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STUDIA UNIV. BABES-BOLYAI, MATHEMATICA, XXXIV, 1, 1989

GENERALIZED INTEGERS AND BONSE'S THEOREM
LASZLO CSEH*
Received:  Seplember 10, 1987 f

REZU?[:\T. — Intregl generalizati 3l teorema lul Bonse. 1n aceasti lucrare
se extinde teorema lui Bonse la cazul intregilor generalizati.

1. Introduction. Bonse ([6]) proved that the number 30 is the largest
in the set of all natural numbers @ such that if » € Z (the set of integers),

1<7<aand (7, @) =1, then 7 is a prime number. In a recent paper ([4])

Hiroshi Iwat a extended Bonse's theorem. To state Iwata’s result we
introduce the following notations:

N=1{1,2, 3 4, ...}, the set of all natural numbers;
P={2 38,5 7 ...}, the set of all (positive) primes;

pa:the n-th prime in P;

Po={pi b piih $92€ ... €Ji, 0 < ¢ <k}, the set of all products of
¢ prime numbers with 0 < ¢ < & for 2 & N, where + = 0 means P.al;

My=f{aeN:reN, r<a, (r, a)=1=7r & P}
With these notations, Bonse’s theorem is described as sup M, = 30, and Iwata's
result reads:sup M, <o for all 2 € N.

Recently, Solomon W. Golomb ([2]) posed the problem to deter-
mine the largest odd integer # such that every odd integer j with 1 <j<n
and (7, #) =1 is a prime. As an answer to this problem I found that 105
is the largest odd integer with the required property. The proof of this fact
will be given in scction 2.

Golomb'’s problem suggests to treat the phenomena in a more abstract
setting, namely in the domain of the so-called generalized integers. These will
be described in section 3, the main result of the paper (Theorem 4.1) and the
auxilliary results being placed in section 4.

2. The solution of Golomb’s problem. We begin by seeing how we can
find the numbers with the required property. Starting from 9, every such
integer # must be divisible by 3, because if it does not, then # will be relati-
vely prime to 9, and 9 is not prime. Analogously, starting from 25, every such
integer must be divisible by 5. But it is also divisible by 3, so that it must

® 4150 Odorhciu-Secuiesc, str. Hores 30/d, ap. 11, Rrymnia
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be divisible by 3-5. In this way we obtain the following table:

Starting.from 9, 7 must be divisible by 3= (}
Starting from 25, # must be divisible by 3.5= 15
Starting irom 49, » must be divisible by 3.5.7= 105

1=1155

Starting from 121, # must be divisible by 3-5-7-1

. 95 the only possible values for n are 9, 15, 21; between 25
f:é“;gl:m?ya:sd; ligtweeu 49ya1}1d 121 only 105. Between 121 and 169 we have
no possibility because 1155 is greater than 169. It can be scen that if we
continue in this way, i.e. if 17¢ is less than 3 -5 -7 - 11 - 13, 19% 1s less than
8.5.7-11-13-17, and so on, then 105 will he the greatest odd integer
# with the required property. We have to prove that p2 < jfqps ... pm, for
m > 5. This inequality can be easily proved by induction on m, also using
the inequality pu41 < 2pw, which was first proved by Chebyshev.

3. The generalized integers. The original definition and the name of | gene-
ralized primes” were given by Arne Beurling (/1)) in 1937. In this paper
they will be defined as follows:

Suppose, given a scquence of real mumbers (called generalized primes)
such that

1< <@ <9< ...

Form the set of all possible g — products, i.c., products gy ..., where g,
a,,... are integers 20 of which all but a finite number are 0. Call these
numbers gencralized integers and supposc that no two ganeralized integers
are equal if their «'s are different. Then arrange the scquence of generalized
integers as an increasing sequence:

1 =0, < by <y << ...

Let €= {g,:# €N} and & = {b,:n € N}.

Thus the generalized primes need not be natural primes, nor ¢ven in-
tegers. From the definition, the basic properties of the gencralized integers
are that the.y.can be multiplicd and ordercd, that is, countad, but not added.
However, division of one generalized integer by another is casily defined as
follows: we say d|b,, if 3c so that dec = #, and both d and ¢ belong to &
From. these def.initions, it follows that greatest common divisor, multiplicative
Iunctlox}s, Mébius function, Euler ¢ — function, unitary divisors, ctc., for the
generalized integers can be defined.

~In what follows, we assume that .the generalized integers satisfy the fol-
]o' wing condition: S :
(i) the total number N(x) of numbers b € & with b < « is {inite, for cach
Teal x> 0. ‘ : '
total fxtux]jbgft difficult to verify that the condition (i) is equivalent to: (i)’ the

To extenT(ri(:% of n’umbers g €€ with ¢ < «x is finite, for each real x > 0.

onse’s theorem and Iwata’s result we need an assumption on

the size of N(x). Throu i
. . . ghout of the paper we assume that the generalized
Integers satisfy the following basic asyxlz]p}:otic axiom : g
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45. COROLLARY. For a fized natural number 1,

lim q,..,.;/%—e =1

1.6, PROPOSITION. For @ fixed matural wumber k, we have

lim g3 (G - - gs) 7t =0.

Proof. 1f nis large enough, 0 < g*11(q:192- - N/ QI L (/% SR Y b
=gt (Gni1/Gn—t) (@ns1/Gn-rs1) - - (@ns1/ga)—0-1-1. ... -1 =0 (as n— )
"o ; ] h that

4.7. COROLLARY. For a given k & N, we can find n(k) € N suc 9192
cee @u > grEL for all n > n(k).

4.8. PROPOSITION. If b € My, and b > g*+! then ¢q,q, ... galbd.

Proof. 11 b € M, b> ¢*+' and 3 e {1,2, ..., n} such that g,/ b, then
(3, ¢*+) =1 and g*+' < ¢g*+! < b, which contradicts to the fact that b = 3m,

" 49. PROPOSITION. If b € 9, then b < ghil, where m(R) is a fixed number

in corollary 4.7 depending only on k.

Proof. Assume b & My and g**1 > b > g+t for some n > n(k), then by
proposition 4.8, 9,9, ... ¢,]b, so we have b > ¢,q, ... g,. Morcover, by corollary

47, 192 -+ ¢» > gtt!l, hence b > g*tl, which is a contradiction.

Proof of the theorem 4.1. Proposition 4.9 means that 9, is a finite sect.
Thus sup M, <o and our theorem has been proved.
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ON THE COMPOSITION OF SOME ARITHMETIC FUNCTIONS

J. SANDOR*
Received : November 12, 1988

I}EZUM:\:I\ — Asupra compuneril unor funefii arltmetice. In aceasti lucrare
sint studiate ecuat

st : 1 ii atagate functiilor compuse flgn)); unde f, g: N — R sint
functiile antme.t.l.ce ¢, 9, a*, ¢, reprezentind: suma divizorilor, indicatorul lui
Euler, suma divizorilor unitari si functia lui Dedekind.

The aim of this paper is the initial study of some equations for the
composite functions f(g(n)), where f, g: N— R are the arithmetical functions
6, 9, o* U, representing the sum of divisors, Euler’s totient, the sum of uni-
tary divisors, and Dedekind’s function, respectively.

Introduetion. Let o(n) denote the sum of divisors of the natural num-
ber n. It is well-known that a natural number # is called perfect if o(n) = 2.
Euclid and Euler ([5], [6]) have determined all the even perfect numbers,
by showing that they are of the form:»n = 2¥2*+! — 1), where 2+ — 1 is a
prime (A 2 1). It is not known if there are an infinity of such primes (i.e.
of the form 2° — 1, the ,,Mersenne primes”), soit is not known if the number
of even perfect numbers is infinite. On the other hand no odd perfect number
is known. This problem seems to be one of the most difficult problems in
Number theory ([5]). D. Suryanarayana [14] defines the notion of
superperfect number, i.e. number # with the property o(s(#)) = 2» and he
and H—J. Kanold [8], [14] obtain the general form of even superperfect
numbers. Kanold (8] proves that all odd superperfect numbers are perfect
squares, but we do not know if there exists at leat one number of this type.
More generally, 1. Bode [2] defines m-perfect numbers as numbers » for
which o(s ... (s(n))...) = 21, and shows that for m > 3 there are no even
m-perfect numT)ers. If o(n) =2n — 1, n has been called almost perfect ([51,
{74). Powers of 2 are almost perfect, it is not known if any other numbers
are. If o(n) = 2n + 1, # has been called quasi-perfect ((3), [5]). In the light
of the above notations, if o(a(ln)) = 21n +tl, it w0ulfdc::)ei;:on?15(t”c)r)1t tc{;z :all 1”

i- analogy, almost superperfe o(a(n)) = 2n — 1.
(]]*roa:le\s'léll'),e?:r 1f1es(c::t aa:t?ifilgl’ nc?tati%ﬁ of Ch. W f 1 lp [15], who defined f-perfect
numbers by f(n) = 2n. Thus a superperfect number will be a oo o-perfect
numbﬁ, \(:'t}fa.lt follows we denote by a*(#) the sum of unitary divisors of #,
i.e. those divisors d|n with the property (d, n/d) = 1. If o*(n) = 2n, then #

® 4136 Forfeni, wo. 79, Harghits Counly, Romawia
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8 ¢ function is defined by

Dedekind
alled unitary perfect ((11], [12]). The D¢

g = LI (1) 0 =2 .

is ¢

g pin , .
resentation of FEuler’s totient
i logy with the well-known rep
in analogy 1 ) |
tp(n)=”£l'l[1—;.v 2

here p rTuns Over all prime divisors of . It is well-known also that it
w .
] i enl W 17
n =fI P is the canonical representation of n, then we have ({117, f12]).
i

3 () =Q(pgi 1), o*(1) =1 @
r patl
o(n) = E-ﬁ—'—;—_:‘l"’l , o(l) =1 4)

and related problems. In this scction we

1. o — Perfect numbers .
we solve the cquation

' defermine all the § o¢ — perfect numbers, i.c.

$(y(n) = 2n 6

We need two lemmas.
LEMMA 1. ¢(ab) > a - Y(b) for all @, b=1,2,3, ... (6)
Proof. Let a = IIp* - Ilgh, b =TIpe - 1%, (p, g) =1, (b, 1} =1 b the

prime factorizations of & and b (lor simplicity we do not use indicesi. Then

bab . . .
iq;:T)) =a. H(l + %) > a, with equality only for all g =0, that is i for each
prime pla we have also p|b (Particularly il «|d)

LEMMA 2. If a)b, then d(a) | L(D). (7
Proof. Let @ = T1p%, b = Npa+e . 1igh with (p, ¢) = 1 (x, «’, & > 0). Then

= ol °’ WY = 1ipe 4 " .
wo = P18 (1 +'q')— Ipe - 1l{g* + ¢5-1) = N

; 'II‘)HEORE;\.I L. The only solution. of equation (3) is n =
_— :ﬁc;fnljlﬁt l]gt n b_e even, so n = 2emwith B>21, m > 1 (2, m) =1L
eas}'oconsequenclep-:ffata'l)ty of 4, ie. ¢(ab) = y(a) v(4) for all (;’ =1 (ao
R ST By ,) » and relation (6), we obtain successively : 'L(" (n)) =

wim)) 2 om)  $B241) > . 3. ob = 31, by the 6!.)\'i0f15 rela-

tions ¢(m) >'m ality
proved that (equality only”for m = 1) and @(3_2):.—1) = 395 Thus we have

which clearly i ) () > 3u, u even - "

carly implies ‘that (5) p . , A

n i as 1o ev . .

e L i s s
: ) = . T
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divisible by 2" (since 2| (p + 1)), where 7 = w(n) is the number of distinct
prime factors of n. Lemma 2 yields 2771 - 3 = {(27) | ¢(¢(n)) = 2n = 20Tp°. (%),
so if » > 3, this is impossible. For 7 = 1 we get 3| [Ip* = p%, thus n = 3%
For a> 1 we have ¢(3%) = 3=-1 . 4 and {({(3%)) = 3=~! - 8 # 2 - 3%, while for
a =1, we have equality. Thus » =3 is a solution. We now have to study
the case » = 2, when (x) shows that 3|p%pP, ie n=23.48 (3,¢9)=1. If

a>lorpB>1we evigiel}tly get 3| ¢(n), so by (7) we obtain 4(g + 1) | $((#))
= 2 - 3%®, a contradiction. But we cannot have also « = 1, B = 1 because

then we would obtain {(n) = ¢(3) ¢(q) = 4(g + 1) =8m (m « N) and ¢(8) =

= 12 { 6g (¢ being odd) : :
Remark. The proof of Theorem 1 (relation (8)) shows that all even solu-

tions of ¢(U(n)) = 3n are of the form = =R‘ ' '

LEMMA 3. If a| b, then 2l < % (9)
a O
Proof. Let b =ga; then in view of (6) one can write'::'q»(b) Z qnp(a) =
b, C 1o
= — y(a), viclding (9).
a . . .
Now, in connection with D. Bode's result, we prove:
THREOREM 2. For m > 3, there -are no $odo...oy — perfect numbers.

Proof. Firstly we observe that for all n > Zm we have’:
3 _ e
Yb(n) > — d(n) - (10)
Indced, this is trivial for # = 2, while for # > 3 remark that $(n) is alway

even (this follows from ¢(n) = II(p* + p>-')). Then 2| {(n) and (9) enable

PRI )

us to write = < o which is exactly (10).
2 b(n
Now w(U(d(n))) 2 %q,(q,(n)) > % . % - Y(n) > %(n + 1) > 2x by (10) and

=
() = n -+ 1 for » > 2. An easy inductive argument proves the theorem for
all m 2 3. ’

Remark. Equality occurs in (10) when ¢(n) = 2" (powers of 2). From (1
it is not difficult to deduce that # must be a product of distinct Mersenne
primes. . -

2. % o6 — Perfect numbers,

THEOREM 3. All even solutions of the equation

Y(a(n)) = 2n (11)
have the form :n = 2%, with 2k+1 — 1 = prim>. '
n =3 is a solution of (11). If n is an odd solution of (11), "n: (a) n & — 1
(mod 3), (b) =27 (mod 12), (c) nZ — 4 (uod 21), n 210 10d 21). If n
1s a solution of (11), then 2*.-38] (n) for al. «, B 21, .
Proof. As in the proof of T1:y:a 1 n.=2%+m, (m odd) :aa even
number. The multiplicativity o q juality ¢(2*) = 2:+! — 1 together
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. gt+1 with equality only for

0 1) z2m ] . - 1
A 1 iff » is a prime, which
with (6) imply tP(o(z"m)) rziﬂfe(_”’)(lzéeed, Y(n) = >n ;;; e o D it e
2 Dand 24— 1 =PIOC G have (s(n)) 2 roves the first part of the
gll?ws at once frOH}] ( 2_)'2“1 _ 1 is prime. This P
— 2% wher
lity for # =2
theoreFm-' the second part we first remark that l "
or , b >
- 1), for all 2
3| o(3k ) .

has the form

divisor
: the complcmenter
jet d|(3k—1). Then o |
Indeed:. ¢ _' 24 3) and the form 3s + 1if 4 = 1.(mod 3). In all Ca.ses
3 —;kl lf1 4=l olying (12). Now from (12), using (7), we can derive
i+ 2= = 0(mod 3), implymg

d _ _Nifn=3%%—1 would be a solution of
that 4 = $(3)| $(o(3k — 1)) = 2(3% inl) (a). In order to prove (b) and (c) use
(11). This is clearly impossible, prov g1 it n=a? or n=2a% (@ > 1 natural

fact ([6]) that ofs) is odd only |
the known fact ( 2 og% then 2| ofn), so by (7) 3| n for a such solution
number). Thus if # # &, 24", 3 with m = 3k + 1. Since @ =0 or 1 (mod
of (1) I;irs;t wﬁ selectzn :0'311714-)%- \;re have 4m + 3 # a*, 2a% For m =3k + 1
2 = y or \ A , . aQ _.
Qé oﬁgin :n obvious contradiction. Thus we cannot have n = 4m + .3_ = 12k +
+7. For () we can use the same method based on the numbers 7m + 3 #
2 202, .
17:0: 'th: last proposition in the theorem, suppose al o(n). :Ihcx} (9) leads to
$(o(n)) > o(n) §(a)/a, so for a solution # of (11) and for ¢ = 2% - 3% we obtain
(with ¢(a) = 2a for these a) that o(n) < 7, le n = 1, a contradiction.
| Remarks. 1) Ch. Wall [15] has found all the ¢ — perfect numbers,
by proving that (a) =24 iff 4 =238 with « 2 1, B > L.
2) The method of proof of Theorem 1 immediately gives that the ¢quation

Mal)) _mA 1 (13)
2n m
for n even, n #2° (power of 2), where m = greatest odd divisor of #: has
the solutions # = 2% . m, with m and 2¢4! — 1 both primes.

3) It is easy to see that o(m) > ¢(m) for all m, so o(a(n)) > ‘
. : > : 2 Y(a(n)) > 2n for
even s, with equality only for # = 2% where 2t+1 —(1(=))prix:e(. (Biz this way

we can teobtain Suryanarayana's [14 r R e
the even superperfect numbers, (14] and Kanold's [8] result on

3. 60y — Perfeet numbers,
LEMMA 4. o(ab) > ac(b) for all 4, b » | (14)
Proof. As in the proof of (6), let a = MMp= g%, b = Ip= II1v. Then
W) (B
o(b) PEH_ -1 |

The simple in it
s equality ata’ i o
> (a8 0) imply (147 VB~ 1) 240 and (g1 1)/(g— 1) >
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THEOREM 4. The only even solution 5f the equati?m L
o($(n)) = 2 (15)

s n=2 If n s an odd solution of (15) and zs an odd ri;ne;l;év ng the
property a(p + 1) >g’?. then | n. Particularly p3, 5, 7, 11,%7, 19, zgl n.

