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A NOTE ON THE FUNCTIONS oy(#) AND g4(r)

J, SANDOR*

Recesved : May 21, 1990
AMS subject classification: 10420

REZUMAT. — Notii despre functiile o(n) si 9,(»). Inaceasti noti studiem
printre altele citeva proprietifi ale functiilor compuse op09,5i @409, unde
k si s sint numere naturale nenule.

1. Let ox(n) and () denote the sum of kth powers of divisors of the
natural number # and Jordan’s arithmetical function, respectively. (See, e,

{23, [4], [9]). Clearly, o,(#) = o(n) — thesum of divisors of », and ¢,(n) =
=q;(71) — the Euler arithmetical function ([9], [4], [7]). Our aime is to
study certain new properties of these arithmetical functions, and especially
some results.for the composite functions oy o ¢, and g o ¢ .with 2, s > 1 po-
sitive integer numbers. We will use also the generalized Dedekind function,
W (90, 14))

2, Let » = [ [p* be the canonical representation of # > 1 where p|»n are
the prime divisors of #. Recall that d|# denotes the fact that 4 is a divisor
of . Then it is well-known that a;, ¢z ¢, are multiplicative functions and

) = JT 22 o) = IT(—p), (1)
i) = - TT (1 + 574

Asin [5], [6], let us introduce the following notation: Denote by # A m the
property that there exists at least a prime ¢ with £{# and £}m. Let k > 1
be a fixed natural number. First we prove

LEMMA 1. gy(mn) > woy(m) for all m, n=1,2,3, ... ; 2)
op(mn) < op(m)cy(n) for all m,n=1,2,3, ... ; 3)
op(mn) > (n* + 1)ox(m) for n A m. 4)

Proof. We shall prove only (4) and note that (2) and (3) follow by the

same lines. (See also [6], [7]). Let m =] [p* - T Ig¢, n = [ [p* ['It* be the prime
factorizations of m and #, where (p,q) = (p,f) = (¢,¢) =1 and ¢ > 1 (since
n A m). Using (1), one has at once

ap(mn) | ap(m) = [T (p*eF%+D — 1)[(pre+n_ 1) . [T+ — D/(tF — 1)

The simple algebraic inequalities »
(xota+l — 1)/(x2+! — 1) > x¥(a;a" >0, x > 1) and

* 4136 Forfeni, nr. 79, Harghita County, Romania



4 J. SANDOR

(r = Dx—1) > 2 +1 (> 1)
imply op(mn)foy(m) > TI1p - T[T + 1) > TTpr(T1tk + 1) > ut 4+,
yielding (4).

The same results are valid for the Dedekind function ¢, with a slight
different but analogous proof :

LEMMA 2. Yu(mn) = n*,(m) for all m, n =1,2,3, ... ; b

da(mn) < $p(m)dp(n) for all m,n =1,2,3 ... ; {
Yplmm) > (w4 1)y(m) for n A m . (
For the function g, the above inequalities are reversed:

LEMMA 3. pp(mn) < nkop(m) for all m,n =1,2,3 ... ; {
pr(mn) = o (m)oy(n) for all m, n=1,2,3 ... ; (9
pr(mn) < (nF — 1)gi(m) for n A\ m. (10

Proof. For m A\ m we have

ou(mn)jopm) =nt - TT(1 —¢7%). Here 1 —n*=1—[]p . ]]i*)

>1—J[t*% >1—]]t* for all ¢ > 1,a > 0. This finishes the proof d
(10). Relations (8) and (9) are almost obvious and we omit the details.

We note that the above arithmetical functions are connected in the fo
lowing manner :

LEMMA 4. 9r(7) < Yp(n) < gp(m), n=1,2,3, ... (ll)r

Lastly, we need the following elementary inequalities:

LEMMA 5. b (1 — x)* > 2=#+ifor all x < [0, 1]; Coom
ya+1 — 1 < a+1 . oyl < axe—1 fO}’ all x > 1, a >1 (13)
%2 — 1 2 :

'
Proof. For (12) we may study the function f(x) = x* + (1 — %)%, x € 0]
while for (13) we apply the Cauchy mean-value theorem fl) = flo) S GE
glu) — g(v) g8
(u,v) by choosing f(t) = 1, g(f) =12, [w,v] = [1, x]. Obviously, (13)1%
a consequence of 1 < & < x and (¢ 4 1)/2 < a.
3. We now are in a position to state and prove the main results of thi

paper. In what follows, w(#) will be the number of all distinct prime factos
of n.

THEOREM 1. Let A denote the set of all numbers n > 1 with the properly
on(gs(n)) > mhe - 2-h-atd (4
(with k, s fixed natural numbers). Let p be a prime number. Then :
a)If ne A and p|n, then np € A 1s valid, too.
b)If ne A, ptn and p*— 1 A\ @i(n), then np < A, too.

Proof. a)For p | n one has q,(np) = po,(#), so by (2) we get o, (#p)) >
> PR mtR L 2-(-Neb) = (gp)sk . 2-(-lalp) je npe 4
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b) In the second case we apply .(3) and (12):

) = (o) - (8 = 1) 3 FTE (g 270l > ()2t
because of w(np) = w(n) 4- 1 for p } n.

Remark. The same result is valid also for the function {,(ps(7)), with appli-
cation of (5) and (7). In this case, on view of (11), the obtained result is a slightly
stronger one.

THEOREM 2. Let B denote the set of all odd numbers n > 1 whose prime
factors Py, bs, ..., P, satisfy the following conditions :

€ s—1TAMBI—Dz—1), .o, =1 AB = DP2—1) ... (pr-1—1).
Then B < A, t.e. for n = B, inequality (14) is true.

If 4 22 is an even number with m € B, then

' nks
ETr—
where m denotes the greatest odd divisor of .

Proof- The proof follows by induction with respect to » = w(#). Indeed,
let n = ]_—I;b“ € B be the prime factorization of » > 1. Then

ai(@s(m) = oI 1pe-v - T1(p* — 1)) > [Ipre-0 - o, ([T(p* — 1), by  (2)
Thus it will be sufficient to prove that

a(l1(p* — 1)) 2 I1l(p* — D+ 1] (16)

For \r =1, ie when [J(pr — 1) = p* — 1, this is trivial; for » = 2, (16) is
true for all odd primes; p;, ’p,, since 1, p5 — 1, p5 — 1, (p5 — 1)(p; — 1) are
distinct divisors of (p; — 1)(p5 — 1).

Now, using condition (C), via (4) we obtain o, ([T(p*— 1)) > [(p5— 1)*+ 1]

! w(n)=3

(ps — ¥ 4+ 17[(ps — 1)* +.1], and so on, by induction we conclude with
(16). Relation (14) follows by repeated application of inequality (12). In order
to prove (15), let # = 2% - m be an even number with (2, m) = 1. Then ¢4 (n) ==
= ¢s(2%)qps(m) = 25=1) (25 — 1)@(m), so by (14), applied this time for m, by
taking into account of (2), we can derive (15).

THEOREM 3. Foy all n < B we have

ox(es(n)) > (2 — 1) - 2- k=Nt (15)

s — Dk — 1
eales(m) < nbe  TTE—R=" (17)
2ln pr
If n 2 2 is an even number with m € B, then
25 — 1\& ¢ — 1)k -1
7a(@s(n) < n - | 1= (18)
2 pim pE

where m denotes the greatest odd divisor of n.
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Proof. Thé proof is similar with the proof of Théorem 2, but we now conj
sider (10) and the simple inequality ¢4(a) < @* — 1. We shall omit the detaﬂj

The last result involves also the arithmetical function f(#) = []a, whe
n =[1p% p prime. _

THEOREM 4. Let S denote a set of natural numbers which have the same {m’m‘

factors. Then
X{—ﬂ R — S}
nk -f(n)

is taken for squarefree numbers n < S.

) Proof. Inequality (13) applied for # = p* gives (;i k(_ail);; ‘.la <? k;;lv
so by a simple multiplication it results a,(n)/n* - f(n) < oy(m)[m* - f(m), whed
m =]]p e S is a squarefree number.

Remarks. 1) For £ = 1 we reobtain, with a new proof, a result from [I]’
2) If we apply the stronger inequality from (13), we get !

be(n) > 200 - ay(n)[d(n),

where d(n) is the number of distinct divisors of #. This is stronger than
result of R.P. Sahu [3]. For other proofs and consequences of this inequzq
i lity sée [5], [8]."
Finally  we conjecture that relation (14) is valid for all odd natural num
bers » > 1 (with %, s >1 positive integers).
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INEQUALITIES FOR DIVIDED DIFFERENCES OF #-CONVEX FUNCTIONS

N J. E, PECARIC* and I, RASA**

Received : January 18, 1990
AMS subject classification : 26D20, 26451

REZUMAT - Inegalitifl pentru diferenfe divizate ale funetillor n-convexe
Se demonstreazi citeva inegalititi referitoare la diferente divizate; rezultatele
obtinute le compleéteazd pe cele din lucrarea [2].

1. Let a <%, <% < ... <%, <b be fixed real numbers. Define wu:
:Cla,b]-» R, u(f) =n!lx, % ..., x,]f,, where f, e C* [a,b] f,® =f and
(%, %, 2. ., %, ]f, 1s the divided difference of f, at the points %, %,, . .., %,. Clearly
u is a positive linear functional on Cl[a, b] and u(l) = 1; therefore p can be
identified with a probability Radon measure onla, b]. '

Let pt) = ¢, te'{a,b], 1 =1,2,.... The barycenter of u is

blu) = w(py) = #' (% 2+, B [Pwril (0 + D= (% + 2 + ... +

A4 x,)/(n 4+ 1)
If f= Cla, b] is convex, we have f(b(u)) < u(f), i.e,

A+ oo+ w0+ 1) < 2ll5 . 5o (1)

This inequality was proved in [2]; moreover, it was shown there that if
f is convex, then

fl#o+ -+ x)[(m+ 1)) <nllx, ..., %]f, <
< (f(%) + - F &N/ + 1) (2)
Generalizations of these inequalities are given in [3]. '
From (2) we obtain in particular

1 n—1

£1/2) < n![O,;,

, l]f,, <

n

n

<O +/(3)+ - S s+ (3)

for every convex function f< C[0,1] and every »n > 1. .
The present note contains an improved version of the inequalities (3) and
some results related to the inequalities (2).

* Facully of Technology, Depariment of Mathnhatits, Ive Lole Ribara 126, 41000 Zagreb, Yugoslavia
*¢ Polytechnic Institute, Department of Mathematics, 3400 Cluj-Napo):a, Romania
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2. For fe C[0,1] and » > 1 let us denote
@m=mpip”f-

s () = (FO) +£(7) + -

1

Clearly (s,(f)) converges to S f(t)dt (see also (8) below).

)(n + 1)

0

THEOREM. (i) For all fe C[0, 1], (d,(f)) converges to f(1/2) (see also |
below).

(ii) If f< C[0, 1] is conmvex, then

F112) < df) < dualf) < (A0 < si(f) < spalf) < (FO) + A2 |
for all n > 2. ’

Proof. For f= C[0,1] ‘let w(f) = sf(t)dt. Then b(p) = 1/2. Using notatio

0
from [6], let

B.f(12) = Aty + - +£)MAMK ... @)ty - - - ta) =

)1]

—_
K

sf t)/m)dt, ... dt,.

ol o

By a well-known result,

n— 1

[o,i ..... 1]f,, (1/n) S sf m)dt, ... d,

and hence d,(f) = B,f(1/2). For every fe= C[0,1] we have lim B,f(1/2)
= f(1/2) (see [6] and the references given there). We conclude that (d,(f)) c«
verges to f(1/2).
Let fe C[0,1] be a convex function. Then B,f(1/2) > B+ f(1/2), »
=1,2, ... (see [4], [6]), hence (d,(f)) is a decreasing sequence. It follo
1

that /(1/2) < &(f) < dus(f) < &) = {£0) dt.

We have alsof(%)gif(k_l)+3‘“kf( k )’ k=1 ..., n—

n ”n n— 1
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therefore

L% A < ERAES) e ) < sl w32 ana e

theorem is proved.

Let us remark that (4) is an interpolating inequality for the well-known
1

Hermite-Hadamard inequalities. Also, note that the inequality Sf(t)dt <

. 0
< s,(f) can be proved by using the same Hermite-Hadamard inequality. Indeed,

f(t)dt+hl§/"f<t>dt+ et g fide < (1/2) [(,f«» + /) + (£0) +f(5))+

0 (n—=1)/n

+ ({5 )] e o+ 1>Slf<t)dt < X Aifn).

=0

© am— —

3. In the context of sectlon 1 let fe C%[a, b]. Denote m; = min {f”(¢):
:te [a,b]}, M;=max {f’(f) :t< [a,b]}. Using a method from [5] and [1]
let us consider the functions g(t) = f(t) — (myf2)82 and h(t) = (My2)2 — f(2).

Clearly they are convex on [a,b]. Let K, = ¥, (x:; — 2))%/2(n + 1)2(n + 2).
: i<i

Let us apply (2) for the convex functions g and %; we obtain

mK, < nl(% ... %1y — f((% + ... + %,)/(n + 1)) < MK, (5

(n + YmK, < (f(xo) + ... +f(x)/n+ 1) — nllx, ..., %,]f, <
< (0 + VMK, (6)
I.n particular, if fe CZ[O;I'] we have
myl24n < d,(f) — f(1j2) < M[24n. )
Similarly,
my12n < s,(f) — if(t)dt < M/12n. (8)

0
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Theorem B was proved by J. Becker an is an useful criterion of univalence,
Many generalizations of this criterion were obtained in [2], [4], [5], [6], [T}

91

In this paper we shall give a sufficient condition for univalence of a clag
of functions which generalize the results obtained in [3] and is also a new
generalization of Becker’s univalence criterion.

3. Main results.

THEOREM 1. Let f € A and let o« and B be complex numbers If:

o+ Bl <1, a0 @
le(1 — |z]?) - ‘;{(‘;” 1)+ o+B|<1for all ze U 4
then, the function
3 1
= [+ 84+ 1) (e ) - o] =P o
(1}

is analytic and wunivalent in U.
Proof. The function

h(u) = f(“) =14 au+ au? 4 ... (6)

is analytic in U and #4(0) = 1.
Then, we can choose 7y, 0 < 7y < 1, so that / does not vanish in Uz, In this
case, denote by h,(«) the uniform branch of [/(x)]* which is analytic in Uy,
and #,(0) = 1. Let

—t

“z

ho(z,t) = (¢ + B + 1) ghlwuaw cdu = (et Z)etbl 4 (™

It is clear that, if 2z« U,, then ¢ . 2z< U, and, from the analyticity of
in U,, , we have that h,(z, #) is also analytic in U,, for all £ > 0 and

ho(z, 8) = (e™" - z)*B+1 - hy(z, 1) (8)

where ]
hy(z,t) =1 + ... If we put (9)
ho(z, §) = oz, 8) + (% — 1) - hy(e™ - 2) (10)

we have that

h4(0, t) = e¥ # 0 for all positive ¢. Then, we can choose 7,0 < 7, < 7, so that
h, does not vanish in U,, ¢ > 0. Now, denote by A4(z, ¢) the uniform branch of
[114(2, t) JWe+8+1) which is analytic in U,, and % (O t}) = e84+ It follows
that the function

L(z,t) = e~ -z - hy (2, 1) (11)
is analytic U,, and L(0, ¢) = 0 for all ¢ > 0.
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1-(@tB)
It is also clear that e~ - %4(0, ) = ¢!+@+®  Now, we can formally. write

(ssing (7), (8), (9), (10) and (11))

L(z 1) =[(a +p+1) S fo(u) - ub du (e —1) - fx (et2) - (et z)a+l"a'+' B

0

-~

1—(atB)
=z . ¢ 1+(@+B) +.'_=z.al(t)+
'From (3) we have that Rel=*P - 0 and then
1+ (a4 B
1-(a+B) s Rl (@+®)
lim |a,(¢) | = lim[e!+l@+®) | = lime  1+E+B= oo
a0 t—c0 t—00

L(z, t)/a,(?) is analytic in U, for all # > O and then, it follows that {L(z, #)/a,()}
is uniformly bounded in U, Applymg Montel’s theorem, we have that {L(zt)/
fa,(f)} is a normal family in U,,. Using (10) and (11) we have.

—a—B
At oty [____l____ Rz, t) 5¥BFT . O D g g a+ﬁ!l] 13
20— (o) - |y Ul 9) R ) (13)
—a—8
Because %,(0, # = ¢* % 0 we can define an uniform branch for [A,(z, )] «t8+1
which is analytic in U, , where 0 <7, < 72 is choosen so that the above
—a—p
—mentioned uniform branch, which takes in (0, #) the value ¢” TFBFT and  does
not vanish in U,,.

It is also clear that dh (2, t)[0t is analytic in U,, and then dL(z, #)/d¢ is also. It

follows that L(z,¢) is locally absolutely continuous. Let

]')(Z t) _ z0 L{z, t) / oL (z, ¥)

1724 ot
In order to prove that p(z, f) has an analytic extension with positive real part
in U, for all ¢ > 0, it is sufficient to prove that the function:
plz, t) — 1
Pz, ) + 1

.

(14)

w(z, 1) = (15)

is analytic in U for ¢t > 0 and
|w(z,¢)| <1 for all ze U and ¢ > 0. (16)
Using (6), after simple calculations we obtain

(e 4 Be®) - h{e™ - 2) + afe® — 1) f'(e™* 2)
w(z, #) = e . h(e—tz)

(17)

Because h(e~* - z) does not vanish in U,, and is analytic, it follows that
#(z, f) is also analytic in the same disc, for all ¢ > 0. Then, w(z, {) has an analytic
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then the function

h(z) = S[I(ML’] du (24)

is analytic and univalent in U.
Mter simple calculations, we have that condition (23) is equivalent to:

. hn(z) -
1— 1z18) - .z__ < 1. 0
(1=l 22 (25)
Then, Theorem 1 with f = —a« is equivalent.with Becker’s criterion of univa-

lence (see Theorem B). Then, Theorem 1 is a generalization of Becker’s criterion
of univalence.

Remark 2. If, in Theor m 1, B = —1 we find the results obtained in [3].

4. So \ zases.

The following particular cases have been studied with other methods by
prof. P.T. Mocanu in his works related to hypergeometric functions. The rea-
son of taking again these examples is to show that the subordination chains me-
thod is available too for such kind of problems and is liable to improvemeunts.

Example 1. If a<= C and b is real, b > 1 and

|x]
() o p=C, ey <b, a#0, |, + 8] <1

me (—oo, —b—1] y [ + 1, ) where
(b} ( b—1]Ju [0+ 1, ) wh
m=max {Rea, Ima}.
then the function
PR S
) Flz) = [(oc +84+1 tSH;-du]ﬁB“ is analytic and univalent in U.
. a u o

o

Proof. Let f(z) = :f . It is clear that fe A4.
a4+ z -

It is simple to show that:

lf"(2)[f(z2) — 1] < % <‘1—+I+BI and because
ol

1- 22 <1, 2z U, it follows that

(1 — 123 - 12f'(2)/f(z) — 1| < Az let Bl .Now we can apply Corollary 1

lo|

for f, « and § and we obtain the result.
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Example 2. If «, B are compléx, a#0, [a 4+ B|<1and

p 1~ |a
(d) lx + BI

o > 1 then, the function
« 4

z
2 . yat@

1
du]a+a+l is analytic and univalent in UA
(2 + w)B

() F(z) =[(« + 8+ 1)8

2z
24z

Proof. Let f(z) = . It is clear that f= A. After simple calcu]ati+

we have that:
(1— 1213 - | @) — 1] < 1 @fz) — 1] <1 g<—12F+BL ﬁ

If we apply Corollary 1 for f, we obtain the result.

Remark 3. Example 2 is not a particular case of Example 1 because
Exemple 1, condition b > 1 was necessary and in Example 2 we have b=

Remark 4. If o, B are real, B8 [—1, 0], «#0, —B < « < 1_26.
the function F defined by (e) is analytic and univalent in U.
1— a4 Bl

o]

Proof. —B < & < 1_2 i is equivalent with > 1 and then, §

applying Example 2 we obtain the result.
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ON SOME PARTICULAR CLASSES OF INTEGRAL OPERATORS
GABRIELA KOHR* and MIRELA KOHR*

Bevived: yune 4, 7990
ANS swbject clasmjnmon 30C45

REZUMAT — Asupra unor clase de operatori integrali, In lucrare sint demonstrate
mai multe teoreme de subordonare diferentiali, care generalizeaz3i o serie de
rezultate cunoscute.

1. Introduetion. Let A be the class of analytic functions f in the
dic U normalized by f(0)=0, f'(0)=1, and let «, ¢ be complex numbers, with
Rla+¢) >0, a#0.

We define the integral operators I and J on A4, by

F(z) = I{f)(») = [“_;c ;f“ (f)cp‘(:tjlh'(t)dt]l/a )
«ad ¢
i Gt = Jee) = [ - :l-c . ‘S g et /z’(t)dt]l/a (2)
'Exespectlvely °

DEFINITION 1(4]). Let ¢ be a complex number such that Re ¢ > 0 and let
N = N(c) = [|c](1 + 2Re )2 + Im c]/Rec.
Ik is the univalent function h(z) = 2Nz/(1 — z?) and b = h~Y(c), then we de-
fne the open door function Q as '

A z4+ Db 3
Qc(z)_h(l_i__),zeU. (3)

Ve will need the following four lemmas to prove our results.
mia 2. Let «, ¢ = €, with Re(fa +¢) > 0, o # 0 and let f, g, h & A satisfy

2f'(2) zg'(2) zh"(2)
C—‘l - < a4-c Z)
“f(z)-l—( )g(z)—l- ,()-l- Qutc (2)

tereQuye 15 given by (3). Then F € A and F(z2)]z # 0in U, Re[

This lemma is a slight extention of Theorem 1 in [5].

z2F’ (z) + C]> 0.

