' STUDIA

| UNIVERSITATIS BABES-BOLYAI

o
{ :

|
b

.
[
2

MATHEMATICA

3
1989

CLUJ-NAPOCA

REDACTOR-SEF: Prof. A. NEGUCIOIU
REDACTORI-SEFI ADJUNCTI: Prof. A. PAL, cont. N. EDROIU, conf. L. GHERGARI

COMITETUL DE REDACTIE MATEMATICA: Prof. P. MOCANU, prof. I. MUNTEAN, prof.
I. A. RUS (redactor responsabil), prof. D. D. STANCU, asist. R. PRECUP, (secretar de
redactie), conf. Gh. COMAN, coni. Gr. MOLDOVAN

TEHNOREDACTOR : C. Tomoaia-COTISEL

4
GR. MOLDOVAN, S. DAMIAN

2. General Prohl . s
. ¢ em. Definitions, Notations i
wing notations - . We shall introduce the follo.
Ly = (k, o}, & b : :
r= (R, 0, 15, ..., 5,) = the chain on which the base B, travels from

the source node % to the destination node z'},‘A;

8’. - { k 3
= U+ dy, o8+ d,’?‘pk} = the set of instants at which the bag
By .rosses the nodes of the chain L;
!y = the instant at which the tran
i sfer of the base B, from
1s launched ; # from the nole 4
k . . -
) d,-p = the transfer duration of the base B, between the nodes % apqg
» (P =1, Pr)-
Some specifications must be made here :
— the chains L, are supposed to be known;
- the station duration of the base B, in the node 7, is assumed to be
contained into the value d,’-‘p;

— the values dfp are considered to be known and liable to a translation
with a value #* € [0, T, where [0, T represents a given time interval, such
that, after the translation with /# on the chain L,, the set of instants at which
the base B, crosses the nodes of the chain L, becomes:

Fo={t + b, +df + 15 ... b4 +d + 8
3 . pk

Now, Jet £, be the set of chains on which the transfers are made and
which contain the node k2 We shall consider further down only those £, for
which :

— the reunion of the nodes of their chains, on the whole, form a connected
component G’ of G, with »’ nodes (»’ < #) and ! chains ;

— there exists at least one node % belonging to at least two chains, i.c.
being crossed by at least two different tases (namely |[£,| > 2).

Denote by &0 the set of nodes of the graph G’ endowed with these pro-
perties, which provide a meaning to the crowding problem.

The following definitions lead to a local measure of the crowding degree
in the redistribution process:

pEFINITION 1. For fixed # values
the node %k € & is the minimum value of the distances between the time in-

wo different bases cross the node %, namely:

(¢ = 1, 1), the relaxalion degree 7y in

stants at which t
7, = min Iti — 4], i #4, Ly Lj € &
7,7
where: .)
f= b+ di+ 6 (or i =50,
=t +di+0 (or =3)).

LOCAL OPTIMIZATION PROBLEM-FOR DATA BASE 5

pEFINITION 2. For fixed # values (¢ = 1,J), 'the crowding degree g, in the
node k € & is the inverse of the relaxation degree in the node &, namely:
1/7’;‘, if 7y #* O;
& =lw , ifr,=0.

DEFINITION 3. For fixed # values (¢ =1, 1), the value 7 = min 7, is called
ﬁe@l

i

relaxation degree of the net G’ in the redistribution process.
DEFINITION 4. For fixed #* values (1 =1,0), the value g= maxg; is
kel

called crowding degrce of the mel G’ in the redistribution process.-

With this, we formulate the following
PROBLEM. Taking into account the conditions and notations which were in-

troduced above, determine ¢ € [0, T'], + = 1, 1, such that, after translating the
initial instants ¢; with &, the relaxation degree of the net G' in the redistribulion
process 1s maximum, or, equivalent, the crowding degree of the net G’ 1is mi-
nimum; in other words, delermine t# € [0, TV, ¢ = 1, I, such that ..

min #,—- max
ke 4 '
or:
max g,— min.
kedl

We shall give further down a solution of this problem in the peculiar
case of two chains of the net G, along which the transfer of two data bases
is performed in a given time interval, with the assumption that the chains
have at least one common node (hence they constitute a G'-type subnet).

3. Solution in a Peculiar Case, Let L, ={1,4,4, ...,45} and L, =
= {2, 4}, 13, ..., 75} be two chains along which the contents of the bases B,
(between the nodes 1 and i) and B, (between the nodes 2 and i) are res-
pectively transferred. Let also:)

gl = {tln tl + dl!l’ ll + d'!:’ M t‘l + d'!Pl}’ '
o= llo o+ dity+ dly ooty +)

be the sets of given time instants at which the bases B, and B, cross the nodes

of the chains L, and L,, respectively.
Considering that the transfers are performed during a given time interval

{0, Ty, we have:
O<h<p+di<t+d<... <t+dl, <T, k=12

§mce L, and L, hgve at least one common node, we denote by £, the
set of common nodes, in which the crowding problem can appear :

H=LNL,={n,mn, ... ny}, 0 < p < min (D1, P2)-

6 GR. MOLDOVAN, S. DAMIAN

‘Corresponding to- the nodes.from &,, denote by :
- t"::':{/-',—]‘—dﬁ," l‘;:‘ﬁ;i:l;]b;

the time instants at which .the base B, crosses'the common node n,
Assuming that the elements of &, are fixed, while those of &, are liahj,

to a translation with ¢ e [0, T, where T =Ty — ¢, — d?p_, the problem fy,_

mulated in Section 2 reduces to the determination of the value *e{0 7

such that, after transjating the values from &, with ¥, the minimum dist’anc’

between the time instants corresponding to the crossing of a node from g(e

by B, and B,, respectively, is as far as possible maximum. ¢
Hence, we have to determine /* & [0, T] such that:

min |£ + 1,2,‘. — i},il—vma.\:, i=1p 1e]0,T]
it :
namely the relaxation degree of the net consisting of L, and L, (with the

above hypotheses) is maximum.
. 1 0] . .
Denoting d,, = 1,, — t”'." 1= 1, p, the problem can be rewritten as follows:

min |{ — d”.’ | —- max", 1= 1—3, 1[0, T] (1)
it
Before performing any translation, the instant at which B, crosses the

node , is earlier than, later than, or coincides with the instant at which
B, crosses the node #,, according to the relations dy, > 0, d, <0 or d, =0,

respectively.
~-Ordering increasingly the values d,,i, we obtain :

. d)l'~ s dn'- s LS s li"A)
1 1 l!,

or, deuot'i a;=d,., | = 1, , we have:
mg &; i 1=
(11<d2<...<¢1,. (2)

Let us now introduce some functions (all delined on 70, oc), with values
into [0, oo)) as follows:

)y =1t—dl, j=1p;
J() = 1n;11]3(1), i=1p;
F(T) = maxf(f), tei0, T}

H

With this, the following proposition holds :

PROPOSITION 1. The function F is increasing.

"Proof. Let be 0 < Ty, <T,. We have:

F(T,) = n?f}\:] f() € max (max f({), max f(})) = max f() = F(T,)
T e,

1e (0, 741 ({1, T} te (0, T,

LOCAL OPTIMIZATION. PROBLEM FOR DATA BASE 9

PROPOSITION 4. If d; >0, j = 1,5 P, thew: . .
— if T &], (k fzxed 0 <ko \p) then :

F(T)_maxlk, R=0ky; ¢ Vo
— if dy, < T < min (dp, + max i, ma,), wttk =0,k — 0, &y — 1 and 1<ky<p,
R . .- . os

then : ,
F(T)='maxl,, ;»k==0,k -1

\

— if dy, + max L < T < iy, with k=0, k — 1 and 1 < ky < p,:then:
FT)=T — d,... . v

Proof. From Proposition 3 and the monotomc1ty of the functlon f we have:
maxf(l): max (t_dh)=lk: ¢ EIk: k= 1,15—‘ 1;
] H
max f(f) = max (—¢ tdp) =, b€ Jy k=0,p— 1.
¢ $

If T €1, then: o ‘
maxf()—max(t—-d,,)_T—dk,tE[d,,,T] k—lj)
[. .

S SN

It T E]k, then: 1
IH?Xf(t) = max (—t+ dk.\\.]) = lk: t e [”I'k’ T'], k =.0, P —-1.
‘ ' o .

Taking into account these estimates, the definition of the function F and
the properties of the function max on reunions of mter\ als, we differentiate

the following cases :
a) If T € J,, it results [0, T] = [m,, »](_‘_]0,4 therefore :
CF(T) =maxf() =1, t = [mg, T].
; :
B)If T & Ju, ko=T,5—1, p > 2, k, is fixed, we have:

ke—1

te 0, T] = (U Jh) ("L’;Jl Ik) U [, T,

hence :
F(T) = max (max 1, max }, };) = max .
h=0k,—1 ke=1k, k=0,

¢) If T eI, we have [0, T] = J, U [dy, T, hence:
F(T) = max (n“xGaJx f(0), ‘n;ax J@) =max (l),, T — d,) =

'IOt ‘ if dl < T <
T - dl: if dl + lo <7T.

=

10 . GR. . MOLDOVAN, S. DAMIAN"

Since T < I, = [d,, m,], we obtain:

. [zo, if d < T < min
(7) = T—d,, ifd +1,<T<my.

3 i

d If T e I, 2 <k, s':ﬁ, ky is fixed, we have:

temJ1=@2L%J@24LMaJ1

therefore : ‘

F(T) = max (max /, max I, T —d,) =max (max 4, T —d) =
R0k 1. k=1, k=1 : k=0, k=1 |

max l, if d,, < T < min (ds, + max };, my); .
k , : k g

.\ T —d, if di, +max i < T < my,
- raax

where £ =0, £, — 1 and the intersection with I, = [d,,, 7u,] was performed.
Observe that for %k, = p, since m, = o, we have:

min (d, + max 4, m,) =d, 4 max}, k£=0,p— 1.
k k
Performing the reunion of the explicit results obtained for F in the four

above cases, ‘the validity of Proposition 4 is proved.
Now, we introduce the notation: .

/ F - e
D,= max [, k=1,
\ 1=0, k—1 '

‘bygmeans of which one associates to each iuterval having the form

Jo= [0,d], Licy U Jecr = [der, di], k=2, p,

the value D,, where % = 1, 2
Observe that: !

Dyyy=max (D, 4), k=1,p — 1. 4)

With this notation, we can rewrite Proposition 4 as follows:
PROPOSITION 5. If ;> 0, j=1,p, then:

F(T) = D,, . #d<T <min(d+Dy,m), k=1p;

’ .

.»[Dmp fTe]uk=07p—1;

T—dk:."lgf‘dk+Dk<T§ my, k=1, p

12 GR. MOLDOVAN, S. DAMIAN

For every p > 2 and for every class €, j = 1, ¢, we have:’ :
— If D, €@ and T < J,, from Proposition 5 and: formula (6) it results-

F(T) = D41 = Dy, €€,

for each k=k;_, + 1, k, — 1.
— If D, €€ and |€] > 2 (€ has at least two elements), we have;
Dy = Dyyy = max (D,) < Dy >y >
. ..<dy+ D, > my= min (d, + D,, m");'—“ "y,

In this case, if dy < T < min (d; + D, my), from’ Proposition 5 and formuyly
(6) it results:)

for each k=%, + 1, f— 1.
— If ¢ > 2 and % < p, we have:
" lej < D/‘]+l = 1max (D"j' lkj) < ij < lkj <>
had d/lj + ij < ‘”ikj=> min (dkj + Dk’., ﬂikj) = d"j + ij'

In this case, if dk]. £ T € min (d,,]. + D,,j, m,,].), from Proposition 5 and for-
mula (6) it results:

F(T) = Dy,

and, if d,,j 4- ij £ T < M, it results:
FT)y=T-— d,,}..

Performing the reunion of the intervals for which F has the same ex-
pression, - we obtain Proposition 6, which emphasizes the constant branches
and, respectively, the strictly increasing branches of the function /.

~ Consider now the case in which there exist values d; < 0, + =1, p,, and

values :
di>ol 'i=po+lxpp]5?2: 1<P0<p,

namely (2) becomes:

dy <dy < ... €dp, <0< dpy1 £ ... € dp 7

With this hypothesis, the following proposition holds:

PROPOSITION 7. a) If —dp, > dp, + 1, then the expression of the funclion
F is given by Proposition 6 applicd to the values d; > 0, 1+ = py + 1, p

b) If —dp, < dp,41, then the expression of the funmction F is given by Pro-
position G applied to the values d;> 0, except the case 0 < T < dy, + D,

LOCAL OPTIMIZATION PROBLEM FOR DATA BASE 15

slead ‘to the synthetic formulations of Propositions 6 and 7. The values ¢* €
e [Q{.‘l] which are solutions of the problem formulated in this Section are
specified by : i . o ;
PROPOZITION 8. a) If 4; <0, i =1, p, then t* = T. :
b) If d; >0, 1= 1, p, then: . R ‘
t* =T, if d + Dy, < T"g.m_k;'.';_ B .
t* =0 or t* =my_,, such that li_y =Dy, k' <k, and mu_y < T, if
0<T<dy+ Dy ; S
t* = my_y, such that l_, = ij, kR <kiand m_y <T, if My < T <
< dkj -+ ij-

c) If thereexistd; < 0,1 =1, py,and d; > 0,1 = p, + 1, p, and if —d,, >
> dp,11, then t* is given by the point b), considering only d;> 0, © = p, +1, p.

d) If there exist d; <0, i=1,9, and d;>0, 1 =p,+ 1, p, and if
—dp, < dp,11, then t* is given by the point c¢), except the case 0 < T < dpyy +
+ Dyyy, when we have:

*=T,1f 0 < T < my,;

1* = myp_y, such that Iy, = Dy, = by, and my—y < T, if mp, < T < dp,+ Dy,.

4. Comments, Proposition 8 provides the values #* € [0, T] with which,
if the initial instants on the chain L, are translated, one obtains the maxXimum
relaxation degree or the minimum crowding degree for the net consisting of
the chains L, and L,.

Observe that in each case there exists at least one solution; in some cases
there exist scveral solutions for those intervals from the class €; for which
Loy = Dy

If * =0, then, in order to obtain the required optimum, no translation
is performed on the chain L, because the existing initial situation cannot
be improved. '

If t* = T, the translation is performed with the maximum possible value.

If % = my_,, there exists at least the solution ¢* = Maj_ye

Proposition 8 offers the cases to be analysed in the algorithm for the
determination of ¢* as function of T, the determination of the strictly increasing
scquence Dy, being essential.

REFERENCES

1.L. Garbacea, Gr. Moldo van, Distributed Data Bases, Univ. of Cluj-Napoca, Fac. Math.
Res. Semn., Preprint 5 (1984) (Seminar of Models, Structures and Information Processing), 70—90.
2, Gr. Moldovan, Reorganization of a Distributed Data Base, Univ. of Cluj-Napoca, Fac. Math,
Res. Sem., Preprint 5 (1984) (Seminar of Models, Structures and Information Processing), 3—10.

16 . GR. MOLDOVAN, S. DAMIAN

3. ((l;er.] Molc.lov'an, 0 problefm‘i. privind- bazele de date distribuite, M.E.L., :A VIII-a Consfiity;

C ucru si schx.ml_) de experien{i a lucritorilor din unititile de informaticd. Luerari PreZe;l uir,

. Gonstan';a, 29 julie—4 august 1985, p. 102—103. ’ o , tate,
. sitr.tMOI'd ovan, O problemd de optimizare intr-iun sistem de baze de dale distribuite, Uniy

I:f €a dm Clqj-;\'a.poc.a', Facultatea de Matematicd, Centrul de Calcul Electronic, Simpoz; &

5 &2 g;manca si aplicatiile sale”, Cluj-Napoca, 20 noiembrie 1986, p. 13—19. Onu}
it d° fD dovan, S. Damian, On some Generalizations of an Optimization Problem for p;

6. o 1& ata Bases, -Studia .Umv. Babeg-Bolyai, Mathematica, 32 (1987), No. 3, 67—76. 5
. . oldova_n, S. Damian, On an Optimization Problem for Distributed Dala Bases, 4

Univ. Bucuresti, Mat.—Inf., 37 (1988), No. 2, 82—87. * A

: o

STUDIA UNIV, BABES—BOLYAI, MATHEMATICA, XXXIV, 3, 1989

POISSON SYMBOLIC PROCESSOR

BAZIL PARV*

. Recesved : July 7, 1989

‘REZUMAT. — Asupra unul proeesor simbolic Polsson. Lucrarea propune " un
procesor simbolic pentru manipularea algebrici a expresiilor Poisson. Sint pre-
zentate pe scurt mecanismele interne de reprezentare si operare. De asemenea, sint
descrise operatiile de implementare 5i metafunctiile de previziune. Acest procesor
a fost folosit in unele probleme de inecanicii cereasci si poate fi utilizat in orice
problemi in al cirei model matematic intervin expresii Poisson.

1. Introduction. A qualitative jump in the use of the electronic computer
(initially intended to perform only numerical calculations) is actually repre-
sented by its use to perform. analytical operations. This constitutes a basic
eomponent of achieving the so-called intelligent systems.

