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<

AN ASYMPTOTIC FORMULA CONCERNING TH

E UNITARY D
SUM FUNCITON  DIVISOR

+  LASZLO TOTH*

Received 2 January 17, 1989

REZUMAT. — O formuld asimptotic referitonrs la funcfia sumd a divizorilor

unitarl. In lucrare se stabileste formula asimptotics i
i C ptoticd (21) care r
unitar al unei formule a lui Ramanujan demonstrat(i 131 [B]e. epresintd anslogul

-~
N

1. Intro duption. .It is well-known that a divisor 4 > 0 of a positive integer
n is called unitary if # =de and (d,¢) = 1. Let of (4) denote, as usual, the
sum ‘of the s-th powers of all unitary divisors of # and let o} (n) = o*(n) be

the sum of all unitary divisors of #, 6} (1) = v*(n) be the number of the uni-
tary divisors of . _

In this paper we establish an asymptotic formula for the sum Eczz(n),

. - n§x R
where s > 0, using an elementary method based on the convolutional identity

of lemma 1. For s =1 we obtain, as a corollary, the unitary analogue of
Ramanujan’s formula .

2 o¥(n) = 2 4(3)2° + O(x* log? ), M

ney

([53], eq. 19), where o(n) denotes the sum of the divisors of # and Z(z) is the
Riemann Zcta function.

2. Preliminaries. The unitary convolution of the arithmetical functions f
and g is defined by

1

(f - 9)(m) = L () gle) @)

de==n
(d,e)=1

The unitary convolution of two multiplicative functions is also multiplicative
(121, lemma 6.1). Let U(n) =1 and Eyn) =n for all », hence we have
of=U.E and v*=U - U.

LEMMA 1.

oit(m) = Y & v*(d) aile) (3)
e :
: ' iplicati i h and
Proof. It is easy to verify that for any multiplicative functions f e a
k we hav'é (f-a)h .yk) = fh - fk - gh - gk ([7], theorem 2). Now, if f=h=U

* Str. N. Golescu 5, 3900 Satw Mare, Romania



4 L. TOTH

and g = k = E; 'we obtain

\6: (U E)2_U E E E"s-':I:(U U) U-E E':\
25 =
which proves the lemma, . )
Remark 1. A direct proof of (3) is the following, R
are multiplicative, hence it is enough to verify ltgfc)r o,:h jldes of this idey
We have 7, a prime po

& dx(d) otie) = o) HE ) = 4 12 o1

tity
wer,

de-:p' = G:z_( a).
{d,e)=1
We need the following familiar formulas
LEMMA 2.
S — s '
L=t eso “
' 1, -
‘ gﬁ -71_;_ O(x1 s) 0 << S_< 1 (5)
1
gx ~= (log %) )
D == +0() s> )
nga W , x '
> ~=0() s> 1. ®
n>x W ot
Let ¢ denoté the Euler totient function and p the Mébius function, for which
o(n) = n I Y ' (9)
dln d
_ |1, n=1 (10)
‘“Z;p(d—1n)={0’ w1
LEMMA 3. (cf. [17], lemma 2.3). For s 2 0.
‘ 25 g (11)
L — 0 (xt )
(%‘n < +1)k+ (a* <(k)

where (k) demotes the number of the divisors of k.
Proof. By (10) and (4) we have

) n‘—Zn’ =m0 P, pd=2, 4 w(d) 2=

nsx n<z n<x d|(n,k) dik 46-’-:'
{(n,k)=1 de=n 4

gdm {S+1(st+l+O'((d)J} smldlk“—(‘i— .2;1)=

_ 2541 o(k) l:’
(s+1)k+0(" (%)),

using (9) too.
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Let Ji(n) =7 11 ‘1 — ?—) $ > 0 denote the -Jordan- -type functions ( BLp. ~

pln
7), where Ji(n) = o(n). ~ :
. 147), s 4. Fo, s> 0 .
- 0
— o) o) Il 2) _ Ys -+ 1k Josa(B)
nl=/l nett n2=] ne¥ Us + 2) Joalk) (12)
in,k)=1 :
Proof. For s> O the series is absolutely convergent because i(+i <
» __1  and the general term is a multiplicative function of . Hence

I'4
= s+1
”5"” "

the series can be expanded into an infinite product of Euler t) pe ([3], §17 4):

(0, k) o(p?) pip — pe=10 )=
E 2’(1)—,,—»3—_ - pge (;};6 pls+2) H (1 + + 2““’ + e+ + )
p—l
1 , p—1 _.l_)"J =
__H (1 + ( + P +P2(s+l) + v ')] H (1 Ly Ps«)z pﬁ'l

1) ¥+ ) 1"[(1 —L)=
—g (1 —FV}:{ (l wl) c<s+2)H( plf B w’
U DR o)

Us + 2) Jenal®)

LEMMA O. .
) 0 (p-rlogr), 0<s<l (13
nex W
2 ) _ (log? x) (14)
ngx ¥
2:<_">=c-<)+o(‘°g ) s> 1 (15)
nes W wst +
Proof.
_ t(n) _1__ — _l_ E _1_
FS(x) = nEsle—; - dzgs.v (de)s dex & ¢<_:_ &
Henee for

0<s<1:Fx)=2, -'3;0((7:-)1_‘) =0(x1—s <-}i) =

1
= 0 (x~ log x) by (3) and (6); Fylx ;o (

9

S
I

i<z d

(log x Y~ )__ 0 (log? ) by (6); and for s> 1:F(x) =



L. TOT
6 H

= Zslure(Sl ) mwns vo (L py
= 1) +0(55) +0 (3] = ¢+ O[22

1LEMMA 6. For s> 0

» —_ Cs 4 1) @(R) Jopn (k) s41
( %x % (n) (s 4+ 1) Us + 2) Jsyalh) +0 (A’(x) T(k)); (16)
n,k)=1
where A(x) = x°, xlog?x or xlog x according as s> 1, s=1 ¢y <1
Proof. Using lemma 3:

—
=

by (7) ang (g),

Dam=Y De=Y T o=

ngx n<xy de=n i< x x
(n,k)=1 (n,k)=1 (d,)=1 T(dky=1 €s7
. (:,kd)=l
x s+
(;) ¢ o(kd) 2\s 251 g(k) o(d) *(d)
= 2 g o)) =50 T R o[ S )=
=% (s + 1) kd XA (s + 1) a<» dst? dgs d° |
(d,k)=1 . (@k)=1

=2l & 2D o (e DEDY) + o) D)
’ _d=1 dgx d

>x ds+?

And now .by lemma 4 the main term is

U + D) o) Jon(h) s
(s + 1) Us + 2) J5ialh) t

0 (x’“ }:,

4>z d5*1

the first Q-term is

=00
by (8) and the second 0-term is
4

for s> 1 10 (2 <(k)); for §=1:0 (x (k) D T(d)) 0 (x log® x =(k)

Ldsx
and for s <1:0 (x° <(k) - log x) = 0 (x log x ©(k)) by lemma 5.
LEMMA 7. For s> 0 the series

d =*(n) 9(n) Jasi1(n)
. = P o)
1 v > e
is absolutely convergent and its sum is given by (s + 1)&(2s + 2) o, wher
2 1 2 3. (17)
as = H ( f)s‘-fl - P$+2 - P251-2 - PSS-,‘-E + ﬁasi")
the product being extended over the primbes p.
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7
Proof. o(n) ]2$+1(n)/]2s+2() <1 for g g
20 T a0 the series is absol tel P e phe general term is
ey n=+11 eats utely convergent (cf (15)). The general
tiplicative
8 Tl Type: ™ ™ %0 1 s can e cxpied o an it
Xw: T.(’i)_:(”) 2041 ) =T] 2 "'(P‘)?(P‘) Jos 41 (89
n=1 JZs+2 (”) § p’(‘H‘l’J (?) ) -
(1 —LpFti 4 20l —~ N gty _
s+1 (P25+o 1)” pz(sﬂ) P'zs+2 (1’2_54'2 -1 el =
+ X =D - 1 1
1:1( P B2 (1+ s+l+7m+"'))=
= H(l + 200 — 1) (pE+1 ) ) p- 3(s+l)(1 - s+l)—%(1 —_ P__Z:+2)—)
and the lemma follows on factoring out
1 -1 1 -1 -
T =55 1 ) e s
LEMMA 8. y
Gl ) (v=*log? 1), 0<s<1 (18)
n<z N
2, == '2(")  (log* x) (19)
n<x % .
2 ¥(n) =0 (1)’ s> 1. ’ (20)
nezx nS I

Proof. The Dmch]ct convolution of the anthmetlcal functlons fand & is
defined by

(f*g) Ef

demn

We have 12 = U % U % U % p® = 1* ¥ 7 by [4], hence

Gl=L W= 25 (@) sle) = L T(QE_(—)

nezx nez Wde=n d<x
and for
* 1=s : : —$ “_(9 p— 1e-s
0<s<, Gix) =2, Td(sd) 0([3) log —3) = O(xl log xgs 7 ) .O(x log’x)
ds x

by (13) and (14); for s=1
Gy(x) =Y = d‘d’o (log ] =0 (log «3 ‘("’) 0(logt %) by (14);

d<z d(t

1



and for

s>1, G(n) =% “2o(1) =0y 2
i<z d d<x dS

J =0 by g5,

Remark 2. It is well-known Ramanujan’s formula ([5], eq. 1) i

‘iﬂ.).: c‘(S) fOI' S > 1 '

e §(2s)

3. The theorem. Now we are ready to prove the following
THEOREM. For s > 0

Y ot(n) = HeH VBT DS pass 4 0 (B,()), (21)

ngs L% 41 ’

where o, is defined by (17) and
‘ .2 o
B,(x) = x%, 22logt %, #+!logd x, x* logt x or x+'logt x

according as ° \

N . 1 1
s>1, s=1, %<S<1,3=E or s <<-—-

Proof. By lemmas 1 and 6,
Lot m) =2 & w*(d) L okle) =
ngx dgx x
. G(-—J
(¢, d)=1

U2s 4+ 1) old) Jpopy (@) [ x\2s41
=3 t*(d Eha _) -0 A,—)fd)}=~
»ga @) {(2s*1>c(2s+2)123+2(d> ) ( ? (d ( )

U2 + 1) 22 L ) 9ld) Jogy, (d) ¥ (Y =
= Azl _] dr w+(d) <(d)| =
@2s+ 1) 425+ 2 & &+ Ty 000 + O(azs'\? * (d @=a)

- DA Q) (s g OO D)
(@s+1) 82+ 2) &= EH Ty g (@) @&t J o0 )

d-x

+0(2A._,,. (i)dv Tﬂ(d)).

dgx d

-

Now by lemma 7 the main term is ——— Us + D L@2s + 1) a2+t the first
25 - 1
remain term is ' S 1

0 (xzs+1 E -.(d)) =0 (x‘.!;-l--l log .vJ — 0 (A= log x)

aSyd ! as
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by (15) and the second remajy term is éusing lemma 8): ¢
SIor s> 1

0 (E) (f)zsd’ (d) =0 (xﬁ .,);' %‘Z’) =0(x*) by (20); for s — 1

= T —._--O(x2 ﬂ =
P ; A ,:Es, py )—O(leog‘x)by(IQ); foré—<s<_l

Ofx2s 3> 2@ _ ¢
(x QJ‘ ds)"0("+'103°'x)by(18);f0r3=_;_

(=)
™
p—— p—
. x
Se—
®
&
3
=
&
p S —
I

dsz
) 1
o[> %1 2(1J z ) = . 3
(L, 5 to2(2) d¥ =a) _o(xlogzxg‘;?)ﬂ(leogsx)
)=
d

by (18) and for s <§- it is

0 (é f log (-3) & ‘r?(d)) =( (x log x‘& ‘%(:dé)' =0 (;v'+;‘ log* x)

also by (18) and the proof is comf]ete.'

Rcmar}_’e 3. This result is the unitary analogue of the following asymptotic
formula referring for o,(n), the sum of the s-th powers of the divisors of #:

2 Us+ 1) s+ 1) .
By = — " " g2+l
E a:(n) e ity O O (G,
where

3
, 2,
C(x) = 2%, xtlog*x, x”logtx or x+ilog x
according as

s>1, s=1,s= % or s<1land s+ % " ([8], eq. (3.5)).

COROLLARY (s = 1).

E a*¥(n) = _C("’%"_“_ 23 4 0(x2logt x) (22)
ngs
where
1 2 1 2 3
a=a1=1:1(1 +; ;17’ P‘ p5+PG)
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ON NONLINEAR INTEGRAL | .
AL INEQUALITIES

INDEPENDENT VARTABLES & O » 0

SEVER S. DRAGOMIR* and NICOLETA M. IONESCU**

Received March 9, 1989

REZUMAT. — Asupra unor Ine
. In lucrare sint stabilite mai mul
dous variabile.

gallté{l integrale nelinlare tn doud’ )
! integ ) ud  varlabfle.
te inegalitifi de tip Gronwall pentru functii de

There exists an extensive literature concerning wvarious generalizati
. o ons of
the Gronwall inequality in the case of two or more independgn’c variables (see
for example the recent works [1]—[5]). :
In paper [2] we proved that if ®; 4, B are nonnegative continuous func-

tions defined on R% and L: R® — R, is continuous and satisfies the condition :
(L) 0 < L{x, 3, 8) — L(%,9,5) < M(%,y,s) (¢t —s)forallx,y > Oand¢ > s > 0,

where M is nonnegative continuous on R%, and @ verifies the inequality :

O(x,v) < A(x,y) + B(x, )

O,

y R

SL(s, t, O(s, ) dsdt; %,y 20 1
1]

then

d(x, v) € A(x, y) + B(x y) (exp SSA(S, t) dsdt — 1) * (2)
00

where the mapping A is given by
Mz, y): = [L:#y, A% y) + Mz, 5, A(x ) B*z 9) 1"

for all x,v > 0. ’ - o

If &, .1, B are ds above and D : R} — R, is a continuous function satisfying
the rclation . . \
(D) D is differentiable on [0, ), aD(%, . #)/dt is nonnegative on [0, ®)* and
there exists a continuous function P: R — R, with the property dD(x, y, 8)[9¢ <
< P(x,y,1) for all ,y 20 and.tZ'r?'O, ‘
then for everv O satisfying the integral inequality

zy . ,
®(x, 1) < A(xy) + B(x.y).\ (D(S» t, O(s, 1) dsdt, %y 20 )
00 .

\h__ .
County, Romama

* Second School, 1600 Baile Herculane, Caras-Severin )
had Sccon”d:g S:h‘::l,' 76l12 Mehadia, Carag-Severin County, Romania
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the following estimation holds

O(x,5) < A% 3) + B(% ) (e P\ Uls, &) dsar — 1),
§§ » By 20 (g

where the function U is defined in what follows :

Uz, 9): = (D%, 4(%,9)) + PX%, 5, A(x, 5)) Bz, ) 12 %4 5 0.

For the consequences of these mtecrral inequalities sece [2] and [37,
Further, we shall point out another bound for ®(x, y) by the use of
following result due to Adrian Corduneanu (see for example [17): the

LEMMA 1. If the continuous function wu satisfies the inequality

(3)

where f is comtinuous and monotona nondecreasing with respect to each variable,
b is continuous and nomzegatwe then it follows for %,y > 0:

xy v ¥y

u(% y) < f(%,9)

This result was obtained using the notion of resolvent kernel of the theory
of Volterra linear integral equations. For generalizations of this fact we send
to [1].

" mamorEM 1. Let ®, A, B be nonnegative continuous on R and L:R%—R,

a continuous function satzsfymg (L). If ® verifies the intogral inequality (1) then
we have the bound .

%Yy
u(x, y) < f(x, ) —l—SSbs Du(s, t)dsdt, xy >0
00

LR N B 7Y

®(x, y) < (x ¥) + B(x,) U, y

cg/-;“

¥y

SLstA Ydsdt, x,v >0 ()
— 0
where U is given by

U(x, ) :=I+SSM(S L A(s 1)) B(s, t) exp (SSM <, n, A(s, 1)) Bl )drd'q)ds Té)

xy
Proof. Let W¥(x, v): SSL s, t, O(s, t))ds dt for x,y > 0. Then
00 *

Yo%) =L (%5 0x) <L(xyA4(y) + BT EN <
< Lixy, A(x,5) + M(x, 3, A(x, 9)) B(x 9)¥(% ) (7
for all 2,y > 0.



. .
ONLINEAR INTEGRAL INEQUALITIES

' 13
Integrating (7) on the Tectangle 0 <

, S\x’0<t§y,weget

xy
Jr ) L(s, ¢, ¥4
(%, ) - §§ A(s, ) dsdt+{SMs¢A(s ) Bls,) Wis, pdsd
00

for all x;y Z 0. \

Applying Lemma 1, for u(z, y): = w(y, ), flx,9): = SSyL (s, ¢, A(s, £))dsds,
00
t

b(x,y): = = M(x, y, 4(%,y)) B(x, y), %y 20 we deduce tha

x

y
Wi(x, v) < U(xy 551’.3 t,As t)dsdt %y 0,
20

where U(x, y) is given in (6), what implies the bound (5).
The theorem is proven.

Now; we shall give some partlcular cases which are important in appli-
cations.

COROLLARY 1.1. Let ®, A, B be as above and G: R+—>R a continuous
mapping satisfying the assumption

(G) 0 <G(x, 28 —G(x,y,8) < N(x,y)(t—9)forallx,y >0andt>s >0

Al

where N is nonnegatiye continuous on R%, b

If & verifies the integral inequality

xy
O(x,y) < A(x5) + B(x ) | 5 Gs, t, ® (s, ) dsdt, %, y320 8)
00
then we have the bound

y
O(x,y) < A% y)+ Bz )V (%) SG(s,t, Als ) dsdt, %y >0 (9)
o

°\"\“

Where V is given by b B
xy :
Vit,y): =1 +SSN(5 t) B(s, t) exp (sSN('r, B(z, 1) drdn) dsdt
3 tes -
Tl .
Sor all x,y 2 0.] KVERR TS 1 -
The second result is émbodied in: |

' i R’ and
B,C be monnegative continuous on I+
o ing the following Lipschitz's type condilion !

e, M

s >0, where M > 0.

COROLLARY 1.2. L
H:R ——l{+ a function sahsf)’

{H) < H(l) — H(s) < M=) for all 1>
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Ifo verifies the mcquahty

Dy N

. Y
Scs §) H(®(s, ) dsdt, x,9 > 0
0

(x, 5) < Al% ) + B(®Y) (10)
. then it follows
. ¢ zy
®(%, y) < A%, )+ Bz, ) W ”C(S. 0) H(A(s, 1) dsdt, x5 >0 (11
00
where
3y A Yy .
W(xy 1+MSSC Bstexp JSSC ) drdn \ds dt
00 s ¢
. 0. .
\for allée:za%'lk 1. By the mequahty (16) of [1] we deduce that
zy
U(x, y) < (SSMT, n, A(r, ) Bls, n) ds dn\) for x, 5> 0,
00
and then the inequality (6) implies
. .
. ®(x,3) < A(%, ) + B(x,9) SSLs L, A(s, () dsdt X
4 00
(z2 o
Xexp(SSMstAst )) B(s, t) dsdt (6";
00

for all x,y > 0.
_ The same observations are valid refeung to the ineyualitics (9) and (11).
We omit the details.

Now, we state and prove the second main result of our paper.