Proof. Let n am (as usual) be an even number. Then o(Y(n)) = o(3.24~
- §(m)) >k;_lol(m)o(3-2 ) >m - 42— 1) by (14) and Y(m) > m. Now 4(2* —
—1) > 2¢*1 for all k > 1, with equality for k = 1, thus the first part of the
theorem is established. If % is an odd number, suppose p|n. Write n = p* .
. N, where (p, N) = 1. nge $(m) = p*=' . (p + 1) ¢(N) and by Lemma 4 we
get o(4(#)) = $(N)o(p*=1 - (p + 1)) > Nf:_'ll 5(p + 1). The assumed property
and the inequality (p* — 1)/(p — 1) > pe-1 for all « > 1, prove at once that
o(p(n)) > 2n. The inequality o(p + 1) > 2p (p odd prime) is not satisfied for
p =13, 37,... in which case the above argument is not sufficiently strong.
We conjecture that (15) never has an odd solution. '

Remark. By the method used in the first part we conclude that o(¢(n))/
2n 2 (m + 1)/m if n is even, n 5 2% and m denotes the greatest odd divisor
of n.

4. Almost and quasi { of — Perfect Numbers. The equations

$(f(r)) =2n £ 1 (16)

are very casy to study, because as we have remarked in the proof of Theorem
2, U(m) is always even if m > 3. Thus in (16) we can have solutions only
for f(n) = 1 or f(n) = 2. Without any difficulty we obtain: {(J(n)) =27 — 1 <=
on=1 2; $Yn) #2n+1; (pn) =2n—1eon=1; {(¢n) #2n+1;
Y(o(n) =2n — 1 <en=1; Y(o(n) #2n 41, etc.

5. Alimost and quasi o* o g* — Perfect numbers. .

TEMMA 3. o*(n) = 2° (power of 2) iff n=p, ... p,, where p; (1 =1, 7) are
distinct Mersenne primes. .

Proof. Relation (3) shows that o*(n) = 2™ iff p* + 1 = 2* for all prime
divisors p of n. We shall prove that this is not the case if « > 1. Firstly,
let p be of the form p = 4k + 1. Then 4+ 1) +1=4M +2 = 2(2M +
+ 1) # 2% Twofold, let p =4k — 1. Then (4k —1)*+1=4N+2 if « is
even, so we must have « odd, a = 2s+ 1. It is easy to see by Newton’s
binomial formula that (4k — 1)2+1 4 1 = (4k)»+1 — CL _ (4k)* + ... + 25+
+ 1)(4k) = 4k - A, where A is odd, 4 > 1. Evidently, 4k - 4 cannot be a:
power of 2. . :
For a =1, p 4 1=2% iff p =2°— 1= Mersenne prime and the lemma is
proved.

THEOREM 5. o*(o*(n)) #2n £ 1 (n # 1. 3). - (17)
Proof. o*(m) is « dd only if m=power of 2, so a*(n)==1" ; d by Lemma 5,
n==2p,. ..fp, —( 2 product of distinct Mc s« primes. But o*4 =2"4+1=
=2p ...p L 1Py ... p=2" e pr=2m141 :
The first equ :ty cannot be ¢ L same is valid for the «cci d one

forr >2. 11 - =1, then ; js acceptable. Now let r > 2, eg.






ON THE COMPOSITION OF SOME ARITHMETIC FUNCTIONS 13

8. On the equation o(p(r)) = 2.
4

The following lemma may be proved similarly with Lemma 4:

LEMMA 7. p(ad) < aop(b) for all a, b > 1. (21)
THEOREM 8. All solutions of the equation

o(p(n)) = = (22)

are of the form n =2k (k > 2).
Proof. Obviously # must be even:n = 2% . m, m odd. Then by (21) and

»(m) < m, one obtains successively: ¢(p(1)) < o(m) - 0(2t~1) < m - 2t-2 = 2,

4

Since o(m) = m only when m = 1, the theorem is proved.

THEOREM 9. Let p be a fixed odd prime and denote A = {n: p*| n}. Then
the equation
n n n
n)) = — —— 4+ — 2
o(e(n)) = 7 > T i (23)
has solutions in A onlv when p is @ Fermat prime, and all solutions may be
wrilten in the form n = p*, k > 2.

Proof. Let n = p* - N, where'k > 2, (p, N) = 1. Then ¢(n) = p*-1(p — 1)

3(N) and by (21) o(p(n) < o(N) g(p=1(p — 1)) < N - o(pt-')p(p — 1) < Npt-2
— 1) o ton_n o

(¢ 2 2 p o o2p

Here we have used that o(p — 1) < (p — 1)/2, which is a simple consequence

ot (21) (by writing p — 1 = 2(p — 1)/2). There is equality only for N = 1 and

p—1:=22% 50 p =2+ 1= Fermat prime, and n = p*, k > 2.
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R.I-ZZU.\[:\T..—-O rulilnnre & inegalitd¢ll lui Jensen §i aplicatli. In lucrare se sta-
bileste o rafmaye a inegalititii lui Jensen §i se dau citeva particulariziri in legd-
turd cu anumite rezultate clasice pentrn numere reale. Apoi se aplicd inega-

litatea lui Jensen pentru a se obtine citeva generaliziri in spatii normate ale
unor inegalitiiti din (3].

1. Further on, X will be a linear space over the real or complex number
field and C will be a convex setin X. Then the following refinement of Jensen’s
inequality is wvalid.

THEOREM 1.1. Let f: C— R be a convex (concave) real function on C, x; <

eC,pi >0and Py: =3 p: >0 (1<i<n). Then the following inequality holds :

$-=1

< 2 R N .1}
X pix > B - P‘hﬂf(x" xk+1)
1em| < S ‘l""v'k+1"“ k+ 1
f P = (/) - P |
" (1.1)
. i Paee binS (i’_-i’_tﬁ‘) .El i f(x)
LYRERRYS ) Taa 3 t=

< (2) () ... €£(2)

P: Py

where k Is @ positive integer such that 1 < k < n— 1.
Proof. The first inequality follows by Jensen’s inequality :

n EE R o 1)

z ;".'."'/"'Hn( - H')

il"""k-‘-lnl h+l < (>)

/ - <(z
> P". <o Pirgr

$pp e os g™t

|

"'+”‘h+1)
R+41

n . x‘ +
.z lPi,"'?‘ka( :
'_l"""k-i-l-
< (2) n

z P - Piggy

. s Y
£y 000 ,lk+‘-1

® Depariment of Math:matics, Fazully of Tezhnilogy, 11009 Zagrey, Lue Lrz Ridars 125, }fugaslam‘s
®¢ Sccondary School, Blile Harculane, 1600 Biie Hercniane, Caras-Scoerin County, Romanis

—
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since , %, -+ ”’Hl) 2;5 x; and
Y b p‘kﬂ( k41, =1
5 "riﬁ+1=l
n __ k+l.
ﬁ"l oo P"k-l'l - P"
RN TN (b
Now, PUtﬁng o Xig oy + ...+ %y
e o — ; -1
x, + ot Ty _w,...,ym— X '
4 -, Y = B

"=

by Jensen’s inequality :

ot et B (>)f(y1)+...+f(vk+,)
( k+1 S k41

we deduce that;

ki_:l f(z-‘,l-}- x,'k’ n +f(x"k-f-l 4o+ .r"k—lJ
s L . A ?
Al < (z) —

k41

k41

Multiplying with the nonnegative real numbers p,, ..., p;, , and sum.

ming after 4, ..., %4,, we obtain

L] + + A n
E i, - P'Hlf(___kﬂ) <(>)Pu. 2 2, ---f’.")(

By ereripgp =1 1
>\f( + xlk)

from where results the second inequality in (1.1).
The theorem is proven.

COROLLARY 1.
eC (l<icg ) thzenIff C— R is a convexe (concave) function on C and x; 9

2 . f(L&)
Fl—] < (p) ias= k+1
it i < (2)
" . . 1.2)
X f(”--+"'+"u.) (
< (3) i’ U 3 f(x)
A S (2).. g ()=
n
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The following result gives a refinement - nal i ity i
ormod inear e ment ‘of the polygonal inequality in
CONSEQUENCE 1.3. Let (X, ||-|) be a normed U ' ;

(1 <4 < n). Then the following z'nlequality 1s truee : edr space and % <X

| i R TS
LT 1 =1
»Exi < . il k+l <
= d (1.3)
> ”A'-'."‘“"*“-*iu T
[ IV iy=1 k »
< .
s e < ... <§I|x,|

where 1 <k <n—1.
Now we shall give some applications of the previous theorenr
APPLICATIONS 1.4. a. Let x;, p; > 0 such that P, > 0. Then

1 <& < Ty e Ky u)""""’kﬂ ypit!
-— 2 —— "
Py ,E|/).:l [l’,....;[:;[+|=l ( k41 >
' (1.4
> [ f"[ Y, Foeee "'ik]ﬁi""pi" P, > .. 2 (ﬁ xf) 1/Pn
Ty e ig =l k fu1
The proof follows by Theorem 1.1 for. f: (0, o) =R, f(x) =1n «.
b, Tet x,, pi 20 (1 <¢ < n) such that P, > 0 and $ > 1. Then
n d n . ven 7 b
N piox f ‘ > pi'...p;h+l(w_l)
11 <'l'"“”¢f'l=l ' k+1
P = Pkt =
, (1.5)
SR (__*_L’_'_u) 3 b a2
< 1 - tk‘ul k ‘< ... < s=1
Pk Py

The proof follows by Theorem 1.1 for f: R, —R,, f(¥) = »*.

2, Further on, we shall apply Jensen’s inequality to obtain generalizations.
in normed lincar spaces of some results established in [3].

Throught in the sequel (X, | - ||) will be a real or complex normed linear
space. o
LEMMA 2.1, Let f: R, — R, be a nondecrcasing convex fumction. Then for
every x;, € X, p; 20 (1 < i < n) such that P, >0, the following inequality 1is
valid : s

) <tz st 21)

fi=1

(g

i=1

The proof is a simple] consequence of Jensen’s inequality..

~

2 — Mathematica nr. 1/1989
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18 2 and Remark 9
deduce easy Theorem 2 ar
we remark that, o (z.l)fa‘gtt.2 isethe following inequality :

of [2]. The special case of this

7 r—=1_n ,
iz; 'S (.Eq:m_')) ’_);{91”2.” (22)

s=1 i=1

; eXand 17 <2 _ b
WheIeF;I;ri (t)l"xi:'result, substituiting ¢:; by 1/pi (1 €1 € n) and by

(épvv—n)”' < Z")ps 1<r<2) (2.3)
= i=1
we obtain easy
i 2 ’ " ?
“M sin- (1<7<2) (2.4)
T
i=t
where p; >0 (1 < ¢ < n), what gives a generalization for (see [3])
kakal qaly lal (2.3)
u+v 72 v

wiu+v)>0, 2,z €C, 1 <r <2

in the particular case when # and v are positive real numbers.
LEMMA 2.2. Let f:R,~ R, be a nondecrcasing convex function, p, > 0,
$i<0(2<i<n) and P,>0. Then

1 n ! 1 o

f(F,, ;pi i ) 2 ;,;gl’af(ll xill). (2.6)

The proof follows by the previous lemma substituiting p, by P,, p, by
-5 2<ig<n), x by %E{J.-x,- and ¥; by %, (2 <1 < n).

_ Putting in Lemma 2.2 f =il ~R, f(x) =+ (1 < .
(5 € X, 1 <i<n), from (2.6) +we o{)téfifl) (1<7r<2) and x, =zfp

V=1

> PSS el bl (27)

$=l

If we change p,| 2|7 by gq,, it results:

= (gl g | g Ivl(l-r))'—l iq. “ z ”r (28)

D8

f=)

Where

ud 1/fr
e (Ezmlml-')) and ¢; <0 (2 <+ < ")
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pentru slrurl care satisfae condifil generalizate

supra unni sir  de functii continue con-
le decit in [1—2], se obtin citeva generali-
ai sus citate. Apoi, tinind cont
logaritmul transformi pro-

tru siruri de functii conti-

REZUMAT. — No. «coreme Dind
ule lul Alexandrov. Impunind 2
ditii de tip Alexandrov mai genera
ziri ale rezultatelor de tip Dini din lucririle m
¢4 aceste conditii Alexandrov sint de tip sumi §i cd
dusele in sume, se obtine un rezultat Dini pen
nue care verifici o conditie Alexandrov de tip produs.

1. !ntroduclion. Considering for a sequence of real continuous functio
?generahzed Alexandrov condition, some extensions of the Dini theorcimns o
in [1], was obtained in [21. > proved

The purpose of this note is twofold. Firstly, i i

. ' . Firstly, imposing to e
of continuous functions a more general Alexandrov C(}ndilign a ~HI'L M"()“'lmce
extend the theorem 2.1 of [2]. s e

Then, taking into account th i
, at generalized Alexandrov it
. - red  Ale: col 3
?:sjﬁnfl rtype and that the logarlthm.transforms the products in s‘ul;(hl.lmh are
di for sequences of continuous functions which satisfv a generali; T A D
con 1t210n‘ of product type is obtained. ¥ ageneralized Mexandrov
numbe;sl l:m ]los;ull:. dGl;e,en a nonvqid set T, an integer 2 > 0, & <- 1 i

propertics 'O‘H.~(‘()'), G Olil'or all+1' le ?Sntmuokus functions H,: R SR \\‘ilt"l) mtll"e
s Hi(0) = e {0, ... unctions H, : 1. : 1 the
mollilotol!lc?lly increasing on R,, we say t%l,afmstmg e en i M., i strictly
— R satisfies a generalized Alexandrov conditioa sequence of functions v, : 7~
n relative to a function v: 7 —

—R, through the functions H,, i =0, %, if

k
s Ho(lx(f) — » A
Zi6 A0 = Sl ) € Dei - H(30) — 2y a1 (1)) 1)

for all { € T and all neN

THEOREM 2.1, L
(%)nen be a 1o Let T be a nonvoid
ine sequence of conti countably com, '
wise on T fo g contiiuof,ﬂhnuous_ Junctions zx, : T_.Pl(‘m topological space and
Alexandrov condition rel us function x:T—R. ] ( which converges point-
(%a)u converges unifor f;atwg 10 x and through 'v")'.' satisfies a gencralized
my on T 1oz, o0 M Junctions Hy i =0, "k, then

\ Proof. Tet ¢~ 0 and let y,

= TSR b .
gcf - Hy(|x(0) e the function defined by ¥a(f) =

“nva-ilf) ), ¢
=\ 1) eT >
"n :
’ N. Since Ya are continuous, the
1]

3700 o“m‘": Str, C‘ml‘““""o 21, 81 AN

—~45, apt. 8, Romania
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sets Tp = {t € T; ya(t) < ¢} are open. From (1) we have T = T,:n =
Indeed, given a ¢ in T, the convergence Za(t) — %(f) and the coLt1Jti{nu"i£y of II\;}.
;= 0, & produces a number # € N such that o

Hi{(12(t) — %paill) |) < ——,
R cilk + 1)
for all 7 =20, &k, whence

5
(! C;';= s
W) <o =
so that ¢ € T,.

By the countable compactness of T, there exists an 1n, € N such that

k
T=T,U...UT, =T,, hence using (1) and the inequality E ¢; « Hi(|x(t) —
— Yy41-i(f) ) < e for all t € T,, one has e

L k
.};{)C‘ CH(12() = Zupami (01) < L6 Hi(12() — Zppraei(d ) < &

=0

for all { € T, and all # > n, From here, it follows

Hi(12(t) = Znin-ilt)) < —> ()
for all t & T and all n 2 n,. .
Taking into account H;, is continuous function, strictly monotonically increa-
sing and H; (0) = 0, evidently the inverse function H; ' is continuous, strictly
monotonically increasing and H;'(0) = 0. From (2), we obtain

H 0 = Baasi D) = 130 = %l | <HZ () @

for all + € T and all # 2 n,.

Now, because H;[' is continuous in the point 0 and H;'(0) = 0 it imme-
diately follows that simultancous by e, H.' =] becomes arbitrarly small,

i

whence taking into account (3), the uniform convergence of (x,) on T to x
15 proved. —

Remarks. 1), For Hi(t) =¢%, t € R, ,>0 i =0, k, we arrive to the
theorem 2.1 of [2]. )

2). Let us choose in (1)

k=2, T=10,1], cg=2, ¢,=1, Hyt)=¢tand H,({) =exp () —1, £ = [0, 1]

(where exp () = ¢). The above theorem becomes: o
“ii the sequence of continuous functions x,: {0, 1]— R converges pointwise
on [0, 1] to 0 and satisfies: 0 < x.(¢),

Xnyalt) € Xnsa(t) ‘|‘% [exp (xu(t)) — exp (api(t)], ¢t = [0, 1‘]- (4)

n & N, then (x,) converges uniformly on [0, 1] to 0.”
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) is » ‘monotonically decreasing sequenc,

Let us observe that if 0 < %

i isfied. : cpr
then (4) is satishe Alesandrov €08 dition of

3. A generalized i
2.3) the following resu " act topological space and (%,), be
“Let T be & nonvoid countably cOTPY R, vfhich converges pointv:is“e on ;

sequence of continuous functions P

to 0. Tf 0 < %,(f) and

product type- In (2] (COTOIIary

T—

2,520 € —;- - [x(0) + %i3(8) s (5)

for all £ € T and all # € N, then (%) converges uniformly on- T to 0",
Remark. (5) condition is of sum type. -
In what follows we will prove a Dini result which uses a generalized
Alexandrov condition of product type.
bly compact topological space ang

rugoreM 3.1. Let T bea nonvoid counta '
(3)s be @ sequence of continuous functions Yu: T — R “which converges pointwis,

on T to a continuous function y: T—R.
If 0 < v(t) < yalt) Jor alteT and all n €N and

Jugall) € Duasld) - 201" (6)

for all t € T and all n € N, then (yn)a comverges unifornly on T toy.