The first performances in this field were.obtained in the seventh decade
of our century. For processing the Poisson series, which are of a great in-
terest in celestial mechanics and nonlinear dynamics, constituting the object
of this paper, important studies were developed along the last twenty years.
(1,2, 4—6, 9—11, 13, 15, 21, 24—25, 27]. o)

Generally, the above mentioned systems are programs written in machine
or list-processing languages, whose functions which perform the Poisson series.
manipulation can be called from programs written in high level languages.
Another direction in symbolic processing of Poisson series was the development
of specialized programming languages, able to achieve these operations [7,
16, 22~23]. :

2. Poisson Series and Expressions. A Poisson series has the form:

7] . -)
L 5, sin ,
S = Eci A K cos (kyyy + Royot et Rida), (1)
-0 . ;.
where : C; are numerical coefficients; #;, %, ..., ¥» are monomial variables;
1, Y3+ - -» Y are trigonometric (angular) variables; 7y, Jp- - -) Jm and &y, Ry, .. R

are exponents and, respectively, coefficients,j The summation index s covers
the set of all possible combinations of the exponents § and coefficients k (j €Z",

k eZ. X
The form (1) of the Poisson series can be briefly written as follows:,
in which T, is a term of this series:)
T, =C; P F, ’ 3)

* University of Cluj-Napoca, Computing Cenire, 3400 Cluj-Napoca, Romania

2 — Mathematica 3/1989

18 B. PARV

Where the monormial part P; has the form:

g T e
P, = a3t ooz, 7

while the trigonometric part I; has the.form: W

. sin '
F‘.' = cos (klyl + k2y2 + LIRS + knyn)-

c)

In practice, one does not operate with Poisson series, bt iwith —

sums of these ones, which are usual tools for the analyticdl theories of Cal.

29

lestial mechanics. Such partial, sums’ have the form:
S = E T,’, ‘N E'lr’ b
= ®
and will bé called (Poisson) expressions. The -nionomial and trigonomety;
‘variables -and the expressions 'as well are ‘identified by their names, whiclﬁ
are character strings-and will be called hereafter symbols.
. ' In what follows we shall present a-Poisson symbolic processor (PSP) ¢
pecially devoted to certain problems belonging to celestial mechanics, astr.
dynamics and related topics. '

3. External Form of Poisson Expression. The expressions provided by
the user to the processor, and those obtained by this last one as a resuit
.of the performed operations (expressions provided on output file or listingto
the user) as well, must observe some conventions. This represents the so-called
external form. PSP accepts cxpressions written in infix notation, in which
‘thé operators are: 4 (addition), — (subtraction), * (multiplication), / (divi-
sion) and * (exponentation). The coefficienits C; are considered to be ordi-
nary fractions: ' '

C; = pilqi, ' U]

with p; € Z, g; = N*. Integer numbers are also considered rational coefficients
with the denominator equal to 1. If a term appears as cocfficientless, its virtual
.coefficient is considered 1. :

The monomial parts (4) are’ written as follows:

Pi=x,"jy% %37z % ... % X" s o
where %, %y ..., %n ate. the symbols of the monomial variables, while j < 2°
(see Section 2). In (8), only the monomial variables with nonzero exponents

must be specified.
The trigonometric parts (5) are written as follows:

el
(see Section 2). In (9), ouly the trigonometric variables with nonzero coefficients
must be specified. .

sin 9
F"= (kl*.y1+k2$y2+"'+kn*yn); (
cos T o
where 5, Y2, - - ., Yy are the symbols of the trigonometric variables, while k

POISSON SYMBOLIC PROCESSOR 19

The.terms T; from (3) are written as follows :

T;=Cix PixF, (10)

where Cj, Py, F; have the forms (7), (8) and (9), respectively.
In order to define a term. T, at .least one of its components (C;, P;, F,}
must be specified - (the others are omitted from the formula (10)). o

The Poisson expressions (6) are written under the form of
of terms. Such an expression contains at least one term.
which the terms are arranged in respect to the type of trigo
the set of monomial part exponents, an
ficients is called “normalized’””. s

4. Internal Form of Poisson Expressions. The external form of Poisson
expressions represents the interface between the program and the user.In order
to operate with these expressions, these ones must have an internal form with
the following features [117: ' R :

— unique for a given expression ;

— compact (in order to use a small amount of storage);

— rapid in search (a given term may be easy accessed);

— general for such expressions. : 5

Yor a concrete problem, one must define the monomial and trigonometric
variables, and the primitive expressions with which the analytical operations
are performed. All expressions with which PSP does operate are stored term
by termn, ordered in respect to their apparition or construction.

¥or a term of the form (10), the following informations are needed to be
stored : its coclficient, the exponents of the momomial variables, the type of
the trigonometric function, and the coefficients of the trigonometric variables.

Different methods for representing. Poisson . expressions are proposed or
analysed by [1—2,5, 11, 16,21, 24—25]. Generally, in the frame of these me-
thods, the i-th terin of a Poisson expression is identified by exponents j € Z”,
cocfficients & & Z», and the type of trigonometric function. In this paper, we
considered a representation in which the 4-th term of an expression is identi-
fied by means of its position in its “normalized” external form. The used
method is essentially based on the fact that the coefficients C;, the exponents
j of monomial variables, the coefficients k of trigonometric variables and the
terins T are stored only once in increasingly ordered lists.

In what follows we shall describe the internal representation manuer of
the entities above mentioned, starting with the simple types and continuing
with the complex structures of data. . C ‘

The symbols are character strings of at most 4 characters length, which
rust identify uniquely the rcpresented entities (variable or expression names).

‘"he monomial variables are stored in the list VP, ordered with respect
to their definition. Every clement from this list is a symbol which identifies
the respective monomial variable. .) T

‘The trigonometric variables are stored in the list VT, also ordered ‘with
respect to their definition. Each element from this list is 2 symbol, too, which
identifies the respective trigonometric variable.

algebraical sums
An expression, in
nometric function,
d the set of trigonometric part coef-

20 B. PARV

The coefficients C; are stored in the list TC. An element. .ok
has the form; ' ent from. thig ligy

PRSPV AN

Ci:| # I g | Nr ot C o
in which p; and ¢; are the numerator and, respectively, the denominator of the |
coefficient (represented as integers). ’ S B he
' The monomial parts (8) are identified by means of the exponents 7. Th
are represented in the list TP as follows: . o ey

LRt

Py

. P,;: jl |]'2 e jm Nr | ‘ (]2)

in which the exponents j have integer representation. - .

The trigonometric parts (9) contain two categories of informations which
must be stored : the type of trigonometric function and the coefficients k o
the argument of this one. The type of trigonometric function is stored into 4
byte-type variable_(denoted by TF) as follows:

0, if T, does not contain the trigonometric part;
TF =11, for sine; (13)
2, for cosine,

while the coefficients % are stored into the list T71'. Such coefficients are stored
into a location of the list as follows:

Fo:| &, | &, ...Ik,, Nr | (19

in which the coefficients are represented as integers. We mention that the first
nonzero coefficient &, 1 < ¢ < #, must be positive.

The terms T; are stored in the list TV. An element of this list corres-
ponding to the term T; has the structure:

T;: |TF AdrTrigIAdrMon AdrCoef|Nr| (15)

‘where :

AdrTrig = location index from T'T where the coefficients of the trigono-
metric part are stored; ' _

AdrMon = location index from TP where the exponents of the monomial
part are stored ;

AdrCoef = location index from TC where the coefficient C; of the term
T, are stored.

All these location indices (pointers) are represented as integers. L

The elements from each of the lists T7C, TP, TT and TV (elements .Whlch-
will be symbolically denoted by C, P, F and V, respectively) are stored uniquely,
by preserving the increasing (lexicographically) ordering of these lists. The field
Nr which .appears in every above presented data structures signifies the number

22 ‘ B: PARV ‘.

5. Stqmgc Algorithms. The data lists presented in Section 4 were ord
as we specified in order to perform a rapid access to the contained infonnat_eredi
In the increasingly ordered lists (or sublists) the searching method we uslon.-é
t.he binary search, while in the list TEV the search is .sequential (sincee(z I8
hist generally contains a‘ smaller number of elements than ‘the other lists) his
The insertion/deletion of an element in/from: the ordered lists is made b
means of five basic algorithms, which will be described below. , y

Algorithm SEARCH(L, EL, !, u, i, r) determines the location i of the el
ment EL in the list L. The search is performed between the locations ; and e
of the list, while » shows whether the element EL is or is not stored in the i Y
L, and has the value:) *®

0 10, if L[5 ="EL;
r=41,if L{i]> EL; (17)
2,if L[] < EL.
The searching method is the binary search (e.g. [19]), which ensures, for a ligt
containing # elements, the determination Qf 1 after at most log,n steps.
Algorithm MOVER(L, EL, i, n) inserts a new element (EL) in the list :
L, of length #, on the location 7. The performed operations are : ;
Ligl—>Llg+1], g=mn—1,...,1; ;
EL— L[i]; (18)
- b f n + 1_"' n. A‘ '

I
5

_ Algorithm MOVEL(L, i, n) deletes the elements of the location i from the
list L (with # elements) as follows:

Ligl>Llg—1), g=t4+ 1142, ...,n;

#—l—>n (19

Algorithm INC(L, LF, i, n) increases by one the values of the ficlds LF
“from the elements of the list L (of length #), ficlds for which their value is
greater than or equal to #: :
Lig]. LF, i Ligy. LEF <1;
Ligl.LF+1, i Llg).LlE =i
Algorithm DEC(L, LF, i, n) decreases by one the values of the fields LF

from the elements of the list L (of length #), fields for which their value is
greater than or equal to <1 ’

Lig) . LF = { (20)

Liq] . LF, if L{q]. IF < i;
Lig}. LF ={ "1 ML . (21)
| . L{q] . I.F‘— 1, if L{q}.LF > 1.
The manipulation manner (insertion or deletion) of the elements from the
recised lists, by means of the aboye algorithms, will be described below, 18

a PASCAIL-like form.

POISSON SYMBOLIC PROCESSOR 93
;‘: In what follows, for simplicity; C, P, F,, T, E; will respectively be
denoted/by C, 1.3, F, vV, E The number of elements from the lists TC, TP,
TT, TV, TE w1}l respectively be denoted by, nyc, frp,: #rr, By, N1, while
the current Jocation from these lists will be indicated by #7¢c and so on.

(a) Storage of a coefficient. A coefficient C of ;the form.(11) is stored in the
list TC as follows: |

Proecdure AddCocf (TC, C, nyc, TV, nry)

3

Begin '
SEARCH (TC,C, 1, nrc, irc, 7) ;
Iftr=0 - B .
Then TC[irc] . Nr:= TC[irc]) . Nr 4+ 1
Else . |
Begin .

If » =2 Then 4r¢c: = irc +1;

MO VER(TC, C, 'irc, 111-(;) s

INC (TV, AdrCocf, irc, nyv)
End;

End; {AddCocf} : N
(b) Deletion of a cocfficient. The coefficient C lying on the location ir¢ will
De deleted by using the following procedure:
Procedure DelCocf (TC, nre, tre, TV, nrv);

A
f

Begin
IClirc] . Nr:= TClizc] . Nr —1;
If TClir¢] . Nr=0 :
Then
Begin
MOVEL (TC, ‘irc, ﬂvrc) ;
DEC(’I‘V, Ad)’COL'f, 'i’['(;, ”TV)
End;
End ; {DelCocf} | o

The insertion or deletion of monomial (P) or trigonometric (F) parts of
a term are performed analogously (observing the corresponding indices and
ficlds), with the procedures AddMon, DelMon, AddTrig and DelTrig.

(c) Storage of a term. Using the above described (a)-type procedures, the
‘components C, P, F of the term V are stored in the respective lists on the
locations irc, irp, irr (or, more rigorously, AdrCoef, AdrMon, AdrTrig), res-
_pectively. Using TF from (13) the element V of the list TV is.complete. The
procedure is the following one: - f -

. B. PARV

24
Precedure AddTcrm (T'V,V,nry, TE, nre) ;

i

Begin
SEARCH (TV, V., 1, nrv, irv, 1) ; :
It r=0 x
Then TV['ETV] . Nr: = TV[‘ITTV] . Nr + 1
Else :

Begin
If » = 2 Then 'iTV: =7:TV+ l.-
MOVER (TV, V, 1:1'1/, 'nz‘V) 5
INC (TE, E, iy, nrE)

End ;

End; {AddTerm} ’ ,

(d) Deletion of a term. The term V from the location Iry will be deleteq’
with the following procedure : i
Procedure De¢lTerm (TV,V, nry, TC);

Begin
TV[l.Tv] .Nr:= TV['LTV] .Nr —1 ;
DelCoef (TC, nyc, AdrCocef, TV, nry) ;
DelMon (TP, nrp, AdrMon, TV, nry) ;
DClT)"Lg (TT, nrr, Ad?T?”ig, TV, nry) .; :
If TV[iry].Nr =0
Then) :
Begin
MOVEL (TV, 'iTV, n-py) N
DEC (TE, E, 'iTV, 117'1.;)
End;

End; {DelTerm}

The storage of a new expression is always performed by adding new ele-
ments at the end of the lists TEV and TE, as follows: using the procedure
AddTerm for each term of the expression, one constitutes a new sublist in
TE whose limits are stored in the fields Firsiddr and LastAdr of the new
element in TEV, together with the name of the expression stored in the field
ExprName. During the storage of the terms, the similar terms are collected,
too, such that, at the end of its storage, the expression has the most con-
cise form. The identification of such terms is made by binary search into
the corresponding .sublist built upto the respective instant.

The deletion of an expression is achieved in two steps. In the first step,
the procedure DelTerm is performed for the terms whose addresses lie into
the sublist from TE corresponding to the expression. In the second step -
“the element from TEV corresponding to the expression is deleted by apply-
ing the procedure MOVEL (TEV, ig,, ng,), where the subscript (Ex) is give?
with respect to the list TEV. :

"

~

POISSON SYMBOLIC PROCESSOR 25

6. Basie Operations. All operations (with expressions) which' will be-des-
cribed in Section 7 reduce to two basic operations with terms of the respective
expressions : addition and multiplication. ; d

The addition of two terms can generate:

— two terms, if they are not similar; ,

"t_ one term, if they are similar terms, but their coefficients are 116t op-
osite ; ,
PO nao term, if they are opposite.
In the last two cases one performs the collecting like terms.
- The multiplication of two terms can generate :

— two terms, if both terms have trigonometric parts (since the product
of trigonometric functions transforms into a sum);

— one term, if at least one of the terms has no trigonometric part.

For both basic operations, the most difficult suboperation is the coeffi-
cient manipulation ; in other words, the rational arithmetic on the computer.
The procedures which perform operations with the ordinary fractions use es-
sentially the binary Greatest Common Divisor algorithm (e.g. [20]). All coef-
ficients obtained by rational arithmetic procedures are simplified fractions.
The operations involving the transformation of the trigonometric products in
sum fulfil the condition mentioned in Section 4, namely: the first nonzero
coefficient of the argument of the trigonometric function must be positive
(changing accordingly the coefficient sign in the case of the sine function).

7. Operations with Expressions. An operation with expressions has the
general form:

i

EN = oper (arg,, argy, ..., arg), ¢ =2, - (20)
or:
EN = oper (arg,, arg,). (21)

All implemented operations preserve the form (6) of the Poisson expres--
sions. Since we work with finite expressions, no restriction was formulated as to
the number N of terms from (6); the only restrictions are imposed by the
limits ol the working storage. Also, there are no restrictions as to negligible
terms.)

With these considerations, we shall describe further the implemented ope-
rations with expressions, by using the following symbolic notations:

EN (within or without index) = expression name ;
Pl” = monomial variable name; '
TV = trigonometric variable name;

I = natural number (I > 1).

These operations are:
EN = add(EN,, EN,, ..., EN,), ¢ 2 2, (22)
EN = sub (EN,, EN,), (23)
EN = mul (EN,, EN,, ..., EN}), ¢ 2 2, (24)

26 B. PARV

EN = exp (EN,, I'),

EN = dep (EN,, PV), | , (23)
EN = det (EN,, TV), o (26)
EN = inp (EN,, PV), : (27)
EN = int (EN,, TV), (28,
EN = med (EN,, TV), gg))

or, more explicitly, for each above operation:
EN = EN, + EN, + ... + EN,,

EN = EN, — EN,, gi:’
EN = EN,* EN,* ... EN,, (24';
EN = (ENI)"I, =~ (25)
EN = 9(EN,)/3(PV), (26)
EN'= 9(EN,)[2(TV), (27)
EN = SEN1 a(PV), (28)
EN = SEN1 AdTV), (29)
EN = (1/2r) g EN, d(TV). (307
0

We considered that two differentiation and integration operations are
necessary, since the differentiation and integration oi a Poisson expression

with respect to a monomial or trigonometric variable are esentially different
operations. ‘

" In its most general form, an expression can be constructed by means of
operations (22)—(30) as follows:

EN = oper,(...) 4 opery(...) =4 ... =+ opery(...), s = 1, (31)

where oper;, 1 < <'s, is an operation defined by (22)—(30),” of corresponding
arguments. We must also mention that even expression names EN are ad-

mitted as arguments (EN,, EN, and so on) in the right-hand side of formulae
(22) —(30).

8. Proeessor Options. As we showed in Section 4, for a concrete problem,
one must define: the monomial and trigonometric variables, the primitive
expressions, and the operations with these ones needed by the respective prob-
lem. In order to ensure a great flexibility in answering, we foresaw the possl-
bility of interactive request of implemented functions in an order fixed by¥
the user. The ifunctions menu is displayed on the screen and each fung'noﬂ
is called by pressing a key corresponding uniquely to a given comand. These
keys are:

= specification of input file (implicitly keyboard);
O = specification of output {file (implicitly CRT);

POISSON SYMBOLIC PROCESSOR

27
?3 = def}u;tion of monomial variables;
= det}ll}tion of trigonometric variables: .
E = definition of primitive expressions ; . "
D = deletion of expressions : . L .
R = construction of new expressions by means of formulae (22').—-(30)7
S = expression displaying on output file; . ~ ,
M = memory statistics; y
N = spccilication of problem identifier ; . :
Q = exit (stop of execution). ‘

f{he comm.ands I and 0 ﬁeature the. execution environment. The already
specified functions are implicitly -executed one by one by pressing the cor-
;resppndmg key. In the case when the volume of necessary. commands for
solving a coucrete problem is considerable, it is preferable to leave the in-
teractive mode, specifying (through the function I) the name of an input file
containing above described commands of the processor. Each command will
be read from the input file, echoed on the screen and then executed. At the
end of input file, the kevboard re-acquires the control. On the other hand,
if -the output results are needed on listing, one may specify (through the com-
mand O) an output file (printer or disk file) intended to keep the results.