THEOREM 2. Let ®; A, B be as above and D : R5 — R, a continnous Sfunction
satisfying the condmon

(D) the partial derivative 0D(x, y, )|t exists and is nomzegatwe on W and there
exists a mapping P: R+—>R with the property

, OD(5,5, 412 < P(%,5,5) for %,y 5 0andp > s 3 0. (1)
If © verifies the integral inequality

Ty .
q)(x:y) A(x, ) +BxySSDst(Dst )) dsdt, x,y >0 (13}
00
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then the following estimation is valid

ANy) MAMNY)Y + B Ay )v(xy)r DM AM)isil(14)

where U (x,y)is given by "
Xy . /
g(*y) m=l-+ 5) P<s''e'4M ) exp FFP(t,,, X(t,,))S(T.,) ¢TA,1 tsdt
) ]
for all X,y "0

Proof. By Lag ran%es theorem, for every "~ s~ 0 and x,y ~ 0, there
exists a (X <= (s, p) such that
- ("% s) = dD{xyy, y)jdt(p - ).
Since

0 N dD(x,y, (i
we obtain '

0 < D(x,y, p) —D(xy, 9 < s)(p —9)
for all x,r »~ O and p s ™M O0.

Applying Theorem 1for L[x,y, p):= D(x,y,p) and M(x,y, s) = P(x,y, 9),
we obtain the bound (14) -

The theorem is proven.
The following corollaries are important in applications.

COROpi,ary 2.1. Let <A, B be a above and /: tt+ —R+ a continuous
function satisfying the condition:

(I) the partial derivative dI(x,y, t)/dt exists on Il+,  nonnegative continuous on
R+ and '

di(x,y, p)jdt < dl{x,y, s)jdtfor all 0and >s>0. (15)

If <&is a solution of the following integral inequality

*

<b(xty) < A(x,y) + B(Xx,y) [ p,"{s,p)dsdp, ,x,y " 0, (16)
00
then we have the bound:

t Xy

0>(xy) < A(xy) + B(xy) V(xy) ss I(s. b A(s, p) dsdp {17 .

00
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where V is given by
Yy .
V(x,y):=1+ ( Saz(s,,p,‘A (s, $))/2t Bls, p) x |
00 '
sy ‘
X exp (S \31 T, w, A(v, »)) [0t B(x, p)d= dy") ds dt
st

for x’y ? 0, . .
COROLLARY 2.2. Let ®, A, B, C be nonnegative continuous and K:R, —R
4

with the property i . . _
(X) K s monotone nondecreasing and derivable on R, with the derivative dK|dt

monotone nonincreasing on
If @ satisfics the mequahty'

C(s, t) K(D(s, t)) dsdt, %,y 20 (18)

C ey e

o(x,5) < A(x ) + B {
0

then it follows
- zy
®(,5) < Al%g) + Blx,y) Wiz QSC s, 8) K(A(s, 1)) ds dt (19)
00

wherc W -is given by

(

»Remar.k 2. By the inequality (16) of [1] we deduce that

(%, y) < exp (S

wnd then the inequality

=1+ g S dK/th C(s, p) B(s, p) ¥

Sde/dt (r, m)) C(x, m) Blx, )d‘rdQ) dsdp, x v 20.
b4

©“ Ay R

T

P(x, , 4(x, 1)) B(s, %) drdn) for %,y 20

!

— O e 2

14) implies the bound

xy
O%y < Alxy) +BxySSDstAst))dsdtx
! 00

C iy
XQXP(SSPStAst (s,t)dsdt), %,y 2 0.
090
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The same observatlons are vali i .
omit the details. 1d Tefering to the Inequalities (17) and (19).

Finally, we shall point-out some natura consequences of the abov
e cor

we

ries. olla-
‘CONSEQUENCES 1. Let o, A B,C be nomne

Az, y) > 0forall x,5 >0 and 7 = 0,1]. 1 & gative continuous on RZ,

verifies the inequality :

D(x,y) < A(x,5) + B(x, y)

o\.’\u

y :
\Clot0tnp)asa, zys0 o)
[

then we have the estimation

% 5) < Ax.) + Blx3) Rix ) ((Cls.0) s, pdsar, ny 30 )

-

where R is given by

ty sy
) Cl.0 By Cte,
R(x,»): =1+ 7’§S Y rSS ( ")B)l(_"")drd )dsdt
0 s

for all x,v > 0.
2. Let @,.4, B, C be as above. If ¢ verifies the inequality

3y
®(x, %) < A(x, y) + B(x, ) S \Cls. ) In (9(s, ) + 1) ds de (22)
then we 11vve the bound °e

. .y
G(x, v) < A(x, y) + B(x, ), t,y)SSC (s,2) In (A(s,t) + 1) dsdt  (23)
00

where Q is given by
xry Yy
)i = L. ) Bs. 1) Lo BN gogy | ds as
Q(x.j)-—l+J5 A, )+ 1 ekp(.” A ) + 1 "l)
do 54,

for all x,y > 0.
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REZUMAT. — Operatorul integral alfa-eonvex st funciii tare stelate. Rezultatu] -
. ci[;ial al lucririi este confinut in urmitoarea teoremi.

rEOREMA 1. Fie a > 0,0 < B < 2sifie g o funcfie olomorfd in discul uni-
tate U, g(0) = g'(0) — 1 = 0, care satistace conditia

p 2g'(z) < (1 + z’ﬂ_l_ 2apz

g(2) 11—z 1 — 3
Daci f = I(g) este definitd de-(1) atunci
zf'(2) b
— <P, z e U.
e 7| <83 .

1. Introduetion. Let A4 denote the set of functions f(z) = 2z 4 a,22 4 ...
that are analytic in the unit disc U = {z;|z| < 1}. A function f € A is called
strongly-starlike of order 8,0 < B < 1, if jarg [2f(2)/f(2)]] < B=/2, for 2z  U.
Let denote by S*[B] the class of all such functions. Since our main result
holds for all § « (0, 2], we continue to use the notation S*[B] for B = (1, 2],
altbough a function in this class is not necesarely starlike, not even univalent.

For g = 4 and « > 0, let f = I(g) be defined by

1

Jz) = (—Sg”“(w) w1 dw) , ze U. (1)

-3
0

This integral operator was introduced in [4] and in [3] and [4] it was proved
that I,(S*[1]) C S*1], where S*[1] = St is the usual class of starlike func-

tions. The class I,(S*) is the class of a-convex functions and I ((S*) is the
usual class of convex functions. '

From a more general 1
show that Id(S*[B])gC S*[Biesut o
If we denote ‘

tained in {1, Theorem 1] .it is easy to
for «>0 and 0 <B < 1.

Jfi2) = (1 — o) £ M) 9
( X [ + a(l + ) @

Mathematics and Physics, 3400 Cluj-Napoca, Romania
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* University of Clui-Napoca, Faculty of
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(pen from (1) we deduce

J(a: ; 2 —1 w . :
/4 g(z) @3)
and the above mentioned resylt can be restateq as
f €A and |arg](a,f;z)| <B§=>‘arg‘f'(z)

®
<B;

f@)

]

of, in terms of subordination, as
’

- (4)
mplication (4) by

f € A and ](a,f;z). .<(L+29=>|zfﬁ <(l+z)ﬁ

1—2 [ 1—2

In the particular case « =1, in [6] we improved the j
the following result, which holds for aj B =(0,2]

THEOREM A. If 0 < B <2 and fed satisfies
1 4 3@ 1+z)9 2%z
+ 12 < 1—2z)  1—p

then

.

#'(2) 1428
20 < (12
f@) (1 -

An cquivalent form of Theorem A is given by

THEOREM B. Let 0 < B <2 and let g € A satisfy
2g'(2) 14 2\8 20z i
&(2) <(1—2) t 1—2

If f=1,(g) is defined by

w v,
then f e S*[p1. ) .
” }j‘:or B ~lal this result reduces to the ,,open door” theorem proved in [5,
Corollary 2.1 .
rOIx‘:rt}his p]apcr we extend Theorem B to the a-convex integral operator I,
dcfined by (1). Actually we obtain the following result. _ .
THEOREM 1. Let >0, 0 <B <2 and let g € A salisfy

28'(2) < (1 + =z fi_i— 2(132’.
8l2) V—s) 1=

I f = I(g) is defined by (1), then f = S* [B]. .

& Sorr:gg zzo;s‘igfuencesy o(f )this main result are obtained. collowing restricted
2. Preliminaries. In some of our results we .usfe 1:hteionc; in Ug then F is

definition of subordination. If F and G are ana]y’tfch 1imclzlnivalent j“(O) = G(0)

Subordinate to G, written F < G, or I(z) <G(2), 1 s ’

and F(U) C G(U).
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i d on the following lem
of of Theorem 1 is base g lemma,
;1:‘[]31’(\:235:.01,% «>0,0< B <2andle Pbean analytic functioy, stuch they

1428 2afz
=k .
P() <\ (1 —z‘ + 1— 28 (2) )
If p is analytic in U, p(0) =1 and satisfies the differential equation
© o apls) + PR =1 o
fien ,
| 2 < ()

1—2

The proof of this lemma is similar to the proof of Lemma 2 in 6] and
ill b itted. ; o .
will ?ifﬁ;mam »(U) is symmetric with respect to the real axis. Therefore, i
2= ¢ then in order to.obtain the boundary of MU) it is sufficient to sup-
pose 0 < O <. . ‘ . .
Letting ctg (6/2) = ¢ and A(e) = % + w, we find

o = afp
ap(l + 1) : ; 8)
{U= st+T; 4 )Oo

where a = cos (Bx/2) and b = sin (Bx/2).

IEB=1thenu=0andv=t+a(l +£)/2 > a(x - 2) and we deduce
that A{U) is the complex plane slit along the half-lines # =0 and

o] > afo +2). 3
We note that #> 0, if 0 <B <1 and # <0, if 1 <B < 2. In the last

two cases it is possible to eliminate the parameter ¢ in (8) and to obtain v as
the following function of «.

5 = o) E£u+%‘5[(% 1‘/9+(%)-1/a]’ {

We also have

u>0,if 0
<0, if 1

lim v(%) = lim v(x) = 400,
. =0 u—4 o
In all the above cases we deduce that % is univalent in U.

3. Proof of Theorem 1. Tet g € A satisfy (5), i.e.

' 2g°(2) 142\8 | 28
— < h =(—T*
&(2) < (2) (1—‘1) +l—z"

Since (5) implies 8(2)/z # 0, we can define

1 !
() = [ &) w1dw = 1 S [‘M Y1 gy, (10)

0 « 8(2)
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all powers are principal ones. The functigy

where (10) we easily deduce that P satisfies ’cl5 's dnalytic in U and p(0)=1.

FIOm he diferential_equation (7) with
glz) (11)
gince P satisfies (6), by Lemma we deduce
. 14 28
i . ]5(2) < (l - 2, ) (12)

The subordination (12) implies ﬁ(z) # 0 in U, hence we i
! on | U, ve can def -
jytic function [p(z)]* =14 ..., 2 € U. Theréfore the fuuctrilon f1 l?e%f}rlxeedan;y

J&) = g(2) [p(2) 1 (13)
is analytic in U and from (10) we deduce that fis given by (1), i.e. f= I
On the other hand, from (13), by using (11) a{d (_/g), (:'le o}t’)t(aizl, ie. f=1I,(g).
T _ pla) 4 o2 1

@ p0 P
Hence from (12) we obtain :
zf*(z) 1~ 2\8
f@) <(1+z]'
which shows that f € S*[B].

4. Equivalent forms of Theorem 1. By using (2) and (3), Theorem 1 can
be restated in the following cquivalent form.

THEOREM 2. Let >0, 0 < B <2 and let f = A satisfy

14+ )8 2a
Tl f32) < e) =[PP+ 20 (14
Then
2f'(2) T . :
228 <p=, ie fe S*B].
Iarg f@ P 2 /
If we let
; 14+ wb dw
k(z) =z exp S“I———-Tv’ -—.1] — (15)
0
then

J(a, k;2) = h(z)
and we obtain the following symmetric equivalent form of Theorem 1.
THEOREM 3. Let >0, 0 <f <2 and let f € A satisfy

J(a fi2) < J(o k2,
where k is given by (15). Then
JO.£:9) <JOE: 3.
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Remarks. (i) For «>0and p=1, Theorem 3 reduces to Co‘rol]ary '2.2
in [5) - : ’ .

[(ii) For o« =1 and 0 < B <1, Theorem 3 reduces to Example (©) in 2]
(iii) For a =1 and 0 < B < 2, Theorem 3 was proved in [6, Theorem 1i.

5. Corollaries. By choosing «certain subdomains of %(U), from the main
result. we can deduce some interesting consequences. _ :
cOROLLARY 1. Let >0, 0< B <1 and let v be defined by

- 148
v _ .. B7 p (1 - !3) 2
(1 — P)cos ]
Iffed satisfies- :
jarg J(a /3 8) | <7+ 2T, (17)
then o ’
RS z e U.
larg @) <Py 2
Proof. From (9) we deduce
Efw) =" = 23 B (g1 yup-1 4 qiis y-18-1]
u a 2
with a = cos (f=/2) and b=sin (B=n/2).
~ We have '
E'(u) =;‘2i [(1 — B) =B 182 — (1 + B)a'/® u—18~2),
The equation E’(x) = Q has the unique root
Uy = (ll_-l-ﬂ bi2 Ccos B_TE
and M-8
=g ) 148
E{uy) =2 y 2B|[1+8 1-p)y 2|, gr- aB 1- ) 2,
™ ll—‘.B_) +(1+p | =85+ E(we

(1 — B) cos 2

We deduce that the sector {w; |ar , : is gi )
. - : ; larg w| < yw[2}, where y is given by (16)
]ail)leaféggt sector in the right half-plane which lieé gn h(U). ﬁence (17) implies
{ e conclusion of Corollary 1 follows from Theorem 2.

I we let p(z) = of "(2)If(2), then Corollary 1 can be restated as

COROLLARY 2. L¢t ; ;
analytic in U, with ;(O‘;Z % Bmf B <1 and let v be defined by (16). If p 15

P+ e T < () = 50 < (- 3".'
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Example 1. If wetake « = J'and g — 140 ; . .
(4/27)V* = 1.6204 ..., hence {‘1 1 ‘2/21{31(713), th?gsv:eégedu(;e tg (v=/2)

=1+
—0.6479. .. Therefore by Corollary 1 we obtain and y =
fEA and arg(1+if,”—(i)” <1_0178:larng'ﬁ w
1f we'take B = 1/2 in Th T ‘ f2) <7
we = eorem 2, the .
coROLLARY 3. If «>0 and if f e A‘_‘s“l‘;:?sfzgstal_n
where 8 = 3(a) s the smallest positive yoot of the equation '
Gdoxt 4 3223 — 32e342 — 7202y — a(27 — 4at) = 0. (19)
Then )
2f*(z) ™
arg 2 £ &
gf(z) <4. ze U,

Proof. From (9) we deduce ' .
1
v=v(u)=u+%(2u2+2—u’J, 4> 0.

It is clear that & = min {o(u); u > 0} is the bigest positive number x such
that
v(u) > z, for all u > 0. (20)
If we let :
H(u) = 4out 4 8u® — 8xu? + a,

then (20) is equivalent to H(u) > 0, for all # > 0. The equation H’(s) = 0 has
the unique positive root ‘
Uy = ;l— [JQ + 16ax — 3]
and
H{u,) = min {H(u); 4> 0} =

1 [(9 + 160x)2 — 320222 — T2ax — 27 + 8at]
8a? .

’

= 0 yields (19) and we deduce that the strip {w; |Ilmw|<3}
alyzil]el ‘So )the real axis which lies in A(U). Hence (18)
d the conclusion of Corollary 3 follows from

,The equation H (u,)
Is the largest strip p
Implies (14), with B = 1/2, an
‘Theorem 2. .
Example 1. If we let a — 1 in Corollary 2, then we obtain
2f(2) <=

f@) 4

f e A and 'Im’-f—"(—;2

<5 = 1114 ...=>larg
Iz
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where 5 =1.114 ... is the positive root of the equation
. 8t 4 423 — 422 — Ox = 23/8. .

This result is a slight improvement of Corollary 1.1 in [6]. P
If welet g=2in (9), we easily deduce v > 2« and by Theorem 9 .
obtain ) o We
COROLLARY 4. If a> 0 and if f € A satisfies
[ Im J(a, f; 2) | <24,
then '
2f(z)
f2)
For a =1 this last result reduces to Corollary 1.2 in [6].

arg
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MEASURE OF NONCOMPACT

NESS
DIFFERENTIAL EQUATIONS AND SECOND ORDER

WITH DEVIATING ARGUMENT

RADU rrEcyps

R“I‘iﬂl‘: January 28, 1989

REZUMAT. — Maisura de necompaetitat y
dollea cu argument modificat, in Iaceast;‘iel$l ecuailile diferentiale de ordinul ol

Sate st ol fn Deone (1) (15, s St o
problgm.’l este' pnvxtr‘} Cca un caz particular al problemei IUipDiricm::aé 2 Acea:ti
ecuafia func;lonzfl-dlferentiali (3.1). Principalul rezultat referitor la'gxginnru
solutiei problemei (3.1), (3.2) este continut in Teorema I, in care a licatieiedzi
l“e'ub(’]‘;lad;ept al ectl‘mﬁei (3'-:;) i s(e1 cere si satisfaci o conditie maipslabi decit
aceea i compactd. Aceasti conditi nrimd L |

pactitate a lui lgumtowski. ondivie se exprimd cu ajutoral mésurii de uecom-

1. Introduction. This paper deals with the boundary value problem
w(t) = f{t, u(t), w'(€), w(g:(8), ..., ulgal), ¢ €1, (1.1)
u(t) = o(t), t € I' \\int I, (1.2)

in a real Banach space X, where I = [q,b], I'= [a,b'], &’ Sa<b<?,
/is a continuous mapping from I X Xm*2 into X, g(i =1, . ..,m) are copti-
nuous functions from I into I’ and ¢ is a continuous function from I\
int I into X. ‘

By a solution to problem (1.1), (1.2) we mecan a function » & C¥(I; X) N
NC(I'; X) satisfying conditions (1.1) and (1.2).

For u « C(I; X) lct us denote by #! (¢ = 1(, 4 otherns
into X, 2'(f) == n(g,(f)) if gi(t) € I and w'{t) = o(gi{f)) otherwise.

Let us crmsidﬁr )the ﬁmpping hiIx XXX xCI; X)—~X,

b, x, 3, u) = fl, £, w'{t), ..., w(t)), (1;3)

for t € J, x,v € X and » € C(I; X). L . P
A function # is a solution to (L.1), (1.2) if aid ouly if » = C(I; X) aud
satisfics

..., m) the function from I

w''(t) = hit, u(f), w(t);u), tel, (1.4).
w(a) = o(a), w(b) = 2(0) (15)

: | = by the continuity of
In the particular case when g() C I'_ i=1,...,m, D} .

/it follows ‘ihat / is also continuous. In this case, the existence (')If solutions tg
problem (1.4), (1.5) was established by K. Schm itt and 1I){ holln] Puiger
(17] assuming in addition the compactness of /i and also by us [

.more general additional conditions, on h.

