom finds all the shortast poths
betmear: cny two spacif.ad nodes,HODL and
HCD2,ef an arc-weighted digraph with ncn -
negativa nrc coats.

Written bv Dr. Danut HMarcu

Winter 1989

- - am e - m m om -

1
!
!
|
!
'
] AN
[}
|
[
1
|

OO0 CE0000OGANO0aT06O T O

REAL INF
DIMENSION DD (6,54, DM (6,8) ,MS(6,4) ,IK(4) ,NB (&) ,1ITL (4D

>

eee«DATA ENTRY....

2X:X3)

ACCEPT #,N
ACCEPT #,IKF
- ACCEPT #,NOD1
ACCEPT #,NCoO2
0O 1 I=i,N
ACCEPT ®,(0D(1,d) , =8, N)

oo~ PRINY THE UEIOHT OF SBHORTEBT PATHS8....

SO0~

CALL MDM(N,CD,DHM, INF)
PRINT #,DM(NCD1,NDOD2)

«.--PRINT THZ SHORTESBT PATHS FROM NOD1 TO MOD2....

666

CALL PMS(N,DD,DM,MS, IK,NOD1,NOD2)
CALL PBP (N, NS, NS,NSL,NDD1,N0D2)
STOP

. ExD

79
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SUBROUTINE PSP (N,N3,NS,NSL,NOD1,NOD2)
DIMENSION MS (N, ,NS (N) ,NSL (N)
iT=1

NS (1) =NOD2

NNS=2

NJK=MS (4002, IT)

N1=NNS-1

DO i L=1.N1 v
IF(NS{L) .EQ.NJK) GO TO 2
CONTINYUE

NS (NNS) =NJIK

Ke1

IF (MG (NJX,.K) .EQ.0) GO TO 3
NJK=HS (NJK , K)

NNS»NNS+1

G0 TO 4

IF (NS (NNS) .NE.NODI) GO TO 9

DO 5 L=1,NNS

NSL (L) »NS (NNE-L+1)

PRINT 6, (NSL (L) ,L=1,NN8)
FORMAT (//,1X,614)
IINB=NNE-1

IF(NNES.EQ.1) GO TO 7
NJUK=NE (NNB)

Lemi

IF (HEB(NJK,L) .NE.NS(NNG+1)y GO TO 8
Kml+1

IF {MB(HJK,K).EQ.0) G TO 3
60 TO 10

Ll +1

60 TO 11

"N8=N1

WJIKaNS (NNSB)

KoK+l

GO VO 12

IT=1T+1
IF(MB(NOD2,1IT).NE.O) GO TO 13
RETURN

END

’
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SUBROUTINE PMS (N,DD,DM, M8, IK,NOD1,NOD2)?
DIMENSION DD (N,N) ,DM (N, N) ,M8 (N, N}, IK(N) -

00 1 L=1,N

00 1 K=1,N

M8 (L,K)=0

0O 2 Le1,N

IK (L) @0

K=0

00 3 L=1,N

IF (L.EQ.NOD1) 6O TO 3 .
1F (L.EQ.MGD2) GO TO 3

IF (DM (NOD1,NOD2) .NE .DHM (NOD1,L) +D0 (L ,NOD2)) 60 TO 3 |
KoK+l

"8 (NDD2,K) =L

CONT INUE

1IF(K.£@.0) GO TO 4

00 S L=1,N

IF (IK(L) .EQ.1) 6O TO S

IF(M8(L,1).€2.0) GO TO S

Ke1

IF (M8 (L,K) .NE.O) GO TO 6

IK(L) =2

63 Y0 7

17=0

DO ® NJK=1,N

1F (NJK.EQ.MB(L,K)) GO TO 8

IF (DM (MOD1, 78 (L ,X) > . NE .DM (NOD1 ,NJK) +DD (NJK, M8 (L,K))) 80 T0 8
IT=IT+1

M8 (M8 (L,K) , IT) =NUK I
CONTINUE

K=K+1

60 70 9

CONTINUE

RETURN

M8 (NCD2,1) sNOD1

G0 70 10 @

END

_ SUBROUTINE MDM(N,DD,DM, INF)
REAL INF

DIMENSION DD(N,N) ,DM(N,N)

DO 1 L=1,N

DO 1 K=1,N

DM (L ,K)>=DD(L,K)

