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llEZUMAT..— Iernrhin MAS gi extensibilitaten hubajelor de proyramaré.’l'

. T.ematlca abog'd.aj:ﬁ in aceasti lucrare o constituie formalizarea metematici
(algebricd) a extegsgbxlxtitii limbajelor de programare. Formele semantice imbraci

o formd noud privitd dintr-un capitol modern al matematicii, teoria algebrelor
universale. Abordarea de pe pozitii algebrice a acestei probleme fundamenteazi- -

©matematic abordarea unor probleme legate- de implementarea, specificarea §i
dezvoltarea limbajelor. ., . ‘

N v e R

1. Introduction. As man-computer communication means, the programring
languages have constituted and still constitute a topic tackled by the majority
of the rescarchers in informatics, having profound implications about the use
of computing equipments. This paper constitutes an attempt to point out some
formal looks concerning the extensibility of the languages, using the hetero-
geneous algcbraic structure hierarchy. The algebraic modelling of the program-
ming language specification and especially the extensibility of these allow for
the development of certain calculation models, reliable and efficient from the
point of view of the uscr, and point' out generation mechanisms of -a syntax
naturally associated to a given semantics, 'as well as connection and estimate
schemes intrinsically connected to the communicators for which the program-
ming language is specified. The heterogencous algebraic structures (abbreviated
HAS), a relatively recent concept, satisty best the above stated characteristics.

The macro-assembler facilities pointed out in the frame of the program-
ming language extensibility play-an important part in the apparition and generali-
zation of similar ideas for the extension of the advanced languages. The idea of
the macro-gencration found a fertile ficld, especially the last decade, due to its
part plaved in the extensibility and portability' of the programming systeins.

‘The computer programming practice and the peculiar field of the design
‘and implementation of operating systems have pointed out the nece:ssn): of impro-
ved, more flexible and more complcte cxtensible type mechanisms:

The abstracting of the notion of type had initially a.lnmt?d area : the
standardization of a set of abstract opcrations for object handling. Such a. stan-
dard set of abstract operations will not be sufficient for an adequate he}ndhnlg
of any object. The selection of the operations must be put at user’s disposa H
the user being the onlv one able to factorize in his type definiticn the invarian
features of the used abstractings.

The abstract types are used in the peculiar application ficl l of operat;ng

'System programming. With the new abstractings, the operating system of a
M
* University of Cluj-Napoca, Computing Data Center, 3400 Cluy-Napeca, Rowesia
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computing system can be modelled as a set of types, each resource con;ﬁg
u-

ting an object.
2. An algebraic model concerning the rgprclseut'ation' ‘of the Semantie forpyg fro
a programming language. A programming language can be considered a5 o
a tl)ril)?e of the form LP = (Mp, Fp, f: Mp — Fp), where: belng
M p = collection of calculus:abstractions;
Fp = collection of symbols wich represent the abstractions of j; i
the communicators which use the LP language; p for
f = function which associates to cvery abstract object of M, the repre

sentation form. in Fe. ., . - oo 0w 00

The collection Mp can be specified b}' means of a computing systém. Which
is a pa{f' (D;'0) in which D is a collection of abstract types of data, while
is a collection of operations upon the. types of D. ‘

The set M corresponds to the semantics of a language, while Fp corresponds
to the syntax of this one. By means of f, the existence of a rule for associa-
ting each abstraction m € Mp with its symbolic representation f(m) e F, j5
ensured. A Sl St i ~
N Using the heterogeneousalgebraic structures, the semantics A/ p of a‘i)ro-
gramming Janguage will be represeuted under the form of a computing systtem,

We shall refer further down to a Mp specification algcbraic model, based
on the concept.of heterogeneous algebraic structure (H.1S). Since its appari-
tion, the concept of HAS proved to be a strong tool, able to solve many
difficult problems of the programming languages. This will allow a math-mati-
cally formalized representation of .all the.types of abstractions (objccts) con-
tained into a language. The HAS mechanism used further down is known under
the denominations of HAS hierarchy and has been introduced by 7. Rus i
1975. The aim of this mechanism (called the heterogencous algebraic hierarchy
or, more. exactly, the HAS hierarchy) is to offer a development frame to some
mathematical. (algebraic) theories directed by certain applications. Each lev
in the-frame of, the hierarchy has a certain degree of connection with the ini-
tial application to be modelled. By passing from a level of this hierarchy to
an upper level, the fidelity of the obtained theory in modelling the initial appli-
.cation .increases ; conversely, by passing from, a level of the hierarchy to 2
lower. hierarchical level, :the degree of conmection with the initial application
decreases, i.c. the fidelity of the obtained theory in modelling the given initial
application decreases. Taking into account on one hand the hetcrogeneous charac-
ter of the real.applications (from the point of view of the concrete objects implica-
ted in such applications), and on another hand the idealization of these features
of heterogenization of the respective objects by their modelling by -meaps ©
the actual mathematical theories, it is easy to emphasize the necessity of such
'h;)e.m“:h‘es‘.d“ec'“ed' :by the degree of heterogenization of the abstract or concr_e‘t?
'f: chts which they contain and:model. The development of a mathematicd

ool according to the purpose of the true modelling of the real applications implics
two basic principles: . =~ ~ EERE
in"aa-)HI}‘lnS:‘Y g&‘r:i%‘;e.ous;'a}gebgam structure is a H AS of hierarchical zero level
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-p) -Any i-level HAS can be chosen as basis for an (5 4-1)-level. The basic con-
used to formulating this principle has th i oectf 1
-level HAS is given under the fgrm: ¢ meaning of specifier. So, if
: S B D UTORIS o ;.,.HAS = (j» Q) _ .
;herc 1 is the support,.while Q is the ,collcc'tidn of 'o.peratidﬁs"'df‘ th<_ structu're;
then : . . . i :
(i) The support of the i-level HAS is used as index set for specifyin
the suprort of the (i 4 I)-level HAS. Namelyif 4'is the support of the ?;-E
+ 1)-level HAS, then 4 must be considered as a family of sets, each set of
this family being specificd by an element of the index set,]., Every i e I is
transformed in the (i + 1)-level HAS into the set 4; In this manner, the
support of the (i + 1)-level HAS becomes the family 4, = (4;)ie ;.- o
(i) We denote by R,(i) the set.of all n-ary relationships defined in the
i-level HAS. An m-ary relationship 7 € R,(i) becomes in the (i + 1)-level HAS
- a relationship scheme which specifies by factorization the following family of

relationships : '
: e sl " E o .
Lr = {rixil...i;n Q'.Ai! X Ai, X .. /§< A,‘nl (1:1-, 1:‘2,’:_‘ .o, 1") € ],}. ' :' . ,

In other words, each #-uple (i), 4, ..., 1,) belonging to the relationship
7 specifies a certain m-ary relationship in the, (¢ + 1)-level HAS. One notices
than -an n-ary relationship in’the i-level HAS acts in the (i 4 1)-level HAS
as a family of rclationships. This means that the hierarchical 'lévél i factorizes
the fcatures of the hierarchical level .2 4 1, each element of the support of
the (i 4+ 1)-level HAS behaving as an equivalence class of thé¢ elements of
the support of the (i + 1)-level HAS. The equivalence relationship is given by
a certain specific set’ of features which must bé , forgotten” for reaching the
elements of the support of the i-level HAS. Conversely, ‘each element of the
(i + 1)-level HAS.is considered as being alset specified by the adjunction of
the fcatures ,,forgotten” for obtailyling the elements of the support set of the

T PN B AT R I A

AT P N

cept
the t

’

t-level HAS. : : ‘ v

" Further down’ ‘the i-level HAS and the' (i 4 1)-level HAS will be simply
denominated HAS({) and H'AS(: + 1), respectively: We shall also-make the
following notation convention :the HAS(:) is ‘called base"with respect to the
HAS(@ + 1) from ‘the samé hierafchy and is simply denoted : oL .
C ol e R T PR L & = {B; QB}J U LRI VT

where B is 'the ‘support’ set .of the 'HAS(i), while Qp 'is the set of 'the opera-
tions which define the structure &. So,in the same hierarchy, the HAS(i + 1)
is specified on ‘the basc &, acg‘?rding' to ’the;principlg'\'(b), unger the form of
the triple: LT e A : :

TR
HERL R EDETa

L ol 4

‘ H L I EE Cieer oy 2
s = (A = (Ab)be B, Sres (Ew)w'é QB'i F)n S i
A y - fat, ot inl

where the fol]ovi;iflg. rotations were used: | NI
14 =(dp)pen is a family of sets indexed by the support of ‘the base; ..
X = (Y)ke n, is a family of operation schemes specified by :the operations

of the base. Each n-ary .operation: - € Qp- beloniging ‘to the operations of the
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base induces ‘in. the st'ructurg'spccified by the base a.sct of
defined as follows:. - : - o REE
R r . AT PRV .
S, ={o=(00, ... bp) | b =10, by ..., b))
For clearness, we shall include into the operation schemes specified 1,
both the symbol ® and.-its- #-arty.. Therefore, the.operation SChei’n(:z ?r(ﬁg

T, will be denoted by :

Operation ‘SChemeg

LR S S TS O .

Vo

1

- it ‘ ‘:i‘»‘ P ) ! :l a‘={n:’ W' "b1b2 AR bltb}p ‘ ' . , .
: : oL TN Y .y . SR gy
where # is the s-arity’ of the opera:tlc_n’i‘-w,‘ while % is the symbol of tie opera-
tion specified by such a"scheme. Since the operations specified by means of
the schemes are heterogeneous opérations, one considers the symbol of the opera.

tion w as being somewhat more general, namely distributed upon its operands
The operation schéme acquires the form: ' '

S Ve PN ; }.\
o = {N,;8¢8; ... Su, b,by.v. D),

Io "

where g8, ... s, is considered to be the sign of the opcratjou distributed upon
the operands and called sometimes the word of state of the operation.

.. In specifying the HAS(i + 1) by the HAS() given under the form of 5
triple, we have-also used the symbol F, which is considered to be the symbol
of a function associating to each operation scheme ¢ € X,, w < Q;, a hetero-
geneous ‘operation specific for the HAS(i 4+ 1). The domain of definition,
the range of the operation, the m-arity and the symbol of such an operation,
all these are obyiously determined by the scheme o, ivhile the acting mode is
specific for HAS(i:+:1), being subsequently determined by /7.

o I e ={n, 505, Sm blbz‘,".,/,b,,b}, then F is a specilic operation in the
HAS(i + 1) as follows: % o ' '
“:‘.r " N ' i F(O’) :'Alb',' X ‘Ab', X' . X /lh,, — Ab- g
. R S Y S PRI e i e : "

In this manner, one associates to every class X, a family of hcterogencous
opcrations, cach- of .them' being denoted by the same symbol s¢s, ... S, but
acting differently because their domains of definition and ranges are different.
This name ambiguity is called sometimes the overload of the name $o8; ... S«
and can be removed by either the context, or the adequate modification of.
the symbol sgs, ... s,. '

These few theoretical notions concerning the HAS hierarchy take into
account the- necessity to create a formal, mechanisin for specifying a concept
of abstract computing system able to constitute the semantics for a progran-
ming language. A computing system, as it has been noticed, can be characteri-
zed as being a pair HAS = {D, 0}, in which D is a collection of objects, cal-
Ied calculation objects or data of the system, while 0 is a collection of actions
upon the objects of D-and the actions of 0 form the operations of the com-
puting system. Both the objects of D and the actions of 0 can be characteri-
zeld ?‘15 belonging to two types : primitive and composite. In other words, every
ic: :Ei:tgzéeobgﬁcf:tfizeD can be 'c(onsidere_d as a primitive object (being called

b se primitive Acalcu.latxon abstraction), or can be .considered .as a com-
posite object (being called in this case:composite calculation abstraction). Simi-
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’

o mechanism of ‘new abstraction specification i , :
:}]:é estimate schéme’of a given abstralztioxi-'in’ t:mlillt i)efr?;éocf:oilx;?)?le?llzsggc: 1on: '
jons. I.“or the primitive objects, the intrinsic natlire-*specifies a‘fcollec:icf ac-f

rimitxve.ob]ec'ts as fupct;mn of their. behaviour . with respect to a giv . ot
of operations. The intrinsic nature refers to the so-called type. of bgtzh::}i:SI
with respect to a given set 'of operations, depeuding not on the objects sub-
jected to these operations. The behaviour types are most often defined by
means of identities associated to the calculation system HAS, uadér the form
of behaviour axioms (called sometimes definition axioms, t00). The mechanism
of mew abstraction specification in terms of given abstractions refers to the

fact that if d,, ds, ..., d, are given abstractions in D, then there exist in 0
opwration schemes which allow the definition of a new abstraction. d in
terms of the abstractions d,, d,, ..., d,. In other words, for anwadequate,ch,oice‘
of o€ 0, we have d =o(d,, d,, ..., d,). The operation scheme which provides

the operation o is called the mechanism of specification of the abstraction
in terms of the abstractions dy, d,, ..., d,."~ PR

= The performing (or estimate) scheme of an’ abstraction in fefn‘;é of .the
component abstractions must be discussed as follows : S

(a) In the case of the primitive abstractions, the perforiing scheme is
hidden because of the primitivity of the respective abstractions. me 13
(b) In the casc of the compositc;absirac}tio@s," the performing ‘or estimate
scheme of an abstraction in terms of the component ‘abstractions is an explicit
datnm. s . o AT
The performing scheme provides the model or algorithm of obtaining a
composite object (or.abstraction) in terms.of the component objects (or abstract
ions ).: . D P o S
If we consider a class of composite objects in a calculation system, and
we , forget” the performing scheme of these objects in terms.of the component
objects, considering them .as implicit data, then we obtain an abstraction which
forms a new primitive class. Therefore, thz notions of primitive object and com-
posite object in a calculation system are relative. .- . : P
~ Concluding, as for the attributes featuring the objef:ts of the set D as
being the collection of the-calculation objects for a- computing system HAS =
={D, 0}, we can consider D as being' decomposed on two levels as follows:
(d,) the collection D, < D of the primitive objects ; .. .. :
(d,) the collection D, < D of the composite objects. «r.= ..o = ©
The collections D, and D, can also bz regarded under the form of families
of bzhaviour types as function' of the operations of 0, namely :

T ... Ds = (Dpi)ie 1; De ='(Dej)ja y» v

where I and J are index sets adequately chosén. for describing all the beha-
viour types d{ﬁned in terms of given identity systems. Let these identities

be given under the form of th: family E = (Ei)iar (Ej)je jy Where E; and
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E; define the behaviour types % and J. The abstract! computing syste
becomes the triple:.. - e " B
= [T AR to . a . i -
: HAS = {D= (D,,,‘)'if I U (D‘j)iﬁ‘l» E’O} L g

: e i . ‘ ‘."’il P . * oty e
A similar study about the operations of 0 will lead us to th
that these omes can also, be stratified on two levels: . .

(o,) the operations featuring the behaviour types of D, = (D)
primitive operations; N v o " )

(0,) the operations featuring the behaviour types of D, = (Dy)ie ;, calleq
composite operations. 3 -
" So, ‘the abstract computing 'system acquires the form:

HAS ={D = (Dpi)ie 1 U (D;j)je J E =, (Ef")'e I'U (Etj)ie I

0= Odier U Oa)je 3

H -

is 1 Y |
s 4 i

R

€ ConClUSiOn

. iey, ealjcd

in” which' we' have:

- (a) Fc')’rlgevery;. i€ I, Dy is an abstract algebraic structure specified by
the set of idenmtities E,; with respect to the operations Op. ‘ ..