® University of Cluj-Napoca, Faculty of Mathematics, 3400 Cluj-Napoca, Romania

{- Mathematica 2/1990
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le)cﬁ%)’o
LEMMA 3 [2). Let Mz) be a complex function defined in U with Re:(z) > (

{ZZ/ Ife(;( §f>pgf;: Zazal_()]nf‘w m U and Re[p(z) + Nz)2p'(2)] > 0 for 2 T

LEMMA 4 (1) Let B and v be complex numbers and let h(z) = c + bz 4 .
be convex (univalent) in U with Re[Bh(z) +v] > 0,2€ U. If p(z) = c + pc —

is analytic in U then +Pg+
~2p(2) '
N i oL ] = [
PE) + oy <) = P < h(z), 2= U (A) 3

LEMMA 5(3). Let B and y be complex numbers with B # 0, and let h(z) be convez
(univalent) in U. Set P(z) = Bh(z) + v and suppose Re P(z) >0, ze U.
If 1/P is convex 1n U then the solution of the equation

29°(2)
—_ =} 0) = 2(0)),
)+ = (z) (g(0) = h(0))
1s univalent and is best dominant of (4).

2. Main results.

THEOREM 1. Jet f, g, h, o= A and let q be a convex (univalent) in U
with q0) = 1. Let a, c= C, a# 0 with Re (« + ¢) > 0 and suppose g, h, s
satisfy the conditions

2g'(2) z9'(2) zh*'(2) -
= c—1) —= A , 2 U. 3
a-gy Tle— N —=+=ms+1<0 e (2 (5) (

F 1
Supposc that F= A and F@)fz# 0 in U. If G[(:)) £0, ﬁzj

f(Z)l + f(z)) .[c—l . 292) +_. zh”(z) + l—c]‘_< a(2)
e fy* 8@ « o) o« W)

*ov

z2F’(z)

then - < q(z)'wkere F and G are defined by (1) and (2) respectively.

G (z)F(lx)_“
Remark. The condition F€ A and F(z)/z # 0, z< U is satisfied if (f
example) :
zf (2) zq;’(z) zh’ (z)
f() te—-D =0 R'(2) t e R

Proof. By Lemma 2 the function G defined by (2) is analytic
, G(z)/z# 0 and Re [aG'(2)/G(z) + ¢] > 0in U.If we setp(z) = zF'(2)/G*
Fl-a(z), then p is analytic in U and $(0) = 1. A simple calculation yiel

zf (2) [ f(2) c—1 29’(2) 1 z) 1—c¢ _
. & (f iy ® ‘€(Z)J [ « o(2) + x h(z) ]?
)=
= p(2) + M2) - ') pe= 2704 C
where A(z) = 1/ [azG’(z)/G(z) +¢] and so Re A(z) >0 in U;

+ <Qa+c( );ZEU

AT e
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Since f, g, &, ¢ satisfy (5) we deduce that:
) + M) - 2p'(0) < gla), 2= U
ltis clear that all the conditions of Lemma 5 are satisfied and we obtain
P(z) < g(2) in U.

If we let @(2) =z, #(z) =2, «= R in Theorem 1, then’ we obtain:
(OROLLARY 2. Let fe A and let g be convex (uniyalent) tn U with q(O) =1,

Letabe a real number with o > 0 and ¢ be a complex number with Re {a + c) >0
md suppose g A satisfies the condition

AN + ¢ < Qute(2), z€ U.
&(2)

Suppose that Fe A and F(2)]z+# 0 wm U.
2f'(2) 2F'(2)

If ———— L g(2) then ——— < z‘, ze€ U, where
— i 9(z) then Fize 9(2)
F(z) = [2Ee S fo () - o=t dt]"“. . (6)
£ 0
G(z) — [m gga ( . ge—1 dt]lla (7)
zc
0

This result was recently obtained by S. Ponnusamy [6 1'05—106].

If we take g = f then, from Theorem 1, we obtain:

WROLLARY 3. Jf o L@ 4 (o _ gy 2@ | 270 i) +1<Qutc(2), 2 U,

f(z) )
b L& o= L 2@ 1y 120 ¢ g(a), implies that 222 <q(),
£(2) M ?(2) @ K@) F&)

vhere F 15 defined by (1).

If we take @(2) =2, h(z):z, in Corollary 3, then we have
WROLLARY 4. If ¢ is a convex (univalent) in U with g(0) = 1, +f f=A . satis-
fies o 2L ) + ¢ < Qu4c (2) them the function F defined by (6) also satisfies

For ¢q(z) = (1 4 z)}/(1 — 2z), from Corollary 4, we deduce:
WROLLARY 5. [If fe A satisfies oazf'(2)[f(z) + ¢ < Qase(z) 2 € U, then
Je S* implies F = S*.
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If we take ¢ =0, a = R in Corollary 5, we have:
COROLLARY 6.Jf o> 0 and if < A satisfies azf'(2)If(z) < Qulz) then

function F given by -F(z ( s () "ldt) belongs to S*.

This result was obtained by P. T. Mocanu [4, Corollary 2.1].
THEOREM 7. If f, g, h < A satisfy

2f'(2) c—1 . 29’(2) 1 zk(2) —c

o T e T v <, (3)

where g is convex (umivalent) in U, and Re (aq(z) +¢) >0, 2 U, ql0) =
then 2F'(2)[F(2) < q(z), where F is given by (1). 1Q0)=4

Proof. If we let p(z) = zF’(z)/F(z), then p is analytic in U, with p(0) =
Since rcg),,’

F(z) = [££ ff“ ey W]
0

'

‘we deduce

o) = B - [SLEEEED e ]’ )

c+ a ‘P(,)lh(z)
¢

Hence p satisfies the differential equation

2p’(2) 2f'(2) c—1 29(2) 1 zh"’(2) 1—c¢
b4 = . 2%, =7
P+ ¢ + ap(z) f(2) + o ?(2) + a (2 + «

and according to (8) we have
A
—— < g(2), 2€ U
P+ E0 < qle), 2
Hence by Lemma 4 we obtain that p < gq.
If we take @(z) =2, h(z) = 2, «a > 0, from Theorem 7 we deduce
THEOREM 8 [6, 107—108]. Let f <= A, let ¢ be a complex number with Re ¢ 3
c#0, let q be aconvex (umivalent) in U with g(0) =1 and let F
defined by (6). Rec20
Then zf'(2)[f(2) < ¢(2), z € U, implies that

2F'(2)
F(z)

<c-z7¢ St‘-} - q(t)dt, for z€ U. (_U)‘
. A

The result is sharp.”
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Proof. If we put p(z) = zF'(2)/F(z) then we have
Zf’(Z) — C_IZP/(Z) +p(z)' s e U.
f@ ,
Sience f € A satisfies (9) «+—0, the conclusion of the theorem follows from
maJ. For —% < A< %and

14 e—h (2pcos A — e—%A) - 2
142

q(2) = y e <L (11)

obtain that

Re[e"* . %] > p cos A implies (11)

i, 2F'(2) 17 W —e c c—-1 ,
on- 2 < [cz S =1 . g(H)dt] ]
0
ae gfz) is given by (11).
Thecase p =0 of (11) improves the result of Yoshikai [7]
THEOREM 9. Let f, g, h € A satisfy the condition (8) of Theotem 7. [f log P
"IP are convex wn U, where P(z) = og(2) 4+ ¢, 2€ U, then

2F’(2)
F(z)

< q:(2),

n

7:(2) = — = (12)

“wsult is sharp.

Prof. If we set p(z) = zF'(2)/F(z), then by Lemma 5, we obtain that the
tion ¢, defined by (12) is univalent and p < ¢,. This result is the best possible.

I we take ¢(2) = 2z, A(z) = 2z, then from Theorem 9, we obtain:

WROLLARY 10. Let fe A, c e C, Re(a 4 ¢) > O. If% < q(2).
2
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-

Re (aq(z) +¢) >0, log P and 1/P are convex in U, with P(3):
z<€ U, then :F'(z)|F(z) < q,(2), where F is given by (6) and q, is gi
The result 1s sharp.
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EXISTENCE AND CONTINUATION OF SOLUTIONS FOR
NCTIONAL-DIFFERENTIAL INCLUSIONS OF NEUTRAL TYPE!

ELZBIETA LUCZAK-KUMOREK*

o: Harch 7, 7990
shal dassification : 34460

REZUMAT - Existenfa si continuarea solufitlor incluziuntlor funcfional- dife~
reoflale de tip neutral, In lucrare se studiazi existenta si continuarea solutiilor
incluziunii functional-diferentiale (1) generalizindu-se unele rezultate ale lui
J. K. Hale.

| Introduetion. In this paper we study the functional-differential inclu-
L

, %D(t, %) < F(t, x,) (1)

% F is a multivalued mapping taking as its values nonempty compact
stsof R» and D is a single-valued mapping with values in R%. We will
st the equation (1) by the assumption that F satisfies the Carathéodory
eanditions. This paper is related to the previous paper {[5]) of this author,
wihe existence of solutions of (1), in the case when F has a Carathéodory
do, has been considered. ‘ _

The aim of this paper is to present the existence theorem and continuation
oltions for functional — differential inclusion (1). The results of this paper
enize some results of J. K. Hale ([2]).

2 Votations and definitions. Suppose » > 0 is a given real number, R =
-7, ), R* is a real m-dimensional linear vector space with norm |-/,
1}, R is the Banach space of continuous functions mapping the interval
binto R* with the topology of uniform convergence. If [a, b] = [—7, 0],
ltC, = C([—7, 0], R") and designate the norm of an element ® in C,
0= sup |®(0)]. For every fixed t< [6, 6 +a], =R, a >0 by
-r<6<0

w denote a mapping of [—7, 0] into R* defined by x,(0) = x(f 4+ 0) for
-1,01 where x € C([6 —7, ¢ + a], R*) is given, » > 0. )

B L{le, ], R*) we denote the Banach space of all Lebesque integrable

b

tins of [a, b] into R* with the norm |-| defined by |f| = S |f(t) |d¢ for

[{s, 5], R*). For Banach spaces X and Y, by £(X, Y) we denote the
ath space of bounded linear mappings from X into Y with the operator

1 This research, was partly done at the Instituto Matematico ,,Ulisse Dini”, Firenze, Italy,
the author had a scholarship from the Italian Government
¢ Twhnical Undversity, Institwle of Mathematics and Physics, Zielona Gora, Poland
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topology. If Ke £(C,, R"), then the Riesz representation theore
that there is an n X n matrix function n on [—7, 0] of bounded vai

that KY = S[dn )1(8), ¥ < C,,.

Let Comp (R") denote the space of all nonempty compad
R». We will consider Comp (R*) together with the Hausdorff met

Assume that Q is an open set in R X C,, and that F: Q-
satisfies the following conditions:

(i) F(-, @) is measurable for fixed @ = Il¢, (Q)

(ii) F(¢, -) is continuous for fixed ¢ = g (Q),
(iii) there is a Lebesgue integrable function m R - R+ such th
WE(, @), {0}) < m(t) for (¢, ®)= Q

where Hg (Q) andIl¢ (Q) denote the prOJectlons of Q on the real li
respectively.

DEFINITION 1. Suppose is an open set in R X C,, D: Q-1
nuous, D(f, ®) has a continuous Fréchet denvatlve Dgy(t, ©) with
® on Q and

0
Di(t, O = [don (1, @, 6)]¥(6)

for (¢, ®) = Q, ‘-F e C,, where v (¢, ®, 0) is an # X # matrix wi
of bounded variation in 6 € [—7, 0]. For any pin [—7, 0] we sayl
at g on Q if
niE, @, B%) — @, @, B
det A(t, @,
where A(¢, ®, B) is continuous in (¢,
(¢, ®, s, B) continuous for (¢, )= Q s
B+s
(N [dontt, @ OTF(6) — A, @, B¥B)] <1t ©, 5, B)] ¥} o
B—~s
s >0, %YeC,.
DEFINITION 2. Suppose © € R X C,, is open, D: Q- R* is 1

tinuous function, D is atomic at zero and F : Q — Comp (R") satisfies
{1) — (iii). The relation

A, @, )
#0

) =
B)
®) and there is a scalar
>0, y¢, @, 0, ) =0sud

d
’dTD(t, x‘) (= F(t, x,) !

N

is called the meutral functional — differential inclusion (NFDI).
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DEFINITION 3. For a given NFDI a function x is said to be a solution
(I)if there are s« R, a > Osuchthatx = C([oc — 7, 6 + a), R"), ({, 1) = Q,

‘s, 6 + a) and x satisfies (1) for a.e. f € (5, 6 + a).

Notice that this definition implies that D(¢, x,) and not x(f) is continuously
iierentiable on (o, o - a).

DEFINITION 4. For a given (6, ®) € Q we say x(s, ®)is a solution of NFDI
1’5 —1, 6 + a) through (o, ®) if x(s, ®)is a solution of (1) and x4(s, ®) =
i 0. .

3. Existence theorem.

HEOREM 1. If Q < R X C,, 1s an open set and (1) s NFDI then for any
5, 0) € Q there exists a solution of (1) through (s, ).

Proof. If the derivative Dg(¢, @) of D(¢, ®) with respect to ® is repre-

wted as
0—

Dylt, ®F = A(t, ®, 0)¥(0) — S [dyn(t, ©, 6)1¥(6) 2)

-t
Ekn the definition of atomic at zero implies det A(f, @, 0) # 0, A(¢, ®, 0)

lsontinuous in (¢, ®) and there is a scalar function y(f, ®, s, 0) continuous
frff, ) Q, s >0, y(¢, @, 0, 0) =0 such that condition (%) for B =0 is

tre.
A function «x is a solution of (1) through (o, ®) if there is an a > 0

suh that x € C ([c — 7, o + a), R") and x satisfies the inclusion

r' {%D(t, x,) € F(t, x,) for ae. t € [o, 6+ a] 3)

1, = O
let C°({o, o + a], R*) denote a Banach space of all continuous function
2:76, 6 + a] - R* such that z(c) = 0. For every z2€ C°([s, ¢ + a], R*). we

dine 2 C([o'— 7, o + al, R?) by x(t) = Xjor, 01{8) = 0 + Xo, 0a)(8) - 2(2).
Now, we can define, for every ® € C,, and for each fixed s« R and a > 0,

amapping (@ @ z) € C([6 —r, 6+ a], R*) by setting
Ot — o-) for t e [6 —7, o)
()—I—z()forte[o 6+ al.

!

(e®@3%) (t)=|

In what follows, we shall denote {(® @ z) by (® @ z) If x is a solution of (1)
fthrough (0, @) on [0 —7, 6 + a] and x() =(0@2)(¢), te [6 —r, 5§+ al,
'ther - satisfies the equation

I; D, (®®2),) < F(t, (B@2)) for ae. t< [0, 6+ al "

z°=0

Since F: Q@ — Comp (R*) satisfies conditions (i) — (iii), then in virtue of paper
(3]) there exists a continuous mapping f:A— L([s, ¢ + @], R*), where A is
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conipact subset of C( [6, 6 + a], R?), such that f(z)(t)e F({, (PD:,
a.e. € [0, 6 4 a]. Then x is a solution of (1) through (s, ®) if and o~
there is an @ > 0 such that z satisfies the equation:

D(t, (? ®2),) = D(s, D) —l—Sf s)dr for ae. £ < [0, o + a]
24=0 CF)

In virtue of (2) and the definition of the mapping (® @ z) we have
At(® @ 0),, 0)2(0) = Do(t,(P @ 0),)z, +

+ g (it (®10 0),0)1z8).  (6)

Therefore, usi'ng the fbrmula (5) and the property of mapping D we ge:
AL(®®0),0)2(0) = (¥)

0—

= D (1,(D @ 0),)z, + g "deni(t,(® @ 0),,0)12,(0) +

+ D(s,®) + j f()=)ds — Dit(@ @ 2)) =

[

0—

= D (4,(® @ 0),)z + g [den(t,(® @ 0),,0) J2(0) +

p—y .

+ D(e,9) + f2)()d= — D(1(2 @ 0)) — [D(t(@ & 7)) —
D ® 0)] = Di (40 @ 0)) + D(s,®) +
+§ [den(t,(® @ 0);, 6)1z,(0 Sf

D (@@ 0),) — (:(CD@O):) : — (P @ 0),2) =

—Sden(ucb@m 6) 2,(6) + D(o, ®) +

— D(t(®® 0),) + S f@ R — gt @ 0)y)
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. s, @ 0) =0, |g(t o, ‘1’) gt 9, &) [<8(t 9, 8) || @—E]| for (¢, ¢)=Q,
Wig s, 1B <3, &(¢, 3) is continuous 1n t, ¢, 8 for (¢, )e Q,
0 and &(4, o, 0) = 0. Then because z(0) = z(¢), it follows

(t)=A71(,(200),, ){ S [don(t, (@ 0),, )]z () +

-7

+ D(s, ®) — D, (D@ 0)) — g(t, (P DO, 2) + S f(z)(‘r)dr} (8)

for a.e. t € [0, o + a]

ne let
(0 for te [6 —7, o]

A7, (D@ 0),, 0) {S [dos(t, (@ O0), 6)]2(0) +

-7

+ D(s, ®) — D(¢, (D ®0)y) — z(t, (P @ 0),, z,)} for a.e. i= [0, 6+a]

od
0 forte {6 —7, o]

s t
'A (P O0), O Sf d for ae te [6, o+ a]

ten (8) is equivalent to the equation:
) = (T2)(t) + (S2)(t) where z< C([6 — 7, o + a], R, 2z, =0.
)e now proceeds as in [5], (Lemma 1), to show that there are positive &, &
o that if
5, 6) ={<C(lo—7 o+al, R): & =0, |[5]|| <5 for
te [0, 0 +al}

tea T: &(@, b) » C([6 —7, o 4+ a], R*) is a contraction, S: &(4, §) » C([c —7,
s+d), R") is completely continuous and T + S:d (4, b)— a (g, b). It
mplies the existence of a fixed pointof T + S in 4 (4, b) (see [1], Lemma 2.1)
ad thus a solution of (¥) through (s, ®). The proof is complete.

4. Continuation of solutions. Let Q be a nonempty open subset of R X
xCy and let F and D be such that for every (o, ®) < Q NFDI has at least

one local solution on [o¢ — 7, a), a > o, through (s, ®). We say P is a com-
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tinuation of x if there is a b > a such that 7 is defined on [ — 7, b),
cides with x on [6 — 7, @) and satisfies (1) on (a, b).

A solution x of (1) on [oc — 7, a) through (5, @) is said to be nong
nuable if no such continuation exist, that is the interval [¢ — 7, a) is the
ximal interval of existence of the solution x.

The existence of noncontinuable solutions of NFDI follows from the
ratowski—Zorn’s lemma. The proof of the following theorem is based o
thesis of M. Kisielewicz ([4]).

THEOREM 2. Let D and F are such that for every (¢, ®) € Q, Q < R X
1s open, NFDI has at least one local solution through (s, ®). Then for 4
(0, @) e Q there exists a noncontinuable solution of NFDI through (o, ®1.

Proof. Denote by y(s, ®, F) the set of all functions x: {6 — 7, a,)
that each restriction #|;4—, , = a* with u e (o, a,) is a solution of NFDj
[6 — 7, u] through (o, ®). Let us introduce in (¢, ®, F) an ordered rek
< by setting x < v if and only if x is a restriction of y to any subints

6 —7,a,) contained in the domain [¢ —7,4a,) of y, for %,y < y(o,
(x(o, @, F), <) is a partially ordered system such  that only (X,, <) with
containing all restrictions a* of x e x(o, @, F) are totally ordered subsy
of (s, @, F). Since for every z € X, we have z < x, then every totally ¢
red subsystem of %(o, ®, F) has an upper bound in y(s, ®, F). Thus, by ¥
tue of Kuratowski—Zorn’s lemma, there exists in (s, ®, F) a maximal
ment xy,,x defined on any interval [6¢ — 7, @) that is a noncontinuable sold§
of NFDI through (o, ®@).

DEFINITION 4. If D is atomic at § on Q and W is a subset of Q, we s3
is wuniformly atomic at B on W if there is an N > 0 such that [4~X
B)] < N, |Dgp(t, ®)| < Nforall(t, ) = Wand~(¢t, ®,s, B) » 0ass— 0 unifory
for (¢, D)= W.

Now, snmlarly as in the paper of W. Melvin ([6]) we can prove
following general ~ continuation theorem.

THEOREM 3. Suppose Q is an open set in R x C,, (1) is a NFDI
Jor any closed bounded set W in with a .8 — neighborhood also in Q, F : R
— Comp (R*), D(¢, ®), Du(t, ®) are umiformly continuwous on W and D is
Jormly atomic at zero on W. If x is-a noncontinuable solution of (1) on {a
b), then there is a t' € [o,b) such that (', x, ) W.