DO 2 L=1,N

DD(L,L)=0

DO 3 J=1,N

DO 3 I=1,N

IF(DM(I,.J) .EQ.INF) GO TO 3

DO 3 K=1,N
IF(DM(I, ) +DM(J,K) .GE.DMCI,K)) GJ T3 3
DM (I, K)=DM(I,J) +DM (J.KJ
CONTINUE

DO 4 L=1,N

DM (L ,L) =0

RETURN

END
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REZUMAT. — Arbori binari, o problemd a lui Euler si seevente finite de nu-
mere. In acest articol sc studiaza relatia care existd intre arbori binari, o pro-
blemid a lui Euler privind fmpartirea unni poligon convex in triunghiuri prin
diagonale ce nu se intersecteazi in interiorul poligonului, si 0 mul{ime fini-
ti de secvente de numere. Se deduce faptul cd o corespondenti bjunivoci se
poate stabili intre urmitoarele multimi: A4, = mul{imea arborilor binari cu »
noduri, T wt2 = 0 multimea posibilititilor de a imparti un poligon convex cu n--2
laturi in tnunghlurx prin diagonale ce nu se intersecteazdi in interiorul poligo-
nuloi, i mulfimea S, = {(sy, s3, ..., 85, 14} 1§ = ?2"+1 L Jsi—s;1=1,
pentru i =1, 2, ..., 2n; 55 eN* =223, ..., 2}

Different properties and applications of the binary trees are studied im
],'L-where one shows that the number of elements of A, is

;.(2"” + 1) (1)

2n 4+ 1 7

In [1] there is studied and solved an Euler’s problem, which requests to
termine the number of possibilities to divide a convex polygon with n sides
to triangles by diagonals which do not cross each other inside the polygon.
notlng by T, the set of these possibilities, the number of elements of Ty, is
given by (1).

In [3] we have studied the set:

S, = (51,82, s Souq1) 1S = Sop 0 = 1; s — syl =1,

1=1,2...,2n; s, € N* j=2,3,...,2n},
while in [4] we used this set to amalyse an extremal problem concerning the
woperty of consecutive retrieval.
THEOREM 1 [3]). The number of elements of S, is given by (1).
Proof. We shall construct a binary tree labelled as follows:
- the root (lying on the level 1) has the label 1;

- a ncde with the label i has the two subtrees constructed observing the
same rule, the left-subtree has the root labelled with ¢+ — 1, while the root
of the right-subtree is labelled with ¢ 4 1;

S —

* . Babes- Bolyai” Universitatis, Facully of Mathematics, 3400 Cluj-Napoca, Romania
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— the subtrec having the root labelled with 0 is replaced by the ey
subtree.

The number of elements from S, is equal to the number of paths fit:
labelled binary tree) joining the root to vertices lying on the level 25 -1a
having the label equal to 1.

If b; is the number of nodes on the level & which have the label equi
4, then:
by=1;
by =0 for © < j or i*j:=0;
by = bi1,j—1 + bi-y, j+1 for tz21, 52 1, { > 7.
From the construction manner ol this labelled binary tree one obsn

that on an even level we have only nodes with even labels, while on an o
level we have only nodes with odd labels.

The value precised in the theorem is cqual to the value by, By
we construct the numbers (¢;;) as follows:

ch=¢p=0;¢c;=01or j>1;

Cijue = baioi_jiny for 1 €7 <1 U
namely only the values b;; in which the first index is even are considered
only the nonzero clements are taken [rom such a level, hut in reverse ot

From (2) and (3) we obtain:

cp=¢ip=0,121; ¢y="1¢;=0, for > 3;

Cij = Cimt,j-2 + 262y, ;00 F iy, Tor 3 €7 €1 4+2;

¢y =0, for 7 > 1+ 2
By (2) and (3) we obtain: bu,yq1 == bays = Cppia

We shall consider further down the set of numbers (d;;):

dl!_—_.d,'z:()for i:l, 2,..

L

dg=1;d;=0 for j > 8; 4

d,'j = d,'_l']'_-z —l’— Zd,gl‘_,'.,.l + di—l,j for 1 P 1 and 7 p-3 3.