Another class of commands (P, T, E, D, R) is constituted by the spe-
«cific commands ol the PSP. The logical succesion of these commands is (at
start) P andfor 7', and then E. After E appears, P andfor T can no longer
appear. As to E, D and R, they can appear in an- arbitrary order.

‘I'he commands S, M and N are informational functions. The command
S can be used every time when the user wishes the displaying or listing of
the stored expressions (at the call instant) on the output file. In this way
one can list hoth intermediary results and the final ones. The command M
is purely informative; it allows to the user to know the memory allocation.
The command N allows the insertion of a character string (signifying the prob-
lem name) in the output file.

Finally, the command ¢ stops the processor execution and returns the
control to the operating system. i

9. Implementation, The PSP was written in TURBO PASCAL for CPIM
and MS—-L0S machines. The {first versions of PSP were tested on CP/M
machines and, aiter obtaining satisfactory results, trausposed on MS—DOS
machines. This processor will be normally used on MS—DOS computers for
at least the [ollowing reasons:

(a) large working storage; :

(b) increased working specd ;

(¢) use of the rational arithmectics on 32 bits. o _

Although most of the quoted processors were written in cither assembling
languages or specialized languages for list processing, we preferred the use of
the 1.1SCAL language because of the lack of sucha specialized list-processing
machine. In the implementation of the binary Greatest Common Divisor and
MOVEL— and MOVER—type algorithms, as well, we used the facilities of-
fered by the TURBO version of PASCAL.) ,

10. Use of PSP. Our processor can be used to any kind of problem whose

qmathematical model resorts to Poisson eXpressions. In what concern us, this

28 B. PARV !

processor was used to problems belonging to celestial mechanics (pert l
motion in the two-body problem, the two-body problem with variable llrbedii
the restricted three-body problem, all involving the use of averagin m S,
methods, etc.). As a matter of fact, all processors quoted in this papeg"tyl)&l"%
applied to concrete problems of celestial mechanics, in orderto both 00: f.afeég
or corroborate classical theories or develop new analytical theories ()flhl~r !
order. We mention some such problems: verification of Delaunavyg 1gh'
Hi}]'s theories on Mo on’s motion [3, 8, 14], computation of genera]]a

malized inclination functions [7], computation of f and g functions [26] amr"
lytical theories of two Saturn satellites, Enceladus and Dione [17], co{,{pul;a"'
tion of lunar and solar short-period perturbations of artificial satellites]2a~
third-order solution of the artificial satellite theory (gravitational perturba
up to the 3-rd power of the 2-nd zonal harmonic coefficient J,) [18]

b
tlons

REFERENCES

1. Barton, D, Bourne, 8. R, Fitch, J. P, 4An Algebra System, Computer J., 13 (1970)
No. 1. '

2. Barton, D, Bourne, S. R, Horton, J. R.,, The Structure of the Cambridge Algebrg
Svstem, Computer J., 73 (1970), No. 3. '

3. Bourne, S. R, Literal Expressions for the Co-Ordinates of the Moon. The First Degree Terms
Celest. Mechanics, 6 (1972), No. 2. ’

4 Broucke R, Carthwaite, K., 4 Programming Swvstem for Analvtical Scries Expansion
on @ Computer, Celest. Mechanics, 7 (1969), No. 2.

5. Brumberg, V. A, Analytic Algorithms of Celestial Mechanics, Nauka, Moscow, 1980 (in Russ,),

6 Brumber g, V.A,Isakovich, L. A.,, The AMS Swvstem for Performing Analvtic Op rq-
tions With Poisson Series on Compuler, Algorithms of Celestial Mechanics, ITA AN SSSR, Lenin-
grade, 1974, No. 1. (in Russ.).

7.Campbell, J. A, An Exercise in Symbolic Programming : Compulation of General Normali:d
Inclination Functions Celest. Mechanics, 6 (1972), No. 2.

8. Chapront, J.,, Mangeney, L., Application du programme d'opérations sur lcs siries lith-
rales a la théorie de la Lune, Colloque sur Putilisation des calculateurs ¢lectroniques pour ies
développements analytiques en Mécanique Céleste, Prague, 1967.

9. Cherniack, J. R, A More General System for Poisson Series Manipulalion, Celest. Mechz
nics, 7 (1973), No. 1.

10. Dasenbrock, R. R., Algebraic Manipulation by Computer, Naval Research Laboratory
Report No. 7564, 1973. _

11. Fateman, R. J., On the Multiplication of the Poisson Series, Celest. Mechanics 10 (1974),
No. 2.

12. Fisher, D. Analytic Short-Period Lunar and Solar Perturbations of Artificial Satcllites, Celest.
Mechanics 6 (1972), No. 4. .

13. Hall, N. M,, Cherniack, J. R., Smithsonian Package for Algebra and Symbolic Mathemalics,
SAO Spec. Rep. No. 291, 1968. L

14. Henrard, J., Hill's Problem in Lunar Theory, Celest. Mechanics, 17 (1978), No. 2

15. Jefferys, W. H.,, 4 FORTRAN — Based List Processor for Poisson Series, Celest. Mechanics
2 (1970), No. 4. . . celost

16. Jefferys, W. H.,, A Precompiler for the Formula AManipulation System TRIGMAN, Celest.
Mechanics 6 (1971), No. 1. 1973)

17. Jefferys, W. H., Ries, L. M., Theory of Enceladus and Dione, Astron. J. 80 (194
No. 10.

18. Kinoshita, H.,, Third—Order Solution of an Artificial— Satellite Theory, SAO Spec. Rep-
No. 379, 1977. En-

19. Knuth, D. E., Tratat de programarea calculaloarelor. Sortare si cdulare, (transl. from
glish), Ed. Tehnici, Bucuresti, 1976.

20.
21.

22,

23.
24.
25.
26.

27.

POISSON SYMBOLIC PROCESSOR

29

Knuth, D. E.,, Tratat de programarea calculatoarelor. Algoritmi seminumerici, (transl. from
English), Ed. Tehnic3, Bucuresti, 1983.

Kovalevsky, J., Revue de quelques méthodes de programmation des calculs littéraux en méca-
nique céleste, Colloque sur I'utilisation des calculateurs électroniques pour les développements
analytiques en Mécanique Céleste, Prague, 1967.

Le Shack, A. R, Sconzo, P, FORMAC Language and its Application to Celestial Mecha-
nics, Astron. J. 73 (1968), No. 3.

Mathlab Group, MACSYMA Reference Manual, Version Nine, MIT, 1977.

Rom, A., Mechanized Algebraic Operations (MAQ), Celest. Mechanics, 7 (1970), No. 3—4.
Rom, A., Echeloned Series Processor (ESP), Celest. Mechanics, 3 (1971), No. 3.

Sconzo, P, Le Shack, A.R, Tobey, R., Symbolic Computation of t aid ¢ Series by
Computer, Astron. J., 70 (1965), No. 4.

Vasilieva, A. V., The ALITA Swstem for Performing Analytic Operations with Poisson
Series on Computer, Algorithms of Celestial Mechanics, ITA AN SSSR, Leningrad, 1974, No. 1~
(in Russ.).

STUDIA UNIV. BABES—BOLYAI, MATHEMATICA, XXXIV, 3, 1989,

* AT

BASIC ELEMENTS CONCERNING THE DEFINITION OF
SOME PROCESSORS INCORPORATING DYNAMIC

P— i

EXTENSIBILITY FACILITIES 3

-~

~i

1ILIE PARPUCEA*

Received : June 2, 1989

REZUMAT. — Elemente de hazii privind definicea unor proecesoare ineorporind
fueilitifi de extensihilitate dinamieit. In prima parte a iucrdivii se prezintd citeva
aspecte tcoretice privind extensibilitatea dinamicd a limbajelor de programare,
Utilizind aparatul algebric al ierarhiilor HAS, s-a generalizat notiunca de tip de
dati din limbajul de programare. In partea a doua se fac citeva referiri legate
de implementarea practici a procesoarelor matematice.

1. Algehraie Coneept of Prograniming Language Delinition Ineluding Dy
namic Extensibility Faeililies. The problem of programming language exteng;.
bility appears as a need in the programming efficiency growth at the user
disposal. The manners to extend the languages known till now ailow a sq.
called extensibility in statical meaning. This facility cinphasizes the fact tha
the grammar as syntactic specification model is fixed at the soft product
implementation, allowing not changes (adaptation or extension) to the user,:
corresponding to real programnming needs. :.

The programming language extensibility at grammatical level does not
constitute a new problem. But the implementation manner of this one o
concrete cases is still far from exploiting all offercd advantages. This exten
sion mode constitutes an intricate and difficultly applicable problem.

An adequate development of a mathematical device concerning the HAS
hierarchy allowed the creation of a formal mechanism for the specilication
of a concept of abstract calculation system, A, structuraily devcloped in order
to be considered as semantic support for a programming language. Accordingly,
the objects belonging to such an abstract calculation system are representd
as formal expressions. These omes are organized into an algebra of words,
. Such specification model is minutely presented in 1. Rus’ {4] textbook

The notion of synamic extensibility impose a “dynamic’ character to the
structures 4 and W, allowing the definition of new semantic forms for en
riching the collection of semantic forms A. According to these scmantic forms.
and taking into account their representation, the syntactic correspondent which
will enrich the algebra W will be generated.

Between the two algebraic structures, an evaluation morphism:

' fiWo4 5

is inductively defined [2].

* University of Cluj-Napoca, Computing Centre, 3400 Cluj-Nafoca, Romania i

THE DEFINITION OF SOME PROCESSORS 31

In the programming language associated: for specification, every element
weW represents either a program, command, set of commands comprised
between bcginn and end, or a calculation process. An element w is of the form
W Wy - -« ¥y O, stru.ctured on depth levels, where »,, w,, ..., w, are subwords
of the word w, while o is. an operation for the composition of the words from
W. The evaluation process, by means of the morphism f, involves a detailed
analysis qt w, the separation of the component parts at the subword level
upto the free generator level. In other words, an analysis for the identification
of all syntactic components is made. After establishiug them, one associates
to each syntactic component the semantic correspondent from A.

In the algebraic model for the programming language specification, a pro-
gram is an algebraic expression. That is why the term of program evaluation
is more adequate that the term of program parsing.. The algebraic expression
evaluation algorithm must find out firstly.the free generators, which are imme-
diately calculable expressions. After evaluating the free generators, the iden-
tification of subexpressions being composed of -them imposes to these sub-
expressions the character of new generators [5]. :

We shall sunuunarily present hereafter the algebraic model for hierarchized:
specification of the data types characterizing a programming language [21].
We choose as zero level of the HAS hierarchy the following homogeneous

algebra : :
Ao ={Dy, Qq, Fg: Dy 1},

where : , :
D, = the set of primitive data types of-a language;
€, = a set of operations defined.on the support Dy, :
F, = a {function which associates to every clement x € D, its repre-
scniation length in standard storage unmits ;- o
J = a subsct of the natural numbers, which is the set of values of the

function F/, and will constitute the index set for the next level of the hierarchy.
The level 1 of the HAS hierarchy is defined on the basis of the zero level
and has the following form:

A, = {D, = (D)ies, (£S0)ocq, Fo: Dy—1, F},

where :
D, == a partition of D, into classes of data types, the partitioning cri-
terion being the representation length ; ‘

YSo = the set of operation schemes corresponding to the definition of the
new data tyvpes. ' _ :

Tor o € Q,, the function m points out the r-arity : m(o) = n. I b = b,b,...
...b,0, then one associates 'to this one an operation scheme ¢ = (#, o, F,(b,)
Fo(bs) - .. Fy(by)Fo(b)). When o covers the domain Q,, while for a fixed o it
is (by, by, ..., b,) € Di which varies, the result is the set of all operation
schemes which can be defined in the frame of the level 1 of the hierarchy.

F, is a function which allows to obtain all operation schemes o, avhile
F, is a functicn associating to each operation scheme ¢ a heterogeneous ope-
ration scheme specific to the level 1. If 6 = (1, 0, Fo(b1)Fo(by). - Fo(b,)Fo(0))

1. PARPUCEA

32
is an operation schemie, then F{o) is a specific operation 1n Ay, defined ag fol.
lows: s : S o -
. R B » !
1:1(6) : DFo(bx) X 'DI:C(b!) X T XJ D‘.F“(b”)—’ QF.(b) o

The domain and co-domain of ‘the dperation’ F ,(6) are ‘inherited ‘from the
preceding level ; it is its action manner which remains sPeC}ilc in the new leve]

of the hierarchy. = o . . .
In order to define the level 2 of the hierarchy, one will take into account

‘the data interpretation mode. This level is organized into:
Ay = {Dz = (Dii).'e,\' jeir (2 Soy), Iy Dy X M— N X M, Fg},

where : o .
D;; = the support of the data type of lenght g, mterpreted in the mode ;.
.2 So; = the set of operation schemes corresponding to the definitigy

of the new data types or calculatiop types, in the frame of the existing ones of
length 2, interpreted in the mode j7;

F, = a function which establishes by its values the index set for the
family of sets D,;
V(8 4) € Dy X M; Fy(b, j)= (Fc(b). 5) - ars

F! = the symbol of a function which associates to every scheme 6 =

= (1, 0, byb,...b,b) and to an interpretation mode j a heterogencous operation
scheme specific to the level 2 of the hicrarchy.

The support of the heterogeneous algebra A, being cstablished, we can
reconsider the indexation of the family of sets (D), .y joar with a single index
4, for simplifying the definition mode of the function F;. The re-dcfined analy-
tical expression for the function £, is: ‘

V(6 7) € Dy X M; Fyb, j) = (m(Fo(b) — 1) +) armis

where the definition elements are those previously defined.
For a given o, Fy(c) will represent a specific operation in A, defined as
follows :
Fe(0, 7) : Drg,iy X Dryws X -« X Drg j — Dew,

where the domain and co-domain are inherited from the preceding level, and
the action manner will be specific to the new level of the hierarchy.

_The level 3 of the HAS hierarchy will keep its support from the pre-
ceding level, being enriched only with a series of opecrations characteristic to
the new defined data types. This level of the hierarchy is defined as follows:

A3 = {Dll = (D’.)iel’ (E Sl)’ F:,!}:
where the components of the heterogencous algebra have significances similar
to those_ c_o_rrespondmg to the level 2 of the HAS hierarchy. This level allows
the definition of data types as RECORD, FILE, SET, known in the high
level programming languages as, for instance, PASCAIL and C.

“

THE DEFINITION OF SOME PROCESSORS

_ 33
of B (f‘ i}eog}:;‘i;elﬁ?tifg gz\lice 'cf>f the HAS hierarchy allows the construction
the hierarchy. me of a language, structured on different levels of

2. Practical Looks Coneernin

the ini ! .
cessors. On the basis of the theog he Definiton of some Mathematical Pro-

; retical specification (with algebraic contents
of the programming languages, we shall define further dow% some elementg

::loucerni'?g)the defix_ltiti?fn of a mathematical processor. The model we construct

oes not propose itself to cover all defining and i io

Cooh 3 processos. g implementation aspects of
The zero level of the hierarchy will be constructed with the clements

which will be defined further down and will constitute the defining elements
of the following algebra:

B = (ABI QB: Gn D);

where :
- Ap = the support of the algebra B; in the present case this support
is chosen to be the real number set, denoted by R;
Qp = the set of the operations which wiil be defined further down over
the support Ap; .
G = a function defined on Qp with values into the set of the parts (sub-

sets) of Ap, which we shall denote £(Ay), and which provides the co-domain
for every element from Qp;

J) = a function allowing to obtain the definition domain of an operation,
function defined on Qp with values into 2(Ap).))

hese two functions, G and D, are constructed as new elements are In-
troduced into the base. A first category of operations -defined on Ap are the
simple (primitive) operations. These ones are:

— the addition operation “+":

G(+) =Bp; V(3,3) €8pXBy; +:8pX Ap—~G(+); +(xy) =

=& +y; D(+) = Bs;
— the subtraction operation “
G(—) = Ap; ¥ (v,3) €8x b5 —:85X Ap—G(—); —(%3y) =
wx— v D(=) =1 |
— the multiplication operation “—")
G(*) = Ap; V(xry)EABXAB; % : Ap X Bp—>G(*); * (%, y)=
= x xy; D(¥)=bs;
. +he raise to power operation “oox
; eAp X N; % %1 Ap X N—~G(* %),
o (.9:,)1:)= Bt ‘ZE"; KA §
where N is the na1_:ura1“nu,1,1}ber set ; |
ivision operation : R .
R 227) (-1:/135;0;11 Vl(x, y) € Ap X BaN\{0}); i Bs X (As\f0})— G} 3
[(x, 3) = #ly; D) = Bz’

3 — Mathematica 3/1989

I. PARPUCEA

34

— the extraction of root operation “y7:

G(W)= AB+,VxeAB+,\/—‘AB+—+Gw),~ () =425 D7) =4, .\

— the negation operator “—
G(—) = AB Vx e AB, . AB—" G(—), -——(x) = —X.

“The symbol “—"" is overloaded, but its significance can be deduced frop,
the context. The expressions x + v, x — v, ¥ *x ¥, x", x/y and J; are ex.
pressions whose evaluation is made in the real number set.

The second category of elements from Qp, also defined into the bage,
consists of the following elementary trigonometric functions:

— the function “sin’: '
G(sin) = [—1,1]; Y x € Ap; sin: Apg— G(sin) ; sin (x) = sin x;
D (sin) = Ay;

‘“ .,

— the function “cos
G(cos) = [—1, 1] Vx € Ap; cos: Ag— G(cos); cos(x) = cos x;
D(cos) = Ap.

The list of definitions for the level zero can be continued, but this is
sufficient for examining further down the possibility to define some composed
operations, on the basis of those defined in HAS,.