. (b) For every j€ J, D, is a structure of a composite calculation objects,
sp.ecified by a subset of the operations O, called definition (or forming) opera-
tions of the objects of D,. These ones form an abstract algcbraic structure
specified by the idcntities E; with rcspect to a subset of the opcrations of
O; called calculation operations in D, o

In order ot handle the objects of the HAS = {D, E, 0{ with respect to
the operafi‘ons of 0, we shall' refer to the data of D undcr the denomination
of constants or variablcs. For 7 € I, an objcwct d € D, will be called 7-type
primitive ccnstant:' A- symbol :x which can d(ncminate cvery 7-type constant
will be “called 1-type -variable. Analogously, for 7€ J, an objcct d e Dyis
called j-type comjosite constant, while a symbol » which (an denonunate
evay j-lype constant is called j-type variable. ‘. .

o+ The calculation mceds, (xpressible in' a- concrete HAS of therabove desen
bed’ king; z1c: generally rcpiesented by means’ of scquences of operations: of
upon calculation -objects, (onstant .or variable, precised as previously.

A dctamindd succession. .of operations uyon a given sct of constant and
-veratle calculaticn objects in then HAS = 4D, E, €}, which, pcrforred in the
given order, Jeadslo a A-type calculation: objcct, is a A-1yJe expression.

I 04,.057..., 0, are the: cpezations:to Le yarformed in the given ordet
:I;“i 1hL (c'nsten.ts €1y €35 se, € ard the variables Xy, Ay, +. v %p for defimng
} R-1YLe (Xpicssien, we dexnote. this (xpression by : :

E(k)[0,, .0y, - o 0.. (¢, Cay e Cm), (;\',, ”;\‘2, e .',4‘,5:!,)],‘ ‘
o1, skoﬂcr]}’, E(k) Obvicuslyy E(k) ided; eid e : o0 v\'iﬂ_-‘
the n-arity . o Y\ E(R) ddings a.ccmypcsite cpceratien
.-An xpression having' the foim @ ‘ i
- . - I ) T
xo= E(k) [01’ 102, L 0y (Cl' Coy v ey Cm)‘: (xh Koy v ey ﬂp)]
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called: assignment expression and constitute
A calculation process can now be regardelélt(sé %
mitive calculation units. L, 'y is a
Upon the-calculation processes, one can define L
; A . s, th
tioﬂ55'the concatenation Operation; the iteration :pégi]t‘;g:ng tg’pes‘ of opera-
operatloll-] e and the selection.
This has constituted an.unformalized vig;
sion
related concepts. We shall present further down, bl;'b?lgina 1;1}41451121‘% upon the
model, the formal sgcplflqatlou of the ‘concept of ‘HAS 8 e--- h1ere};chy
The formal specification ‘of the HAS consists of the con‘stru‘ct' f
ajgebraic model of the respective system and of a symbolism b lonxo a?
which we could represent “the. calculation concepts implicated i};rtnlfagAg
The %]fgebralc; (;nod;l is %oqstructed by using the HAS hicrarchy concpi .
Ve consider [ as Dbeing a. finite set of symbols, call ic indes
. L 4 ' ed bas X )
S lasl lt)_cmg atfuutc s§t tIOft S}'r%bols,rcalled the set of words oflcstgicie};,f 3{2!111(:
calculation system, suc ha S =@. The el .
fod primitive types. R ‘ .’e“enllents of the set I are cal-
_ The bas.c" B = {'_S +, I, A} will constitute the basis on which the'HAS
will be specmed.. S ~and J *+ arei the free semigroups generated -bv.the con-
catenation opcration in the:'Symbols of S and: I, respectively, while % € S+ X
x I* is a {inite relationship. If- (x,y) € 2, then A(x) = My). Let be x =
=55, ... Sy i€ S5,7°1=0, n, and Y =i é.."f',,i; iand sl k=1, n;
then the trlple' o ={n, S¢Sy ..., ij,... 7,1} specifies’ an operation ‘scheme
in the HAS. We denote by IS the set of all.the operation schemes, provided
by B, namely: . o

Primitive calculation unit.
1 ordered sequence of pri=

IS = {(n, S¢Sy ... Spy Fyly oo tyd) [(SoSy + -5 S 'ilz';, Joodgl) € 7\.,.
A(SeSy e .i8,) = Aiydy .y 0) = n 4 1}

We choose a family of scts, indexed by I as support for a heterogeneous
algebra spccificd by B. We denote: by b, = (Dyi)iay ‘the collection of primi-
tive data, and by XS(r) the sct of operation schumes for. obtaining the ele-
ments belonging to the . primitive type 7. Then XSz = (ES5(1))ia .

Now we consider the sct J of all types of calculation objects constructed
from thc objects D, = (Dy,)i« 1. J r¢p1csents the sct of the types of composite

calculation objects of the HAS. Coy S
We extend the set I in the basé B by means of the.set J, and the set

S by means of the set S; of the symbols of the 'compo'si_tie operations distri-.
buted upon their operands. Assuming 'that SNS; =9, {:hel‘x\l.,\\"e obtlam a.
Tnew base, namely B, = {(SUS)* (T UJ)%, A}, where A=XUR ?“d-

2= {(sgsy ... Sw Tty .- 1,9) | sk € S, \k = 0, #,
el k=T mje]h

The base B; dcfined in this :"r'x'1'21‘1111er allows ‘t}_ic specification of a new
HA,S which we denote by: B | s
' A = {D = (Dpi)ier U (Daljess- Sz J IS, F.

.7
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of dpéfﬁtion schemes provided by the
- o e i
‘ s

| YR

where XS’ represents the sett ‘ DRITs frop,
VS O . N
x. .Bv iterating the above ‘descrlbefi process foxj a—'flmte number'

one ‘obtains a heterogencous algebraic’ structure, “which we denote
and call heterogeneous algebra associated to the HAS, under the fo

of times,
DY Ay
m: -

AHAS = {D= (Dps)iel U (D\'j)iE]S ZSHAS; FH.{S'}-' L ;:

For every ¢ € ESs, there exists Fuus € 0, which is -either.a calcuk;{;‘i;m
operation, or an operation of forming ‘a new type of calculation Object'fmm

given calculation objects (primitive or -composite).- » . :

" If e BS(j), then 6 = (1, S¢Sy -+ Swy J1J2 « + - In ) and:F,{.!s (c) : Dj, x Dj, x
% ... X Dj, — Dj represents a composite operation \vhlch defines a J-type
object in terms of the objects of the types i, Ja, «..y J- " . :

© For every type k€ IJJ, the objects of -the type k are th constants
or the variables of- the respective type. ' N

The set Cy = {(o0, s, k)| (0, 5, k) = 2XS;} can be regarded on one hand ag

the set of the: nullary-operatious, of the type k, and on another hand as the
set of -the symbols: s'€ S which denote’ thesc operations. One assumes that
there exists amongst the individual constants of the type & at lcast one, cal-
led the exception. (or the error) of the type k£, which is denoted by Er(k) and
plays the part of annuller of the type k with respect to cvery operation which
contains the type & as operand. So:

(a) VeI U J, 3 Er(k) € Dy, where Dy ="Dp of Dy = Da. |
b) If o= XS, and o = (%, S¢S, ... Su Jif2...JsR), and for a given i,

¥ <1 <n d;=Er(j), then:. .
F,“s(c)(d,, tl!, vy ll,,) = Er(k)

The variables of thé typekarc specified by means of a set of symbols
VR(k), so that Yk, VRk)N S=® and VR(k) N (I U J) = ®. Therefore,
one adds to XS, the sct of triples {(o, v, k)| v e VR(k)}. '

The set of nullary operation schemes ‘from XS, specifies the constants
and the variables of the type % according to the following proceeding:

— if (0, s, k) € IS, and s € S, then:s represents a k-type constant;

- —if (o, 5, k) € TS, and s« VR(k), then s represents a k-type variable.

In order to define the concept of calculation process in the HAS specified
by means of the algebra A,,s, the concept of k-type expression, k€ I U/

will be for_malized.'

Let therefore "
Auas ={D = (Dpi)iar U .(ID“,-);a]‘, SSwas, Fy.4s}

be the algebra for:specifying the HAS, and k= I |J J. The concept of k-type
formal expression is defined as follows: . .

. (a) If c(k) is a k-type constant, then c(k) is called k-type formal expre”
sion. If ¢ = (0, s, k) specifies-the constaut c(k), than' Fy 5(6) = s-
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rfe is‘a k-type variable, th i

p) If ‘0(k) 1s°a X ‘¢, then v(k) is called k-t
ion-'(FOr o= (o,.s,. k)” which specifies the variable v(k), Frus(s) is the-k
(5),0, i ect-deuommated,vat tlclle moment of applying. Fyy5() by the SVmboT s.-tYPe.
© If ¢ € ZSuias and o=-(n, sps,....s,, J1ja - Juk), and ,Fv;,.(;(a); D. X
(DX - X Djg = Du then for d, & Doy = 05, Fyyg(o)(dy a,, .o d)
= sefiS1 : BySis -aqd we °€‘“ SodySy . .o-d,s, k-type expression. Lo el =

(d) Any kft.b’_l)e expressmn’ Can‘vb‘e constructed according to the rules (a)

ype formal ‘expres-

.

ye RN

o, - - AtV De exiareca - .

The above defined concept of &-type expression leads us to t i
of the family of symbols W = (W(k)ser, ), Where W(k) is theh-eséon:ft ntlﬁ?oktt
tvpe expressions: ' The conlstr}tctlon.of this- family behas with respect to the
perations provided by-thp operation schemes from: XSy4s similarly to the
pehaviour of the set D with respect to the same operations. - M :
The triple: " oo Sy

W= {W = (W,(i))iar U (We(5))je s, EShys, Fus}, -

. ' o J. BRI PR

f

vl ;

in which the function I'y4s acts on TSyys according to, the rules of expression
construction, is an algebra similar to the heterogeneous algebra 4,45 associated
to t}le HAS. U TR A , .

We shall. not insist about ‘the process of estimating a k-type expression
from the algebra W see. T. Rus [1]. .. . ; s T

Every formal expression w & W,, k< I'(J. ], denotes a certain calculation
object of the HAS specified by Ayss. The above mentioned estimating pro-
cess constructs such -objects starting fromwe W,. . ... . .-

The considered HAS is still too poor; it :cannot yet be considered a triie
and complcte model for the real calculation: systems often used as semantics
of the various programming. languages. ‘We. shall further down enrich the cal-
culation system constructed through the algebra HAS, by introducing new
objects which we call calculation unit, simple calculation process anl com-
posite calculation process. These ones will be introduced as new types of cal-
canlation objects in Ag4s, to which one associates a representation mode by
using the formal.expressions in . P T BRI

Let we W,, k< 1], be a formal expression, that is w is the formal
repiesentation of a k-type calculation object in Ayys. From the construction
rues of w, it results to be composed.on on:.-hand .by constants and/or varia-
bks, and on aunother hand by, symbols of operatious distributed upon the
operands. Therefore w appears as b:ing ol the form: .. T
! e ‘W(Cl, éz, .o .',‘CP , xl:' Koy + oy xn)l. o “" .‘_.' .

. ¢, are all the different constants from w, while %, %, ..., %
; i, represent-the types of
a derived opcration

Where ¢, ¢,, .
e all the different variables from w. If 2y, 2o ---»
he variables x,, x,, ..., %, then @ can be considered as.
lefined by an operation scheme of the form: TR

{”y SoSg - - sm‘l"li? dee I'”k}'
vhere ss. ... s, are determined from the structure of.w, mamly :

r Cwi DX Dy X X Doy = Dai
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This function makes: @(c;, € & iy Cp; dy, d, oy )
any system of values (ds, d,; e d,) :of the types &y, 1y, ..., 4, Tespects, for)
a k-type calculation object coiistructed--according the estimation Process tivel
to w. In other words, in the convcntional programming langua.ges, W re :;Dplzed1
a procedure 'whose formal paramg:tcr;_ are (x,, z'_,),‘_. r =T-n,. where e;c }TSCHFS;
represents a variable together -with ‘its. type. Un'llxke t~hes<? ones,. the dcr;p:“v,m
operation represented by .w ‘appears: as a.composite Operatlon,'determi'neciwd;
an operation scheme whom universal estimation scheme is ¢mbeddeq in by{
process of estimation-of the formal expressions. : . . thq

The abstractions represented by w are characterized by ;. . Co

(a) The intrinsic nature is given by the:type of rel"resent@d'object

(b) The estimation scheme represcuted by the estimation process of the
formal expressions . L b . €

(c) The representation scheme of w is given by the forming ryles of the
formal expression represented by w. ' QE

This fact allows the definition of a concept of umniversal and standardized
calculation unit, embedded into the formal expressions.

A primitive calculation _unit: means a .calculation -object (generally cop.
posite) of the HAS consisting of : b

(a) A construction process of the calculation object in the HAS.
(b) A process of identification of the constructed object. |

A primitive calculation unit can be represented by means of the svmboiisy
%: = w, where w is a R-type formal expression, while x-is a k-type variable,

We can refer to a primitive calculation unit either anonymously,. by sinyply
writing the expression of the form x: = w, or by a symbolic name which we:
call label. In this last case; the primitive calculation unit becomes denomiaa-:
ted or labelled.and appears in the conventional programming languages uiider-
the form:i . ° . - NI , . . R

R Dhaty _'"ai,"
NN

to’ constityg,

‘
:

‘

:

' i

o . {LABEL)x: = w. .
"+ Examples of caleulation objects of the above discussed kind arc offered
by the conventional programming languages under the names of functions,
subprograms, procedures,  modules, etc. o !

Therefore a- primitive calculation unit is a calculation object specificable
by means of the anonymous or denominated derived operation, which, for cer-
tain valucs assigned to- the variables ‘which it contains, leads to a caleulotion,

object of a given type. - oo ‘ ‘ .