Proof. Suppose » > 0 and b finite.
I. If there is a sequence 4 — b~ and ¥ € C,, such that x,, , ¥, then the

that » > O implies that x(¢) is uniformly continuous on [¢ --7,b) and x
- %¥0) as ¢t— b. If we define x(b) = ¥(0), then (b, x,) must belong to #
boundary of Q or x would be continuable beyond b. Now, the fact that
is continuous and the distance of (b, x,) from any closed bounded set ¥}
positive imply the existence of a f, such that (¢, x,) ¢ W for £ < [4,, D).
II. If no such sequence exists, there are two cases to consider:

1) the case where the set V = {(¢, x,) :¢t< [o, b)} is unbounded ; |
2) the case where the set V, defined above, is bounded. In the first case
have that for any closed bounded set W < Q, there is a constant Aw such i
H®)| < kw for (¢, ®) = W. Let kw, =max {||xs||, kw}. From hypothes§
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Suppose 0 < B < B, is given. Choose ¢, < min(p, ) and K sufficiently
that |A,| <A, & > K. For every &k > K, let

P, = inf{t € [, b): |x(¢) — 2(t — Ay)| > min (B, ¢).
From (9) and (10) we have

\D(be, %p,) — D(pr — B2, 5 )1 2>

= ID(P’“ xﬁh):_ D(ph" xpk—Ak)l - ID(Pk» x’k_Ak) - D(pk s Ak’ xpk_A.)
> Db %p) — D(pw, %, )1 — o1 >

> I —y(s)p — Ney — $(@)min(B, ) — e, =&
Now, one can obviously choose 8, s, €, so that € > 0. Consequently the
thesis that x(f) is not uniformly continuous on [¢ — 7, b) implies that I
is not uniformly continuous on [o, b).
On the other hand for a.e. £, ¢ 4 v < [o6,b) we have

+

D(t + 7, m4e) = D¢, %) + g f()(s)ds,

\

where f is a continuous mapping, such that f(x)(f) € F(¢, x,).
Since

t4t 4T

§ s@eas| < § misyas

we have
|D(f + -, XH-:) - D(t: xt)‘ <M

for (s, %) € W and some constant M.
Then, the function D(¢, ;) is uniformly continuous on [, b). This contrad
completes the proof of the theorem.
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ABSTRACT, — In this paper, we shall give sufficient conditions for the

nonexistence of nomtrivial periodic solutions of the autonomous equation (2.1)
and for the existence of periodic solutions of the nonautonomous equation (2.2).

1. Introduetion. Consider the sixth order constant coefficient differential
guation :

20 4 @, 2™ 4 g2 4 agx + ax + azx + agx = 0. (1.1)
P '
E{s it was shown in [1] that if
a; # 0, a; # 0 and (a5 — -l— aj a;‘) sgn a; > 0, (1.2)

lthen the auxiliary equation corresponding to (1.1) has no purely i imaginary roots
whiatever. By the general theory; this, in turn, implies first of all that (1.1)
ks no periodic solution whatever other than x = 0, and secondly that the per-
trbed equation

0 4 a,xB5) - g, x4 - ax + ax + azx + agx = p(t) (1.3)

i which $( # 0) is any continuous T-periodic function of #, has an w-periodic
wlution subject to (1.2).

The argument in [4] shows clearly that similar cases are valid for the qeua-
ions (1.1) and (1.3) under conditons:

a, > % az , ag <O0. (1.4)

The object of the present paper is to extend the result (1.4) for (1.1) and
(13) to certain equations in which a,, a,, 4,, a5 and ag are not all constants.

Note that this problem was pointed out in [11.
2. Statement of the results. We shall be concerned with the two equations :

2O 4 @10 4 fi(x, &, & %, A9, 20) @ L f(x)% v(2),
+ folx, %, & %, 29, x0)&E + fi(%) + f5(x) =0 (f,{0) =0, f5(0) = 0),

* University of Erciyes, Depariment of Mathematics, 38039 — Kayseri, Turkey
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O 4 4, g, (V)29 + g(@)F + g(B)F + e (22)

+ealx) = Bt %, 2, & 5, 49, 29) ) _ualadkc

in which a, is a constant. The functions f,, f,, f5, f4 &1 Lo» &3 £, 2nd ?
continuous functions depending only on the arguments shown with p w-peri
in ¢, that is p(f + w, %5, %, ..., %g) = P(, %1, %y, ..., %g) for some w» >
and arbitrary ¢, x,, %5, ..., % we shall however requlre here that f;(x)
gs(x) exist and are continuous for all x. W0

We shall establish here the following theorems:
THEOREM 1. Jf

__l..;’

fi(x) <O for all x,, (2.%) 29
and ‘
. . :.

Ja(%y, %3, %3, %4, x5, Xg) > —'ff (xl’ Xg, X3, X4y X5, Xg) (,9..‘1) (28]

for arbitrary %y, %5, ..., %, then the equation (2.1) has no periodic solution whd—i
ever other than x = 0. %
!

The conditions here can be seen to be a generalization of (1.4). Note tha
there are no restrictions on a,, f, and f,.

THEOREM 2. Suppose that

(i) there exist comstants a, > 0, ¢ > 0 such that

&%) | < @, for all %, (3.5) 23
a=inf gy(x)> T at \26) (26
gi{%) < —c for all ;;1, (29 (2.7
(ii) there are constamts Ay > 0, A, > 0 such that
(2, %1, %p, %5, %o %5, %) | < Ao + Aa(1%] + %) (1.8) (2.8

for all &, x,, x5, %3, %,, x5 and 2 ;
Then there exists a constant o > O such that (2.2) has at least one w-periodi:

solution if A, < Zp.
Note again the absence of any restriction on 4,, g, and g,.

3. Proof of Theorem 1. The procedure here is exactly as in [1] and (3
We consider the equivalent differential system for (2.1):
9‘6,-=x,-+1 ('I/=1,2,,5)

&= —a,% — f1(%1 %o - .., Xg)%s — fo(%3) %y — fo(%, Xas ..., X)X — (3] 1

— fo(%2) — fs(%1) (5’”
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fined by setting x, =%, %, =%, %, =&, x, = %, x5 = x4 and x5 = x(5)
£1). Let (&, ..., &) = (Lu(f), ..., Gg(f)) be an arbitrary «-periodic solution
{3.1), that is

(Cult), -, Go(®) = (Lt + o), - .., Colt + ) (3.2)
#some a > 0. It will be shown that, subject to the conditions in Theorem 1,
Cl =O= C2= e s — CG‘

Our main tool here is the function V(x,, ..., %), introduced in [4], which
 defined by

V= x3(% + a1%5) + x4(x5 + % A1%y) — S sfz(s);is - S. fa(uw)du "fs(xl)xz
0 0

(3.3)

Consider the function

0(t) = V(&(t), - -, Lolt).

Since V' is continuous and ¢, ..., {g are periodic in £, 6(¢) is clearly boun-
. Also it can be verified by an elementary differentation along solutions
ths of (3.1) that

ém=%wg~”®

“fts+ A WG A W -G

"Hence 8(f) > 0, by (2.3) and (2.4), so that 6(f) is monotone in £, and there-
e the rest of the proof, can be shown in the same way as in{l]. which
fves ’

L=0=10C =... =21

bject to the conditions in Theorem 1.

4. Proof of Theorem 2: prehmmanes. The proof will be by the Leray-
Shauder technique, with the equation (2.2) embedded in the parameter—depen-
fent equation :

M+ a2+ {(1 — p)a, + pgy(%)}2® + pgy(#)x + {(1 — p)a, + pgs(#)}&
o sgl) + o) — (1= wlea = bt % £ & F, 10, 49) 0 <p < L.
4.1)

Note that when u = 1 (4.1) reduces to (2.2). Also, when p = 0 it reduces to the
lrear equation

2® 4 g, 28 + g2 +a, & —cx =0

which, in view of the conditions (1.4), has no non-trivial w-periodic solution.

J- Mathematica 2/1990
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The equation (4.1) thus has the base features expected of parameter-deper
dent equations for application of the usual fixed point considerations in 2

and hence, in order to establish the theorem 2, it remains only for us to sli;u
that there is a constant D > 0 independent of w(0 < w < 1) such that

%) < D, |#(1)| < D, &) <D, l'?'c'(t)l <D, 2®9()] <D, 1x9() | <D
O<t<w), (&) (4-
for any w-periodic solution x(t) of (4.1).

Before proceeding to the actual verification of (4.2) we shall introduce sox

notations. Throughout what follows, the D, D,, D,, ... whenever, they occ:
are positive constants whose magnitudes depend only on a,, a,, 4, ¢, 4,, =
&> &3, 8, and g5 but not on u. The numbered D’s: Dy, D,,... retain the sax

identity throughout while the unnumbered D’s are not necessarily the sam
each time they occur.

We shall take (4.1) in the more compact form:

L

2@ 4+ 2,29 + g1(x) ¥ + pgy(#)x + (%)% + pgy(%) (4
Y oglx) = uplt, %, % & %, 2@, x9),  (43)
by setting

gi(x) = (1 — wa, + pgy(%)
) = (1 — way + peal®) (ie-4) (44
g(x) = —(1 — plex + pgs(x).
Note here that
lgi(%d) | < a5, &3(%) > ay &(x) < —¢ (4.5) (43

by (2.5), (2.6) and (2.7).

Throughout what follows in this paper let x = x(t) be an arbitrary w-perio-
dic solution of (4.3) and the function W = W(¢t) ,analogous to the V of sectior
3, defined by

W= —X3(%e + ayx5) + x4(x5 + % alx4) - l-'-S sga(s)ds — .U~S go(u)du — g(%)) %

0
- §0°

An elementary differentiation gives that Q5 DL

W = U — pxplt, % % & %, x 9,509) (u6) (46

where ' '

U = 2 4 gl(i)ix® + gi#)@* — gh(x)2? i
> xUr — gy (@] [x] + a@ + ca? (v.%) (4-71
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by (4.5). Subject to the condition (2.6) it is possible to obtain the following more
refined estimate for U:

U > Do(x" + & + #) (4.8)
for some suitable fixed D,. Indeed by (4.7),
U—{Do(x™® + 2% 4 22)} > (1 — Do) — a, [#][x® | + (@, — Do)&* +
1 e, !
+(e= Do) #= (1= D[ 1301 — 2 a(1 — D)1 &I[ + 5 (1~ Dy
[(4a, — ai) — 4Do(1 + a,) + 4D31&* + (¢ — Do)#*
in D, is fixed such that
D, < min{l, % (4a, — ad)(1 + a)1, ¢ } (4.9)
The term (4a, — a2) and ¢ here are positive by (2.6) and (2.7), so that the choise

of a-positive D, satisfying (4.9) is possible. We can therefore assume (4.8) sub-
ject to (4.9) on D,. Hence, by (4.6) and (2.8),

W > Do(x® + &2 + 22 — {A,|£] + A,(& + [&] [ |)}
> Do(a®' 4 # + (Do — = A& — 23 — 4, &

> Dy(x* + 3 + 22) — AT it — D, (4.10)

1

for some D;, D,, if A, is fixed sufficiently small.

Because of the (assumed) w-periodicity of x, we have, on integrating
(410), that

0> D,S (x0° 4 &2 + 22)dt —%Al S &dt — Dyw. (4.11)
2 [1]

(ombined with the inequality

S Xt < %wzrzs 2 gt (4.12)
0

which can be verified by substituting the Fourier expansions of ¥ and x@® in
(412), (4.11) leads to the estimate

X dt 4 D‘S (@ + )it < Dyw.

0

D, —é wn A,

ot o
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Hence, if 4, is further fixed such that

A, w*n=2% < 4D,
as we assume henceforth, then

% D, S (x* + & + #2)dt < Dyw.
0

In particular

w

wa it < D, (a-1%) (4.13:

(1]

Considering now the identity:

&(t) = &(Ty) + [ 2 (5)ds .
T, -;DLU‘/))
with T, fixed (as is possible in view of the periodicity condition &(0) = &(u":
such that x(T,) = 0, we have that

w w

max |%(2) | <S [x® (s) |ds < w1/2( S X" (s)ds) )"2

Ogi<w
by Schwarz’s inequality. Thus (4.13) implies that _
max |%(¢)| < w'2DV2, (4. 1%) (4.14

O<isw

Likewise the fact that &(T,) = 0 at some T, € [0, w] combines with (4.14,
to yield the rémaining estimate: .

max |&(f) | < w2D}2.,  (&.15) (4.15:
. I<isw
and similarly from the fact that #(7,;) = 0 at some T, < [0, w] we have that
max |£(¢) | < w¥2DM2. ([4.t6) (4.16)
O<t<w

To obtain an estimate for x(¢) first note that, because of the w-periodicity
of x, integration of both sides of (4.3) yields the result

[ — {10 — wpte, 2 2 & 5, 200 20t = o g0
o °
or indeed, in view of (4.16), that

IS{g; (%) — uplt, %, %, & %, 2, x(s))}dt| < D.[wiY (4.17)
o
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and the result (4.20), in the usual manner, that

max |x®)f) | < w'2D}2, (4

0<isw

In turn. {4.21), combined with the identity
¢

#00) = 29T, ) + {#0(5)ds
T,

with T4 chosen such that x“(Tg) = 0, implies that

max {x®() | < w¥2Dl2, (4
) O<isw
The result (4.14), (4.15), (4.16), (4.18), (4.21) and (4.22) fully verify (
for the arbitrarily chosen w-periodic solution x(¢) of (4.1) if the 4, in{
is sufficiently small. This now completes the proof of Theorem 2.
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REZUMAT — Dependenta continuéi de date a soluiiilor ecuntiilor diferentiale
‘cu argument meodificat Rezultatele stabilite in aceastd lucrare extind o serie
de rezultate cunoscute cu privire la dependenta continui de date a solutiilor
unor clase de ecuatii diferenfiale cu argument modificat..

1. Introduction. Let us consider the following Cauchy. problem for a first
order differential equation with deviating argument:

[y’(x) = f(x, y(x), y(g(*)), x< [a,b]
Ve, = ¢ , @< a

where f< C([a, b]xR?), g< C([a, b], [a;, b]) and ¢ = Cla,, a].
We search the solutions of this problem in C[ay, b] n C'{a. b].
The problem (1) is equivalent to the following integral equation

(1)

@) + [ £l (o), 3eONds, L 2 [a,b] .
y(x) = )

(%) , X< [ay, 4]
We have
THEOREM 1. (Existence and Uniqueness Theorem ; see [3]). Let
feC(la, b] X R%), g < C([a,b], [a;.0]), 9= Clay, a)
We suppose that :

(i) f satisfies the following Lipschitz condztwn there is a number Ly > 0 such
that '

53, 9) — f(x, 7,8 < Lily —§| + lu— &), for all x< [a,b] and for all
yu.9 %< R, ' -
(i) g satisfies the condition :
)

5 v~ (Nds

a

- 0, when T — o0.

Cla,b]

Then problem (1) has a unigue solution in C[a,, b], which can be obtained by
using the iteration method, starting with any clement from Cla, ,b].

* University of Cluj-Napoca, Depariment of Mathematics, 3400 Cluj-Napoca, Romania
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2. Preliminaries. We will need the following theorem to prove our main
result. Kox

THEOREM 2. (see [4]). Let (X, d) be a complete metric space. Let A, B:X —x
be two mappmgs We suppose that :

(i) the mapping A satisfies the conditions from the contraction principle and F ==
= x:{ ’

(ii) xp € Fg,

(1i1) there is a number v > 0 such that

d(A(x), B(x)) < m, for all x= X.

Then d(x;, xB) < , where a 1s the contraction constant of mapping A.

—a

We denote by F/, the fixed points set of mapping f.
Let [v,b] nRanda, 8= [y, b] We con51der the following Cauchy problem :

‘ y'(x) = f(x, (), ¥(g(x)),  x< [a,b] () )
yivd=elv.] - ~
We assume the following conditions:
(i) f= CLM([& b] x R?), ie,
— there is a number L; > 0 such that
If(x, v, ) — f(x,y,v)| < LjjJu — v|, for all x= [a, ] and for all
Y, #,0 € R, : oL
— there is a number M, > 0 such that
If(x, y, u)| < My, for all xe [«, b] and for all yusR
(i) g= C([« 0], [v, 3))
(iii) ¢ = CL[y, b}, ie.,
— there is a number L, > 0 such that

lo(x) — @(¥)| < Lo|x — y|, for all x,y< [y, 8]
Now, we define the.following mapping, .
@: CLM([«, b] x R} x C([a, b], [y, 8]) X CL[y, b] X [a, 8] = Cz[y, b], which

maps any (f, g ¢, @) into the unique solution of problem (2), corresponding to
f. g ¢ and a.

We denote by Cr[y, &] the set of continuous functions y < C[y, b], which
satisfy the Lipschitz clondition :
(%) — (%) | < T [%, — %,|, for all x;, x, from [y, b].
We suppose that M;+ L, < T.

3. Main results, Now, we can establish the main result of this paper.

THEOREM 3. Under the above conditions, the mapping € is continuous with
respect to all its arguments. \'cﬁ;\
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Proof. We consider the problem

{y’(x) = f(%, y(x), ¥(&(%))),  x< [ab]
Ylva = @ lwa

and, also, the same problem with perturbe(i initial datas: *
[Z'(x) = Iz, 2(x), 2(gx(*))),  x< [a, b] (1)
2,2 = Yl 7

where f, h € CLM([«, b] X R2), g,, 8, € C([«, 8], Ty, 8]), ¢, b= CL[y, b]. We
suppose that

[f =kl <e
I[g1_g2||<€g
He — ] < e

a,a< [« b] such that |a — al <e,
We have the integral equations equivalent to (1’) and (1) -

) — ¢w)+§f@aﬂﬂuw&knﬂa x< [a,b)] 2)
?(¥), x< [y, a]

R §h<s,y(s>,y<g2<s)>)ds. x< [a,0] -
W(x), , x< [v, 4]

We denote by (A(y))(x), respectively (B(y))(x) the second parts of (2)
and (2").

We shall use Theorem 2.

Of course, (Cr[y, ], d) is a complete metric space where d is Cebisev me*
tric, i.e.,

a(f, &) = Hf—gll = max |f(x) — g(x)].
x< [y, b]

Mappings 4 and B, as we defined them, map Cz[y, b] into itself, because

(AN () — (AN(x2) | < (Lo + M) |2y — 2] < T |x — %]
for all «x,, x, from [v, b].
So, we have A4, B: Cr[y, b]— Cz[y, b]

The conditions (i) and (ii) from Theorem 2 are satisfied (see Theorem 1). So we
still have to find a number v > 0 such that ||4A(y) — B(y)|]| < n, for all y €
€ Crly, b].
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We suppose thata < a. There are three cases:
L x< [y, al = (x= [y, a))
II. x< {a, b] = (x = [a, b))

“I11. x < [a, al
Case I is very clear. We have

[14(y) — B(y) || < e so, here 5 = ¢,
Case II. We have the following deliminations:

) — BN | < lo(a) — $(a)| +

1A(
S I£(s, ¥(s), ¥(1(5))) — A(s, ¥(s), ¥(gs(s))) |ds +

I£(s, 7(s), ¥(g(s)) lds < lp(a) — $(a) | + 19(a) — $(a)] +

+
a\.’s“ at

lf(s ¥(s), (&) — Als, ¥(s), ¥(&:(s))) 1ds +

/

+{ 1hls, (), Y(eals)) — bls..(5). Y{gals)) 1ds + Myla — @] <

al\"\* al""’"

’

< e =l +Lola—al+ [1f — 511> — &) + LT leals) — gals) lds+

P~ N

+ Msla — 5| < eyt Logs + (b — a) + LyTeg(b — o) + M, =
=¢ep + (Ly + My)e, + (b — a)e; + L, T(b — e,
Hence ||A(y) — B(y)|I'< ', where
n=(b— a)e; + LT(b — ajeg + €5 + (Ly + M)e,
Case III. Using the same technique, we find:
HA(y) — By | < &g + (Ly + Mj)es
So, here, we have % = ¢, + (Ly + My)e,
In each of these three cases we have:

7—0,if -0, ,50 ¢, 0, ¢, 0.
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Since the Bielecki metric is equivalent to Cebigev metric, we have that, the
mapping € is continuous with respect to all its arguments.

4. Remarks.
a). A similar theorem of continuous dependence, using the same arguments,
can be established for a Cauchy problem of the form

Iy'(x) = f(%, (%), ¥(&1(*)), ¥(g2(%)), - . ., ¥(gm(x))), %< [a, b]

Ve =@

b). The results established in tflis paper extend the theorem given by
RD.Driver in [1], concerning the continuous dependence on ¢, of the so-

lution of the equation
y'() = & y(s(t) , « <s(f) <), fort >4,
{y(t) = ¢()) st [o, t]
and also the theorem given by L. E. E1’sgol'c, S. B. Norkin in [2], re-
garding the continuous dependence on o, of the solution of the equation
{y'(t) = f(t, &(8), 2{t — (8)), -, 2 —TWld), L E > b
y() = o(t) ALY
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REZUMAT. — Transversalitate topologlcd generalizati g1 aplicajli de tip mo-
noton. In lucrare se demonstreazi o teoremd de existentd de tip Browder
[2). Noutatea consti in faptul c# in locul conditiei de coercivitate se impune
o conditie de semn, mai generali. Demonstratia se bazeazd pe teorema de
transversalitate topologicd generalizati, obtinuti in [4]. Aceastd notd constituie
un addendum la lucridrile [4] si [5].

In this paper a Browder’s type result (2] is proved by using our
neralized topological transversality theorem given in [4] (see also [5]).
show that the coercivity condition dssumed by Browder can be replaced by
more general sign condition. This note is an addendum to our previous pa
(41 and [5].