—_——

i i 100 Cluj-Napoca, Romania
* University of Cluj-Napoca, Faculty of Mathematics and Physics, 3100 Cluj-Napoca,



R. PRECUP
26 ' :
- jor A) C I, i=1, e M, the mapping (1.,3) may be .
, tinu(gesn?:]]},;oxb>£ )’ x C(I; X). Nevertheless, its restriction to th§°:u]°)2n;
I X X x X x G, where ¢

C, = {u € C(L; X): u(a) = o(a), u(d) = o(b)},

- ~ontinuols. The main result on the existence of solutions to (1.4),
111?1;tmrlg$:isr£ that h be a— Lipschitz (« being the Kuratowski measure o
:mncox’npactness). The proof of Theorem 1 uses the_,tOPO]OgJC{ll transversality
theorem (Lenay-Schauder’s alfcematlve) for condensing mappings, which g
been proved in [14] without using the tOPolpglcal degree. In addition, we make
use of a priori bounds techmique. Similar m\ethods: have been used by ¥
Schmittand R. Thompson (174, R. Thompson (18], A. Gran
nas, R. Guenther and J. Lee [8]. Theorem 1 may be compared with
the results obtained' by V. Lakshmikantham [11Jand J. Chandr,
V.Lakshmikantham, A. M.ltchell [5]. )

In particular, sufficient conditions for that the prolg]em (1.1), (1.2) have
solutiens are given. These conditions are relaxgd m case X = It»,

The existence theorems are stated in Section 3 and the main result, Theo-
rem 1, is proved in Section 4. In Section 5 a uniqueness theorem is given,

2. Preliminaires. Let X be a real Banach space, X* its dual. We sha]]
denote both the norm in X and its dual norm in X* by |-]. The valuc of
2* € X* at x € X will be denoted by (x* x). In case X = R* the bilincar
functional (.,.) stands for the scalar product.

Denote ||#)| =max (Ju()}:¢ 1) for u € C= C(I; X), ||u], = max
(Neelf, He']}) for u € C? = CYI; X) and || u ||, = max (||«]|, |[[«'(|, " }1)
for u  C2 = C¥I; X).

Let 9 be the duality mapping of X, ie. §: X — 2,

o= {a* € X>: (x%, 1) =[x =|2*}}, » € X.

(1.5), Theo.

"Recall that
(2%, y— 1) < —'2—|y|2—%|x|2, @.1)

for all ,y € X and x* & Jx.

Let us denote by « the Kuratowski measure of noncompactness; for each
bounded subset A of a Banach space one has

«(4) = inf {8 > 0: 4 can be convered by finitely many sets of diameter < 8}.
With a view to avoid any confusion we will denote o Juratowski mea-
sure of noncompactness on the Banach space (I ;132") ezlc‘;f)lielc?livitll the norm
ol = max (jju)], ..., ||um Il). Only for the space C(I; X) the Kuratowski
meas&re c])f noncompactness will be simply denoted by oc,instead of o,
L < I, whore fy = 2 bounded subset of C(I'; X) then a(d(f) < «(d) for all
RN I( )={ut):u « 4}C x. Moreover, we have
MMA L If 4 45 a bounded equicontinuons subset of C(I; X) then

“4) = a(4(I)) = sup («(A(t)): ¢ = 1), : (2:2)
where A(l) = {u(t): u < 4,teDCX. ‘
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This result has been proved by A A :
the classical Ascoli—Arzeld Theorem. Ambrosetti [2] and generalizes

1f A is a bounded subset of CYI; X) (

o%,(A4) = max (a(4), a(d’), ..., a(40)), (23
where : -
: AV = {0« AYC O ), i 1
Also |
%-1(4) < o(d), (2.4)
for z= ly.i.)”n. 1 d
Let e a closed convex subset of X and 7 i ‘
A continuous mapping F: Z—Y is said to be («, e) Z ?:};lgiirtz 5“‘;5%‘ (i)ff f)gr
every bounded subset 4 of Z, F(A4) is bounded -and e

«(F(4)) < pa(A).

F is called o« — Lipschitz if there exists ¢ > 0 such that F be («, p) — Lip-

schitz. I is said to be condensing if for every bounded subset 4 of Z F(A
is bounded and if «(4) > 0 then of Z, F(d)

«(F(4)) < o(4).

Let UCY be bounded and open inY and let @(T ; Y) be the set of all conden-
sing mappings F: U—Y which are fixed point free on the boundary aU of U. A
mapping. F € 4(U;Y) is said to be essential if each mapping of Q(U; Y)
which coincides with F on U has at least one fixed point in U.

In this conncction, the following lemma will be used latter (for the proof
sece Lemma 2.1 in [14]). . ‘

LEMMA 2. For cach fixed x, € U the mapping, F:U—Y, Fx = x, for all
x € U, 1s essenlial. .

Two mappings F,, F, € @(U;Y) are said to be homotopic if there exists
H:[0,1] x U—Y such that H,=H(, .) €@a(U;Y) for all 1 e [0, 1],
Hy=F, H, - Fyand H(., x): [0, 1]—Y is continuous uniformly with respect
to x e [, .

We also note the following topological transversality theorem (Leray—/
Schauder’s alternative) for condensing mappings. . '

LEMyA 3. Let F,, F, € a(U;Y) be two homotopic mappings. Then Iy is
essential if and only if F, is essential. B

The proof of this lemma can be found in [14]. It reproduces with some
specifical changes that of the topological transversality theorem for completely
continuous mappings (see [6] and [7]). . d’ ther tesults on

For other properties of measures of noncompactness and OtAer resy
condensing magpizﬁgs we refer to the book of _R. R. Ahmero \S/, 1\(/1[ I.' Kkai I
menskii, A. S. Potapov, A E. Rodkina and B. N. Sadovs
1.
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3. Existence theorems, Let us consider the problem )
w'(f) = h(t, u(t), u'(t); u), t <1, (3.1)
u{a) =r, u(d) =s, (3.2)

where 7 and s are two fixed elements of X.

Let C, = {uesC(I;X): u(a) =7, u(b) = s}, C} = C, N C* and C} = C,NC2
We shall consider on C,, C} and C} the torologies induced by those of C,Ct
and C?, respectively.

The main existence result is

THEOREM 1. Assume that y

(i) h e C(I x X X X X C}; X) and h is uniformly continuous on I X A, X
X Ay X A, whenever Ay, Ay are bounded subsets of X and Az C C} is bounded
in CL

(il) There exists p such that

0 </p < min (8/(b — a), 2/(b — a), 1" (3.3)
and . ‘
a(h(t, Ay, As, Ag) < p max (a(4,), «lds), ox(Aa)), (3.4)

whenevert < I, A, and A, are bounded subsets of X and A, C C} is bounded in CL.

(iii) For each x € X satzsfymg [*]> M > max (J7}, |s| there exists x* € Jx
such that

(x*, B¢, x, v, 2)) >0, 3.5y

Jor all t € Ja, b,y = X satisfying (x*,y) =0 and z € C} with || z|t=|x}.
(iv) There exists a nondecreasmg Sfunction

: [0, +oo[—T0, 4+-oof

such that .
lim inf 2/F() > 4 M (3.6)
=00
and .
/ Vht, 2,3 2)] < ¥(o), (3.7)

for allt €1, x,y € X and z € C} satisfying b=l < lizll <M
Then equation (3.1) has at least one solution u < C3.

Remark 1. If h: I X X X X X C}— X is completely continuous then con-
dition (i) in Theorem .1 holds, condition (3.4) holds with p =0 and (3.5) may
be relaxed as follows:

(x*, b(t, 2, v; 2)) = 0. (3.8)

Indeed, in this case, for 1/# < min (8/(b — a)?, 2/(b — a), 1) the mapping
hy (2, x,y;2) = h(t, 2,y ; 2) + (1/n)x satisfies the hypothesis of Theorem 1 with
p = l/nand¥ + M insteadof ¥'. In consequence, by Theorem 1, the equation

w'(t) = ho(t, u(t), w(t);u), t I (3.9)
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| ]
has at least one solution #, € C2. Let {u,,},.;,,, be a sequence of solutions to
(3.9), where 1/n,<min (8/(b — a)?, 2/(b — a), 1). As follows from the proof of
Theorem 1, the set {4,}n5,, is bounded in C2. Hence {#,}n>n, 1S equicontinuous
in C1. On the other hand if G,: I X I — R isthe Green’s function associated
with the scalar problem y”’ I/n )y = £(£), ¥(a) = ¥(b) = 0 and #} is the unique
solution from C} to the equation "’ — (1/n) u = 0, then we must have

b

a?f“iYMLQMﬁm@LMm;MWK+%W (3.10)

©
a

Whence, using the compactness of % we obtain that the sets {u,(f)} and {u.(f)}
are precompact in X for each ¢ € I. Thus, by the Ascoli—Arzela Theorem the
sequence {u,} has a subsequence which converges in C!; its limit is a solution
o (3.1) as follows also by (3.10).

As regards the existence of solutions to (1. 1), (1.2) we have the following
result

COROLLARY 1. Suppose that

(i) fis uniformly continuous cn cach bounded subset of I x Xm+2,g,€ C(I1-1I),
=1,...,mand ¢ € C(I"\int I ; X).
( 1) There cxists p satisfying condition (3.3) and

a(f(t, Ay Ags oo ny Apsy2)) < pmax (w(d):i=1,2, ...,m+2), (3.11)

whenever t € I and 4;,1=1,2, ..., m + 2 are bounded subsets of X.

(iii) For egch x € X satzsfymg lzx]> M > max (Jo(f)}: ¢t € I'"\ int I)
there exists x* € Jx such that

(%, f(t, %, 3,2, .., 2™) >0, (3.12)
Jor all t = T a,bland all x,y, %, ..., 2" < X satisfying (x*,5) = 0 and | '] <
<2 i=1,...,m
(iv) There exists a nondecreasing function
Y: [0, +o[— 10, 4oo[ satisfying condition (3.6) and

It 2, 4, ., 2] < ¥y, (3.13)
Jor all t = I and all x,9, 2%, ..., 2" € X with |x| < M and x| < M, i=
=1,
T hen j)roblem (1.1), (1.2) has at least one solution.
Remark 2. Theorem 1 and Corollary 1 remain true if we consider certain

other measures of noncompactness instead of the Kuratowski measure of non-
compactness.

On {finite-dimensional spaces some requirements of the hypothesis of Theo-
rem 1 may be lessened as follows.

THEOREM 2. Assume that

(i) The mapping h:I X R* X R ¥ Ciy— R* is comtinuous.

(i) There exists M > max (7], |sl) such: that

(x, h{t, %, v; 2)) > (3.14)
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' aitel xR with | x| > M,y € R* with *5) =0 and 2 « c
Jor ) |
(it [Fo]foea_;i};o]ﬁ seuf;lz’ t}t;‘;’ t/?[fj,w(t) is locally integrable on (K, 4o L, w]}}t,;
00— ,
E(()’ilr _ 5|/ — a),

Satis.

{1 ¥ ) 2> 2M (3.15)
'K
and | (2, =, y;2)| § Ti.M' (1> 1), (3.16)

henewert €I, x s R and z = Ci satisfy |x| <1||z|| <M andy <1, y=
zi_ (31, - - -» Yu) Satisfies |y:l < M’ forall v < j— 1. 2
;hen the system (3.1) has at least one solution u € C%.

. i 4 in [8], éhap. V. Its proof

t may be compared with Theorem 2 .
follov'g:J :aglirulby th};t of Theorem 1 if we take into account Lemma 5.6 in (8],
chap. IT and Remark 1.

As a consequence of Theorem 2 we have

COROLLARY 2. Let thé following conditions_ hold

() feCI X Rm+2; R, ;e C{I; 1), i=1,...,m and
o ¢ € C(I'\int I; It").

(ii) There exists M > max (Jo(t)):¢ = I"\\int I) such that

.

(%, f(t, x, 9,24, ..., 2™)) 20, (3.17)
for all t = I; xR with |z} > M, y € R with (x,y) =0 and all ¥ € R
satisfying | ¥} <|«x) i=1, ..., m. '

(iii) For each j < {1, ..., n} and each M’ > O there is a function V' :[0,
+0[—10, +oo[ such that t['¥; - (t) is locally integrable on [K, 400 [, satisfies con-
dition (3.15) and '

il %9, 2, o 2] S Tl 941, (319
foreveryt eI, %, 21, ... xm e Rn satisfying |x] < M, || < M, i=1,...,
and any y < R* with |y;,| < M’ for all i <j—1.

Then the problem (1.1), (1.2) has at least one solution.

4. Proofs. For the proof of Theorem 1 we need some lemnas referring to
the a priori bounds on solutions of equation (3.1).

LEMMA 4. Assume that conditions
any solution u < C} of equation

m

(i) and (iii) from Theorem 1 hold. Thew
(3.1) satisfies the mequality

Lall < M. (4.1)
Proof. YLetu = C3 be a solution of
= |u(ty)) Xf ¢y = a or o = b then (

(3.1) and let ¢, = I be such that || #ll =
Let t, € Ja, bf. Then we have (

4.1) follows by M > max ArL1sh-
%o, u'(ty)) = 0 for any x§ = Ju(l)-
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Assume,” a contrario, that I u(t
x;é‘}%(fo) such that o> M. Then, by (35), there exists
, (xO) h(tO: u’(to), u'(to) ; u)) > 0.
Since h$ continuous there is 8> 0 such that

(Xo, HtO + X U0+ x), u’(t0+ X);«)) > 0

whenever | X| < S and /0+ U J. This implies that ’
K.*" o+ 7)) > 0 for | X|< Switht. + X *L
Hence, by using the Taylor’s formula
«(to +X) - u(tQ)= X<(4 + O
where x= (XX lies between t0 and t0 - x, we deduce that
(P> «('o + *) —«<0)) > 0 for | X < § X" 0 with + Xe /.

On the other hand, since x\e }«(/,,), by (2.i), we must have

@O«(t0+ X - «(/,)) Ju(t0+ X|2- -|«(i0f< 0,

which contradicts the previous inequality. Therefore |[w(/0)| < and the proof
is complete.

The next lemma is due to K. Schmitt and R. Thompson [17] and
it will be used to derive a priori bouuds on derivatives of solutions of equa-'

tion (3.1). .
lemma 5. Lei X : [0, +o0[—=*]0, +co [ a nc,ndcftcasing function satis-
fying condition (3.6) and let Ne& a positive number. Then there exists ap
constant M( dependingonly on T and M) such that, if u e C2(I; X) is such that
l«|| £M and \\u"\\ < T(||«"]]), then
[« 42
Let G: 1 x |—»11 be the Green’s function associated with the scalar boun-
dary value problem y" = f(t), y(a) = y(b) = 0. We have
= . - - - —for |
=(-aeE fOor 1>L
bh—a

Define the linear integral operator N :C —+C2
b 1
(NWjt)= - ~G(i, ) «() dl, tel

A

We have : (43)
liV«]]2 max ((b- «)28, (b — a)/2, 1), :

for all u €& C having ||«|] <L
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. oy y
If we assume that 2h: Ix X x X x C,— X is continuous we may g
define the operator F:Ci—C,

(Fu)(t) = ht, ult), w'(t) ; w), tel

Let 4, be the unique solution from C} to the equation %" =0 and defip,
the operator T: Ci— C3, , ,
Tu = NFu + u, % € C}. (4.4)
LENMA 6. If the mapping NF: Ct— C? is condensing and '1'f there exists
B> 0 such that |l < M for any solution u = C} to, the equation

~ w'(t) = Nt w(), W) ), ST (43)

i for all » € [0, 1), then the problem (3.1), (3:2) has at lcast one solution.
“ ');’roof. A'furEction  is a solution to problem (3.1), (3.2) if and ouly if

b

ulf) = — SG(t, E) h(Z, u(%), w'(E); w)dE + w(t), t =1

s
or, equivalently, if and only if it is a fixed point of T, ie.
% = NFu 4+ w,.

(4.6)
Similarly, # € C? is a solution to (4.5) if and only if

# = ANFu 4- w, 4.7)

Let U= {u C}: ||ull, < M}. Clearly C} is a convex closed subsct of the
Banach space C? and U is open in C}. By Lemma 2 the mapping H,: U—C},
Hogu =, for all u € U, is essential.’ Also, if we define H,:U— C}, Hyu=
= AMNFu - 4, we see that H, «@(U; C}) for all % = [0, 1]. Moreover, since
NF is condensing and U is bounded we have that NF (U) is a bounded subset
?frgﬂ and in consequence the mapping H(. ; #): [0, 1]— C} is continuous uni-
ormly with respect to u € U. Thus H,and H, are homotopic and by Temma 3

it follows that H, is also essential. Theref = e o
point, as desired. efore T(= H,;) has at lcast one fixed

Proof of T} " wi o firet ' . o :
(@ o) —fLi{) schﬁ;’.’em 7. We will prove first that the mapping F:Ci—C is

First of all let us show that by (i) and (ii) we have -

n “(WT, Ay, 45 A3)) < o max (a(d,), a(dy), a,(4y)), E+8)
;;te:e;'(g éel’afﬁi'?rr:rbof‘?nded in X and 4, C C} is bounded in C!. To this end,
(), it Tollowe ot ¥y fixed. Then, by the uniform continuity of /i assumed in
: oreach & I thereig a neighbourhood V(f; ¢) of I such that.
. 1 |h(t,x»yiz)—h(Z,x,y;z)i<e ¢
1 ; -
orallz e V(;e), x e Ayy<d,and z A, Consequently
a(h(V(t_: ) A 4y 43) < a(i, 4,, Ay, A3)) + 2¢
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This, by (4) and the compactness of 7, yielgs.

a(h(I; Al» Az: AS)) < f max (a(Al):a(Az), “I(Aa)) + %e.
Now letting e—0 we get (4.8) as desired.

The]continuity of F follows easily by that of 2

Tet D be an arbitrary bounde )
= D(I)’ 4, = '(I) and 43 =D
show that

d subset of C3.

If ) _
we see that F( we apply (4.8) to 4,

D) is bounded. Further we will

«(F(D)) < pay(D).

(4.9)
Since D is bounded in C?, the sets D and D’ are equicontinuous families of func-
tions. Hence, by Lemma 1, we have ~

a(D) = sup («(D(t)): ¢ = I), a(D') = sup («(D'(t)) : ¢ I).

Moreover, the equicontinuity of D and D’ to
of # assumed in (i), implie that F(D)
tions. Thus

(4.10)

: gether with the uniform continuity
is also an equicontinuous family of func-

a(F(D)) = sup (a(F(D)(_t)) 't e 1), - (4.11)
But, by (3.4), (2.3) and (2.4), we have

a(l7(D)(1) = «({h{t, u(t), w'(!); u): 4 € D}) < p max (a(D(.t)),
a(D'(1)), (D)) = puy(D) < pay(D),

for all { € 1. Whence, (4.9) follows by (4.11). .
Therefore the mapping F is (, p) — Lipschitz as claimed. L
Further, by (4.3), andf(4.9), we get

a,(NF(D)) < p max ((b — «)¥/8, (b — a)[2, 1)ay(D), -

whence we may claim that NF is condensing. ’ .
Now, according to Lemma 6, we have only to prove the boundedness in
C2 of the set of solutions to equation (4.5). e the hyoothesis of Lemma 4
For each A e J0, 1] the function M satisfies the hypothesis na 4.
Thus ||u]) < M for] any solution # € C} to equation (4.5) and for all A = ]é)a,lt].
In addition, since M > max (J7], |s]) we sce that;‘;,,, the unique solution in C} to
. ’ . <
equation (4.5) for A = 0, also satisfies ||#% || < M. .
Further, according to assumption (iv) and Lemx:xa 5, there e(;ns‘clsl ; ??(S)taﬁt
M, such that !'u’|| < M, for any solution # € C? to (4.5) and a 1],
Finally, if we put )
’ : - ‘a certain A € [0, 1]}
D={u = Ct:u is a solution to (4.5) for.a ce (
and we aéply (4."8) to A;=D(I), A,=D'(I), 4;= D, then we ob;am tha}i lth:- ;;t,
D"(I) is bounded in X. Hence, there exists a constant M, such t z;t f|| ';“h e(|) rzm f’
for any solution u < C} to equation (4.5) and all A< {0, 1]. The proof o
1s now complete.