It is known that every relation w € Qp in the structure HAS, becomes
at the next level a relation scheme which specifics by factorization a famiiy
of relations. Consider the following algebraic expression 4/% * cos x, construcisd
with elements from the base. The analysis shows that its components are ,yx,
cos x and the multiplication operation “ %'’ between the two previous ones,
which are found as defined in Qp. For every element x € D(J7) () D{cos)
one defines the following composed operation w), :

wy: D(Y7) N D(cos)—G(*, (G(V7), G(cos))),

according to the law w,(x) = Jm * cos ¥, while D(w,) = D(J7) N D(cos).
Now the function G is defined as follows:

G: Qg X €(Ap) X 8(Ap)— &(Ay),

while for (w, M,, M,) = Qp X €(Ag) X &(Ap) we have G(w, M,, M,) = M, 0 M,
where the operatlon o is defined as function of w. In the case of th(_ above
example, o is defined as the () operation (intersection).

We defined in this way a new operation w,, which is in fact a multipli-
cation operator, too, as that defined on the level HAS,, but havi "ing another
definition domain. The multiplication operation at the level 1 is in fact a
restriction of the multiplication operation corresponding to the zero Jevel. If
the above algebraic expression is counsidered with two variables, J X % cos Y,
then the new composed operation w; will have as definition domain the Car-

v

STUDIA UNIV. BABES—BOLYAL, MATHEMATICA, XXXIV, 3, 1989

CHARACTERISTIC CONSTANTS OF PROGRAM PRODUCTS

s

SABIN GORON*

Received : August 3. 1989

’

REZUMAT. — Constante earncteristice ale rezullatelor unul program. Se propune
un model general de crestere a fiabilitatii, unde se tine seama de toate functiile
care determin fiabilitatea rezultatului unui program exprimat prin mirimi cu
interpretiri naturale. In model se iau in considerare atit timpul necesar identifi-
cirii eorrilor, cit §i timpul efectiv de corectare a lor. Cheltuielile de crestere a
fiabilititii — functia de disponibilitate §i functia de non-disponiblitate —, care
depind de aceste mirimi, se exprimi in diferite forme.

¢

The efficiency coefficient K of the programmer was defined [3] as being
the product K = d(1 — r), where d is the probability of detecting an error
while 1 — 7 is the probability of its correct removal. If < is the available
time for adjusting the program product in # stages of running, while =, is
the time needed by a programmer of efficiency coefficient K for onc running
then ©y, = a/K, where a is a porportionality coefficient. For K =1 we have
T = @ = 1;, namely 7, = 7;/K. Obviously, r, differs from a work (program)
to another, being a quantity which features the complexity degree of a work:
it is the time needed by the ideal programmer (I = 1) for a cycle of ad-
justment of the respective work. For the 7 stages of program adjusting, we
shall have # = 7K/r;. For the other quantities featuring the reliability onc ob-

tains :

A= T5'(1 — K)™F, (1 a)
'
R = exp —gldl , (1 b)
0
:
T=SM exp (—A) dt, (1c)
0

:;h:l; A is the ezrtor fgfe,f R is the probability for the product to be working
: ven moment {, while ' is the cumulative tim i - ion-
g herenttor CL R, me of inter-error good function
The time 7, needed for a cycle of j is in i
i - program adjustment is in its turn com-
posed by the time 7, for the correction elaboration :

e = (/K)(1 — (1 — K)fexp (1)), (2a)
which increases with the time, due to the increase of the difficulty degree

* University of Cluj-Napoca, Faculty of Economic Sciences, 3400 Cluj-Na poca, Romania

i
i
)

CHARACTERISTIC CONSTANTS OF PROGRAM PRODUCTS 37

of the still undetected errors, and . the time 7, of the effective correction :

Te = ‘FIII(. (2 b)

Cumulating the mean time ioning T,
e of good functi T i
for correction after a fall, we- gbtain for to]:]énghjygica;idtig;: 'tnmes necessary

t= n("l-—'0 + 1. + =), 3)
or, taking into account =,: '
t = z(exp ()(K*Ty + Ky + 1) + (K — 1))/(r,K exp (1). (4)

Expressin . . .
obtains? g now the quantities with respect to the physical time, one

7(t) = (Kr:t exp(t))/(exp(t)(K2Ty + Kx; 4+ 7)) + (K — 1), (5)
n{l) = K2 exp(t) [(exp(t)(K2Ty 4+ Kty 4+ =,) + 7, (K — 1)). (6)
One also obtains corresponding relations for)\,'T0 and R:
A= Tq'(l — K)", (7)
t
T,= g A(Y) exp (— A(8) d¢, S)
1]
]
* R = exp <—» To) 5(1 — K" dt),)
0 .

where #(t) is considered to be given by (6).

We introduce the notions of restoring intensity, p, availability function,
A(/), and unavailability function, U(/), analogously to these of the products
[2], but taking into account the rcpair time of the program product. So, for

the restoring intensity we give the relation:

w(t) = % '(1 — (1 = K)"), (10)
with n(f) given by (6). Since the repair time is T, = 1/u, we obtain with (10):
T, = xoJ(1 — (1 — K)™®). (1)

For A(!) and U(f) we have the relations:
Ay = p/(x +) + (A + w)exp(— (O +), (12)
U) = (M(x + @)1 — exp (—(» +)), (13)

where A and p are respetively given by (7) and (10). .

For the cost of the program product adjustment we consider relations
similar to those given in [3], where ¢, and ¢, also denote the'flxed “unitary
costs and, respectively, the variable unitary costs, but in which » is given

- S. GORON .
38 -

by (6). So, for the total cost C for n running cycles, we have the - relatiop,
C = (‘/11 '1I" CL'E(I —~ (1 - I\’)")’ (14)

where E is the number of_‘illitiélly' existing errors.”’ '
The cost at the n-th repair step, C,, is given Dby:

C,=¢ + ¢EK(1 — K" o (13)
For the Asher—Feingold model of reliability growth [1]:
AT o(1)/dt = KoKy — Tol0)), (16)

taking into account the interpretation of the constant K, considered in [4)
and the new constant =, (defined at the beginning of this paper), one obtains
the relation :

Ky =lim T{) = (1 — K) 7%, (17)

t—o»
Integrating (16) with I, given by (17), one obtains for the CTGF:
Tolt) = (1 — K) 7 (1 — K, exp (—K). (18)

For the reliability slow growth models, modificd in [4], one obtains ana-
logously :

Tolt) = (exp(Kalt + Dexp(—1) + Ko — 1)(1 — K) ™= jlexp(E,) — 1), (19)
for the first model, and:
Tolt) = (exp(Ks(l — exp(®)) — (1 — K) ™ jlexp(K,) — 1), (20)

for the second model.

For the Lloyd—Lipow and Argef models, modified in [4], onc obtains
new relations, respectively :

Tot) = (1 — K) R o7 @21)
To(t) = (1 — K)™™ 7 _ exp (—=K,/1). (22)

The model proposed by us expresses the reliability growth in time and
does not introduce arbitrary constants :

AT o))t = T5'(1 — K)™™ t exp(—T5'(1 — K) Ky, (23)

where T, is the CI'GF at the begiuning of the program product adjustment.

) Taking into account the above results, we can formulate some concla-
sions. The prgl)osgd general model of reliability growth expresses all functions
which det.e;mme_, Il a wya or another, the reliahilitv of the program product
by quantities with natural interpretation, according to the strgctures which

‘
CHARACTERISTIC CONSTANTS OF PROGRAM PRODUCTS

' 39
determine (by projection, i j i
et : (by proj construction and adjustment/repair) the program
K = programmer s efficiency coefficient :
7= = working time for the adjustment ot the program product ;
bo -

time need lor the runuing of a cycle of adjustment (eror ieentifica-
tion, conection, test);

n = number of adjustment cycles;

time necessary to the ideal programmer (K = 1) for the running

of a repair cycle; it features uniquely the complexity degree of a
program product. .

The model considers both the time needed by the error identification and
the effective correction time, both functions of K and =.

The reliability growth costs, the availability function and the unavaila-
bility one, expressed under different forms, depend on the same quantities.

In the case of the work on the program product, one takes into account

the mean time of good functioning of this one at the beginning of the ad-
justinent.

REFEREXNCES

1. Asher, H, Feingolid, H., Reiparable System Reliability, Marcel Dekker, Inc., New York,
Basel, 1984. i

2. Baron, T. ¢ «l., Calitate §i fiabilitate, Vol. 1, Ed. Tehnicii, Bucuresti, 1988.

3. Goron, S., The Cost of Informatics Works and Programmier's Efficiency, in Method, Models
and Techniques in Physics and. Related Fields, University of Cluj-Napoca, Romania, 1987, p. 129—

4. :_‘?:ron, S., Tke Cost of Program Reliabilily, communication hc'ld at the V-th Intemationak
Symposium on Numerical Mecthods in Engineering, Lausanne, Switzertand, 1989.

STUDIA UNIV. BABES—BOLYAI, MATHEMATICA. XXXIV, 3, 1989

ON AN IMPLEMENTATION OF COMMON LISP FOR 16 BIT.
MINICOMPUTERS

M. K. BALAZS* and D. NEAMTU*

Received ;- July 4, 1989

REZUMAT.— Asupra unei implementiir de COMMON LISY peniru minicaleulatoare
de 16 bigi. In lucrare sint analizate unele aspecte ale implementiirii de COM-
MON LISP, pentru minicalculatoarele de 16 biti. Se fac referiri la cerintele
implementirii, la structura sistemnului, precum §i la implementarea ca atare, in
final dindu-se citeva concluzii utile.

The last vears brought along a considerable increase in the number
of AI applications. This tendency calls for developping new tools suitable
for this arca of CS. Since 16 bit minicomputers are still largely used, it seems
sound not to mneglect this type of hardware. The obtainable configurations
(storage and peripherals) also justify this idea.

The present paper discusses some features of an implementation of COM-
MON LISP for computers of this class. The coice of COMMON LISP as a
developping tool for AI applications is due to its specilication as a potential
LISP standard. '

1. Implementation requirements. An implementation should meet require-
ments that stem either from the language specification or the applications
to come.

First of all a quick addressing of a large memory is necded, in order to
make possible the processing of a great amount of object representations.

The typical processings which imply a great {requency of function calls
ask for a proper mechanism to handle these opcrations.

CL has been defined as an enviromnent for devclopping and rununing
applications. As such it includes predefined functions like the compiler, the
editor and several debugging tools. From the user’s point of view, these func-
tions must behave exactly as the omnes he writes. On the other hand, the
system must support compiled and interpretted functions as well. This calls
for compatibility between the representations of the function objects.

Implementations also should meet certain requirements on the dimensions
and domains of various object types. Thus the magnitude of intcyer values
to be supported may only depend on the size of the available storage, the
maximal rank of an array must not be less then seven; cach function should
allow at least fifty parameters, and so on.

1.1. System structure. Since LISP is a functional programming language
any LISP system must contain an object space and evaluating mechanisi-

* R ch Institute for Compuler Technig and Infornatics (1.T.C.1.), 3400 Cluj-Napoca, Romania

IMPLEMENTATION OF COMMON LISp
41

The object space is
. € . Spa made u i ;
is partitioned into a set of objp as a collection of ob]ect‘representations. It

;] standard symbols, f
predefined types. Durin > O § » fune
types may be defined. g a working session, new objects are added and new

In comparison with other dial j
variety of predefined object typesl.a'lﬁlcl::ss'e SOMMON el des & great

of subtypes and Supertynes. Nom ypes .are organized into a network

types ma i i
are to be treated exactly as the gtlandardyogzs?dded fo this network, which

S . >, ;

‘ Predefined types are divided into atoms an
clude symbols, numbers, characters, strin
names, streams and random states.

The basic means to ref j i rati .
variable is a binary re]atione rbo'?\i-e e o varables. A COMMON LISP
o " . etween symbols and objects. There are various
kinds of variables (which from now on will also be referred as bindings). Thus
there are global, special, lexical and "frozen” variables. The description of
these kmgls of \rarlpbles will be given later. At any moment there may be
more yanablcs baving the samc symbol component, hut of different kinds.
Refempg an object by a symbol naming it is done by selecting a variable
depending on the referring context.

. The evaluator isthe mechanism which interprets objects belonging to cer-
tain types accordmg'to some well-described rules. These objects are called eva-
luable, and thcy might be: numbers, characters, strings, bit vectors, sym-
bols, calis. ')

Objects of the first four types cvaluate to themselves. These are called self-
evaluable objects.

When a symbol is evaluated, the variable is identified according to the
context. The result of the cvaluation is the value component of this variable.

By call we mean ecither applying a function or lamkda expression to certain
parameters, or the expansion of a macro-call.

Fvaluating function calls is the main job of the evaluator.

A function is an Loject as any other object in the object space. A func-
tion object includes components used for parameter passing, the function bedy
and a documentation string. When evaluating a function call, its actual pa-
rameters are first evajuatcd. The resuits obtaincd are tound to the formal
parameters. This way a new context is bLulit, in which the tody will be eva-
luatcd. Evaiuating the tcdy means running the cede for cgmplled functicus
and evaluationg in scquence each form of the tcdy list for interpretted ones.

2. The implementation. 2.1. Sysiem struclure. The storage used by the im-
plementation is divided into three arcas. These kold the kernel, the stack
and the object space respectively. _] ‘

The kernel contains the evaluator and managmng mechanisms for the
other two areas. ‘Ihe laters are mainly constructors and accessors for different

i of objects.
kJ'nd;c‘l‘he st;ck is used for solving the calls as well as a scratchpad for Vg‘
rious processings. It is organized into two levels. The first one correStPOIl :
to the Eottom of the stack ard if it is bulit, it is kept on a mass storag

d lists. The atomic types in-
gs, arrays, hash-tables, packages, path-

49 M. E. BALAZS, D. NEAMTU

device. The other level holds that part of the stack which can be rel)reSented
it the main storage. Passing a part of the stack’s content from one: ley

to the other is performed asyncrounously with the processing when over/under,
going a certain limit.

This implementation of the stack makes its size to. be limited only py
the available capacity of the mass storage. Equally, the time for Pushing o,
popping the stack is comparable to that for stacks entirely kept in the maiy
storage. Also it leads to a memory saving which is very important for QOm
puters in the considered class.

The object space is divided into fixed lenght pages. The object Space
management dynamically extends the representation of the object space to
the size of the available part of the main storage. If there is 10 more space
in the main storage, the object space is extended to a disk by 1mp1emeutmg
a virtual memory mechanism. This solution for the object space management
allows the system to run on minicomputers having diflerent main storage ca.
pacities.

The discipline for moving pages between the main storage and the disk
can be altered either by fixing some of them into the main storage or by chang-
ing the swapping algorithm. These facilities allow a kind of tailoring of the
system for the applications to be run..

2.2. The calling mechanism. The nature of LISP makes function calls t¢
be very frequent. Due to the complexity of the parameters passing mocha-
nism, each call requires a relatively great number of operations to be exe-
cuted. For ‘these reasons the main concern was to devise a fast calling me-
chanism.

A function call means binding the parameters, cvaluating the body and
unbinding the parameters. To meet the requirements of the specification, the
following representation was chosen for function objects.

DECLARATIONS | DOC. STRING | BODY | TEMPLET

LOADING INFORMATIONS
CONTEXT TABLE TEMPLET
BINDING & INI'TIALIZATION INFOS

1

The context table templet looks like a symbol table which holds entries
for the locally referenceable bindings. Such an entry may have one of the follo-
wing structures:

IMPLEMENTATION OF COMMON LISP

SYMBOL | VALUE/| — for lexical variables; * o

SYMBOL | VAL UE ADDRESS | — for references‘tc; special variabll;esv'- .

SYMBOL | VALUE | CHAINING | — for definitions of special variables:

SYMBOL | VALUE | VALUE ADDRESS| — for “frozen” variables.

To each of these entry types a fi ; ‘ : :

When calling a functioln, theflglEc{i}T?I{Et;le‘ igiifs%e?o}:l(:]dtltype ormation.
and chaining inlormations being substituted for the loa (fingeoztezck’ running
) Before the binding, the forms passed as actual parameters are eval ted
in the ca]hpg context. During the binding process the context table egiriees
are filled with the appropiate values. These are obtained either by the above
ment'10~ned evaluations or by evaluating the corresponding initialization forms.

After the bnzslmg 1s completed, the initialization informations are popped
i:rom ’ch'(:_1 _stack. Their presence on the stack during the binding is necessary
Oobrjez’é}c ,01 ing a great number of accesses to the page coutammg‘the function

Now the evaluatiqn of the body follows. Being treated as any other object,
a function may be built any place in the object space. To make this possible,
conmpiled function bodies are relocated before loading.

. During the evaluation of the body all the references to variables are made
in the new context.

For lexical variables, accessing the value means accessing the value field
of the corresponding entry. Since this kind of variable is the most used, this
solution considerably improves execution speed. ' :

In our example, symbol d in function f4 references a lexical binding.

For special variables the value is accessed by indirection, using the address
ficld of the corresponding entry of the context table. This ficid is filled when
pushing the templet onto the stack, with the address of the value field of entry
from the last special definition of the same symbol.

Because is possible for a symbol to have more special definitions along the
same calling path, the cutrics corresponding to these definitions are chained.

These solutions for implementing special variables, besides bringing an
access speed comparable to that for lexical ones, also renders the shadowing
and unbinding mechanisms simple.

When a special reference has no corresponding special definition, it resumes
to the global binding if it exists. '

In the given cxample, symbol ¢ references special bindings.