1. The generalized topological transversality prineiple. Let K be a mnor
topological space, X and 4 two proper closed subsets of K, 4 <« X, A # X a
consider a nonvoid class of mappings.

auX,K) < {f: X-> K; Fix (f) n 4 =3}, {l

where Fix(f) stands for the set of all fixed points of f. The mappings in d4(X,
are said to be admissible.
An admissible mapping f is said to be essential if

F'€ QuX, K), fia = f |« imply Fix(f) # 0. o

Otherwise, f is said to be inessential.
Also consider an equivalence relation ~ on @4(X, K) and assume that|
the following conditions are satisfied for f and f’ in @4(X, K):

(@) f fla=f"|a then f ~f';
(h) of f ~ f" then there is h: [0,1] X X - K
such that h(0,.) = f', W1, .) =/, !
(U{Fix(h(t, .)); t= [0,11}) N A =D and h(xn(.), .) is admissible for any ne
€ C(X; [0, 1)) satisfying »n(x) =1 for all x<= A.
We now state the generalized topological transversality theorem.

PROPOSITION 1. -If f and f' are admissible mappings and f ~ f', then f amd
f' are both essential or both inessential.

-
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The next proposition is useful in order to establish the essentiality of cer-
tain admissible mappings. It is formulated in terms of fixed point structures.

By a fixed point structure on a certain space K we mean a pair (S, M) where
Sis a class of nonempty subsets of K and M is a mapping attaching to each D =
€ S a family M (D) of mappings from D into D having, each of them, at least one
fixed point. ‘

PROPOSITION 2. Let (S, M) be a fixed point structure on the mormal topo-
logical space K and let fo < Au(X, K). If for every fe Au(X, K) satisfying fl4 =
=fola, there exist D, < S and fe M(Dy) such that

flxoap, = 7 |xop;
and

Fix () \ X =6,
then fo 1s essential.

The proofs of Propesition 1 and Propos1t10n 2 and some applications can
be found in the papers 4] and [5].

The aim of this paper is to give another application of Proposition 1.

2. The fixed point structure. Now we describe the fixed point structure
which will be used in the next section.

Let E be a real reflexive Banach space which is normed so that E and its
dual E* are locally uniformly convex and let J: E —» E* be the duality mapping.
Set

S ={D; S is a nonvoid bounded closed convex subset of E} (3)
and for each D = S,
Dy={J+T)(J—N):D>D(T); T<D X E*is
maximal monotone in E X E* and N: D - E* is
pseudomonotone, bounded and demicontinuous}. 4)

Recall that a mapping N: D — E* is said to be pseudomonotone if, for any
sequence (x,) in D for which x, — x and lim sup (N(%,), x, — x> < 0, we
have (N(x), x — ¥> < lim inf (N(x,), x, — ¥)> for all y e D. Also, N is said
to be of type (S, ) if for any sequence (x,) in D for which %, — x and lim
sup {N(x,), x, — x> < 0, it follows x, > x.

LEMMA L. The pair (S, M) given by (3) and (4) is a fixed point structure
on E.

This statement is justaBrowder’ sresult [2] (see also [6, Theorem 32 A ]).
Nevertheless, we will insert here its proof.

Proof of Lemma 1. We have to show that each mapping in M(D) has at
least one fixed point, i.e., there exists at least one solution to

% < D(T), 0= N(x) + T(%). (5)
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We will first solve (5) under the assumption that N is of type (S,): In
view of the maximal monotonicity of T in E X E*, (6) is equivalent to:
%< D, {x* + N(x), x — x) 2 0 ce) (6)
for all (», x*)e T.
For any finite — dimensional subspace Y of E with Y n D # &, we look for
a solution y to
yeY 0D (a* 4+ N, 2= >0 (F) (7)
for all (x, x*)e T with xe Y.
Since N is demicontinuous, a solution to (7) exists in view of Debrunner-Flor’s
lemma (see[6, Proposition 2.17]). Thus, the set
Vy = {(y, ~N(y)) € D X E*; (x* + N(y), x — y> > 0 for
all (x, x*)e T with x = Y}
is nonempty. Clearly, the family {Vy} has the finite intersection property ;
thus the family of weak-compact sets {w—cl(Vy)}, Y n D # &, has a nonvoid
intersection. Let (x,, x5) an element of its intersection.
Note that, due to the maximal monotonicity of T, there exists (z, 20) €
e T such that :
(2 — 2%, 2o — %oy < 0. £R) (8)
Now, for an arbitrary (x, x*) € T, we choose Y such that x,x, and z
belong to Y and we take a sequence (y,, —N(y,)) in Vy such that y, — x, and
—N(y,) = x5 . We have ' ‘
<Z* + N(yn)’ 4 —'yn> Z 0’ ('6‘) (9)
for all (z, z*¥) = T with ze Y.
From (9) we get
ANw) Ya—w)> = AN(D,), Y — 2> +AN(@a), 2 — @) <
4
< <Z*' z— yn) + <N(yn)! zZ — w) ( lO) (10)
for all (2, z2*¥) e T with 2€Y and we E.
Taking w = %x,, 2z = 2, 2* = z; we obtain
<N(y»)’ In — x0)> < <ZB » %o —yn> + (N( n)! %0 — x0>’
whence, letting » - oo and taking into account (8), we get
lim sup <{N(v,), ¥, — %oy < O.

This, since N is supposed of type (S,), implies that y,— . Consequently,
%6 = —N(x,) and passing to limit in (10) with w = z = x and z* = x* we
obtain just (6). This proves the solvability of (5) in case N is of type (Si)-
Finally, for N pseudomonotone, use the fact that N 4 ¢J is of type
{S4) for each € > 0, in order to deduce the existence of an y,, solution to

0 N(x) + eJ(%) + T(x)



GENERALIZED TOPE'.)LOGICAL TRANSVERSALITY 417

and letting € — 0, find a solution to (5). This step is well known and we omit
the details. The lemma is thus proved.

The existence of a solution to (5) is known even if D is unbounded,
but under the additional hypothesis that N is coercive with respect to 0 (see
2, p. 92] or [6, Theorem 32. A]). In what follows we shall prove, via Propo-
stion 1, that the coercivity of N may be replaced by a more general sign
condition.

3. Application of the generalized transversality theorem. The main result
of this note is the following proposition.

THEOREM 1. Let E be a real reflexive Banach space, K an unbounded closed
conpex subset of E, T < K X E* maximal monotone in E X E* with (0, 0)e T
ad let N : K- E* be a bounded demicontinuous pscudomonotone mapping such
lia! there exists v > 0 so that

(N(x), ) 20 for all x= K with ||x|| = 7. (1
Then there exists x € D(T) a solution to
0= N(x) 4+ T(x).
Remark. Condition (11) is less restrictive than the coercivity condition:
(N(x), 2) > 0 for all x« K with ||x|| > r.

Under the coercivity condition on N, Theorem 1 was proved in (2, p. 92].

Proof of Theorem 1. The same argument as in the proof of Lemma 1, allows
us, setting N 4+ ¢J(¢ > 0) in place of N, to assume that N is of type (S,)
and in addition, that the inequality in (11) is strict.

We shall succed two steps:

1) Application of Proposition 1. Consider the class

GalK,, K) = {(J + T)* o m(J — N): K, » D(T) ; 9, < C(K, ; [0,1}),
m(x) = A for x € A}
vhere A = {x = K; ||x|| =r} and for each R > 0 we denote
Krp={x<s K; [|x|] < R}

Note that the mappings in d,(K,, K) can not have fixed points in A because,
in view of (11), the inclusion

o (n — 1) J(x) — AN(x) = T(x)
is false for all x = 4. ‘

Also define an equivalence relation on Q4(K,,  K) by setting
J+DTomJ—N)~(J+T)emx (J—N)
if and only if .
A=2A"or {As -2} =1{0, 1}, in case ] - N =0 on A
always, in case | — N=0 on 4.
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Since (J + T)~! is one-to-one, condition (a) is satisfied. In order to ver
condition (h), set _L_ elo U

M ) =+ D)7 e [ty + ] — N). e =4

Clearly, A(n(.), .) € Q4(K,, K) for each e C(K,; [0, 1]) satlsfylng n(x) =
for all x = 4. Also, by (11), the sets 4 and Z = v {Fix (&(¢, +)); t< [0, 1
are d151omt It remains only to show that Z is closed. For th1s let (x,) be
sequence in Z such that x, - x,. We have A(f,, x,) = x, for some?, € [0 1
We may assume ¢, — f,. Settmg ('xm') e

= (1 — £,)nn (x,) + f,ma(x,) and wo = (1 — Zo)m (%0) + ZoMa(%o),
we thus have
. <-—(1 - p’n)](xn) - !"'nN(xn) - x*’ Xy — x) 2 0

for all (x, x*) € T. Letting #'—> o and using the demicontinuity of J and 2J
we get N

(=(1 — wo)J (%) — polN (%) — 2% % — x> >0

for all (x, ¥*) e T, ie., h(ty, %) = %o, as desired.
Therefore, Proposition 1 can be applied. But

J+D*(J—-N~J+T)7-0J—=N)=0.
Hence, in order that the mapping (J 4+ T)7(J — N) have a fixed point, it i

sufficient to prove that the null operator is essential in d,(K,, K).

2) Use of the fixed point structure. We shall now prove that the null ope
rator is essential, i.e., each mapping

f=J+Dren —N) 1-N 30

satisfying f = O on 4, has at least one fixed point. Remark that if J — N ¢
on A, then A must be zero, while if ] — N = 0 on 4, then A is any number
in [0 1]. To do this, for any fixed R > » we consider the mapping

fR = (] + T‘R)_‘1 ° 7](] — N) :KR—) KR’
where Tp © Kp X E* is maximal monotone in E X E* and Tl|g, < Tr (see

[1, Theorem 1.41)
and

2(x) = n(#), if x< K, (12) (12)
0, if x< K \X,.
Clearly, Kre S. We shall prove that fr e M(Kpg), i.e.; the mapping
N Kem EXN =]+ —]) (1) (13)
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is pseudomonotone, bounded and demicontinuous. The last two properties are
immediate. To prove its pseudomonotonicity, consider any sequence (x,) in
K, such that x, — x and

 lim sup (N(%,), %, — x) <O. (14)
According to (13), we have

mln{(](xn)’ Xn — x>’<N(xn)» Xn — x>} < <N(xn)’*xn - x) (15)
Yow, from (14). and (15) and since J and N are both of type (S +), it easily

follows that x,» x. Hence, N is of type (S,) and since N is also demicon-
tinuous, it follows that N is pseudomonotone (see [6, Proposition 27.67). There-
fore, f € M(Kg) and according to Lemma 1, there exists a fixed point x5 € Kp
for /. Moreover, by (12), xz < K,. Since fr(xg) = %z,

* + N(xg), 2 — 2z) > 0 (16)

for all (z, 2%) € Tp and in particular, for all (z, z*) € T, with z € Ky. Now
lt (R,) be an increasing sequence such that R, —» oo and denote x, = xp,.
We may assume’

X, — X € K and N(x,) — x% € E*.
Choose a pair (zo, 2;) € T such that
o+ 2 20— %) < 0. (17)

Yow for an arbitrary pair (x, x*) € T, there is #, such that xy, 2, x € K, for
al # > ny. From (16), we get

<N(xn)' Xp — w> <‘<Z*’ z — xn> + <N(xn): gz — w) (18)
forall (2, 2*) € T with 2 Ky, and we< E.
Taking w = %y, 2 = z,, 2* = z;, letting # > oo and using (17), we get

lim sup (N(x,), %, — %) <O
whence, since N is of type (S +), %, %, and
f;= N(x,). Clearly, x,= K, and
Nxo) = J(%0) + na(%0)(N(%) — J(%o)). Finally, pasging to limite in (18) with
v=2=2x and z* = x*, we obtain
x* 4 J(%0) + M%) (N(xo) — J(%)), x — %> > 0.

(onsequently, x, is a fixed point of f and the proof is complete.
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ABSTRACT. — In this paper we have established a relation between the
[N, Paly and [N, g¢,1; boundedness. Also some results have been obtained.

1. Let Za, be a given infinite series with the sequence of partial sums {s,).
l¢ (p,) be a sequence of positive real comstants such that

P, =3 p, >0 as ns0, (Poi=py=0,i 3 1) (1)
v=0

%e series Y a, is said to be bounded [C, 1], if (see [4])
i|sv| = O(n) as #— oo. 2)
v=1

Fesay that the series Ean is bounded [C, 17, &k 2 1, if
Z”_‘, [sy|* = O(n) as n— oo. (3)

I the special case k = 1,v=[;), 1], boundedness is the same as [C, 1] boun-

dinness. The series 2(1,, is said to be bounded [R, log n, 10,, k& > 1, if (see"
®)

év‘l s, |¥ = O (log n) as #n — oo. (4)
v=1

Te series ) a, is said to be bounded [N, p,], if (see [2])
35,15, = O(P,) as #— co, (5)
v=1

ud it is said to be bounded [N, p, 1, k = 1, if (see [1])
T pylsF = O(P,) as n - co. (6)
el

Iive take £ =1 fresp. p, = 1 , then [N, p,], boundedness is the same as
n
.4, (resp. [R, log#, 13;) boundedness.
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Also in the special case p, = 1 for all values of #, [N, p,], boundedne
th C, 1], boundedness.
e same as [ ], boundedness m) f"')ﬂ

2. The object of this paper is to establish a relation between the [N,
and [N, ¢,7, boundedness. Now we shall prove the following theorems.

 THEOREM 1. Let k > 1. If Za, is [N, p, Y bounded, then it g also ['N
bounded provided that (p,) and (q,) are positive sequences such that as n.

: > m->o-
a) PaQn = 0(quPs), b) 9. P, = O0(£40n). (¥
3. Proof of Theorem 1. To prove the theorem we have to show that

g lsP=0@Q,) as n>w.  (8)

v=1

Since ¢, = 0(%&), by (7. b), we have

;q 15, F = O(I)Vi;%”msm 1 %)

Applying Abel’s transformation to the right hand side of (9). That is to
we have

” gi y n—lA (21) v " gﬁ n &
X blsl =T AT St s

v=1

Sinceipv s, |¥ = O(P,), by hypothesis, we have that
v=1

2 % plslt = (1>§A (%)P +0(Q))

= o Tl f — Jet e ]P,, +0(0.)
v=1

Pv Pv+l Pv . v

P, Pyiq

DE @ — 0 + 0 E Qe — 5] P+ 0@

n—1

=0() T (—gusr) +O(1 2: Quin £+ 0(0,)

v=1

23 gy + O(1) sz B+ 0@

DY o +0(1) 3 0L+ 0.
v=0 v=0 v
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ince Qn% = 0O(q,), by (7. a), we have

n

S 2 p sl =03 g +00) g +0@Q) = 0.

v=1

e
7" ” Q\U
L8, 1F = 0(1 = b, 15, |F = 0(Q,) as n— oo,
Balst =0m & p k=00l

ith completes the'proéf of Theorem 1.
I we interchange the roles of p, and g, in this theorem, then we obtain
following corollary.

OROLLARY 1. If q,P, = O(p,Q,), and p,Q, = 0(q,P,), (10)
i N, q,), tmplies [N, p,7, & > L.

If we put two results together we have the following theorem.

THEOREM 2. Suppose (q,) and (p,) are positive sequences such that satisfy the
wition (7). Then boundedness [N, p,], is equivalent to boundedness [N, q,1,,
L

It should be noted that if we take ¢, = 1 for all values of # in the Theo-
o], then we have the following coroliary.

WROLLARY 3.If np = O(P,), and P, = O(np,), (11)

N, p,], implies [C, 1],, k > 1. )
Furthermore if we take ¢, = 1/# in the Theorem 1, then we obtain the
kving corollary.

WROLLARY 2. If np log nw = O(P,) and P, = O(np,log n), (12)
v N, p,1, implies [R, logn, 1], k> 1.
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REZUMAT. — Observafit asupra ecaracteriziirii elementelor de cea mal b

aproximare, Se considerd problema celei mai bune aproximiri prin elem
ale unei submul{imi p-comnvexe a unui spaiu normat X. Se demonstreaz
teoremi de caracterizare a elementelor de cea mai bunid aproximare in term
unor functionale extremale ale bilei unitate din spafiul dual X*.

For a normed space X (over R or C), a nonvoid subset Y of}
point x € X, denote by d(x, Y) = inf {||x — y|| : ¥ = Y} — the i
% to Y and by Py(x) = {yEY |lx — y || = d(x, Y)} — the (pos
set of nearest points to xin Y (the elements of Py(x) are called also pi
of x onto Y or elements of best approximation for x by elemen

We shall consider characterization theorems for the elements of
ximation in terms of some functionals belonging to a prescribed su
the unit sphere Sy« of the conjugate space X* of X. There are two type
theorems :

— Theorems in which T' is a fundamental subset of Syx (a su

Sx* is called fundamental if it is w* — closed and for every x€
there exists f « I' such that |[f(x)| = [|x]]) on the line of V. N. Ni
[15], {16] and S. A. Azizov [2]; and

— Theorems in which " = ext BX* (the set of the extreme poinl
unit ball Byx of X*). Such type theorems were first proved by L §
[19] (see also [20]) in the case of the approximation by elements of a1
and by A. L. Garkavi [8], in the case of approximation by eleme
convex subset.

In a previous paper [4], we have proved a characterization the
the first kind in the case of approximation of a p-convex set. Fo
number p, 0 <p <1, a subset Y of a linear space is called p«
Y 4+ (1 —p)Y = Y. The p-convex sets are special cases of so calk
convex sets ([10]). See [17] for other generalizations of the notion of ®

The aim of this paper 1s to extend Garkavi's theorem [8] to
of p-convex sets. Some duality and characterization theorem, for
approximation by elements of p-convex sets were proved in [5], ¢
other results of A. L. Garkavi [7].

The main facts about p-convex sets we shall need in the nes
tained in the following theorem :

THEOREM 1. a) If Y is a p-convex subset of a topological vector
the closure and the interior of Y are convex sets, [1];

* University of Clug-Napoca, Depariment of Mathematics, 3400 Cluj-Napoca, Romania
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W IfY is a p-convex subset of a real locally com)ex space X and x € X\ Y,
there exists f< X* such that inf {f(y) 1y = Y} > f(x), [13];
o If Yis a p-convex subset with nonvoid mterzor of a real locally convex space,

cery boundary point of Y is contained in a closed hyperplane supporting
Y at x, [13].

Runark Taking into account the representation of a complex linear
dional f as function of its real part, the above results (the assertions a)
|b) from Theorem 1) can be authomatically extended to the complex case,
leing in all the statements the functional f by Re f.

The following extension theorem was proved by I. Singer [19] (see also
V. lemma II. 12) and A. L. Garkavi [8]:

THEOREM 2. Let X be a normed space and Z a subspace of X. If o € Z*
o ctremal point of the umit ball Bzx of Z* then ¢ admits an extension f
iiis an extremal poimt of the umit ball of X*.

Yow we can state the characterization theorem, which was proved by
Singer [19] in the case of a subspace Y of X and by A. L. Garkavi
Jiora convex subset Y of X.

THEOREM 3. Let X be a normed space, Y a nomvoid p- convex subset of X
}\EX\Y An element yo =Y s a nearest point to x in Y if and only

wery y € Y, there exists an cxtremal point f = f, of the unit ball Byxx of
ok that

L flx — o) = |1z — ¥l

|

i Ref(yo—y) 2 0.

Pof. Sufficiency. Suppose x € X \ 'Y and that y, & Y fulfills the hypothe-

the theorem. To show that y, is a nearest point to x in Y, consider an

tuy element y € Y and let f = ext By, satisfying the condition i) and
Then

1=2|l = f(x — y0) = Re f(x — 30) = Re f(x — 5) + Re f(y — ¥} <
< Ref(x —y) < Ifix =31 < [Ix =]l

me vy € Py(x).

Juessity. If x € X 'Y and y, is a nearest point to x in Y, then y, — %
imarest point to 0 in Y — x. For y € Y denote by Z the linear space
miby y — x and yo — x and let W = (Y — x) n Z. The set W is p-con-
jad yo — x is a nearest point to O in W. By [13], Corollary 2.5, there
pareal linear functlonal P < Z*such that |jo|]| =1, q:(x — Yo) = [|[x — yol|

) =sup {@(y') :y € Y} Putting $(2) = @(z) — 1 - ¢(32), it follows
tthe complex l1near functional ¢ verifies the condltions:

=1, Re d(yo — y) = 0 and d(x — yo) = [|x — yo!|.

Tndeed

“nll > [9(x — 3o} | = [I1x — yo| 2 + (@(s(x — 30))2]"%, implying
=)o) = 0 and $(x — yo) = @(x — o) == ||x — ¥ .
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Now, considering the conjugate space Zj over the real scalars
dimension at most four and ¢ is an element of its unit ball. By the

Carathéodory’s theorem, the functional ¢ can be written in the formg=

where 1 <7 <5, a,> 0, E;=la,, = 1 and ¢, are extremal points
ball of Zg. The functionals §,(z) = @a(2) — ip(s2)will be extremal pj

unit ball of the complex Banach space Z* and ¢ =E;=1a,,¢,,. The!

P(x — yo) = |[x — ¥, [ implies p(x — ¥o) = ||* — yoll, k=1
Re §(yo — ) > Oimpliesthat there exists ky = {1, ..., 7} such that Rej

> 0.