One shows by induction with respect to i that for ¢ € 7 € ¢ 43 we b

i =dij — dij.
Consider the generating function :

dx,y) =Y, dj; v'¥".

i3l
One obtains from (4) that this function fulfils the relationship:

%-d(x, ) 4+ 2xv-d(x, y) + xv:-d(x, ¥) = d(x, ¥) — ¥,
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In order to determine more casily the values b, we shall start fon
following initial values:
b_],o = O, b()’() = ])1’0 =1 ) ])i,() =0 for 1 >z 2,
boygg=b_yo=—1;b_y;==07dor j 23,
and use the recurrence relationship :
bij==bi_y;+ by for i 20 and j > L
With the relationship (10) and initial values (9), the values b ot
from (8) do not change.
Consider the generating function :
B(x,y) = 2 bijx'y'.
i20721
Using (9) and (10}, we obtain successively :

Blx,y) = ¥ (bicaj+ bij)di v =

=0,721

= Y b aly oy Y b iyt =

i20,j>1 iz1,721
= x(z b—-l’j xﬁlyj + Z bifl,j xiﬁl,"j) +

IES! iz1,5=1
+ (Z bio® + N bij -%",\'j_') =

iz0 120,722
— _y — —/),2 + X - Z bi,jxi_yj + )' _{_ X—y + }v . Z b’.']. Aiyl -

20,721 130,521 |

=axy—+(x+y) - XN by =y — 3 (v B

120,521

One obtains the following expression for the generating function (|

Blx, v) = .LL,
| F— (¥

which is successively transformed as follows:

Blry) = (v — ) Y (x4t = (v —3) - T ¥ ( 7)“ -

120 i205=0
= (xy — v2) - ‘:J (‘ + ]) Xyl = Z (1 +]) ATyt
i,j‘}h \ 0720 1
- E U—i— ])X')U” ::2 (1 + ] B )x-y] - Z ("*'] )Xc)
iiz0\? ijzl 1 1 £20,j22 1

= Z [(1 ‘i‘]—‘Z)”('I‘i‘]—Z) x."\,j+yzxo‘_$;yj=
izl,;»2 1 — 1 7 izl i1

121,722 izl j»2
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The proof is given in [2].

Let B = (B,, B,, ..., By,) the order in which the 2r subtrees appear in
etraversal of the binary tree A in preorder. Starting from the binary tree A,
nee from the set of subtrees B, we can construct a vector binary values
= (1), Vy, ..., Vi) according to the following rule, for ¢ =1, 2, ..., n:

I 1, il B; is nonempty subtree,
0, in otherwise ;

(16)

Using the vector V', a vector s == (s, 5,, , Sa2p¢1) can be constructed as
llows :
S, =1; s =2;

s {SH.;—{—L if Vi=1;
i1 == .
Siqi— L it Vi=0;fort =12 ...,28 — 1.

(17)

Example. For n = 3 we shall represent correspouding to the five binary
tees, the vectors V' and s constructed according to (16) and (17):

:(1 10()00);912(1,2,3,4,3,‘) 1);
=(1,0,1,00,0;s =(1,2 38 2 3 2, 1);
=(1, O, (), 1,0,0;s,=1(1,2, 3,21, 2; 1);
=@, 1,100 0;s,=(,21, 2 3,2 1);
I, =1(0,1,0,1,0 0); s, ={(1, 2,1, 2 1, 2, 1);
Using the vector 1= (17, V,, ..., Vz,,), we determine a vector W =
,‘-_-(Wl, W 2 -, Wy,) according to the following rule:
I =11 I';=1; and —1if }V; =0;for ¢ =1, 2, ..., 2n (i8)
|

With the vector IV, the vector s constructed according to (16) and (17)
an be determined more easily as follows: :

81::1;82:2;Si+2:si+l+]/V"’ fori: ,2,... ')n—l (19)
reM™a 2. (a) le’l + W, 4+ ... + Wy —1 for h =
W) |y =1, + ...

Proof. For the n vertices of tire binary tree, there will exist # — 1 nonem-
pty subtrees aud » + 1 empty subtrees (according to Lemma 1). From this
fact one deduces that #» — 1 values iromn vector 1§ are equal to 1, while # 1
values are cqual to —1. Since W, = —1, it results that the relationship (b}
Is true.

The relationship (a) will be proved by induction with respect to n.

For # = 1, the binaryv tree has a single node, hence W == (—1, —1). In
this case the reiationship is true. Suppose that it is true for all binary trees
with at most » nodes, and consider a binarv trec with # nodes (v > 1). The
binary tree consists of a root and two subtrees: B, and B,. If B, = (J, then
B, == (3, hence }'| == —1, W, = 1. In this case the relationship (a) is true for

¢ .
1, ....2n — 1;

- ”'4_),,_1 == —1
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k = 1 and k=2, and, in addition W, 4+ W, = 0. The vector (I, W,
e W_n,,,) corresponds to the binary tree B,, \\1th n — 1 uodes, for whxch
relatlonsh]p is true {according to the hypothesis of the induction).