Proof. 1f .we denote x,(t) = ya{t)/¥(¢), evidently x, € C(T), x,(t) > 1 for
. T-

all te T and all » €N, x,(t) > 1 : - D -
o A g 5 Xall) — pomtwise on 7. The sequence .
satisfies (6), which is evidently equivalent with e sequence (), also

In [%s2lt)] < % (I [%pas()] + In[xa(0)]), ¢ €. T € N. Y

But taki = = —
for all tue El_l‘nig(?) >11’ ?" =2,¢=1Hyt)=H,(t) =In(l +1),t € R, x{t) =1
(7). Hence, i)y”the:)remor;ln ttxe Tand all € N in (1), we evidently obtain
be write . ) converges uniformly on T to 1, which can

[lt) — 3 Y () 12500, 7%,

uniformly on T. But

alt) = 301 = 1y()| - (|

. ) = 013011 < M-

- 1) =501/ 1510) (where |y e
Pi1es y,— y uniformly on T,

Remarks. 1). Let
- . 1) us ob: : .
satisfies 0 < y,(f) for all ¢ eSe;‘veE:l l:(lila;clulf n(y,.). }s monotonically decreasing i

versely, it is € N then ; isfi
where x,(1) is gét?i);l:c(l) aihionw éhat the sequence & t(?)eli ltx ?l}so satisfies (6). CoF
) (27, Rer.narkl2.4, is not mo—noet" » 20, 1], n € N,
and [5] p. 45. extensions regardin onous but satisfies(6)
g the Dini results see [3'],.-[}

Nl <
] <M for all ¢ e T) which immediatel¥
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Folosindu-se ©

t jterll de univalen{d. L >
unor anumite er % et

REZUMAT. — Asupra 1 ol
metodi pentru @ — functii datoratd Ini St. Ruscheweyh [8
conditii suficiente de univalenta.

1. Introduetion. Let 4 be the class of functions f whlich are analytic in
the unit disk U={zeC; [2] < 1), with f(0) =0 and f'(0)=1.
peFINITION 1. ([3]). A function f(2) € A is called ®-like in U if only
if:
zf'(2) -
Re-L2 >0, ze U, (1)
/()

where ®(w) is anmalytic in f(U), ®(0) = 0, Re @'(0) > 0.
DEFINITION 2. A function f(z) € A is called spiral-like if and only if therc
exists real number y such that
) -
Re exp {1 0, zel 2
Pl 5> ()

Spiral-like functions are known to be univalent in U.
Defmi];];FI.\'ITlON 3. (4]). Let « > 0and f(z) € 4, /() f'(9) #0in 0 < || < L.

o f(2) = (1 — o) L& 4 o (F19 o
if Tt =d )f(z) * (f’(:) ' 1) @
Re J(«, f(2)) > 0 for z € U, (4)

then f(z) is said to be an a-convex function.
2IN
DEFINITION 4. Let f(z), g(z) be two analytic functions in U. We say that

f(2) is subordinate to i
su &(2), writt if i i
analytic in U which sa£igfies <p(0e)u=f (g,) T¢€?(;{,£tl tz?lfcrie exists 2 function o3

f(2) = gloz), lz] < 1. (3)

L. Brickmann [3 :
equations, ), using methods from th if i
proved that every ®-like function is univaleenihiez(l)r}(’/' oafnflnfieretntrlra:1
, in turn,

that every analyti ! -
tain @ yuc normalized univalent function in U is ®-like for a cer-

St. Ruschewe i
] vh [8
of the univalence of the (D—[lil]<eg1f‘:xe;c'?i1:>nesle
of the univaler .

o L
University of Brasov, Depariment of Mathemalics
?

mentary function — theoretic proof

2200 Bn 4500, Romania
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In this note, by using the same method, we obtain certain sufficient,
conditions for univalence. ’
2. Preliminaries, F. C. Avhadiev and L A. Aksentiev [1] have
roved the 101]0w1ng theorem :
THEOREM A. Let f(2), glz) « A. If:

(3 1 .
c@ | St WSV (6)

and
Log f'(z) < Log g'(z), Log f'(0) = Log ¢'(0) =0, (7

hen the funclion f(z) is univalent in U.
There are known the next univalence criteria:
THEOREM B. (Becker)([2]). Let f(z) € A. If:
L2y |76 -
||)|“~ <1, VzeU, ®)
tien the funclion f(z) ts univalent tn U.
THEOREM ¢. (Nehari) ([6]). If f(z) € A4 and:

i{f: 231 < _Il’)—" Vz e U, 9)..
where {f; 2} is the Schwartzian derivative of f(z):
Ly _ 1oy, (10
f) f@)

tiren the function f(z) is univalent tn U.
In [6: was obtained the next univalence criterion:

THEOREM D. Let f(z) € A and o € C. If Re « >0 and :

( l” l" Rea) "; ((:) £ Re o, vz e U. ; (ll)
then the function
P Va . '
H(2) = [a S us=1 f'(u) du] : (12
0 toae

is analytic and univalen! in U.
We will need the following lemma to prove our results:
LEMMA L. Let f(z) € A and let O(w) be an analytic function in f(U), ®(0) =

=0, ®'(0) =¢, Re ¢c>0, ‘D(w) #£ 0 for all w = f(U).
The differential equation

—

S _ 1 GBS a3)
o) ¢ GUED B
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has the analytic solution:

¢ c 1 .
—— — ’ 1
G(w) = W eXp {S O(1) u) dul ( 4)
0
w = f(2). ‘ .
fg’roof. Let f(z) = w in (13). Then:
G _ ¢ apa C@_L__c L.
Gw) ®w) and Cw) w O @

Integrating from 0 to w we obtain :

G(w) = w exp {'§ (5%‘; — —::) du] .
0

3. New eriteria of univalence. ) ) )

rHEOREM 1 (7). Let f(2) € A. If f(2) isa O-like function then f(z) is uni-
valent in U. ) o

Proof. By assumption ®(w) = cw + ...1s analytic in f(U), Re ¢>0

and Re é{'f‘(‘—’»> 0. Let F(z) = G(f(z) and G(w) from (14).
2
From (13) we have:

sy _ 1 zF'(z).
o) ¢ Fa
Because Re ¢ > 0 there exists a real number vy, |y| < = such that ¢ = |¢]| ™.
Then we have: :
He lej=t ey 2176
d(f(z)) F(z)

By (1) we have:

Re e""‘fi;’—(i)- >0
We have too F(0) =F'(0) —1=0 T};en F(z) is ; : ;
: . . - l-like, that is 2
univalent function. Because F(z) = ey s @ y-spiral-ixe, :
that f(z) is univalent in Uf) G(f(2)) and G(w) is analytic in f(U) we obtain

'r'mzonmf 2. Let f(z) € A, f(2) - f'(2) #0 in 0 < |zl <1, let O(w) be an
analytic function in f(U), ®(0) =0, ®'(0) =c, Re ¢ > 0, 2

— %0 in f(U)
let a be a real fixed number and let : ’
Kl f) ®Ue) = (1 — @) 208 + (1 4+ L0 Al
(w, £t HW 4y 4 Qe = )
I oy 7ot O 507) 19

Re K(a, f(z), ®(f 0,
then f(2) is umivalent in U. VeN >0, vz « U, (16)
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Proof. We remark that the function
F( ) [f f(a) .
Z) = f(2)] ex L 1
| (2)] exp § ™ u)du} (17)
is analytic in U and

F'2)  2f(a)
Fa @) (18)

0in 0 < 2| < 1, from (17) and (18) we have F(3) - F'(z
I ¢ » * %
1. Combining (3), (15) and (18) we obtain : @ @

J(a, F(2)) = K(a, f(2), D(f(2)))
From (16) we have Re J(a, F(z)) > O for all z & U. Therefore F(z) is an « —
— convex function, hence a univalent function in U. Since F(z) = G(f(2)),
where G(w) is the analytic function defined by (14) we obtain that f(z) 1s
univalent in U.

Remark 1). Using Theorem 2 we can obtain new classes of univalent

functions in U. In the case ®(w) = cw, K(«, f(z), ¢f(z)) = J(«, f(z)) and (16)
beecomes Re J(a, f(z)) > 0, which defines the class of « — convex functions.

THEORLEM 3. Let f(z), F(2), H(z) € A, and let ®(w) be an analytic function
in f(U), ®(0) =0, &'(0) =¢, Re ¢>0, 2 20 for all w = f(U).
w
Iy
S| <= ¥ =V (19)
H'(z) 1—|z|p
Log F'(z) < Log H'(z), Log F'(0) = Log H'(0) =0,
and F(z) = G(f(2)), where G(w) is given by (14), then f(z) is univalent in U.
Proof. From (19), (20) and Theorem A we obtain that F(z) ia univalent

in U. Because we have F(z) = G(f(z)), where G(w) is the analytic function
defined by (14) it follows that f(z) is univalent in U

Remark 2). 1f ®(w) = cw, then G(w) = w and Theorem 3 becomes Theo-
Tem A.

THEOREM 4. Let f(z) € A and let ®(w) be an analytic function in f(U),

®(0) = 0, ¥'(0) = ¢, Re ¢>0, =2 %0 for all w < (V).
17

Beeause f(2) f'(z) #
#0in 0 < Iz| <

(20)

oy 1207 ry € — O(f(2) o1
(1—1z) -m'-i-zf(z)—————q,u(z)) <1, Vvze U, (1)

then f(2) is univalent in U.
Proof. Let F(z) be the function from (17). Then

2F(2) _ =) +z f(2) ¢ — (f(2)

(22)
F'(2) 2 O(fl2))
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and (22) we obtain :
F(2)
0121 |5
ows that F(z) is
lytic function define

Combining (21)
<1, v:eU (23)

anivalent in U. Since F(;

From (23) and Theorem B it foll d by (14) we obtain that

—-GU( where G(w) is the ana
J(z) 1s univalent in U. » from Theorem 4 it follows Theorem B,
Remark 3). In the case o) = ¢ be an analytic function in f(U),

THEOREM 5. Let f(z) € 4 and let O(w)
®(0) =0, ®'(0)=¢, Re ¢>0, _‘i”-’;eo for all w < (U).

If
. (. o — d2(f(2)) 4+ 207( (f()) ®(f(2) 2
g z} — /™) 207(f(2)) S =gz’

then the function f(2)is wai.

where {f; 2} s the Schwartzian derivative of [(z),

valent 1 U. :
Proof. Let F(z) be the function defined by (17). Then:

Fra) _ £ “(z) - d'(f(z)) =
o —ra ) ()= ) (=5)

Combining (24) and (25) we obtain:
I{F; 2}] € vz € U. (26)

=1z l’)'
From (26) and Theorem C it follows that F(z) is univalent in L. Since F(z) =

= ((f(2)), where G(w ’ A
) 18 u)mva]ent 1 1£ )st the analytic nmctlon defined by (14) we obtain that

Remark 4). In the case O(w)
= cw from Theorem 5 it results Iheore
THEOREM 6. Let f(z) € A, let @ € C, Re a> 0, and [cl tl)(j) /,‘?Lz;r;“:,.-gi

ytic function in f(U), ®(0) = 0, ®'(0) = ¢ (w) .
I ) « (.
(1 —‘leRca #(2) o= @U:)
fz) +f( D(f(2)) l o, e U, (27)
then the funclion
aiuﬂ—lj’ of(s "

) () exp H(u) 2L T L , (28)

where @ -

J(z)
H(Z) = S £ 1

) ;)du (29)
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Proof. Let F(z) be the function defined by (17). Th in |
Combining (22). and (27) we have: v ) en we obtain (22).
2F"(z
F(z)
From (30) and Theorem D we obtain that the function

(1 — | z|2Req)

’l Rea, VzeU. (30)

1V«

S-u“*" F'(u) du 4(31)

is analvtic and univalent in U.
By using the expression of F(z) from (17) we obtain

fi)

F'(z) = f'(2) - ex L__l), cf3)
(z) =f(2) - exp S ((D(n) - du poeg
0

and the conclusion of theorem immediately follows.
Remark 5), If we take Q(w)=cw in Theorem 6, then we obtain Theorem D.
Remark 6). Results similar to those included in this note have been obtai-
ped in 8§, for ¢=1.
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ate prin subordoniri diferentiale.

REZUMAT. — Condigit de univalentd obtin
le care conduc la ®-functii,

fn aceastd lucrare sint stabilite subordoniri diferentia
deei la functii univalente.

functions regular in the unit

1. Introduction. Let H be the space of
f(0) —1=0} andlet 4, =

disc U={zeC/lz] <1}, let A={f¢e HIf(0) =
={fedfflz) #0, z UN\{0}}.
 Let g and G be functions in H. We say that g is subordinate t
written ¢ < G or glz) < G(2), if G is univalent, g(0) = G(0) andg(U) C G?U(;:
In this article we obtain certain sufficient conditions for univalence usin
the umvalefme property of ®-like functions with respect to G. 8
We will neeld t[l(;e following definitions and lemmas to prove our results
DEFINITION 1. [6] Let G be a convex conformal ma i J .
iIr,letf((bUl;e _an:(a)lytxz in a domain containing f(U), ®(0) = ‘DIE(I)))mE 0lf =U 0 g(((z)fi) =¢10
i {0}. A function f e 4 is called ®-like with respect to G, if and only

)
oy < G (1)

If we let G(z) =1t7 ; i
(2) T in this definition, we obtain the definition of ®-

like functio i
n due to Brickman [10]. In this case condition (1) reduces to

Re LB g
g F U (2)

Let ike wi
et f be ®-like with Tespect to G, where 0 ¢ G(U)

in U ([6
([6], Corollary 3). . Then f is univalent

Th o 3
] e conditions G(0) =1 ang ¢’ 0 € y-spirallike functions
ced by G(0) =, /() _ 1 0)=1=0of gefinition 1. can be repla-

— — _— 0 3
- where ¢ is complex with Rec>0

P s
. “”ﬁh" luShMc 3"w Clur-N‘Pou Rommc
»
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DEFINITION 2. [2] The univalent function ¢ is said to b ;
the diffcrential subordination ? e a dominant of

Y(p(e), 2p'(z), 22p"(2)) < M), 3)

if p < g for all p satisfying (3).
If ¢ is a dominant of (3) and § < ¢ for all other dominants q of (3),
then § is said to be the best dominant.

The best dominant, if it exists, is unique up to a rotation of U.

LEMMA 1. [3] Let g be univalent in U and let 0 and ® be analytic in a
domain D conlammg q(U) with ®(w) # 0 when w < q(U).

Set Q(z) = 29’ (2)®(q(2)), h(z) = 0(q(2)) and suppose that:
) Q is starlike (univalent) in U, and
s =h'(2) 0'((1(2)) 2Q'(z)
Re—— =R
@ Regy TR [«>(q(-)> Q) ]> 0z U
If p is analytic in U with p(0) = ¢(0), p(U) C D and

0(p(2)) + 2p"(z) D(p(2)) < 0(9(2)) + 2p"(2) {g(2)) = h(2), (4)

then p < q and q 1s the best dominant of (4).

2. Main results,
THEOREM 1. Let fe A, and let ® be analytic in a domain D containing

J(U), #(0) =0, ¥'(0) = = , Re ¢ > 0, ®(w) # 0 in f(UYN{0}. Let « be a complex
[
numbcr and g be convex (univalent) function in U with q(0) = ¢ and

Refg(z)/a] >0 in U. If Q(z) = « 'Z(i)
1s starlike (univalent) in U and if

) = LRI 90 _ o (s
Jota /1) = g + e+ 0 = Ty § <)+ ety =60 ©)

then L o q(z) and q(z) is the best dominant of (S).

o(f(z
I—(’Q);} If we let p(2) = ;{f iz;) $ is analytic in U with p(0) = ¢ = ¢(0)
and (5) can be rewritten as
£ + « L2 < gla) + o T2 = G ©
Since
Re ) _ [4(2) +zQ’(2)] >0
Q(2) ()

the conclusion of the theorem will follow from lemma 1.



V. M. SELINGER

3 ) _1+% and «>0in theorem |

Let k(z) = .--————(l j > If we let q<z?t_-diské:)U O;t_;zthe half plane Re w >
. the uni

: , 0) = 1 and maps

q is convex, g(

d z 202 k(zZ]
o) = 4 25 = Jle KD

1—-2 -

the half-lines Re @ =0, I

: - ¢ lit along )
We note that G(U) is the complex plane $ By using Theorem 1.

2).
w > Jale +2) andRew=O, Imw € — v o{e T ) 5
we ot e O Tt iy & be analvtic in a domain contaiming f(U),

ary 1. .Let f € Ag,
9(0) —io(liog'?63\=w 1, O(w) # 0’in FON{O) onw &> 0. If

Jola f(2) < Jlz &)
tnen f is ©-like, t.e. '
Tola, f(2) < J(o k) = Jol0, f(2) < JO, k(z)).
In particular, we easily obtain
. 2f'(2)
()

fed,and | Jola, () —1] <14 a=Re >0 zeU (7)

and

f ey Im Jola fi2)| < A/ala+2) = Re q)(;f;) >0, ze U (8)
where @ is given in Corollary 1.
For « =1, from Corollary 1. we deduce: \
COROLLARY 2. Let f& A, and ® be analytic in a domain containing f(U),
0) =0, 9'(0) = 1, d(w) #0 in fIUNJ{0}. If
S SR )Y 14 2z
+ —_— J
f e (f(2)) < I—=: +

1 -2

then f is ®-like. .
In particular, we have by (7):
1@, fe) ey
o Tote T e | <
fa ofe) e l >

(=)
=Re 2.5 7
T A

and by (8):.