Now, by Theprem 2, $a, can be extended to an extremal functi
of the unit ball of X*, which ends the proof of the theorem.
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REZUMAT. — Asupra unel proprietiitl de aproximare pentru functionalele
Iinlare §i continue in spatil Banach. In aceasti lucrare se pune in evidenti o
clasd de spatii Banach care are proprietatea (A) si se di o aplicatie pentru solu-
tiile aproximative ale unei ecuatii operatoriale.

l. We propose the following:

PROBLEM. Find the classes of Banach spaces X with the property that:

[t for every nonzero continuous linear functional f and for every ¢ > 0 there
exists a nonzero closed linear subspace X, in X which is not included in
Ker (f) and such that:

|f(x)}] < e]||x]]| for all x € X, (1)

HfHXa < g

where [|f|lxe 1 =sup {If(x)] : < X,, ||x]] < 1L

2 Further on, we shall give an example of such spaces. _

THEOREM. Eyery infinite-dimensional Banach space which is ‘isomorphic
(op-linear) to a Hilbert space has the (A )-property.

To prove this fact, we need the following lemmas.

IEMMA 1. Let (X ; (,)) be a Hilbert space and e X, ||e]|]| ='1. Then for
ary o, ve X such that w | v, we have the inequality

Hall 1ol =2 |(u, ¢)(e, v)|. 2

Proof. In paper [1] (see also [2] or [3]) we proved teh following refine-
pent of Schwarz’ inequality in prehilbertian spaces:

el Tyl 2 1 9) = (%, e) (6 2) 1+ |(x, €) (6, 9)| > |(%, 9)]

frall x,y in X and e X, |le|| = 1.

In this inequality if we put: x =%, y = v and (%, v) = 0 we conclude
{3 and the lemma is proved.

The following statement is also valid.

¢ Secondary School, Bdile Herculane, 1600 Bdile Herculane, Caras-Severin County, Romanis,
*¢ Secondary School, Mchadia, 1612 Mehadia, Caras-Severin Ccunly, Romania
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LEMMA 2. Let (X ; (,)) be an infinite-dimensional Hilbert space ams 4
nonzero continuous linear functional on it. Then there exists a closed lincar o

space Y in X such that ¥
() Y and YL are infinite-dimensionals §
and
i) 1flly, 1fllyt > 0.

Proof. Denote N = Ker (f). Then there exists a closed linear subsw
Xo = N such that X, is infinite-dimensional and X\ is also infinite-d*=
sional. '

Iet e= X such that e &« N and Nlisnotincludedin Y : =X @ E .
E : = Sp{e}. Then Y is closed in X, infinite-dimensional and |f||y >0 =
Je) # 0. | Moo

On the other hand Y1 is closed, infinite-dimensional and Y7 is not incx

in N since if we assume that Y1 = N we obtain Y =(Y1 )% 5 N1 what pro.
a contradiction. Consequently, ||f||yl > O and the statement is proved.

By the use of the previous lemmas, we have

LEMMA 3. Let (X ; (,)) and f be as above. Then for all decomposition .
=Y @Y! as in Lemma 2 we have the inequality Xg@ Nt

0< iflly 1Ifllyt <2 {if1E (3)

Proof. Let x; be the representation element (by Riesz’ theorem) of fur-

nal f. Then for all u€ Y, v'e Y! we have (see Iemma 1):
20w, xhxp v} | < Huld Tol} g 2= Hleli Tl TR

what implies the desired inequality.

The following result is important in itself too.

LEMMA 4. Let (X ;(,)) be an infinite-dimensional Hilbert space. Then i
every fe X* \ {0} there extsis a sequence of nonzero closed linear subspaces (X, ien

such that: Cxu)
() X=Xo5X;5X35 ... 5X,5 X115 ... wert

(i) X, is not included in Ker (f) for all n= N ;
(iii) we have the inequality :

0 < 1IfIl x, < /22 |If|| for all n=N. ()
Proof. Let fe X*\_{0}. Then by Lemma 2 there exists a closed li

subspace Y in X such that X =Y @ Y, Y, Y! are infinite-dimensional
Hfty, |1f1lyt > 0. We can suppose that 0 < ||fy||< ||f|ly» Then by Le

we obtain: ‘ (PIPPREN
0 < 11711 < Hflly [f1vte< 12 1IfIP, |



CONTINUOQUS LINEAR FUNCTIONALS 59

jum where results

0 < {Iflly < 12¥ [If]I.

Denote X, =Y and consider the restriction fix, of f to closed linear sub-
ave X,. Then fix, is nonzero on X, and by an argument similar to that presented
ove we can find a closed linear subspace X, in X, such that:

0 < [1ftlx, < 12¥]|fl]x, < (Y2122 |If]].

By induction, we have a sequence of closed linear subspaces (X,),en such

thtj(i), (ii) and (iii) hold and the lemma is thus proved.

The proof of theorem. If (X, ||-||) is a Banach space isomorphic top-linear
toa Hilbert space, then there exists an euclidian norm || ||y on X such that:

m 1zl < #lly < M||x]|] for all z X (m > 0).

Now, let / be a nonzero continuous linear functional on X and ¢ > 0.
Then there exists n, = N such that

||f11#](m 2%e2) < e, where ||f]|F: = sup f) 1/ 1] a (5)
By Lemma 4 we can find a nonzero .closed linear subspace X, so that:
1 Ty, < 12 11711, (6)
Consequently, from (5) and (6) there exists X, : = X, so that:
1 1, < Um L1 < TIF11#(m 200) <,

ad the theorem is proved.

3. An applieation. Let (X ; (,)) be an infinite-dimensional Hilbert space,
1:Dc X - X be a mapping on X and y € X. The element x, € D is called
acsolution (¢ > 0) for the equation (A y)

Ax =y,
rhtive to the closed linear subspace X, in X if
[(x, A% —¥) | < ¢ ||x]]| for all x= X.

PROPOSITION. For every x,< D which is not a solution of (A ;y) and for
ay ¢ > 0 there exists a nonzero closed linear subspace Xo in X with Axg — y
st orthogonal on it and such that xq is an e-solution of (A ;y) relative to X,.

Proof. Let consider the functional fy: X — K, fo(x) : = (x, Ax, — y). Since
% isnot a solution of (4 ; y) it follows that fis not zero and by the above consi-
derations, for every ¢ > O there exists a nonzero closed linear subspace X, in
Ysuchthat X, is not included in Ker (f) and with the property : |fo(x)| < e]}x]|]
for all x € X,.

The proof is finished.
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ABSTRACT. — In this paper we prove some inequalities related to the ele-
ments of a triangle, We shall follow the terminology of [1]. The results are
improvements of the results from [1] and some are of a new nature.

\otation. a, b, c-sides BC, CA, AB of a triangle ABC; a, B, y-its angles;

kb, h-altitudes; m,, m,, m.-medians; w, w, w, — angle bisectors;
R - radius of circumcircle; » — radius of incircle; s — semiperimeter ;
- area of triangle ABC; 7,, v, 7. — radii of excircles.
THEOREM 1. In every tiangle:
Ea~ w2 <2rs‘(4R—|—r) ()

Fuality in (A) holds if and only if the triangle is equilateral.
Proof 1. Since (see [1], p. 76)

a- w:=abc(l — aéj(b + ¢)?), a = 4R sm «/2 - cos a2
b+ c=4R cos a2 - cos (B — v)/2, abc = 4Rys
cos (B — )2 < 1,

¥ have
a-w2 <4 -R-7-s(1—sin?af2),
fhat is
2w} < (3 — ¥ sin® a/2) 4Rrs. (1)
Then, since
sin? «/2 = 1— 7/2R,
(I) implies

a-w; <2rs (4R +7)

ie, (A) holds.
Proof 2. It is known ([1], 8.8) that

w, g\/s(s——a) , w,,g«/s(s——b), W, < A/s(s —¢) .

® Sir. Toplifa, nr. 4 ,4100 Miercurea-Ciuc, Harghita County, Romania R
** 32308 Pranjani, Yugoslavia
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We have

a:w< S(Ea(s — a))
By aplying the formulas

abc = ARys, 3,4 = 2s and I ,a* = 2(s® — 4Rr — 7?)

we obtain the required inequality. Equality in (A) occurs only if the tria:
is equilateral.

Rem)ark 1. The inequality (A) is more precise than 8.13 shown in |}
c(A=1

THEOREM 2. [n every triangle
G +20)r +7) > 274 (B)
Equality occurs if and only if the triangle is equilateral.

Proof. As
h, = 2F|a, v, = F|(s — a) and v = F|s
we have |
(ha + 27)/(r + 72) = 25(1/a(2s — a))
that is

Tk, + 27 7.) = 28 (Lya(2s — a)) () (
We define the function
f(x) =1/x(2s — %) 0 <x<25) (H4) (
Since
f'(x) = 2(3x% — 6sx + 45%)[23(2s — x)3 <O
function f, given by (4) is convex, so that

;Ell/xi(2s — %) > 27 f:x,-)(Gs —_ éx’) (5) @

t=1
If in the inequality (5) we put x, =a, x, = b and x; = ¢, then we obta:
Yi1/a(2s — a) > 27/8s? (6) (6

Now (6) and (3) imply that

Yk + 20)/(r + va) > 27/4
i.e., (B) holds.

THEOREM 3. I every triangle :

TG+ +r) > 453 (O €

and the equality is true if and only if the triangle is equilateral.
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Proof. Let
S =X+ )n+7)
Since
v, = F[(s — a), r, = F|/(s — b), 7, = FJ(s — ¢)
F=v7s, (s—a)(s—0b)(s—c)=7r*-s
and b+ c¢c=2s —a-
We have
S =7Y(2s — a)/a(s — a)
By the formulas
Yibe(2s — a)(2s — b)(2s — ¢) = 2s( N b2%c?) + Tabs — (2s® + abe)(Ybe),
abc = 4Rrs, Ybc = 7 + s2 + 4Ry
and Y022 = st — 8Rrs? + 2%s% + 1652272 + 8Ry® 4 14
We obtain
S = (2Rs)7! (8R + 6Ry + 7% 4+ s?).
It is known that ({17, 5.8, 5.1)
s2 < 4R? 4+ 4Ry 4+ 32 and 2 < R
vhere from implies
5s2 < 5(4R? + 4Ry + 37%) + 2(R — 27)(2R + 37)
the inequality (9) is equivalent to
(2Rs)™* (8R + 6Rr + »% 4 s?). > 45/3R
0n the basis of (10) and (8) we obtain the required inequality.
QUESTION. Js the inequality
T+ +r) <243
tue for acute-ang]ed triangles?
THEOREM 4. ([3]). In every triangle:
Yw? < 52— r(R/2—7)
Equality in (D) occurs if and only if the triangle is equilateral.
Proof. It is known (see [1], p. 76), that
w2 = bc — a*he/(b + c)?

63
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that is

Ywt = e —abe (Ta/(b + ¢2) ()

By applying Cauchy’s inequality we have
(BNa) + o) - Ja)t < (Ba/b+cP)(Ba), ie.

Yo/ + o > 125(Taj® + o) ((3) (
Using the inequality 1.16 in [1i], i.e.

Ya/(b +¢) > 3)2

we get

Yajb + 2 > 98 (1Y) (
On the basis b¢c = > + s + 4Rr and abc = 4Rrs, from the relations (12) a
(14) we obtain the required inequality.

THEOREM 5. [n every trz'angle:

Yljrihy + k) > 162 (E) (
with the equality only if the triangle is equilateral.

Proof. Since the function g(x) = x~1 (x < 0) is convex the famous varia
on the Jensen’s inequality for a convex function may be applid:

3 3 g
Yxl Yo —j)
=1 \pi

t =1

3
Yo
=

4 <

- , %:>0, f >0(15) (1
Yo
=1
Putting

%y = (b + R)rs, %y = (he + Ro)[rs, %3 = (ha + B)[7e

Pr=1re, po = 1in, p3 = 1/r,
On (15), because Y, 1jr, =1/r and

(hy + h;)[r, = 6 (see [2], theorem 1.)
we obtain the inequality (E).
THEOREM 6. In every triangle:

3r - 6 < Ya - Sina2 < 3 -JRCR—7) (F) 1

Equality holds if and only if the trinagle is equilateral.
Proof. Using the equalities

IIsin«/2 = 7/4R, lla = 4Rrs
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and the connection between the arithmetic and geometric means, we have

Sa - fsina2 > 3 §/(abe) sina/2 - sinB[2 - siny/2 =
\ ~3. YIRE -
Then, since ([1], 3.3, 5.11)
R>25(3-3),s>343
(16) implies

Yia - Afsiney2 > 37 - |6

ie. the left part of the inequality (F).
Using the equality

Yia - tga/2 = 4R — 2r
(see [4], Theorem 1.)
and the inequality
Yia - cosa/2 < 9/2R ([4], Remark 4)
We have by virtue of Cauchy’s inequality
(e - cosu2)(Ta - texf2) > (Ko - ysmar2 )

and (17), (18) implies the right part of (F).
THEOREM 7. In every triangle:

3. .J5 —_—
Ya - sing2 < 2*/2 - JR@ZR —7)

Eynality holds if and only if the triangle is equilateral.
Proof. Using Cauchy’s inequality we have:

V2 a-sine2 = YNa/2 - a- sine2 - cos a/2 - @ - tga2 <

§]/(2a - sina) (Y4 - tg«/2)

But (17) and
Yia - sine < 9/2R (see [1], 3.14)
we have .
Y a-sing/2 < 34/2/2 - JRER —7)

ie. the right part of (G).
THEOREM 8. [n every triangle:

it . 2n-1 . pn < Yar - singf2 < (s(1 — 7/R)(Le™1))YE (1 > 1)
Equality holds if and only if the triangle is equilateral.

§ — Mathematica 2/1990 °

(16)

(18)

(H)



66 A. BEGE, D. M. MILOSEVIC

Proof. By the inequality of arithmetic and geometric means we have -
Y atsina/2 < 3[(Ilsina/2)(Ma") ] =

s(s — a)(s — b}(s — ¢) I 1/3
=3( P abc)

= 3 . ((F?/s)(abc)»—1)13 = 3 - (r’s - (abc)r—1)13
Then since abc = 4Rrs, R > 27, s > 34/3/2R we have
abc > 24 4/3 -
and
Ve - sing/2 > 31+niz . 201 .
i.e. the7left part of the inequality (H).
Using Cauchy’s ingquality, we have

(Ta—br - i - sing2)t < (Far)(ge - sintef2) (13)

1

Then since
Ya- sinza/Z =s5-(1-— r)R)
19) implies the right part of (H).
THEOREM 9. In every triangle :
Yartanp/2 - tany/2 > 2* - (((R+ )2, » > 2 (1)
(Equality holds if and only if the triangle is equilateral and n = 2.
Proof. If in Jensen’s inequality (15) for a convex function
g(x) = x2(x > 0, n > 2) we put
%, = a® - tanp/2 - tany/2, x, = b* - tany/2 - tana/2,
xg = ¢* . tana/2 - tan;372
p, = tanp/2 - tany/2, p, = tany/2 - tana/2, p; = tana/2 - tanP/2
Then from
Y tanB/2 - tany/2 = l‘
and
Y,4* - tan/2 - tany/2 = 4r(R + 1)
we obtain the’inequality (H).

Remark 2. This method was shown in [5].
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\ REZUMAT. — O demonstrafte directd a compaectitdtit produsulul de spati

compacete. In lucrare este prezentati o demonstratie directi a teoremiei Iui

N Tychonoff asupra compactitifii produsului unor spatii topologice cempacte.

In the existing literature there are two quite polished proofs of Tychomno::
product theorem which states:

THEOREM. Let A = {a, b, ¢, d, e, ...} be a (finite or infinite) index set a»

for every t = A let C, be a compact topologwal space. Then the cartesian produ.

P=C,-C,-C.-Cq-C.... )

is compact with respect to the product topology.
'~ Both of the abovementioned proofs can be found in [1, p. 143]. Howeve:
both proofs are rather indirect. The first proof uses Alexander’s subbase thec
rem [1, p. 139] and therefore does not start the proof directly with an arb:
trary open cover. The second proof (Bourbaki) considers the dual definitic:
of compactness in terms of the closed subsets and then digresscs by passing ti
the closures of the projections of closed subsets.

Our proof will reflect some sensitive points (such as the distributivity o
U wur.t. n) of the proof of Alexander’s subbase theorem and (such as the
use of Zorn’s lemma) of Bourbaki’s proof. However, in our ploof these points
are invoked directly at the most natural places.

Our proof is intentionally leisurely, self-contained and special effort is made
to keep the proof as clear as possible..

For the sake of simplicity, we introduce a definition and prove two easr
(but essential) lemmas.

Using the notations introduced in the above Theorem, for f < A, let s
be an open subset of the topological space C,. Then the cartesian product E(u.
given by

E(w)=Co-Co-Co- vty ... Cy-- () (2
is called an elementary strip of type t determined by u,.
Clearly, an elementary strip is an open subset of P.

ISR
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. LEMMA 1. Let P be given as in (1) of the Theorem. If P is covered by a set K
{ dementary strips then P is alveady covered by some clementary strips belonging
v K and which are all of the same type.

Proof. Let us assume to the contrary.

Thus, there exists (one or possibly more) x, € C, such that the subset {x,} -
¢-C -Cs-C,... of P is not covered by any elementary strip of type
la belonging to K.

Similarly, there exists (one or possibly more) x, € C, such that the subset
(,-{xn}-C-C,-C,... of Pis not covered by any elementary strip of type
b belonging to K.

In general, for every t € A there exists. (one or possibly more) x; € C, such
that the subset C, - C, - C, - ... - {x}+- ... - C,... of Pis not covered by
ay elementary strip of type ¢ belongmg to K.

But then (using the axiom of Choise) there exists a point, say, (% %, %
o X, ...) of P which is not covered by K.

Thus, our assumption lead to a contradiction and Lemma 1 is proved.

Remark. We observe that neither the definition of an elementary strip
wr Lemma 1 depended on the compactness of C,’s. Indeed, Lemma 1 is valid
for the product of any topological space C, (compact or noncompact). Howe-
wr, iIn Lemma 2 below compactness of every C, is essential.

LEMMA 2. Let P be given as in (1) of the Theovem. If P is covered by a set

K of clementary strips then P is already covered by a fimte number of elementary
irips bclongmg to K and which are all of the same type.

Proof. By Lemma 1, P is already covered by a set K of elementary strips,
gy, of the same type t given by

K = {E(w), E(v), ..., E(m), ..., E(w), ...}

(early, {u,, v,, ..., M ..., W, ...} is'a cover of the compact space C, and

therefore it has a finite subcover, say,

v, ..., my. But then obviously, the finite set

Eu), E(v,), ..., E(m,)} of elementary strips covers P, as claimed by the Lemma.
Proof of the Theorem. Let us assume to the contrary that P'is not a com-

uct space (relative to the product topology). Thus, there exists an open

wver V of P such that V has no finite subcover. By Zorn’s lemma there exists

w open cover M of P such that V ¢ M and M is maximal with respect to

the property of having no finite subcover. Because of this it is clear that M has

the following properties :

if H€ M and B is an open set of P such that B € H then B M. {3)

the union of ‘any finite number of elements of M is an element of M. (4)
if £ is an open set of P such that E ¢ M then the union of E with some
clement of M is equal to P. (5)

Now, let x € P. Then x is covered by an element H of M. Thus, there exist
{by the definition of the product topology) a finite number of elements, say,
4,b,c of A which define a basic open set B of P given by

B=wu, -u-u,-Cs-C,... (6)
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where u,, #,, #, are open subsets respectively of the topological spaces C,.
C. and where

x€ Band B< H and He M (%)

In connection with (6), let us consider the following elementary strig
E(u)=mu,-Cy-C,-Cp-... (§)
Ewy)=C,-uy-C,-Cyq- ... Lﬂ)
E(1t0)=C“~Cb-ztc-C,,-...@ 1

From (6), (8), (9), (10) it follows that
B =E(u,) n E(u) n E(u,) Q,” i

We claim that one of E(u,), E(#), E(#) is an element of M .If not,
(5) there exist elements m,, m,, m,; of M such that

my U E(u,) =my U E(uy) = mg v E(u,) = P(n.)
Since P is the entire topological space, by (12), we have
my U my U mg U E(a,) =my u myu mgU E(u,) =my U my U my
v E(u,) =P “9) (¢
Since m,, m,, my are elements of M, from (4) it follows that
m=m, U m, U my is an element of M (-l"\) {1
From (13) and (14), we obtain
mU E(u,) =my E(up) =mvu E(u) =P

)

and therefore | ‘
(m v E(u,)) n (m U E(m)) n(mu E(u)) =P

which, by the distributivity of y with repect to n and (11) implies
m U (E(4) n E(u) n Ew))=my B=P (I5) (1

However, from (3) and (7) it follows that B < }. By (14) we.also ha
m < M. Thus, by (4) we must have (m U B) € M, which by (15) contradic
our assumption that M has no finite subcover.

Thus, one of E(u,), E(uy), E(u.), say, E(u.), is an element of M.

But then from (7) and (11) it follows that x € E(u,). Thus, every element.
P is covered by an elementary strip belonging to M. Consequently, by Lemma
we see that P is already covered bv a finite number of elements of M, -contr
dicting our assumption mentioned above.