3 — Mathematica 2{1989
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5. Uniqueness, We will establish - the uniqueness of solution to equa
. 5. ‘

w'(t). = h(t, u(t), w'(t)) + AL, »), ¢ e I, ;(5.1)
together with the boundary conditions (3.2), where h maps I X X x x inte .
8 X. . ) . e

gmd 'i‘ihemsgisqigescsb ilsuteostablished under some monotonicity conditions,

THEOREM 3. Suppose that the following conditions are satisfied :

@) (2%, hit, x + 24,5 + ) — Bt M>0  (20), 52
Jor all t € Ja, b, %, weX with x#0, x* € §x and all vy, MeX S“tisfying
(x*, y) =0.

(i1) (x*, A(to, u)) — Altg, #5)) 20 (> 0),
for all uy, u, € C}, 4y # #y, g € Ja, b[ such that Ju,(ty) — u,
and all x* € Yuy(to) — #alto)): ‘ ,

Then problem (5.1), (3.2) has at most one solution % < C:.

Proof. Let u, and #, be two solutions to (5.1), (3.2) and let u = 5, — 4

If u, # u, then it whould exist {, € ], b[ such that [« = | nl] > 0. Thizs',
would imply that (x*, u'(;)) =0 and
(x*,.4""(t,)) <0, (5.4)
for all x* € Ju(t,). On the other hand, by (5.2) and (5.3) we should have
(%, (L)) = (%%, hlto, urlto), #1(to)) — hlto, #s(to), ¢slty))) +
+ (x*, ALy, %)) — A(ty, %5)) > 0,

which would contradict (5.4). Thus #, = #, and the thcorem is proved.

As an application we will establish the uniqueness of solution to problem
(1.1), (1.2) in the particular case when equation (1.1) has the form.

ti()n

N

J

| (5.3)
(to) 1 = 12y — u,

w(t) = h{t, w(e), w'(0) + g(t) u() + 2 9:(t) u(gi(0), (5:3)

where ¢ and ¢, i.=1, ..., m are real functions defined on I.
.COROLLARY 3. Suppose that h satisfies condition (i) from Thcorem 2 and

) <0, )+ )20 (>0), (5.6)
Jor all t « Ja, b[. =t ‘
Then problem (5.5)

) 1.2 has at m st .
Proof. Apply Theo refn 3)1:0 oSt one s?lutzon,

A0 = 900 ) + 3 0.0 w0,
Note that Theor ~

in [15] em 3 and Corollary 3 generalize Theorem 6 and Theoretn 7



1.

T

© ® N

[
— O

; Ambrosetti, A, Un theorema dies;

Bernfeld, S.R, Lakshmikan

.Dugundji, J. Granas, A, Fixed point thu;ry, vol. 1.

. M !
EASURE oF NONCOMPACTNESS
35

REFERENCES
Ahmerov, R R..Kamensk“‘M' L P :
skii, B.N., Measure of noncompactness and congetz:irl:goo‘;e;&t S, Rodki
1986. ators, (Russian)

v
na A.E., Sadove
» Novosibirsk, Nauka,
» L c e -

A Mat. Univ. Paten oo (19676)"12:(;4581 :?6 ;quazwm differenziali megli. spazi di Banach,

N tha . : . L
Pmblems. Academic Press, New York, Lond;nn' \17!:).7;‘1); inlroduction to nonlinear boundary valus

‘Bernstein, S. N., Sur les équations

1912), 431 — 485, du calcul des variations, Ann. Sci. Ecole Nogm. Spﬁ. 29

_Chandra, J., Lakshmikantham_ V.,

Mitchell, A, Exist ; :
value problems for nonlinear . « A, Laistence of solutions of bowun-
;a2{978). l/; 168 second order systems in o Banach Space, J. Nonlinear Analysis

: A PO Warszawa, 1982.

Granas, A., Sur la méthode de continuité de Poincaré, C.R. Acad. Sci. Paris 282 (1976)
083 —985. v, - :
Granas, A, Guenther, R, Lee, J., Nonlincarboundary val I i if-
ferential equations, Dissertationes Mathematicae, CCXIv, War};zatv: ?;%l;fms Jor ordinary &if

Hartman, P, ,O n boundary value problem for systems of ordinary nonlinear second order diffe-
rential equations, Trans. Amer. Math. Soc. 96 (1960), 493—509.

Jartman, P., Ordinary differential equations, John Wiley & Sons, Inc., New York, 1964.
.lLakshmikantham, V. Abstract boundary value problems, Nonlinear Equations in Abstract

Spaces (Lid. V. Lakshmikantham), Academic Press, New York, San Francisco, London, 1978,
117 —123. N

.Lasota, A, Yorke, J. A, Existence of solutions of two-point boundary value problems for

nonlinear systems, J. Differential Equations 11 (1972), .509—518.

. Mawhin, J.,, Nowlinear boundary value problems for ordinary differential equations from Schau-

der theorem to stable homotopy, Université Catholique de Louvain, Rapport No. 86 (1976).

. Precup, R., Nonlinear boundary value problems for infinite systems of second-order functional

differential equations, Univ. Babes-Bolyai, Cluj-Napoca, Preprint Nr. 8, 1988, 17—-30.

. Rus, A, L., Maximum principles for some nonlinear differential equations with devialing argu-

ments, Studia Univ. ,,Babes-Bolyai” 32, No. 2 (1987), 53—57.

.Scorza-Dragoni, G. Sul problema dei valori ai limiti per i sistemi di equazioni diferen-

iali del secondo ordine, Buil. UL 14 (1935), 225—230. o
Schmitt, K., Thompson, R, Boundary value problems for mfuitle systems of se‘c.ond-
order differential equations, J. Differential Lquations 18 (1975), 277-295.

. Thompson, R.C., Differential inequalities for infinite second order systems and an application

0 the method of lines, J. Differential Equations 17 (1975), 421—434.



, MATHEMATICAL XXXIV, 2. 1989
STUDIA UN1V. DABES—BOLYAI

N ,, plication of fryszkowski selection theorem to the

DARBOUX PROBLEM FOR A MULTIVALUED EQUATION * 7

GKORGETA TEODORU*

Ranvtd: Stpttmbtt,20, @
«P7r\IVT - O anllontie n teoremei de selcc-Jic u lul Fryszkowskl la prohlcma
lul D.ri.oux pentru o ecuatie multlvoed. Tn lucrare se considerd problema lui
Darboux pentru ecuatia hiperbolica multivoca Vv’
D= [Oal X [Ob) unde Fete o aplicatie inferior semicontinua ale cdrei valor

sint submultimi Tnchise, nu neapdrat convexe, ale lui E». Teorema de selectie a
lui Fryszkowski si teorema de punct fix a lui Schauder stnt folosite pentru a
demonstra existenta unei solutii locale a problemei considerate.

1. Introduction. The Darboux problem for; the hyperbolic multivalued
equation ‘ ’

-i-L-e F{xy, 2),F: B R»—2«", = [0, a] x [0,
'm

dxdy A ‘mmm -

and the notions of the local and global solution were defined in [15], [16],

Under the hypotheses of Caratheodory type, F haing convex and compact
values, using Kakutani-Ky Fan fixed point theorem in [15], [16] we prove
the existence of a local solution for the posed problem. In [17] it is proved,
under the supplementary restrictions, that the local solution may be prolonged
in D, obtaining a global solution. In view of the characterization theorem of
the global solution [7], [15], [18] and the existence of a sequence of functions
/»:-D*R" uniformly convergent on compacts to F [6], [7], [15], [19] we
consider in [15], [19] a sequence of- approximating equations and we obtain
a global solution of the Darboux proglem as the uniform limit of the sequence
of the solutions for the approximating equations.

In [20], [21] we prove selection theorems, namely the existence of some
continuous selections for every function

. tively to a given family of continuous functions {z(x,y)}, (x,y)-*-"z(x,y) under

root fIS a*” tabes compact not necessarily convex values, F continuous

exii'enorthinrlCOndi 10nS °f C*rathdodory type [21], As Corollaries, we obtain

an {ne ex.k{enrs °F ttr.me A . s°hitigns,. via Schauder fixed point theorem
an € existence of the continuous Selections

beine Linsehitviar. ;7 TheiBas® b#hRot Thecdlbalily elom@dxsalbfieaStor rFt

method-of the successive™ W ” resP?ct to *-"Tiie results are obtained by the
. pproximations, using two selection theorems “[10]»

s An** [ ui. Cpadml # 600 /41>

RomanU

v—

z (X, Y
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23] under the as : .
[11]. In [ . Sumption that F is T ireetss s )
. to z, with possibly nonconvex values, we c;?)tL ‘Pschitzian mapping with respect
poux problem, using the contract Y ain a global so

i ines lution of th i
. . 10n prin : o e Dar
In this paper in a manner yseq inP ¢iple of Covitz and Nag lez, (8],

- L (1], (13], [20 .
tence of a local solution, using the F » 139), 120], [217 we obtain the exis-
Schauder fixed point theorem, uudeiyfﬁlé(’;‘ ski selection theorem [9], [13] and

tinuous, taking not necessarily convex valiselgmptlon that F is lower semicon-
2. Preliminary results. Let U be 4 t0pol.ogi<:a1 '
s

and let F: U—2Y be a nonempty , pace, ¥ @ metric space

A ey semicontinuous (L5 g onpg iqfn?? _cll(og;d_valued mapping. We say that F

whenever B istopené1 [2], (117, [13]. ={u € U[F(x) N B # J} is open
A nonempty and closed valued mapni : i :

] k pping H: [0, Tj— 2v

measurable if H™YB) = {t = [0, T]|H ) N B# Q[} is]‘LebeslsueC alleda wealle)lly_ '

whenever B is open, [11], [13]. B¢ Measurable
The next result is an instance of a i i ) ‘

ows ki and Ryl Ny mnceof general selection theorem due to Kura -

; ) s ki, [12), [13]. -
THEOREM 2.1. Let X a separable real Banacl space and lot H: [0, T ] 2¥

be a nonempty and closcd valued mapping. If H is weakly measurable then it
has at lcast onc measurable sclection, i.c. there exists at least one measurable
function It 2 [0, T]— X such that h(t) e H{t) a.c. fort = (0, T), [13], [5; Theorem
1116, p. 63]. . T .

COROTLARY 2.1, Let X be a separable veal Banach space, let C be a momempty
and closcd subsel in X and let F: [0, T] X C—2X be a nonc;n/)[y ahd closed
valued mapping which is Ls.c. on [0, T X C. Then, for each continuous function
w: [0, Ti— C, the mapping Fou:. [0, T]—2% (Fou)(t) = F(t, u(t)) for each
t € [0, T, has at least onc measurable selection, [13]. )

Proof. Obviously Fou is 1.s.c. on [0, T] and hence it is weakly measurable
Thus Theorem 2.1 applies and this completes the proof, [13].

Let K be a nonempty subsct in C([0, T7; X) and let & : K— 2LM0.T1X) e
a nonempty and closed valued mapping. We say that & is decomposable if for
each % € K, cach f,g € &(u) and each measurable subset £ in [0, T] we have

S+ g Zfo,n-n € &(u),

where %, is the characteristic function of E, [3], [13]. . »

In the proof of our existence result it is used the following spectfic form
of a selection theorem due to Fryszkowski, [9], [13] < b sa

THE 9. Let X be a separable real Banach space, let e a compac
subselt }1[;%1?]{:31 12"]2 X )e and lei F: lj{)—v 2UUTIX)  be a nonempty and closed ' valued
mapping which s L.s.c. and decomposable. Then there exists at least one contimuous
Junction f: K— L1 ([0, T]; X) such that f(u) = &(u) for fealclh “ € }ll'f [}ci]- .

3. Th i It. In this section we shall use the following hypotheses :
(H,) F: De xm?ll"n—:eZS‘l‘l' is a nonempty and closed valued mapping which is ls.c.
on D x R». .

(H,) There exists M > 0 such that .
sup {IIZl 1% e F(x,y,2} €M
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38 o <C,C>0.
" x,y)eD; ”z”\.’” g
for every (% z)éig()[(ona'];( I), v = AC([0, b]; R7) satisfy the copg;.
1T\ functions ¢ ’
(BL) The func

tion <00 :-Ier(f(“)zbm (H,) it results that the function «: D— R" defined by
Remark. .

a(x,9) = o(#) + =) — o(0), (%.9) € D, "
' , D: aeC*(D,Rn) [4
. . Carathéodory sense on D ; DR, 4
is absolutely conuElluso]us[i% ]th'e;\ hearDarbouX problem for the equation
DEFINITION. , [16].

‘ P Fz,y.2), (£.2 =D x I, )
axdy

. : f absolutely continuoys
C ination of a solution for (2), i.e. o ) tely wo
?Onsmscm:thlféc?gsg;m;;?:;o}unction on D, 2z e C’c‘1 (tD n:] ), [4]; which satisfics
Eeﬂ;uaﬁom (2) a.e. for (%, y) € D and the conditio

z(x, O)"= o(x), 0 £ x < Z, 0’(0) ~ < (0). (3)_
70,5} =(y), 0 <y <b. | oo
Let K be the set of absolutely continuous functions z: D— R*, [4] which
satis{y the inequality

| 2(x, ¥) — «(x,¥) || <7, where » >0, (4)
and the conditions (3).

-

oz
The relation z € K implies z € C(D; R*). We observe that

cxists a.e.
ox dy
(x,y) € D, as z € C* (D; R»), [4].
 Integrating -2 i d (3) it follows
Integrating —— and using (1) and (
dxdy - : ;y
— ) (8, n)dr d x ) € D. (5)
%) = aln.3) + || =P e dn, (3, )
00

THEOREM 3.1. Let be the hypotheses (H,)—(H,) satisficd.

Then, the Darboux problem (3) + (4) has, a local solution on [0, xy] X [0, y4]S D-
Proof. Tet us define & : K— QL: #n) by

Fle) = {/.« (D ) f(x, 5) & F(z,,2(x, ) ace. for (x,y) € D}  (6)
for each z € K. In view

A of the hypotheses (H,), (H,), of (4) and of Corollary
2.1, & has nonempty and closed values. Since F is
too. In addition, & is decomposable, Then, by Theo
exists a continuous function f:K—~LMD;R" such that
fl2)(x,9) eF (=, y,'z(x, 9)) for‘each z € K and a.e; for (x,5) € D. @)
Let be A(z): D— R,

z € K, the continuous function defined by

h(z)(x, y) = a(x, y) +

S ‘f\(z) (&, 7)) dgdv, (x, y) € D. 8)
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By the hypothesis (H,) and ty . 4 .
tions [14, p. 328], we have © Properties of absolutely continuous func

o) = o0+ {o g a5, o

A

3
N
k3

. [©)]
©(y) = <(0) + T dn, 0 <y <s,

CLr Qg Py

hence

Tldn +Co, (%,5) €D, (@®)

h(2) (%, 9) =§§f(2 )(E, ) dcdn+s dg+§
09 Mw
S ’JE"“.&L AN

—~ . g
Where Co = 6(0) = T(O)
- Then h(z) & C*(D; R") for each z € K, i }

z) is absolutel i i
the 1Cliaratheodory sense on D, [4]. One obtains h(z) (e) K hence“hfg) %n}gxilggesegl
we have > !

AN AR R 3
\

11 32) (%, y) — (%, )]

vt

zy
= | 3]s it
00 , .

Ted

§Sy I/ 2)E, n) {| dEdn <

< Mxy < Mxyy, < 7, for % < %, ¥ <Y, (10)
Choose (%o, Vo) € D such that the condition

Mxgyy < 7 (11)
helds. . .

____Since k is continuous and K is compact, from Mazur’s’ theorem [13], [24,
Theorem 1.2.9 p. 8] it follows that the set K, = conv A(K) is compact and
convex. Using the Schauder fixed point theorem, it follows that there exists
Z € K, such that z = A(2), i.e. h( ) (2, y) = 2(x, y) (%, 9) € [0, %1% [0, o1

This implies from (7), (8) w7 Z = f(2)(x, ¥) € F(x, ¥, z(%, 3)), a.e. for.
(x,y) D 0 <x<%,0<y< yo and z(z,0) = o(x), 0 < % < %, 2(0,) =

=1(y), 0 <y < y,,, therefore (2) and (3) hold for z, consequently z is a solution
of the Darboux problem (2) + (3). The proof is complete.
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REZUMAT. — Aproximarea funeflilor continuu diferentiabile de dou& varia-
bile prin siruri monotone de polinoame. Scopul acestei lucriri este acela 4
extinde rezultatele din (1] i acela de a

1 e I {3] l1a cazul a doud variabile, obtinindu-
o aproximare prin siruri monotoane de polinoame de doui v:r;lt?i(lieu. s astiel

1. Introduction. Let A = [g, b] X [q, b} C R® be a bidimensional compact
interval (e, b = R) and for p e N | {0} = N, let’s denote by C?(A) the ligear
space of real-valued functions f(x, y) defined on A, with all partial derivatives
(a+if|(6x*ay’)) (%, ¥), 3,7 20, i 45 < p, continuous for (x, y) = A. Also, for
r = (1, 7) € No X Nylet’s denote by |r| =4 + j and (D f)(x, y) = (3" f](ax*ay7))
(z, ), (x,3) €A ,

Regarding the approximation by polynomials in C?(A), the following

Berustein’s theorem is well-known (for a more general variant (see e.g. [41,
p. 104): .

tnzoreyM 11, (Bernstein) If f e CP(A), then there exists a sequence of poly-

nomials in two variables (Sp(x, y))w such that (D'S,)(x, y) = (Df)(x, y) uniformly
for (x, v) € A, for cach r& Ny X Ny with |r| < p.

The aim of the present note is to extend the results of [1], {3] to the
casc of two variables, obtaining thus an approximation result by monotonous
scquences of polynomials in two variables.

9 Preliminaries. Let’s consider the numbers s; & {—1, 1}, 1 =0, 0 fixed
and the polynomial

R(x) = i}zw s xifil, ze [0, 11, (1)

LEMMA 2.1. There takes place:s; - R¥(x) > 1 for any x € [0, 1] and any
i=0,1, ..., p o
v ) N Op—(iti) . siise 2[5 = 20708
Proof. It is easy to show that R®(x)=_ 02’ (4 - sipje AfL =270 st
&
1.

. . - 1=
+ 20-i-1 Sip1 X+ ... + sp - x’-'/(fb'— i) Then, because ¥

i it —G+d). ... 2]V
=2-i-1 g op-i—2 4, +2+1= EZP’("“) and | s; - 20764 sy x’/(J )<
. F=

< 20-64+) g =w v =0,p—1 vxe [0, 1], we obtain :

* ,Infrafirea Calculation Office, Tuberoselor Sir., ho. 26, 3700 Oradea, Romania,
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42 ‘ ‘
D) P 5 - 2017V Sigr X + oo siesy s P (p— 4) ! .'=(2P~£~1
s-;'zfe)(-"z’); 2, ++:zs+ D Moy 2770 Siag B e F S8y 2 (pgyyy

-3 . o “:)\
o 2ot s A (ks 2T =) SIS

Ao,
: V1:=O:P- . . . A9, e
in [(\)lairln Result. For simplicity, we will consider A = [0, 1]x [0, 1. "
There takes place: ol . ' —
wen 3.1 If fo CH8) and s sPe{—1, + 1} i=0, 3 ;153
. f?fefzotken there exists @ polynomsal sequence in two h'uaru?bles Pz, 9), ne N
such that for each ke {0, 1, ..., P}, k=17, we have:

i : @ 3 Payi(x y)

- _&'Ps l',__ak_f_umfformly on A and si; - +.'1 ;NS YT,
efay  ar'ay i o a}(‘n) @ —xay] — .
n=1,2 ... and any (x,y) € B, wherefsi; =si", 5", i =0,p, § =0, p.
T Proof. Let £ = Cy(8) be. If we denote [|[f[]| = max {sup {| D f(x, y)|;

: , 171
(x, ) € A}} it is known that [[{- ||| is a norm on C?(A).
In this case, the previous Bernstein’s result (theorem 1.1.) may be formula-
ted also: “if fe Cp(A) then there exists a sequeérnce of polynomials in two
variables (S,(x, y)),» such that

'|||S,,,—f||[—>.0, when m — 0™, 2)

3*Py(x,
Lol ) » Jfor any

From (2), follows immediately that for each # N, there exists an index
m, such that

HSm, = f11 < 1/m2
If we denote by T,(x,y) = Smy (£, 9), n=1,2, ..., (x, y) €A, taking

into account the definition of norm [11.]]], from the above inequality we obtain
immediately
ok T, A
A T | e @)
ax' dy’ ax* 9y

' for'any_ n=1,2, .