IIm {"—f—,"&) + FE ey
F@ ) e
If we take D(w) = e-iry, ' T =
= =<y <Iint i
1 and 2 we obtaiy the foll 2 , » 1t theorem 1. and in corollary

Jollowing sufficient iti E spiralli
COROLLARY 3. Let f & 4, ¢ bea é01npl§;)-llc(zjrlzthLOll be o resd e

lent) - Y be a real number, |yl <
1) in U with q(Q) =¥ and Re [¢(z) /a] >0,

<\/§:Reiﬂ_>0 e U
®f(2)

3
<7.; and q be conpex (unive
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ze U. If O3z = azqq(—:)z) is swarltke (univalent) in U anw 1:'f

Tele, £(2) = (ew'—«)"f;—f_jwa( ff (‘)’)<q >+ “’"’ =Gz (9

then 1S v- spzrallzke with respect to q. ' 3

&Y 4 e~
If we let ¢(z) = —Te— with y.real and |y| <1;- in corollary 3, ¢ is convex,

q(0) = ¢, and maps thbe unit disc; U onto the half plane Re w > 0
iy —iy —iy . " .
6l = S a4 ) = ol k)

1 &Y 4 o= 2

v
WY

where k(z) = “_)T-;-_?n; is the Koebe Y-spirailike function. G(U) is the com-

plex plane slit along the half-lines Re w = 0, - g
Imw 2 (Ja(Zcos Y+ «) — a sin y)/éos 1:

and

Rew =0,ITmw < — (ya(2cos y + a) + asiny) /cos y.

By using corollary 3. we obtain the following result:

COROLLARY 4. Let fe A, «a>0 and y = (— — —) Then
Jle, f(2)) <Jx(a, ky(2)) = g = SPy, - (10)
te. N ’

Tdo f12)) < Jule, ky(2) = J5(0, f(2)) < J(0, k().
In particular ' ' ’ ¢

feA a>0, [ Jula fz) = (1 —iatgy)| <1+ ——

z € U:fESPy,YE(—%, %)
and

JaZcosy+a)

cos y

fed, «a>0,|Im Jya f2) +atgyl<
zeU::.feSP.nY e(_%, .’i].

For y = 0 these conditions are starlike conditions and was obtained by P. T.
Mocanu in [5]. .
THEOREM 2. Let f € A,, let ® be analytic in a domain containing f(U),

®(0) =0, &(0) =L, Rec> 0 and Bw) #0 in f(UN{0} and let a be a real
[

3 — Mathematica nr, 1/1989
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\ - //(3) _ Z[d’(f(:))]’ J} > O, z € U,
pumber Re {J’(_.)_ + u[l + Yf,'(':)' -—W ' (“)
o(f(2)) :
S 50, z €U, it ‘
then Re——— >
en o(f(-))] (e, fl) > 0 zeU=Re Jol0, f2)) >0, 2= U.
Re Jol® - . :
° - 2f'(3) ,pis analytic 1n U with $(0) = ¢, Re >

Proof. Tf we let $(2) = g7y

and (11) can be rewritten as

zp’(2)
ke [i’ e+ “%] >0 (19

| (2) .
which implies Re p(z) = Re %f(?(_zﬁ >0in U
In the particular cases ®(w) = w this theorem ‘r"a~s proved by §. §
Miller, P.'T. Mocanu and M. O. Reade in (41
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MAXIMUM PRINCIPLES FOR SOME DIFFERENTIAT, EQUATIONS WITH
DEVIATING ARGUMENTS

IULTU DAN COROIAN®
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REZUMAT. — Principlt do maxim pentru ecuafli diferentiale cu argument
modifiecat. In prezenta lucrare se stabilesc principii de maxim pentru ecuatii
diferentiale cu argument modificat, dupi care se di o aplicatie referitoare la

multimea valorilor proprii ale unui probleme de valori proprii pentra o ecuatie
diferentiald cu argument modificat.

ot

1. Introduction. Let us cousider the following second order differeatia
operator with deviating arguments

Ly)(x): = y"(x) + p(x)y'(x) + q(x)y(x) + ?é%(x)y(ga(x)),

for all x  [a, b]; where p, ¢, q;,, g, €Cl[a, b], i=1, m. Let a, b, €R be
such that a, < a,b < b, @ < g(x) < b, for all x € [a, b].
The object of this paper is to establish maximum principles and mini-

mum principles for the solutions of the following differential inequalities with
peviating arguments : ~

L) > 0 )
L) >0 @
Lis) =0 @)

We follow terminologies and notations from [6] and [7].

2. Maximum and minimum principles. We have .
THEOREM 1. (see [6]). Let y be a solution of (1). If

b

gi(x) =0 an ¢(x) + iq,-(x) <0 for all xa la, bf (4)
fmal

then y satisfies the maximum principle. ‘

THEOREM 2. (see [6]). Let y be a solution of (3). If L satisfies (4), then
y satisfies the maximum principle and the minimum principle.

THEOREM 3. (see [6]). Let y be a sotution Jof (2). If

. NS
e ]

50 >0 and i) + Foal) <O for az < Ta b 1 B
’ ‘ =1 : _

i

then y satisfies the maximum principle. ..

® University of Cluj-Napica, D:pariment of Mathzmitics sad Paysws, 3£0) Cluj-Naprzs, Rymanis
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Now, we hi‘;’;-w 3y be - solubion: of (3).. We assume that ..o -\, ,
THEOR %2 o Thatd ) T 4.,.. ’ . 4 : i‘:« :’ } ‘,‘1')»,"1 ;
. et [ v all x €a, b
20 i T ERL <0 A S

1f there exists M >0 such tlmthy(x) (i)ﬂf' l{jorf o(;”az’; = éa,[Z]b?nd there. ezig,
' that y(c) = M, ther y(%) = , b,
e " S’g‘i‘ (I)‘:e {1(13 contrary : there exists d € v]a, b suc_:h .that y( d) <i
We slﬁ?])é{).rove{) %hat~ this -assumption leads us to a.contradlctxon. :
(i) The case d>¢. Let us consider the function :
. ' ' z_(x) — ca(r—c) _— 1 .

with a« > 0 to be chosen suitable. We have
“woire 2(2) <0, for all x < ja, cf,
z{c) =0, e
- z(x) >0, for all x € Jc, b,

LI

and e

i

L@)(x) = [o* 4 ap(z) + g(x)(1 — e~o=9) ] exte=a) 4 E. ¢,(x¥) XE=a o

for a 'suﬁ'iciently" lafge, from: (6).

Let w(x) = y(x) + ez(x), where 0<e < (d .;'(d) )
" o s :
¢ We have
v w(x) <M, for all x e Ja, [,

. w(i): y(d),-'_’,' sz(d)_<y(d_) + M — v(a) = M,
because z(d) > 0, and we) =M., -, a0 N
But Therefore we have 4 maximum larger then M in the interior of Ja, d[.
V R o r _
L)) = L) + L)) = eLiz)(x) > o,
for « chosen before, and
..3"\: FRT . . K \'.,.‘;‘_,1“.}, Ly Y
. 9:(%). "..q(x‘). + gq;(x) €0 on.lg, d ¢ g, bl
. This reprezents a' o et N L - .
in the case E) nts a contradiction With Theorem 3, so Theorem 4 is proved
(ii) The ¢ s'ef( CW ‘mal . ' : . ,
= e elr—e) _ | - e make a similary argument for the fuuction z{*) ©

.

The followi

.. ng result ; S e .
principle, 'S TeSult generalises the maximum Principle and the minimi®
) AR e .
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Proof. Tf an eiggnvalue ) satisfies | o)+ s
- f_ e apd A < I {— aa(x) + Qa(*)},
Az max 17— "(_;)} asr% 1
scssb U - %
that is y g

)+ agala) >0 and g(2) ) + 1) +gs(x) <Ofor all £ < [a, ]
o i the d'tiohs of Theorem 2, s0 31y solution ¥ t%fat(g) ',i" 1({10) hs_atisfies

we are in the cond! pimam principle- That means Yy takes his pog.

the maximum and the m : alU [b, b;]. Hence y <

. . : jve minimums 12 [as,
tive n;:x:gEJTSS :1?3(1 I;ﬁscl?eiat).wcanm)t be an eigenvalue for (9) + (10).
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CONTINUOUS SELECTIONS FOR MULTIFUNCTIONS SATISFYING THE
CARATHEODORY TYPE CONDITIONS. THE PICARD PROBLEM ASSO-
CIATED TO A MULTIVALUED EQUATION

GEORGETA TEODORU*

Received : May 21, 1987

REZUMAT. — Selectii continue pentru mulilfune{il eare satlsfac condifil de tip
Carathéodory. Problema lui Picard asociatd unel ecuafit multivoce. Se demon-
streazd o teoremi de existentd a unei selectii continue pentru fiecare din apli-
catiile (x, y)— F(x, y, 2(x, »)), unde F este o multifunctie definiti pe o mul-
time compacti din R#*? cu valori-mulfimi compacte, neconvexe din R», rela-
tiv la o familie dati de functii continue (x, ¥)— z(x, 9), (», ¥) € D = [0, a] X
X [0, b], F satisficind conditii de tip Carathéodory. Folosind acest rezultat
se demonstreazd o teoremid de existen{d a unei solufii absolut continue pen- ‘*"
0%z » |
. e F(x' y' 2). .v‘-~

tru problema lui Picard asociatd ecuatiei multivoce

1. Introduction. By analogy to [1], in this note one proves an existence
theorem for a continuous selection for each of the functions (x, y)— F(x, y,
z(x, ¥)), where F is a multifunction defined on a compact set in R"+2 and
valucd in the sct of nonconvex compact sets in R*, relatively to a given family
of continuous functions (x, y)— z(x, y), F satisfying the Carathéodory type
conditions. The main result (Theorem 2), is an extension of Theorem 1 [2],
where F is a continuous multifunction. The results in [1] remain true in this
casc. As consequence, one obtains an existence theorem of an absolutely con-
tinuous solution for the Picard problem associated to the multi-valued equation

P _ e F(x 92, [3], [4].

2. Preliminaries. We recall the main notations and results. given in [2].
Let be the multifunction F: D X B—comp X, D = [0, a] X [0, ], BC R*is
the closcd ball centered in origin and of radius ¢ = M, + Mab, M, given by
(3), M given by (4), and X C R* is the closed ball centered in origin and of
1adius 3. Obviously, X is a compact space in the metric 4 induced on X
by the norm of R”. The family of nonempty compact sets in X, denoted compX,
is a compact metric space for the Hausdorff metric # on compX, induced by
the metric d. )
, Let €D; R~ the Banach space of continuous functions from D to R*
and £/(D; R") be the Banach space of equivalence classes of Lebesgue inte-
grable functions defined on D and valued in Re. :
- Let the following hypotheses be satisfied: e ,
(Hy) The curve v:x=¢(y), 0 <y < b, is defined by the function ¢ e
([0, b]; R), satisfying the conditions ' o R :

$(0)=0,0<(y) <4 0<y<bd ST

dacy

. o
i cas PR

* Poiytechnic Institule of lagi, Depariment of Mathemalics, 6600 Iasi, Romania
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AC([0, a]; R") e AC([0, b]; R*), where AC
(H,) The functions P feabsol(t[ltely continuous functions fi[ay, ap]— R, el(JEi:l'

ay); R) is the space O
Wed “'lth the norln T vy —_— Ly mst ;:"“ o o .
O it . it >rn'+5 17011 & |
1e [x ¢1
Q(O) I ;."- AL

satisfy the condition P(O)
(H,) The function «: D R* defined by

o a(ny) = Pz x) 4 Q) —

is bounded and therefore “there is M, > 0 such that
L C ez )l € My (%) € D.

It follows. that « 1s absolutely continuous on D; « € C*(D; R*

— §568]. - « ( ), [5,§565~

Let K be the set of absolutely continuous functions z: D— R", :

e C*(D; R»), satisfying (3), (4), (5), where .

P, (59) <D, @

3

” a'Zféyy) “ <M, ac (%) €D, “
g
w ,',f { (x.0>5 P(x), 0 < z< a,

240), ) = QL) 0 < y<b ®)

et

PR
OPOSITIO\T 1 lec set K is a nonemﬁtv convex and compacl subset of

Denote Do(x y) the rectangle gwen b\ |
(xy)—{(uv)lz,a(y u<x0<v<y}CD; (x,5) €D

.'“A

o

R Integratm el V) $ A

1 C*(D B” g' s O\ér "Dy ,y) \\hxch exists a.e. (v,y) € D, as z €
). [o] and usmg (2) one obtams . i

"Hnu O yresng i e i

ihe s
l':-.. | ||(

.”. e b n( "l;
(,», = (HQU) P »+’§de "”;‘“ Y du =

‘/ xfs/l(x,
e
) I / GIhY fro Y nr g E'L! Woe it H ucv
A ()

YA o N gl a =S a;(',x &

i | . . v) + SS 2(1¢, v)d
R S ' U
VaE wte o csaaly g Dl ouge " dv (x V)eD i (6)

(¥, - ! I

Remark. The relati T .

(%, y) e D “Theret relation z e K lmplles ' .x S . R
Ilgmto compX, dgn(gteede(??zk)1 a‘e K generates(a n{ép(ixv» <D x B for: cach
by the relation his function G is V)= F(x, y, 2(x, 3)) of
ih . assaciated to.the multifunctios.
z N — & S Lob SN .
()(x..y) = Fix,, 2(x, .V)). (}c, 'y) <D )

A ey e
B R T Y
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The main theorem in [2] on the existence of continuous selection is the follo-
wing : :
THEOREM 1. If F: D X B—comp X is a continuous multifunction, then
there exists a conmbinuous function g: K-— €D ; R*) such that, for every z < K,
g2)(x,3) € GE)(x, ), ae. () < D, Gore e TSR
3. Com.muou§ selections. The measurable case. The Theorem 1 can be
extended to multifunctions defined on ‘D X B and valued in compX, and
satisfying the Carathéodory type conditions, similar to [11].
THEOREM 2. Suppose F:D x B— compX . satisfies the following hypothe-

ot

ses :
a) for cach z € B, (x, y)— F(x, y, z) is measurable in D,
b) for cach (x,y) € D, z— F(x, v, z) 1s continuous in B.

Then, there cxists a continuous function g K-— (D ; R*) such'that, for
cach z € K, g(z)(x, y) € G(2)(x, ¥), a.c. (x,y) € D. ,

Proof. One uses the proof of Theorem 1, which rests upon the following
two properties of the multifunction F: D X B-— compX, which are direct con-
scquences of the assumed continuity : ‘ _—
1° the family {F(x, »,)}.(x, ) € D o6f maps of B into compX is uniformly
(f(llllC()lH]l]\]OUS V ’
2° for cach z € @D ; R") the map G(z)(x, y)— F(x, ¥, z(x, y)) is measurable
mn D. y
\We shall show that the hypotheses.of Theorem 2 induce in F essentially
the same properties. It is a consequence of the following two lemmas.

The Iemma 1 is a similar result. of the theorems of Scorza—Dragoni
type for multifunctions, [1], [6], [7]. =

LEMMA 1. Suppose F: D X B— compX satisfies the hypotheses of Theorem
2. Then, for cach € > 0, there exists a closed set E C D with w(D — E) < ¢,
such that the family {F(x, y,.)}, (x,y) € E, of maps of B into compX s uni-
Jormly cquicontinuous. . : ‘

Proof. Let be the functions 8,: D—R, # > 1, defined by

8,(x, v) = sup {p:> 0;lju—v]|<p = H(F(x, ¥, __u), ! (x, y, p)) < %:, e B}. (8)

To verify the conclusion of this lemma, one shows that for each e >0,
there exists a closed set £ (C D, with p(D — E) < ¢, such that the restriction
3,/E is continuous. . KT

Let A = {2,)}m»1 be a dense subset of B.The hypothesis'a) implies the

existence of a closed set L (C D with (D — L) 5 -;'— such that the restriction

to L of every function (x, ¥) ~F (x, ¥, z,.) is continuous. Then, each: réstriction
3,/L is upper semicontinuous, hence measurable.

Indeed, suppose, by reductio ad absurdum, that for (fixed) # > 1 there
exists a point (%, ¥,) € L, a constant y > 0, and a -sequence, {(xay %)} 11 con-

‘vergent to (x4, 3,) in D, such that

Sn(xk: J’k) 2z Su(xoi yo) —1"".\/," .for an k:> Lo, noo ":"::“(9)

~
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Let v, vy be point

a%os ¥o) € {1

s in B “’ith 3
— vyl € 3al%o Yo + 7V (10)

such that, for some A> 0,-

. L . - |
H(F(xor J"oy 'Ul)’ F(xo: Yor vg)) = —; + A. (11)

Then, there exists points Zm: Zm in A and a point (%x %) € L sucy
en, 4

that v .
”'Ul—-z,"' ”<'g' ”'”2"2»-,”< 3 (12)

Also, by hypothesis a) we have
H(F(%o, Yo v,), F(%o Yo Zm)) <
(13)

x> «lp

H(F(%y Yor V2hs F(%g, Yor Zm,)) <

and

H(F(xo’ Yo Z,,,‘), F(xi- Y Z,,,‘)) <
(14)

o =L

H(F(xo» 3’0: Z,,.,), F(xkr yb Z,,,‘)) <
According to (9), (10), (12) one obtains

2m = zm | € l12m, — 0ol + llvg — 0] + fv, — 2w, Il < f:"*‘

F1lvs = vyl < 8u(%, o) + v < §,(x, 30). (13)
The relations (8) and (15) imply

H(F(xhi }’ ‘, Z,,l), F(x,,, }’,., Zm.)) < -L. (16)
”
Then, from (13), (14), (16) one obtains

H(F(x5, 35, vy), F(x 56 v,)) < H(F(x,, y,, v), Flxg, ¥o 2w,)) +
+ g(F(xo' Yo zm‘)' F(xb Mr 2"'1 ) + H(F(xh i le.)’ F(I\’h, yk» z"‘:)) +
+ (F(xh Y, zm,): F(xo: Yor Z,..)) + H(F(xo, Yo Z,-.), F(xo, No» vg)) <

< H(F(x,, 3, zm), F(xp, y, z R 1 1 T
b ) »-.))+2A<;+.2_A, (17

which is in contradiction to (11).
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It follows that there exists a closed set E C L with p(E ‘— L) <~ such-
thaé ) each restriction §,/E is continuous. Obviously, by construction, w(D —
—_— < e b . . ¢

LEMMA2. Suppose F: D X B—»compX satisfies the hypotheses of Theorem
2. Then, for each z € €D; R, G(2): (x, y)— F(x, y; 2(%, y)) is - measurable

]

Proof. Let z € €(D; R") be given, and let {z,},», be a sequence of ‘pieces-
wise constant maps in D that converges to z uniformly in D. We need only
show that, for every = > 0, there exists a closed set E, (C D with p(D — E;) <
< ¢ such that G(2);z, is continuous. ‘ S ' :

Taking into account Lemma 1, there is a closed set E'\J D with b.(D‘—“
— E)< —:- such that the sequence {G(z,)}un1 'converges' to 'G(z")' uniformly in E.
Since ea;ch G(z,) is measurable in D- and hence in E, there exists a"cvzvlosed,_
set E,CE with p(E — E) < -; such that each restriction G(z,)/E, is con-

tinuous. This implies that G(z)/E, is continuous.