Hence, our assumption is false and 'the Theorem is proved.
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FIXED POINT THEOREMS FOR 6—CONDENSING  MAPPINGS

FOAN A. RUS*

Reeived : December 12, 1989
AHS subject classtfzcatwn 54H25, 47H10

REZUMAT. — Teoreme de punet fix pentru aplicatli 0-condensatoare. In
lucririle [30], [31], [32] si [35] am folosit tehmica structurilor de punct fix
pentru a stabili teoreme noi de *punct fix. In prezenta lucrare dim o generali-
zare a Teoremei 6.1. din [32] si prezentim o gama largi de consecinte ale aces-
tui rezultat. Printre altele obfinem rezultate date de Darbo (a se vedea [1]
"si {3)), Sadovskii ({1}, [5]), Amann [3], Bae [4], de Blasi [6],
Iseki [15]1si [16), Jones (17}, Kassay [18], Reich [25], siReiner-
mann [26]. In finalul lucririi se formuleazi citeva conjecturi.

1. Introduetion. In the papers [30], [31], [32] and [35] we use the tech-
ngue of the fixed point structures to give same new fixed point theorems.
In this paper we improve the Theorem 6.1. in [32] and we give same conse-
quences of this result. Thus we obtain some results given by Darbo (see [1]
wd 5, Sadovskii(see [17and [5]), Amann [3], Bae [4], de Blasi
,Danes [9), Iseki ({15} and [16]}), Jones [17], Kassay [18],
Pasicki [24], Reich [25(, Reibermann [26] and Tineo ([39].
Some conjectures are formulated.

The plan of the paper is the following:

2. Fixed point structures
Compatible pair with the fixed point structures
6 —condensing mappings
Invariant subsets and fixed subsets
A general fixed point principle
. Banach spaces
. Metric spaces
. Convex metric space

10. Locally convex topological vector space

1. Nonself mappings

12. Asymptotic fixed point theorems.

Tlrough this paper we follow terminologies and notatlons in [28] and [42].

2. Fixed point structures, We begin with

DEFINITION 2, 1. (see (31] and [32]). Let X bea nonernpty setand Y € P(X).
We denote by M(Y) the set of all mappings f: ¥ - Y. A triple (X, S, M) is
uid to be a fixed point structure if :

() Sc P(X), S# 0
(i) M:P(X)— u M(Y), Y- M(Y) = M(Y) is

© 0N D Y0
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a mapping such that, if Z < Y, Z # @, then M(Z) 5 {f|, fe¥M ) and f(Z) <
c Z} (

(iii) every Y S has the fixed Foint property with respect t 1% gf
Example 2.1. X is a nonempty set, S = {{x} | x = X} and M(Y = M(Y.

E xemple 2.2. (X, d) is a metric space S = P,,(X) and M(Y >Y -
is continuous and 3§—condensing}. f’

Example 2.3. X is a Banach space, S =

P.,.(X) and M % }9/ Y
Example 2.4. X is a locally convex space S = Pyl Xf’ and ‘{’
= C(Y,Y}:

Example 2.5. X is a Hllbert space, S = Py o, o(X)and M(Y) ={f: Y > Y -
is nonexpansive}.

T >

Remark 2.1. The notion ,,fixed point structure” is a generalization of som=
notions as ,,topologlcal space with fixed point property , ,,ordered set witt
fixed point property”, ,mapping with fixed point property on a famlly o
sets’” (Jones [17]), ,,object with fixed point property” (Rus [26]), .

Remark 2.2. For other examples, of fixed point structure see [30], [31]anc
[321.

3. Compatible pair with fixed point strueture. The following notion is use
ful in what follows.

DEFINITION 3.1. (see [31] and [32]). Let (X, S. M) be a fixed point struc-
ture, (0, <) an ordered set with a minimal element, which we will dengt':
by 0. The pair (8, 3)(8:Z > (0, <) and 4 :P(X) - P(X)) is said to be compalibl:
with (X, S, M) if

(i) n is a closure operator,

(ii) S« 9(Z) €« Z < P(X) and O(3(Y)) = 6(Y)), for all Ye /7,

(111) F, NnZy< S, where F,:={4 < X|9(4) = A} and Ze {(Yez

E xample 3.1. Let (X, d) be a metric space. Let (X, S, M) be as in Example
2.1, Z = P,(X), 8 =38 and n(4) =4. Then (3, ) is a compatible pair with
(X, S, M). O=4u .

Example 3.2. Let (X, S, M) be as in Example 2.2, Z = Py(X), 0 = ag;
or ay and n(4) = A. Then (0, ) is a compatible pair with ()e(_ 05&34). j

Example 3.3. Let (X, S, M) be as in Example 2.3, Z = Py(X), 0 =
or oy and n(4) =3 A. Then (6, n) is a compatible pair with (X, S, M).

Example 3.4. Let (X, S, M) be as in Example 2.4. Let V be the family
of all closed balanced convex neighbourhoods of zero. For Y € Py(X) let B(Y): =
= {4 € V| there exists a totally bounded subset T < X with Y < T + A |5
It U,, U, € P(V), then U, < U, if and only if U,> U,. Thus we have the par-

tial ordered set (P(V), <) with the minimal element V. The pair (8, &) is 4
compatible pair with (X, S, M). NeT+AR ]
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Remark 3.1. For other examples of compatible pair see [30], [31] and [32].

4. —condensing mappings. Let X be a nonempty set, Y « X, Z < P(X)
Y#0, Z+# ) and 6:Z- (0, <).

DEFINITION. 4.1. The mapping.f:Y — Y is said to be 0—condensing if

1) A= P(Y) n Z implies f(4A) = Z,

(i) A PY) nZ, f(A) = 4, 6(f(4)) = 6(4) imply that 6(4) = 0.
DEFINITION. 4.2. The mapping f:Y —» Y is said to be 0—condensing if
(i) A€ P(Y) n Z implies f(4) < Z,

() A= P(Y) n Z, f(4) = 4, 6(4) # 0 imply 8(f(4)) < 6(4).
DEFINITION. 4.3. The mapping f:Y — Y is said to be strong O—condensing

(i) A= P(Y) n Z implies f(4) € Z,
(i) A= P(Y) n Z, 6(f(4)) > 6(4) imply that 06(4) =0.
DEFINITION. 4.4. The mapping f:Y - Y is said to be strong 0—condensing

(i) A= P(Y) n Z implies f(4) € Z,
(i) A e P(Y) n Z, 6(4) # 0, imply 6(f(4)) < 6(A).

Remark 4.1. For some examples of 0—condensing mappings see [1], [5],

6, [8], [10], [17], [26], [32] and 438].

5. Invariant subsets and fixed subsets. The following notions are very tied
to the fixed point theory.

DEFINITION. 5.1. Tet X be a set and f:X —» X, a mapping. A subset Y < X
is said to be tmvariant subset forf if f(Y) <Y and a fixed subset if f(Y) =Y

Let I(f): = {Y & P(X)|f(Y) = Y} the family of all nonempty invariant sub-
st of f.

The following results are well known:

LEMMA 5.1. (see [4], [11], [19], [28]). Let (X, =) be a compact topological space

wd [ X - X a continuous map/)mg Then the subsel X o1 = Foj fHX) isa fixed

n=1
subsct for f(X o € Pep(X)).
LEMMA 5.2. (Martelli [20]). Let (X, 1) be a compact topological space and
[X> X a mapping. Then there exists a nonempty subset Y < X such that Y =

=fY). If f is continuous then Y = f(Y).

Remark 5.1. In the conditons of the Martelli’s Lemma there exists a mini-
ml Y € I,(f) such that Y = f(Y) (or Y = f(Y) if f is continuous). :

LEMMA 53. (Rus [30] and [32]). Let X be a nonempty sct, v:P(X)—> P(X)
tdosure vperator, Y € F, and f'Y - Y a mapping. Let A < Y be a nonempty
sbsct of Y. Then there exists Ay = Y such that: (i) Ay o A, (ii) A < F,, (iii)
de 1{f), (iv) n(f(dg) U 4) = 4. ,

DEFINITION 5.2. (Jones [17]; see also de Blasi [6]). Let X be a set,
lcP(X), U # &. A mapping f:X — X is said to be reducible on U if for any de
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Bch

e U, such that f(A) < A and card 4 > 1, there exists a proper subset B < 4,
invariant for f. :

E xample 5.1. Let (X, d) be a complete metric space and f1X » X a (3, ¢)--
ccntraction. Then f is reducible on Py(X). a (§, p)-

DEFINITION. 5.3. Tet X be a nonempty set. A family U « P(X), U # @.
has the intersection property if for any totally ordered subset V' < U (U is partia’
ordered by the set inclusion) we have n Ve U.

Example 52. Let (X, 1) be a topological space. Then the family P, (X

has the intersection property. Peptx)
Example 5.3. Let (X, || - ||) be a reflexive Banach space. Then P, ,, »(X
has the intersection property.
We have 7 u!'"'lb(z)

THEOREM 5.1. Let X be a set, U < P(X), U # @, afamily with the intersection
property and f:X - X such that

@ I{f) nU#9,

(ii) f 1s reducible on U. -

Then there cxists xg s X such that 1%} € I(f), te., xo< Fy. NCe Uy

Proof. Let U,: = U q I{f). From (i), U, # @. We consider the partial or-
dcred set (U,, <). Let C be a totally ordered subset of U,. We have nC e U,.
and nC 1s a lower bound of C. By Zorn’s lemma there exists at least a mi-

nimal element, A, of U,. We have A,< U n I(f). Since f is reducibleon U it
follows 4 = {x,}.

From the Theorem 5.1. we have » XX
THEOREM 5.2, [(3], [12]) Let (X, d) be a compact metric space and f:X - X
a coplinuous S—condensing mapping. Then F,= {x*}. I

Proof. We remark that f is reducible on P (X). Let A = PQ(X) n I(f).
Then if §(A4) # 0, it follows §(f(4)) < 3(A). This implies that f(A4) is a proper
invariant subset of f. The theorem follows from the Theorem 5.1.

. Remark 5.2. The Theorem 5.2. follows also from the Martelli’'s lemma.

6. A general fixed point principle. We have

THEOREM 6.1.(see R us [30], for O = R*%Y). Let (X, S, M) be a fixed point
structure, and (0, 1) (0:Z - (0, <)) a compatible pair with (X, S, M). Let Y =
7(Z) and f€ M(Y). We -suppose ihat Yen(z2)

(i) A=sZ, x€Y imply Ay {(x}= Z and 06(4A v {«}) = 6(4),
(i1) f 1s O-—condensing (as in Definition 41 or in Definition 4.2).
Then

(a) F;+# 3.

(b) if Fye Z, then O(F,) = 0.

oProof. (a) Let vo = Y and A = {v,}. By Lemma 5.3. there exists A, € F, n
I(f) such that n(f(4e) U {¥e}) = Ao Ao€ ¥y N TA)
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We ha\ e

0(4(f(do) U {¥o}) = O(f(Ao) U {xo}) = O(f(Ay)) = 6(A,). . :
This 1mp11es Ao € /0 Thus dye F, n Z, andfl.;O e M(4,). Since (X, S, M)
is a fixed point structure, we have F % .

(b) From f{F,) = F}, it follows O(F) = 0.

From the Theorem 6.1. we have |

THEOREM 6.2. Let (X, S, M) be a fixed point structurc and (6, M) a compati-
;/lﬁlfﬁuir with (X, S, M). LetY € F, and fe M(Y) such that f(Y) € Z. We suppose

() deZ xeY wmply Ay {x}=Z and 04 v {x}) = 0(4),

(ii) f 1is O—condensing (as in Definition 4.1. or in Definition 4.2.).
Then

(a) F;# O,

(b} if Fre Z, then O(F,) = 0.

Proof. We rtemark that n(f(Y)) =Y and »(f(Y)) < I(f).

In what follow we give some consequences of the Theorem 6.2

7. Banaeh spaces. Let X be a Banach space. Let 0:Py(X)- (0, <) be
such that

(i) 0(4) =0, implies 4 € P,,(X),

(i) 8(co A) = 8(4), for all A e P,(X),

(iii) for all bounded sequences in X we have
Bx,in 2 1} = 6{x, | n > 2}.

Let (X, S, M)be as in Example 2.3. Then the pair (0, co) is compatible mth
(X, S, M). From the Theorem 6.1. and 6.2. we have

THEOREM 7.1. (Sadovskii,see [1]). Let X be a Banach space, Y € Py g o

() and £:Y > Y a continunous 9—condonsmg mapping. Then F; # & and ()(F/)
=10.

THEOREM 7.2. Let X be a Banach space, Y € Py o(X) and f:Y - Y a conti-
nmous §—condensing mapping such that f(Y) € Py(X). Then Iy# 3 and O(F;) =
=0. '

Remark 7.1. In the Theorem 7.1. and 7.2. we can take 0 = ax or O = oy
(see [1], [5], [33]). Thus we have

THEOREM 73. (Darbo). Let X be a Banach space, Y e Py 4 o(X) and
[Y=Y a continuous (ax, a)—contraction. Then F,# & and F;is a compact
scl.

THEOREM 74. Let X be a Banach space, Y € Py (X)) and f:Y - Y a conts-
SHOUS (ocK, a)—contraction such that f(Y) € Py(X). Then Fi# O and Fyis a com-
et set.
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8. Metric spaces. Let (X, d) be a bounded complete metric space.
app :P(X) >R+ be the Danes—Pasicki measure of noncompactness (see Da
[9], Pasicki [24]; sec also de Blasi [6] and Rus [32]), i.e,

(i) app(A) = 0 implies 4 = P,,(X),
(ii) app(A) = app(4), for all 4 € P(X),
(iii) A < B implies app(A) < app(B),
(iv) app(A U {x}) = app(d4), for all 4 € Py(X) and x= X.
For example agand oy are opp,. We have

THEOREM 8.1. (see Amann [3], Bae[4], Fuchssteiner [l
seki [15] and [16], Rus {28]). Let (X, d) be a bounded complete metrics
f XX }a continuous oapp—condensing and § — condensing mapping.
F; = {x*}.
! Proof. Let (X, S, M) be as in Example 2.2. We take 6 = app, 7(d):
Then (0, n) is a compatible pair with (X, S, M). The theorem follows fron
Theorem 6.1. From the Theorem 6.2. we have
THEOREM 8.2. Let (X, d) be a complete metric space, f:X —» X a conli
app—condensing and §—condensing mapping. If f(X) is a bounded subse
then F; = {x*}.
From the Theorem 8.2. and I.emma 1.3.3. in [28] it follows
THEOREM 8.3. [ct (X, d) be'a complele metric spaceand X — X a ma)
We suppose that there exists ng € N* such that

(i) f*(X) is a bounded subset of X,

(i1) f":X - X 1s continuous,

(iii) f":X > X s app—condensing

(iv) f:X > X is S—condensing.
Then F; = {x*}.

We have

THEOREM 8.4. (see de Blasi [6] and Jones [17]). Let (X, d) beal
ded complete metric space, app:Py(X)— R, a Dane§— Pasicki measure of n
pactness, v P(X)— P(X) a closure operator and f:X — X continuous app-

densing mapping. We suppose that app(n(4)) = app(A), A € Py(X). Then
at least one fixed point if any one of the following conditions is satisfied:

(1) f is reducible on Z“DP nF,,

(ii) everv Y = Z"‘pp n F, has the fixed point property with respect to Cff
Proof. The case (i) follows from the Theorem 5.1.

The case (ii). We remark that (X, Z.pr n F,, M) where M(Y) =C(fl

is a fixed point structure and (app, m), is a compatible pair with this fixed;
structure.
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Remark 8.1. Let (X, d) be a complete metric space. Let §,(x;, x,, %;) the
area of the triangle A(x, x,, x3). For Y € Py(X) let §,(Y): = sup {8,(x,, x,,
%) 1%, %y, %3 € Y. If we take 6 = 3, and %(4) = A4, from the Theorem 6.1. we
have the Theorem 3.1. in Tineo [39].

9. Convex metric spaces. We begin the following consideration with

DEFINITION 9.1. (Takahashi [37]). Let (X,d) be a metric space. A
mapping W:X X X X [0,1] > X is said to be a convexity structure on X if
W is continuous and for every x,y< X, A= [0, 1], we have

dlu, W(x,5,; \) < M(u, x) + (1 — %) d(u, y), for all we X In this case
(X,d, W) is said to be a convéx melric space.

DEFINITION 9.2. (R us [34]). Let (X, d, W) be a convex metric space and
Z< P(X). A mapping B:Z — R, is a weak measure of nonconvexity if B(A)=0
implies 4 € P,,(X).

DEFINITION 93. (Rus [34]). Let (X, d, W) be a convex metric space and ,
Z < P(X). A mapping v:Z—> R, is a measure of non compact-convexity if

(i) v(4) =0 implies A& P, (X)

(ii) y(4) = y(4), for all 4 € Z,

(ili) ¥lzn Py is 2 mapping with the intersection property (see [30]).
We have

THEOREM 9.1. (see [29], [18] and [34]). Let (X, d, W) be a bounded convex
complete metvic space. Let opp be a Dane§— Pasickt measure of noncompactness
on X and B a weak measure of nonconvexity on X. Let f:X - X be a continuous
mapping. We suppose that

(1) f is app—condensing,

(i) f is B—condensing
Then F = {x*}.

Proof. Let M(Y):¢t= {g:Y - Y| g is continuous and B—condensing}. We
remark that (X, f,p,o,,(X) M) is a flxed point structure (see Theorem 24, in
(18]). Let (Y) = Y. Then the pair (app, 7)isa compatible pair with (X, P,,,.(X),
M). The theorem follows from the Theorem 6.1.

THEOREM 9.2. (see[34]). Let (X, d, W) be a bounded convex complete metric
space, v :P(X) » R, a measure of non compactconvexity on X and f:X - X a con-
tinous (v, qa)—contmctwn Then F;= {x*}.

Proof. Let M(Y) = C(Y, Y) and n(Y) =Y. Then (X, P,,.(X), M) is a
fixed point structure and (y, v) is a ccmpatible pair with (X, S, M). The theorem
follows from the Theorem A in [35].

10. Loecally convex spaces. Let X be a locally convex topological vector
space. Let (X, S, M) be as in Example 2.4. and 6 as in Fxample 3.4. Then the pair

(6, co) is a compatible pair with (X, S, M). From the Theorem: 6.1. we have.
THEOREM 10.1. (see[25]). Let X be a Hausdorff locally convex linear topolo-
gical space, Y be a nonempty bounded complete convex subsct of X, and f:Y ->Y
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a continuwous 9—condensing map])mg If f(Y) is a boundcd subset of Y, then F is
a nonemply ,compact subset.

11. Nonsell mappings. We have / :

THEOREM 1L.1. (see [33]) Let (X, S, M) be a fixed point structure and (9.
7(b:Z > (0, <)) a compatible pair with (X, S, M). Let Y € ¢(Z), f Y= X and
¢:X— Y a reraction. We suppose that .

(i) AeZ, x= X imply Ay {x}Z and 6(4A v {x}) = 6(A4),
(ii) f is a strong O—condensing (as in Definition 4.4.),

(ii1) f s retractible onto Y by p and p o fe M(Y),

(iv) ¢ is O—meexpansive.

Then Fy & and if Fpe Z, then 6(F;) = 0.

Proof. We remark that p of:Y - Y is strong 06— condensmg By the Theo-

rem 6.1., F,r# 3. From the condition (iii) it follows that Fy=F;# @.
Let F,e z From f(F;) = F; and the condition (ii) we have B(Ff) =0.

12. Asymptotic fixed point theorems. At the end of this paper we formu-
late the following.

Conjecture 12.1 Let (X, S, M) be a fixed point structure and (8, 4) (6:Z -
— (0, <)) a compatible pair with (X, S, M). Let fe M(X). We suppose that

(i) AeZ,xe X imply 4 vy {x}= Z and 6(4 v {x}) = 0(4),
(ii) f is O0—condensing, )
(iii) there exists m € N* such that f"(X)e Z.

Then F,;# &, and if F,= Z, then 0(F;) = 0.

Rmmrk 12.1 For (X, S M) as in Example 2.1, see Rus [28].

Remark 12.2. For (X, S, M) as in Example 2.3, sceBrowder [7] Eells-
Fournier [11], Nussbaum [22], Rus [35],.

Conjecture 12.2 Let (X, S, M ) be a fixed point structure and (0, %) a compa-
tible pair with (X, S, M). Let'f € M(X) be such that

(i) A=Z, = X imply A v {s}=Z and 6(4 v {x}) = 6(4),
(i) ethere exists m  N* such that f*(X)e< Z and f* is 6—condensing.

Then F,# @ and if Fy< Z, then 6(F,) = 0.

Remark 12.3. For (X, S, M) as in Example 23 see Browder [7], Eells-
Fournier [11], Nussbaum [22], Rus [35],.
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REZUMAT. — O generalizare a teoremei lui Peetre-Rus. Scopul acestei lucriri
este demonstrarea unor teoreme de coincidentd pentru aplicatii multivoce, din
care desprindem ca si consecinte, generaliziri ale unor rezultate date in [2],

3] si (4].

1. Introduetion. The purpose of this paper is to prove a coincidence theorem,
similar to Peetre — Rus theorem, for pM-proximate multivalued mappings. Then
we obtain some. results, that generalize theorems from [2], [3] and [4], b
relaxing the continuitiy.