=1,+]

Because in general we have | D'Ty —~ DTy | <ID'T. — Dr Drf—
= DT, from. (3) we obtain HISIDT, =D fl+ 1D/

- any {x,¥) € A and each % e {0, 1,..., p), with k=

-k
0 Thiz, y) aanH(x. y)
—2=2 ¢ Insilx )

<1/ 4+ 1(n 4 1) < 2/m2.

ox' - oyl 3+ ay!
Taking into a¢ =1 e .
fity. léemogteg;ount that [s;;] =1, ; = 0, 2,7 =0, $, from *the above inequa-
L Taixy) T ;
Sig: T i M < 2/n2, (4)
. 31 By’ axgay]
-(x’y) < A: n = 1,

2o ke . g, k=13,

-~
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Let’s introduce the botations: R ( $
: : lx)=E 2= sl Riy) =

2 gp-i . 50 WG, g =g . & =0 s z(y)
=5 27 I 4 =2- 5 g
‘ j=0 h=n . ’ n
& Palx.9) _ a1y :

have: — =21 = 7 Inlxy) . ;

We o83y ayay T % RU(2) : RP(), from where, taking

ato account {3) and a,\O0, there results immediately

&Pz ) i uniforml ‘ '
. — yon A, cy .
ag’aﬂ ' 32"3}"’ for each k s {O' 1: ey ?}: k=1 +].
ap, * Py 1y )
Then, Ss,'(\ T =3 [ _9Tsn § M.
Nodo ~ ) = (22 i) RO RY ).
, P PTani) |, ) u '
. — a, = §ij | ——— — "l (1) p) i .
for = ) = 5 (ax"ay" o2ty )J”' RO(x) - s RE () - (2pm).
But, from the lemma 2.1, we have s} . Rid(4) >
4 5@ R9(y) > 1fot any y <0, 11 1o clqibt®) 2 1, for any z< [0, 1]
and s y > ny y &[0, k. In conclusion, according to (4), we obtain

= o*p. a*P,.H) 81, T

Sij - — = ) 2§ [— — T 2H! 2/n* > 0, for any (x,y)=A
Y (ax'ay’ < 3y " (a,,:ay; oray )+ fn* > y (%) =4,
any n=1,2, ..., and each k{0, 1, ..., P} with k=1 +j.

Remarks. 1). The theorem 3.1. may be cxtended without any problems
in the case of functions with more than two variables. .

2). The case when f is a function of one variable was proved in [3] (see
also [11]). .

3). In spite of the fact that in general, the construction of the polynomials
P,(x,y), e N, is an open question, in certaiq particular cases, they may be
‘made up, cxactly as in the case of a one variable (see 2n.

4). In the particular case p =0, for constructively obtaining monoto-
nous scquences of polynomials in two variables, we can use for instance the
bivariate Bernstein — Stancu operators (see e.g. [5] p. 270 — 271 and 61

(x, J’)= Tn‘(x' y)+a» : Rl(x) * Rz(.y)‘

& Ty F Toy
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AT. — O teoremii abstractd de tip Korovkln’sl aplicagif. In lucrare se
3\?&U¥e‘::‘eme de tip Korovkin pentru spatiul C(X), unde X este un spatiu
metric compact (Teoremele 2 si 3). Se aphcﬁ ‘rezulta.tele qbtmqte pentru cazul

. cind X este o submultime compacti a unui spafiu prehilbertian 5i se dau delimi-
tiri ale diferentei || Ba(f) — fll unde B, este operatorul lui Bernstein-Lototsky-
-Schnabl.

The well known Korovkin’s theorem (see e.g. nn asserts that if (L),
is a sequence of positive linear pperators, acting from Cia, b] to C{a, b] and
such that (L,(e;))n»1 converges uniformly to ¢, for & =0, 1,2, where ¢(t) = #,
i € Ta, b], then the sequence (L,(f))s>1 converges uniformly to f, for every f =
e Cla, b]. .

’E‘his ]theorem was extended and generalized in many directions. One direc-
tion is to replace the above mentioned system of test functions by other sys-
tems of functions, which led to the theory of so called Korovkin subspaccs.
Another direction is to comnsider functions defined on more general compact
spaces than the interval [q, b], first of all on compact subscts of K™,

The aim of this paper is to give Korovkin type thcorems for the space
C(X), where X, is a compact metric space. As application, supposing that X
1s a compact convex subset of a Hilbert space, one obtains evaluations of the

order of ‘approximation by the Bernstein — Lototsky — Schnabl operator, similar
to those given in [4]. y

If (X, d) is a compact metric space, denote by C(X) = C(X, R) the space
of all real-valued continuous functions defined on X and by Lip (X) the sub-

space of C(X) formed of all real-valued Lipschitz functions defined on X.
Equiped, as usually,

with the uniform norm ||f|| =sup {|f(z)|:x € X}, [ <
€ C(X), the space C(X) is a Banach space. 4 pllf

Our first result is a density theorem :

_ THEOREM 1. The subspa ip (X) 1s dei ¥ X ' '$pe he
nifpar OREAL pace Lip (X) s dense in C(X), with respect o {h

Proof. The assertion of the t] S 1 r f > :—Weicr-
Strass thoorens it o 1corem will follow from the Stone—We

e shall show that Lip (X) is a subalgebra of C(X) containing
the constant functions and separating the) points ong. W )

If f,g «Lip (X) then
W -0 — (7-20) | < 17(x)] 180x) — g0 [ + 180 | - 1/(x) — f(¥) 1 <
S - Ko+ ligh - K)) - d(x, »),

P .
University of Clw}-Napom, Facully of Mathematics and Physics,

3400 Ciuj-Napoca, Romania
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for all x,y € X, where K; and K, are I,
pectively. Therefore f- ¢ « Lip (X} and o 2 : )
it .follows that Lip (X) is a Su%aflggbr: OfS_I&Cee aﬁ,;[é b(fg) (1:5& ;{1) subspaceT of C(X)
‘Ahs tlhe tcons}fant functions are obviously in Lip (X) to finish the proof we
have m:(y oS cl>w tt‘1at the algebra Lip (X) separates the points of X. For
2,y X, x#ylet f: X+ R be defined by fz) =4d(z,y), z € X. Then
|f(z1) = f(z2) | = | d(zy, y) — Az, ¥) | < d{zy, 2,),
which shows that f is in Lip (X = — _
Theorem is proved. P (X), ) ' d(y,5) =0 and f(x) = d(%y) > 0.
A Markov operator L on C(X) is a positive linear o - CT: -
< perator L: C1XD)— C(X
?whtig:f;t L(eo) = ey, where ¢y(2) =1, x € X, ie. L preserves ‘S}e \)oe\nst(anz,
unc oo COLIS

pschitz constants for f and g, res-

2,2, € X,

In the following we shall need the following simple lemma : '

LEMMA } {f L. ts a Markov operator acting on C(X) then ||L| = 1.

' P.roof. Taking into account the positivity of L and applying L to the ine-
qualities — | fl| - ¢o < f < |If]l - &, we obtain — |||} e, < L(f) < |IfI| - e,
so that || L(f)Il <||f]l, for all.f & C(X). As ||L{eg) |l = l[col| =1 it follows

{i L% = 1. Lemma is proved.
If (L,)ss: 1s a sequence of Markov operators acting on C(X), let’
(%) = L,(d(., x); %), M
Bu(x) = Ly(@(., %) x),
for all x =« X and »n=1,2, .... N
Our first Korovkin type theorem is the following:
TIEOREM 2. Let (L,)us1 be a sequence of Markov operators acting on C(X).
If (a,(x))ns1 converges to zero, uniformly with respect to x = X, then (La(f))nn1
convcrges uniformly to f, for all f e C(X). :
Proof. Let f e Lip (X) and let K; > 0 be a Lipschitz constant for f, i.e.

|f(%) — () < K- dlx, 3),
for all x, y € X. This inequality can be rewritten in the form:
— K, - d(., x) <f(-) = flx).co < K- a{., %),

for all * « X. Applyving to these inequalities the operator L, and taking into
account the positivity of L, and the notations (1), one obtains:

'—I</ : a,,(x) < I‘n(f; x) —f(‘V) sI{/ ) au(x)

for all x € X, or equivalently, .

‘ Ln(f; X) —f(x) | < I{Il c‘n(x) l' (2)

for all x € X. Since, by the hypothesis of the theorem the sequence {,(*))ns1
tends to zero, uniformly for ¥ € X, the inequality (2) implies that (L,(f))s>:
tends uniformly to f. o ) ' )

By Theorem | the space Lip (X) is deusc in C(X) with rcs‘pect.to the uni-
form norm on C(X) and by Lemma L || L,[l=1 7= 1,2, ... so that by the

’
'

P
- ’ N
4 N
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Banach—Steinhaus theorem, the sequence (L,.(f Nz tends uniformly ‘to f for

- is proved. ;
all f € C(‘)(I‘{X}Z)\.d ’I:;heLE?e((}fjil bepa sequence of Markov ‘operators acting on C(x
If Bita) is defined by (1) and the sequence (Bu(x))ns1 londs lo zcro, uniform,,
fx{)&'mspect o x e X, then the sequence (Ly(f))as1 tends uniformly to f, for o)

{ = C(X). ‘ |
If f = Lip (X) then, furthemore

” Ln(f) _'fH < I{/ * \/ I Bn” ’ , (3)

for all n =12 ...
. Proof. We have L,(e,) = ¢, and

‘ 0 < L,,((t ‘f—‘ 80)2) = tZLn(fg) — 2t - L"(f) + €o

for all ¢ € R, implying
| LVE < L)
for all fe C(X ). Applying this mequality to the function f=d(., x), one obtains:
. (La(d(., %); x))z < L(d¥(., %); %), (4)

for all x € X. Taking into account the notations (1), it follows that the sequence
(24(%))n>1 converges to zero, uniformly for % < X, provided that the scquence
(Bu(%))s=1 converges to zero uniformly for x € X. The first asscrtion of the
theorem follows now from Theorem 2. .

The inequality (2), obtained in the proof of Theorem 2, implics

”Ln(f) —f” < 1{/ : il d"” ’
for all f~e Lip (X). By the inequality (4), || «,| < \/ [l B!, so that

Lol = f1I < Ky - BT

which ends the proof of the theorem. s

. Now, let H be a real pre-Hilbert space with inner product (., .». For
¢ = H fixed let the function ¢,: H— R be defined Ly a(x) = (x,t), x € H, aud
let e: H— R be defined by e(x) = (x,2) = || x||2-, v e H.
L) THI%OREM 4. Let X be a compact subset df the pre-Hilbert space H and lct
m;’;le le a sequence of Markov operators acting on C(X). If (L,(€))ns1 converges

jormly to e and the sequence (L,(e,; x))ns, converges to e(x), uniformly for

x € X, then fl - uni ‘
& fl.c%\fewh ;f’%uence (Lalf))nn1 converges uniformly to f, for all f € C(X).

e — 2l1® = clt) —2¢,(8) + e(x).

Considering x fixed and ¢ variable

lity and evaluating at the point £ — x, 211)121}21;1& I‘Icll;e operator L, to this equa-
Bal®) = Lo(1l . — 2I2; 2) = L, (e; %) = 2L,(e,; x) + e(x) =

= Ly(e; x) — ¢(x) — 2[L(e,; %) — e(x)]. (5‘)
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.Taking into account the hypotheses of the theorem it follows that'the sequence
Th %onverges to zero uniformly for s X, and Theorem 4 follows from
eorem

Remark. If / € Lip (X) then -

I LJJ)-/|| ~ Kfsl || an—2bn||, (6)

where an(x) = Ln(e; x) —e(x) and b,,(x) —Lnfex; x) —e(x), for and
tt= 1»2, .. e . . /
COROLLARY 1. (Korovkin’s theorem). i a sequence of Markov
operators acting €[a, b] such that ¢.,(«j) JL ev LHe2 2. e2 where el(x) = x and
e2(x) = *2 xs [rt-ft], ¢hen {L,,(f))n> converges uniformly to for all f*C [a, 6],
Proof. In Theorem 4 take H= R, [a b] and the inner
the usual multiplication in R, <x,y> = ¢ Then e(x) = eXx), e{x) =
=1-x = t§(a) and Lng X)= t-L n{ex;

The corrollary will follow from Theorem 4 if we show that L,,(ex;
uniformly for s [« 6], By hypothesis LHef) eu so that if e > 0 is given,

there exists »t <Al such that | LM, — | < zjM for all'n
X e [a, b], where M —max (| a

- | LXeii X)— x|< e, for all n” nand all x and t in [
for /= X,one obtains |L,(e,; X) —xi\<z, for all > and all x « 6],

which shows that the sequence (Ln{ex\ x))n>i converges to e(x), uniformly for
x e [a =} The corollary is proved.

If Ln Bn, where B,, denotes the Bernstein polynomial operator defined
by

B,(/;*) = ]Co(M) (I xe [0,1],/ e C[0,1], *
then
B.fo; x) = C(x) and B,,(*2; x) = e2(x) +

The delimitation (6) gives

IB.(/)-/11 « A

for all / e Tip [0, 1].

Applications. 1°. In the Hilbert space R” consider a compact convex set X
mnith nonvoid interior. For/ e CI(X) (the space of all real-valued continuously
differentiable functions on X) and u e R", denote by V/(w) the gradient vector
of f at the point u, i.e.

v(») = (| m.... E<*>)e |

lemma 2. 13 If e CHX) then f < Lip (Wnd K, = max || VI(m]].
Proof. Let X, § X, kK y. The mean value theorem implies the
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Of.a point # € X (which is an internal point of the segment joining x ang ) sucy
that ’

|l

(@) - (% — 3) = V), x —y).

Y

”
=1 9%

i) =f) =1
Applying now the Schwarz inequality, one obtains
flx) — fo) = V@ - 1% =yl < (max || V/{u) 1) Nz =y,

a sequence of Markov operalors acting on C(x)

>1 18 J operaror
coroLLary 2. If (Lo bsct of R with non-void interior, then

where X is a compact convex i

| L{fs ) = f(#)] < max NV - L —%1P; %), W)

1 f e CYX).
Jor nggof. %}S‘){Bemma 9, the inequality (7) is a conscquence of the inequality
(3) (see also (1) for the definition of B,). _ .
95 The Bernstein— Lototsky—Schnabl operator. If X is a compact space,
S is a subspace of C(X) such that ¢, € S.(reljn‘md that ¢o(x) =1, x € X), [
is a Markov operator on C(X) and x is a pomnt in X then a Radon probability

measure v, on X is called an L(S) — representing measure for x if
Lif; 2) = { f .

. x

for all f € S. .

Suppose from now on that X is a compact convex subsct of a pre-Hilbert
space H and let A(X) be the space of all real-valued continuous affine func-
tions defined on X. Let V=(V,),;, be a sequence of Markov opcrators on C(X)
and l’et M(V) ={vsu:m 2 1, x € X} be a set of Radon probability measures
on x\"such that v,, is an V,(4(X)) — representing mecasurc for x, for all
x € X and # =1,2, .... Suppose further that the family M(1) is such that
the functions E,; X— R defined by E. (%) = v.u(¢), x € X, are continuous for
all n=12,. vr. Let P = (P, )nis1 be a lower triangular stochastic matrix lLe.
an infinite matrix such that p,; > 0 for all 1, ji=1, '

L .
j;lpu,j = 1 and P'l,]' =3 0

Horallj > n. If p = (p,)
n=1,2 .., define

N .

nno = p,,(x) Vi + (1 - P»(x)) 0 V,,,

where ¢, denotes the Dj
:X".,}( be defineg E}lyl‘ac measure on X centered at ¢ € X. T.et also mnr:

n>1 15 & sequence of continuous functions ¢, : X— {0, 1],

' »
N W)I,P(xlj xz’ c oy xn) = Z]ﬁ’l.j . x),
for (x,, x,, ..., %,) € X», j=1



/
AN ABSTRACT KOROVKIN TYPE THEOREM

v 4 49

The Bernstein—Lototski'_schnabl o . . .
t

p is defined by perator with respect to M(V), P and

B.(f; 2) = j fompd @ Y,
x'l

1<€5<5n

for 'all * € X.and all /= C(X). It follows that B, is a Markov operator on
C(X) and straightforward calculations (see [5]) show that

Buler: %) = 22 s 08) <595 + Lpas ®

(I = 2i(x)) <%, 9> = (%, 9) = ¢(x),
for all x,v € X and f

B.(c; ) = ,Zl P Lei(®) vasle) + (1 — pi(%)) - Vile; ©)] + (1 - }_‘{ ;sﬁ,,.) e(x), (9)
: : o
for all ¥ € X\ Here, the functions e, ¢ : X — R are defined as above by e,(*) =
= {x, V) and e(x) =<{x, 1), x € X, ' _
As a consequence of the general convergence theorems one obtains the
{ollowing result:
THEOREM 3. If

i 3 12, 6] + (nle) = Viles 1) + L phalVife; 1) = el =0, (10)

n—r 3 1
uniformly for x € X, then (B,(f))ss1 converges uniformly to f, for all f € C(X).
lf [ < Lip (X) then furthermore:

12

, o (11

};Pﬁ,i o Ej — Vj.(ﬂ) + ;?ii(Vi (e) —¢)

\

EBAS) =Sl < K

-

where E(x) = v, (c), x € X.
Proof. The convergence rtesult follows from Theorem 4. Indeed, by (9).

Bule: 1) — el0) = 25 Paln(8) vadd) = Viles )+ L phVile; 1) — el

and the condition (10) of the theorem implies that (B,(e; %))us1 converges to
e(x), uniformly for x € X. The equality (8) gives for y = %, B,(es; x) = (%, x>
= ¢(x), for all ¥ € X and # = 1,2, .... The hypotheses of Theorem 4 are all
fulfilled and, consequently, the sequence (Bu(f))np1 converges uniformly to f,

for all f e C(X).

4 ~— Mathematica 2/1989
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The equalities (5) {for Ly = Ba)y 8 and ) give :

p”(x) = B”(e; x) - 2Bn(6x; 3’) + e(x) =

S o) vesle) (1 — pi(8) < Viles DT+

i=1

+ (1 — ; p%.,,.) e(x) — 2e(x) + e(x) =
S a0 vasle) (1 = ) Vifes )] — 23 phsel) =

_ g ei) (B — Vile: ] + E PV e ) — ()],

It follows that the delixnigation (11) is a consequence of the delimitation

(3) from Theorem 3. ] '
conotiary 3. If vey=vi for j=12, ... and pa) =1, x € X, j =
=1,2, ... then the condition (10) from Theorem S reduces to

n—® j=

and the delimitation (11) takes the form .