To prove the Theorem 2, one shows an increasing sequence {E,},,; of
closed sets E, (C D with p(D — E,) < 2-» such that each restriction F/E, X B
is continuous and one defines for each # > 1,

Pz, y, ) = | T8 20 (52 2)<E.xB
" o , (¥, ¥,2) e D—E, X B.

Then, as a consequence of Theorem 1, there exists, for every n.> 1la
continuous map g": K— €(D; R») such that for each z € K, g"(z)(%, y) €
e F(x, y, z(x, ¥)) a.e. (%, y) € E,.

Let A, = E, and A,y = Enyy — E, for every n > 1 so that E, = U 4,
and define g(z), for each z € K, by setting kel

g(2)/d, = g°(z) and g@)D — U A, =0.

Obviously, g maps K into £(D; R") and, for each z & K, glz)(x, v) = F(x, ¥,
2(x, ¥)) a.e. (%, y) € D. Also, g: K—£(D; R") is continuous since, for any
zeK and we K

S llg(2)(x, y) — g(w)(%, y) || dxdy = § Il g(2)(x, y) — g(w)(%, 5) || 8xdy +

D D~En

+{ ez 9 — gw)m ) dxdy <2+ M+

En
+3 § 18 2 — ')z )1l dxdy
k=1
4
whatever # > 1 and each g* is <o1. 1101, Ly construction.
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i to a 1
4. The Picard problem _ussg_emtcd“_ 8
the mt.llti-valued equation o
e S FE

' ox 3}’., S

) () e s=P (13
A T RESEI -‘X. ,'\. '_‘ , : vion (18) ‘s defined .
F:D X B——’ C_Olnp d . d to the equa ) [3'
whereThé Picard ,Proi)ll’eemd:f:gg?nt:tion_ of an ab;;])utt(ag )contmuOus function
4t]isf§:;gg c?lnss)lvsznldn.(S) in theh_\'p(ﬁhe\sif; (gl‘:e)(;n(eml" 2)-
I 4 i ' w . . .
=28, e sl e B0, s e oo .
4, 4, . . 3 : : .
THEOR].:.‘IZ If /t)hc hypotheses (Ho), (H))s (Hy) are f;l z{t sen _lf t:::i pro.
%{ o ({Sh)e‘ii':“(nS) has at least an absolutelv conbintous s : e
em R
‘.E c*’(I‘Dhe': grgbf uses .the Theorem 2 and is simila
O |

H i

r to that given for Theoreny
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ON A CLASS OF OPERATORS OF APPROXIMATION OF FUNCTIONS
OF TWO VARIABLES .

~ 1ON VIRTOPEANUs '

T ') 1 vy
Recesved : Octoder 17, 1988 I A
. C St e

REZUMAT. — Asuprf\ unel eclase. de operatorl de aproximare a funcfliior de
doud varlabile. Folosind calculul umbral §i sirurile polinomiale.de tip binomial,
corespunzitoare la doi delta operatori P si Q, se construieste un operator L,‘; 'g,
util in aproxin'garea fun'c;iilor continue de douidt variabile. Acest operator, atasat
deltz} operatorilor P si @, reprezintd o extindere bidimensionald a unui opera- .
tor introdus recent de citre L. Lupas si A. Lupasg (2]. Considerind cazul
cind acestl operatori sint de tip pozitiv, se studiazi convergenta sirului (L,’:'g)
citre functi'a /f continui pe patratul unitate Q §i se evalueazi ordinul de apro:&i-
mare cu ajutorul modulului de continuitate. Se dau doud exemple ilustrative.

I. In a recent paper [2] L. Lupas and A. Lupasg have considered -
an approximation operator L, :C[0, 1] = C[0, 1], defined — for any m < N,
by the formmula ' 4

L X)) = 3 " Yy 2/ y -— -’i » ,’

(L)) = o= 35| 7) £ulom) p-slm — ma) - m
where (p,,) represents a sequence of polynomials of binomial type, characterized
by the fact that p,(x) is exactly of degree m in x, for any m € N, and the
following identities are satisfied

- .
L s e oo
i ' i i

pulr+) = B3 (7) 6431 pmcal)

It should be mentioned that similar liniar operators of approximation
have been considered earlier by G. Moldovan [4] and C. Manole [3].

Concerning the polynomials of binomial type, we notice that a detailed
exposition of them has been presented by Gianm —Carlo Rota and his
collaborators in [5], where they have used the so-called “umbral” or “sym-
bolic” calculus.

2. An important tool in the algebraic approach to the special polynomials
occuring in combinatorics, theory of enumeration and in approximgtlpn thegry
is the so-called delta operator, usually denoted by a letter Q. This is a shift-
invariant operator, that is it commutes with all shift operators : QE® = E=Q,
a = R, E* being the shift operator, characterized by the fact that it translates
the argument of a polynomial by 4. If « is a constant, then we have Qa=20
and if $ is a polynomial of degree m, then Qp is a polynomial of degree m — 1.

* University of Craiova, Str. A. I. Cuza 13, 1/00 Craiova, Romania
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; i ivative

tors have analogous properties with th,e der ; Operator

ta operators : S _

'g?e ddé ? 1 “sequerice (pw) is called the ..seg)uwc; (gﬁb;‘(sg fo’lggwmzals

A 'po]ynomla seqt'l‘ » ;1 pm(0)=o (m> an hm =Mp,,_, 1_).

0 i s v ey S O S e

In ere | 3 iated with 1 . 1 -

quex[lce of basic P°1y"°mlalesr£>sroqga, Cthen it is a sequence of _P;)l}_’nfom_xals of

quence 1of somec c?neizs Jg £ (5] s a Sequglce of p(ilynomxas of binomig]

binomial type; A for some delta operator.

type, then it is a bastc ;;-qléﬁl;c; iplication operator, i.e. (Mp)(t) = 50,

Let us denote by deyivative of a shift-invariant operator T by the

One defines the Pincherle aertv o mediately that T’ is also a shift
"= TM — MT. One veriies 1 ;

formula T The following result 1s known : An operator U is a delty

invariant operator. The 1o hift-invariant operator V, where

i ly if U= DV for some shiit-mva
f}feer ;:\.i_r;i 333:5231/—1 exists, D being tl_Je derivative opirator,
Let us denote by ¢; the function defined by ) =t (k=0,1,2, .

For computing a given delta operator, applied to a certain function, one cap

t f the paper [5]: _ )
e aIer(Splt],,) izogl seque}:cep of basic polynomials for a delta operator U = DV,

then for any m € N we have: .
Pp=UV-m1g, =V-me, —(V-")ep_=V"Cpy = ¢;,(U) P,

3. Let (pn) and (g,) be the basic sequences of polynomials corresponding
to two delta operators P and @, respectively. We assume that p,,(m) # 0 and

gn(n) # 0 for any m, n € N.
In this paper we consider a bivariate extension of the operator L,, defined

at (1) and we investigate its approximation properties for continuous functions
on the unit square Q = [0,1]2. ' '

To any function f: Q— R we associate the linear operator L,? defined,
for any m, n € N, by

WD) = " Btonasts, 91 [%, L), @)
where w ga m o
Wmnp, (%, y) = ( :“;’) Dr(m2) g;(ny) Bp_s(m — Mx) gu_j(n — ny) (3
and
Amn = pp(m) g,(n). (4)

In view of ih\'estigatin .
: 8 the approximation i
We consider next the .couple (2, 9), where | properties of these operators,

1— mm—1

Pm(m)

L v:=

(P'-Z?m_z) (ﬂl)

wg = 1 -_— —’L(’.'.';l) ’_
o @20 )(n).
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We shall say that the couple of operators (P, Q) belon
¢ ) > f gs to the class
(V, W) is and only if we have: (i) P and Q are delta operators; (ii) pn(0) > O
and g.(0) > 0 for m, "= 1, 2, ...; (i) lim v =lim vl =0 as m, n—co.

Assuming that L. defined at (2) — (4), are positive operators, for
investigating their convergence properties on the space of continuous functions
C(Q), we need first to find the values of these operators for the test functions
e,s, where ¢, _(x, y)=xy for 0 <r+s <2 If we take into account the
theorem of Gian —Carlo Rota, mentioned above, we find immediately
that :

LiCe,, = e (r,s=0,1)
and .
(L e20)(%, 9) = 2* + %(1 — =)o,

(Lnd eo2)(%, y) = 32 + y(1 — 3)wf.

By using a result given in [2], we can see that if L:;g are positive opera-
tors then the sequences (v,’:), (wg) are bounded and for any m, n=1,2, ...
we have:0 <95 <1, 0 <w? <1; on the other hand, if (P,Q) e (V, W
then LD? are positive operators.

We are now in position to formulate the following

THEOREM 1. If (P, Q) € (V, W) and f e C(Q), then we have

lim LEQf={,
m,n —

aniformly on Q.

For proving this result we can use the classical criterion of uniform
convergence of Bohman—Korovkin, from the theory of linear positive opera-
tors, taking into consideration that

lim L,’:;g e = €:(0 <745 <2),
mn — 0
uniformly on Q, because cop, €100 €04, €14 are fixed points of the operator
L% and from the definition of (V, W) we have that v,;— 0, w?— 0 as m, n— 00.
4. In order to find quantitative estimates for the rapidity of convergence

of the sequence (LLCf) to f, when f € C(Q), we shall use the modulus of
continuity, defined by

olf;8) = max| f(M") — f(M')),

when M’(x, ¥') and M"(x”, y") are points from Q, and M, M) <8 (8
= R,), with

A, M7y =& — 2P+ (" =)

According to an inequality given in [1], in our case we have

”f_ L;:gf” < 2(.\)(f; l“'m,n):
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{lior prehilbertiene sl apleagli. In

earacterizérl ale y:pn|l e s scalare  Aplteatll. T

il citeva caracterizdri ale produs : P mi-
i:g;::el:: :::ll:rzs cde tip Lumer §i se aplicd rezultatele objinute la operatori
definiti pe spatii liniare reale in dualitate.

REZUMAT. — Citeva

denote a linear space OVer the real field R. Iy

this paper we shall give some characterizations of inner product spaces iy
terms of semi-inner products in the sense of Lumer [3] by the use of some
results established in [4] and [2]. Further, we shall give some applications

for the operators on a dual system of real linear spaces.
1.1. pEFINITION. ([3], (1] PP- 389, 2)) A mapping (J): X X X—=Ris

called semi-inmer product in the sense of Lumer or L-semi-inncr product, for
short, if the following conditions are satisfied :

) F+ra=(@xd+ 02 xy2sX;
(i) (Ax,y) =Ax9), reR x,yvelX;
(iii) (x, 2) >0 if ¥ % 0;
(i) l(x )P < (x5 2 2), xy €X;
(v) (% W)=Ax2), xR, zyeX
We note that, tl i Y —(x 2)2 . -
every Finner product 11: I:;_I&III,)};lenn%iji\mf::rxpro((13:1'&l ):)/n ‘.:;L'.IL is a norm on X and
or details concerning the properties of L-semi-inner products we send

to [1], [2], [3] F : h ] !
be [uS]ed[ii t[hg segﬁe};‘er’ we list the properties of the functional (,) that will

1. Introduction. Let X

1.2. 1 B
and () a Lil:;];-niit[he(r[ljﬂr&%ﬁi%i[ci])' Let (X, |].1]) be a normed linear spact
is @ smooth space fff () is continuoﬁinf.rg‘ftes the norm ||.||. Then (X, ||-1
() I '
:H)l (y; x ‘+‘ ty) = (3'1 x)' 1,y X.

1.3. pEFINITION. ([5], [1
linear space and f: X R, f (]x)p‘p.=3§9‘ [2]),: Let (X, ]].]]) be a real normed
=< lI#[P’, ¥ € X. Then the mapping

(% ¥)r: = Smifly +t2) — fN I, %, v < X,

* Unii ',ofT", ,[\:

ent of Math, .
ematics, B-dy! v, Piiroan, 4, 1900 Timisoars, Romanss
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is called semi-inmner product in the semse of Tapia or T-semi-inner produét, for
short. ) ' ) - ‘ . o o :

For details concerning the properties of T-semi-inner product, we send
to [1i, [2] or [5]. We only note that the following identity holds:

| (537 =<y, AlJ2l], By X, 0 ey
where <(¥, 4): =‘]i?} (Hy + x|l — ||yt if x, y < X. For the:"prq'perties'_
of the functiona} 7 we send 'to [47. . : RN

The following lemma proved in [2[ is important in the sequel. ' +

oo L4oumwyma. Let (X, |].1]) be a smooth normed linear space over the real
ficld R and () the L-semi-inncr product which generates the norm ||.||. Then
(1) (v, %)r = (y, x) = lim{(x, x + #y) — (%, 2)it, x, ¥y € X.

1—0

Now, we state some well known results that we shall use in what follows:

1.5. THEOREM. ([4], Lemma 1.). The normed space X of three or more
dimensions is prchilbertian iff -

X Ly implies v | x forall pairs x,yin X, ||x]|= |lyll=1, (1.1)

where “ 17 denote Birkhoff’s orthogonality in normed space (X, ||.[]).
Consider the following condition : 1

if jiall= |ly]l =1, then 1(x, y) = 0 implies <(y, x) = 0. (1.2.)
Then we have

1.6. turoreM. ({4], Lemma 2). The following conditions are equivalent
on X:

(1) Condition (1.2.) holds,
(1) The space X is smooth and condition (1.1.) holds.

1.7. Remark. Note that the restriction ||x]|= ||y]|] = 1 can be dropped
in (1.1.) and — if we assume y # 0 — also in (1.2.)

The following result is a consequence of above theorems :

1.8. tnroreM. ([4], Lemma 3.). If dim (X) >3 and (1.2.) holds, ther
X is prchilbertian. ) o

If we want to drop the assumption dim(X) > 3 in these characterizations,
then it is nccessary to strong the condition (1.2.). ) o __

1.9. THEOREM. ([4], Lemma 4.). The space X is prehilbertian iff <(x, y) =
= =(y, x) for all pairs x,y in X, |[|x[| = [|yl]= 1.

A slight improvement of Theorem 1.9. is given by ' S

1.10. THEOREM. ([4], Proposition 1.) The space X is prehilbertian iff
bT(x, 3) | = | (y, x)| for all pairs x,y in X, [|x||= |ly|]|= 1. E

Another result due to P. L. Papini ([4], Proposition 2.) is the following ©

1.11. tuEorEM. Let (X, |].]]) be a real normed linsar space. Then the
Jollowing conditions are equivalent: B ‘

(1) Condition (1.1.) holds,
(i) If |1x]]=]lyl] =1, then z(x,y) > 0 implies v(y, x) > 0.
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. r ive - e ey 'Ic nOI’”u’d Spﬂce X of Ul‘ree or-
f?&a]‘lgﬁggéém. (41, ;h ez:ie‘;zl“y‘)ith;w following condition holds . m
- 1 a ’ A R . -

L g v m X, Nl =11=1

dimensions 13 P chilbertiat. ! pairs
0< z(x,'.’};) -(}’, x) f In this SeCtion we shall give some theo
paces by the use of Lemms 14'

9. Theorems of e!mrﬂcterjzat;m.mduct .
rems of characterization of 'u‘m P _ | |
and éﬁsnazgtl)sze a real linear space and a mapping (,): X x Xo

2.1. THEOREM. L
—R. Then the following: senlence
0 () is an innerprodust on X
(X) () is an snmer proéust OW S  which satisfies one of the follon:
(H) (,)i5a CONLINUOUS Ij-sefn _inner produc /. Y oving

1
conditions ;... . ]
lim [(x x+ &) — (% 2]t = (x,y) for all x,y € X 21

t=e0 "

Ore

s arc equivalent:

(see Theorem 3.2. of [2]), or
glim [(x %+ ty) — 1= I‘in}) Uy, y + 1)
- Lma) =) =1

— 1/t for all x, v € X wih
(22)

or
CHim [z, % 4+ ty) — 1]ft] =lim [(y, y + tx) — V]|t for all x, v € X with
‘w . N PR 10 .