If B, # 3, let m be the number of nodes from B,. Since m < n, it 1
that for B; the relationship (a) is true. Since B; # (J we obtain that If,:
and (W,, W,, ..., W,41) corresponds to the tree By, hence W, 4+ (W, +If'-
+ ... + Wyi1) = 0. So, the relationship (a) is true in this case, too,

The vector V with the values 0 and 1 (or the vector s ¢ §,) canben
to the representation of the binary treec 4. We shall describe further dn
the algorithm which determines the vector |7 starting from the binary tre.
Tor this purpose, suppose that the binary tree is stored with the vectors LLIM
and RLINK (according to [2]) (the binary tree is stored only under the fe:
of the two vectors since the informations associated to the vertices are:
needed). The link towards an empty subtrec wiil be precised by a zero v
in the two vectors.

The algorithm uses a stack ST. Supposc that the root of the tree is st
at the address R.

Algorithm 1:
i:=0; {i is index for the vector V}
k:=1; {k is index for the stack ST}
ST[1]: = R;
P: = LLINK[R]; {P runs through the nodcs of the tree}
Cont : = true; {Cont is a boolean variable for the cycle of the algorithn
while Cont do
if P=0 then
begin 1: =i+41; V[i]: =0;
if k=0 then Cont: =falsc
else begin P: =3ST7k]; k: =k—1; P: «RLINK{P] end
end
else begin i: =i+41; Viij:=1;
=k+1; S'l‘[k] _1" 1" =ILILINKI[P]
end ;

One de¢duce from this algorithm the fact that the vector V was determing
according. to (16). If one wishes the determination of the vector s, thenth
relationship (17) will be used.

The algorithm which foliows will determine the binary tree correspondn:
to the vector V = (V,, 1, ..., V,,). It uses the significances of the elemar
from V, precised by the rglationship (16). In this algorithm ST represents .
stack. The binary tree will be represented by means of the vectors LUMW
and RLINK, while the root be stored at the address 1.

Algorithm 2:
i:=1; {i is address of the node from the binary tree to be constructed)
k: =1, {k is index for the stack ST}
ST[1]:==1; {the first ncde is put into the stack}
t: =1; {t=1 if LLINX will be completed for the node i, and t=0 if RLIN
will be completed}
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rji:=1to 2n do

ft=1 then

if Viji=1 then

begin LLINK : ==i4-1; i==i+41; k: =k+41; ST{k]: =i end

ese begin LLINK([i]: =0; t:=0; i: =ST[kj; k:=k—1 end
dee if VIjl=1 then

begin RLINK{i]: =i4+1;1: =i+4+1; k:==k+1STk]: =i;t: =1 wd
else begin RLINKJ[i]: =0; i: =ST[k]; k: =k—1 end;

Since 1~ and V were constructed starting from the vector s = S,, for
wy k=1, ...,2n we have: W, + W, 4+ ... + W, = —1, therclore each
e we extract an element from the stack (by i: = ST[k]; k: ==k — 1)
bis fact is possible,

THEOREM 3. Both the algorithm 1 and the algorithm 2 establish a bijection
mespondence between the sets A, and S,.

Proof. The vector s can also be constructed by means of the reiationship
1, {18) and (19). From (19) and Lemma 2 it results that the vector s
dongs to S,. From the fact that the traversal of a binary tree in preorder
suique, and from the determination mode of the vector I/, it results that
o a binary tree . we can determine a unique vector s < S,. This vector is
fermined by means of the algorithm 1 and relationship (16).

Couversely, considering a vector s = (s, Sy, - .., S2u—1, So,) from S,, we can
kemiue a vector W= (W, W, ..., Wa,_1, W,,) as follows:

W,=siyo— sy fori=1,2,...,20 —1;

,, = —1.

Irom the vector W we determmine the vector = (V,, V,, ..., V,,) as fol-
S :
Vi=1it W, =1, and 0 if W, = —1;for i =1, ..., 2n.

By means of the algorithm 2 one constructs uniquely a binary tree, using
e vector V.

et P= P P,... P,y be a convex poiygon with n + 2 vertices and let
€ T,., be a partition of the polygon P into triangles by diagonals which
not cross each other inside the polygon. The elements ¢ from T are trian-
ks, hence ¢, = (LPawy, Pogy, Pewy), where Puuy, Powy, Pew are vertices of the
lvgon I’. Suppose that:

alk) < bk) <c(k), for k=1,2,...,n;
e{t) € ¢f), for 1 i<y g n; (20)
it ¢(i) = ¢(y), then a(?) < a(j), for 1 €1 <j < .

sing (20), we obtain a unique indexation of the elements {¢,, ..., ¢,} from T.