Specifications require for functions defined in a nou”nu]} context to store
(freeze) the local bindings of that context. For “frozen” bindings the valuﬁ:
field in the templet of function is used as a local memory. Reading acces to sxg-i
a binding means accessing the corresponding value field in the context table

2. List of consens:

element 1 o—|—| element 2 o-|—ceo—!l 2 -

T3

_—

3. Mixed lists:

—>| element 1 [element 2 |- - -| element ¢ |chaining @—|—---—>[element 741 .-l""

Using compact lists drastically reduces space requirements for list represep.
tation. The time needed to step trough a compact list is also much shorter
then that for consens, because of the elimination of the repeated mappings,

In the presented implementation a compact list is constructed whenever
it is possible. Thus the function read produces compact lists. List copying Ope-
ration produce compact list as well. This is not possible only when the vector
used to represent the list would be larger than the size of a page.

Mixed lists may be produced by functions which operate by altering list
structures.

4. Conclusions. The above described features are parts of an implementation
under MIX (RSX—11M compatible) operating system. The implementation
language is C. This choice was made aiming the implementation for other com-
puters and operating systems. -

Because of limited space, ouly a few ideas about the implementation were
presented. Auny further information can be obtained from the authors.

W REFERENCES

G. L. Steele jr., COMMON LISP ;_ The Language, Digital Press, 1984,

STUDIA UNIV, BABES—BOLYAT, MATHEMATICA, XXXIV, 3, 1989

PARALLEL EXECUTABLE SEQUENCES IN SERTAL PROGRAMS

F. BOJAN®, M. FRENTIU* and Z. KASA*

Received : June 2, 7989
l‘l"LlJ.“.‘\l. — Se(‘\eme executabile in .plll'll el i ."0 ra .
H I n me seriale.

= out Lucrarea se
ibilitatea detectirii secventelor de instructiuni in programele seriale
care se pot executa in paralel.

~ 0. Introduction. The development of high speed parallel computers makes
1t necessary to change the well-known methods to solve complex problems or
to develop new algorithms for these computers.

At present many algorithms are written in sequential programming lan-
guages like Fortran. It is possible to construct a compiler to detect the parts
of the algorithm that can be executed in parallel and to generate code for
parallel computers from serial languages. '

 The present paper deals with a mechanism which detects the parts of a
serial algorithm that can be executed in parallel. ,

1. The usage of AFT sequences to detect the statemenis exeeutable in
parallel. For a program scheme S it is important to detect those parts of S
that can be executed in parallel, during the compilation process. The AFT
scquences offer such a possibility.

The definitions of AFT sequences and of static words are those given in
f17, 2. Informally an AFT sequence is a maximal sequence of assignment
tvpe statenents (without tests) followed (maybe) by a test statement. A static
word is the sequence of the statements of the program in their static order.

Let aja, ... a, be an AFT sequence. We denote by R(a;) ‘the set of varie}b-
les which are inputs for @, and by W(a,) the set of variables that receive
values in the statement a;. ’

There are three possibilities to execute the statements a; and 4; (f<yg):

a) the serial execution ;))

b) the execution of a4; in the same time with &; (i.e. after aiy1, @iso,
e, Q1)) y

c)l tlzm execution of 4; in the same time with a; (i.e. befqre Aip1, ita,
LS, ai0). . ' . '

'])JEFQNITION 1. The statements a; and a; are exccutable in parailel] if the
¢xecution b) or the execution c) gives the same result as tk.xe execution a).

We are interested to find if a; and a; may be executed in paljallel.'WhZen
4 =1i+1 (ie. the statements are consecutivé) a condition 1s given mf[1.
Suppose now that 7 < j. The statement a; may be executed in 'thl()al samfe RI(I(I:(;
with ga;, i.e. before ai1), @it2, -+, &j-1 if the values of the wvariables o (a,

s Universily of Cluj-Napoca, Faculty of Mathemalics and Physics, 3400 Cluj-Napoca, Romania

48 F. BOIAN, M. FRENTIU, Z. KASA

are not changed by these statements and the variables of W(a;j do not aDPpear
in these statements. It results the following.

PROPOSITION 1. The statement a, may be simullancously cxeculed wi,
(before the exccution of @iy1, digz, .- -, aj_y) iff the following conditions holq . *

R@) N\ W(a) =9 8))
W(a) N Riay) = 8 2)
W(a) N\ W(a) =0 (3)

foral k=1,1+1,...,5—1 ‘
Example 1. Let us consider the AFT: aja,asa,, where
' ay is x = fy()
a, is y = fo(%, ¥)
a is z = f,(f) .
ay is 4 = fi().
The statement a; may be simultaneously executed with ¢, but ¢, may not;
since a, changes the value of y, needed in a,, ie. R{a,) N W(a,) = {3} # .
The statement a; may be executed after the execution of a;;y, @i, ...,
a;_,, simultaneously with a;, if the variables of «; are not changed by «,, for
k=1+41,¢4+2,...,7—1, and the variables of W{(a,) do not appear in the
statements a;, k=14 1,7+ 2,...,4, i.e. we have the following
PROPOSITION 2. The stalement a; may be simullancously cxccuted with a;
(after the execution of a;yy, Qiva, ..., aj—y) iff the following conditions hold :

Rla)N W) =¢g " (4)
W) N R(a) = (5)
W)\ W) =6 (6)

for all k=14 1,44+2,...,7.

In the AFT of example 1, @, cannot be simultancously exccuted with ag
(after the execution of a,), since a, needs the new value of x, i.e. W(a,) N
N Ray) = {x}. .

2. Preeedence relations hetween statements. Let A be the set of the sta-
tements of an AFT (or program). We define the precedence relation = (C 4 X 4,

where an b means that a must be executed before b. Let a; and a; be two
statements. @;% 4, if and only if the following conditions hold :

i<j ™
R(a) N W(a) #@ or R(a) N\ W(a) £ O or W(a) N Wia) # O (8)
Let us define the relation p CA X 4 with apb iff axb or b= a.

To test if two statements are in the relation p we can use boolean matrices-
Let V3,V + -y Um be the variables of the AFT (or program), and a,a, ... %

PARALLEL EXECUTABLE SEQUENCES

the corresponding static word. We define the matrices:

with R= (rij)‘=r»:j=ﬁ .
1’ if vj € R(ai)u
= L
and 0, otherwise,
W = W;;) . —_
with s)ieinsjim

{1, if v; € W(a,),

wy; = .

' : 0, otherwise.

Let W* be the transposed matrix of W, and let S be the matrix

. S= (Si)inin; j=irm
defined by '

S=R-W4+W.R+W.W

49

(The operator + is the boolean addition: 04+0=0, 0+1=14+0=141=1).

Then a;p a; Uf s;;=1, and a;% a; iff 1 < J and aq;p q;.

The graph of the relation = is called the precedence graph. If two statements

a; and a;, in this order, are on the same path in this graph it means that a;

must be executed before «;, 1.e. they are not executable in parallel. It results

the following

PROPOSITION 3. Two stalements of a program (or AFT) are execulable in

parallel iff they arew't on the same path in the corresponding precedence graph.

The transitive closure of S is denoted by S* = (s§);_, . ja1,n IF S5

then the statements a; and «; may be executed in parallel.
Example 2. Let us consider the AT : ayayaza,a; where

a, itz = f1(x,)
u, i8: %3 = FALNEN)
ag is: %4 = fa(%q %)
ag is: x4 = f4(%7)
ag is: %, = f5(%4, %s)
Then we have

01000000
10000100
R=l00011000
000000T10

0001000 1

and 10000000
00100000

w=1l00 10000
00000100
00010000

4 — Mathemoatice 3/1989

=0

52 F. BOIAN, M. FRENTIU, Z. KASA

Suppose that for computing the value of the expression ¢, we ‘have 5 o
puter system: with unlimited number of processors. It is obvious that bOtli
expressions x and y of S{¢;), with S(x) (N S(y) = g, may be computed i, th
same time, i.e. they may be computed in parallel. Thus, the total Computine
time of the evaluation of the value of ¢, is reduced. 8

For example, for the expression s, two procesors are needed, and fo, s
s, §, and s; only a single one.) . 1

In the jollowing we will ignore the operating system overhead time, tiseq
for switching between processors and processes. Also, we cousider that for
each o € OP, the evaluation time is independent of the values of its Operang,

Let T be the function

T:OP—PR(-

where T(o) is the evaluation time of o, for each o € OP.

At last, suppose that the time for reading one value from a memory Joc,.
tion and the time needed for transmitting it to a processor is a constap
value M, independent of the location and of the processor. _

For each s € S(¢), we denote by L(s) and R(s) the left and right subtreg,
respectively. .

DEFINITION 2. Thedepthof s € S(e), denoted by H(s),is defined as follows:

M, if s is a leaf (i.e.an operand)
H(s) = {T(o) + max {H(L(s)), H(R(s))}, if s = (L(s) o R(s))

The depth H(e) is the necessary time for the evaluation of “¢”, if as many

as necessary number of processors exist.
Example 3. Suppose that M = 1, T(+) = 1 and 7(.) = 1. ‘Then, for the
expression ¢; given in fig. 2 we have:

H(s) =6, H(s)=4, H(s) =7,
H(s) =3, H(s)=5 H,) = 10.

4. Optimal trees for associative and commutative operators. In the follow-
ing, we suppose that each operator o of OP is associative and commutative.
. We denote by [¢] the set of expressions derived from e using thesc two pro-

perties. Of course, [¢] is a finite set.

Our purpose is to find an expression ¢* of [¢] such that:
H(e*) = min {H(a) | a € [e]}

Supposc that ¢ = 5,05,0... 05, # > 1, and any root of S(sy), S(sa) + -
S(sn) is not marked by the operator o.

We denote by BT(o, s, Sz, -+, S,) the set of the binary trees having
S1, S, ---, Sp s leaves and having # — 1 interval nodes marked by the ope*
rator o. Of course, each set BT is a finite set. Let

H*(o, sy, 5, ...,s,) = min {H(a)| @ BT (o, sy, Sg, ..., Su)}

-

PARALLEL EXECUTABLE SEQUENCES
53

and let

OT(o, sy, ... =" '
© s, ..,5)={ae BT(o, sy, ..., s,) | H(a) = H¥(o, s sa)}
be the set of optimal trees. Lo

Due to associativity and commutatibvity, We may suppose that

H(s,) < H{s,) < --- < Hs,).

This hypothesis holds in the Tollowing.
It is clear that for each 1 <5 « J < n, we have

H((sios)) = T(o) + Hs)).
Also, for each 1 <4< j <% <n we have

H((sl o 82)). < H((si o s])) S H((sk o S,,))
LEMMA Y If H(s)) < H(s,) < ... < Hs,),
and H(s) = H(siy1) = ... = H(s;_,) = H(s),
and IJ(SJ) < H(sfﬂ"l) £ ... H(S,,),
and a €0T(o, sy, ...,s,), and (s,0s,) & S(a) for i <l<j
- L\ O 2 Sa)s ! r < J, then for cach
k11 <k <y, there exisls b €0T(o, sy, ..., s,) such that (sx0s,) s j;n S(b).

~ Informally, in each optimal tree @, two elements of S(a) can be changed
if they have the same depth. The proof of this lemma is obvious.

LEMMA 2. If H(s)) < H(sy) < ... < H(sy),
and H(s,) < H(Sks1),
and H(sgy1) € H(ser2) € ... < H{s,),
and 2 < h<n
then it exists a € 0T (o, s,, ..., s,) and there exist 1 and j, 1 <1 <j <4,
such that (s;o0s;) € S(a). ‘

Proof. Let b be an optimal tree.)
Case 1: There exists (5;05s) € S(b) such that ¢ < j. < k. Then lemma is true.
Case 2: For each (s;o0s,) of S(b), we have 7 < £ or r < k. Due to commu-
tativity, we may suppose that ¢ < 7. g
Case 2a: For each (s;os,), we have 1 <% and r < k.. Because 1< k > _2,
there exits z, £, such that (s,02z) and (s,0¢) € S(b). If H(2) < H({), then 1n
b we can change (s;02) and (s,0f) with (s;0s,) and (z01), and lemma 1s
proved. If H(z) < H(t) we can change (s;02) and (s,0¢) with (toz) and
(s, 0 §,). Due to commutativity (s, o0 s;) can be changed with (s; 0s,) and lemma
i1s proved.

Case 2b: It exists (s;0s,) & S(b) with 4
exists z and (s;0z) € S(b), with 7 <k I H(s,)
(s;0 z) can be changed with (s;0s;) and (s, 02),
H(s,) < H(z), we change (s; 0 s,) and (s;02) with (zos,

< k and 7 < k. Because k > 2, it
< H(z), then! (s;0s,) and
and lemma is proved. If
) and (sjo0s). If 1>7

54 F. BOIAN, M. FRENTIU, Z. KASA

1 F 1< J mmutativity, (s;os;
then lemma is proved. If i <j, then due to y:g . (/95) cay b
changed into (s; os;), and the lemma is proved, & . imal trec
Ian all cases, all Ichanges keep the depth 1n the 01 e.

tEaMa 3. If H(sy)) S H(sy) € --+ S H(sy),
and H(s) < H(se+1),
and H(sp+1) < H(sg42) € ..+ S H(s,),
and 2 < k< n, |

then there exists a € 0T (o, Sy, .-, Su) and there exists 1, 1 <1 < R such that
s;) s 1 S{a). .) 3
. oPt’Z'oof. Fro1<n)]emma 2, it results that it exists an optimal tree § apg
exists (s;0s;) € S(b), such that 1 <+ <7 < k.
Case 1: 4 =1, then this lemma is obvious. ,
Case 2: i > 1, then there exists z and (s, 0z) € S(b). If H(z) < H(s), the
(s;os;) and (s;02z) can be changed into (zos;) and (s;05;), and lemma jg
proved. If H(s) < H(z) < H(s;), then (s;0s;) and (s;0z) can be changeg
into (s, 0s;) and (s; 0z), and lemma is proved. If H(z) > H(s;), then (S_.-osj
and (s;02z) can be changed into (s;0s,) and (s;02z). Due to commutativity,
(s;os,) can be changed into (s;0s;), and the lemma is proved, too.
LEMMA 4. If H(s)) < H(s,),
and H(s;) < H(s;) € ... < H(s,),

then there exists a* € OT(o, sy, ..., s,) such that (s,o0s,) Is in S(a*).
Proof. If H(s,) = H(s,), then applying lemma 1, lemma 4 rcsults hmme-
diately. If it exists & > 2 such that H(s,) < H(sp1,), then applyving lemmas 2
and 3, lemma 4 is proved, too.
Now, from the lemmas 1, 2, 3 and 4, it results the following :
THEOREM 1. For each a € BT (o, s,, ..., s,) with

His;) < H(s,) < ... < H(s,),

there exists a* € OT(o, sy, ..., s,) such that (s,0s,) € S(a*).
_ This theorem offers an algorithm to construct an optimal tree for an
anithmetic expression, when it uses only one associative and commutative

operator, and the operands sy, s,, ..., s, have the depth H(s,), H(sy), . . ., H{5)-
ALGORITHM 1 '

Input: The expression ¢ = s,05,0... 0 Sy

Output: An optimal expression f equivalent to e.
Step 1: While » > 2 do

Step la: Sort the operands such that

‘it

H(s) < H(s) < ... < Hs,)

Step 1b: Define the expression z = (
_replace s; and s, by z.

- Step lc: Rename the -operands z, S3, .

- pectively; Tetn:=4 —1;

$105,) as a mew operand and

<o 8y into sy, Sy, ..., Sy TES

PARALLEL EXECUTABLE SEQUENCES 55

Step 2: Let f:= (5,05,); Stop.
_ This algorithm is analogous to Huffman
binary tree having a minimal weighted lenght.
Omljr.\;(l)e:,t i‘frzr aflnclldmg an tc.>ptimal tree for an arithmetic expression e having
< 1d associativ:
PNl e operands from the set OP, one can apply the
ALGORITHM 2. o

Input: An expression ¢, with commutative and
a set OP and the operands a,, a;, ..., a, :

Output: An optimal expression f equivalent to e.
Step 1: Define H(a,) = H(a,) = ... = H(a,) = M.
Step 2: Construct a tree b equivalent to e.

Step 3: While S(b) # @ do

's algorithm [3] for finding a

associative operators {rom

Step 3a: Traverse b in postorder, to find the maximal elements s;,

Sy, -+, S, of S(b) such that in each s, ofly the same ope-
rator can appear.

Step 3b: For 7 from 1 to n do épply the algorithm 1 to s; and'_'_the
result is denoted also by s, : '

Step 3c: Replace each subtree s; € b with the leaf s, which have
the depth H(s;). Cos

5. An example. Let us consider the expression given in fig. 2. After apply-
ing the steps 1, 2 and 3a of the algorithm 2, the expressions s,, S,, Sy, g and
s, have to be optimized. .

Now, at step 3b, we apply the algorithm 1 to

((((a +b) +¢) +4) +e) +/)

We have H(a) = H(b) = H(c) = H(d) = H(c) = H(f) = 1. Using ‘the step 1b
of the algorithm 1, we define z, = (& +b) with H(z,) = 2. After the step lc,
we obtain the expression : :

((((c +4d) +e) +f) +2).
Now, we have n =15, H(c) = H(d) = H(c) = H(f) and H(z,) = 2. Then we
define z, = (¢ +d) to obtain:
(2 +) +S) +2) :
Now we have n=4, H(z) = H(z) =2, H() =H(f) = 1. Then we define
73 = (¢ -I-f) and we obtain:
((zs +20) +21)

Now we have # = 3, H(z,) = H(z,) = H(z;) = 2. Then we define 7, = (23+22)
with H(z,) = 3, and we obtain the optimal expression

s, = (@ +0) + (e +) + +a)
having the -optimal depth H*(s;) = 4.

PARALLEL EXECUTABLE SEQUENCES 57

walent expression :

c=a-b-d-ftcid-f4e-ftg

having H*(¢) = 3. '

Also, using a performant compiler, the subexpressions (f) and (d-f) can

be evaluated only once.

[y

" S I

_REFERENCES

. Boian, F., Reversible Execution with Loop—Exit Schemes, ,,Studia Univ. Babes-Bolyai, Math.”,

32, 3 (1987) 29—36.