”" 1/2
| Ba(f) — fll < Kf(:;;ﬁ,jHE —-ell) ' (13)

where E: X— R is defined by E(x) = v,(¢), .x € X. ..
Proof. The first assertion of the Corollary follows from the following deli-

mitation for the expression involved in the condition (10), for pj(x) =1 and
vei(€) = vie) = E(x):

<

z PralB(x) — Vife; )]+ }:‘{ PrilVile; %) — e(x)]

<TAME Vo +§p§.,-n Vile) — el <
SUEN+2ZNV AN+ lel) B2, < (1EN+3) 3 42,
. =1 = )

. The delimitati v .
E—F on (13) follows immediately from (11), taking o =1 and
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ON APPROXIMATIVELY SOLVING CERTAIN OPERATOR
EQUATIONS :

M. BALAZS* and G. GOLDNER* .
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REZUMAT. — Asupra rezolviirll aproxlmnl[\'o a unor ecuafll operatoriale. §pn
lucrare este prezemtatd o metodd convergenta penfcru IQZO!Varea. aproxi’mativﬁ a
ecuatiilor operatoriale in spatii Ban:}ch. in. algoritm nu intervine dgnvata, iar
domeniul §i codomeniul operatorului care intervine pot fi din spatii distincte,

0. In order to solve the operator equations in Banach spaces, A. S.Ser -
gheev [4] generalized the well-kiown method of chords. .This method presents
the disadvantage of a small rate of convergence. For avoiding this short-coming
some authors had studied the generalization of classical Steffensen’s method
([17, (8], [5]), where without the using the derivative, the same rapidity ag
in the Newton method is obtained. But this method is applicable ouly to the
self-mappings of -Banach spaces.

The aim of the present paper is to give a quadratically method convergent,
where the derivative is not used in algorithim and the domain and the range
of the mapping can be in distinct sets, cvidently with the studiced operators
having peculiar properties.

1. Let X be a Banach space, Y a normed space, the mapping P: X =Y,
ang the equation

P(x) = 0. (1.1)

We suppose that there exists @ € R, 0 < a < 1, such that for cvery xin a
neighbourhood V of a point %, € X the inequality

It Plax) || < all P(2) ||

holds. We remark that if 0 .V, then this inequality implies P(0) = 0. We
show the existence of mappings satisfying this property.

. Exemple 1. Let X be the set S,(R) of the square matrixes of #-th order
defined on R, Y =R, and the mapping P: X-—Y given for every M € IM,(B)
Dy P(M) = det (M). We have || P(aM)|| = a"|det (M)] < a | det (M) ] for all
M in X and a in 0, 1[. '

Exemple 2. Let be A = 9K,(R) the matrix of a given quadratic form. We
consider the mapping P:R*— R given for all x in X by P(x) = {4% 2
Obviously P(ax)={A(ex), axy=a2(A%, x), and for every % in R* and « in J0, 1L
we have || Plax) || = | a*(dx, x)| = a? | {Ax, x| < a || P(x) ]| -

(1.2)

* University of Cluj-Napoca, Facully of Mathematics and Physics, 3400 Cluj-Napoca, Romania
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Exemple 3. Let X be a normed s .
. . r ed space, Y a Hilbert s dt inj
. f: X—Y with f(0) =0. We define the mapping P: )?Efena%y tlll-i I:;Eg:g
P(x) = N<F®), F()> =1f(x)]| for every z in X. If the inequality <D (%)%
f(x)));((())), thzx;)(lg’c)mac?in\;i{(, hence P(ax) = P(ax + (1 — a) 0) < aP(%) il (1_'
—a = , and. this implies for eve 0 .

| Plax) Il < a1l Pl very « e.X and a in ]O,'l[ that

Exemple 4. Let be P:R\{0}—R,

o= 1=}

» X

!

The infinite product is convergent, which is implied by the absolute con-

vergence of the serie 37 V2 for every x € R\f0}:

n;lzn—lx
Az
U n
nttl 2% x =_1_<1' xER,-xaéO.'
Us Ji 2
on—1y
We have:
= [0 - 25
P(Z x) [El( 2""1;:}{ x
\p(ix) =‘1—2 2} Pl
2 x
LS 2 =432 50
2.4/2 1 _—1_ _2J2 <‘_1_¢. 2 LI x B <>
ll——z'<5¢ R i (Y- N EELLER
P 2 ad

5 - 4 7 - . _l_ : ing
< 442 , 4~/2[' %y € 14 g] :/5 , 4~/2l_"and a=- tlns/mapp g
3

satisfies condition (1.2).
Remark. More gener
"""") with x>0

P(x) = H[l 'l

Hence for %,

ally, puting
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we have for all A < 10, 1[
' = _= %5 '
Pl = (1= - i

P(xx)=(1—§)(1—§)(1 —";'x)...

LP_()fll'<|1—=f: < A
[P |+ ‘ax |
o 1_{-‘)\>£ M.>O
* . x. xl x =
1—Zlgree—2Agl—= < A= e -
: Az F7 _ S’— w
- 1 A P79 % <0
x*
—_ : , o0
x <] OQ'O[U[“‘“)JF[@,CE[ . .
= x* AL+ )’ (1._;.);_].
z <10, (l—m]
. z d eVg}l i [ ine-
S0 %o € | o [ and %o AL+ 27 (1=l the ine

quality (1.2) holds for every A € ]0, 1[.

2, Let X and Y be normed spaces and the mapping P:.X—Y, and let
denote £(X,Y) the set of the linear and continuous mappings of A" in Y. The
mapping [#,v; P] € &X,Y) is a divided difference of first order of P in
the distinct points #,v € X if [#,v; P}{u — v) = P(u) — P(v). We consider
the symmetrical divided differences, i.e. [#,v; P] = [v, u; P]. For divided
differences of the second and higher order the symmetry is supposed too. We
use for divided difference of second order the equality [u,v, w; P] (4 —v) =
= [4,w; P] — [v,w; P] (see e.g. [1], [2], [4]).

Supposing the continuity of the mapping P and the completeness of X,
we prove the quadratical convergence of the sequence given by U

dnt1 = %y — [%,, ax,; P]7P(x,): = x, — D, P(x,), # €N T 2a)

* (with x, in X given, P(x,) # 0) to a solution of the equation (I.1).
. THEOREM. We suppose that there exist x, « X, a = 10, 1[ and the red,

;t_r;ctly positive constants By, 1o and M such that the following conditions are Sabs-

ea

(1) The mapping (%o, axy; P171: = T, cxists and [|Tol] < By

(i1) gP(xo) Il < ng and || Plax)|| < a|| P(x)|| for cvery x in the closed sphere
e [fpr]={r eX:|x - Zoll < 7}, where v = 2Bymy(l + a);

(ii) for every u,v,w of S{x,, 7] we have I [u,v,w; P]|| € M; ‘

(iv) &y = BXM(1 + a)n, < L.
3
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Then the eéuation (1.1) has a solutio . ‘
‘o7 ; - n x* in S{x,, r] which i i
the sequence gruen b_}{. (2.1), the rapidity of convergence b[eirotg gi’zz;wbgr ?hikfnizqrzgli?}f'

.x* - 2 \n+42 3,20
I %all < 3B,y 7, (;) . (T) - (8L -

o« .
— E 2Yk—1 (3 2n.(2k-1-
k=1{3 4 .

“Proof. By hypothesis (i) we can construct th imati
' Tl A \l) we ce e approximation x,, and b
the conditions (i), (ii) and (ii1), considering the formulals)P(Z.l) we obtain for xl};

where

12, — %ol = [[DP(xo) |1 < Byng; |
Hxl—axo”=”xo_(‘xb’—r‘op(x)“=H[x:ax;P](x _.ax)_
— LoP(%o) 1] = [ITo{[#0, ax,; P](xoo— ax,) — 10)("0)3“ = '

= |[[o[P(x) — Plaxg) — Px5)]|| < Bo||P(ax) || < Boang < Bore:
||laxy, — axy|| < aByme < Byny; ' '

|lax, — xo1] = |laxe — %y — al\P(%,) || = || To[%0, 6% ; Pl(az, "'xo)“—
— al'yP(%o) || = [ITo{P(axy) — P(x,) — aP(xe)} |- < Bono(l + 2a) ;
[j2o — axo || = [Ty [%0, a%o; PI(% — axy) || < Bono(l + a).

These inequalities show that ax,, %,, ax, belong to S[%, 7]. The hypothesis
(i)—(iv) arc satisfied for x,, when the constants By, 1, are replaced by the
B,, n; which will be established. '

a) Indeed we have

I — Ty[x,, ax;; Pl =1 — [xg, a%,; P]7\([x, ax,; P] =

= [%,, axy; P171[x,, axg; P] — (%o, a%o; P]7x,, ax,; P] =

= Do{[%0, a%o; P] — [%1, 8% P} = To{[x,, a%,; P] —[a%0. %1} P] +
t [a%, %; P] — [#, axy; PTy = Dof (%0, a%o, %5 P)xo — 1) +

+ [ax,, %y, 6%, ; Pl(ax, — ax,)}

It results: ‘ l
H — Lol ax,; Pl < ByM(1 + a)ny = ko < ry

and so we obtain
. 1

. -1 <
|| Dol azy; P17 S7=g <

]

Using the equality '
(T, (%1, a%; P10 = [%0 6%1: Pt =T,

we obtain that the mapping I’y exists and '

3
||P1||$T'€2;=B1<;B° (B, < B))
The
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b) The definition of the diveded differences and the reccurent fotmu]
(2.1) give for =1 . N
[%g axg, %13 P(%1 — axy) (% — %o) = {[%0, %1; P] — [%0, a%o; P}
= [%g, %13 PJ(%1 — %) "‘[xo:““xoi Pl(x, — %) = P(x;) — P(x,) + P(xo)tp(xl)

x‘“xo)§'

and it results that

”P(xl) H — Il[xo;axo, xl; P](xl_ axO)(xl - xO) ll <
< M||x — aon - % — on < .'WBga"hz) = BgM"lo““’lo < ho"]o ="M < gno )
¢) We have
— " - M Ne = LI KA LS TR 1
I= BM(1 + appy = 7= (1 + ) oo = 75 < (2) By =~ <z

Using the result a) and formula (2.1) we can define the approximation X
which by the results a)—c) has the following properties : 2

T = . . . o Bo_ . 1
Nz, — 2 || = |1 T P(x) [ < 1Ty ‘ [I1P(x) || < By = Y USIPRS ;Bo")ol

122 — axy || = |1% — ax, — Dy P(x%) || = |ITW{[%, ax;; P)(x; — ax,) —

— P(x)}|| = |IT4[P(xy) — Plaxy) — P(x,)]| < By[|P(ax,)|] < Byay, <

l ’
<;Bo"lo;
llaz, — x| | = al|% — 31| < aBiny < o Bynoa < < Byna;

Hax, — % || = |lax, — %, — oD\ P(x,) || = Iy [xy, axy; Pl(ax; — %) —

~—al\P(xy) ]| < BIHP(axl) — P(x;) — aP(x) || < Bygy(l + 20) <

1

1
< ry Byne(l + 2a) < 2 By + Bonea;

Il = aml = 1I0s[x, e, PY(xy — am) || < Byny(1 + @) < + Bano(l +9)

These inequalities show that th i ‘
S[x,, 7). Indeed we have ® poiuts @, %, ax, belong to the sphere

% — ax, ]| & Boﬁo(l + 2a);
1% — %3] < | ]2y — ,]| + 1% — 2,]| < Byy, (1 +l) < 2B,10 ;.
2
1% — axy|] < |12y — azy || + lax, — a%,|| < Byyo + ~ Byno + 2BoM0é =
2

3 .
=3 Bono +2Bynea < 2By (1 + q)
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conditions (i)—(iv) of the Theorem are verviﬁe

T < % and v, = Ayn, the
d for x,. We have

I — Ti[%, a%; Pl =1 — [z, ax,; P][x,, ax, : Pl =

= Dyl{l#y, 0200 P — [azm, 5 P] + [an, x,; P + (2 aty: P] =

= I{[#, ax,, x,; Pl(x, — %) + [axy, x,, ax,; Plax, — ax.;]}
which implies g

I = Ty[xy, ax,; PI|| < BEM(L + any = Iy < -

and so ’

[Ty {%g, axy,; PI7Y|| < 1 <32
1=k 2
By the evident equality '
() [xg, ax,; P = [x,, axy; Pjt=1,

it results the existence of the mapping I', and

B 2 '
T < 72 stgBls(g—)Bo (B, < B,)

As above we obtain

P(xz)' = [x;, ax;, %3; P)(x%, — ax;)(%, — %)

and it results
[1P(x) ] = | ,[3’1: azxy, %y ; Pl(x, — ax)(x, — ) || <
< M||x, — axy|| - 1% — %, || < MB} an} = BiMy,an, < by =

1 13)2
= ~ < |-
N < 3 M 3) ’?o

and 1
By, < 2_,Bo Mo
We have . R
hy = B}M(1 4 a) 9, = m _'hl), M(1 + a)hyny =
B [3) . 3.2(_1_)2—__—__1_<_1_
=(1—‘h.)=_"2‘) h‘s(z) 3] T4 s

By induction we can prove that the point %, given by (2 1) exists for every

n N and it satisfies the inequalities

1 .
”x- - xn—l” < Bn—l Nn—1 < 2,,__1 Bo"lo'

1
. 1 . — —— By1e:
1%, — @%n_1]] € @Bacitnlt < =T Bono: |laxs — a%a—s|| < =7 DoMo

1 .
‘Iax- — Xpo1 H < B»—l 7},;_'1(1 + 2a)< F:I—Bo ‘no(l + Za)
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nd ax, belong to S{%o, 7]. The hypothesis

Which show that @Xn—1, %» and &= ' .
hich 1 atisfied and the following relations holq . of the

Theorem for X, and ax, are S

B of 3\#
= B’\
Il <=5 - =P (5] - Bo:
HP(’C”) H S h‘n—l Nn-1 = Nn < Te ;
3n (2.2)
—_ h;zl—l 3,2 9 .
b = “”.hu--l)2 < {2) b1

}
(2.2) it results that

3 \2(2"—1)
) R

By the relations
hy < (_ 0

2

2 \2(n an
" < 3110(5)2 . %)  (Bh)? -

1
[ #4151 < Bua < 5 Botlo

| Using the properties of the norm by the relations (2.3) ;we obtain succesively
Hewip — Zall € 1% — Znrr [+ [Fnpr — Zug2 |l F oo F Xnspo1 — Xagp <
- atp 1€

< B» M+ B»+1 Nwst + oo + Bn+p-l Nn+p—1 <
2\n4+2 (32" " "
< 3Bgn, ('g) ’ [T' - (32! [1 + —23- (%)z C(Bh)Y + ...

. 2y-1 (3 onp—1_1) i
+ (3] (7) . » {3hg)? (29-1_'1)] <

-2 \n+2 ) v
< 3Bo"lo (5‘) . (-i—)z . (3};0)2”§ (-?_.]k—l . (i}zn(zk—l_ 1
k=113 4

M

E(E_ k-1 3 2n(2k_1_l)«
k=113 (:)

erges i . .
ges, and its sum s is majorized by the sum of the series

E("z‘ b-1 (32—
k213 (I) C.

For all ;b € N we have hence

where the series

N2ty — 2,1] < 3 2 '

all € 3B, 242 3 o

, oms (3 (5 era o @A
[ 4
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and for n— o0 we have ||x,,, — % ||— 0 inde

(x,.)hisi . ; (;cauﬁhz*se%uenge‘i X being Banach space, it exists the point x* € X
wit ,.L D Zy = X7 Y (2.4) for p— 0 we obtain the rapidity of convergence.

We can prove that x, and x* are in S{x,, r]:

pendently of $, i.e. the sequénce

Hxe — % ll < 1% = 211+ Tlxy — 2,1 L 2oy — 2] <

1 1 .
é Bono "," ;Bono"‘ ;’Bono + P +2—”—-_l BO"]O <2Bo-qo

% — atull < llxr;—axIHJr lax, — ax, || + ... 4 |la%eey — ax, || <
1
< Byl {}'2“) + 7_,'Bo"ll~o +2_2 Bone + ...+ 2"#_1 By <

= 2Bgno + 2aByng = 2Byn,(l + a)

The divided differences [x,, ax,; P] are bouudeci in S[x,, 7]:

[%,, 6%,; Pl = [x,, ax,; P] — [ax,, %._i; P] + [a%x,, %oy} P] —

— [Huzt, Xuez e PT A4 [%n-1, % ;_P] — [%n=z, %p3; P]1 + ...

coo A [¥0 %oi P[5, %05 Pl = [Kam, %, a%e; P(ty — %) +

+ [Xu—2, Xu-1, 4X,; P](‘M"n — Xu—2) + (-3, Xn—2y Xnet; Pl(%not — %ul3) 4 ...
oo [%oe Xy, Xa5 PI(%y — %) + [%y, %45 P)

| [ a%s PIH < M2 — Zaca | + @12 — %o ||+ [Ha%er — %2 || +

+ [1taor = Szl |+ ¥z — Zaos| L+ oo+ e — 20+ (12— %] ]) +

+ 11l%0, %15 PTII < M[2Bgny + m Botlo + 5=z Bonoll + 20)] +

+ |1[%e: %y Pl € K

Taking in account this fact, in (2.1) for #-—00 we obtain' that x* is a solution
of equation (I.1). ' !
Remarks. 1. Condition (iii) of the Theorem can be replaced by (iii’) For.
every #,v,w € S[x,, 7] we have . ‘
H[u,v; P]— [u,w; P]]| < M[lv —wi}
without the change of the conclusions or of the proof.’
2. The sequence (x,) given by the formula

Fnp1 = ax, — L, P(ax,)
is the same with the sequence given by (2.1). Indeed we have
Xnt1 — ;n+l = X, — A%y — [an(xn) - I‘,,P(ax,,)] =
= T, [%,, a%,; P)(x, — ax,) — Du[P(%) — P(ax,)] =
= I, [P(x,) — P(ax,) — P(x,) + P(ax,)] =0 |
3. If x* £0 is a solution of equation (1.1), then a*x* (n = N) are the
solutions of this equation and lim a"x* = 0.

n—+Q0
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BASIC PROBLEMS OF THE. METRIC FIXED POINT THEORY
REVISITED (1) .

10AN A. RUS®

)\’eta’ved: February 12, 1989

oY, 1 N ¥ —-—
RIEI,TI )l.l\g'l_.q - Problemele de hazid ale teoriel metrice a punectulul fix revizitate
( )', n 79 in lucrarea [45) am formulat anumite probleme deschise, in legi-
turd cu metodf\ aproximatiilor succesive, probleme ce in opinia autorului sint
fundamentate in teoria metrici a punctului fix. In prezenta -lucrare se rejau
aceste probleme din perspectiva rezultatelor obfinute in pericada 1980— 1988
Prima parte a lucririi se referd la aplicatii univoce. .

1. Introduetion. In 1979 in the paper [45] we formulated some basic pro-
blems in the metric fixed point theory. The aim of this paper is to analyse
these problems from the perspective of the results given in 1980—1988. In
the first part of the paper we refer to single valued mappings. ’

Throughout the paper we follow terminologies and notations in [47].