Taking into account the characteristics of the abstractions handled ”‘ &
HAS, the objects of the type ,,primitive calculation unit”’ can be discussed
as follows :. R D T E Co SN
. (a) The intrinsic ‘nature of a-i,primitive calculation unit” — type OPJE?;
1s the derlvu_i“opqration embedded into such a unit, which is, as a glfattur :
fact, its specification mechanism, too. N o ]

(b) The estimation scheme.of .a calculation unit. h

(c) The representation scheme of the calculation units is given th Iougi.§
formal (xpressions of the form x: = w for the case of the anonymous erd-.
ved orerations, {LABEL) x: = for the case of the labelled derived OP¢™
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tions, and, finally, of the fom,l ’NA ME ((x,, v, i,), (x., Vo 1), .., (%, 9, i@
o7 the Cq,se'.qf~:t11§~-der.1ved- operations. The triples (x; -v. z",)v"" -—”l"m Uny 1))
ed ‘assocl?tlgl(l(xtnlﬁesé()Iil‘) of th}a) formal parametér's--‘l\;'it]h, t]h: effec’:t{i\ireosg.
\‘\Jlile' the lS lt 41,'; '1)s (X, v ta ."‘i:",'“' (x;n. Un, ".ﬂ))lis Called tri 1 X i P
list (1 Ll‘} )tigfl tgﬁ;ﬁ?ﬁi@fﬁﬁ?’ﬁ "V\?ltt;l their actual’ values cog)rcfslif:(glci:g}(t)z
a . calcwia . e Y the' estimate of ‘the impli . deri
operation.” . ! T DT R ‘e- "npl:léated,_df"ved
o We e?;tend t'l;'e dd%“}am ~of the types .of constructed calculation objects
of the HAS spec ,leb Y. means of -'Ch'e'.algebra: Anas by the new . calculation
objects sPeCl‘flca.ble(’JgCthe types implicit or anonymous primitive calculation
unit - (abbreviated 4) and- explicit or denominated primitive calculation
wit’ (abbreviated UPCD). In - this manner, the sct i ZSyys of the operation
schemes of the HAS specified by A,us is extended with the following new
schemncs : ,

g i I

{2, z:=;, VAR EXP UPCA4}
3.(, .), VAR CONST TIP T4}
{1, s, ¢, T4, L4} | '
2 e L4 T4 14y 7
{2, <( ), VAR LA UPCD}
~ In these schemes we have used the following abbreviations: VAR for
variable, CONST for constant, T'IP for type, EXP for expression. The above
presented operation schemes describe the manner of representing the objects
of the respective types in the algebra W.

We agree to use the term of calculation unit for a UPCA-type or a UPCD-
type object. Under the operation scheme form, it appears as follows:’

{1, ¢ ¢, UPCA UC}
{1, =<, UPCD UC}.

[

The concept of calculation unit coustitutes the basic, defining clement
for the hierarchical construction of the new types of calculation objects, which
constitute the calculation system specified by means of the algebra Apus. By
using the composition schemc of the specification operatiqns for calculation
units, one introduces the concept of composite calculation unit (UCC). In this
manner, the sequential composition operation ]eads.to the mt'rqductlou of a
new tvpe of object, namely the BLOC, the sclective composition operation
leads to the definition of composite objects of tiv: type IF aud CASE, while
'{he iteration composition leads to the definition of compositc objects of the
ype FOR, DO or LOOP. . s

The specification mode of the above introduced types allows the definition
of the calculation object type PROCES.

From the point of view of the conve
types BLOC, IF, CASE, FOR, DO, LOOP

esize a sequence of predefined operations,
Mathematical meaning.

ntional programming languages, t.he
constitute instructions §vh1c1'1 svn-
without being formalized in the
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In the new vision about the scrantics: (Mp) of a Programmmiy,

.thé samantic forms acquire an independent. mathematical ‘contoyr & ]a“gUage
_tics itsclf is rcgarded as an algebraic structure well determined bi’ t]l: Cmay
.and by the operations-acting upon these ones. The enrichment of the € Object,
(algebraic structure) with new types - (ob]ects) on the basis of the Semantjg,
algebrai¢ model is practically unlimited, this-‘depending -only on tphre‘sente(
grounding and ability. This new look upon the semantics of 3 pro re user’,
language allows to establish a mathematical (algcbraic) basis for theg (ilimnung
ment of the programming languages. The extension of a language ,;’Velop-
types (calculation abstractions) amounts — on the basis of the :ne\g al Y ney
model — to the introduction: of ncw operations in XSy, which' act 8ebraj(
objcctsifrom D, resulting now types (composite objects) which enrichpt(;n the
D (the calculation abstractions). .. , . 1¢ set
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ABSTRACT. — In this note we will express our opini .
and ideas useful for a new standard %Ortran, opinion about sonte statements

+ .
Ve (

Fortran is one of the first programming languages an
used of them. Its popularity is due to th% sim%)lic%ty of ih(;n(ltaggugge 133?
also, to the efficiency of the compiler. Today ‘there .are many programmiug’
Janguages [4], and some of them are more sophisticated than ‘Fortran., But
also, there arc a lot of Fortran programs organised in many libraries, and there ié
a great cxperience of programming in Fortran. We think that Fortran must
remain a programming language, but: it can be improved. Tl

It is wcll known that Fortran does not have.the control and data struc-
tures nceded for structured programiming [3]..This affects the style of program-
ming and the clarity of the programs. The structure IJF—THEN—ELSE is.
already present in the standard Fortran 77 [2; 5]. We suggest that a WHILE
structure is also nceded. . - DL S

Scme ncw opcrations, as declarations and working with integers represen-
ted by n binary digits (# > 1), or operations with matrices (as Basic. has),
may also be introduced.

Some ol the programming languages (Pascal, Ada, etc) permit ‘concurrent
programuming. Adding only a few ncw statements concurrent programming may
be introduced in Fortran too. - ' '

To define a task we mneed: ™

— the line of definition, -a TASK statement,

— the body of the task, )

— the final line, the END statement. o
Inside the body of the task a TERM statement is needcd. to cause t13c termination
of the exccution of the task. The exccution of a task is called usmgvthc state-
ment EXECUTE. The definition of these statements (TASK and EXECUTE),
similar with the statements SUBROUTINE and CALL, may bec:

TASK name [*¢] (P P --o» D)
EXECUTE name [*ae] (a, @y .-, a,) |

the actual
where p,, 4,, ..., are dummy arguments and 4,, @, ..., 4y a1C >
argumgllts?zsimilar]:g the usage of the parameters of the Fortran subroutines.

. , i ic ae
The positive integer constant ¢ permits to use the task m ¢ copll:si,S ac’;.(liled.
1S an arithmetic expression t

hat™ spccifies which copy of the tas
e —

3 Slug- wa, Romania
. University of Cluj-Napoca, Facsity of Mathematics and Physics, 3400 Cluj-Napoca,
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At any time a task may be in one of the following states :
— active, i.e. its instructions are executed,
— waiting, if the task is waiting for the appearance of an evepy
— inactive, if its'execution has been terminated or if it hag not b
activated. e mas e smi - ‘ -~ Deen
A function is Heeded ‘to" verify ‘the state of ‘a ‘task. Such a'fynct on m
be: y
—1, if the task is inactive,
_ STATE, (name [*ac]) =1. 0, if the task is waiting, .
N ‘ -:' 1, if the task is active.

The concurrent programming must solve the following problems :

. — ‘the. syncronization of .the execution of tasks, L

— the: mutual .exclusion -of the tasks, i
«+u,— the communication between tasks.. -
~ wiIn [1] we; suggest two.modes of solving these problems :

..y using sema/phores, ‘
i -.—using the:concept, of ,,rendezvous’’.. . .

At last a thought about implementation. Usually standards do not say
how are. the.-concepts. of; a -language implemented by a compiler. We think
however, that the next standard must have somc features regarding imple:
aentation. © - . » .

i:A much more detailed presentation of our opinion about improving the
Fortran programming language will appear in [1].
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\bslract — In this paper we ‘
gtve a uecessarv -and - sufficient condition for a
3“;11“ autom@ta to be, cychc using the number of mdependent edge-sets in
apil

HE al
0.!Introduction. A cellular automa’con i graph is a triplet 4 = A(G S, f),
where S is a sct of numbers which are associated to the vertices of the graph,
fa transition {unction. The number associated to a vertex'is called the state
of this vertex. Let us denote it by . s(x) If %, %, ..., %, are the vertices
of the graph then (s(x,), s(x,), .., s(x,) is a. configuration of the automaton.
At discrete time steps all vertm_s change their ,state simultaneously, gwmg
a pew configuration of the automaton from the pl‘t.VlOLlS one.

In this paper. we consider only Lludcnma y ¢ r's automata [l, 4] in
which S = {0, 1} and f gives, in every vertex x, the sum modulo 2 of the
numbers (statcs) assopiated to x and to 1ts necighbours. . v

A cellular automaton is, cychc if . -gvery conftgu;atlou of it has a predeces-

The problem . is  to dec,xdu if for a given graph, the corresponding auto-
maton is or mot cyclic. In [1] Andrasfai:has given a theorem and an
algorithm to resolve this problem in the case of trees. Our ‘approach allow

us to resolve, this propos:d problem.in som_,classes of Graphs

YAy

1. Definitions. Let G ='(V(G), EG) be' a gmph ‘without loops and multlple
edges, with the vertex-set V(G) and edge-set E( ). Let N (u denote the set
of vertex w. aud dts, naighbpurs to Lo e

Nu)={u} U{ve V(G ,{u,,,v}EE }-{u}UI‘(u;} - for .any uEV(G)

DEFINITION 1. A cellular automaton orf cellular space is a trlplet
A = A(G, S, f), whereGis a graph, S 4 finite set (the state alphabat),” f: C —»C,
with C = {s| s: V(G) = S)}, a trausition function, which gives a configuration
of the automaton from the previous one. ) , .
DEFINITION 2. We say an automaton 4 (G, S, f) Lindenmayer’s if
§=1{0, 1} and

TR I S ETRLE

PO

) = X sb) (mod 2

y&N(x) | )
Such an automaton will be denoted by A(G)

DEFINITION 3. A cellular automaton A(G) is cyclic if its transition
unction is a surjection. . AL

© % Usiversity of Cluj-Napics, Fazuity of Muthznibics and Physics, 3100 Cluj-Napoca, Romania

2 — Mathematica 3/1987
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The state-graph of the automatey,
_ is a «directed graph S(G), with co“ﬁgur;ii((;)
" of the A(G) as vertices, and tfanSitionso
the, A(G) as arcs. For 5(1?2), where p isof
path with 2 vertices, see Fig. 1. The CYCiicita'
of an automaton may be expressed ajsg as in)t
DEFINITION 3. A cellular automag,.
A(G) is cyclic if its state-graph has OnJ;
edges in circuits. S
" DEFINITION 4. A set of cdges iy .
graph is an independent edge-sct if no b
Fig. 1. edges of it are adjacents. Let us denote ty,
number of all independent edge-sets .of ,

given graph G by A(G).

2. The main result. “ . s o :
. THEOREM. [3] 4 cellular automaton A(G) 1s cyclic if and only if f,
nuniber h(G) of the independent edge-sels in the graph G 1s even.
Proof. The cellular automaton A(G) is cyclic in the detcrminant of the
A + U (where 4 is the adjacency matrix of G, U the u'mt matrix) is 3¢
(mod 2). We may compute det (4 4 U) by the Coatcs’ mcthod ([2]. This
value is ¢qual to the number of covers of the vertices of G by indcpendent circuits
of the oriented graph G’ which has 4 4+ U as adjacency matrix. The automa
ton is cyclic if this number is old. For every circuit in G’ with more than two
arcs, there exists a circuit with the same vertices, but all arcs with the opposite
orientation. To every circuit in G’ with only two arcs corrcsponds in G an edge
The loops in G’ have not correspondent in G. Thcre cxists a single cover of the
vertices of the G’ which has loops only. Therefore the number of covers by iude
Fendent circuits of the graph G’ has the opyosite parity of the number of inde
pendent edge-set in G. This proves the theorem. '

3. The number of independent edge-sets in some elasses of graphs.

All following formulae may be proved by induction on #, the number of
v ertices in G.

3.1. Let K, be a complete graph with # vertices (n > 1), then
MK, p) = h(K,) + n{l + h(K,_1)}
MKy =1, M(K;) =3

It is obviously that (K ) is odd for ;s .
" a , t lic.
3.2, Let P n be a path with #. VeftiCeS, t];l)(’.:nn h'us A(I\") 1s acyc

MPy) = 2h(P,_) — h(P,_g) or
HP,) = W(P,) +, MPo_s) + 1

MPy) =1, h(Py) =2, h(P,) = 4
The former formula ‘may be derived by co

RN

‘

jait
mputing the number of all n-0ff
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sequences of 0i:and 1,in which .. .1
ho two are’ adjacents; for the ... .. . \

latter formula see 3.9.:'. i w. [N T
- feven, i w32 (mod'3)
MP) T \odd, it n=2 (mod 3) 1, : (kg |

3.3. Let C, be a circuit with “ ‘
»n vertices, then T - i
DR WA LI

HCa) = WBa) + MPass) 1
mCy) =3, h(C,) =6 and -
- odd, if n =0 (mod;:3')
h(C”),:' even, if #z20 (mod 3)...

3.4. Pet S, be a star with #
vertices, then 2
MSas) =n—1 .

If we complete this star-graph
with edges Dbetween terminal

vertices, them we obtain an : \
wheelgraph (Fig, 2) with o \ S——7 &, | N N__7/
vertices. For » > 3 we have = Bp / Ne— -
B . \ . / a
BMW,) = (n — 1) {[A(Py_s) + 1] - \'\\_,//~ ’
c2 =1} + A(Cp_y) = (n— 8
PFig. 3

= 1) {h(Pu_s) + 1} + A(C,_y)
It is casy to prove that
even, if #s2 1 (mod 3) and # is odd
odd, otherwise

hW,)= {
If n is.odd, then h(W,) and h(C._,) Have the same parity. * ' =~ *
3.5. Let Bbe a binary tree with the right subtree B, and the left subtree B;

(Fig. 3). We denote by By, the right subtree of the left subtree, by By, the left
subtree of the left subtree, and so on. Then we have:

!

MB) = ((B) + 1} (4B, + 1) + (B +1} (h(Bu) + 1} (B + 1} +
U B 4 1 (B + DB 1 — 1

1t »(B,) and h(B,) are odds, then A(B) is odd too.
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To exemplify lt1hls formula let yg cous;
A\ -7\, derapath Pm with m vertices (fj -
A _\\‘F c+ lp—- m—1. Then * ( g 4) and
\‘ p,) = {h(Px)+ 1} {h(P) +1} + {h(P)+
IG‘ l'{th ) 1)+ {th +1Y {h(P
// 3 1:; — Lt
S IMl=2k= m—3 we obtain’ "
. Fi { II(P,”) = 31’ m—3) + 21;(1));0'——4) +4
. ig. ;4-
B & ' - which is a valid formula (see 32)

lete binary trec with # |

rill cnote b B, the balanced and comp evels

B, h:;eo‘l‘llly gne vertg; 'Ehe root, B, has a root and two sons, Bj a root witp

t\\o sons, each of which has exactlv two sonsi{-and-so on. (Fig. 2). Tn this
case we have

= {h B”— + 1} + ()Ih u 1) + 11 (/I( n_._) + ]" ot l

It is casy to see that h(B,) is even for every n, thus A(B,) is cyclic.
In a tnary tree, which is balanced and complctc with 7 levels (cach inter

nal \ertex has degree {+1, the root #), we have:
WXL = (i X,,..,)+ Wt (X)) + BT R(YL ) - 2
A . even, i [ is cven :
VM) = odd, if / is odd

for anv n. thus A4(X}) is cyclic, and AP aevelic.
3.6. Let K, be a complcte bipartite graph, then

IZ(I{’" ") = h(]\”' ’—l) + ”l’II + h(l(m 1, n- )}
ME ) =1, MK ) = 2, MK u.) = 30 -
};(I(m,n’) _ odd, ifm and » a'rc__od('IS. .

cverr} ~in other cases!