(x, %) =(ny) =1 (2.3)

“* 7 Proof. “(I) = (H)". It is evident by the propertics of inner product. We

omit the details,
“(II) = (I)”. Firstly, we remark that by Lemma 1.4. and by identity

(I), the conditions (2.1.), (22.) and (2.3.) arc equivalent respuectively with:

o y ‘(y, ;\t) = (x' _y), X,y € X; (2.1'.)
Hny) =ty %), x,ye X and ||x[|= ||v]]=1; (22)

and ",". N ",’ ‘ -
M=y, 2), v e X and |jx]] = ||v]] =1; (2.3

By Theoren | 110 of : _
producty o egéem 1.9. and 1.10 of Introduction, we deduce that (,) 1s on 1nnef

’I‘The theorem is 'p'réved.
in ter‘l\n‘;""(»)f“;‘z IE;-\;lemfz}rle second theorem of characterization of inner products
'2.2. THEOREM, Letp;({)d;;: tZ e sense of Lumer. :
and the mapping (): X x X__‘R._rcg‘lkel;”j;‘f Space of three or more dim'enszo;!f
() () is an inner proquct on x : te following sentences are equivalen:

(I1) () is a continuou inner 4
Toids ous L-semi-inner product and one of the following condilio®

(3 %) =Q tmplies. (x, 3 =

=07 ixll= =1, 24
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or
lzm [(x x + ty) — 1]t = 0 zmj)lws hm [(y y —I— t"c) —1]/t=0
A== (2.4.)
or »
(3, %) 2 0 dmplics (x,9) >0 if ||x||'=||y{| =1, (2.5.)
or . . Co \ . .
1‘11101 (%, x +ty) — 1}t > 0 dmplies lim [(v, ¥+ tx) — 1]/t > 0
e =0
if lxll= |iyll=1, h (2.5.%)
or
W 2% y) 204 |lxll=|ly||=1, (2.6.)
or o

lim {[(%, ¥ + 1) ~ 1[5 + 12) = 11 > 04f [1(['= [Iy || = 1. (26.)

Proof. “(I) = (II)”. It is evident by the properties of inner product..

“(II) = (I)". We remark that, the conditions (2.4'), (2.5".) and (2.6".)
are equivalent (by Lemma 14), with (2.4.), (2.5.) and (2.6.).

On the other hand, (2.4.), (2.5.) and (2.6.) are equivalent with

z(x, v) = 0 implies (v, x) =0 if ||x|| = ||yl =1, (2.4".)
(¥, v) = 0 implies w(y, x) > 0 if [|x|] = |ly|| =1, (2.5".)
=(x, 3)e(y, %) 20 if [|x]]| = ||y|l =1 (2.6")

By the use of Theorem 1.8., Theorem 1.11. and Theorem 1.12., we deduce
that (,) is an inner product on X, and the theorem is proved..

3. Applieations, The main purposes of this section are to apply the charac-
terization theorems obtained above to operators defined on a dual system of
real lincar spaces.

Let (X, Y, ¢)) be a dual svstem of real linear spaces. Further, we shall
consider an opcrator A: X =Y satisfying the following positivity condition:

(P) (x, A(x)> 2 0 if x € X and (¥, A(x)) =0 implies x = 0.

In these assumptions, ‘we can establish the next result.

3.1. ruroreM. Let (X, Y, (,)) be a dual system of real lincar spaces and
4: X =Y an operator salisfying the condition (P). Then the following sentences
are equivalent
(A) A is a linear operator and {x, Ay) = (y, Ax), x,y € X;
(AA) A satisfies the conditions
(i) A(ax) = adx, « € R, x € X;
(i) Kz Ay) I < <% Ax)Cy, Ayd, 2y < X,
(iii lim{y, A(x + ty)) =y, 4x), x,y € X;

1—0 Y
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and one of the. follo
lim¢x, [A(x + V)
0

wing assumptions holds ;.
— Ax]ft) = (%, Ay), %y € X, .(3‘1)

—AZ)) = %10, [A(y + tx) — Ayift)

or
tim(z, [A(2 +¥)
-0
" ohere x,y € X and (% A%) = o, dy> =1, (32)
or _
fm(xn[A(x + ty) — AZ][E) = 1;rr;<y,[A(y + tx) — Ay]jt>
-0 —+
where %,y € X and <%, Ax) =y, 4dy) = 1. (33)
Proof. ”(A) = (AA)". Putting (%, ¥)a: = K% 4AY), then ()4 is an ijupe
product on X and the conditions (AA) is fulfiled.
(xJ’)Af = <x» Ay>r x’_y € X, then (;)A iS a cop-

""(AA) = (A)”. Putting
ich satisfies the conditions (2.1.), (2.2) o

tinuous L-semi-inner product wh
(2.3.). This means that, by Theorem 2.1., (,)4 is an inner product on X what
implies the linearity of 4 and the condition : {(x, Ay) = (¥, Ax) for all x yae

e X.
The theorem is proved.
The second result is embodied in the next thcorem.
3.2. raroreM. If dim(X) > 3, then the condition (A) holds 1
0 » [ XX . z ’ s 1 s 4 ]
the relations (i)—(iii) are valid and one of the following a(ss)ertz'ons a{cat’;ic?nl) Yy

K<y, Ax) =0 implies (x, Ay) =0 of (x, Ax) = (y, Ay) =1, (34)

or

. _ P

‘1_13;(x, (A(x + ty) — Ax]ft) = O implies 1‘1_11:()’, [A(y 4 tx) — Ayijji) =0
. if x, 42) =y, dy) =1, 3.4

o, A%y 2 0 implies (x, Ay) > 0 if ¢«

or (x, y) 20 'Ef(l, Al) = <J" Ay) =1, (35}

him{x, [A(x + ty) — Ax)ft> > 0 implies |

im0 f]i ) ; O implies iy, [A(y + tx) — Ay]jty > 0

2 X, Ax) = (v —
o < > =<y, 4y) =1, (35"
9y, Ax)(x, A > ; .
or \ P20 5 Ax) =y, dyy =1, (3.6
m ({x,[A(x
v (Bl + ) — AZUDGL[A( + t2) — Apliey) » 0
if (%, Ax) ="l i

The proof follows b T S A =1 B
. 33. Remark. 1t ( Y Theorem 22 apq we omg .
1S an operator satisfying the prls @ r¢al normed liﬂl‘lil;: zhe deta1(lis. XX
, o ; ac Y Saad
(PN) Ax(z) pery: pres amd 4

20 if x
€ X and Ax(x) = ¢ implies x = 0
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then the above theorems can be applyed for the dual mapping
(Y X X XX R, (&, 2%) = 2*(x), x € X and 2* € X*,

If (X;() ia a real prehilbertian .space and 4:X— X is an operator
satisfying the coresponding property :

PH) (Ax,x) 20 if x € X and (4«, ) =0 implies x =0,

then the previous results remain valid too.
We omit the details. ‘
Acknowledgment. The author is indebted to Professor Pier Luigi Papini
of University of Bologna for his help in the preparation of this paper.
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. ON LAGRANGI .
| i epsSTAVRES U

i
SO A |

Lo U

Received : March 1, 1988 Lo :
. Jui Hamilton. In prima

REZUMAT. — Asupra Lagranglanului §i 8 spnlllloT' . o 'Po |

irii se definesc notiunile de G — aplicatie, I — aplicatie si I —
parte a lucrdni rietati ale lor. In partea a doua aceste pro-

aplicatie §i se stabilesc citeva prop: | >
p?ietézi'ssint' extinse pentru spatiile Jui Hamilton.

The terminology and notation are essentially based on R. M .i ron [1] (2.
1. Let M be a.C® — differentiable, real, n-dimensional manifold and (TAL

I, M) its tangent bundle. If (U, ¢(x) = =1 ..,mnisa ]ocf':llly chart or
M, tlieu (MYU); «,9) is a locally chart on TM (the coordmgtc of point
(x,y) € T(M) are (¥, ). If N is a non-linear connection on £, locally
given by_['N}'(x, ), then ok a%,— Nf;; is a locally basis of a horizonty
distribution H, on TM, determined by N, which is suplimentary to vertical
distribution ¥ with locally basis {¢/dy‘}. For the module of vector ficlds E(T.V
a locally basis is {8/8x%, 9/dy’} and the dual basis is {dx, 5y} {11 Let S=
= (%, %, , (%)) be a semispray an M, and C a differentiable curve C:I— )
which is a road relative to S, locally given by [5]:

s (. dx .

26 (x EJ =0, (1.1
i 1 Vo avi Qi o

wl:ere Gl=— ;S and; Nj(x, y) = 8G*[ayi (S|, ,) are differentiable of class

C"on sM=TM—0; y+ 0). If L,S=S, where L, is the Lic derivative

with respect =y 9 faville’e <& . .
p.ec to e=y oy (Liouville’s vector field) then the system (1.1.) is
by R. Miron (5]:

‘E ‘ dx) daf
a TN 2 5 =0, (12)

and 'cll‘let iztegralM curves of S are the autoparalles of N
et L = -
(M, L) be a Langrange space, where L(x, y) is a real dif

ferenti i
Tentiable function on THs (where the Finsler tensor field (%, y) = 1 2L
non degenerate) and the Finsler forms : 8il%, y) = 5 oyiéyi
W = . f. .
- ©; dx ; 0= g'.j.sy: A dxi, (13)

4 ¥y f i Q30 omania
niverss of Cratoya Deﬁarlmcnt Of Math, C ota,
L 4 4 emalics, 1100
Y , Rom 1
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1 L . . . k.
where ©; = o ;5. which are globaly. defined on TM, I Nj= Njx,3) (the

y
non ]mear connection of Kern) then we have, by V. Oproius

k
b =do (1.4)

where do is the exterior differentiable of « ([1)).
If Nj(x,y) is a fixed non linear connection and

de, a . : & 1 &L - &1L S
Lij(x, v) ——Lg.-,. Nj — g,-a'N?-— ;ij; L= '—(W— 8:‘ ayi) (1.5)

then L; is a Finsler tensor field and L; = — Lj;. Hence the system L; =0

is invariant to transformation (II71, af, y)—» (H"l(U) x' y) (%, y)eUn .
Penoting,|

. oL N 1,.. . N |
B:=—]——y8 — 2} P __pia o
] 2 (5'.‘:‘ ay,'?’ ax'. ’ G 2 g Ba- (1-6)
from (1.5) onec obtains
oG aGe .
Eia E—gh‘;-—z,}-vo.. v‘ (1.7)

A solution of L;; = 0 is the non linear connection of Kern (or the canoni-
cal non linear connection),

Nifx, ) = 2. (1.8)

We have

THEOREM (1.1). The set N(L), of non-linear connectwn {N (, y} which
ts defermined by the Lagrangian L(x, y) is given by ,

Ni=Ni— Af; gud] — gudf=0. * U1 i)

We obtain a generalized form of Oprom theorem. It is, - i

THEOREM (1.2). We have 0 = dw for every N € N(L)..

The variational principle to the Lagranglan L(x(t), y(t)) for the para-
metrized curves C: xf = x(f), on M, gives the Euler-Lagrange equationsfor
the geodesics C for Lagrange space L". . .

R. Miron [5] shows that C is the mtegrale curve of the semxspray S

k
with S* = — 2G‘, Hence the equations for the geodesic C, of Lagrange space,
are given by ’ o o s
. ) A - .o o i BRI R [ E R
L 1 9Gi(x, “) =o. (1.10)

-/ darr

DEFINITION (1.1). The set N(L) is called the set of mtrmsec non-linear
connect tons of the Lagrange’ space L= (M L) B

+

VoLt
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If L*= (11’[, L) and Lr= (JVI: L) are: :tWO ;’?-grange Spa.

' =z W ,2 .
pEFINITION (1 )-L"'-> T given by

ces, then tbe map G: -~
6 {m ) L= (&N 1 (L1y
with, , Z(x, y)‘ = ai(x, y) + 9‘»’(7‘) yi: (1,12)

= ‘a,(x)dx" e Aj(M), is 'called a G-map.

A map 0:L"— L" given by
0:{(x ), g—{(*) g=ag (1.13)

where ¢ = cl and «
perFINITION (1.3).

is called a omotelic map. '
From (1.13) we have. . '
~ proposTioN (1.1). 4 G-map:L"— I* is an omotetic map.

pEFINITION (1.4). If G is a map : L*— I» so that a integrale curve C,
A

of semispray S, determined by N, is 2 integrale curve of semispray S, deter-
A

mined by N, then G is called a geodesic map.

From (1.11) we have o
THEOREM (1.3). A G-map is a geodesic map G iff
duts) _ Gt
3 Tod 0w (1.14)

In this case the l-form « = «;(x)dx’ is a closed 1-f ¢ i
exact : exist a differentiable function S"()x) so that ‘ orm and focally's
DEFINITION (L.5). A I-map : L= Ini sometri iff g
e (1.5) map: L"— L is called g-isometrical map, iff g(x, y) =
, From (1.13) we have, . :
THEOREM (1.4). 4 G-map is a I-map 1
T ORI ) ]> iff a=1.
dass o «;(%) is. arbitrary of M, and L is a fixed Lagrange space, then the
ss O Pagrange space {(M, L)}, where ' ’
. f(x ) =Lz ! N
o ) » )+ ay(x)y’ (1.16)
defines same melrical Finsle ’ |
. t 4
From (118) e have,r structure (M, {EALY) N

THEO 3 -

DEFn:j‘Z)S (Ol)..G)A AG}’”“P Plrcservi the class N(L)(N(L) = N (L)) #ff GisG

? o map i LP— Inis called a dsometrical map if preserve
& (8(%. ) = g(x, 5)) and NILNE) = N(Ly).

THEOREM (1.6). 4 G- s a ]
In general(, lf) (M,G I",)mji)s 1;-?'1-".1@ UG is a OG'”'“P amd a I-map-
ixed in {M, I}; where {M, I} is the set of
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Tagrange spaces whlch define same metrical Fmsler structure and N  N(L),
then we have . ,

N,‘-(x, y) = Ni(x, y) + B,-(x, ¥) (1.17)
where B(}c, ») are the tensor fields solutions of system :
e e 1 [da dej)

g B} ~ g Bi = [a_ﬂ— a;:) (1.18)

2. Hamilton spaces, If ’(I:M, ﬁ, M) is the cotangent bundle and (¥, ;)
are the coordonates of a point % = ﬁ‘l(U) C TM then {0/ap:} is a local basis
of the vertical distribution V:u € TM— V, C T.TM.

Let N be a nonlinear connectlon on 'fM which determines a subbundle
H TVI of TYM such that TTM H TM @ VTM is the Whitney sum (where
VT M is the vertical subbundle of TTM) If N,‘,Sx, p) are the coefficients of
the nonlinear connection, N, on H‘I(IU), then {$=£ + Niy(x, p) ‘%} is a
local basis of the horizontal distribution N:u € Y.‘M-v N.C T,,I’M where
T.IM =N, ® V..

There exists a nonlinear connection on 1."M, if M is a paracompact dif-
ferentiable manifold. .

A local basis of ‘I}E(f‘M) is (5‘1 s (%] and is colled, by, R. Miron, a local

basis adapted.
For the d-tensor fields, on M, given by R. Miron

§N- gN.' .
Rijk = —8;%——871’"' T:’j=Nij_Nﬁ: (2-1)
one obtains:
LIR P A
35 Bas *orn L8% " aps s 0P
and i, ™ = 0. Evidently, N is integrable iff Ri3=0."In [2] R. Miron
cpi O
consider the forms:

P=pdr; q= —;-lc.-,- i A dxi: 0= 5p; A dx, 2.2)

)

. . I
in the dual basis, (dx), 3p; = dp; — N;dx/) of the basis (s : a—[)

In (2], R. \Ilron define an Hamilton space by H® = ; (Ilal’H H) where
H: TM R is a C* - function and the Hessian ai(x, p) = Z nom is non-
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._,( p) . f‘]VI Thlsconcept "is“ fecund in the theoretjcq)
degenerate, (%,
sics. =3 T'V[—» [EAI TA,[ “here # = @ are given by (1 3),
The map @ (%, ) TM to TM. If (x y) sIM 15 fixed, ther,

rphism from
e Pillftel;ng ;M (x,5) € 'D, and an open b= ?(D) C Ty and 7
exists an o0

the inverse function of /D is glven b}’ . By o
x'-— x':y = CD(Z.P) V(x, 1’) e D (N(D) = D, C M).
The restriction of L" to D is L,D Let H be the function, on D
H(z, p) = —‘L(x 9+ 29 Y =0x 1) (p=o0) (2
(M H) “The transformatlon (2.2) is the Legen dre

60
Phy.

and the Hamxlton space H
trausformatlon I.,D - H "
If €= - H £=— L then one obtams (12])

r,"

— 4+ Z=0; ==0oi(x, 2.3
3xi + ax' Bp ( ‘p) ( )
and from Theorem 8. 5) R Miron [2] one obtains
[ i -2 —0- _d_Pl', X
» E = 1 obi(x ( ) 0w — ap. 0; - +w =0 (2.4)

The last equations are. the Hannlton equations.
The nonlinear conuectlon N(x p) TM,D given by
Wils, ) = = g Rt ) 4 L2000 (23)
2 0yidx 7
depends by H, only. .
From (2. o) and (1.5) we have: i

“ N ) N') NJ‘ - Lu = 0 L (2'.6)
since N} = N One obtains, in this mode ‘

THEOREM (2 1) (R Miron 2] - Tij =0; S 1‘2,,-& =0 and 6 is integrable,
: i

and
‘dai k. dxy . . ac »e
Y — 4. R [ dxt . p

tions (2.7 smc , tegrale curves of the Hamxlton equa-
obtained b ) ¢ we have gH < - on this curves, A relation of type (1.4) is
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" THEOREM (2.2) - D = ‘dp. S S S S S L '
Let' N(L) be the set of infrinsec. nonlmear»conuectlon of L,D and 1
N $) = = g N, ) +1 M, ¥ < o, 08
: 2 3) a v A

" We have, St - e "
Nz, p) — N, p) = sz =0, (2.9)
Ny, p) = Ni(x, p) + Ay, p) (2.10)
where ‘ S
A%, p) = Alx, ¥)gia(x, ¥); ¥ = i(x, p) (2.11)
Aii(x, p) — Aj(% p) =0 » LT (212)

We obtain, Y
THEOREM (2.3). The set N(H), of intrinsec nonhnear connectzon of Hl '., the

dual space of Lijp, is given by (2.10), (2.11) and (2. 12)
THEOREM (2.4). For every N € N(H) we have

0=adp; S:. R‘,k = O (2.13)

I/ 'f...--'!".'"'f.?;
and 0 1s inlcgrable. « Lo G Aty
N THEOREM (2.5). The form of Harmlton cquattons (2. 7) is an invariant on
(H), . P LY

ELEFETY PRI A S ! [FEENA RN

dxi b3 4 - ] 8/), 33
Y20 2 47 20 We N(H) (2.14)

Le¢t & be an l-parametric family of support elements (x, p) € i‘M, in
the points x € M, given by,([2])

x = 2(l), P. P(l) t € (a b)

(3.18

Then & is called the geodesxc l-parametnc fanuly of the support elements rela-
tive to N, if its support elements are horizontal relauve to N. It is denote

by &~ and one obtains ([2])

: .
;i -

@19)

%
>
| I

(" .
. 9 d‘

~l

o Denotmg g,,, — = a,(x y) y = d)'(x p) from (2. 12) we' obtam, '
Y N .
THEOREM (2 6) If & is iN thcn f is N for any N e N(H) sz A‘d = 0

and det (45) =0 on ¥.