LEeMMA 3. Let ¢ = (¢, €50 ..., ¢,) and ¢ = (c], c3, ..., ¢,) be the wvectors
sociated to the partitions T', T'' € T, o, for which the conditions (20) are fulfilled.

ifT"# T, then c" # ¢'" (hence the only vector ¢ is sufficient in order to precise
§ purtition).
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Proof. The lemma will be proved Dby induction with respect ton
n = 2, the two possible partitions are: T’ = {(P,, Py, Py); (P, P, P}
T = {(Py, Py, P,); (P, P, I,)}, one obtains the vectors ¢’ = (3, 4) ands
= (4, 4), which are different.

Suppose that the lemima is true for polygons with at most # 41 vat
and we shall prove the lemma for polygons with # 4+ 2 vertices, Iet T
=, ..., 1) and T" = (4, ..., 1) be two different partitions fromT,
and let ¢’ and ¢’ be the vectors associated to these two partitions.

If 17 = 1] (hence ¢f = ¢}), thenfrom T' # T we obtain that (4, .../

# (13, ..., {»). From the hypothesis of the induction we obtain that (¢, ...,
# (Cy ..., Cn), hence ¢ # ¢”.

If V' = (P, Py, Py) # 1" = (Piy, DPjy, Pxy), then the following two w
must be analysed :
(a) Al = ¢] # R2 = ¢, therefore ¢ # ¢’
(b) 21 = ¢ = k2 = ¢j. Denote 2 = k1, 7 = 11, j = 12. Since # # 1], we i
that ¢ # j, and suppose that ¢ < j. From (20) and from the fact that Pp,
diagonal and cannot cross other edges of the triangles belonging to the patif
T’, we obtain that f; is of the form (P, P41, P,). Analogously, we ot
that /] is of the form (P;, Pji1, P;). From the same conditions and from!-
fact that ¢ << j < %, one obtains:

ly = (Pigr, Piya, Py) ;s 13 = (Pjy1, Piyo, Py); 13 = (Piye, Piys, Py);

13 = (Pjr2, Piys, Pi) s - 5 thejm1 = (Pryi-jo2, Pryicjo1, Py);

Li—j—1 = (Prog, Pacy, Py) s i = (Pryizi—1, LPagiciy D)

li—j = (E31, Piy, Pyy), with £3 £ k, hence c;_j 5 ¢;_;. It follows that ¢ #

We shall describe further down an algorithm which determines a vet-
s = (S5, Sy, ..., S2ut1) € S, starting from T € T,,;. Suppose that the partitio!
is precised by the vector ¢ = (¢, ..., ¢,).

Algorithm 3:

s(1]:=1; s[2]:=2; j: =2; c[0]: =3;
for k: =1 to n do
begin {a} d[k]: =c[k]—c[k—17;
{b} if d(k]>0 then
for i: =1 to d{k}{do
begin j: =j+1; s{j]: =s[j—1]+1 end;
(e} jr=i+1; s{jl: =slj—1)—1
end ;

The algorithm which follows determines a partition T e T, for the !
gon P= PP, ... P,,, starting from a vector s € S_. The partition wil*
precised by the vertices (Paw, Pow, Pew), k=1, ..., n, of the triay:
which constilute the partiticn. The algorithm uses a stack ST,
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Alyorithm 4:
; {k is index for the stack ST} ‘
=1; ST[2]: =2 {the indices of the first two vertices of the poligon P
are introduced into the stack}
:=2; {j is index for the vertices of the polygon P}
1:=0; {m is index for the elements of the partitions T}
wi: =2 to 2n+1 do
ifs[ij>s[i—1] then
begin k: =k+1; j: =j+1; ST[k]: =j end
else begin m: =m+-1 7
afm]: =ST[k—2]; b{m]: =ST[k—1]; c[m]: =ST[k];
ST[k—1]: =ST[k]; k: =k—1
{the last but one element of the stack is removed}
end ;
THEOREM 4. Both the algorithm 3 and the algorithm 4 establish a bijection
wrespondence between the sets S, and Tpys.
\ Proof. Let #,¢,, ....t, be the first & triangles from 7. These ones are
bmed with the vertices belonging to the set:
|

b=2
11y

3
[M = U {Pa(i)x Pb(z‘); Po(i)},
i=1
which the greatest index of the vertices from M is c(k). In a sct with
) vertices we can form at most ¢(k) — 2 triangles, hence k < ¢(k) — 2, or
b > k4 2.