3.7. Let (K,, K,) be a graph formed of two complete graphs, which have i
common a single vertex (Fig. 2) or more generally (G, G ») a graph form/d of
G ‘and G; with a smgle vertex:in common. I‘hen we ha\ B S

]Z(Km, .Kn) = h I( {IZ K,.-) -.I- 1} + ]I, A” {h I\m ‘) + 1} — ][(Am_ ) h(]x,,_l)

MK,, K,,) is odd for all m,

7 except th =2 WK, K=
= h(P;) = 2."Por ‘two circuits in ; ¢ case m = , M 2

this, situation we  havel {a

. (Cnu Cu) = ]1! m) {h n_" + 1} + ]2 n rh(l)m— ) + 11 — h( 2 )h(P“__) ,
Tom which Its t ;
"0 o ge)su s that h(_C'\m C») is even if and onl) 1t m =0 (mod 3) aud |

SR L A L R i
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3.8 Let D, be a tree with'3n vertices, in: Which the 100t has thiee sous, from
which one "has three sous, each of others are:terminals, and so on, except the
Jast internal vertex, which has only two sons (F;o 2).

h(D ) = 2 h( n— l) + h(Dn—:z) + 3 h(Dl) — 2 )‘(Dz) —
“hlch is derlved from G

Dy = 2D, 1.")"+ )+ MDu) £1,

We have e TR N O T e
jeven if n =0 (mod 4) or # = 1 (mod 4),
lodd if #'= 2 (inod" 4) or n ‘E 3 (mod 4)

! P oot ?
E PR BT TR gt /

3.9. Let G be a graph, G\A the graph obtained from G by ehmmatmg all ver-
tices of A w1th all ad]accnt edgcs, then o

i

h(D,) =

Y . .
='.f»,' AT

B(G) = MG\{x)) -+ = o G+ T

E.g. for a path P, (k¢ + I =m—1), we have |
h(P,) = {h(P) + 1} {h(P,) =+ 1} —1 + {h P,,_{) + 1y - {h(P,) + 1+ “
+ {I( P,,) + 1} {Iz(P, 1 3 1}

For l=2amd k=m—3 we have ' v O

o (P, _3h(P,,,._3) +2h(P,,,_) 44 '
e Vot vt VNN
which is a valid formula for P,,.
Let Gi[x, y] denote the c7raph G wlthout the cdge {x ¥} then
lz(G) = h(G\ [x D) + h G\,{x y}) + 1

Eg. if G is a path P, with k 41 =m, then - 7~ "
B(Pa) = (h(Py) + 1} - (WP + 1} + ((Pics) + 1} - P+ = 1+ 1

For k=m—2, 1=2 we obtain \ ;
S P = MPa) 2 (Puns) 2

e | R
which,is a a vaiid formula

If b (G\ xnjf‘%,) alld lh G\{x y, ) have the same parity, then A(G) is odd “else is
¢ven. \

A special case of the Tatter ‘formula of h(G) is the following. Irﬁt {Sle sz
2 graph formed of the graphs G, and G, which are joined by andt ; (c) b ,+ !
Gs and G, are'the trecs 7, and T,, su h that d(a) = m + 1 anl ; o—btamed
(d(x) is the degree of the vertex x), T4 is the subtrec of the T, w hich is
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b. Letius deuote by p» _
from T, by deleting the-edge {#;4} for ¢+ # (a) the_ A
of- adJacent vertices to..4, except the vertex b Set

h(T.—- T,) = (T + 1} {hm i 1} . g
v ‘T ¢ (To) + 1} - H{th,-{—l}——l

iar*(a) ier’(a) o :
‘If T,is a path P, with m vert1ces, and Tb a path P, with n vertxces theu
(T Tb) = Pm+m and '

BPase) = (HPa) 1 - (HP2) + 1) (3(Pcs) 1 - (Pac) + 1) -1
: SN S TR S
“B(Ppy1) =-h(Py) + h(P,. 1) + 1

By addmg 1to each member of this equallty, we obtain
1;.l FE )' :, ( ”+l) + 1 — {}L + 1} + {}l - l) + ll

and from this we can see that h(P,) + 1is a Fibonacci number, but h(P) =],
hP;) =2, F, =1, F, =2, IF3=3, aud thus A(P,) = F, — 1.
From this results that

MCh) =Fusr + Fpr — 1
3.10. Let us cons1der 2 graph as in Fig. 5. Theu we have ‘
= {1» )+ 13 - {B(Gy) + 1} - ‘h o + 1} — 14 [AG]) + 1} -
{h(Gz - 0BG + 1+ GG + 1) - (4G + 1) - (h(Gy) + 1)
where Gi fors =1, 2, 3 isthe graph G; without the vertex x ;and its neighbours
We can see that if h(Gz) and /(G;) are odds, then A(G) is odd too. If G, is a

path P,, G, a path P, with m' =#n =2 (mod 2), then A(G) is odd.
Let us con51der a graph G as in fig. 6., then we have

(HG) = (MG 1} - (h(Pact) 1} = 1o (B(G) + 1} - (Paca) + 1},

For m =1 we"have‘

.....

If » =0 (mod 3) then h( wet) i is odd, h(P,._") even, and

—{lsz-{-l} even — 1 + {h(G -{-l}
Therefore A(G) has the same parity as i(G,).

-

I -iiey N & Ay, W




CELLULAR AUTOMATA IN GRAPHS

23

1

REFERENCES

P R R L, e e,

1. And rasfai, B, Ce{lulular"’hutomata in trees, Colloguia "Mathematica ' Socistatis J4nos Bolyai,

* 37. ,Finite and infinite sets”, Eger (Hungary), North Holland, Amsterdam, 1981, pp. 35—45.
g Coates L. C, Flow-graph solution. of limear. algebraic . equatigns,, IRE Trans., CT—6 (1959)

) —187. .
3 ;{7%5;, Z., Cyclic celiular automata in graphs, Rescarch Seminars, Univ, of Cluj-Napoca, 1985.
4. Lindenmayer, A., Mathematical models for cellular interactions in development, ,,J._“l‘heqrgt: .

* Biol.””, 18 (1968) Part I. 280—299, Part 1I. 300—315. B

5 szwerinski, H., Symmetrical onc-dimensional cellular spaces, ,Information {and control”,

" 67 (1983) 163 =172, -eiv e A e e el e e .

L B A S A R 9 B I T S ey raly
DR ’ T T I L o - AP TSL I S
IR niv [ PR B N Lrert it Ly
A v . H e N
» . vois i :
r - M e Y N
r i H 4! [T AN SR YA FTRR
L, N v i - o, v S H A LA T
v , 5 v N ] 7 ‘. .
. . i
- ¥ ' - i [ R f P v N
] - Tor LR ERST NS LA : ]
) '
. Lo o 0
[ ) e ' . L
. . Y
N : I TR . IRITRL Y LRI
I 1
S , o T ~
) e . . (- iy
., T LY o ' et : L) Y )
1 i P b
'
: - oo faoamta
' . .
N [
Vi , . - f . e
K v
L : c e o
. h
. N y i B
; K ' Vvl °
‘3
i) ie 0
. . . N -
. ] . 4
ri ' ’ . ! s *
v fir l.\ ¢
s
. vt coe
)
)" i
ot
1 y $ .
[} ' o Tt
. SN S :
v LAY ‘
1 . *
VN - ).
; [EEd . TN
B - : b ’ N
P " S !
J . -
. -
B . .
YA
- »
IR [ AT



[S e +

‘$TUDIA UNIV. BABES—BOLYAI, MATHEMATICA, XXXII, 3, 1887

A
R
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REZUMAT. . Co;nponenlele principale ale unei clase nuantate. .11) lucrare se
definesc componentele principale ale unei clase nvuen’;at.e ce descrie un nor de
puncte. Se di un algoritm pentru detectarea grupirilor liniare de puncte ce cons-
tituie substructura clasei nuanjate. Iste propus un algoritm de clasificare ierar-
hica divizivi. Algoritmul foloseste i.nfomna}ia.relatwﬁ la structura claselor nnan-
tate furnizati de analiza componentelor principale.

Introduetion. The aim of this paper is to «xtend the principal compo-
nent analysis for a fuzzy class and to design a hierarchical classifier. In Scction
1 the principal components of a fuzzy class are defined. In Scction 2 an algo-
rithm to detect the linear cluster substructure of a fuzzy class in given. In
Section 3 using principal component analysis a hicrarchical classification proce-
dure is developed. Definitions and notations from [3] and [5] arc used.

1. Principal ecomponent analysis. Let X = {x, ..., 2}, x, € R4, be a data
set. Every z; € X is a pattern vector. Let C be a fuzzy class which describes
a cluster or cloud of points from X. We consider the shape of this cluster to
be linear. Our aim is to dctect the most important directions along the cluster
is spread out. These dircctions will be called the principal componcents of the
fuzzy class C. In this paper we admit the cloud may be approximatcd by straight
lines in R4, but thcre is no dificulty to considcr more general lincar varicties.

Let us consider the line L through the point y, with the direction »:

L={yeR|y=y,4+ v, L R).
Distance dc(x, L) of x € X to L in the fuzzy class C is given by

de(x, L) = min dc(x, y).
yeL

We remembcr that the distance in C between x < X andve L is
de(, 3) = C(x)d(x, 5) M
This result may be obtained using ci i i i
_ . g cither the local distance introduced 1o
[3, 8] or the fuzzy points distance considercd by Gerla and Volpe 8}

We may consider dg(x, L) as a measure of the proximity bctween % and

the variety L. Th imity .
may exprgsse i as us the proximity W(L, C) between the fuzzy class C and L

WL C) =Y diia, 1),

Jj=1

® University of Cluj-Napoca, Facuity of Mathematics and Physics, 3400 Cluj-Napo a, Remania
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The scalar product in R¥ is -1 .
(=, ) ="x7‘My [

where M is a symmctnc positive definite matrix and T dcnotes the transpo-
sition. . N Y N el !
We have T L N
T dz(xf: L) = lef;y0||2— (xv'—y;): 6).2: - :.V.:' (2)
We may thus write

\p

WL, C) = E(C(x;))’(llx, —yollr~ (" =y o) .3

The search for the closest line to the cloud C leads to the minimization of

W(L-, C). 1t can be proved (see [1, 2]) that ,the bcst ]me passes . through the
center of gravity, given by the mean value

ol Fite

4
X C(xj)%
j=Il-

Mc =-ﬂ——- ’
X C(x5)
=1
of the class C. The coordinate transformation s

x-—x—m ) ) o

4 T !
prescrves thc shape of C and the new mean of the class is Zero. Wc may thus
assume that the fuzzy class C-has zero mean: Therefore ! we may put y, =0
and (3) becomes

W(L,C) = L(C (%) 1125112 — E(C('c, )2 (% 0. (d)

Since the first term in (4) is cdnstant minimizing W(L, C) means to maximize:
the sccond term ” ‘;. e e :

o i

o It = me 1 o 6

A

Without loos of gcncrahty we may assume ||v]| = -1 I(v) may be written:

1(v) =§': (C(ﬁcj))z'vTijxj My = v’(f (C %)) Mx, % M)v =Sy, (6)

where

L : B Y i
S= 23 )2 Mx; %] M @)
Jj=

The matrix S may be mterpreted as the scatter matnm of the fuzzy

class C.
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Detection of the principal directions reduces to the problem:
maximize  I(v)
e PRI ”v”?_l—ln Lt S - L (8)

It is well known that the extremal values of the quadratig form I(v) on the
unit sphere are the e_igenvalueg‘ A; corresponding to the eigenvectors ' of the
matrix S, i.e. S !

Nt

Su,' = AU, T=1.. . d. i (9)

The unit cigenvectors #, .. ., % are the principal directions of the cloyg
C. We may assume ' - ' :

B S I LT Y Az o 2 M

The éfgétivebtbr' W, givefs ‘the rmost iihpqr"taut direytib_n along the cluster C s
spread out. The ratio

g

Aj

~.

M

Aj

=1

tepresents a measure of the goodness of fit to the cloud of the first k com-
ponents.

The k-dimensional subspace spanned by the first 2 comporents represents
a skeleton of .the cluster. This skcleton may be considered as a representation
of the class. Let us denote thi$ reprezentation by PC*, i.c. :

PC* = f{u, ..., wm).

“The hierarchical classification method presented in [3, 4] and principal compo-

ment analysis of a fuzzy class may cross-fertilize. In Section 3 we'll give a

hierarchical classification method based on, principal component analysis of a
fuzzy class. ' o C :

2. Linear eluster substrueture of a fuzzy class. ’l‘hé cluster substructure of
a fuzzy class C has been investigated in the papers [3—3]. We have considered
this substructure as given by a fuzzy partition (see for instance [3]) P =
={4,... A,.} of C. Every member of P describes a cluster. In this section
the case of linear cluster. substructure. is investigated. - - T ’

We adinit the fuz7:y classes from P d :
totype of every class Is & 1m;_ in R4 For the class. 4; the prototype is
Vilyo w) = {y s Ry =y, + tu;, t = R}. .

‘:cng(;ni'(’l“‘i‘;‘luacy I(4;, V;) between the

(10)

fuzzy class 4; and its prototype Vi is

RS T

LA VY=Y v =
L BT PRV Py LS £ we

Y

Sy IR P S

escribe linear shape clusters. The pro-

»
S () . V., o

|

I

i
i
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The .inadequacy ] P,V
V = {Vl. . .,V,,} 1S

n K " P .
JP. V) =;‘ T V= 20 53 () (1% = %012 = (3 — 3, ). (12)

T S T ST U S P SV E :
A, local minimum of ‘the criterion funtion J may be ob

),,betfvcen the fuzzy. partition P and its represcntatioxL

procedure with™’ ta'1'n<;.c‘1' [4] by the iterative

‘50 ST T e \

Ai(x;) = "2,(:;) V-')!".fi <u, 1<j<p, (13)
| k=1d¥x, V)
P : o ..l ! : ‘igl (A'.(h'i))"xj T ,’;.’ ' L
ST 1K, T T (14)

L
T .

- P ) L
i diE)e
j=1"

1
¢

A R
u; ='the unit eigenivector corresponding to the largest
_eigenvalue of the matrix ‘

L [

SR it Sy e L )

. . N 71
. Tt v

N it 1

"' This iterative ‘procedure ‘may’be ‘called ' Generalizéd: Fuzzy Lines (GF L)
algorithm. For C'="X, G F L teduces to-Fuzzy n-lines algoritm-[1]. o
.. GFL represents an useful tool to detect the linearcluster -substructure
of a fuzzy class. This procedure may be used to desing a hierarchical - binary
divisive’ classifier {31 In/this papér-we propose another hierarchical classifica-
tion method in which principal component analysis of a fuzzy class is used. X
- +. 3. 'Principal ‘éomponents and hierarchical classification. In this section a
divisive hierarchical clustering procedure is proposed. The information given
by the principal component analysis is used to obtain a fuzzy partition of a
fuzzy class. The procedure may be viewed as a: classification method as well
as a dimensionality reduction techique. o R
" Let &, k; > 2, be the number:of sclected principal components of X..Since
the best componcnts are choosen we' may - assume that there are &, lincar shape
clusters X, In ofder to obtain the fuzzy classes ‘describing these clusters the
GF L. algorithm . for C = X and » =k, is used. A fugzy partition P! of
X with %, classes and the corresponding line prototypes V..., ¥y, are thus
obtained - ¢ . " e oL
. Let us remark that the dircctions i~ o7, iy of ‘the ¢ protoypes “of a
fuzzy class C are not nccessarily orthogoual. For'this resson V = {V,..., Vi}
is a representation-of C .more suitable than the representation. PC % of the ortho-
gonal principal components. B T L
L :Tﬁé degI;ee in wI})lich the class prototypes are closed to the pr_mc1pa1_ compo-
nents represents. the certainty degree that, cf._\jqctly k, linear clust.1s are present
in the data sct. In order to estimate the distance between pr )t_oty.pes,dl.rgC.-

e

5o
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. . . . . .ol et Aye smarf)c Teny , .
tions #! s and principal components v; s, thu classe y : ?l‘r_’fbered -
that «
. cos (u;, v;) = min cos (u;, 7).,

] o
F=1,..,k : v !