_p. STAVRE

62
of L* given by (2.7) and N(L) C N(L) giVenb

Let C be the geodesics ' BIve d M 4 y
1.9) (leIO) and det (4j) =0, 08 Cc.If NH) C N(H) is given by (2'10)\(2-12)
e(m.d det (4) =0, on G, then we have

(§’f=o¢i’i‘=0)°f4?(x,y) a,=0; ¥y=0xp @
dt ds . )
b _ EE_—_O] A%, =0
v 0« 86 e (2.14)
where Lo
aa = Bka 7~

Let N C N(H) be the set of nonlinear connections N with the property
1

A"';‘!'. =0, on C, We have

7
THEOREM (2.7). We have

S 51 o
om0 0 VYNe IY(H) (2.15)
THEOREM (2.8). Let & be an 1-paramelric family of support elements (x, p)
induced by the geodesic of L* on (M, H;g¥). I, I ] '
, HY). If ¥ is §N then & is &Y
N e N(H). * for euen
1

From (1.16) we obtain,

~. 1) — | l
| Bl% y) = plxn ) + S alx ) V(v y) e TM, (2.16)
where - )
2 ay'- ’ Pl - ; é_y'.- M

The map ¢: ~
TM to TM. P}f?(x(x,)y),EeTL]‘{_f.(x' #) € TM is a local diffeomorphism from
D is an open D ,Cy T, (x ;?) ﬁx%l, there exists an open D* = (D) whett
~ > 3 (= Fay -
such that ¢ is inversable in the fo.rn"lmg‘?zgi= n(g) 5 50 open s "
ven by
= y= Pily ~
Let M - » y_ = ‘D (xp P) V(x, P) 1= 5* (2‘17)
its d (M, -L/B) be the restriction of I
ual Hamilton space, where s th
: e

B = — 8, 3) + 51y,

= (M, I) to D and A= (M, B
Ham@ton function, on D*, given by

Y=¥x3), (x,epnD @M
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The map G given by (1.16) induces the map Q: (x, p)— (%, ) where
ijs given by (2.19. This points are called the corresponding point)s. In thij;
points we have ®i(x, p) = ®i(x, p) since Pi=pi + % ®; '

One obtains: : : B .

THEOREM (2.9). In the corresponding points of H* and H» we have

& Irg . . &% oL | o~ i .
%(x, p) = %(x, p); ;[,:":5;;, a’¥ = aii (2.19)

THEOREM (2.10). If the map G given by (1.16) is a Io-map, in the correspon-
ding poinis (x, p) i(x, p) we have (2.20).

THEOREM (2.11). If G is a I map, in the corresponding points of (M, H,ps)

and (M, H5.) we have

£ ~ ¢ de; ~
Nu(t =Nulmp)+ 5 2 Pi=tit g (2.21)
3 3= 8pe. (2.22)

THEOREM (2.12). Let & be an 1-parametric family of support elements (x, p)

<

induced by the geodesics of Ljp on (M, Hp.) and § for (M, Hg.). If § is 8~

then & is &5 and converselly. \

Ii G is an f-map, since g(x, y) = g(x, y) and Ni(x, y) = Nj(x, v), we
have:

THEOREM (2.13). If G is an T map, then the st N (H) of intrinsec nonlinea

conncections of H* = (M, Hj5) is given by

Ry (5 3) = Nyx B) + 442 D) (2.23)

where,
Aylx, P) = AX% ) gal% 9); ¥ = B(, ) (2.24)
A;j— A;=0 (2.25)

stnce f,,- = 0.
THEOREM (2.13). If G is an I-map, then we have

Nz 3)=Nyn 3) +~ 242, wN < N@H), N eNH (226

2 ox '
' | FER ¢ PR W
ai ap; dt dxi dt  op 22 dt

i% the corresponding poinis of (M, Hips) and (M, Hj5.).
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ON A GENERAL FIXED POINT PRINCIPLE FOR
. (8, 9)-CONTRACTIONS

IOAN A. RUS*

Received : January 20, 1989

REZUMAT. — Asupra unul prinelplu general de puact fix pentru (6, o) —
contractil. In (17) am dat un principiu general de puact fix peatru (0, ¢)-
contractii. In prezenta lucrare se pun in evidentd citeva consecinte si aplica-
tii ale acestui principiu. In finalul lucririi se formuleazi doui conjecturi.

1. Introduction. Let X be a nonempty set, P(X): ={Y C X|Y # @}
and Y € P(X). We denote by M(Y) the set of all mappings f: Y =Y.

Definition 1 (see (17)). A triple (X, S, M) is a fixed point structure if
() SC'PX), S#® .
(i) M: PX)-=»UM(Y) Y —=MY)CMY), is
vEP(x)
a mapping such that, if ZCY, Z # @, then
MZ)D (flo:f « MY) and (D) C 2}, |
(iii) Every Y & S has the fixed point property with respect to M(Y)

Definition 2 (see (17)). Let X be a nonempty set, Z C P(X), and Z# 0.
A mapping 6:Z— R, has the intersection property if Y, e Z, Y, (1 C Y, n <
e N and lim 0 (Y,) =0 implis NY # &
Womw B nEN .
Definition 3 (see 17)). Let (X, S, M) be a fixed point structure, 8:Z—
—R..SCZC P(X) and 4: P(X)— P(X). The pair (0, n) is compatible with
(X, S, M) it

(i) » is a closure operator, S Ch(Z) CZ, and 8(x(Y)) = 9(Y) for all
Y e/, ‘
P () {Yez|o) =0 N e€Z[4(Y)=Y} - S.
Definition 4 (see (11)). A function ¢: R, = R, is alcomparison Sfunction if

(i) ¢ is monoton increasing,
(ii) (¢™(t))wen converges to O for all £ > 0.

Definition 5 (see (17)). Let X bea nonempty set, ¥ G X, Z G P(X),Z##9,
9: R, - R, and 0:Z—R,. A mapping f:Y—+ X isa (6, ) — ‘cantmctwn if
(iy A e PY)NZ implies f(4) € Z, _ A
(i) 8(f(4)) < 9(6(4)), for all 4 = P¥)NZNAI()

(iii) ¢ is a comparison function

:

* University of Cluj-Napoca, Facully of Mathematics anl Payiics, 3102 Ciuj-Napaza, Romsn &'

§ — Mathematica nr. 1/1989



66 6 (see (17) 3 mapping J* y— X is a strong (6, <p)-contmct1.0n if
see .2 )

slies f(4) e’Z,

'lfor al A € PY)N Z,

function. o

i ix it principle is given in /17/:

¥he follox:\'m%: feuerzisl i{/}\)e(li;eljzo}ixe‘g P‘”""t Strzc?‘{'e émd 7(9' n‘)i (6 ZﬂRL

P(E%EO]?&S)'a comjba'h'blc pair with (X, S, M). Le 0(Z) and f < M(y).

n: P(X)—

If

Definition :
i 4¢€ P(Y)nZ im
(i) 8(f(4)) < o(6(4))

(iii) @ 1s 2 comparison

(i) 8| has the inlersestion property,

(i) f is a (8, @)-contraction,

ihen

(a) F; # @,

(b) if F; €Z, then 0(F;) = 0. |

The aim of this paper is to present some conscquences of this genery

result and to formulate two conjectures. - ’
2. (3, ¢)-contraetions, Let (X, d) be a metric spacc, S={{x}|xe X,

MY)=MY), 6=3, Z= P,(X) and %(4) = A. From the Theorem A we

have ruEoREM 1 (see 2, 7, 8). Let (X, d) be a bounded complele melric spac
and f: X— X a (3, ¢)-coniraction. Then

(a) f is a Picard mapping,

(b) f is @ Janos mapping.

Proof. (a) From the Theorem A we have I, = {1*}. Let x, € X and
B,: = {f"(xy), **!(%,), ..., #*}. From f(B,) = B,y C B, and 3(B,.1) < ¢(3(B.J)
it follows that 3(B,)—0 as n—w, ie, f*(x,)— a* as n— co.

(b) x* e ﬂ\'f"(X) and §(/"(X))—=0 as n— 0.

From the Theorem 1 we have:
wwch ;ll‘gff)RE.\I 2. Let (X, d) be a camplet? melric s\pacc and f: X — X a mapping

(1) tl:er.e exists m € N* such that (X)) s bounded,

(ii) f~ is a (8, ¢)-contraction
Then :

(@) f is a Picard mapping,

(b) f is @ Janos.mapping.

Proof. From the Theo ‘
the otber hand X5/ gm I.DFN = {x*} and frm(x) = x* as k— 0 O(t;
4 k. Thus F,= (x4}, iz Die 0 /M%) D ..., and (F= (X))~

» %)= 2% as na oo ang N X) = {x*}.

Remark 1. From the Theorem 1 we N iven DY

Kannan, Reich, Rus, Amann, Avr ind 2 we have some results giver. a
» Bvramescu, Boyd—Wong, Browder, Chatteri®
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Ciric, Delbosco, Fischer, Fuchssteiner, Furi Hegedﬁs, Iseki, Kasahara, Rhoades,
Tan, Taskovic, Walter, ... (see [2, 5, 6, 7, 8, 11, 17]). AVIE

3. («, ¢)-contractions, Let (X, [|.|]) be a Banach space.

Definition 7 (see [1, 5, 6, 9, 10]). A mapping «: Py(X)— R, is called
a measurec of mnoncompactness iff :

(i) «(d) =0 implies A & P, (X),

(ii) «(4) = «(4), for all 4 e PyX),

(iii) A C B implies a(4) < «(B), for all 4, B € P;(X),

(iv¥{ (co A) = a(d) for all A e Py(X),

(v) if 4, € Pyy(X), Ays1C A4, #» €N, and a(4,)—0 as n—co, then
N 4a# @ andX( N 4,) = 0.

ne N neN

From the Theorem A we have:

THEOREM 3 (sce 9). Let X be a Banach space, a a measure of noncom-
pactness on X, Y C X a closed convex bounded subset of X and f: Y=Y a
continnous (x, )contraction. Then F, # ® and «(F;) = 0.

Proof. Iet S =P, (X)), M{Y)=C(,Y), 6=a and y(Y) = co(Y).
From the Theorem A, F, # ® and «F;) = 0. '

THEOREM 4 (see [3, 5, 6, 11]). Let X be a Banach space, o a measure
of moncompactness on X, Y C X a closed convex subset of X and f: Y —Y a
continuous (a, g)-contraction such that f(Y) is bounded.

Then F, # @ and «(F;) = 0. B .

Proof. We have ¢o(f(Y)) € I(f). The proof follows from the Theorem 3.

Remark 2. From the Theorem 3 and 4 we have some results given by
Darbo, Banas-Gocebel, Rus, Danes, Pasicki, ... (see 1, 5, 6, 9, ...).

4. (B, p)-contractions, We bigin with '

Definition 8 (sce [9, 19]). Let X be a Banach space. A mapping B: P,(X)
~ R, is a measure of nonconvexity on X iff- . ;

(i) B8(A) =0 implies 4 is a convex set,
(i) B(A) = B(4) for all 4 = Py(X),
(iii) B: (Psua(X), H)— R, is continuous.

Example 1. B = Bpr; Pri(A) = H(A, cod)

Let (X, d, W) be a convex metric space. In what follow we suppose that
if x,y € X and {%, y} is a convex set, then x = y.

From the Theorem A we have

THEOREM 5 (see [15, 19]). Let X(, d, W) be a strictly convex metric space
with property (C), Y € Py y(X) and f: Y =Y & nonexpansive (Bgr, p)-contraction.

Then F; = {x*}. L R -

Proof. Let S= P ¢ X , M(Y): = ‘Y—>Y| fnonexpahsive , 7 ] =
=4 amife = BgL: Pb(l:Y)l'—‘:(Rz. B)(' ; theg{em of Takahashi, (X, S, M) is a
fixed point structure. From the Theorem A we have F; # ® ‘and Br(Fy) =0.
Thus we have F, = {x*}. - :
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THEOREA. 6 Ikgi:,fx&ﬁg)ab;ozeigzigvc (Bze ®) — contraction sy, Iz&yg
55():\’)1; Iitz‘t(’fi)edmz f:r some m €N *).

;:l:q’;'. F\I)ngvt fM(Yl e'Ig"‘l)?. :P;rczx; }’the

Theorem 75’ fft"; {bt }; lj:[;flbe{'t space, Y g'X a closed subset of X o
[y -{H;OII:E;faj;j)mg Such that for some m € N7

) f(Y) is bounded,

. ; ., @)-contraction.
(i) fr:Y—Y is a nonexpansive (Bers )¢

Then F; = {x*}.

Proof. The proof

5. (y, p)-contractions. I
A mapping y: Py(X)— R, 1s calle

() y(4) =0 implies 4 & Pyp,n(X),

(i) y(d) =y(4) for all 4 & PyX), |

(ﬁl) if An < Pb,:I(X); A,,+]C A,, and ‘((A")—’O as n— 0, th(‘ll n A.#Q

na N
and y(N 4;) =0.

ne N

From the Theorem A we have
THEOREM 8 (see [13]). Let X be a Banach space, y a measure of non com-
pact-convexity on X, Y C X a closed bounded subset of X and f:Y —Y a con
tinuous (y, @) — contraction.
Then F; = {x*}.
. Proof. Tet S=P, (X), MY)=C(Y, Y), =v: P(X)—= R, and
n(d) = A. The proof follow from the Theorem -‘3 ViR '
From the Theorem 8 we have
THEOREM 9. Let X be a Banach space -
S om - ce, Y & measure of non compact-con
.})g:'zts}:m:?en ”;X,E }]’;T*C X a closed subset of X and Y=Y a mapping such thil
) f™(Y) is bounded, | |
(i) fr Y-y 1S a continuous (y, p)
Then F, = {x*}.

6. Nonself mappi -
Denempty set ang l}’,l)“clggé Definition 10 (Brown (see [16, 18]). Let X be?l

called a retraction of X on:on}gn&msty Sulbset of X. A mapping p XY s
y = ly.

follows from the Theore.m 6. ) |
Definition 9 (see [13]). Let X he a Banach space
d a measure of mon compactconvexity i

— contraction.

Definition 11 (Brown
. . see [1 . - . 1
onto V if there is a retraction[ps:,A} ﬂ)'yA mapping f:Y— X is retractibl
We have EEI . such that Fr= Fpof-

' THEOREM 10 ' ;
(9 AN R+, n: P()({S)ee [18])- L(‘t (X,/ S, M)

. s be 'xe . . . 0, n)
@ compatidle pair wisy, ( X‘a £ ﬁ}z)_??;t litr;c;tzg) a}“flﬁ,ﬂ
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« mapping and p: X—Y a retraction. We suppose that

(i) Olnw s @ mapping with the intersection property,
(i) f is a strong (0, ¢)-contraction,

(iii) f is retractible onto Y by p and pof € M(Y),
(iv) p is (O, I)-Lipschitz (I € R,),

(v) the function lo is a comparison function.

Then F; #® and if F, € Z, then O(F;) = 0.

Proof. The mapping pof:Y—Y is a strong (9, l¢)-contraction. By the
theorem A, F,o; # ®. From the condition (iii) follows F ., = F;# ®. Let Fy e Z.
From f(F;) = F; and the condition (ii) we have 8(F,) = 0.

Remark 3. From the theorem 10 we have some results given by Leray—
$chuder, Brown, Caristi, Petryshyn, Reich, Rus, Banas, Williamson, ... (see
[1, 4, 5, 6, 14, 18],...).

7. Asymptotic Ifixed point theorems., At the end of this paper we for-
mulate the following

Conjecture 1. Let (X, S, M) be a fixed point structure and (0, %)(0:Z—
— R_, 7: P(X)— P(X) a compatible pair with (X, S, M). Let f € M(X) be
such that.

(i) 0,z has the intersection property,
(if) f is a (O, )-contraction,
(i) there exists m  N* such that f7(X) e Z.

Then F, # ®, and if F, € Z, then 6(F;) =0.
Conjecture 2. Let (X, S, M) be a fixed point structure and (0, y) a com-
patible pair with (X, S, M). Let f € M(X) be such that

(i) 01,z has the intersection property,
(ii) there exists m € N* such that f~(X) e Z,and f» is a (0, ¢)-contraction.

Then F, # ¢.

These conjectures are in connection with the following lang-standing,

Conjecturc 3 (see [3]). Let X be a Banach space, Y — X a nonempty
closed bounded convex set and f:Y—Y a continuous mapping such that
J™ is compact for som m € N* Then f has a fixed point.