.Boian, F, Frentiu, M, Kdsa Z., Parallel Execution in Loop—Exit Schemes, Babeg-Bolyai

University, Faculty of Math., Research Seminars, Preprint No. 9, 1988, pp. 3—16.

Knuth, D. E., The Art of Computer Programming, vol. I. Fundamental lgorithms, Wesley,
Reading (Massachusetts), 1968. '

. Kung, H.T., Computational Models for Parallel Computers, CMU—-CS—88—164, C:ﬁnegie

Mellon University.

Schendel, U, Schyska, M., Paralicl Compulation and Supercomputers and Applications,
T'reie Universitit Berlin, Fachbereich 3lathematik, Seria A, A—88-—03.

STUDIA UNIV. BABES—BOLYAL MATHEMATICA, XXXIV, 3. 1989

R- CONTRACTIONS

JOAN A. RUS*

Received : April 12, 1959

REZUMAT. — R-contracfil. In [10] am dat diverse generaliziiri z}le l:lnui rezul-
tat obtinut de S. Eilemberg. In prezenta lucrare ne propunem si dim diverse
teoreme discrete de : punct fix, surjectivitate §i coincident. Se dau, de asemenegs,

unele aplicatii in analiza nelipiari.

1. Introduection. Let X be a set, f: X— X a ma‘pping and R: = (Ro)oss
R, C X X X a sequence of equivalence relations. The following thcoren, is
due to S. Eilemberg (see [4], [10]).

THEORENM 1.1. We suppose that

i) X XxX=R, DR, D...DOR,D ...

(i) N R, = A(X) (the diagonal in X X X);

(iii) 7f (%,)wso0 15 any sequence in X such that (x,, xu=1) € R, for cach p,

then there exists x € X such that (x,, x) € R, for all n € \;
(iv) for all » €N, (x,5) € R, implies (f(x), /(3)) € Rii1-

Then
(a) F, = {x%},
(b) (f(x,), x*) € R, for all xy € X and n € N.
In {10] some discrete fixed point theorems of Eilenberg type are given.
For example, the following result is given in [10].
THEOREM 1.2. Let X be a set, f: X—~X a mapping and R, X < X,
n € N a sequence of svmmciric binary relations in X. We suppose thal.
(1) the conditions (1), (ii) and (iv) i1 the Theorem 1.1. are salisficd :
(2) tf (xa)uzo 15 anv sequence 1w X such that (x,, x,.,) € R, for cach n,
then there 1s a wnique x* € X such that (x,, xv*) € R, for all n € \.
~ Our purpose in this paper is to give some discrete fixed point theorems,
discrete surjectivity theorems and discrete coincidence theorems. Some apli-
cations in nonlinear analysis are given.
2. R-contractions. Let X be a nonempty set and R = (R,)us0, R,C XxX,
a sequence of symmetric binary relations in X. Throughout this paper we sup-
pose that:

(€) XxX=RDRD...R,D...,
(Cz) O R, = A(X)’

(TC:,) if (X,)nz0 is any seugence in X such that (%, %usp) € R, for 2ll B
P = “.\, then there is a unique xt & X such that (xm A’*) € R,, for all 7 € -¥

® Universily of Cluj-Napoca, Facully of Mathematics and Physics, 3100 Cluj-Napoca, Romania

R—CONTRACTIONS

59

‘DEFINITION 2.1, A mapni .
; ; Pping f: XX ;
ne X, (59) & R, implics e i) s cled Recontraction it for ai
EFINITION 2.2, A mappin 7 N — L :
EFINITION 2.3. A" mapping £ i onti
2 e N imply ’ g8 [is R-continuous if
e havel y (f(xn),f(xf)) s R,‘ for all » e \.
TFEOREM 2L Iff: XX isa R-contraction, then -
() Fy = {x%},
(i) (f"(x0), #*) € R, for all x, « X and n < X,

Proof. (i) + (ii). Let x, € X. We hav
‘This implies that (f'(xo),f'+ol’(x)x) o Re]}ﬁ;ealgxo’ fl’((ﬁi‘o)) € R,, for all p eN.
exists a unique x* € X such that (f"’:(x o 2nd p €N From (Cy) there
mplies (71(50) 7(2¥)) & Ruvs 1o (f0(a0), Fleo) & B for o o
(Cy) it follows that x* = f(x¥) "Let now to prove (i) Let a* y* e £ Yrom

ok . e (1). Let x*, y* g
{x*,3*) € R, inél Ehe }Q—contractivity of f 1\ve hasye), x*e=: y* € Fy. From

THEOREM 2.2, Let f: XX be a maphi o T
that f* is a R-contraction, then Fp = {x%}. pping. If there: cxists k < N* such

’Proof.' l‘heoproot follews from the Lemma 1.3.3. in [9] and the Theorem 2.1.

THEOREM 2.3. Lot X be a sct, Y a nonemply subset of X o: X—~Y a re-
traction and [:Y —X a mapping. We suppose that : ‘

(1} p 7s R-nonexpansive,

(2) f 1s a R-contraction,

(3) f 1s retractible onlo Y by means of p.

Then Fr = {x*}.

Proof. 1et (x,v) € R,. From (2), (f(%), £(») € Ryyy, and from (1),
(e{f(x), s(f(r)) € Rus1, ie. pof is a R-contraction. From the Theorem 2.1.
it follows that. I, ., = x*. From (3) we have F, = {x*}.

Remark 2.1. From the Theorem 2.1. we have the Theorem 1.1. of Eilen-
berg (sce [4], pp. 17—18), and the Theorem 5 in [10].

Example 2.1. Ordered vector spaces. Let (X, +, R, <) be an ordered
vector space. If X is a relatively o-complete lattice, then X is called a o-
complete vector lattice. If x € X, let |x[: = x2V (—%) be the modulus of x.

By definition a sequence (%,).»0 of elements in X is (0)-convergent to an
element x* if there exist two sequences (dy)szo and (b,)s»0 in X such that

(%4, %) € R, for all

(i) (an)nso is increasing and x* =V q,,
neN

(i) (b,)nzo is decreasing and x* = A b,,

neN
(ill) a, < x4 <€ b, for all n € N. : N
Iet Y C X be a bounded and (0)
A, € X such that, [y, — 2| < M, for all vy, e
R,CY XY,

_closed subset of X. Let a =]0,1f and
Y. Let R = (Rn)n>0:

Roi={(x.)]1x =51 < My, 7y € V)

1. A. RUS
60

sfies (C,), (Cy), (Ca) (see [2]“1). 135). Let fry_,
v s (R 052 O3 (.50 SR TR
su ’ % :

0y
3 2.1. we have . '
From thg&?f%‘im(;g'{‘1\;]). Let X be a o-complete vector lattice,
THEOREM 2.2

Ye
: 'Y»Y. We suppose that X
-cl bsel of X and Y=Y |
0 do?f;; [Shl;rc‘ ex{sts M, € X such that |y, — Vol < My for all y,, v, « v,
(2) there exisls a € [0,1) such that
) —fo)| < alx =y, for all %,y € X.
Then
() Fy = {x*}, | 7
(ii) f"(xo)_"ﬂ))x* as n—o0, for all %, €Y,

(i) /(o) — #*] < 7, Mo

l1—a
Example 2.2. Metric spaces. Let (X, d) be a bounded complete metric Spage
and f: X— X a (3, a)-contraction (see [9]). Let

id an 7
R,:= {(x,y) eX x X {d(x,) € l_aa(x)}.
The sequence R = (R,)sso satisfies (C,), (C,) and (C;) and f is R-contraction,
From the Theorem 2.1. we have ‘

THEOREM 2.5 (see [9]). Let (X, d) be a bounded complete melric space and
f: X— X a (8, a)-contraction. Then F; = {x*}, and for all x, € X, fr{xg)—~s
as n— . :

Example 2.3. Generalized metric space. Let (X, d) be a complete genera
lized metric space, where d(x,y) € R"(see {8]). Let ¥ C X Dbe a bounded
closed subset of X and f: Y—Y a mapping .We suppose that there existsa
non-negative matrix A whose spectral radious y(A4) is less than 1 such that.

d(f(x), f(y)) < A d(x, y), for all x,y € X. (*)

Let R, = {(x,5) € ¥ X Y|d(x,%) < (I — A)=1 A"5(Y)}.

Then R = (R,),»0 satisfies (C,), (C,) and (C,) and f is' a R-contraction. Fronm
the Theorema 2.1. we have.

- THEOREM 2.6. (see [11]); see also (8] and .{7]). If f salisfics (*) then
(i) Fy= {z%},
(1) f(xy — x* as n— oo, .
(Lii) d(f(x), %) < (I — 4) 2473 (Y).
3. Surjeetivity theorems, Let (X, +) be an abelian gro rx X
o * H] up. t Pn A X
" Ei\T, b(}e1 2. fse](liuence of symmetric binary relatio:llsg inllf\’.Le G d
n what tollows we suppose that R = (R,) tisfies (C,), (C,), (Cs) a0
) ek - that | wlnso satisfies (C,), (Cy), (Cs
{V;) hagve - (,y) €R,, n e N) implies ((x +2z,y +2) € R,).

THEORE) 1 : . . < r &
surjecgfe.m“ 3L Let f: XX be 4 R-contraction. Then 1, —.f: X—+X#

.I..A.-RUS

62

We have .
rHEOREM 4.3. If .) |
0 NZ=("

(ii) Z, X Z, C Ra, for all n €N,
(iii) f and g are R-continnous,
then C(f, g) # 9.

Proof. We rémark that, X DO Z, D .DZ, D ... Let %, €2, They

(%n, %) € R, for all n € N. On the other hand there exist :i, €2z, and y, ez,
such that f(z) = g(3,). From (i) and (iii) we have f(x*) = g(+%), ie., 2 < Cf, g

Remark. 4.2. From the Theorem 4.3. we have a theorem by Holodoy.

ski (see [8]).

- F. Yoicu, Teoreme de punct fix

REFERENCES

. R. Cristescu, Topological vector spaces, Lditura Acad., Bucuresti, Noordhoff, T.evden, 1977,

. R. Cristescu, Structuri de ordine in spafii liniare normate, Lditura $tiintificd si enciclops
dica, Bucuregti, 1983.

.E.Dubinsky, Fixed poinis in non-novmed spaces, Ann. Acad. Sc. Fennicae, Series 4,

Xr. 331, 1963.

J-Dugundji, A. Granas, Fixed point theory in topological vector spuces, P.W.N,, War
szawa, 1982.

. S. Heikkila, S. Seikkala, On fived points in uniforn spaces with applications to pro-

babilistic melric spaces, Acta Univ. Oulnensis, Series Al, nr. 18, 1978.

. K. Iseki, P.I. Sharma, B. K. Sharma, Contraction lype mapping on 2-metric spus,

Math. Japonicae, 21 (1976), 67—70.
.Okano, On a class of complete spaces and some fived point theorems, Math. Japonicae, 2!
(1976), 179—185. ‘ I ? T

1. A. Rus, Principii §i aplicafii ale teoriei punctului fix, Editura Dacia, Cluj-Napoca, 197.
. I.A. Rus, Ge.nerahzed contractions, Univ. of Cluj-Napoca, Prepreint Nr. 3, 1983, 1—130.
. 16.1 A.G :{u s, Discrete fixed point theorems, Studia Univ. Babes-Bolyai, Math., 33 (1988), fasc. 3

- T. Shibota, On Matkowski’s fixed point theorem, TRG Math.,

o 18—1 (1982), 57—G0.
.H. V. Trotha, Contractivity in certain D— {)

R spaces, Math. Nachr., 101 (1981), 207—213.
. . §i ecuafii operaloriale i i lini . >h. D). diser
tation, Univ. of Bucharest, 1988. P viale in spaféi liniare ordonate, Y- 1

STUDIA UNIV. BABES—BOLYAI, MATHEMATICA, XXXIV, 3, 1989

CLASSIFICATION WITH FUZZY RELATIO.NS 1I

CRISTIAN LENART*

Kecerved : April 18, 1989 .

REZUMAT. — Clasifleare cu rela(li nuantate II. Articolul de fati constituie
partea a doua a lucririi [3]. fn prima parte s-au dat doud teoreme de existenti
a celei mai bune aproximiiri a unei relatii nuantate prin relatii clasice de echi-
valentd in raport cu norma Cebisev §i norma integrala. In lucrarea de fati vom
demonstra douii teoreme analoage care ne permit si ne apropiem de elementul
de cea mai buni aproximare, aproximind numai pe mul{imi finite de puncte. De
asemenea, vom da un algoritm pentru determinarea celei mai bune aproximiiri
pe muliimi finite in raport .cu norma Cebisev. Definijiile §i notatiile sint cele
din [3].

Introduction. This paper is the second part of the paper [3]. We proved
there the existence of the best approximation of a fuzzy relation with classical
equivalence relatioils with respect to the Tchebishew and the integral norm.
Finding the best approximation of a fuzzy relation on a set X is a rather dif-
ficult problem when X is infinite. Therefore, we now give two theorems, cor-
responding to those in {3], showing how to approach the best approximation,
approximating ouly on finite sets. An algorithm for the best approximation
on f{inite sets with respect to the Tchebishew norm 1is also given. The no-
tations are those in {3].

4. Approximation on [linite sets with respeet to the Tchebhishew norm.
We now consider X as the metric space with the metric 4 (which induces
a metric on X X X). As in [3], &(X) is the subspace of the space of bounded
functions on X X X equiped with the Tchebishew norm.

[-a) .
THEOREM 3. Let SC X, S=X and S= |J S,, where S,, are finite sets
m=1

satisfying S,, S Swyr, (V) m € N. If R € &(X) 1s continuous on X X X then -
inf ||R~ R*|| =lim inf ||[R— R,||,

R*c R,V m—w R,e& (S,,)

where the second norm is taken in &(S,,).
Proof. Note with p the left hand of the equality to prove. Obviously ¢

Ree g (X) Rype & (Sy
Choose arbitrarily '€ > 0 and x,, ..., x, € X so that R(xg, %) = p — —
0 ’ o ’

&

s € . . .
oo R(%noy, %) 2 p — 2 R(xy, %,) < 1 —) +_§ , which exist according to

* University of Cluj-Napoca, Faculty of Mathematics aitd Physics, 3100 Cluj-Napoca, Romania

C. LENART

64

; — . sufficiently clo
theoremn 1. Consider the poiu‘ctsl yé ‘152 (-;. 1) '—5 1>, p——’ Z -5.‘1.’ R()’.._B;, y,,)S(; :0 \the
correspouding ones above, so tha 01 Z T X and R ; g,
R(xo }v,.) < I— e -+ ¢ (which is also po?ble because S cont;,

nuous on X X X). Recall'iug that S= L_) S, and Sy € Swir, (V) m &N, we

m
get {¥o, .o M) € S,,, for every m > .. But thgu
inf {7‘ I [R(yOI }'1) 2t . R(,’.\'u—h }’,.) 2% Y o2 ¥n = S,,,] =
R(:\'Or ym) >1— 7’} Zp—E- :

Theorem 1 now gives us:

inf- ‘|‘| R—R,|l 2p—c¢ (V)m>1. @)

Ry< & Sm)
Since e was chosen arbitrarily the conclusion of the theorem follows from
(1) and (3).

5. Approximation on finite sets with respect to the’ integral norm. In order
to give a correspondant of the theorem 2, we have to limit the frame. Thys
we consider X < R* a Jordan measurable set of finite measure and, as iy
[3), &.(X)-a subset of Ly(X X X). . '

THEOREM 4. Let X as specified above. If R & &,(X) s uniformly con.
tinwous on X X X then there cxist some finitc scls S, CX, m € XN* and

R = conv (cﬂo(X) N &,.(X)) with R}, Ism

a best approximation of R|; in conv 80(S,) with respect Lo the square deviation,
"

so that R}, comverges to R* a.e. on XXX (R* is the best approximalion of R
from theorcm 2).

Proof. Let us consider a grid of hypercubes in I® gencrated by equi-
distant hyperplans paralel to the coordinate hyperplans. Select only those in-
cluded in X. There exists an array of finite sets of #, hypercubes of side r,

so that &,7,— p(X) and 7,— 0. From now on we abandon the indexation

by m and note with 21, a2, ..., ™ the centers of the hypercubes, by Ay, ...,
X, the hypercubes and by S, the set of centers.

Let R} be the best approximation of R |g in conv &(S,,) with respect
R . m
to the square deviation. We extend R} to X X X as follows :

R (x%, o), if (x,9) € X, X X,
Ry (%, v) = 0, if (x, y) & UX,- X X;and x # y
L%}
Lif (v,) ¢ UX; X X; and x = y.
1,7
It is easy to observe that R*

m S conv (Ro(X) N &,(X)) because Rl €
€ conv &y(S,,). We note with T,, = X X XN UZX; x X,

'l]

65;
CLASSIFICATION WITH FUZZY RELATIONS II ;

- 1 t Rl-
Let us now evaluate [[R — R*|| and |[R — Rj ”1. Rf{gi?x::r%nt}zﬁtegraﬁ
:s a best approximation, the meanvalue theorem for t1entinuity P
l(SR being continuous is Riemann integrable), the uniform co ‘ ,
rn— 0, ‘we obtain : '

s. (R(x, v) — R*(x,)))zd}c dy < S (R(x, y) — Ru(x, y))2dxdy =

XxX XxX
=2 S (R(x, 5) — Ra(x,) dxdy + | (R(x, y) = Ra(%,)P dz dy <
(%] Xx; T,

<Z | Ry - Rulnrdrdy+u(T) = DRE % —

s ,\"-x.\'j
— Ra(#*, v¥)2 7% +w(Th) < 20 (R(x* 3%) — Ru(x%, yR)2 78 +eknrn +
(¥}
+ F'(Tm): (V)?ﬂ > My o

Similarly :

[(Rx5) — Rex randy =3 § (R(x, 3) — R¥(x,)2 dx dy +

N L5 - .
XxX ! ~‘.'X"j

+ S (R(%, y) — R¥(x, y))2dx dy > 2 (R(x"*, y""*) — R¥(x"%, y" M) i >

0
T

> 00 (R(x*, y%) — R¥(x*, g2 7 — ekl v >

.2

1,7

> 25 (R(x%, y%) — Ry (a*, Y27 — ekmri, (V)0 > m,.