We may consider 1l-cos(x;, v;) as the distance betwcen directions u; apq "
“Pristance” between the representation V and principal component representatiO;
P Ch» may be cxpressed as

k,

d(V, P Ch) = Y (1-cos(u;, vy)).

If d(V, PCh) cxcedes an approriate preseribed thereshold D, then we may searc
for a more satisfactory valuc of the cluster number. We may conjecture thyg
the optimal clustcr number is in the neighbourhood of %,. If a modificatior
of k, improves d, the new valuc of k, will be sclected. Ideally, we scarch
for a number k, such that d(}/, PC*) becomes minimum for &k =k, ie.
. d(VV, PCk) = min d(V, PC*).
" B [ k

In order to construct a fuzzy hicrarchy [3, 41 we consider the fuzzy partition
Pl={4,... 4} as the first level classification partition. For cvery clas
C of P! we apply thé same procedure as for X. The principal components and
the corresponding fuzzy partition of C are therefore computed. The obtained
fuzzy classcs will be atoms in the fuzzy partition P? at the sccond classification
level. 1f for an . atom C only one principal component is selected then C remains
unchanged. It is an atom in all subsequent fuzzy partitions. P!, I > 2, and
tepresents a terminal cluster. R

This decomposition process continues until the level I for which P contaios
only terminal undivisible clusters. If a new level is considered then Pi+!= P
This procedure induces a chain of fuzzy partitions ordered by, the refinemeat
relation {3, 5]. This chain gwncrates a fuzzy hierarchy [5]. "

J i
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nE‘ZU.\lAT..—‘- _l::xecu_lla reversibild- prin--seheme Loop-Exit. 1n- lncrare se |
defme[s,:;: “}MA intii nofiunile de ramurd §i sectiune asociate unei scheme Loop-

Exit (3, 5]. Apoi se prezintd modul in care sint ele folosite la ia r i-
bila (9, 10, 1, 8, 6. ¢ . execupia reversi-

. v

1. 'Iulroduction. Reversible execution is an attractive. method for run-time
dd’m}ggmg programs. .It was introduced by Zelkovitz (9, 10]. A relative
«efficient implementation was done by Davis [6]. Many systems. using the
reversible execution method are presented by Johnson [8]. .

All thesc systems use a stack called the HISTORY stack. During the execu-
tion, all modification over the variables are pushed in HISTORY. Hcnce a
very large amount of memory is necessary for this stack. .

In {1] a mathematical model for reversible execution is presented. There,
Aguzzi uscs also a stack for its model. The Aguzzi's model is' theoretically
appiied to all recursive and bijective functions. N '

In this paper, a modecl for reversible execution . .te all flowchartable algo-
rithms [7] is presented. The -pricipal radvantage "of- this. inodel is a drastic
ieduction of the amount of memoryv for HISTORY stack. ... :

Suppose : that the algorithms .are. described using. the Loop-Exit {Schemes
|57, and that these schemes are reduced [3], Also, we suppose that the formal
definitions for : AM (the Assignment Marks), TM "(the Test Marks), the Loop-
Exit Scheme (for short LES) are known. Sec the definition 2 from. [3] for details.
If'S is a LES, then we suppose that the definition of Gs (the context-free
grammar associated to S), L(S) (the language generated from Gs), and the
static word associated to S, are known too. For details, 'sec the definitions
5 and 6 from [3]. ’ T A S : .

Now, we illustrate these notions by -an cxample.

ENAMPLE 1. Let S be the following LES:

LR

LOOP, . -
a,;-ay; B - ST
I¥, ‘@, THEN, EXIT,; ENDIF,;
C Ay, e Lt
0 ENDLOOP,; vt
LOOP, ] E .

IF, ‘as THEX, a,; ELSE, a;; EXIT,; EXDIF;;
"1 IF, ay THEN, a,; ELSEy @97 ENDIYy;
ol all; : : coed ' ' v Ry R
- ENDLOOP, ;

R
* University of Cluj-.\’upscn,‘ Itz

-
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For S, we ha\e

SOV e, /oo
AM = {al, @y, 4, g s, ‘@, am, a”}
= {ag, G5, dg};
TM = {a;, a5, dgf ; i BTN P2 o
The static word is: ,,a, a2a3a4a5(10(17a311,awau .
The productions of Gs are:
V—-LL, | '
Ll - a‘laZI a4L1ul al(lzﬂs i Bl"—' ala).lla‘Bl ' o .‘..-'.--‘ . Lo 7\;..-."_-_,
I —oas £l i ERA i .t

Lz - I, Ia“an | s ”7 B = IzIs“uBz | &
I, = a5 + a4
Is"’“s+“9 | ag — @10

The words from L(S) arc the fo]lo“m ‘
.,(ax"z“s — a,)*a a‘v“s + (“5 + (‘a(“e + ﬂn | (g — @10)a1y)*as — @y

REMARKS: a) We use th(_ notation from ([21: (e)*, («)* and (« |p)
for the scts of words:. .

()* ={ex...a=0a"|n > 0};

( )"‘-—{aa Lo = a” In > 1};

(| B) = {a, 5}

b) We use the notation ,,4,X.,”, where X; € {4, —} and a; € T“ and
,,a; if a; € AM. The ,,4" is used for a 'lHEN alternative and ,,—" for an
ELSE alternative. ’ "

2. Branches and scetions. In the following, we supposc that S is a LES
having the static word ,,q)a,. .. a,” '

DEFINITION 1. A word z = q; A 4 Xi, ... a X, is a scction for S iff
there is w e L(S) such that:

1

a) w = xyz;

b) i, <tj4y forj=12,...s—1;

c) if ¥ # ¢ then x = 2'¢; X;, with 1, > 7;

d) if ¥ # ¢ then y = q, 1 X,-‘Hy’ with 7, > 144,.

We denote by SEC(S) the set of all sections from S.
DEFINITION 2. A word z <« SEC(S) is a branch for S iff therc is @€

e L(S) such that w = zy.

We denote by BRA (S) the sct of all branchcs from S. :

SECT(I.%(): following theorems establish some simple properties of BRA(S) 2° d
THEOREM 1. BRA (S) C SEC(S), and |SEC(S)| < 2v.
Proof. From the definitions 1 and 2 it is ob\'lous)tlhat BRA (5) C SEC (3

Now, for cach &, 1 < kB < #n there arc at most (* % symbols
from AM U TM. Hencc, () sections hav m’g

SECEI <@+ @ +...4+ () =2"—1<2QED.
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THE{OREI‘Ll\i 2 L(S}‘(%)(SEC(S))-F . "’,_’;"U oo eyl . B :
Proof: Let we » W=a,X; .. . a X, If <1, for each
; g ) Wi Gk A 1, <4y for each 4,
1<7 < ? ‘_'_‘l’l t_hgl we SEC(S) and the thcorem holds:; Ot}licrwise there ar]e
y integers Jx 1 <71 <7 <7.0V'< 4, €4 such'that 5, 24 k= 1' r-Ifris
maximal, wé denote 3 = aiX; . .q Xo o v 0 e, 0N o
L T U T e
Do . v co R R AP PPEIRS BLTS I EEEIY X N
LY = a"jx+x'X"j,'+1 Tt a,‘].-.'A.;}..., FIECAILE et el I:'; e -
—————————————— "
Yy = ({fj +1 Xij 1 a"j X,) and .
r—1 r—1 ’ ’ ‘ i /
Yrx1 = “'}',—‘rl ‘\ij'-f-l e (l,-}.’ A,-].P.

It is obvious that w = y,9,...9,y,,, and 3, € SEC(S) E=1 2 .. .4 |
Therefore w € (SEC(S)) +, agczl thcjt)het)lrem hél:ls.‘Q?E.g;)"-_k 1’-' et L
Now, using the definitions 1, 2, and the theorems 1, 2, we can easily
prove the following two thcorems: o P N
THEOREM 3. For cach w < L(S) there is z « BRA(S) such that w = zy.
THEOREM 4. For cach z € SEC(S) there is.y € BRA(S) such that y = zz.
Intuitively, a section is a maximal sequence of statements of S such that
their order of execution is the same with their order in the text of program.
In [4] we have shown how to use the branches .to uncover the unitialized
variables, and how to use the scctions for testing and correcting programs.
3. Algorithms for obtaining the BRA(S) and  SEC(S). Let S be a LES.
Suppose that «,a, ... a, is its static word.
ALGORITHM 1. Construction of the BRA (S).
Input: The context-frece grammar Gs.
Output : The set BRA (S). , A _
Step 1: A grammar G, is constructed from Gs as follows: all the By —»
— o By | ¢ productions from Gs are crased, and in the other productions By
is replaced by «.. , 4 L . .
Step 2: Using the algorithms from [2] for the elimination of the inaccessible
and uscless symbols, the G, grammar is constructed from G;.
Step 3: A grammar G, is constructed from G, as fol]qws: all _the L", -
— o L, productions frem G, are replaced by productions L; — @, where L} is
a ncw symbol, associated to Ly. ' )
Step 4: We construct a grammar G, from Gy adding to the productions
of G, new productions. For cach production 4 —*la{akﬁ of G,, with Ly {GCUES“t’e
n G,, a production 4 — ol is added,“where L,, 1s t;he|_‘s,yn1’bpl associated teo
. Ly in the step 3. AT g oo i
Step 5: Put -BRA(S) = L(Gy): ' N o
EXAMPLE 2. Let us consider 'S from the example 1. After ap
steps 1—4 from the algorithm 1, G, has the productions:
VL L,|Lj|LLs L, —a5—a
L, - q,a,a; + Ly~ 11y, . ST ot
L{ — a,a,l,a, Iz—'as+a6 .
11-'%— Ia—'as+a9|al—a10

plying the
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P ¥

After applying the step 3, we obtan: NS A Cebie
v Sy ot ! C PR [TRE
"BRA(S) ={aayty £ 8 — ., AT
. L aggay Fag + Gt Geftn, @18l + 85 + Qg8 —ayea,1)
THEOREM 5. Using the algorithm 1, the set BRA(S) is oblained.
Proof : From the definition 5 of [3] it results that in L(S) the static

is modified only by Li — «L, or By — B, productions. Therefore
a derivation

co o Order
, if lt_exists.

v %> wa; X; a;X;8  with 1 >=7,
s ‘.
then there exists a production R — oR such that:

L v _,‘.":5-; {3,[32R8281r.—'0—?-.—>. ﬁllp_, aRSzb‘l, andl

" B8, Ts_’ ua;X; and RBZSL—J_T—> 4X;3. |
Let w e L(S) and z < BRA(S) obtained using the theorem 3. If' @ =z then
in V%Sw is not used any production R —aR, hence V ?> w=z . ze[(S)
. Sl s ol ! l ’ .
~ .\ Now, if w = zy, with y # ¢, then we have:

. ,

ol * T ! y
‘V G=S> ﬂle G=s>l 1{1 G(R8 TS—>'4y =w

IR

We can supposc that only left-derivations [2] arc used and R — «R is the
first recursive production applied. Thercfore we have:

%o —g——;—> i, X; =z and R3 —T..S——-> a;X;y, =y and i > j.
- \ . N .
-Hence, z € L(G,) too, and BRA(S) C L(G,).
y Analogously, going backwards, one may show that L(G,) C BRA(S) Q.E.D.
“"Let S be a LES and Ly a recursive symbol of G. ’ '
__DEFINITION 3. The grammar G associated to Ly is obtained from Gs
“as follows: v : o T o : ‘ .
a) We erase all the 'V'5y productions from Gs if the L, symbol does
not appear in y. ‘ S -
"+b) Bach 4 = «L, with 4 # L, from Gs is replaced- by the productions
Ao L8 and V—»/f " .' SR repRsedTy B
‘We denote by BRA(k) the results of applying the algorithm 1'to the G& grammar.
EXAMPLE 3. Let us consider Gs from the example 1. The symbols Ly
and L, are recursive. Then G = Gs and-G3 has the following productions:

V1L, Lo gy o o 5T
Ly —~aa,laL, |aa,a,+ . B, — @,a,0,a,B, | ¢ \
o L .

L "*I.Ia L Ax — B — . .t
I:—»a:—?— 216 : | a5 —a 2 IzI:{(,lu.Bz,! €

IS_'a3+a9 ial—'am . ) . ‘,.
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We observe that L,, B,, B, @), 4, a; and a, are r%acc
, e
applying the algorithm 1 to Gj, we_obtain: F ble symbOIS Aer
&~ e
BRA(2) = {a; + Qs+ Boay), &5 +_ 0, — axoau» a5 — a}. :

Now, the followmg theorem offers a meth d' ¢ =
THEORE\/I 6..The followmg relation holdso or obtaining SEC(S)

SEC(S) = BRA(S U {BRA(k i L, is rccurs;\z’ﬁ in Gs}.

Prool If G5
obviosuly holds.

L

33

. -

does not contam any recurswe symbol then the theorem

Suppose that there exists a recursive symbol L, in G5. Then m G% there

are the productions A4 — «Lif and L, —vLy. In G5 we have V ——> a,X,.
... a;X; with j >4 and

i 5 WA s LB o gt s ,
L ">or :/a,X ‘ "aXaX aXaX i aXL,,ma R AL LTI

vlv,l . ~3

It résults that aX .. a,X e SEC(S) : o ; I "
0 But in GE .owe have o YRt

i—

v 4 TR O

LR =0 LEXEX, 'iz,.gc.,.;,,p,éj.

It results that a;X; ... a;X; € BRA(R). - TS ,
For cach z = BRA(E) these derivations hold in botn Gs aud G ,
Conversely, for each z e SEC(S) — BRA(S) .it résults that there is’a re-

curswc symbol 'L, in G5 stich ‘that- these: derivation hold"in ‘both Gb and G%.
"By inductidh on thé numbsr of the L, recursive syx’nbols Irom Gs, it can

be .proved that the thcorem holds., Q E.D. e

. The ‘theorem 6 offérs &' sn'nple ‘method for Lonstrucung th° set SEC(S)
for any LES S. At the Computer ¢ Center of CIuJ ‘Napocd Umvcralty, a PASC&L

program for constru:ting SEV(S;) ‘using this methdd was' designed. " .