Let (X, d) and (Y, p) two metric spaces. Let 4, B be two nonempty subsets
o X. Let D(4, B): = {inf dix, y) |x= A and y = B1 A multivalued mapping
F:X —o Y is called upper semicontinuous if for each a € X and for each ¢ > 0
there is a neighborhood V of a such that x € Vandy < F(x)imply D(F(a), v) <
e

DEFINITION 1. ([2]). Let @, ¢ be two functions of R, into itself. We say
that ¢ is p-summable if for each ¢t = R, the sequence {¢*(f)},en converges to 0

and the sequence 2 cp(cp?(t))l .is convergent.
neN

DEFINITION 2. Two multivalued mappings F, G of X into Y are said tobe
$M-proximate if there exist increasing functions ¢, ¢ of R, into itself and M > 0
satisfying the, following conditions :

1°. ¢ is g-summable ;

2°. there exists x € X such that D(F{x), G(x)) < M;

3°. there exists a mapping p: X — X such that d(x, p(x) < ¢(M) and
D(F(p(x)), G(p(x)))x < @(M), for every x € X.

2. Basie results. We begin with the following lemma.

LEMMA L. If F and G arc pM-proximate multivalued mappings of a complete
melric space (X, d) into a metric space (Y, p), then there is a convergent sequence
{tuhwen i X such that

D(F(x,), G(x,)) = 0, as #— co.

Proof. There are increasing functions ¢, ¢ of R into itself satisfying the
condition s 1° and 3°. From 2° it results that there exists %, € X with the property

* University of Cluj-Napoca, Faculty of Mathematics, 3400 Cluj-Napoca, Romania

— Mathematica 2/1990
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, £: XX
D{F(x,), G(xo)) < M. From 3° we have that there exists a mapping p: X > X
such that: . -
d(xo, P(%)) < $(M) and
D(F(p(x0)), G(p(%0))) < o(M)
We denote p(x,) = %, € X. For x,, using 2° and 3°.it follows that :
d(21,p(x1)) < w(e(M)) and
D(F(p(x,)), G'\f’(‘xl))) < 9H(M)

We denote p(x;) = x, € X. Thus, we obtain the sequence (x,),ey < X wits
the following property : .

X, = /)”(XO), 1‘2 > 1 (J‘ '\Iz,‘
D(F(x,), G(x,)) < 2*(M) cp) (8
dix,, ) < Y@O) () (+

From (), (x,).<en is a Cauchy sequence, hence (,),<x convreges to a € X. From
(B) we have D(F(x,), (G(x,)) - 0, as #— co, The proof is complete. "

THEOREM 1. Let °F, G be pM:proximate multivalued map;‘ungs of a compicte
metric space (X, d) into a wmetric space (Y, p).” If G is upper semicontinuous thon
there exists an a € X and a sequence (X,)uen 1 X such that x,— a and D(F(x,.

G(a)) > 0, as 7> co. DCFC\C&\ CCRI\#O M)

- Proof. By the lemma there is a conv ergent sequence (#,)nexy in X such
that D(F(x,), G(x,))~ 0; as n— cc.

Let a be the element of X to which {x,}nen converges and € > 0. Then the
upper semicontinuous of G guarantees the existence of ‘a neighborhood V of a

suchthat x = ¥ and v € G(x) imply D(G <— Since x, » a and D(F(x,),
: (x). imply D(G(a), ¥) . ',LCF(m(,()

G{x,)) = 0, as n—> o, we can find an m< N such that x, < V and D(F{x,) 1

G(x,)) < %for every n » m. Hence, if # > m we have p(v, ¥') < ;for some v €
2 ; : 7 £

A , z
Y. € F(x,) and ' € G(x,). On the other hang, since x, is in V, we have p(y’, ¥"')<

for some v & G(a) and consequently we obtain ¢(y, ¥”) < e(¥, ¥') + o(¥', ¥}
< &, which implies D(F(x,), G(a)) < «. L

THEOREM 2. Let F; G be pM-proximate multtvalued mappings of a complate
metric space (X, d) into a metric space (Y, p). If G is upper semicontinuous and
Gix) is compact for each x = X, then there exist a € X, b < G(a), a sequence (%,),ex |
i X and a sequence (3, ),,Eu wn Y such that x,— a, v, —» band y, = F(x)) Jor cv: ery |
ne N.

If in addition, the graph of F is closed then F(a) n _G(a)f@ for some a= X.

Proof. It follows from Theorem 1 that there are a € X and a sequence (%,),en
in X such that x,— @ and D(F(x,), G(a))— 0 as #— co. Hence we can find ;

A wfe
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amapping % of N into itself such that k(n) 2 nand D(I'(x ), G(a)) < L Con-
H

squently the set T(n) = {()', ¥ e Fxg,) X Ga)|e(y, v') < l} is nonempty
n

for cach # = N.
Let s be a choise function for the family {T(»)|#» € N} and consider the pro-
ations p, g detined by p(y, 3') = v and q(y, ¥) =, for every (v,2') e Y X
}. Then since G(a) is compact, the sequence {g(s(n))},en in G(a) has a subse-
quence {g(s(#;))}nen which converges to some b € G(a). Hence for every ¢ > 0,

thee exists an m € N such that. p(g(s{#:)), b) <§ and -~ <§ for all i > m.
e

This shows that p(s(n;)) > b as 71— o, since p(p(s(n:)), b) < p(p(s(ni)),
) 4 o(g(stni)), b). Therefore the sequence (ki) )sen and (f)(( 1)) ien
wisiv the required conditions.

Now we shall turn to prove the second part of cur theorem. By the first
jrt, we see that there are 4 € X, b = G(a), a sequence (x,),ey in X and a
wquence (y,)uey in Y such that x,—a, y,—b and vy, € F(x,) for cvery
rel.

Since the graph of Fis closed and the sequence {(x,, y,)}sey iIn X XY
wrerges to (@, by under the product topology on X X Y, (a, b) belenge te
the araph of F, and so we have b « F(a) (" G(«), proving the teorem.

THEOREM 3. [f F and G are pM-proximale upper semicontinuous multivalued
Fmappings of a complete metric space (X, d) inlo a metric space (Y, p), then D(I(a),
fuy =0 for some a<s X.

Proof. By Theorem 1, there are ¢ € X and a sequence (%,),ey inn X such that
- ¢ and D(F(x,), G(a)) — () as #— oo. Let € > (). Then because of the upper
m\ontlmut\ of I' we can find a neighborhood V of a such that xe 17 and ve

efix) imply DI (a), ) <;. .
Hencethereisa #» € Nsuchthat x, € Vand D(I(x,, G(a)) < -; Consequen-
fly, we have p(v’, v') < —, for some v € I(x,) and "« G(a). On the other

hand, since x, isin 17, we have ¢g(v, ') < E for some y € F(a). It follows that
v, ") < e or D(F(a), G(a)) < . The proof is complete.
3. Consequenees. The following theorem plays an important role in what

follows.

THEOREM 4. Let fi, fa, ooy fous €15 oo - -+ Em  bc mappings of « complete
milric space (X, d) into a metric space (Y, p). Suppose that there exist increasing
fuclions @, & of R, into itself and M > O satisfying the following conditions :

i) 4 is o-summable ;
(ii) there exists x € X such that

m

Z e(filx), gi(x)) < M ;
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(iii) there exists a mapping p: X - X such that
d(x, p(%)) < Y(M) and

Z p(filp (p(%)) < o(M), for every xe X.

i=1

Then the following statements hold.

1°. If g, ..., g are continuous, then theve exist an a < X and a Sequen:
(Xy)nen n X such that x,— a andf(x ) > gi(a) for every 1€ {1, ..., m}.

2°. If the graph of eac,z fo i€ {1, ..., m} isclosed and g;, i e {1, |
are continuous, then there exists an a< X “such- that fi(a) = gi{a) for every i<
S {L,...,m. :

Proof. Consider the metric space (Y, p’) with the metric p’ defined ¥

(s - ymd (Y1 - m)) =3 elys ¥) for every (yy, ..o ym) (00, -

i=1

' 10
Yom) E Y” and define two multivalued mapmgs F G of X into Y by
F(x) = {(fi(x) ))} andG _{g1 y -ees Em(%))} for every x € X
Xe

‘Then since D’ (F E p(fi(x), g for every x € X, th;.( hypothes

of the theorem shows that F and G are pM-prox1mate Now, if a € X an:
e > 0, then there is a neighborhood V of a such that: p(gi(a), gi(x)) <7, = for

every x < V and for every ie {1 . m} and so L%
D'(G(a) Ep gi(a), g ¢ for all x € X. Thus % us upper sem:=
Amy - continuous.
On the other hand, if the graph of each f, i = {1, ..., m} is closed, the grapt

of F is also closed. Therefore the first part of our theorem follows from Theoren
1 and the second part from Theorem 2. The proof is complete.

Theorem 4 is a generalization of Peetre—Rus theorem as it follows from
the following result:

THEOREM 5. Let f, g be two mappings of a complete metric space (. X, d) ik
a metric space (Y, p). Suppose that there exist two increasing functions ¢, ¢ of R~
tnto dtself and M > 0, satisfying the following conditions " # mf
)

(1) ¢ s g-summable

(ii) there exists x € X such that po(f(x), g(x)) < M

(iii) there exists a mapping p: X — X such that for every x € X we ha .'
d(x, p(x) < Y(M) and o(f(p(x)), g(B(x)) < o(M) bt

(iv) g s continuous and the graph of f is closed.

Then there exists a< X such that f(a) = g(a).
Proof. In Theorem 4 we put m =1, f, =f, gy = ¢&.
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From Theorem 5;‘ we have the following surjectivity theorem for a mapping
not necessarely continuous, which extends Theorem 6 of [2] and Theorem 6
of [3].

THEOREM 6. Let f be a mapping of a complete metric space (X, d) into a metri ¢
space (Y, p). Suppose that for any y-< Y there exist two increasing functions o,
oof Ry wmbo stself and M > O, satisfying the following conditions :

(i) ¢ s o-summable;

(ii) there exists x = X such that o(f(x),y) < M ;

(iti) there exists a mapping p: X - X such that for any x = X we have
dlx, p(x)) < $M) and o(f(p(x)). ¥) < (M) ;

(iv) fhe gmpk of f is closed.

Then f is surjective.
Proof. Tt suffices to let in Theorem 5 g(x) = y for every x € X.
From Theorem 5, it follows also a fixed point theorem.

THEOREM 7. Let f be a mapping of a complete metric space (X, d) into ibself
and ¢, Y two increasing functions of R, into itself. Suppose that there exists M > 0
such that the following conditions are satisfied
(i) 4 1s -summable ;

{ii) there exists x = X such that d(f(x), x) < M ;
(ifi) there exists a mapping p: X — X such that:

dix, p(x)) < $(M) and d(f(p(x)), x) < o(M);
{iv) the graph of f is closed.

Then f has a fixed point.
Proof. In Theorem 5 we put g(x) = %, for each x € X.
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REZUMAT. — Estimirl ale erorli in aproximarea punctelor fixe pentru o e¢lasa
de p-contractii. Lucrarea prezinti o clasi de g-contractii, cu ¢ functie de com-
paratie care verifici conditia de convergenti (c), pentrn care estimarea erorii
de aproximare a punctului fix prin metoda aproximatiilor succesive este data
de aceeasi formuld ca si cea din teorema de contractie a Ilui Banach ([3]).

1. Introduetion. The paper shows that, for the class of gp-contractions witk
¢ a cemparison function which satisfies a convenient convergence conditior
(c) : There exist the numbers k, and «, 0 < « < 1 and a convergent series o:

nonnegative terms Eak such that
k=1

**i(r) < a[p*(r) + @], for each % > k, and

reR,,

the estimation of aproximation error of the fixed point by means of the suc-
cesive apprO\lmatlom method is given by the same formulas as in the Banach’s
contractions theorem ([3]). .
To this end, we make use of a generalization of the ratio (or I’ Alembert’s: |
test for the series of positive terms, established in [1].
Tet (X, d) be a complete metric space, f: X - X a mapping and ¢: R+ —
— R* a monotone increasing comparison function, such as: ¥ mta

d{f(x), f(»)) < o(d(x, v)), for all ¥, ve X. (1) (1)

We construct the sequence of succesive approxlmatlons (%) nen, %y = f(Xn-1)
> 1 and x, = X, and we obtain from (1), usmg the montonicity of o, that,ﬂ

(see 3], p. 80). . Xz 2K o)
- L ntp—1 ,
A%y, Xnip) < o*(d(xo, x,,)) for each p > 1 ;
) k=n
"< N (1) (2

If the series of positive terms

:glqa",("), () 3)
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’

converges, for every y e R,, then the sequence (x,),enis a Cauchy sequence,
hence (%,),enis convergent for all x, = X.

The main purpose of this paper is to prove that, if ¢ fulfils the condition {c),
then the series (3) converges for all » € R+ and, consequently, we have the es-
timation (5). ,

The sequence (x,),<nis a Cauchy sequence even when ¢ satisfies
more weaker conditions (see[4], Theorem 3.3.1) which are, generally, insuffi-
wot to assure the convergence of the series (3).

However, in this case, in order to evaluate the approximation error, we need
some additional hypotheses (see [4], Remark 3.3.1). .

2. A neeessary and sufficient test for the convergenee of the series of

fecreasing positive terms.In [1] has been given the following generalization
o the ratio test. ’

00,
THEOREML. Let §= u, be an infinite series of positive terms. If there éxists
n=1 i

oo
amergent series of nonnegatine terms E v, and lwo numbers k, ny , such as
n-1 ’

un—Ll

———— g k<], for n 2z n 4
Uy -+ 2y - f -z e ( )
. ® .
en the sertes 2:“” 1S convergent.
. ==l

Remarks. 2. Recall that a series is of positive (nonnegative) terms if all
isterms are strictly positive (respectively positive, and an infinitv of them may
be equal to /ero)

3. The Theorem 1 applies in some typical situations when the ratio test
liils (see (17). Obviously, the ratio test is obtained from Theorem 1, for ¢, == 0,
1e N '

‘lnwhat follows we give a short new proof of Theorem 1:

From (4] we obtain, by an elementary calculation, '
Uy < WRPY A (0, vkt L v, k).

lnview of Martens’s theorem ({27]), to prove Theorem 1, it suffices to observe
that 4" and 2w, are both absolutely convergent.

For the series of decreasing positive terms, we can prove the converse of
teorem 1. Thus, we obtain:

THEOREM 2. { series Zu,, of decreasing positive terms converges if and onl Ly
n=11

if there exists a convergent series of nommegative terms.E-v,,, and two iumbersk,

n=1

" Such as the condition (4) is satisfied.
Proof. The sufficiency follows from Theorem 1. To prove the necessity is
mough to take v, = au,, with a > 0.
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Remark 4. Throughout this paper we shall consider series of decreas:.
p051t1(v)e terms, because, for any comparison function, ¢(f) < ¢ implies g#+1(:
<9

3. The error evaluation. For the definitions and basic properties conc:
ning comparison functions we refer to [4].

DEFINITION 1. ([4]) A monotone increasing function ¢:R, - R, wh:.
satisfies the condition
(i) (p*(7)),enconverges to 0, as #n— oc, for any r < R, is called compar:s
Sunction. oM

DEFINITION 2. ([47]) Let (X, d) be a metric space. A mapping f: X —
is called ¢-comtraction if and only if there exists a comparison functlon @ so tk.
(1) is fulfilled. X

DEFINITION 3.. A monotone increasing function ¢: R+ - R, which =
tisfies the condition (c) is called (c)-comparison function.

Every (c)-comparison function is a comparison function.

Proof. Applying Theorem 1, we deduce that series (3) converges for a-
r € R¥, hence ¢*(f) tends to zero as k tends to infinity, which proves lemm.

Remark 3. Tt is not quite obvious that every ¢-contraction isa continuox
mapping. The following property of a comparison function.

p(t) < ¢, for each £ < 0

(see [4], lemma 3.1.3) suggests a way to remove any doubts. The main res:
of this paper is given by

THEOREM 3. L¢t (X, d) be a complete metric space and f: X - X a o-conira:

lion with ¢ (c)-comparison function. a .@
Then
) Fy= {x*};
2) The sequence (Xp)pew, Xn = f(Xu—1), # > 1, %o € X converges to x*, for ar:
e X; ‘;(3\ oy
3) We have
d(x,, ¥*) < s(d(%, %)) — Sac1(d(%o, %)) (5} (3

series (3); :
) If, in addition, ¢ is subadditive and there exists a mapping g+ X - X
and n >0 such as gx_,x

d(f(x), g(x)) < 7, for any x < X,

where s(r), Sna—1(7) denote the sum, respectively the partial sum of raﬁ _? ‘\Z 1 of tw

then

Ayw 2*) < 0+ s(n) + s(dlx, 1)) — Sa-1(d(%0, %)) (6) (64
where y, = g (x ). j
Proof. Since g is (¢)-comparison function, the convergence of (x,)sen follo“i

immediately from (2). Let x* be its limit.



APPROXIMATION OF THE FIXED POINTS 89

Then, the continuity of f, leads to x* = f(x*) and «* is the unique fixed
wiat of f. Thus 1) and 2) are proved.

Also, (5) follows from (2), latting p — co.

Finally,” we have

d(ym x*) < d(ym xn) + d(xm x*)
and

AV %) < 0+ @A(YVu=1, %u—1)) < ... <+ () + ... + ¢*(n).

<

Since S,(n) < s{%), the preceding inequalities together with (5), give the re-
qured estimation (6

Remarks. 5. If ¢
wm 3.2.1 123,

6. Theorem 2 shows that the estimation (5) holds if and only if ¢ is a (c¢)-
emparison function. . .

7. Finally, let us observe that s(r) — S,_1(7) is the remainder of rank » of
tie series (3). By (5) we deduce that (x,).ex converges to x* no more quickly than
te series (3) to s.

).
(¥) = at, 0 << a < 1, then, from Theorem 3 we obtain Theo-
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REZUMAT. — Asupra unui procedeu de interpolare a unor date neregolth
In lucrare se conmsideri problema interpolirii unei functii de doui variabil
definitd pe un domeniu plan oarecare avind informatii despre functie pe o refu
neregulati de puncte.

0. Let D be a domain in R? and f a real-valued function on ).
that there are given the wvalues f;, f; == f(x; v;) of f at a set of p
), ¢=0,1, ..., N located in -

One considers the following fitting data problem: find a functiony
on D, possible from a set of functions (say 1), which interpolates f a
ie. g(x;, yi) =flx, v), 1=0,1, ..., N

This problem is largely trated when D is a rectangle and the da
lie on a rectangular grid. If the given points are (x; y,), 1 =0,

j=0,1, ..., »n then the usual solution in this Tectangular case is ]
product of the univariate Lagrange operators LZ and LJ corres
the nodes x;, 7 =0, 1, m respectively v;, =0, 1, ..., m, i

- (%) v(y) 1

(y — 2)v'(¥j)

where u(x) = (x — x)..".-(x — x,) and o(y) = (y — yo)+...(y — 3,
have the tensor product ‘interpolation formula:

=L@ Lif + R, & Rif

with ,,@" the boolean sum (Rj & Ry = R, + Ry — R, ® Ry).

When D is of unusual shape and when the data pmnts ared
scattered throghout D the problem becomes more dificult.

1. The natural way to look for a solution, in this general case,
neralize the Lagrange’s formula (1).

A first such generalization is given by J.F. Steffensen
f=Pf+ Rif

* University Aof Cluj-ﬁapoca, Faculty of Malhematics, 3400 Cluj-Napoca, Romania
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m (%) ;)

120 7=0 (x — xi)“’(xi) (J’ — ¥y -

(Pif)(x, ») = Sz 3;)

de v (y) = (3 — ).y — Y, ) and:
(Rif)(x, 3) = 4D % %o --s 3m: S5 D]+

P,y v, 5 f()]-

Lt (x— mu(ag) 0 0 T I

If is obviously that for #y,= ... = n, = n the Steffensen’s formula (2)
omes the tensor product -formula (1). ,

Remark 1. The Steffensen’s polynomial P, f does not solve the given pro- -
m in the general case.

In 1957 D.D. Stancu [15] gave a new generalization of the tensor
duct procedure, which_ generalizes the qtetiulsens method in the same
i, pomenly :

f = P2f+ sz (3)
a
m i v, (y)
(BH) ) :,EOJEO (2 —xy) (xi) O — »i)v () f(xi'yj)

hofy) = (v — ) - . (\' — ¥ i) and:
(Rof)(%, ») = w(®)[%, %o -y ¥ f(-. M) ]+

+ EL [y; yiO’ IR :,vi, n; ; f(xl'y ')]‘

=0 (% — wju'(%)

Remark 2. The polynomial 'P,f is a solution for the considered problem

Indeed, fet X ={(x; 3) |41=0,1, ..., N} be the set of the given
ats and X, Xt < X, the set of all points (a;, v,) € X with 2, = x,
0,1, ..., n;. If the distinct abscisses are x,, xl, e X (o < %y < L
<iw) and [X;| = #; + 1 then we can write X; = {(x;, v5) 7 =0, 1, ...
.mlfor i =0, 1, ..., m. First, using the operator L#, we have:

f Iﬂlf + Rm

Laf)(x 3) = 33— f(x, 5)

Sl (v — xui(»

w, if to each function f(x;.), =0, 1, ..., m is applied the operator
icorresponding to the nodes y;, j =0, 1, ..., n, one obtains the Stancu’s

apolation formula (3).
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Remark 3. 1f Ly = ... =L3,’ = Lj(i.e. no= ...n, = n and
= ... = Y _y]for]—O 1, ..., »)then P, = Lf® L2, hence P,is
lization of the “fensor product operator '

Next, formula (3) was generalized [16], taking instead of the
operators Lz and L2 ¢+=0,1, ..., m some arbitrary linear o
and B? =01, ..., n.