Remark 4. For some partial solutions, of the conjecture 3, given by

Bourgin, Browder, Frum — Ketkov, Nussbaum, Fournier, Granas, Steinlein, ... see
[3, 11] and ([17].
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REZUMAT. — Studiul erorll in Interpoluren prin funcfil spline ecomplexe. Se
evaiueazi norma functiei F = ¢ — f, unde f este o functie analiticd in do-
meniul Q deschis din R?, cind cunoastem valorile fy = f(z), k=0, I, ...,
# + 1, pe nodurile z, ale unei diviziuni date pe o curbi inchisd T, rectifi-
cabili Jordan, conjinuti in Q, iar ¢ este o functie spline cubicd complexi de
interpolare a lui f. In plus fsi o indeplinese condigia lui Holder.

1. Introduetion. Let T’ be a closed curve, Jordan rectifiable, that belong
to the open domain Q from R2 One considers the partition
AP:{I)o, Pl' “ .oy P,,, P,,+|; P=P"._,-l} i (l)

that divides the curve I in the ares Ty from Py_to Py, k=1, ..., n 4 1.
On denotes

b=z, —z4y, k=1, ..., n 41 i 2)
where 7y = %, + v 2% ¥ € R is the affix of
Py, k=0,1, ..., n+41 (2o =2441)
Knowing the values fs =f(z), k=0, 1, ..., n + 1, of a given function

J, that is analytje in €, in the paper [13] it was constructed a complex cubic
spline @, of the form

o(z) = “’*—;‘,L (z — 2] + 1,:‘—’ (2 — zama)? + Mpa(z — 26m1) = faor, 2€ T,
g v
h=1,2 ... n+1, (3)

where m; = o'(z}) and M; =06"(z), 7=0,1,...,n 4+ 1, while %, =1,2, ...,
# + 1 is given by the formula (2), that interpolates the function f.
From the conditions

O'(Zk) =fk" k =O, 1,’ e v ey 'ﬂ—'— 1, (fn-l—l =fo) (4)
o) =my E=0,1,2 ..., n+1, ’

® University of Cluj-Napoca, Faculty of Mathematics and Physics, 3409 Cluj-Napoca, Romania
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. . m
that can be written 10 the for |
fi =S 63’1—13-_1__ 2 M1
RN )
Myag k=12 ..., 41
fi =t — Oy — . ’
Ny = 3 —,L-h;-— 2Mmg—1 2

M. =b;abe€ R, it follows that the spline function (3) exist
with me =&, Mo =2, ®
ead ifnlsthléngger [1[91.33.1 it is also evaluated the value

fo(z) — flz)| for 2=

when f satisfies the Holder’s con
8], 1 |
lolz) — f)] < %‘—'[Alhklu-n(l + )+ 7 Mol Ul + 3] mk__li], o

's constant, p € (0, 1) is the Hélder’s exponent ang
My, p_y, =2, ...,n+1,are obt:ained by (5) with initial data A/, "

2, In the present paper one estimates the norm of the error function
F, F = ¢ — f, in the conditions that ¢, f € H¥(I') — the Banach space of the
functions ¢ which satisfies the condition

lot”) — olt)| < Al — 1), V¥, ¢" €T, (7)
with the norm [15]

Ik_1+zk, zer‘kl k=1, eo ey 1z+1
2

dition on I’ and it is obtained

where A is the Holder

Hellge= lloll, + Mup) )
where '
Mu(?) = sup le(t') — o)1 . (9)

e T

Now, if i —
1eT, we hav‘:e consider the parameter s (the length of the arc), s = s(l),

Ss=s(), k=0,1, ..., n41.
Next, one denotes by

'

the =8 =5, ' (19
¢ measure of the arc I, k=1
ure ( » K=1, .., nd1.
Taking into account the formulas (2)+and (10), we have

Il < k=12 .
| ' =42, o, n41 W
First, we estimate the valye i |
AF = | F(t) =F@)) v,

Where (3 P‘ (t’ % t”), (l‘)

Fe) = o) - gy, F@) = o) — )
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We have '
F) — F) = olt) —F) — olt") + f€") =€) — f€) +
P M e (7 = nof +
2 = = s

+ [ — zar) — @ — 2a=)] F fomr — Sror, VE, 27 S Ty

So, one obtains
Mp — My,

AF < L) =100 + 5 | =52
+ % [ Myy] - | — 2p=1)2 — (7 — 2P +
A+ (masy ] B — e — 8 | = ) — )+

N —2na) — (7 — z5-1) ] E (¢ —ze—1)?+

(@ — za=a)? — (" — 2P| +

1 My — My,
+ E' hy
4+ (' = 2 — zpm) F (7 — 2-0)?D |+
M| [ = zams) = @ = 2)) - [ — zam) +

+ (" — )1+ (e - =27,
which, for f € H¥I') can be written in the form:

’ x4 IM'—A”— 4 ”r ’
AF <At =t 4 = —";—"1 =) — )+

(= Bl = ) F (= 2]+
g I Mact | = | | = 2het) + (7 = 2am) | [omaa |- 1 — 27,

(14)

If ¢/, ¢ €T, then we have the following three cases:

a) Zpoy <t < <2y < 2
b) oy < <2y <" <2, (15)
C) 2 < t < <o < L’ < 2k,

where x < v means that x precede y on T and z, = (2,_; + z)[2.
Taking into account (10), (11) and (15, a), it follows that

18" — 24 ] < 2, (16)

2
"o 1.
|2 _t|<;7\k-
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o

- 2 22 2
Usi T EL SRR
MF <ln{‘4 [% | 47?' Z ! !
S LAt
1 =
1 LY -Hm/z—ll}
+%Il‘\{k‘_l|-|—2‘7\k+ 2 k : “7)
M= Mis) 4 2 M|+ lm,,_l|}
hy - )

I I,
i
(15,b) one obtains the inequalities

; se
Io the same Wa¥, for the ca |
! '

|1 = z-1] € 5

A
’ - L =
I {7 - -t l = 4 (18)
[0 =t < N
that implies
L My—Mia|, (MM )\,) +
AF < AQp+ <[ Z— M (4 + 240
). -
-'{'- % [Alk—ll : lk (F; + l.) + I”l/‘_ ll . A‘ =] (19)

1

My M| 2o Mail +

hy

=hpum4+£m

respectively for the case (15,c), the inequalities

SEE T9RY I W

8" — 2] € N (0
”n ! l
t '—t S'— \
R IRY SN
and
AF < A[Lo g LMy 1
F e d (gl + o Bs ) Lo g op an+
1oy 1
+2v|Mk—ll '?)\k()\k‘l‘ )‘k)+ l”lk-ll . ';—)‘k—_-' (21)

- % 7\&{1‘1 (__1_ )\h‘)u-l.{- 1_,5 My — My,
2 2 hy

So, it is proved the follow;

; PROPOSITION 1. Let T 4,

omain Q from R2, A, o

=) k=0, 1, "

+ A Mao | + lmk—ll}'

ng:

a closed and Jordan rectifi in the ob¢!
. iable curve tn N6 98"
”_*-{)ali.'htwn. on T defined bv (1{’ fe H«(I') and fi”
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™ NS ﬂﬁ;ﬂkﬂﬂ—ilﬁh-d4‘lmb4§=L“
L 6 A ’ )
in the case (15;2) \ L I .
7 | Me = Mia 4+ A Mol + 171 } = k2
; - Loyl ——=
A< 7\{14(7‘);; o he 4 (23).

in the case (15;b)
My — My
My — Mpa

-+MMpd+lmqq=Lm
(24)

1 ALt 1 22
aF < g a(z) s

Iy,
in the case (15;¢)

dhe = max {A k=l,2,...,n—|71}. 40
w}“mUtinfr”}czlllzsc{ :(Izzults we can estimate the norm fTF || u By (8) and (9)
D

w e have

] £5
”F“H“ = HFI Iao + IWU.(F) ( )
here
m [1F ||, = sup |F(}I
tely
and

- | F(&) — Fe|
M () = sup o
¢, eely |

i

A\

If one denotes by

L, = max { L il L } (26)

’ ’ ’
“/___tu‘u.’ II,""””L |2 _t,‘p.

then it follows: o .
PROPOSITION 2. In the conditions of the Proposition 1, o ¢ € HHL) then

NEl,w < liFllg +Lis YTu k=12, ..., 2+ 1.
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iles, Convex Analysis wlth“Al:
’ t Convex Funections,
tion in Difierentiation o ) .
}‘ll:z:a:ch Notes in Mathematics, N° §8, Pitman,
Bo;;ton — London — Melbourne, 1982.

: The aim' of this book is to St“dYt_th:‘
gifferentiability properties of convex funchons
with a special empha.sn§ on their .conne oo
with other areas of functional analysis as — 8 h
spetry of Banach spaces, integration in Banac
spaces, Radon-Nikodym property as well as
their significance in applications to optxmxzathn
theory and fixed point theorems.' The main
themes of the book are:the duality betiween
ex sets and convex functions and the rela-
ijons between spaces with Radon-Nikod}f‘m
property and the differentiability properties
of convex functions defined on these spaces.
The book is selfcontained, the only prerequisities
being a knowledge of the basic concepts of func-
tional analysis and topology.

The first two chapters have an introductory
character presenting the background inaterial
needed in the rest of the book. Chapter 1, Con-
vexity in linear spaces, is concerned with topics
as convex sets, convex functions, separation
theoremns (algebraic theory), while the second
chapter, Convexity in linear topological spaces,
presents the fundamentals of locally convex
space theory.

: The core of the book is Chapter 3, The
differentiation of convex functions, which is
concerned with topics as: lower continuity and
lower semi-continuity of convex functions,
Ghteaux differentiability in linear and normed
spaces (including Kenderov's theorem on weak
Aspland spaces) and Fréchet  differentiability.
The famous Hishop-Phelps theorem on  sub-
teflexivity of Banach spaces is presented in detail,
in some varied formulations with many and
consistent applications. The chapter closes with
a wection on the exposed structure of convex
ety containing Strasewicz-Klee theorem, weak®-
Asplund spaces and other topics. The last chap-
ter of the book, Chapter 4, Two convexity pro-
blems in the geometry of Banach spaces, is
conecerned \.h'ith Mazur's intersection property
::d (clonvexlty of Chebyshev. sets, showing that
! e le\felopc:d the'ory applies to prove how

opological properties, associated with a norm,

<karacterize convexity of i i
o y certain sets in the.

J.R. G

conv

-
L1

Many exercises,

some £ .
referred to in the proofs of them being

, and oustanding rese-

1, 1989

RECENZII

ed in the places where

ms are includ ment of the

1
arch prob elogically in the develop

they arise
theory. .
yThe result is a fine bo

i icati ich i
lysis and its applications, which
n{ended to all interested in this fie

ok on convex ana-
s higly recom-
1d of research.

S. COBZAS
Prato, Hamilton—Ja-

t spaces, Research Notes
Boston —

V. Barbu, G. 113;1
cobl equations in Hilber ;
in Mathematics vol. 86, Pitman,
Tondon — Melbourne, 1983, 172 p.

The study of Hamilton— Jacobi equations
in infinite dimensional spaces, particularly in
Hilbert spaces, is motivated by the theory of
deterministic distributed parameter systems and
by the control of stochastic distributed systems.
The aim of this book is to gather togethe::, in
the form of lecture notes, the results obtained
in recent years by the authors on the exisf.ence
and approximation of H— J equations in H.llbert
spaces. The investigation is based on two lnt.er-
related methods: a constructive approximating
method and the dynamic programming method.

In order to make the book self-contained,
the authors survey in the first Chapter of the
book, entitled Preliminaries, the basic results
from convex analysis and from the theory of
evolution equations in Banach spaces. Chapter
2, Existence in the class of convex functions,
is concerned with initial value problem for the
H—J equation O, z) -+ F(P A, ») — (Azx,
©.(¢, %)) = g(t,x),t € [0, T], x € D(A), (0, x)=
= ®(x). The solution ® is a function from
{0, TI X H to H, the operator A: D) «
< H— H is the infinitesimal generator of a
Co — semigroup of linear continuous operators
on H and F, ®,, g are real-valued convex func-
ti‘ons {with respect to r), defined on H and [0,
T} X H, respectively. The authors's approach
to the problem consists in approximating the
operator ® — F(®,) (which is an accreative opera-
tor in an ap})ropriate function space) by e~Hd —
— (®* + e)* (here * stands for the Fenchel
conjugate} and letting ¢ tend to zero in the

approximating equation. It is shown that ® .
- = F(®,) is the infinitesimal generator of a
semigroup of contractions on C(H) (the space of.
all continuous functions bounded on the: balls
of H). A special attention is paid to the case
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-2 which is studied in § S and

D=1y W .1 (§8)-
2 3=3 the Riccall equation (i;xjstence 'theor:\;

i v eJof
. « case, the meary ¥ deeiist‘:?:ce
R eovex case. Hereis proved an €0
"x:\%{\t: a locally Lipschitz fﬂl}Ct‘t"“ A <o
Deveez T ined Clarke subgradien® S0
¢, — 5"“‘,\ and a veriational 0n€

sirect spproach

. 5 rkin method
section is dev oted to Galcto syntheSis

: eeoxmration and 8 lications
o ‘:\-::imf\*:o;ob arep:lso incJuded. Chapter
\\F“'h: the last chapter of "che bOOk't' ) pfor
4 Th:- drzamic programmmg equa’ louation
cochasic epdmal control, the H—] s:l‘ el
I =Sl T a class of convex functions o -
Srves sosce. verifving suitable grow o
‘-'—r-_\:‘ at =fnny. The method pr?pos;ed tiol
am t= the stedr of a related l;)pum:tof:;?\stic
';r::’::c_:xc‘z a process governed by 2
SiZerenyl eguaticn. )

The book is very well and clea::ly written.
% E:-ze is preceded Dy a section preselu-
t=: s=rox the methods used and the results

"

4

CTWCe
osad. A
otV ¢

%,

pmad = the respective chapter.
) The ook i a valuable contribution to
the st sod we recommend it warmly to

& Sreremed i this domain of research.

S. COBZAS

Y. Barba. Optimal eontrol of variatlo-
wal imeqmaiNies. Research Notes in Mathematics
wel 10, Pm=sn. Boston — London —~ Melbour-
= IS, N p

The Sk is devoted to the study of first-
cder reessaTy osaditions of optimality  for
ocmTui proliems gqoverned by variational ine-
G=aites & br semilinear equations of elliptic
9:-& mamehelic type. Such  problems appears
= ¢ =odr of Zre¢ boundary value problems
T T3 best conduction and  difiusion
Teoxr. Sore exactir, the book is concerned
V= 3 bSO Soniinear control systems, Ay 4
-F =x .x:\i'. o= A L Fyg) g Bu(t),
€< <. ¥kere 4 is 2 linear self adjoint
POSTwe RTohe operatar acling on the state
e £ & BLbert space), F is g sub-
A= cpemate ad B ois a linear continuous
TSI e e space of caatrols to state Space
:.3 Sk x &h\\*ﬁzm the necessary resuits
::'a:. .;:T:?u 423ivsS and variational inequa-
et ‘\*;1 Q-sected v the first three chapters

Chuttes 1. Elements

nw

TR

o S
~ =

. of nonlinear j
. ! - analysis,
® :Si_;ugd A mavimal monotone operators
= u::. :s::_u.\‘-: comvex analywis, Leneralized
;. w S = :f‘-:‘f‘y h}sd::u functions and with
Bk evoBan ejzations in Hilbery space

Chapters 2 and 3 deal with elliptjc +
nal inequalities (exxst.em:el anfd regularity) oy
and with optimal control of these ‘"Equaliﬁe

The main body of 'the book s fOrn.:'
of the other ch_apters‘whxch' are:: Chapteg':
Parabolic variational me(';uahtx‘es ¢ Chapyer y
Optimal control of parabolic variational inequayy
ties: distributed con.troLs: Chapter 6. B oundars
control  of parab()llc variational inequalitig,.
Chapter 7, The tlme—optl'ma‘l control p’°blem'

The general theory is illustrated by Signi:
ficant examples. which are cheosen 0 e repyy;.
vely simple, but such they contain the maix
jdeas of the developed theory and which o
be used as theoretical 'models for more slophias.
cated problems arising in the control of industriy
processes. ) L

Written by a leading specialist in 1y,
field and based mainl}'. on the results obtaineq
by the author, some ot them published for the
first time, the book is an excellent guide in th
subject as well as a source of in<piration iy
further investigations and generalizations.

We recommend it warmls 0 ail interesteg
in this field of research and its application:

natjy,

S, COBZ33

N. H. Pavel, Differentinl  equations,
flow Invarfunce and applications. Rescarch Note,
in Mathematics vol. 113, Pitman. Boston —
London — Melbourne, 1454, 246 p.

The book is concerned with existence
results for differential equations wun climed sub-
sets of Banach spaces and flow invariance of
these sets with respect to a diffcreatial equs-
tion.

In order to make the beuk se!if-cuntaired
the author collects in the first vhapter, entitled
Preliminaries of nonlinear analiviis, soume rewlts
on the geometry of Banach spaces strict coa-
vexity, uniform convexity-, ;!uaii:)' mapmng
and on dissipative and accrcative wperatifs.

The second chapter of the back — Dif-
ferential equations an clesed subsets. Fiow i
vaniance — begins with the proof of the famois
Godunov’s theorem that Peano's existence theo-
rem for first order differential equations w3
continuous right hand side is vaud oaiy in finee
duu?nsional Banach spaces. Then. usicg & sharp
jomsion of the clasical method of poivgss
for il thor proves same existence teor
ﬁnum::‘x&u?}lﬁyuapgms_ associated ﬂ?;o e
OPL‘I'M;\N TH ‘l.\?lpal.l.\'e u!ne-oepepoent- : o
a first di‘fiem:'lllow e ot mp:-":
Section of thi‘ < m, Squation i treated m the cting
let X o S chapter in the following e

oid apes

a Banach Spave, U a nom-v
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