© T'he theorcin 4 Of[\.l’o a simple methol to’ m sinorize thy .sat SEC(S ) asing.

only BRA(S). The BRA(S) can b ,memomcl using 2, bmu‘y trez, as in the
following ' cxam ple. o

EhA\IPL}:, 4. For ‘th: ILS of thé example 1 we, have
SEC(S) = {a,a,8; + a5—a;, 0,8,85 — 84, 6,803 + g+ gy TR ala, +
; + as“e“a— aw“ur as+ “caa + ayayy, “5 + a,as — Aoly~s - @z}
" . fs are
The Y3RA S)'is shown in th° flU 1. The numbers ‘Associated to lea
the numbers og 1))r'1rn.hr=s For memorizing z € SEC(S) it is sufficient to monio-
Tize the first symbol from z-and the number of its branch2s. In our example,
the following seven p:urs define SEC(S): :
(@, 2)' (auv ) (ﬂp ) (”1: 3), (as' 'l) (@s, - 3), (as 2).

4. qug the SEC(S) for feversibile éxeeution. “Analogously with (7). any
LES can b: nxtended to a vrogram schemata as follows:

3 -~ Mathemetica 2/1997
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du At
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“of iables”. For a particular program-

Let ¥ = v,v,...,v}beasetof,,vanab '
ming languagé ,simzple varqiab]es, items of arrays, ficlds of recerds and so on,
are in ¥. Let ¥ — {fi, ..., fo} be a-set of functional symbols and § be a set

of test symbols. . "o
For each a; € T:M) we have a; = l(‘U,’l, ey v,"l) , with 1 ’, 1y ?0,

v, €°F, j =1, n,. Semantically, ¢; means the application of the test f to

the variables v;. o .o 0
For each a; € AM, we have «; = "v: = f(v;, ..%; v;,) with f < &, ;>0

v, < 5= WI. Semanticaly, a; is a assigncment statement. ‘

For reversible. execution, it is sufficient to push in the ~HIbT ORY stack,
at run time, the execution order of the symbols «; € AM U TM and the chan-
ged values of the variables. . o , ,

~ Our method replaces the order,of the symbols by the¢ order of sections
from the program. More, if in.a scction a variable changes its values marny
times, in the HISTORY only a change is pushcd. .9

During the execution, for each S € SEC(S), a record as that of the fig.
is pushed in HISTORY. . = . - th

Suppose that z € SEC(S), y € BRA(S), v = xz. If z = a2’ and b is ¢
pumber of the branch y, then in the fig. 2 we have:

I contains the value 1+ ; o

B contains the value b;

N contains the size of z (N = |z]); ; q:

P contains the number of the pair ADDRESS — VALUE from the recor¢:

. p times
f T e~ - : » —
R LY .. CHENGE __
! ACCRESS | VALUE ADDRESS | VALUE
R e : R g R ' : : i

Pig. 2.0
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ADDRESS contains the address of th
its vaine during the exceation ot o € variable if this variable changes
VALUE contains the valye of the variable bef.
The following algorithm writes in the HISTOI({)Sr['3 ’;{J:le\ecutlon of =
ALGORITHM 2. (run-time)
CASE moment OF N .

..

WHEN start a sect1on '
I:=1; N :=0; P =0;
. WHEN after cxecution of a, test

-lb,",\:_“r‘-(i(ll ii';-z Vb /]l),

N=N+1, TN Foaa
WHEN before the'ehtéehition''of ‘ari'asigrihent 4 .. )
N:=N4+1; LR B N

,'/

AR

IF address of v,is not, in the record AND

the old value of v is not equal to / oy J /o
THEN:"" ¢ inrie i e " ) v,u'I
, P p+1 TR RIURRRT AT R VA
\ oatariady gy “.I.,..,.. ol i
ADDRESS = the addrcss Of Uity vt it i
VALUE ; = the:old valuerof w57 /0 7 h e
END IF; e salh i ;::m (onot s e
Aot Yodboers s by iz il
WHEN finish the" sgctlon/ ( '/'ll b A T !
B:= b, ' '
push the record in the HISTORY j 4

.. END CASE; . ., ... au 0
As compared with the methods from [6] and 9] our method for mcmorl-
zing in HISTORY has the following'two’ advantages b

a) Are memorized only start and finish' of the 'section ! the ‘order of exe-
cution of statements is the order of the statements in the section.

b). Fach variable appears.in HISTORY:at most ouce, and only if its value
is changed in the section. S I b
" To answer the question :",,how ‘much’ to apply Iewrs1ble emecutlou 0
Practical. possibilitics may. be used.:, )

a) A}?plv reversxble executxon .untll thc htzest! ohanged value for a cer
tain variable . SRR ‘i' )

b) Apply reversxble exccutxou for the latest"\',, s‘tatem(ntsi In, timtlfo(ill
10“”18 algorithm, we choose 'this ‘critcrion for stopmg the revembg (\t? u !

- ALGORITHM. 3. (reversibleexecution) .- WS v et e

, . oy e cuy
§Récl "'-’f Uy e gl e s '{" : S .

WHILE; 7. > 0-LOOR, a1 ¢ s

]
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o Ne . e T N2 fet Nt N) , fifs 'Nb By "i”‘v Ns"‘ N".,
“.K_J—V* A \ E . d .
[ [ .' i HAR [ U /
i st b it St
a 21 RUN NI ST
(1) REVERSIBLE EXECUTION
(backward jumps from 3 section
to the previous)
'Fig. 3.

FOR each P pair ADDRESS——VALUE"ffom the current HISTORy
record LOOP ;
put the, VALUE into the: ADDRESS location ;
END LOOP; .
nw:=n—N;
‘pop the next

t, () A
' END LOOP; | S
Execute |#7]| statements, strating with the¢ statement a;;

recotd from ™ the HISTORY;

EXAMPLE 5. In fig. 3, an example of reversible execution is presented.
By Ny, N,, ..., Ng we denote the sizes (the number of statements and tests)
for the first six execution sections. If the latest statement is in the third see-
tion, then N, + N, 4+ Ny + Ny — » statements from the third section must
be executed after four jumps at the begining of sections.

This method is applied to the INTADA system [4, a system having six
languages, INTADA/k, for teaching computer programming.
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1. Let be the operator equation D e
v , o P(x) = e (l)

where P: XY is a wnlindar tontinods” mappmg on thc Frechet spa.ce X
in the Frechet space Y, 0 being the null element of the space’ Y.
To approximate the solution of the equation (1) we shall use the algorithm

i x»+1,?‘?«’.& "_AAnR(x;n)‘,.r (”=0 1, :2,.." ) corle pu s (2)
[V O STEEN DA NN R I T AL B
where %,, ¥_, € X are glven elements, and A = (%, %n— 1 P]‘1
In the papers.[1], [2] sufficient conditions for the convergeuce of the se-
quence (x,) generated by (2) are given, the Jimit of the sequence being a solu-
tion of cquation (1). These conditions are not so restrictive than these given
in the paper [3]. ‘ . ' cd \
In the present paper some emstence and umqueness theorems, in weaker
conditions than in the previous paper, are proved... e ST -
2. Let P:X - Y be a nonlmear ooperator Wthh has first ordered d1v1ded
differences [4], only. ..~ : o
We denote by )|-|(: X — R, the quasinorm induced by an mvanant_
distance d: X x X — R, ie. d(x, y) =d(x —y, 0) and )lxl( = d( ) (417

Now, we prove the "

THEOREM 1. Suppose that the following - conditions ara: satisficd

1°. For some inilial approximations %o, %_ 1€ S C X the: mapping ...
Ay = [%o, 243 P]-' exists. and WA < By

e
2°. There. exist 1, and’ -, such thal a

R I

) %o — #_11( < 1oy and )] Ao P)I( < 10" g € n_“ o
3°. Thcre ex»st k S O such llml for cvery x % f x”' e s(xo, 2.,,0) we have

v, %" P] = [x 2 Pl(< .’~ — 27|
4.0' hO: = BOI{(nO+ n—l);‘ .4 ..,7: :,'g;A[ '("."\" -.':).: w',!fn Sl ~4:"'
_ .

I . AR I S A
* Usniversity of Cluj-Napca, Pacilly of Mathematics and ~Physics, 3100 Cluj-Napo-a, Romania
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A
Then the cquation (1) has i S a solutton x*, which 1is the limit of the .
quence (2), the convergence order being given by the inequality

* (1 12 8 Voot gp g i s
AIONS 0 A b 282 ""'('3')"""~_<4ho-)"-no~ T
ERTIE WY VU A B B Tl B B

where s, ts the general term of the sequence of the partial sums of a Fibongce;

sequence u,, With u, = #y = 1. X0l LA/
4 Proof. From the ¢ COIzldltlon 1°, 2° and the relation (2), we have
N2, — %o|( < Mo <270 (4)'

so x, € S, and i
) %y — 23 |( <o+ oy 5)
.. According to the definition of the generalized divided differcnces. and the
algotithm (2) wglha\e

CLi
b1 io dneanl Hnu ki et s

v dceonds it o b s 2 = x._.ing.u ABP(‘?-’_"{)&‘“ e (6)

') Now we show (that.'(x), #}) alsb satisfiés‘the hypotheses of theorem 1.
a) Let us consider the operator

by TR

ol u).;In.' A [&l! 10;' IP] nn,AO( ?fo- Xvro e l_ [151, 'xo;vP])g 1”3' e,
Tékmg accotmt of ithe. dt‘)ndit10‘1‘1"3°"hnd‘ thé relation '(-‘i'), we can write

1 N Y IR I R I T R T TR B AR it
l . [ 1N '
NI — Aqlx,, xo'. l( BoK (v, + 'l—l) = ho e ,
SR ER A T BT U T TN TRIOT DO T Y P TRV TR I PR R RETIE
afnd fron} the Banachs théoﬂ‘r'ﬂ‘ lt follo“s ‘the! chsttncc of ‘the operator
ITIATVIN PR cal o ml PRI Y LA T
H (I - ( - O[xl' xo: I)])) -1 = (A()rrl. xo.hl) ) l PR TS )|
.ltf |,,;l|m i e ali A FoUYy oo s i )
—and g
Because T T T V4

Y ‘\’ "HA f‘x‘ \1* ‘P]—i“-_j\.[t RPN T I PSR A

it resu]ts thc ex‘gtence Jof A;, for ’Whlch e ha\'C"" LIRS e oy
:-,:\ -,tl,") i I)l(l g o , '/
—qx.._ \," R

Vv o,

so, the condxtlon 1° 1s sat:sfxes .
b) To prove that condltlon 2°

/ (\\\ \'-I

holds Wwe consxdct fhc LqualltY :
P(xl) - (P(f-/-\l) +‘ [xm Koy, P] (xx — X)) =

_([xv '_I,P]—[x.,x 1» P) (2, — x_ J

-which, using the condition (G), may - be wntten' s

N AoP(x) |( < BoK (g4 + 2% = hgy,.
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It results

NAPE) (= NHAPEIC<)HI() AP |( <

A
.k No= M1 M < Yo
(]

c) The hypothesis 3° is evidently verified, %, x,, z_, < S.
d) For the hypothesis 4°, we have

hi = BH(n; o)
whlch takmg account of B and My leads to
L

NEENEN . y’ 'll s
B,

- X i, sk - 8 L
hy — (l_h."io"'"’lo) iy 2 01_1., I<

1
¥

By induction, it can be proved that the propertles 1°—4° are verified for

any %, given by the iterative method (2) and that the following relations
take place: ST

B t
o, @
i,y T ' .
. ki /AL RN i 8
e AR @
h,—'h" L -2 i o)
’ (l-_ l)'- )
: .' e .. ¢ :
Usmg (9) 1t follows, for n > 2 o G

o / S l’m\ 21% h-— o S Lo :
relation which allowes the followmg evaluatlons for A, (1=0,1;...):" "

8
'hO = hO' hl ho, hz B Py h:' h’ = 22(_9-)
8 ) 81Y5,, °
ke € 2‘(;] ke ks < 2?(;) LT
. - . . . 8 L s N
We can see thit the powers « and @ of the constant —=, respectively &,
satisfie the realtions '

a.._'-a'.‘.\..’a"*‘a"-v" L.
L BBt B

so, theY are the terms of a Fxbonacct sequence with the general term

(]

'
o

V . . "

. .r .’.
PR

)

U, = m X \/g‘




So, we have S TP

-1 1/(8 v u
g gl (BN om0 20) TNy
‘.“‘ o u.h".gz ERAN V. %0 9 9,),.(‘ 0), S Vo L \
Denotting by . =~ T EOEV N IRt DI I :':x’r:f"‘f““:""i DY A
o TR P A 1 st A,
" .
S0 = 2 ty sz = 1

I t oy { W,

A P A ..‘:::‘ E T J!';i:‘..
the general term of sequence of partial sums of the Fibonacci

L
sequcnce apd

taking account of (7)-and.'(8), we get. foo e A
S0 . PR i : 5 \ . '
) 4
S IR S YRRV M g,,;ﬁ,onq, 0 S T ‘f_- oot {
TR ROvAnS L I TP B TT R ET PR ot R W .
4128 2)2 8 ) e L
< | — ._.hz = ‘-——) — 211 e ot <
N2 & (3 ) 0 Mo 3l 9 (2h4)* Mo
(" -

=
1

N
—_——
|
—_—
—_—
@

6 It results that

ALER . A

N "‘FVI"\—I !l-~s
Nxnsp — 2al( < e 7 <2
1= .

n 8 \su—! *n
nolg)" - ko)™ (10)
et K& B
For n — o, the limit of second member of relation (10) is O, therefore
sequence (x,) generated by (2) is convergent: The space X bcing complet, it

esult; .t.h.at.:l A o N oseerrepts e e, REREETVRET ISR PN IS S LA E
I lim x, =g x* € S(xy,,29,). | .
" ;. P L L O O »,';‘.
Vi - ‘

.From
v N 1_

TR E SR
P(xli) +‘ [xa;'xﬂn—l ;:‘P]"(x;;;“»".xit—l) = 0,

taking sjnte account, that NeM X3 Ple (X — Y)* — the.set of lincar. and
bounded operators, it follows that lim P(x,) ='0, i.e.” P(x*) = 6. e
From (10), for p — o0, i "o NP I
, p — o, it follows (3).
S‘o, the theorem is completely proved. _:
To prove the uniqueness of solution of- cquation (1), we have
THEOREM 2. In the conditions of theorcin 1, ‘in the ball S(x,, 240) C X the
solution is:'umique. »: . . iy S e fauiodP e by L e ?;,rif g et

Proof. Suppose that £ € S (C X is anoth ion i
. =S C . : er solution of equation (1).
- We consider the °Pera§01< ‘E‘“(_x).:-‘X = X, given by 4

CFO(x) =% — AP(x)
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IS ‘. Y

AR .
\ TR

with properties
1~("(x) = x; F(')(x) =% — AP(x)
(o, v T(‘)]—I—A[u v; P; Vu, ve S.