Considering the extreme terms in the above inequalities and combining
them, we get:

PR — R*|I* — || R — Ry (2| < 2ek} 7% + (T,
(V) m > my = max (m,, m,)
Passing to the su

) perior limit and using W(Tp)—0, k75— w(X), m —00,
it results: ‘

F} | IR — R*|2 — |R — Ry ||2| < 2ep(X)

As ¢ was chosen arbitrarily we let ¢ \ 0 and .obtain :

O <Im IR =R — IR = Rill*| < Tm [I|R—R* |l — | R—R3 12 < o,

5 — Mathematica 3/1989

C. LENART
66
. _ R*||, which means that R;, is a minimizing arrg
hence*lllff — R'*:h](l:'n"l){)?f of }yeppo-—l«e\’i theorem (see for 1ns'ga11c@ [4]) z
for R*. From I nce convergent in the morm of L,(X y X)

s that Ry is fundamental, he n
:1(1)11(110‘;’?5 tlzmit i; R*. This means that R* —~ R* a.e. on X X X.

6. An algorithm for the evaluation of the hest approximation on fin;,

o TR . Consider X = {1, ..., %,} a {in;
ts with respeet to the Tehehishew norimv. p 2. lnite
:ss:'t: al‘l‘l:ilhR el&(.\’) a fuzzy similarity relation. R may be identified with j
iated matrix (ri), 7 = R(x,, .x,), L7 3 ‘1 i
aSSOCAn algorithm E‘oif th‘e evaluation of the best approximation R* of R in

&4(X) with respect to the Tchebishew norm is given bellow. This algortihgy,
o2 .

is inspired from the proof of theorem 1. . .
* nSlt)ep 1. For i:=1ton, j:=1tondorj:= —1;
Step 2. p: =1

3. For 4,j: =1 to # do if r;=p then 7§ :=1;
Step g if r,;~= 1 —pthen 7 :=0;

Step 4. For i:=1ton, j: =1 to #, k:=1to n, do

if ¥y =1and 7§ =1 then 7§ :=1;
if 7 =1 and 7jj =0) or (rx =1 and 7} = 0)
then 7 : = 0;
Step 5. p: = sup ({rjlry < P;_i,_]'= 17} U{l —rjlrj>1—p,
1,7 =1,n})

(if the set between paranthesis is nonempty)
Step 6. Repeat steps 3), 4), 5) while there exist clements in R* with
the value —1 and elements with the value 1 are not bound
to become 0, respectively 0 to become 1.
Step 7. For i: =1to#n, j: =1to »n do
if 75 = —1then #}:=0;

Step 8. Output R*, ||R — R*|| = p. Stop.

We shall now discuss the algorithm. It is obvious that there exist i, §
so that || R~ R*|| < {ry, | — r;}, since X is finite. At the beginning all
ry are —1; p _\\f1]] keep the \.falue of ||R — R*|| at a given iteration, which
will descend discretly according to the remark given above. Let o be fixed;
the condition ||R — R*|| < p imposes 7§ = 1 for all 4, j for which ri 2
and 7j; =0 for all 4,4 for which 7; < 1 — p (indeed, if r; > p and 7§ =0,
th;n ”1122*—— Rl 2 Iry—r5l=1r;>p and if v £1—p and r§ =1 then
cl(l) - -—t ! N2 lr —ril=1—=7;>¢). These inequality conditions may be
“rerzezlieac;?r e"ll:ahty 10 >y b‘ecause those rj for which r; > poor ry<l—p¢
4 At step 5 gtll::uf ‘1? ues. ’l]he same way, the transitivity of R* imposes step

. P o .
d s arelz) - eatedo 0::.1111:,h ess discrete value for p is computed. Steps 3, 4
p until the appearence of contradictions at step 3 or 4.

Eventually, all —1 elements of R* i ’
. 4 . are b - @ -l t
contradict the transitivity. sven the value 0 which does”

CLASSIFICATION WITH PUZZY RELATIONS Il . 87

Example. Let X = {x,, %,, %3, x,} and

1 03 7 06 0: R
03 1 07 0
06 07 1 02
o o 02 1
4 decom-
Ve observe that R € &(X) but R & conv & o(X), hence the convex
;)o‘;ltlon algorithm given in [1] cannot be applled Our algorithm gives the

jollowing results.)
At the first iteration, with p = 1, we have:

M *
h hy=r=1r4h=1

rhi=ra=rh =rh=0.
At the second itcration, with p = 0.8, we have:
r3 = rig = 0. . '

At the third iteration, with p = 0.7, we have:
‘ ‘ ra=1ry=0
1':1 = 7’;’2 =] a
and at step 4 we put riy = rj = 0. ! i
At the fourth iteration with p = 0.6 all ‘elements of R* are alleady glven
values. Hence we have; : . S

Qe

1 0 0 0 NN ’ .
: 0 1 1 0
R* = . < .
0 1 1 0
0 0 o Iy o

IR — R*|| = 0.6. ,
The matrix of R* induces the following partition of X : {x,}, {x,, x5}, {%,}.

REFERENCES

—

«Bezdek J.C, Harris J. D, Fuzzy Partitions and Relafions: an Axiomatic Basis Jfor
Clustering, Rtprmt from J. l‘uu\ Sets and ‘sttems 1 (1978), 111—-127,

. Lenart C., Pattern R:cogml:on Algorithms in A.l., ‘Thesis, University of Cluj-Napoca, 1988.
- Lenart C., Clessification with IF'uzzy Ralations, Stll(lla nr. 3 (1988),

- Muntean L., Functional Analysis, Lecture Notes, Univ, of Cluj-Napoca, 1974.

= W

[

STUDIA UNIV. BABES—BOLYAL MATHEMATICA, XXXIV, 3, 1989 © - ¢

RESOLUTION OF: SOME SYMMETRIC FUZZY RELATION
EQUATIONS ON RESIDUATED STR_UC’I‘URES

ANTONTO DI Nbl,:\", ADA LETTIERI* andv SALVATORE SESSA*

o
s N

Received : April 24, 1989 Y

REZUMAT. — Rezolvaren uner ecuafil relntlonale fuzzy, simetriee, in‘ structurl
<, @ 1) o semilatice Brouweriand §i a, X, b € L. Se noteazi

reziduale. Fic (L, A, « rian g
cu S multimea tuturor solutiilor x & L ale ecuatiei simetrice (aax) A (xa?) = b.
) A (baa) este cel mai inare

Se demonstreazii ci daci Z = (7, atunci (axb el .
element al lui Z. Rezultate asemiiniitoare sint date pentru ecuatii relationale

fuzzy intr-o latice Brouweriand.

.

1. The theory of fuzzy relation equations begun by Sanchez [6] in
1976 is an extension of the classical theory of the Boolean equations [5].~S a n-
chez [6] solved sup-inf fuzzy relation equations on complete Brouwerian
lattices. It is worth mentioning that this theory has provided many appli-
cations, mainly in the Knowledge Engineering setting [3]. In [1], a symmetric
fuzzy relation equation was defined on finite sets and solved on the unit in-
terval., in view of some applications presented in [2]. We first solve a similar
equation on a Brouwerian semilattice, further we give somne conditions for the
resolution of an analogous fuzzy relation equation on Brouwerian lattices.

2. We recall that a Brouwerian semilattice (L, A, <, «, 1) is an algebra
such that the structure (L, A, <, 1) is a meet-semilattice with the largest
element 1 and where “«” is the residuation operator, i.e. the equivalence:
c<saabiff a Ac<b, where a,b, c L. It is well known that the following
properties hold for all ¢, b, ¢ € L:

A lea=a,aaa=1.
L ca<biff and=1.
aadoac)=(a A b)ac.
aab > b,
a/\(aab).=a/\b.
aad Ac)=(aad) A (aac).
{aab)abd > a.
acc >bacand caa < cabd if a < b.
If “<” is a lnear ordering, then aob =b if 4 A b.

Let XVlIfhgu}:; Sal;egiaé Erf‘;rencl:)e, these properties shall be used in the sequel-
' = ®(a, b) be the set of all the solutions x € L of the
F

* Universita di N, i F . . .
v Napoli, Facoltd di Architeltura, Istituto Matematico, Via Monteoliveto 3, 80131 Napoli, Italy

SYMETRIC FUZZY RELATION EQUATIONS 69

following. equation : e o e 5
S " (@& x) = (aax) A (xaa)—_-'”b.' S (1)

For sake of completeness, we: recall the derived operation“&” is known as
biresiduation (e.g., [4]).- We first show some easy Lemmas. ... »
- LEMMA 1. If ® # O, then we have aax = aab for any x € %.

Proof. Let x € %, then we have aA{aa x)A(xaa) =a A b, ie. a<x=
a A'x A (axx) = a A b. Thus aa(a A x) = ax(a A b), ie. (aaa) A (aax) =
(axa) A (aad) and therefore the thesis follows. A o

LEMMA2. We have a&x 2 b iff a AN b < x € baa.’ - '

Proof. Let x € L such that (aax) A (xxa) > b. Then b < aax iff x >
>a Ab and b < a&x iff x A b .<a if x < bdoa. .

LEMMAS. If a&b, then we have x < aab.

Proof. It suffices to observe that a A ¥ < a&x < b.

The following result gives a simple criterion for the resolution of the
Equation (1). " e - ‘ '

THEOREM 1. % # O iff a&b € %. Further, we have a&b > x for any x< %.

Proof. Of course, we prove only the nontrivial implication. Let % # &
and x Dbe an arbitrary element of %. Then we have .

ax(a&b) = [aa(aaxb)] A [aa(baa)] = [(a A a)ab] A [(a A b)aa] =
= (aad) A1 = aub. oo
By 1.EMMA 1, we deduce , X
aa(a&b) = aax | (2)
for any x € %. We also have by LEMMAS 2 and 3, '
% < adb. ‘)
From (2) and (3), then it foliows that ‘
' a&(a&d) = [aa(a&l)] A [(a&b)ua] < (aax) A (xaa) = b. S (4}
On the other hand, we have a A b < a&bd < béa and henc‘c_ by Lemina.Z,
a&(a&b) > b, 3)

Then the thesis follows from (4) and (5).

3. Here we assume (L, A, V, <, «, 1) to be a complete Brouweria .
We recall that L is. Brouwerian iif) P werian lattice.

aAN(V x)= 'V1 (@ A %)

sal
forall g, x;, € L bei'ng I any set of indices. Tet X. Y be two
» X € L, DE ! - 1L , wo nonempty sets
(n?t necessarily finite), 4: X— 1L, B: Y- L be two assigned fuzzy v.gat)s’ and
fo idX X Y — L be an unknown fuzzy relation such that the following equation
s: : o

V. _[A(x) & R(x, 5)] = B(y) | ©e)

" A. DI NOLA, A. LETTIERI, S. SESSA

70

for anv v € Y. Note that if L = [0, 1] with the usual lattice ope{ation's, ta.
duced by the natural ordering on the reals (more generally, U L is a ligeg,
lattice) and X, Y are {inite sets (in t}_us case, the completene}?s of L'ls Not
Alecessary), we obtain the equation considered in [1], where a ¢ aract(mm,‘cio.n
ma (4, B) the set of

; A X : . % —
of the maximal solutions is presented. Denoting by | the
all the solutions R satisfying the Equation (6), we give the following iff cgp_

dition. . . C _ _
2. L ' , defined as (AaB).
THEOREM 2. Let (AaB) be the fuzzy relation pointwise dofzvne')
(x,y) = A(x)aB(y) forall x € X and y € Y., Then (AaB) = % ff Viexd(z) s
> Vyev B(Y). Further, we have R < (AaB) for any 'R € 3.
Proof. We have for all x € X and y € Y:

AX&[A(x)aB()] = {A(®a[A(H)aBO)]} A {A(x)aB(y)1aA (x)}
= [A(x)xB(3)] A {[A(x)aB(y)]ed(x)}
= [A(x)aB()] A A(x) = A(x) A B().

Since L is Brouwerian, ‘the1'1 we deduce for any y € Y:
Bly) = V {d(x)&[A(x)eB(y)]} = V [4(x) A B(y)]
: ze X ! . zel
| = Bs) AV A=),

ie.
(AaB) € % iff v A(x) > B(y) for any v €Y.

raeX
Let R € % and since A(x) & R(x, v) < B(y), we deduce R(x, y) < A(x)aB(v)
for all x € X and y €Y by LEMMA 38, ie. (AaB) > R for any R €%,

Remark 1. Note that if the Equation (6) is defined on finite sets, in Thco-
rem 2 the completeness of L is not a necessary hypohesis.

Remark 2. In Theorem 2, the condition V .axA(x) 2 V,eyB(y) is clearly sa-
tisfied if A and B are normal fuzzy sets, i.c. A(x') = B(y') = 1 for some
2" € X and y' €Y (cfr. Theroem 3 of [1]).

- Now ‘we assume that X, Y are finite sets and L is a linear lattice (not
necessarily complete). If B(y) = 1 for any y € Y, then $# ¢J since it suffices
~to assume R(x,y) = A(x) forall x e X andy € Y. If Y % Bt (1) = {veY:
B(y) =1}, we can give the following characterization :)

THEOREM 3. Let Y # B-1(1). Then % « @ iff for any y e Y — B4 (1),
there exists a x € X such that A(x) > B(y). i

‘Proof. ¥ % # 0, let ReSand y eV — B71-(1). Since X is finite, we
have for some x, € X: S

[A(x)aR(%o,)] < [R(%o, ¥)@A(%5)] = B(y). (7)

By LEMmA 1, we deduce A(xg)aR(x,, y) = A(x,) 0B f A(: B(y)
o) 2 S ARG) 80) 1 400 <
o ¢ G TR AN B 0
A(x,) = R(x,, y)ad(x,) = B(v), a contradiction.

Vice versa, we have V/,cx A(x) > B(y) for am B .
Y : re 2 D() y eyY — 1 . Then, defl
ning (cfr. Theorem 2 of [1]) the fuzzy relation (1_4)' £B) as B~ (1). Then

SYMETRIC FUZZY RELATION EQUATIONS 71

(AEB)(x, ¥) = A(x)aB(y) if B(v) <1 and (1f Bl (1) # @) (AEB)(x, y) = A(%)
if B(v) _Qj 1, it is easily seen, reasoning as in Theorem 2, that (4£B) €%,
ie. & #

Remark 3. Theorem 3 does not hold, in general, if L is a Brouwerian
lattice as is proved in the following example:

Example. Let (N, A, V, <, 1) be the lattice of the non-negative integers,
where “A” (resp. “V”) is the least (resp. greatest) common multiple (resp.
divisor) and “<” is defined as a < b iff a is multiple than 5,4, € N. It
is known [7, p. 84] that N is a (complete) Brouwerian lattice with maximum 1
(and minimum 0).

Let X = {x,, %5, 23}, Y = {y,, 1'2} and A, B be defined as A(x,) = 2, A(x,)=4,
A(x3) =6, B(v,) =1, B(yy) = 3. Let R be defined as R(x,, y,) = A(x;) for
1=1,2,3, R(x, v,) = R(x,, ¥,) = 3, R(x3, ¥3) = 2.

It is easily seen that R& 4 = B, ie. % # O but A(x;) » B(y,) fori=1,2,3.
Returning to the case that L is a complete Brouwenan lattice and X, Y are
nonempty sets (not necessarily finite), a further result is the following:

THEOREM 4. Let (A & B) be the fuzzy velation pointwise defmed as
(A& B)-(x,y) = A(x) & B(y) for all x € X and y €Y. Then (A&B)E%
aiff there exists R € % such that

B(y) A R(x,5) < A(2) |)
and
A(x)aB(y) = A(x)aR(x, y))

Jor all x € X and v €Y. Further, (A& B) 2 R for any R € % satisfying
conditions (8) and (9)
Proof. (cfr. also proof of Theroem 1). We have for any y € Y:

WV {A(x) & [A(x) & B)]} =
=V {A(=BE)] A {(AR=BO)] A Bl (x)ed ()} =
=V (LAMBO)] A ((AR)«BO)e([Bo)eA (=) 1A () =
= V {[A()aB()] A {[B(y)ad(x)ad ()} (10)

Let (A & B) € % and by setting R = A & B, we get:
B(y) A [A(x) & B(y)] = B(y) A [A(%)aB(y)] A [B(y)axA(x)]
= B(y) A [B(y)ad(x)] < A(x)
and
A(x)a[A(x) & B(y)] = A(x)aB(y)

for all x € X and y €Y, ie. conditions (8) and (9) are satisfied.
Vice versa, let R € % such that (8) and (9) hold. Then (8) implies that
R(x,y) < B(y)ad(x) for all x € X and y « Y. Hence, using (5), (9) and (10),

A. DI NOLA, A. LETTIERI, S. SESSA
72 ;

we deduce:
B(y) < V_{A(x) & [A(x) & B(y)1}

< V {[A(x)aR(x 7)1 A [R(# 9)«A(#)1} = BO)

for any y € Y, i.e. (4 & B) = %. Since (9) (or Lemma 3) implies A(x)aB(y) S
> R(x,y) for all x €« X and y €Y, the thesis 1s completely proved. -

’

REFERENCES

‘1.Di No Ja, A, Pedrycz W. Sessa, S. Fuuy relation equations with equalily and diffe-
rence composition operators, Fuzzy Sets and Systems 25, 1988, pp. 205—215.
2. Di Nola, A, Pedrycz W. Sessa, S, Medus penens for fuzzy data realized viq equa.

tions with equalily operators, Internat. J. Intell. Systems, to appear.