We begin with some old results ‘
2. Resuits. The following are the principal results of the metric fixed point

theory in 1922—1979:
rHnEOREM 2.1, (Picard, Banach, Caccioppoli). Let (X, d) be a complete metric
space und f: X— X an a-contraction. Then ‘
() A Fy = {x*}, .
(1i) S*(xo)— x* as n— 0.
THEOREM 2.2. (Bessaga). Let X be a nonempty set and f: X— X a map-

ping such that
F/ = Fn == {x*},
on X such that

for all n € N. Let a € J0,1[. Then there exists a melric &
(i) (X, d) is a complete melric space,
(i) f: (X, d)— (X, @) is an a-contraction.

THEOREM 2.3. (Janos). Let (X, d) be a compact metric space and [ X—+X
a mapping. We suppose ’
(1) f s continuous, : : .
: n X — x*}
2) JavA ) ={

, Faculty of Mathemalics and Physics, 3400 Cluj-Napoca, Romanis

® Universsty of Cluj-Napor

'
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' Then for each & < 10, 1[ there exists a metric p on X such thas,
(i) d and o are topologic equivalent,
(i) f: (X, o)~ (X, p) is an a-contraction.
THEOREM 2.4. (Meyers). Let (X, x) be a metrizable topological spac, and
f: X=X a continuous mapping. We suppose

(1) ‘Ef = '{x*}: ) !

@) frag— x> as n> 0, for all %, € X, '

3) there exists an open neighborhood U of x* Such that for any open neighp,,.
©) hood V of x* there exists an (V) > 0 such that f(U) C V. &hoor

Then for cach a € 10, 1[ there exists a metric d on X compalible wi, .
such that f: (X, d)—~ (X, d) is an_a-contraction.

THEOREM 2.5. (Banach). Let X be a Banach space and f: X — X an a-cop-
traction. Then 1, — f is a homeomorphism.

THEOREM 2.6. (Caristi). Let (X, d) be a completc melric space and f: X — X
such that for some lower semicontinmous ¢ . X—R*

d(x, f(2)) < o(%) — o(/(x)),

for all x € X.
_ Then f has a fixed point. If f is continuous then ( f*(xo))nex converges lo a
fixed point of f. )

' THEOREM 2.7. (Dugundji). Let (X, d) be a complete metric space and f: X— X
such that d(f(%)), f(3)) < é(¥, y):for al z,y X. If the mapping g: X X X—R,
(%, 5) = d(x,y) — d(f(x), f(y)) is positive definite mod A(X), then [ has a unigue
Jixed point x* and fr(xg) — x* as n— 0, for all x, € X.

:I;r(;;n these results the following definitions arise.
. Definitions. DEFINITION 3.1. (see (471, [49], [50]). T Y
. . » A A ) ] . 4(‘t 4\, d be a
in*et‘fleXSE;aCi ;";1 mapping f: X— X is a (strict) Picard mapping if( theze exists
% = X, uch that Fy = {x*} aud (f*(xy)sex converges to x* (uniformly) for all

mapgiiFn}I?f}?N 3).(2._(see [47], [49], [50]). Let (X, d) be a mectric space. A
(umsor r;glly). for—:lll x.lse(s%wt) weakly_ If’icard.mapping if (f"(xo))nex converges
point of . 0 and the limit (which may depend on x,) is a fixed

DEFIN 3 -

iSO o ) ) 0. e X s ngnemyt, st & o
for all m o N g if there exists x* € X such that 17[” = {¥*},
. DEFINITION 3.4. (see [47), [49], [50

Ping f: X— X is a Janos mapping ,if[ ﬂ])fn(%?;c i_( {}ii}a
_ [ DEFINITION 3.5. (see [47), [497] [50] .

f:X— X is a Banach mappi:l;g[if]' [50]

nonempty set. A map-

N
.)Let X be a Banach space. A mapping

(1) fis a Picard mapping
(i) ly—fisa homeomorphism.

,
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he following e .
1;heor,l;’.e oflowing probl'ems are the basic problems of the metric fixed point
4. Problem 1. Problem 1a. Let (X, d
Which generalized contractions f: X —+ X are
(a) (strict) Picard mappings?
- (b) (strict) weakly Picard mappings ?
(c) Bessaga mappings?
(d) Janos mappings? _
For some results for the Problem 1a see: {97 [12] [18] [19] [23
(271, (28], [32], [36], [44], (451, (47, [54] (91 (12], (18], [19], [231..
Problem 1b. Let (X, d) be a bounded 1 i ;
generalized contraction f: X—»-)]{ are unded complete metric space. Which
(a) (strict) Picard mappings?
(b) (strict) weakly Picard mappings?
(c) Bessaga mappings?
(d) Janos mappings?
The main results for this problem are: _
_THEOREM 4.1. (see [46]). Let (X, d) be a bounded complete metric space,
[ X=X and ¢: Ry — R, We suppose that .
(i) @ is a comparison funclion (i.c., ¢ is increasing and ¢"(t)— 0 as n— 0
Jor all ¢t > 0),
(ii) 3(f(A)) < ¢(3(A)), for all A C X such that f(4) C 4 (i.e., f1sa (3, ¢)-
conlraction).
Then
(a) f 1s a Picard mapping,
(b) [ is a Janos mapping.
~ Proof. (a) Let Ay:=f(X), ..., App1 = f(4,), ... We have A1 T 4,
A, = A, and f(d4,)C 4,, n €N.
On the other hand
3(Aper) = 3(/(4,) = 3(/(4,) < 9(8(4,) < 5. < ¢"(3(X))—0 as n—co. Thus
we have == (A, = {x*} and f(4,) C 4,, ie, F,= {x*}.
Let x, € X and B,: = {/"(x,), f**' (%), - ., #*}.
From f(B,) = B,., C B,, and 3(B,41) < 9(3(B,)), it follows that 3(B,)—0
as n— o0, .., fi(xo— x* as #— 0. :
(b) x* € Nf(X) C 4, = {2*}.
ne N .
THROREM 4.2. Let' (X, d) be a bounded complete metric space and f: X—+X
a mapping with the property that there exislts n € N* such that f* is a (3, ¢) —
coniraction. Then
(a) f is a Picard mapping,
(b) f is a Janos mapping. .
Proof. (a). + (b). From the Theorem 4.1. we have

Fp'= {x%} and 3(/*(X))—0 as k—co.

) be a complete metric spacé.

i

v
H

1
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On the other hami
X&) D - DFX D DX

Thus we have (a) + (b)- ' '
For other results for the Problem 1b see [11], (18], [36], [44], [45] 6]

47], [58] .
L ]P > b lem lc Let (X, d) bea compact metric space. Which generag;, -
contractions f: X— X are : t2ed
(a) (strict) Picard mappings?
(b) (strict) weakly Picard mappings? .
{c) Bessaga mappings?
(d) Janos mappings ?
The main result for the Problem 1c¢ is :
rEEOREM 4.3. Let (X, d) be a compact metric space_and f: X — X 4
sinuous mapping such that 3(f(4)) < 3(4), for all AC X, hi Papadly
ot S (A) £ 0. for which f(4) C 4
© Then:
(i) f s a strict DPicard mapping,
(ii) fisa Janos mapping.
o tfro%.l (i)h+§iig. V&;e remark that card I, < 1.
1 the other hand by a lemma of Martelli [30] there exists a .
Y e O b T This implics 5(Y) = 0. Ths ¥ = (34}, 16
1= ©" Quf'(X). From the continuity of f we have (sce [29]):: £,

(2) f(de) = Aw. This impli ~
' . plies {3{(4«) =0, i.e, = [x*
) B a5 nmcor - =%
FromF (a) a:x};i (b) we have (i) and (ii).
or other results for t .
[473’5 [41)8]. or the Problem 1c. see: [18], [29], [36], [44], [45]
. 5. Problem 2, e
space ancli f:e)r(nx2 YI_‘_ef )E'A' d) be a complete metric space, (Y, t) a topological
Which are the generali a continuous mapping. We suppose th’at F = {x;}
mapping P:Y gXera 1zed. contraction f(.,y): X=X,y €V, s sion = (o)
e oA, =% is continuous? ,y €Y, such that the
Tmsglilac\({m;lder( some4re5u1ts for this iJfOblem
A A S *
ee [47]). Let (X, d) be a complete metric space, (Y,7) 8

" topological space and |
. : ef: X xY )
exists a sirict comparison function—; }s(ugli ctlh;;mtmuous mabing Jor which B

d )
sz e Xy ey, S o)
ng;g:{ ’g“zi’?(i:eg 1[34 sis 'continuous
;k(;g e;)zsj‘(a’ b <03 Yo X be o continuous mapping U
L7 xa'y)) < ad
andy <Y 1 ) (xp xz) + bd(xbf(xl, y)) + d(x f(x )) f all %, % eX
» then the mapping P is continuous. = /% YN, JOT p o
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For other results for the Problem 2 see (171, (18], [27], [36] [457, [47]

481).
L 6. Problem 3 Problem 3a. Let (X, d)
ffa: X—X, n €N, be such that:
(i) f. converges uniformly to f,
(ii) FI = {x%},"
(iii) F m#* 0.
Let x,. s F Which are the generalized contractions f such that (%} )sen
converges to x*? -
We have
THEOREM 6.1. (see [47]). If f is a sirict @-contraction then xi— x* as n—+o
peFINITION 6.1. Let (X, d) be a complete metric space and f, f,: X— X,
n € N. The sequence (f,).ex is asymptotical umform convergent to f if for each

e > 0 there exists #4(z), my(e) = N such that d(f(x), f~(x)) < ¢, for all n >
> ny(e), m = my(e), and all x € X, )

If the sequence (f,).ex converges asimptotical uniform to f then we denote

fn ’—’f

Example 6.1. If f is a contraction and f, = f, the f,,_.f
E wun/)lc 6.2. Let (X,d) be a bouuded complete metric space. If f is a

be a complete metric space and

Kannan mapping and f, =X/, then f, _>f
Now wc can give.

rHEOREM 6.2. ([491). Let (X, d) be a complete melric space and f, f,: X— X,
n € N. Ve suppose that

(i) f is a Picard mapping (Fy = {x*}) /

i) f, 2%/ |
(iti) Iy # O(xs € Fy) for all m N.

"Then xp— x* as #-— 0.
Proof. From (ii) and (iii) we have

d(xy, x%) = d(fi(xs), fr{x*) < d(fp(xs), fr(x3) + d(f"(x%5 ) fH(x*)).
Let € > 0, and ny(e), my(e) be such that

Cd(fm(xn), () < i, for all n = #ny(c), m = my(c).
From (i) we have that for each % 2 n, (c) there exists m(n; ¢) € N such that
mim €}« min;€) -k i .
a(frma(zy), freso(a®) <

The proof is complete. '

5 — Mathematica 2/1989
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Problem 3b. Let (X, d) bea complete metric'space and f, f, : X _,. Xon < .
We suppose that: . :

(i) f fa are generalized co,n!:ractxons,

(ii) (fn)nex converges pointwise to for

(lll) an = {x,’,}, Ff = {x*}, neN

> x* as #—+00?

D s e Let (X, d) and (X, d,
suppose that

(1) fa: (X, dy) — (X, d,), f: (% @&)— (X, d) are generalized contractions,

(i) 4 =4, '

4
(i) £ =/
(iv) Fp,={m} Fy={z*}, n € N

), » € N be complete metric spaces W
- We

s

Does x‘,‘.—d->x* as n—c0? N
For some results for these problems see: [9], [16], [18], [32], [36], [46]

471]. , . .

[ 7. Problem 4. Let f: (X, d)— (X, d) be a Picard mapping. L¢t g: X— ¥
be a mapping which approximates the mapping f. More preciscly we assume
that
d(f(x), g(x)) < w, with given » € R,, for all x € X. Let 3, = g"(x,). The
problem is to give an estimate for d(x*, y,).

For some results for the Problem 4 see [45] and [47].

8. Problem 5. Let (X, d) be a complete metric space and f: A'— X a Lip-
schitz Begsaga mapping. A problem of practical interest is ,,to construct” an
equivalent metric p on X such that f: (X, p)—- (X, ¢) is a Picard mapping.

For some practical results for this probleme sce: [8], [6], [18], [24],
[36], [45], [47], [49].

9. Problem 6. Let (X,d) be a complete metric space, Y C X a closed
subset of X and f:Y— X a mapping which satisfics a“boundary condition”
(i.e., /(6Y) NY ; Leray-Schauder (if X is a Banach space and Y = B(0; 7)), ctc.).
Which are the generalized contractions f:Y — X such that F, # O.

Now some-results for this problem. :
. » THEOREM 9.1. '(sge [43] and [52)). Let X be a Banach space and f: B
(0; 7)— X a weakly inward contraction mapping. Then I, = {x*}. o
e ';‘HE?REM 9].21.1 (iefe( (18]). Let X be a Banach space and f: B(O;7r)— X I:: ;

niraction such tnat f(x) = —f(— . e unighe |
Sixed point )= —f(=2) for all x & 9B(0; 7). Then [ has a wiighe |

f‘:rl:)ther results for the Problem 6 sce: [1], [2], [18], [43], [52]

. Problem 7. Let (X, ||-]]) be a B o Whi lized con-
tractions f: X — X are Banalclhlxll)lappiigs?na(:h space. Which generat

For some results given by Danes, K " Ha, Rus
Muresan see: [47], (18], [22], (31 f" olomy, Dugundp and Granas, ,

.
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11. Problem 8. Determine 4 generalized co
(i) F,NF,= {2},

() F;=F, = {x*}.~

(iii) f and g are Bessaga mappings,

(iv) f and g are Picard mappings

(v) f and g are Janos mappings.

ntraction pair f, g such that

We have . .
THEOREM 10.1. (sce [45]). Lot (X, d) be a complete metric spaccand f, g: X—X

two mapping for which there exists 4 < ]O, l[ such that
l)

/(%) 8y)) <a [d(x, f(x)) + d(y, g(y))],
for all x,y € X. Then
() F,=F, = {x.
(i1) f and g arec Picard mappings. !
For other results for this problem see [14], [15], [33], [34], [38]; [401,

[45], [47], [53]. , |
_ 12. Remarks. Remark 72.7. Three technique of proofs are now available
in the metric fixed point theory:

(i) the method of successive approximatiou‘s, .

(i) the mcthod of maximal elements. [4], [11], [17], [18], [37], [48],
[55], [56].

(ifi) the method of Dugundji [18], [47].

In this paper we refer to the method of successive approximations.

Remark 12.2. For some results and problems in the coincidence point theory
sec: [18], [47], [7].

Remark 12.3. For some results and problems in the fixed point theory of

noncxpansive mappings sce: [43], [21], [26]. ' ) ) _
Remark 12.4. Tor the fixed point theory of expanding (dilatation) mappings

sce: [20], [14], 125], [41], [45] _ ) o
Remark 12.5. For the fixed point theory in generalized metric spaces see:

[47], 145, [27], (37), [42}. | _— ,
Rewsark 12.6. For some application of the metric fixed point theory see:

3}, (5, [6], [8), [9), [10], 18], [39] [47].
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xiuntlor semi-simetrice $i stert-simeftrice. In lucrare

j ., — Asupra cone " A e v
;E%:sj:q: mai mulfe proprietdti in spatii cu conexiune semi-simetricd sau sfert-

~simetricé.

P Let A, be a space with affine connection. Noting by I‘,'-@ the COmponents
of the affine connection, in a coordinate system and by Tj = I — T%; the
components of the torsion tensor, one say .[7] fchat the connection TI' is gem;.
syminetric if there exists a covariant vectorial field S; so that :

Th = S;8i — S,3; ()

-and quarter-symmetric if there exists a covariant vectorial ficld S; and a ten-

sorial field # so that:

=St — St 2
if we apply in (1) a contraction in 7 and j it follows
Ty = Th = Si(l — n) &)

where T, is the torsion vector or the Vrinccanu vector,
Taking count of (3) in (1) it follows

i 1 i $
= — [Ts 8 — T; 8] (4)

PROPOSITION 1. In a space A,(n> 1) with semi-symmetric connection, the
torsion is determined by the torsion vector.

. PROPOSITION 2. In a space A, with semi-symmetric connection, the torsion
beeing determined by the torsion vector as in"the case of the spaces A,, the rezults
Jrom the volume I of “Lessons of Differential. Geometry” one extend oner these
spaces too. '

If the space A,, is of recurrent torsion

(5)

Tj, =¥, Th )
where comma denotes the covariant derivation with respect to I', [2], by cof
tractingin 7 and j it foollows ’
[ Tk,r = \lp' Tk (6)

H » . .
that is the Vranceanu’s vector is also recurrent with the same vector.

® Unsversity of Cluj-Napoca, Faculty of Mathematics and Physics, 3100 Cluj-Napoca, Romania -
. . ’



SEMI-SY, .
MMETRIC AND QUABTER—SYMMETRIC CONNECTIONS 71

Let us notice - ‘ o
the converse is alsgogug’s]bg:l:zszt ftrl::n szces with semi-symmetric connection
taking eount of (6) and (4), it follows ( 5§ ), through covariant derivation and
ncctilgzt [T] il;papgs;éllllghv;;g:t we have T;j= Tj, so T connection is \a E-con
: -wtavre ¢ i ) : . , ocons
and from (3) it follows - onnef:tlon [8]. In this case S; is gradient [7]
Remark. In a space A, wi i . .
vector is gradient. P » With semi-symmetric connection, the Vranceanu’s
It is known (7] that in a i : . .
place the relatio 1[1 s]: n a space A, with semi-symmetric E-connection: take

1

Tiix + Thi + Thi; =0 ‘ 0
In the case of T-recurrency the relations (7) become:
‘IPhT:'j+‘F¢:";‘k+q'}ﬁi=0 (8)

which are Walker-like relations [10]. From (8 t i i
taking (4) into account, it fol]ows:] (8) contracting in % and & and

2—m)¥, T;=0 9)

PROPOSITION 3. In a T-recurrent A, space, (n > 2), with a semi-symmetric '
E-comnection, the vector of T-recurrency is solution of the system (9). ‘

It is known (3] that the T-recurrents A, spaces, with T-recurrency wvector
the gradient of a function " are metrizable, the metric tensor beeing gi; = ¢=2¥ T;
where T = Th Tf,'. . 4 ”

PROPOSITION 4. In the spaces A,, T-recurrents with semi-svmmetric E-con-
neclion, one attach to I ametric connection between them, taking place the relation :

= []’k} 4S8 —gu S, Si=ghS, (10)

and for these spaces are valid the results obtained together with P. Stavre [6].
From the quarter-symmetric spaces (2) let us consider those for which
the tensorial field # is covariantly constant and S, is gradient. For these spa-

ces, it follows imuncdiately the relations (7). So: _
PROPOSITION 5. In @ space A, with quarter-symmetric connection in which

the tensorial ficld 8 is covariantly constant and the veclorial field S,, gradient

relations (7) take place.
addition the field S, is recurrent of vector ¥, it

For these spaces, if in ‘ ,, |
is known [5] that they are T-recurrents of vector ¥,. Teking count of this in

{(7) it follows (8) and therefore. ' '
PRQPOSITION 6. In a space A, T-recurrent with quarter-symmetric connec-

tion in which the tensorial field & is covarianily constant and Si gradient, rela-

tions (8) take place.
In (8) contracting in ¢ an

(Th, + T 8 — T, 8) ¥ =0

d j we have:

(11)
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. nt with quarter-sym ;
prOPOSITION 7. In @ space Ay, T-recurrcnt ! YIMELTIC Conye,

Jion in which the tensorial field i is covarianily constant and S, grodien
109 1

7 B

3 } tem (17). t, the

cv vector 1s solution of the sys ’ | ‘
T~re¢;4]:(r)e;;chTmN 8. A necessary condition for-a space A, with qua rlc"'s,)’7n1;'zet,ic

al field & antly constant and S -
connection with the tensorial field Y covarianily + gradient 4, e
T-recurrent is that o |
rank || T — T 5 — T; &l < 7

. g T ts with T-recurrency gradient bee
Remark. The spaces A, T-recurren ; a eeing
metrizable, it follows that for those spaces with quarter-symmetric connectiop

2 . ! ., . -
with f! covariantly constant and S, gradient, proposition 4 is true.
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REZUMAT. — Asupra unel metode pentru ob{inerea transformirii eonexe generale.