= Xig

‘6, .we ‘have
| TRRTION 1

I8
_For:;¢ = 0.and taking, mto 'account. that [xg, x_;; F(°)]
Nz = m (=) FOE) = Foln) U2 )th, %,; Foje™ )
| =)l (=, "'O»F()j‘—["oxIIF‘O’])("—‘)I(—
_ —)|A([xo'x1" P]—[" xo:P])(’v“xo)Hs.
plenu <N Ao 1)1 %0, 220 P] — [, x5 PIIE ) & o] L
IR FRREEINHY R | I
Based on the hy 1,othe51s and the eudcntly relation
)x — 2, ](<)|x—x0]( )|*o—x 1|(/\2"10+‘41 ;
we have o 'S'..)]”{W
B K(Z’lo + ;—1)', ')Tlo < ZJBOK(’% + "1 )7'10 = ,,,“ s
")ITU '5:! s “'.'»' carl -

’"),1:’.3: —(xxl(
’ ! i »..'___;_23 ’40’70 Lz'z

o l-ho ¢ ] (l .‘
[ YA | Voo Wi

Gencerally, for any n, the following inequalify takes .place;/ .
STy

oo ) E = (S 2rEl, <°(3M J”—l("ho) No- "7
\( e . o "_1.."."-,
For n — o0 ( 1) becomes [x - x,,](—»O thereforf_
4 L U SRR UL R |
nf ' 11m x,,—.t = ¥*, -
. .r.,J,Y A .07
O

ot .
-_“\_ ”—QIJ '
= l
. : >/

so, the solution of equation (1) is unique.
3. Thecorem 1 can be improved by elnmnatmg the hypothcsxs of boundmg

Of Ay We provc "y
THL‘ORI‘.\I 3 ff I]:m urc somc xo,,x_l E' S jor w/uplz th followmg condztmns\
(.’.; o u! TONE ST e S Y
l\» Ah M)"l "-')l ,'J':'O'/. :’
ool i
{ it

.'\“. l (1 ,;
1] iy

ave salisfied :

aly Baists Ao= [ %20 P

"9 Therd st Mo (md /)__‘1 such Umt R r',mmq,’ i m}
_, and )|A P("o“( Mo, Mg L N_1%

2

5l 11) ]flk*u':.:: Jinv 2,5 ~then: x*’ elks(f»m/‘f)o)
SRR OV LB T

LY RPN PRV

) 1% — 24 |( €
3. There exist K > 0 such tlmt for evcrv»x x",.x""'€ S (%, 2nmo) we have
! ’ l" r
; P] =~ fx”, 2 P)I( < K )lx -G, .
) ! 0([:\7, x'’ ] L g i :2 o) — -., A UL KPS I
~ ~ 1 ' .
4. h°=I((1]0+7)_ ) € '4— ) \‘.‘e}".‘l; RTINS
Uzcn the following statements take placc: TR
o , , genoraled : by (2)-148 compergentisit ity ». poiid
1) The sequence geaw (¢ e (2)- isa solutwn of gq»uanon (1) ; ,A;,
TIRRYE) TP T TRNA S LR CPRT R L
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The convergence order s caraclerized by

i) 2
AL 1—s, (8 & — 1~ s,
)'_‘27* '__ Xa '( < 2 ‘—9" ) (4110) No- (3;)

ns of theorem:3 imply 'the conditions of

..+ Proof. We show. that the conditio
roof. ith (1)

theorem 1, for the equivalent equation w

-'13I(x)‘ = AP(x) =0. | (1)

To generated the séquencé of appeoximation of a root of ('), we consider

‘the algorithm ' '
— R ;n-i-l ——)= ?{‘n - j{nj;(;n)

where A, = [;... 7(,,_,, T’]"‘. .

It’s easy to show that if .xp = %, and x_, = x_,, then the scquence (f;)
generated by '(2') is identicaly with the scquence generated by (2).

Now, we verify the condition 1°—4° of thcorem 1.

1° Ay = [%o %15 P17V = Aglxp, -y P]7H =1,

)l

so A, exists and Kol( =1= B,

120 ) KoPlrg) 1) Kol ) Plao) [(=)1 Aol¥', 275 P]— Ao[2", 2; PI|( &
< 1<)lx' _ .1:”' I(. V.x,', xn' xlll = S(xo, 21]0)

v, 2 P — [, 2" PI|(=) Ao[#', 2" ; P] — Ag[x”, 5" ; P]|( <

<Kyx — 2|, V', 27, 2" € S(%p 2n0)

U S T S T ‘*.41: g - o '
, !
. Acconding to theorem 1, it results that equati ! i ‘<

. Acco  to , tion (1’) has a solution xz* €3,

~swhichis the'limit of ‘sequence (x,) mcratq ‘or’

; ) c ed by (2 ! ‘ -

vergence being given by (3) or (Sg). Y (2)or (%), the order o ot

4. Now, ‘we present an application of the chord inethod at resolution of

a sistem of two real equations with two real - '
wo e oW
et be the system al unknows.

G e =0
. g(x, y) = 0.
In this case P:R* - R? is given by

P(x,y) = (f(_x. ¥), &lx, ).

. e
PSRN W

Considering as the initia] -
verifies the theorem 1 conditi?)rt)lls)
flow-chart the algorithm of appro

roximations the points (x,, y,), (% Y2 %
» it can be implemented, according to the
Ximative solving of system.
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V= (2, ¥,), where %, # %, and
il

We use the fact that if # = (x” ),
9 # Yy then,,\: R

.

FEER 8 AR i, yé):.;f(.xfjj".' e f(xlvvz) = flz, ¥\ o

LIty iy

'UA'.; sl G

[u,v;P]—_" xzfxl Y2 =N
99 LEEN) ™ gle
&\ Ya) — g%, 74) 8(x1 %) — glxy, )
Frm Y2 =

If x, = %, Or ¥, =¥y, the elements of previos matrix are substituted by
cooresponding partial derivates.

We present’ ‘the flow- éhar'f of éhe a]gorltm usiiig..

1) n, the iteratios. number..

2) I \TVERS ‘the ‘subroutine for obtammo thc inverse of the matrix d;;,
denotet by Dy, This subroutine is found in many forms, for any nonsingular
squere matrix, in the mathematical library of computers.

3) DIFD]V, the subroutm\:’ for obtajning the first ordered d1v1ded dlffe-
rences, with par'uncters (x,,_y) i=1,2and du' Lj=12 "

the followmg notations :

’
st e

LPR B A R L f':J.“ RN B

ot N e L Catee Lt toel N '.”)
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OPTIMAL ALGORITHMS FOR THE SOLUTION OF NONLI;\*E;/\R
EQUATION WITH REGARD TO THE EFFICIENCY '

GH. COMAN* i

Received : June 6, 1987 ,

REZUMAT. — Algeritmi optimall, in raport c¢u eficlen{a. pentru rezolvarea ecua-
tillor- neliniare. In lucrare se studiazi problema optimititii, in raport cu efj-
cienta, in clasa algoritmilor de aproximare a solutiilor unei ecuatii nelinjare '
pe ‘R, obtinuti prin procedeul interpolirii inverse Taylor. Rezultatul principal !

este formulat in teorema data.

1. Introduction. In the paper by J. F. Traub [3] it was studied the
optimality problem, with regard to the efficicney, in the class of inverse Taylor
interpolation algorithms, for the solution of nonlincar equations. In the men-:
tioncd paper, instcad of the cfficicney «xpression is used an approximation:
of it. :

~In this paper, it is studied the same
ximation for the cfficiency. '

2. Preliminaries. Let X be a lincar space over the real or complex field
K, (Y, [|.]]) a normed lincar space over K, X a subset of X and S, S: X, =Y,
a given operator. One considers the following problem [4]: for a given ¢, ¢ > (),
to find an e-approximation y = v(x), ve€ Y, to s = S(x) for all xe X,. S'is
called the solution opcrator, x is a problem eclement and s is a solution cle
ment. The considercd problum is refered as the problem S.

If X=Clab], X fe X |f(x) <0, f(b) >0 and f has an unique

problum using a more finer appro-

0=
zerou in the interval [a, 0]}, Y = Rand S: X, — R is given by S(f) =/7*(0),
then S i)s an e-approximation problum for the solution of the equation f(f) =0,
te (a,b). ‘ . Q
For X, € X, such that X; € X, onc dcnotes by J, J: X, - Z, “'hﬁ'“'ze:
is a given sct, the information opcrator. J(x), for x € X, is called the infor-:
mation of x. Let also, o, «: J(X,) — Y, be an algorithm for solving a probiem
S with the information J, and &(S, I) the sct of all such algorithms. The vaiut
e(S, J, a) (breifly e(e)), defined by
¢(x) = sup [ | S(x) — (I (%)) ||

xeN,

is the error of the algorithm . .

Let & be a set of clementary opcrations. Next, one supposes that J lani
o« are &-admissible, i.e. J(x) respectively o(J(x)) can be computed with a fl‘mte:;
number of operations from R (taking into account that some of the Opel'at’om’é

!
t
’ |
|

® University of Cluj-Napoca, Facully of Mathewmatics and Physics, 3400 Cluj-Napcca, Remania
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can be aplied several times). If Moo T € & are the

compﬁtf?, J(x), the __va}ue riecessary operations to

CPE(J(x) =, é, 5CP (1),

where p; is the performing number of the 6 eration r and CP(r) is the o,

. . I3 ': . d : .
plexity of 7;, is called the complexity of thg) informatio?an (S)P(?&)Isclys i;he o
ps € & are the necessary operations to compute «(J(x)), vthe.value’ P

L.

ooy

iy

l CPC(“(J(x)» =g7.CPkP.)» ' - ‘»r\l Ly

Tty

where g¢; is the performing number of the opcf#tidn .. is th e
. . Vi €
complexity of the algorithm « for the problem elemen?‘. x. The vcaolﬁlebil-narténal

CP(2(J (%)) = CPE (J(x)) + CPC(a(J(x)))
is the complexity of the algorithm « for x, . Xy, or the local complexity
of the algorithm a.

The value S
(CP(a) = Sup CP (af3(x)) *

o
b IS
B e

is callcd the complexity of the algorithm « for the problem S with the infor-

mation J. ‘
An algorithm o* € 4(S, J) for which .,
.CP(a*) = inf CP(a) X
. acas, §) . .

i

is called an optimal complexity algorithm in the class '€I(S! J). S
It follows that the complexity can be used as a criteria to evaluate the

»goodness” of an algorithm. o .

The mathamatical problcms can be devided in two closses: 'fmlte-complc-.‘\lty'
problems and infinite complexity problans. A finitc-complexity problem is a
problam for which there exists at least a &-admissible algorithm o using a
&-admissible information J, that solves it exactly (=0), with a finite complexity

(CP(a) < +0c0). A problem is an iufinitc‘-complexity problem iff it is not a

finite-complexity problem. - . . )
With la usilall) set of operations ‘&, the most p{)?blems of mathematics,

science and ecngeneering, are infinitc-complexity problems. - o
Of course tghe prob%cm to approximate a solution of a qon]mc';g1 -cnt%uatxou

is a inﬁnite-cc,)mplexity problem. It is,»-q]so called,: an 1ter31tw<; lt)ll;o '1(]0c;rthms
In such a case, first we must detcrmine the class &(S, J) o ¢ alg

; imati on cle S(x). This
ic - ximations of the solution clement, )
« for which «(J(x)) are s-approxim e o et slgorithm,

broblem is practically rather dificult. For e o . . order to get
We can no%) apriori know, the neccssary number of itcrations mn 0 g
an e-approximaticn. B
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0! -In these ‘cascs, it Was-defihed ‘a hew _charat:te'ristid of an algorithm thyg de
pends on of its complexity, as well as of its order (of convergence or ' of 'apf)ne):
Ximation) [3]. o o

- Definition 1. Let a be an ‘algorithm for'th: problem S with the iuformg.
tion J(« € 4(S, :J)) The 11}111;Pcr P, p =pla), with _

i L P H B oL

[} B :

(C%0) Lo g
- L

S R (N B T

T ST T SRR AR A L L LR :
: : . Do eS8, ,
SR AN E R =I-:?t';],‘1m..(_—p-ﬁ-)—-—_- C,

I PN TR LN S SLRRL T

where C is a constant, is called the order of the algorithm =.

Definition 2. The conqil'exit'_{* ofan a‘lgorithlri' v that solves a problen §
approximative, in called analytic complexity and is dcn‘olt.c,sl by' CPA ().
.woivFot examplé; if o is an jterative algor}tthm,lCP;—\ (o;): s the computationa]

[

» complexity of one iteration: ‘"7 .
Definition 3. The value 1 v !
s Tl st e LD B8, a) = log p(a) B o
CPA(a) .
is called the cfﬁpiency of the algorithm e.
Remark 1. For all logarithins_ {rom this' paper we use the base 2.

Dcfinition 4. An algorithm « € (S, J), for which
T OUE(S, 08 = sup E(S)J, )
asq(s. §)

is called an optimal efficiency algorithm. - o .

3. Numerical solution for vnonlincar cquations. For X = C[a, b], X,=
= {fe Cla,b]|f(a) < 0, f(b) >0 and f has an unique zerou in the interval
[a,b]}, Y =R and S: Xy, — R is defined by S(f) =/f"40). S is a problem for
the solution of the cquation f(f) =0. =~ . " ' : '

"' Next, we consider, for the Solution of this problem, the class of algorithms
generated by inverse Taylor interpolation procedure, ic. ' B

[

; R TR
T L ~:l~§17(5',-5) ={unim= N, m3» 2 BENREH
. Sl A D D HY S R R T
\Vlth T iy T (R '|',~“ O R
caar SRR i (i gk e ol . v
. oIl =t —> Tl) LFO)PragW(f (@), e ()
B o B TRt THCIE I TP = T P U

where g is the fnverse function of fgm /1), | )t
) . . . T il n S jors e "y (R v
Itican be obseérved that:the -informatich of w: . tfe is I(f)=
" T ioh of an ele fen s J(f)=
={f0): f' O on s fOOr0(g)). - n’element f . ;XO.,:-la :(f

j ' J T R N I S T O
So, the complexity :

of ‘the ‘information Jf) dsor g e e
FacoT o . oo TS L R PO '
m—l' . N L R IR O |

© CPE@(f) =T, o

1 SR U A

DA OO oo gt
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wh? cd ;)C‘p(yzg)’,‘i 1s thf: ,'i(:‘?tiip_tﬂ;g;ﬁbnal":éom[‘)'lexity' for the evaluation of ), te
efa,b). _"A 4 R ' B :_;'-‘J R B A O CIOLT e, e e - '
210 Also, it’i8"well ‘known that the ordet - of ‘the ‘algerithin « i ) = m

; it ! ] thi « i p(al) =
The difficulty is, to determine the combinatorial cgmple.xity cpg((c:%( f)')’;‘

———

i.e. we have to compute the derivatives gh, k =1, m — 1.
(o First, we give a lower bound for., the cmnbinator_'ial\complexity CPC(aT).
Lemma. Ifm’a ;—-ng_-i-z —,% [}, we have CPC (ag'(f)) = CP(+) + CP())
M T O TSP md 4 3m — 14 ,
CPC (az(f)) > 5= ——CRlh).+, "-—z'*’Tﬁ-C'-P(*).hL (2m.i= B)CP(]). for any

m>'2, with cquality for m=3,4. ' im0 e

Proof. We have . , TS
atlo L T T A EE T foes oy .,—f_ 0 [ ” [:[.‘4 . \',"',f-,i

B ' IS B

. e H
B A ) : g(k)c___

(;l)k-!Pﬁ’ (‘f’)u_".“ SO e Leiint (2)
N AP AL (S LA A A A VIR TR P IS PP S
where Pj is a polynomial in the variables f¥,{ = [, , that Satisfiels the recar-

rence relations: _ - -

. P,o=1; Py = (2k —""l)ﬂ’P»k';—.f’P;. Gh=1,2, .. ' - 3)

It follows that gil"_th';c‘i’coeff‘i'ci)e‘nté.‘ﬂ__"_of thé_'i)ol"ynorﬂiafP,,. arc ‘Integer numibers.
o h Y oot sians [V e s BT YT T T T

But (5] . »

1 r

[N

R

-t Lo N, \; Vot tites ol y S ) e
: i b \'k .

e T S T o e o (i

eh/) ("""""‘).[( ) iteat( ™! “.‘x);:,,.'(n'u ‘“ R TL W

where I is the set of integer solutions of the system
' g AN I SRS W R SUEISRoN
iy + 205 4.0 +(k—l$t,,=k-_— 1 5)
Livt ety o+ By =l 22w 1
Remark 2. From the sccond. equations of the. system (5), it follows that
P, is a homogencous polynomial of the degree £ —'1.

o« e e ., P R . Ciytres Yot s R
+ Using ‘the ‘notdtions’ @+ 214 0 . L
. P . - Al "..I Al
’ A AT ! iy PR v,
Ay oy fe N,
one' obtains . 1. -t e it D S o
. ’H/ ’n ;': Vo o _t,i,'[ EERTRNE E IR PR ,'—i(j_ b vope S Tol Vi '

_ (=1 ) v ©)
k =——— s eees 1)
o g( )(f) T .P")(r2 : ')') .
We remind that P, is a polynomial of the degrec & — 1 in the %vgtiableaf
7y, ..., 7y, with integer coefficients. ,For”exampl_e,, we have
) i 4P T DA

=1 ! o
2 =17,
s =311 — 7,
=157 — 1077, + 74 ; .