3. Di Nola, A, Pedrycz, W, Sanchez E., Sessa, 8., Fuzy Relation Equations ang
Their Applications to Knowledge Engineering, D. Reidel Publ. Co., to appear.

4. Pavelka, J., On fuzzy logic 11, Zeitschr. f. Math. Logik and Grundlagen d. Math. 25, 197g

pp- 119—134,
5. Rudeanu, S, Boolean Functions and Equations, North-Holland Publ. Co., Amsterdam, 1974,

6. Sanchez E., Resolution of composite fuzzy relation equations, Inform. and Control 30, 1976

pp. 38—48.
7. Szész, G, Introduction to Lattice Theory, Academic Press, New Vork, 1963.

STUDIA UNIV. BABES—BOLYAI, MATHEMATICA, XXXIV, 3, 1989

USE OF DEEP QUTS IN KHACHIVAN'S ALGORITHM

TEODOR TOADERE®

Received ; June 12, 1989

REZUMAT. — Folosirea seefiunllor adinel in algoritmul lul Xhachiyan. Lucrarea
reprezinti o dezvoltare a lucririlor [5] §i (6] ale autorului,) prin imbunititirea
i corectarea unor propuneri pentru alegerea sferei de la care se pleacd in algo-
ritmul lvi Khachiyan [2), precum si prin modificarea numirului maxim de
iteratii necesare a fi efectuate. De asemenea, se face un studiu comparativ intre
patru variante ale algoritmului, doud dintre acestea folosind sectiunile adinci pro-

puse in [3].

1. Introduction. In order to establish whether the system:
alx <b, a, €2 b, €, i=12 ..., m, (1)

is consistent or not (and, in the affirmative case, to obtain a solution)," K h a-
chivan gave in 1979 a polynomial algorithm. The performances of this al-
gorithm were improved in several papers, among which [2, 3, 6]. In this paper
we propose a new manner if choice for the initial sphere for the algorithm,
while in Section 4 we present some numerical results obtained by using
the computer for four variants of Khachiyan’s algorithm. We must men-
tion that the modifications proposed in [5, 6] and in this paper assume that
the solution of the system (1) is performed for x > 0. If, for instance, this
condition is not required for the component x;, it can be obtained by replacing
x; by af — af, where xf, x/ = 0.

2. Khachiyan’s Algorithm, Let T ={x<eR"| afx<b;, t+=1,2,..., m} be
the set of the solutions of (1), possibly empty. The algorithm consists of
the construction of a sequence of at most N ellipsoids with the property:

E,DED...DED...DEyD (TN E,).)

An cllipsoid E, is defined by a vector x, = R, which is its centre, and a
matrix B,, such that:

Ev={yeR|y=mn+ By |lz]l < 1}, @)
or:
Ey={y eR|(y — z)TBi'ly — 2); < 1}; (4)

that is why it is also denoted by the pair (%, B,). The form (3) for which
the' condition det (B,) # 0 or Vol(E;) # 0 is required was used by Kha -
chiyan, while the form (4) for which B, must be positively defined was
used by Gacs — L ovasz and is the most often used. We must emphasize

-_
* University of Cluj-Napoca, Faculty of Mathematics and Physics, 3400 Ciuj-Napoca, Romania

T. TOADERE
74

o ices B, from the two forms are ,
ame ellipsoid the matrices £3; 10 . .
:?czﬁ .f(;rhetrhee ::ilslts betlwceu them a well-specified relationship.

eo here of centre x4, = 0 and rad;
initial ellipsoid one chooses a sphere : 3 us p
cont;\ixslill:;tlsolutio};s of the system (1) if this one is consistent. In 4, °. %

i ' i € inj.
tial variant, R = 2¢, where L is the lenght of the input data code ang |
obtained from the relation:

L =[N log, (lag] + 1) + 2, logs (18:] + 1) + logs (mm)] 4 1, {
i o ,

1ot idens

i ice is disadvantageous for the solutions of the problems by compute,,
'EsusitChr?sLueltlss fc?cfmd [5], gven for small dlmqnslons (n=3, m= 4)_prob1en:'
the great value of L leads to upper floating overflpw. Khachj Yan ['
specified that, without other modifications, the radius value can be chogey !
Ay/n, where A is a majorant for the absolute values of the minors of the
ex}cen’ded matrix of the system (1), while the value of L is chosen ag being
[logs(2R4/n)] + 1. In [4] and other papers, the author of the present Pape
gave some manners of choice for the values of A and the radius of the jy;.
tial sphere from which Khachiyan’s al.gorlthm is starting. A majoration o
A is obtained using Hadamard’'s inequality (the gbsqlute value'ot every ge.
terminant is at most the product of the norms of its lines) as being o: = the
product of the greatest p = min {# + 1, m} norms of the lines of the extended
matrix of the system (1). In [4, 6], considering the system (1) together with
the restrictions. # > 0, there was proposed the finding of edges, both inferior
x; and superior %, for each component %; of the solution vectors for the SYs- .
tem (1) from the initial ellipsoid. Subsequently, the author ascertained that |
the expression for 2z is erroneous; but this fact does not affect the nume i
rical results presented -in [5]. |

The values x5 can be obtained, as it is presented in [6], too, as follows: !

— initialize gi=aforj=12 ..., n a’

— for every restriction of ‘the system (1) with ¢; >0 and &, > 0, cal-
culate %! = min {%, bjaz} for j=1,2, ..., % and a; # 0.

ol Considering »' = 0,0,...,0), » = (x5, 25, ..., %%), the following lemma

olds :)

LEMMA L. If the system (1) with the conditions x = 0 is consistent, thenl

1t has solutions into the sphere of centre :

%o = (¥ + 22 g
and radius : ;
Ry=||x —x,|. 6|

A change of the values x* and ¢

i : whi imini : ini-
tial sphere is presented further o ch diminishes the radius of the ;

n. We initialize :

x;:=0, z;‘.:a,j:l,Z, .l

n.

75

DEEP CUTS IN KHACHIYAN'S ALGORITHM

- : >0,
1f the, system (1) contains at least one restriction with a; > 0 and ;>

then for every & > 0 we obtain.:

% < (b — 2 anm)|ay < (b; — Y auxi)[as = Yir .
k#j k#j

\.\;hich allows the choice:

(7)

x = min {#, y;} for ;>0, j=12...,7

1f the system (1) contains at least one restriction with- a,'4§‘_0 _and b <O,
then for every a; <0 we obtain:

xp = (b — :L;“ikxk)/“ff = bifa; — ?.; (i) %, =

> bilay — 2 (aw]ag) t = (b; — 2 anxi)]ay =: 8
k#5 k#j '
and hence the following actualizations can be made:
",' = max {x}‘ 8} for a; <0, j=12, ..., % (8)

Then we shall repeat the calculations from (7) and (8) until ‘either all values
» or x* remain unchanged, or we have x; < x; for a certain index ‘7, that

is the system (1) is inconsistent. If at the end of calculations for xf and x*
one obtains af = af, then the j-th component of every solution point must

be x7, and therefore the number of un knowns decreases by replacing x; by 2}

and renumbering the unknowns. Using this calculation mode for x' and x°,
Tomma | can be applied and we shall obtain a value R, for the radius of
the sphere which will contain solution of the system (1), with the conditions
x 2 0, if this one is consistent. In Section 4 one can observe the differences
between the values of R, and R,, and the effect of their use for Khachiyan's
algorithm as well. :

As it is known, the algorithm requires at every step to verify whether
% {centre of the current ellipsoid) is solution of the system (1). If the ellip-
soid Ey., is not constructed such that contain the semiellipsoid E,/2 obtained
by cutting the ellipsoid E, by a hyperplane parallel to the restriction vio-
lated by x, and passing through x, (also called, for this reason, central cut).
The calculation expressions for x4,y and Biyy and the complete algorithm
as well can be found, for instance, in [6]. An important part in the proof
of the algorithm and establishing the maximum number of iterations after
which one can state whether the system (1) is consistent or not is played

by the ratio of the volumes for two consecutive ellipsoids. So, Khachi yan
proves :

Vol (Ex1)/Vol (Ey) € (nf(n + 1)(n2/(nt — 1))m—tz —
= (L= 1/(n + D)(1 + 1/(nz — 1)-vr <

< e~ N+ (el/(”’—l))(”—l)/2 = e~ U2n+1),

76 T. TOADERE
Using the fact that 2 < ¢ and hence the .-fOIIO\Villg inequality- Vol(g
Vol (E;) < 24+ holds, Khachiyan fixed the value of v to 9k+1,
while in the variant G4 c¢s — L o v 4 cs it reached 6x(n + 1)L [1). But 2"#‘)
and the valne of N becomes 9n(n 4 1)L/2. : <a
3. Deep Cuts. In order to accelerate the algorithm, some authorg i
proposed the use of other cuts than the central ones; according to tp ese ¢ 3
the ellipsoid Ey4, contains by its comstruction less than E,/2; for thig re:ll;ts,_
On

they are called deep cuts.)
We confine ourselves further down to the presentation of the algority
m

proposed by Kénig and Pallaschke [3].

1. Calculate (x, B) ~ E,
d; = a].TBa,-, g=a'x—0b,j={,2 ...,m=:1,

2. £ = max {¢;/d;, j € 1.}, k = index where max is attained
if £<0goto7
if §> 1 system (1) is unsolvable

3. z = Bak/dk; f; = (leZ, .7 €I,

4. Let n=1;
For all j 1,
if ¢; >0 next j
else: .
A e < —d; I,: = I, — {j}, next j§
else : '
©if g > f; let s; = fild;, 8 = ¢;]d;
=8ty + ((1 — (1 —)2
if u; > 7 next j
else n = u;, next j

else :
if f; <0 next j§
else let #; as above
if u; < E next j .
. else Ia:=Ia—{7'} ,

———

5B = (020" = D)1~ (F + ED/2 + (s — ED2P + (1 — 75)(1 — EP")
@={n—E/((L ~ (1 - »¥)/p)12 4 (1 — (1 — Ez);ﬁz)"zg A=

= £+ ol — (1 — E)pie '

6. x:=2x—vyz "
B: = B*B — (B2 — «?)z - 2T !
d;: = (B2 — (B2 — o) f)rz.
G =€ —xf; : |
if number of iterations < N go to 2 |

else stop system (1) is unsolvable l

|
|

7. If al

(1) if one of the elimin

tained by using a CORAL 403
Centre of the University of Cluj

tation in doubl

o .
1l

DEEP CUTS IN KHACHIYAN'S ALGQRITHM

e precision was use

manners, firstly with the radius R, (vari
then with the radius R, (variants c and d, respectively, from the same Table 1).

1 eliminated hyperplanes, 7 € {1, 2, ..., m} — I,
atéd hyperplanes is violated, system

4. Numerieal Results. In this section we shall present some results ob-

0 computer belonging to the Computing pata
-Napoca. We mention that the data represen-
d. There were programmed both the al-

77

are satisfied, x solves

(1) is unsolvable.

oorithm which uses the central cuts and that which uses the deep cut

bed in Section 3. For each variant the initial sphere was chosen in two
ants a, respectively b from Table 1),

s des-

Table 1
n Case Variant L Radius N k Time (sec)
2 A a 9 142.128 243 0 21
b 9 142.128 243 0 10
c 1 0.707 27 0 10
d 1 0.707 27 0 15
B a 12 1414.920 324 0 9
b 12 1414.920 324 0 9
c 1 0.707 27 0 8
d 1 0.707 27 0 111
3 A ;. 10 260.673 540 74 29
c, 10 263.67‘3. 540 25 43
¢ 2 0.382 108 2+ 11
. ‘ 5 . 108 1* 13
4 2598.942 5
b 14 2598.942 75s 126 - a2
b 3 598.942 756 . 33 6
- 0.866 8
< : 0866 108 2+ 11
.866 108 1* 12
4 A a 11
401.0
b 11 401 ogg 9?0 148 71
c 2 1~000 990 48 g1
d 2 . 180 4+ 2
1.000 180 1+ 9
B a 14 4001.000 26 3
b 14 4001.000 1900 %33 97
c 2 1-0 1260 62 106
d 2 .000 180 q*
1.000 1
180 1*
S A a 12 . s
b 12 ggg:gg 1620 5%
e 3 30,135 1620 79
a 118 405 v 117
3 1118 % > 23
B a 15 5591.2 105 1 100
b 15 288 2025 303
‘ 5591.288 P 9 188
c 3 1.118 2025 102 0y,
d 3 - 405 5o =28
.118 405 . 11
1 15

* The solution v,

inequali.on of the instanc
® Although (he

C.

computer worked
ore than 8 hours, the algorithm diq not find
Ind a solution of the

cctor hag all com nents cqual; this is due to the f that all cuts were madcuamg the last
PO H ¢ fact

system.

T. TOADERE

78
o v (Contd_
s Case Variant L Radius N k Time (seq) »
p 6930 937 .
14 1582.720 : -
08 b 14 1582.720 6930 347 osh
P 4 1.581 1980 17+ 5;
d 1 1.581 1980 1+ 3
< 5 415 - 1388 =
17 15812.969 8415 255
B ?) » 17 15812.969 8415 441 201:;.
c f 1.581 1980 17 g
a 4 1.581 1980 1s %
) 18360 34 .
T . 15 3202.000 162
. b 15 3202.000 18360 939 shns
c 4 2.000 4896 34 205
d 4 2.000 4896 [60
B a 18 . 32002.000 22032 39§5 19775
b 18 . 32002.000 22032 1179 6520
c 4 2.000 4896 34 208
d 4 2.000 4896 1* 59
20 A a 16 4474.372 30240 o
' b 16 4474.372 30240 1504 18825
c 5 2.236 9450 47 540
d 5 2.236 9450 1* 70
B c 3 2.236 9450 47+ 304
d 5 2.236 9450 T 88
30 A [5 7 2.738 20925 R2e 861
a’ 5 2.738 20925 1* 159
B c 5 2.738 20925 82+ 2019
d 5 2.738 20925 1 194

-The specified variants were applied to some instances obtained for the
system of inequations of the form:

x,z2a 1=12 ...,n

)

x4+t ...+, € na+ b,

where for each value of # there were consider
b =1) and B (a = 1000, b=1).

Using the notations: ‘N for the necessary maximum number of iterations

= 9n(n + 1)L[2, and k for the number of iterations performed until the find-

ing 1of a solution of the considered instance, Table I presents the obtained
results. :

ed the following cases: A («=100,

. As to the time given in Table 1, we must emphasize that it is orte”
tative, sin e the computer we used is 1

nulti {
: T ultiuser and worked only a part 0
the time indicated for the solution of WoT %€ - !

i the problem (other part of the time-
being used for other tasks, simultaneously run). (par

77

DEEP CUTS IN KHACHIYAN'S ALGORITHM

he fact that, using the ncw manner }()f ti;-
f both this one and L or N (hence t](',“.c

do not change by passing
on the other hand, these

We must also empha?ize t
i the radius, the values ol ne
gﬂi:ggg accuracy and the algorithm complexity)

the same value of 7 ;
case A to case B for] . , Jand, these
g:):; are smaller than in other variants. By using the deep cuts,

S 1ber of
lexity of an iteration increases, nevqrtheless the smgll nefcessz;;y lcl(t;]llrS o
ilzcer‘ations leads to a smaller complexity of the algorithm for the s

i than in the case of central .cuts.]) o
msm;icr?asllly we specify that the maxmuun_number of iterations necded foc{
establishing the consistence of the system is .the same ; it does not dep?'n

on the type of used cuts. Therefore, theoretically speaking, the complexity

for the variant which uses the deep cuts is greater.

REFERENCES

L Bland, R. G, Goldfarb, D, Todd, M. J., The Ellipsoid Method. A Survey, Operations

Research, 29 (1981), 1039—1091.
- Khachiyvan L. G., On the Exvact Solving of Linecar Inequation Systewms and Linear Program-

ming Problem, 7. Vycisl. Mat. i Matem. Fiz., 22 (1982), 999— 1002 (Russ.).

3. Kénig, H, Pallaschke, D., On Khachiyan's Algorithm and Minimal Ellipsoids, Numer.
Math., 36 (1981), 211-—223,

4. Toadere, I., On Khachivan's Algorithm for Polynomial Solving of the Linear Programming
;;rgb/(:;:.;;) Proc. Coll. on Approximation and Optimization, Cluj-Napoca, October 25— 27, 1984,

5. Toadere, T., Numerical Experiments with Khachivan's Algorithim, Univ. of Cluj-Napoca, Res.

. 'Sem., Seminar on Computer Science, Report No., 5, 1987, 55-—-64.

6. Toadere, T, 4 Modification of the Initial Sphere Choice for Khachiyan's Algorithm, Studia
Univ. Babeg-Bolyai, Mathematica, 33 (1988), No. 1, 46— 49, ')

[3-]

e§— ai apare
gg) Studie Universitatis Babes—BolY P

In cel de al X¥XXIV-lea an (19

tn specialitatile:

- —

. matematicd
fizicd '
chimie -
geologie-geografie
_biologie .
filosofie ' .
stiinte economice
stiinte juridice
istorie
filologie

-

In the XXXIV-th year of its publication (1989) Studia Universitatis Babes—

Bolyai is issued as follows:

mathematics
physics

chemistry
geology-geography
biology

philosophy
economic sciences
juridical sciences
history

philology

Da“s sa XXXI b'e annce (198 Studla U”'Zve’ Sltatz Babe —13() [r
. g [

mathématiques
physique

chimie
géologie-géographie
biologie

philosophie

sciences économiques

sc.xences juridiques
histoire

philologie

——————————

» I 43875

———

Abonamentele se fac la oficiiie postale, prin factorli postali o

prin difuzorii de presi, iar pentru striinitate prin’, RQMPRES-

FILATELIA', sectorul export-import presd, P.Q. Box"12-210,
- telex, 10376 ptsfir, Bucuresti Calea Grivitei nr: 64—66.