In aceastd lucrare se di o clasificate a transformirilor cemexe aplicind teoria
punctelor fixe ale aplicatiei fo:

1. The map f5. Let M be a C» — differentiable; real » — dimensional
manifold, (U, 9) = (U, ¢(x) = #*) a local chart on M and g(g;) a tensor field
of type (0,2) symmetric and nondegenerate. We consider the Obata’s opera-
tors

ir 1 ror ir 2 iy 1 S aiar ir N

Qj=—(8: 8/ — £48"); Q= (8:3; + £48")- (1
pErINITION (1.1). The map f, : (M) — §}(M) given by
i i iy A4 Sir s
Jo 1 Xjp =Y = fo(Xp) =Qj Xu; VX = 83(M), @)
is calicd a Q-map.

1f .

, FUMI =L (Aiy| A}y < YY) ; OF A3 = 0} = 3)

we have:

rrOPOSITION (1.1). The set of all fixed poinis of fo is given by Fi(M).
Example (1.1). I t3(M) is the set of the tensor fields.t & Ji(M), with
propertics T, =TTy and :

k .
' ;‘:k = T;k + 87 &, W, + o (3)
)
then fo (Y) = Y e §Y(M).
Example (1.2). I D is a linear connection on M and
: 1 ia s
gfk =32 8 (Bay — gjk/a) < (4)

where (/) denotes the covariant derivative with respect to D, then Y is a fixed

2

point of f,.

* Usiversity aj Craiova, 1100 Craiova, Romania
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Example ( 13). Ho= nudxt is a 1 —form, on M, and

}37;,‘ = 8;7,- — g, T= £, (S)
then j\’Q(Y) = Y(Y is a fixed point of fa)
3 s 3 _ o _
Evidently, the map ¢ : w3(M) — (M) given by
o:th— o (G = Ya ©
is a bijective map. . . . |
perFmNrrIoN (1.2). If X, Y = §3(M), X is Q — equivalent with'Y (or Xa v

iff fa(X) = fa(Y). : .
This relation is a equivalence relation. Let &3(M)/% be set of allvequivajenc,

class, and 0, = {X; | X  §}(M); X = Ajp 4 QY3} where Y e I3 (M), 4
is fixed (4 € §4(M)). If 4 =0 we have
Qo= {Xis | X = 83(M); X} = QY3} VY < g3(M).
If 4, # A, then Q4 # Q4, and Q4, N @4, = . We have;
_PROPOSITION (1.2). The sets §3(M)[2 and FYM) are cquivalent (=} M) -
« §YM)) by map
© hai A —Q4; VA € §3(M). (7)
. N ¥
We obtain: (M) & (M) — 1(M)/2, and gy % Ty 0 : 11(M) g1(1f)/a
From (3) we havez 2 3 M)/ &a : -9 (M) e MAnM.
- 3 . 1 i i
| . = o (}l,jk — 1:;,-)7 (8)
We have:
TREEOREM (L1). If Wiy < (M) is given, then the iensorial syslem
Vi & Vi = ©)

has a unique solution in SYM); it is Y=L o(U) or
0o 2 )

T i 1 i ia !
10/jk = ; (u]k + 4 gbjuza + gm gbkq'l.l;a) (10)

THEORE ; s gi :
REM (1.2). If 7} (M) is given then the lensorial system :

QX0 — XY = 2, (1

has a unique solution in FYM);itis X —

class Q,, where 4 — 9(v) s given by (3) A = q(x). The general solution 15 4
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We have:
falt) =ctegm + g, =0; Voo (M) (12y

THEOREM (1 3) The general solution of system (9) is given by Y,, = ‘r,;, +
+ Vi where <= — "1!3,,, and Vi is an arbitrary symmetric tensor (Vi = Vij).

If V # 0 then fg( ) # V. The solution Y}, is solution in &% (M) iff:

We obtain Vin = &8 T 8 (13)
e obtain:

THEOREM (1.4). The general solution of system (9) s,
Y, = l;;k + Si (14)
where Syy is an arbitrary symmetric tensor (Si= Si)

2. The set §. Let D = (T) be a linear connection with the torsion tensor
Tj» = Tjs — Ty and a general transformation T: D— D, given by.

Ta=Th+ Y Yiesim). )
DEFINITION (2.1). The transformation, T:D — D is called a Q-fransfor-

mation if Y} is a fixed point of fy.

DEINIETION (2.1). The transformation T is called a non Q — transforma-
tion if Y cannot a fixed point of fq.

Let &, the set of Q — transformations and §ynq the set of non —Q —
transformations.

LEMMA S (of Separation). We have o N Foon = D, Fq UFwona = F, where
§ s the general group of connection lransformations.

From (2.1) we have . . . ' .
Y_;", -— Y;,, = 2‘[.')"/,, (2)
where 1) = % (Tix — T})  «}(M).

From theorem (1.1) and (2.2) we obtain:

TIEOREM (2.1). A mecesary and sufficient condilion that a transformation
Te§ beaQ — transformation (T € Fq) ts given by

Y = o(v) (3)

Y = fa(X) (4)
where X 1s arbitrary tn Q4=qp)

From theorem (1.4), and (2.2) ve have:
THEOREM (2.2). The transformation T €§ is a
(T € guonﬂ) 1f/

or

non Q — iransformation

Y = o) + S, VS #0, Sh= Si; (5)
Y =fQ (X) + S, VX s QA=9(‘:) - (6)

or,
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¢ Qoparation). Every Ted 15 gen by2]l) and
THEOREMQ (42)?)07((;?3 2;};1; by (2.1) and (_2-5) (re;?e_ciwely (2.6)). 23)
(respectively (& y cient condition that a tran

THEOREM 2.4 L4 1

4). A pecessary agzd suf ' '
‘T € 9'1 be a T(Q ——) transformation is that gijx be 1nvariant.
’

Proof. Since (where (/) denotes the covariant derivative with respect to T))

ik = itk = (Vi 8 + Yir 8is) 0

Sf07mah‘0n

fn;m‘ T € §q, we have; Y = ¢ (v) and, &im = &ijk- 8

Conversely, from (2.7) and (2.8) we have Y=9¢(r)and Y e §§(M)_ Her,
ce Tefda. ' - - B
THEOREM 2.5. A necessary and sufficient condition that a lransformation T,

be a Q — transformation 1S .

—: def 1 .

' 1 ia ‘ — dof
G = 2 £ “(gajklk + By gjklla) = 4 (gai/k T 8 gjk/a) == G (9)

(G;k is -an invariant of T)
Proof. From (2.8) we obtain (2.9). Conversely, from (1.1) and (2.5) we have;
- &ijjw = gtk — ik &is — Sik & (10)
since o(x) € §3(M). One obtains

G = G — Six (1)

From (2.9), (2.11) we have Sjy=0 and Y = ¢(r). We obtain: T = Ty,
From (2.5) and (2.11) we have: '

THEOREM (2.6). A necessary and sufficieni condition that a transformation T,
be a non Q — transformation is given by gy # Ziik -

The general theorem. Every T € & is '

T =Th + ¢ () (12)
off G = &im> 07 o

Th = Th+ v () + G — G 3
. _VYF_ o on
f Gy # gip where = = Py (T —T), T is'the torsion of fixed connection D.6
1s given by

' P ! ia

. k=5 & (8 + Eangi — gjk[n)’ o4
T = 1§(M) is arbitrary,

and Gj, 1s an arbitrary simmetric lensor (Efk = G;;j)-
For a fixed (D, D),

T is the torsion of D and Gi is given by,
(_;i — _]_ afa
=g 8+ By — &) 0

-



) 7
ON GENERAL CONNECTION TRANSFORMATION ' 7

tion transforma-

\

The classical results. a). The set of all metrical connec
fions (G = 05 &iae = 0) is given by (2.12) ' ions zene-
b) If G =0, from (2.13), we have the set of all metrical connections g
e ! il transformations
o i ‘ . — ST he. ransformations,

‘C) If Ij;; = Tjk — ;1_—-1— (8] [k — Bk T]) then th(: .Set 'Of a
T e &, characterized by Schouten’s invariant I = I is given by
F;:k = F}I\ + 8;; U.]' — &Gk oc‘ + G;L - —]‘:k. . (]‘?)
suice ' .
o) = Bhoy — guot; o =g"a \ (17)
d) The sct of all conformal transformations is given by (2.13) where
Gr—Gp=8i N+ S n—gah; N=g"2 (18)
since gip = 27x8ij; Giyp = 204 gi; and G — G is given by (2.18). where 3 =
=u5—w-k X . .
¢) I Dis the Levi — Civita connection then the Weyl transformation is
given by =0, 6 =0 and gyjp # gijp =0, — G = 8 pa + Sxp;. We have

T € Fpoun, given by, '

D= (i} + 8 e + Sk (19)

f) If gym = gyn, I is a semi-symmetric connection o(Th) = 8k o; — ginoet
and T'is given by the Weyl projective tranalormation,

Di = {3} + 8 on + 8k 0 (20)
from (12, we have
v = (i} + 8 on + Shos + Sioy — gieod. (21)
It is the transformation obtained by Smaranda [4].
From (24) we havc, if Gijtk = ijths
- . f;k =T ;k + Q;; o (22)
where X is arbitrary. For a fixed (D, D) X is arbitrary in Qamgl)-
From (6) we have, the general transformation :
T = T + QF X5 + G — Gi (23)

where X is arbitrary and G = Gy is arbitrary. For a fixed (D, D), X is arbit-
Tary in Qu.eq and G is (2.15).
From (2.18) a'nd (2.23) we obtain the transformation of R. "M i r on [3].
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STUDIA

Noniinear Analysis and Applications, Edited
by V. Lakshmikantham, Lecture notes i pure
and applied mathematics vol. 109, 1987 Alarcel

Dekker; Inc..

~

The volume consists of the proceedings of

the seventh International Conference om ,,Non-
linear Anpalysis and Applications” held at the
University of Texas at Arlington in the summer
“of 1986. It contains 82 papers which show the
main trends in theory and applications of Non-
linear Analysis; in the list of contributors one
finds the names of many well-known scientists
in the field.

The book opens with a dedication signed
by XK. Deimling to DProfessor V. Lakshmikan-
tham on the occasion' of his 60 th birthday and
of this seventh conference organized by him and
his team. The preface contains the aim of the
editor ,.to pul together the works of a wide
range of mathematical scientists’’.

Iudeed, both pure and applied mathema-
ticians will cnjoy the proceedings, some of which
reflect the joint efforts of mathematicians, bio-
logists and cugineers. A set of papers deal with
modeling of combustion problems, neutral net-
works, ceological and biological systems, popula-
tion dynamics and other applications. Controla-
bility and optimization problems, Hamiltonian
systems, ill-posed  problems, scattering  theory
and Navier-Stokes equations are considered in
several papers. Various kinds of nonlincar ordi-
nary cquations (with and without delay), as
well as partial differential and integro-differential
ones are the subject of a great number of papers.
One finds also recent results on fixed point
thf:ory,.d_\’nmnical systems and numerical methods
using finite eclement and iterations.

. The reader may use the final index to find
dxrecl}l-‘ll_\'.the works {ulut(‘d to his ficld of activity,
helo t his (.mtsta'ndm_g volume wzl.l.be of great
Delp to pure and applied mathematicians working
in ‘n(mhnear analysis, biomathematicians and
engineers,

MIRA-CRISTIANA ANISIU

T. Morgan, Geomelrle
A beginner's yulde,
1987, 145 pp.

Meusure Theory.
Academic Press, New York

Geometric measure theory can be roughly

described as measure theory dealing with finite -

dimensional not necessarily smooth maps and

UNIV. BABES—-BOLYAI, MATHEMATICA, XXXIV, 2, 1989

ds from multilinear
topology and
ure theory is an

surfaces. Combining metho
algebra, differential ge?mctf}’.
measure theory, geometric measure b
important and relatively new domafu vf)f research,
with subtantial applications to elliptic variatio-
nal problems, including area minimizing p_rob'lem
(Plateau’s problem). As a spectacular apphcatxoq,
one can mention the original proof of thef posi-
tive mass conjecture in cosmology by R. Schgen
and S—T. Yau, Comm. Math. Phys. 65 (1979),
45—76. As a starting point for the modern geo-
metric measure theory the author quotes the
fundational paper of I. Federer and _\V. Fle-
ming, Annal of Math. 72 (1960), 458-_320, cul-
minating with the monumental treatise of IL.
Federer, Geometric Measure Theory (GMT),
Springer Verlag, 1969 (Russian translation,
Moscow 1987). But it is not easy to read Fede-
rer's treatise and it is the aim of this marvellous
book to make. Federer's text more accesible
and to provide the newcomer with the basic
material needed to confront the literature, to
understand and contribute to the subject. The
author achieves masterly this task.

Not all the proofs are given in detail (some
are omitted at all and are referred to GMT, as
a basic souce) but the author marks the main
steps of the proofs stressing on the ideas which
lie behind. the technical and formal aspects. For
a better understanding of the subject the book
is provided with numerous excellent illustrations
(drawn by J. Bredt). ' .

' The basic tools used in the book are recti-
fmb!e' currents and Hausdorff measure H,,. A

rec.tlhable current is an m-dimensional surface
S in R® where the relevant function fi R"— Iin

peed nqt be smooth but merely Lipschitz. By
integration on S smooth differential forms ?.
the set S may be viewed as a current, i.e. a linear
functional on differential formns. Via Stoke's
theorem — (3S) () = S (dg) — one defines a
r)e(i:t::f?—:llrly operator & acting from. m-dimensional
T "f‘hee curren;.s to .(‘m — l)-dimensional cur-
a(l\’al-lta < use o {ect)fxable. currents has some
of Sm,{,] _concerning restrictions of the types

gularities and on topological complexit

and the lack of compactuess, which o exity
. , ccur in the
:IrnO({th case. Tt is interesting to note that
ti:z &g;utxonf of th‘e‘ area minimizing" problem in
i R"’+s;siso re.ctlfxable m-dimensional currents-
o< m <y a sm<.)oth. embedded wmanifold, for
TR0, but, in higher dimensiong singula-
rities can occur. ’ gula
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Now, more exactly on the contents. The
book ;iodivided into a Preface and 12 chapters
beaded as follows: 1. Geometric measure ’cheory~
(outlining the purpose and the general concept.«j
of geometric measure theory) ; . 2, Measu.res,
3. Lipschitz {functions and rectifiable sets; 4.
Normal and rectifiable currents; 5. The com-
pactness theorem and the existence of area-

minimizing surfaces; 6. Examples of area-mini-
mizing surfaces; 7. The approximation theorem ;
8. Survey of regularity results; 9. Monotoni-
city and oriented tangent cones; 10. The regula-
rity of area-minimizing hypersurfaces; 11. ?‘lat
chains modulo v, varifolds and (M, ¢, §)-minimal
sets; 12. Miscellaneous useful results. Each
chapter is endowed with a set of exercises, com-
pleting the main text, whose solutions are given
at the end of the book. A basic bibliography, an
mdex of symbols, a subject index and a name
ndex are also included. .

In conclusion, this is a remarkable book
which can be warmly recommended to all inte-
rested to learn and to apply the powerful methods
of geometric measure theory. In reviewer opinion,
the book is also useful to the specialists in the
field for a better understanding of the subjects

rand for numerous illustrated examples.

.- S. COBZAS

C. Bennett, R. Sharpley, Interpo-
latlon of Operators, Academic Press, New York
1588, 465 pp.

The modern theory of interpolation of ope-
rators is an important branch of functional ana-
lysis with many applications to approximation
tpeory, Fourier analysis, partial differential equa-
tions etc. At its foundation lie three classical
theorems: M. Riesz convexity theorem (1926)
its complex and operatorial version proved by
G.O.‘Thorm (1939) and J. Marcinkiewicz inter-
polatlop theorem (1939) (J. Marcinkiewicz announ-
ced this theorem in Comptes Rendus — Paris
and a proof was published only in 1936 by A, Z .-
mund). Thorin’s technique has given rise t.o 1);’lil>e
igmgle)': method of interpolation and Marcj

ewicz's to the real method. e

. ;‘hg g;esel:st bot.)k' is about the real method
tartin, origins, that is, th '
heory of spaces of measura nctione B the
s developed in the first two cﬁla‘;):::;cot;‘)tnhse‘ I)v;lc:lc;h

' AY

2

-

INTRERRINDE
s . :. REA
Municipiul ’Cluj-NapcI))

1. Banach Function Spaces, ang g
ment Invariant Function Spaces ;rl{earran
function spaces are defined by g | he ', ge.
Y 2 functjo, " ah
on the space of all measurable wypgq lon
real valued functions on a o-finite m, a
and they are natural extensiong ‘
Lebesgue space L?, 1< p <o
topics treated in these chapters.meong t
absolute continuity of the morm, gyup tion:
reflexivity, separability, the spaces Lluaht{ anq
It n L®, measure preserving transfor,: L* ayg
The study of the interpolation of atiops,
begins in Chapter 3. Interpolation of (c),perat‘)rs
on Rearrangement — Invariant Spe Peratorg
the general definition of interpolation s €S, with
continuity with the interpolation betwesace‘? ang
L* and the Hardy-Littlewood maximal " 1 ang
The Hilbert transform, which plays g nooio%
role in questions concerning uorn'x-n:om,(ems“'e
of Fourier series and Fourier integrals an:i&'ena
motivates the weak-type interpolation ‘theo als_o

treated by a direct real variable approach (il;ydu
u.

ding existence and LP-boundedness
of chapter, the general results and)ﬁ‘::htol:;s by
brought together to prove some norm-con o
gence theorems for Fourier serics in rearr e
ment-invariant function spaces.

Chapter 4. The classical Interpolation T
rems, deals with Riesz and I{iesL-'l";ll:n:;”c]::
vexity theorems, analytic families of operatun;
Zygmund spaces L Log L aund L,,,. weak-ty .
theoryr and Orlicz spaces. ™ e

he last chapter of the book, (I
The K-Method, is devoted to J. I’cc‘trt';agii;:ci
of /| — and K-functionals, with applications to
Besov and Sobolev spaces, Re H! and BMO
BMO and weak-L® and to interpolation between
I and BMO and between H! and H®.

_ Each chapter is endowed with a set of exer-
cises, completing the base text and ends with
a_section of notes containing bibliographical
comments and references for furtlier investigations.

The book is clearly written and very well
organized (a list of notations and an index are
included). The included topics are carefully choo-
sen and well motivated, belping the reader to
understand the subject bringing him to the fron-
tiers of current research.

.. We recommend it warmly to all interested
In interpolation theory of operators and its appli-

cations.
S. COBZAS
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In the XXXIV-th year of its publication (1989), Studia Universitatis Babes-
Bolyat is issued as follows:

mathematics
physics

chemistry
geology-geography
biology
philosophy
-economlic sciences
juridical sciences
history

philology

.

Dans sa XXXIV-e année (1988 Studi 1 ‘
les speia ( ), Studia Universitatis Babeg-Bolyai parait dans

mathématiques

physique

chimie

géologie-géographie

biologie

Philosophie

sciences économiques

sciences Juridiques ‘
histoire

Philologie
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