The vertex P,;, belongs to at least one triangle, and from (20) it results
at the triangle f, contains the vertex P,., hence ¢, = » + 2. The two assig-
ements of the cycle from the point {b} of the algorithm 3 are performed
-1 times since :

diy+d,+ ... 4+d,=¢c,—¢co=n+2—-3=n—1.

the algorithm 3 there are calculed 21 4 1 valuzs for the vector s, since
wo values are calculated at the beginning of the algorithm, # — 1 values at
e poiat {b} of the cycle with respect to %, and » values at the point {c}

i this cycle.
For a certain value of %, at the point {c}.of the algorithm 3 one calculates

avalue s;, and:

;=8 —1l=s,+d, +ds+ ... +d,) — k=

g
=24 chkl —cD]—h=ck]l—rh—-12k+2—-k—-121

ferefore s; > 1 for every vatue j =1, 2,...,2n + 1.

From the above reasons we deduce that for a T « T, ., one obtaius a
guence s € S,

For a certain value of i from the algorithm 4, there will exist in the
fack 1 4 s;,_, vertices. For every 1 with s; < s;_; there will exist in the stack
ttleast three vertices (from 1 <Cs; <Us;-; weobtainthat 1 4-s,_;, > 1 4 2 = 3)



94 L. TAMBULEA

therefore one may construct a triangle. From the construction manner o
sequence s € S,, it results that there exist # values of ¢ for which 5;<.
hence # triangles are constructed, while for a sequences s a single partitin
is constructed. If s’, s € S, s’ % s’/, then let i be the first value for v
the corresponding possitions into the two sequences differ, therefore 53
From the construction manner of the elements from S, {follows that s; <3,
st > si_y, or conversely: si > s/_; and s; > si_;. We deduce from this
that the partitions T’ and T constructed by means of the sequencess .

rr

s’" are different.

REPFEI
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REZUMAT. — Algoritmul simplex este. fotusi, mai bun deeit algoritmul Jud
Khachiyvan. Lucrarca prezinta comparativ rezultatele obtinute, pe un calculator
1 102 I, pentru diferite instante ale problemei de optimizare liniard atit cu
algoritmul simplex cit i cu o variznti imbundtatita o algoritmului i Kha-
chivan. Varianta algoritmului simplex este cea datd de Zukhovitskii si Avdeyeva
{3]. Cu toate cad algoritmul simplex cfectueazd un pumdr mare de iteratii, acest
algoritm are timp de lucru mai scurt. De asemeni, s-a aritat ¢ vurianta ini-
tiald 72, 41 a algoritmului lui Khachivan conduce la depisiri de reprezentare
a numerelor in calculator pentru dimensiuni relativ mici (10--12).

Algorithm for Linear Optimization Problem. In order to compare the
k times for the solution of some linear optimization problem instances, we
vrated programs for the simplex algorithm and for two algorithms which
¢ Khachiyan’s algorithm as basic iteration, the last two oncs using res-
tively the sliding objective method and the bisection mcthod 21
As it is known, the linear optimization problem can be stated in different
ivalent forms. We counsidered that this problem is given in the most general
n:

max {c’'x

Ax < (=) b} (1)

refore the pregrams aliow the data input for any instance, without requi-
r certain preliminary transformations of this one. Nevertheless, one must
ly construct a linear optimization problem in the canonical form:

max {—¢Tv -+ Q|Dv < p, v = 0} (2)

se transformations are performed by expressing the {ree variables (for which
condition x; > 0 is not rcquired) as functions of the other variables, and
1 removing the equalitytype constraints (null rows).

The simplex algorithm {[3] performs modified Jordan steps (MJS) in the
slex table correspouding to the problem (2), which has the form:

— Y1 = ¥s R —¥a 1
. ”
Va1 Ay Upire coe . Quprn | Pasr
Y Ay Ay R Aoy, Pm
f qa 9z s - Un Q

* University of Clug-Napoca, Facully of Mathematics, 3400 Cluj-Napoca, CI’ 253, Romania






step 2

step 3:
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(stopping test) _
— let v = x, 4 0s, where s € O, —ap iy, Ay,

R TR uiT.\‘/ o~ .
and 0 == min i ;s >0, 1 & T3
a.’ s

1

— let 2 == Ay, ;»1,‘dm~;1- f,- - (1,T,::' re |,
¢ = u,T,\' —b,iel, L="{1el, fi<0}
g = min {¢//f; {1 € L},

— compute 4 as in step 4 of K (using the values computed at
this step),

— if  — % < ¢, then stop and chose v as optimum point.
(chose of tlic new system)
— compute by, o= 11,1,:; 1V, 2o —()ulE 18 it

— let k=m + 1,

— solve a;x < by, & I, U {m ++ 1}, with K starting with step 3
of this one,

— go to step 2.