2. An interesting procedure, which is largely used, for the consi

blem was introduced by H. Shepard in 1964 [12]. The Shepad
tor S is defined by the formula:

N
(Sof)(%, ) =}: S(xi 53)
where :
N iN
xy=1‘[;‘xy [T 7% )
j=1 k=1j=1
j#s J#k
or:
N
Az, 3) = (3 7z, 3)nlx )
k=1
with :

Pz 5) = (% %P+ (v — e

and @ < Ry. The cardinality property of the functions A; (4%
i, =0, 1, ..., N) implies that S,f interpolates the function f att
(%, :), ©=0,1, ..., N.

- The Shepard’s formula was generalized in order to interpolate
the values f; of the given function f but also the values of certain o
vates, D»4f, p, g< N, at (x;, ¥3), 1= 1{0, 1, . , N}.. As an exampk
a function is:

( mf A’ _)’ =EA1X )’ mf)(x’ ¥y x, yi)

where (T,.f)(-,-, ; % ¥:) is the Taylor’s polin.mial of the total deg
sociated to the function f and to the node (x;, y;). Thus, for >

(D?9Suf) (%, yi) = (D?4f) (%, 33), 1 =0, 1, ..., N

for each (p, ¢) with p + ¢ < m

3. An extension of scattered data interpolation problem. Let I
given information on the function f at (%, ¥,), £=0,1, ..., m. Th
information are the values of the function f and of certain of its
at the points (x, y,). The given information at (x,, y;) will be de
Iyf, while I7f respectively I3f will be used to mark the partial i

regard to x and y.
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One considers the following interpolation problem : find a function g, g = A
ifined on D such that:

Lg=1Lf k=0,1, ..., M, M > N.
Remark 4. If I,f = f(x,, »v,) one obtains the initial problem.
Now, let us consider once more, the partition X, of X:

Xi;{(xi’ ,yij) |]:O’ l’ ) ni}’ i=0: 1» ceey, M.
me denotes by Pz the interpolation operator defined by:
Prf)(x ) E or (%) kf (5)
where o, are the cardinal interpolation functions (o = 83; 7, £ =0, 1,
., m) and by P%k the operator defined by:
(Pyf z: onily (6)

vith @p;(¥se) = Oj. Using the operators Pz and P,y,k, R=0,1 ..., m we
#line the scattered data interpolation operator Su: K

SMf X, V EZ CPk ‘?kj Ik;f (7)
We also have the corresponding scattered data interpolation formula:
f=35Suf+ Ruf (8)
vhere Ry fis the remainder term.
Remark 5. If I;f = f(%, i), & =01, ..., m; j=0,1, ..., n, then

fom (8) one obtains the formula (1
An important characteristic of an approximation operator is its degree
of cxactness.

THEOREM 1. [f the degrec of exactness of the operators P: and P-‘“k k=

=0, 1, ..., m are v respectively so, sy, ..., Suthen the degree of exactness
of the opemior Sy is (v, s) where: s =min {s;, S, ..., Sy}

Proof. Taking into account the linearity of the operator Sy it is sufficiently
totest that Spep, = € forall p =0, 1, ... 7 ¢=0, 1, ..., sand Sy€41,, #
$o41,0 OF Sp€u o1 # €441 for some pes{0,1, ...,7}orve {0, 1, ...

. S} with e,.(%, y) = x? y9. We have:

nk
(Suepa)(%: ¥) 2 Px(%) %4 3 oy )G
! 5=0
But:

nk
Ecpk =55, 9=0,1, ..., s and I oy (P)yj+ # »°H
=0
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(the cxactness degree of ng is .5) and:

2 ()2t =5, p=0, 1, ..., 7 andzm: Prlx)ar 1 # 4t
k=0

{the "exactness degree of Pf is r) and the proof follows.
DEFINITION 1. If all the operators P,,O, ..., P, have the sam

m
of exactness (sq = 5, = ... =s,,) then the opcrator Sy, is calles a hom
with regard to v operator.

Remark 6. A tensor product operator is homogencous with regard
variables. \
It is obviously that, from the ecrror of approximation point of
homogeneous operator is preferable. But generally it is not the case. It
on the distribution of the interpolation points (v, v;), i =0, 1,
D. So, having inn mind the given informations on the function f, we are
for the situation in which the scattered data interpolation operator by
closed as posible to the partial homogeneous case. T'o this end, let u
the operator Sy, by S” which means that first it is. applied to f the

P; (with regard to A') and then Py, =0, 1, ..., m (with regd

H 4
So, on the same wayv, we can mnstuut a synunetrical operator St

by:

|

(S";'ly )(\ " = “l_‘, it f/A l'kf \‘

j 0 k-0 {

where (# + 1) is the number of all distinct ordinates y; of the gi\'en1

{(x;, ¥;), 1=0,1, ..., N, (m; 4 1) is the number of the npoints with the

nate y; and (,tjo, %) oo (X, m, ¥;) are the corresponding points. S

my = my; = ... = m, then S%* defined by (9) is a homogeneous (with
to x) operator.

So, the operator S%¥ or S%¢ is selected taking into account the
of the points (x; v,), ¢ =0, 1, ..., N in the domain D. But for thisy
tion we can also have into attention the dependence of the function foneachy
le. Indeed, a function of several varables depends, in general, on cachd
variable in a different way. For example,if f is a polynomial of a rea
degree in one of its variable, say x, then it is recomandable to use the 0:
with a better approximation in the variable v. !

Remark 7. An interesting scattered data interpolation operator 154
= (Sp7 + Sy

Remark 8. I the information J,f are the values ol the tunction
(%, Vi) Lif=F(x W), k=0, 1, . N, then the usual operators P&
Py

%o =0, 1, ..., m are the Lagrauges interpolation operators, polm

splme operators or some rational interpolation operators.
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REZUMAT. — Notdl asupra entropiel si a prinelpinlui de maxim al teoriel nfor-
matiel. Lucrarea se ocupd cu -determinarea distributiei continue ce maximi-
zeazd entropia cu o anumiti pondere. Considerindu-se apoi diferite ponderi se
obtin mai multe distributii probabilistice cunoscute. )

1. Des possibilités pour déterminer ou retrouver des distributions proba-
hlistiques, en utilisant le principe du maximum de Vinformation pour I'entro-
pic aux poids, sont présentées dans cette note. |,

2. Soit X une variable al¢atoire continue unidimensionnelle a la densité

de distribution f(x) sur I = R, f(x) > 0, Sf(x) dx = 1. On suppose sconnu le
I
principe  du maximum de linformation et ses applications (voir [17).

PROPOSITION. La distrilution continue qui maximise Urriropic aux poids
), w1 - R*,

G(X, u) = — S w(x) f(x) 1n f(x) dx, (1)
i la condilion

{1 ax =1, 0 >0, (@)
of donndée /)(27\"

N

a
f(x) = 'e.\:p( - (3)
oo est la solution unique de 1'équation (2) pour la fonction (3).

Preuve. En considérant la fonction de Iagrange

F(f(x), @) =G(X, 1) — a S f(x) dx = L fx) 1

pisque In & < x — 1 avec égalité si ¢t seulement si x = 1 on observe que

F(f(x), o) < (0 (T 1 )da»

-1 (ftx

e -

n———dx
(f(x) ")

* Académie d'Erudes FEconomiques, Departement de "Mathén.atiques, Bucarss', Rowmanie
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avec égalité si et seulement si (f(x))“" = ¢~>et par conséquent on déd=
la relation (3) et l'affirmation de la proposition est vérifiée.
_ Par suite de cette proposition on peut déduire sans difficultés les résulta:-
smvants:
CONSEQUENCE 1. Si I = (¢, ) et u(x) = (a+b In(x—c) + d(x—c)?)~
x€l, a, b, ce R, d, p >0, ab < 1, alors '

(%) =;b(x;c)—abe_(”;c)p/qr({l_Pab) (‘1) "

o o dgf =1 et a est la solution de Uéquation qi—o F( I_Pab] = pe

o

A la suite dé la conséquence 1 on déduit :
1—

b

1) Sia, b, ¢, d et p sont donnés de sorte que a = , alors on trouvel:

distribution de Weibull avec

= - ()

1 —m

2) Sic=0etp = 1tandis que q, b et d sont donnés de sorte que a« = s =

1
=Ta, m> 0, » > 0, alors on trouve la distribution gamma généralisée ave
_z
f@) = w1 ¢ % [weTim) -
d'ot, pour # =1, on a la distribution gamma simple.
#=32%

2—m

3) Sic=0et p=1tandisque 4, b, et d sont donnés de sorteque a =—7—=

1 et s
=S MS N, # > 0, alors on trouve la distribution y5.(®) avec

f(x).= x2 e /21;)—‘-’- I"(-gl-)
4) Si b=c=0 et p =1 tandis que a et d sont donnés de sorte que ad = 1:
alors on trouve la distribution exponentielle avec
f(x) = ue—*, u = afd
CONSEQUENCE 2. St I = [a, bl et u(x) = k, on a la distribution. uniforme.

CONSEQUENCE 3. St I =R ¢ u(x) =(a+d|x|)™, a>0,d>0 o=
déduit la distribution de Laplace.

CONSEQUENCE 4. Si I = Ret u(x) = (a + d(x—c)?) " tandisqueaetd > @
sont donnés de sorte que 2ad® = 1, alors on trouve la distribution mnormale avec

fa) = le_n exp{_ o= o )
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CONSEQUENCE 5. Sil = (0,00) et u(x) = (a + b 1n x + ¢ In(1 + dan)) !
el a, b, ¢, de R¥, >0, ab <1, ab + anc > 1, alors
ab-1

F(%) = na—ob(1-pdan)-eld 7 B( w27 — 1) (5)
2ol 1— ab b+ anc— 1
wi v est la solution de I'équation d » ¢~ B ( — - )._ 1
i 1a suite de la conséquence 5 on déduit:
b Sice N, = N tandis ciue a et b sont donnés de sorte que « == l_b" ,

dors on trouve la distribution de Burr de parametre d avec
c(l - n)
b

dot, pour d =1, on trouve la distribution de Burr simple
YSin=1et b=0 tandis que a et ¢ sont donnés de sorte que ac = 2, alors
m trouve la distribution rationnelle avec

flx) = d(1 + )=

R My . . ,
$%n=1cetd= ot S N*, tandis que a, b et ¢ sont donnés desorte
]

n + n, . . .
2% alors on trouve la distribution de Snedecor avec

f(x) = ndxr Y (14-dx")~5/B(1, s—1), s =

que g =

= () 35 ) T (5

CONSEQUENCE 6. Si I =Retu(x) =(a+b In(c+dx)?, xel,
wheR >0, d>0 et ab > 1/2, alors

:Jfr(ab)(1+x21)““b/ JEF‘ab—%) (6)
c

779 1 1
o 4 est solution de Uégquation c e~*B (; , ab— '{) =d.

A la suite de la conséquence 6 on déduit:
: . , 1
ISic=ne N, d =1 tandis que a et b sont donnés de sorte que a = ”:b )

dors on trouve la distribution de Student avec

nt?

foy = (1 +2) T (2

. . [ 1

NSic=n=4d =1 tandis que a et b sont donnée de sorte que « = < alors
1

w1+ 21)

o trouve la distribution de Cauchy avec f(x) =
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CONSEQUENCE 7. Ss1 = (0, 1) ¢t u(x) = (a + b In x 4 ¢
a, b, ce R, ab <1, ac <1, alors

flx) = x= (1—x)~ =/ B(1—-ab, 1—ac)

ot o est la solution de Uéguation B(l-—ab, 1—ac) == e,
A la suite de la conséquence 7 on déduit que si a, b et ¢ sont

de. sorte que « = 12 = 1-¢ , P >0, g > 0, alors on trouve la di;tT
[

b
beta avec

f(x) = 27 (A =%)"Y B(p, q)

De la méme fagon on peut trouver des autres distributions probal:}
a partir des relations (2) et (3), utilisables dans 1'é¢tude des systémes

ques, particulierement des systémes de communications ou systémes d
gies aléatoires.
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G. Schaar, M. Sonntag, H-M. Tei-
hert, Hamiltonian Properties of Produets of
iraphs and Digraphs, Teubner-Texte zur Mathe-
atik, Band 108, BSB Teubner, Leipzig, 1988,
8 pp.

In this book the authors present a survey

the Hamiltonian properties of products of
aphs and directed graphs. This properties of
e two kind of graphs (undirected and directed)
- treated in the different parts. A general
1ct, called B-product, of graphs in defined,
+ which the all well-known products (Car-
‘v, lexicographic, normal product, disjunction,
sian sum) can be derived. Beside the known
;s in the literature up to 1986, the book
.tains the research results of the authors
+0. At the end of the two parts 66 + 26 biblio-
aphical references are listed.

Indices of definitions and notations make

’1e book easy to use. '

Z. KASA

Hervé, Michel, Analyticity in Infinite
)imenslonal Spaces,de Gruyter Studies in Mathe-
atics 10, Walter de Gruyter, Berlin — New
i)rk 1989, 206 pp.

In the last twenty years the theory of ana-
Lticity in infinite dimensions marked remat-
ble achievements. The theory contains results
imilar with those in finite dimensions, but are
sostriking differences. The analyticity in infinite
mensions developed in two principal direc-
ons: analytic functions with values in Banach
aces and analytic functions with values in
seally convex spaces (LCS). The first direction

b reflected in some books published mainly’

w North-Holland Editors (see e.g. J. Mujica,

‘omplex analysis in Banach spaces). The present
nok is devoted to the second directions, the
ain unifying themes being the notions of ana-
itic map with values in a sequentially complete
.$ and that of plurisubharmonicity, a notion
nsidered first by P. Lelong (Séminaire Lelong
69, LNM vol. 116, Springer V.).

The book is divided into six chapters:
Some topological preliminaries; 2 Gateaux
analyticity ; 3. Analyticity, or Fréchet analy-
iity; 4. Plurisubharmonic functions; 5. Pro-

bems involving plurisubharmonic functions ;

6.Analytic maps from a given domain to another
oze.

RECENZII

The book is very well and clearly written
and brings together many results speaded in
various journals or seminar lecture notes. It is
an excellent monograph which can be used by
a graduate student desiring to enter this very
active and attractive field of research, as well
by the specialists as a very good reference source. -

S. COBZAS

Iosip E. Pedarié, Convex Funetions.
Inequalities. (Serbian), Naucna Knjiga, Beograd
1989, 243 pp.

The book is divided into three chapters.
Chapter 1. Convex TFunctions — is dealing
with " convex functions of one variable, convex
functions on mnormed spaces, Jemsen-convex
functions, Wright—convex functions, convex
functions of higher order and convex functions
with respect to a Chebyshev system.

In Chapter II. Convex Functions. General
Inequalities, the method of convex functions is
systematically applied to prove some classical
inequalities and their recent refinements as
inequalities of Jensen, Jensen-Steffensen, Hermi-
te-Hadamard, Jensen — type inequalities for
n-convex funcfions, inequalities of Popoviciu,
Burkill, Vasic, Favard, Gauss-Wincler, Chebyshev,
Griissov, Young et ‘al.

In the last chapter, Chapter ITI. Particular
Inequalities, the general inequalities proved in
the second chapter are applied to some concrete
problems in analysis and probability theory.

" The book is based on a large bibliography,
including eight monographs and an almost com-
plete list of research papers tracing the evoluation
of the subject from its very beginning (the pio-
neering work of JL.W.V. Jensen 1905) and up
to 1987 (the list of refecrences includes nany
papers only submitted for publication in 1987).

The book will be a very useful guide for
all interested in this domain of investigation
— convexity and inequalities — .involded in
almost all branches of analysis and other areas
of mathematics.

V. MIHESAN

K. Schmiidgen, Unbounded Operater
Algebras and Representation Theory. Akademie
Verlag, Mathematische Monographien Bd. 77,‘
Berlin 1990, 380 pp.

The book is devoted to the theory of
*_algebras of unbounded operators in
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Hilbert space (called O* — algebras) and to
their * — representations. These algebras occur
in a natural way in unitary representation theory
of Lie groups and in the Wightman formulation
of quantum field theory but they are also relevant
for other disciplines as the theory of von Neumann
algebras, distribution theory, non-commutative
probability and non-commutative moment pro-
blem. Although some notions as that of weak
bounded commutant appeared in quantum field
theory early in the sixties, a sistematic study
of O* — algebras began only in the seventies,
by the efforts of H. J. Bochers, G. Lassner
R. T. Powers, A. Uhlmann, A. N. Vasiliev and
the author himself.

An O* — algebra is a * — algebra g
with unit, of linear operators defined on a common
dense linear subspace @ of a Hilbert space and
leaving @ invariant. The muiltiplication in & is
the composition of the operators and the involu-
tion a* is the restriction of the usual Hilbert
space adjoint g% to 9.

The aim of the book is to provide an
account of the present day situation of the theory
of O* — algebras and their * — represen-
tations, with a special emphasis on the topological
theory, which is more developed than eother parts
of the theory. Applications to physics are not
included.

The book is divided into two parts. Part I.

O* — Algebras and Topologies, develops the
basics of the theory of O* — algebras and of
the topologies on the domains and on the alge-
bras. Here are included also some topics from
the theory of * — representations, involving
primarily the study of topologies or the structure
of O* — algebras, such as the continuity of
* _ representations, the realization of the
generalized Calkin algebra and the abstract
characterization of O* — algebras. This par
contains seven chapters headed as follows:
1. Preliminaries, 2. O* — Algebras and Topo-
logies, 3. Spaces of Linear Mappings, 4. Topolo-
gies for O — families with metrizable Graph
Topologies, 5. Ultraweakly Continuous Linear
Functionals and Duality Theory, 6. The Genera-
lized Calkin Algebra and * — Algebra L*(9),
7. Commutants,

The representation theory is treated in
Part II. * — Representations, which contains
five chapters: 8. Basics of * — Representations,
9. Self-Adjoint Representations of Commnuta-
tive * — Algebras, 10. Integrable Representa-
tions of Enveloping Algebras, 11. n-Positivity
and Complete Positivity of # — Representations,
12. Integral Decompositions of * — Repre-
sentations and States. .

Tach chapter ends with a section entitled
Notes and containing references to the sources

of main results and examples contained in th
text and also to similar problems.

Beside the basic material the book contair
also many examples and counter examples helj
ing to delimit the general theory. Often tt
original proofs have been improved some emo
have been corrected and some results generaliz
Also, sometimes the terminology and notati
have been changed and several new concep
were introduced.

Written by one of the founders of th
theory, this excellent book can be used by’
new-comers for the introduction to the subj
as well as.a reference book by the specialis

S. C0B7

Algorithmms for aproximation. IL Ed °
by J. C. Mason and M. G. Cox. Chapm-
and Hall, London—New York, 1990, 54 p-
ISBN 0—412—-34580—3.

The papers included in this volume: .
based on the proceedings of the Second Inter
tional Conference on Algorithms for Appr
mation, held at Royal Military College of ier -
Shrivenham, July 1988. The 41 papers insen :
in this volume have been arranged intotr:
primary parts. Part One: Developmentof 4
rithms ; Part Two: Aplications and PartThno
Catalogue of Algorithms. The first two g}
have been subdiviued into eight sdiar
(1) Spline approximation; (2) Polynomid#
piecewise polynomial approximation; ()}
polation; (4) Smoothing and constraish’s
thods; (5) Complex approximation; (
puter-aiedd design and geometric
(7) Applications in other discipli
papers presented by the invited §
vere a broad spectrum of the generd
approximation theory and numerical
These were written by several famous o
ticians from UK, USA and many otherd
We mention the following names: Joha
John Mason, Michael Powell, Alastait
Wolfgang Dahmen, Tom Lyche, Eri
Larry, Schumaker, Iloyd Trefethen f
Barrodale.

The research articles and the
presented by the remarkable math
participating to the Second internatia
ference on Algorithms for Approxi
most useful for researchers in numericl
computer aided geometric design, spli
ximation and also to readers with pradi
rest in algorithms for approximation.
benefit from this very important and
resting book.

D. D.

Tiparul ¢ :cutat la Imprimeria
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In cel de al XXXV-lea an (1990) Studia Universitatis Babes—Bolyai apare In
urmétoarele serii:

matematica (trimestrial)

fizica (semestrial)

chimie (semestrial)

geologie (semestrial)

geografie (semestrial)

biologie (semestrial)

filosofie (semestrial)
sociolgie-politologie (semestrial)
psihologie-pedagogie (semestrial)
stiinfe economice (semestrial)
stilnte juridice (semestrial)
istorie (semestrial)

filologie (trimestrial)

In the XXXV-th year of its publication (1990) Studia Universitatis Babes—
Bolyai is issued in the following series:

mathematics (quarterly)

physics (semesterily)

chemistry (semesterily)

geology (semesterily)

geography (semesterily)

biology (semesterily)

philosophy (semesterily)
sociology-politology (semesterily)
psychology-pedagogy (semesterily)
economic sciences (semesterily)
juridical sciences (semesterily)
history (semesterily)

philology (quarterly)

Dans sa XXXV-e annés (1990) Studia Universitatis Babes—Bolyai paraft dans
les séries suivantes:

mathématiques (trimestriellement)
physigne (semestriellement)
chimie (semestriellement)

géologie (semestriellement)
geographle (semestriellement)

biologie (semestriellement)

philosophie (semestrillement)
sociologie-politologie (semestriellement)
psychologie-pédagogie (semestriellement)
sciences économiques (semestriellement)
sclences juridiques (semestriellement)
histoire (semestriellement)

philologie (trimestriellement)
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