We programed for this algoritlim the variants 1 (corresponding to the
ise s =10), 2 (for s = —dpw-) and 3 (for s == — Atmyy).

The algorithm which solves the linear optimization problem by means
the bisection method and uses the algorithm K consists of :

step 1:

step 2

step 3:

step 4:

{(determine an admissible solution)
— determine with K an admissible solution x, and au cllipsoid
E, = (%9, d,) which contains the optimum solution,
T—
— let d,,,.;.l = x/am,_;.,Aoa,,,H.
(problcm choise in compatibility case)

— et 2= Adpdpildw 1, fi = u,T,z.', 1 e U {m + 1},
L={iel, | fi<0}, £=minleifijt € L},

— compute % as in step 4 of K,

~— if % — £ < ¢, then stop and chose v, as optimum point

2% + 9

else chose b,y = u,-,',—.on —

m-i- 1y

save data (x,. Ay, ¢;, d;) for old ellipsoid,
let bm-!-l = bm-}-ly ‘i = E..: 'f;, = 1.
(problem solution for the new bhisection)
— solve a;x < by, 1 € 1, U {m + 1}, with K,
— save the indices of the removed hyperplanes, o
— if the system is compatible, then go to 2 with the last cllipsoid
denote (x,, 4,),
else go to step 4,
— if during calculation card (I,) < #, then go to step 5.

(problem choise in incompatibility case)
— load again the lastly saved data (x4, A, ¢, 4)
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2¢ + »
— let  =bhyy, E=E and b,y = a,},-“xo —

dm+h
— if v — & < e, then stop and chose x, as optimum point
else buy1 = buyr and go to step 3.
step 5: (end of step 3)
— if card (I,) = », then solve a;x = b,, i € I,, and
if the solution x fulfils all constraints removed at the lag ¢
then x is optimwn point, stop,
else or if card (I,) < n, go to step 4.

Test Problems. As test instances we chosen [1]:
T —= (]zn—l‘ i »2/'/), N l/’pu»-l)’
T = (1, p, $2, ..., p*9),

1 0 ... 0
2hp 1 ... 0
A= | 2pp 2p 0
2]}}1;1]5‘1;—‘1 .. o ’;)J n' 2‘1‘)1;‘—2' o ' : : i

which are ,,wrong” examples for the simplex algorithm, i.e. for some v
of p and % this algorithm neceds 2* — 1 iterations to rcach the optimums
tion aT==(0, 0, ..., p»~!). The presented tests were performeted for the cho
a) p =2 h=0625
b) p =25 h=035,

o) p=35, I =0.25.

The obtained results are listed in the table:

Simplex Objective sliding method Bisection
algorithm 1 2 3 wethod
n
Steps Timne Pr. Time Pr. Time Pr. Time Pr. Time
0 1 2 3 4 5

a) p == 2; h = 0625

4 7  0.02 9 10.56 5 9.42 4 9.20 3 88
5 11 0,04 12 11.40 7 9.74 + 9.88 3 108
6 15 0.06 16 14.90 11 12,42 7 1098 3 144
7 21 0.12 22 19.26 13 17.44 1< 17.40 4 2306
8 26 0.18 27 24.76 20 21.96 6 20.24 32180
9 31 0.22 28 31.48 2t 29.64 15 28.20 3R
10 34 030 40 51.20 27 43.64 23 42.20 3 A
I 42 0.40 52 73.92 34 68.34 23 66.84 3 dejl

12 46 0.52 61 96.48 43 91.38 40 935.10 3 47
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Table continued

0 1 2 3 4 5
p=25; h=105
4 15 0.04 11 10.62 7 9.34 6  8.10 3 8.62
5 31 0.10 13 10.48 11 10.12 8  9.94 3 9.94
6 63  0.22 22 14.20 15 13.70 12 14.48 3 12,12
7 96  0.42 24 16.84 18 16.44 18 19.12 4 23.04
8 98 0.52 36 29.44 28 26.68 21 29.06 3 20.64
9 102 0.64 48 42.26 35 40.96 24 36.96 3 26.36
10 110 0.78 51 58.82 37 53.12 33 53.54 3 27.80
Il 240 2.00 63 92.68 48 86.34 41 87.86 3 3498
) 243 2.36 74  114.28 63  109.12 43 110.38 3 32.16
jp=5; h = 0.25
J4 15 0.04 16 10.44 11 8.88 9 8.64 4 8.90
¥ 31 0.10 24 11.62 18 10.26 11 10.42 3 8.92
6 63 0.24 37 17.26 30 14,22 21  15.66 3 11.28
"7 127 0.58 51 24.12 38 20.98 22 21.32 3 10.96
'8 255 1.40 61 34.82 53 33.22 38 33.68 28 68.40
'9 511 3.24 78 52.84 63  53.14 41  49.72
10 1023  7.56 80 88.98 48  86.80
I 2047 17.44 82 117.21 62 107.14
12 4095 41.06 82 102.72

In this table, the computing times are expressed in seconds, while for the
rithms which use Khachiyan’s algorithm there was given the number
problems (Pr.) (system of inequations) to be solved until the solution of
considered problem was reached, and not the total number of cuts (itera-
s).
Concluding, we can specify that the simplex algorithm, although exponential,
¢s results in a time shorter than the algorithms based on Khachiyan’s
rithm. Such last algorithms lead sometimes to the impossibility of solving
problems (see, e.g. Table), due to overflows of numer representation in
puter.

REFERENCES

Clausén, J., A4 Tutorial Note on the Complexity of the Simplex-algorithm in J. Krarup and S.

Walukiewicz Fds. Proceeding of DAPS-79, Institute of Datalogy, Univ. of Copenhagen 1980
. 51—65.

l,Kponig, H., Pallaschke, D., On Khachiyan's Algorithm and Minimal Ellipsoids, Numer.

Math., 36 (1981), pp. 211—223.

Marusciac, I., Metode de Rezolvare a Problemalor de Programare Neliniard, Ld. Dacia, Cluj-

Napoca, 1973.

Toadere, T. Numerical Experiments with Variants of Khachiyan's Algorithm, Univ. of Cluj-

Napoca, Res. Sem., Seminar on Computer Science, Report No. 5, 1987, pp. 55—64.

Toadere, T. Use of Déep Cuts in Khachiyan's Algorithm, Studia Univ. Babeg-Bolyai, Mathe

matica, 34 (1989) no. 3p. 73— 79.




i

Imprimesia ,, ARDEALUL® Cluj, c-da 446



tn cel de al XXXV-lea an (1990) Studia Universitatis Babes-Bolyai apare in urmétoarele
H

matematic (trimestrial)

fizich (semestrial)

chimie (semestrial)

geologie (semestrial)

geografie (semestrial)

biologie (semestrial)

filosofie (semestrial)

sociologie— politologie (semestrial)
psihologie— pedagogie (semestrial)
stiinfe economice (semestrial)
stiinfe juridice (semestrial)
istorie (semestrial)

filologie (trimestrial)

In the XXXV-th year of its publication (1990) Studia Universitatis Babes-Bolyai is issued in
following series:

mathematics (quarterly)

physics (semesterily)

ckemistry (semesterily)

¢ ology (semesterily) .
wography (semesterily)

biology (semesterily)

) ilosophy (semesterily)

scciology — politology (semesterily)
psychology — pedagogy (semesterily)
economic sciences (semesterily)
juridical sciences (semesterily)
history (semesterily)

philology (quarterly)

Dans sa XXXV-e année (1990) Studia Universitatis Babes-Bolyai parait dans les séries suivan

mathématiques (trimestriellement)
physique (semestriellement)

chimnje (semestriellement)

géologie (semestriellement)

géographie (semestriellement)

biologie (semestriellement)

philoscphie (semestriellement)
sociologie— politologie (semestriellement)
psychologie— pedagogie (semestriellement)
sciences économiques (semestriellement)
sciences juridiques (semestriellement)
histoire (semestriellement)

philologie (trimestriellement)



43 873

Abonamentele se fac la oficiile postale, prin factorii pos-

tali si prin difuzorii de press, iar pentru strainitate prin

~ROMPRESFILATELIA", sectorul export-import presd, P.O.

Box 12—201, telex. 10376 prsfir, Bucuresti, Calea Grivitei nr.
64—66.