— 10574 — 10574y, + 1073 + 15757, — 15

N N

/

N Ny

{ Y A

s:u"

f = Muthematica 3/1987
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.. Remark 3. From (3), it, follows.that, the expression.of the Polynomja] P,
contains at least one term more than the expression of P,, for &~ 1
excepting. one term, ‘of; Py, all the others are formed by t“o o1 mOl‘e factoie

i.

Bj<(1)! and (6),i one obtains R I L i

- . EUIT e treing g oo I
> v, m_l. AN ety . :
e F,r.(t)' S 0. '-n(t))- | @
Gy - O N R SN 10 1O B e k1 i e e

ws.  Now, we evaluate the comblnatonal comple}uty of the algorlthm ol for.
the set of clementary operations R = {—h, -, % [} where =" 15 1dent1f1es
with ,,+". . ;

Additions : (m — 1) to evaluate the expression from (8) “hl(‘h contams

“s terms; at- lcast (1 4+2 + ... 4m = 3) to evaluatc thc polynomials P,
.., Py (remark 3) So the total number of addltlons is at le ast (m- — 3m + ,
l 3

+ 4)2.0 - |
Multij)licalwns (m —3) 4+ (m—2) + (m —2) + (111 — 3) to compute}

m — 1)), R ="2"m — 1, 72P,, k = 2, m — 1 respectively 4, %k =2, m—2:
at .Jeast (1 +, 24 ...4dr.m —3) to evaluate the polynomials P, .. P,,,_l

(remark 3) Hence, the number of multiplications’is at least (m? + 3m — 14)/2 .

Divisions : 2m — 3 to compute Id (= f"‘)/f) k=0, m—1, k aé 1 Ies-

gpectlvely r,,/kl k =2.m = m T 1 - . - ;
Finally, ofie obtams P .
CPC (o (f)) > WCPH-) +»_f';tl_4cp .) + 2m 3)CP(/) "

f.-

for any m> 2, thh cquahty for m = 3, 4. The’ equahty
gl ol de ot ep(al(f)) = 'CP(*)'4 CP())is “obivously. |

Ne\t we approx1mate the combmatonal complexity CPC(a L) b} CPC(aﬂf )
—3m + 4 m? 4+ 3m—14
= ——2— CP(+) + — CP(x) +. (2m — 3) CP()). :

Remark 4. As, we are going to deal with the class (S, J(/f)) of tie alg>
tithms o7(f), for a given f € X, it can be used the local analytic complexity*;

[T
A

*

‘g, o
‘_ CPA( f)) = CPE( (f) + CPC (a )

instead.of : . S S T T L TP TR RS L derid BRIDIE
] Yl - Dy “

CBA () ="sup Bea gy e
/e X,

It follows that

m~ 1

CPA (aT(f)) - ECP f()‘)) + CPC( T(f)) L\ "



ALGORITHMS FOR THE SOLUTION OF NONLINEAR EQUATION
'If S AN v l"t::-’. - . .
R S 'v.-.éi)_&g('m:!:.; RN B S T SR - . g
T Y y: aT —_ == . ! ' ‘ [ Yoot
: 20 ?;:OCP(jm)) + CP,CA(a‘,,T,(f:)) At
'th'e]_l i ...‘A;' 4 ;‘!'l:",‘,“;f‘i. S, { Lo . , .
L CPA(GZ(f)) > CPA(I(f)), for any ms>-1. “ - -
So, S o
. L ES O () = Ll T
% s ‘."",)‘"'“,' AN : CPA(ﬂ,,.(f)) ey Rk , L
and : : St ol o, "
E(S, 3, oX(f)) < E(S, I, «I(f)) ﬂ‘TEE:ﬁ . (10)
.o . ) a,,,
: Remark “5. Slpll)pose ’.chaﬁ:l_CP(*) = CP(/): = 2CP(+) and CP (+) =1, and
CP(f®) = CP(f) for any k=T, m—1 ... .. =~ 5 o 0700
", In these cpn’di‘t.ious‘, we have ., h S A _
. E(S. I, ~ ES. I, of Lo dogmi e
. ’ ( o (f)) ( 0»1(.()) ch(f) 'I"‘ (3"11 + lll", _36)/2
So, we have A o o
1 .
-~ 2CP 3
E(s, 9, a5(f) ={ I

, for m =2
log m
mCP(f) + (3m* + 11m — 36)/2

(1)
for m > 2

THEOREM. Let A7(S, J(f)) be the class of all algorithms a(f), m > 2, for
a given f. Then, the optimal algorithm, with regard to the efficiency, in the class
&(S, (), in the conditions of remark 3, is affor CP(f) < 42and «f for CP(f)> 42

Proof. By (11), if follows that E is a positive and decreasing function with.
regard to m, for m > 2 and for any CP(f), CP(f) > 0. So,

E(S, I, ef(f)) < E(S, I, al(f)) for any m > 3.
Now, from the relation

% = (log 9 — 3) CP(f) + 3(log 3 — 4)
ES, 9, 00(f) —E(S. 3, el (f) ==
it follows that

(2CP(f) + 3)(3CP() + 12)

and

E(S, 7, «I(f) > E(S, I, af(f)) for CP(f) > 42

(12)
E(S, . «f(f) < E(S, I, «f(f)) for CPU/) < 42.

(13)

P :'—_—T‘ 2
A TRERD PAGUT
A A\

;7"‘2’\% CLUJ-NAPOGA

18 /7
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N
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As, E(S,J, af) = E(S, J, «f) for m=2, 3,4 and E(S, J, oI(f))<E(S, J «Z(7)

for m > 4, th'e" inequalities (12) and (13) are prcseved for the real case, of cours
€,

in the conditions that' CP(f®) = CP (f), for k=1;m —1, and the theorem j |

proven. (
Remark 6. If CP (f®) is an icreasing function with regard to %, thep N

can become .optimal on .the class, ar(s, 3(f)). For example, we have sycy !

case for

-

CP(f") > (CP(f) + CP(f) + 2)(log 3 — 1) + log 3.

;
i
i
i
!
|

If CP(f®) is a decreasing function in the variable %, then an algorithy

1 in the class @7(S, J(f)).

~

of for m > 3, can become optima

KA Cre B
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ABSTRACT. —~ A few results regarding the consecutive ¥ rievs
‘ A secutive et
“Jor maximal aqd connected ‘question sets are given in the ffrst ;:trrtletavt‘althle’r;l;;’;t: ‘ -

Next, an algqnthm dgterm.ming the order in which data nust be stored so thai

the cfmsecutlve retrieval property may occur is provided for these types of

sets. These results are then extended to data collection endowed with conse-

cutive retrieval property relative to a certain set of questions.
e ;

Let € be a data collection (data base) stored on medium 8, that we con-
sider to be lincar. Let us ussume that the data requirements from € are ques-
tions, and @ is the set of these questions. For a question ¢ € Q we mark with'
¢(€) the answer, i.e. the elements from € useful to! the question ¢. For gi-
ving the answer ¢(@), a time /(g) (response -time) is needed. ' - = .

T1)1e most important parameters for organizing the data collection ard
([]’ 3] N ’’ . BT . o
— the medium (support) space nccessary for storing. the collection;

— the average time for answering questions.

As a rule, these two parameters cannot be reduced at the same time, the
dcerease any could imply on increase of the other. ) )

S. P. Ghosh ([2]) discovered the consecutive retrieval property, in con-
nection to the description of an optimum organizing of a data collection, in
which both the medium space and the response time were reduced to a mini-
mum. P KON S
DEFINITION 1. The data collection € has the comsecutive retreival pro-
perty (CR-property) relative to @ if all the data from ¢(€) are, stored couse-
cutively on medium 8, Vg e Q. L.

In yview of achievingqoptiQmal results, this property has been mtc}:\x}swel)_r
studied. For a proper characterization of the data collection that have tt;_ is .l[;rge
perty, lincar familics of sets, interval graphs, as well as boolean.ma rmt ‘ olued
been used. Various approximations disparaging one of the 5}?0“‘ ’T:‘tm tones
parameters have becn found for data collections, lacking this property..

' DEFINITION 2. For the data collection €= {d, ..., d.} and the Qe
tion set Q={qy ..., gu} We consider the boolean matrix A, with m

# columns,
. 1 idieg©), . "'
o . ! PP
A= 0 otherwise. SURTIY i
. BN R . ‘ .
ot a - X ; Romania
—_— " 3400 Cluj-Napoca,
* Umiversity of Cluj-Napoca, Facully of Mathematics cnd Physics,
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DEFINITION 3. The data d; and d; are different if the lines: s apq . .
the A matrix differ. J
.THEOREM 1. If € = {d,," s a,}, 'with all differing data “ has CR-pyy:
peftv relative to a .set Q = {qy, i..,qn}, then m < 2n — 1. -

Proof. Let us consider that M, = M, = ®. We assume that the data from
the collection @ are stored on the- medlum & in such a way that q(@) are con.
secutive, Yg € Q. It results that in every column of the A matrix the elementg

equal to ‘1 are consecutively placed.
For every g; € Q we mark with b(g;) respectively ¢(g;) the address (posi-

tion) of the first, respectively the last datum, in ¢;(€), on the medium 8. Since
& is linear, these values are extant Wxth these values we form the followmg

sets: ,’ R
cl = {db(q_'j):_j = 1‘.‘ : "} and Cy = {d((qj)'j‘= ;1' Seey "} ,

We have: |C,| < »n and |C,| < n

Lines 0 and m + 1 with all elements cgual with 0 are to be added to
matrm A. Let d, and, d,,,+, be the;data which correspond to these two lines,
Considering that for every 7 =0, 1, ..., m, the data d; and d,;, are dxiferent

thus exists j, so that; A ;, # Ay, ;.-
If: a) 4;;, =0, theu AH. =1 thcrefore b(g;,) =1+ 1 .and diy, € C

In this case d, is to be added to M,; '
b) A,, =1, then A,,, ;=0, therefore e(qj.) =1 and d; € C,. In this case

d; is to be added to M,. .
From these asscrtlons it lesults that :

NI . h.“{l—ch A[ CC;,

and: . R i
.;:1,1 ,‘.’ n 1=lﬂ{ l'_’_lﬂ/[z' .‘C]+’C2| 211

therefore the thcorem is proved. ~
' DEFINITION 4 '[5]. The set T ce is an atom if it is nohempty aﬂd
it can be ' reprcsented as follows: - _ ‘
A n o y el
BTN T = U M, ... ¢

S

where M; = g;(@ ) and M ="M; or M,, for cvery 1 =1, ..., n
REMARK An atom’ can ‘be represented as follows ' :
. ! . .-‘:;"\4“.,- (l) 5

. ' .;\Tlg'.=‘(ﬂMi) N (N M.]. I£®.
e . il :
I # @ because every datum of @ is useful for at least tion from ¢:
Otherwise, this datum is deleted from e. i ab feast one question T

THEOREM 2. If € has CR-propéity selative t then
data of every atom‘can be stored c%nsicu't);vely oneso 0=l U qn} - |

2 BRI

i
|
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. Proof. We‘assumé that € s stored op '8's0 that ‘the data ° m everY M are
onsecutl"e Bemg dehmlted by ‘the addresses (posn;ronS) a, and @, a1 < &,

for 1=1,.. "Lt af "and ol be, al < <af fhe extreme ' ad
wthh the atom of I, are stored (T1 has. the form, (1)) wi ﬁze‘f:(is between

"
dsals e < vers Sl LAer Ty
T - "".' it

a: <al or a2<a’[, VE I—z{l 2 n}—'I ¢ oo, (3).

We assume that} 777 1s,n t stdred co‘nsecutlvery ot 3,;theu 3dee de T
stored at address «, and F G I

m <a<a2‘ BRSPS { E (4)—3
Since d ¢ T;, one of the followmg tivo coudltlons is true
) @ & () M then': 35k 1,4 M, ori G
\ Lo iel 1 o l/-, . :‘A NaE) Qo ;| iy
ti RN - ﬂs E I (I ¢ [al' Az ] , Ve A',.';‘ ':)‘ ‘< \”.. (5)
) d ¢ rl J_[‘-, then: 3¢ (= I¥ ,{i ¢ JW‘ (d = ZW‘), \ .
iel oo T SN
: icT:as (o, 4] - 6)

' From (2) and (4) we obtain: ‘ N
: ot LT i . .
a<al<a<aiga, Viel

ISP UTTT NPT SR SOST EE?SS

from which it. results that {(5) is false. ’
From (3) and (4) we'obtdin: ' ° ST R
a<al <d or di<a &a NieLd - 0T

from which it results that (6) is false.
Froin thesc two coatradictions. it results that the initial assum tion are

falsc and hence that the theorem is proved.
" THEOREM 3. If @ ‘has'CR pro/)crly relatzve to Q IQI =mn, thm the mazi-

mum number of atoms is-2n — L. th
Proof. Let A be tha matrix of defnutmn 2 All lmes correspondmg to e

data of an atom are equal. This thcorem results from this remark as well as
from; theorem 1. o '

F»DEFINMIO\I Two atoms 7T;,and. T af the form (1) are neighbours
if:'Si‘,eI ; ]and I= ] U f{io}.

- I)EFINITI ON 6. Let € be a dat:l ‘Collection havmg CR- property aelatu;e
to Q Two atoms are consecutive if they are stored Consecutively on medium

DEFINITION 7. Thc sct"Q is maximal relative to Q'if: .
- P

Vi, je (1,2 . m)i# 51 qde) Eg(e) and (@) £ G€)
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REMARK. By ,,€ has CR-property: re]atxve to a maximal set @ we m
that € has CR-property,] relative to @ and Q is maximal relative to €. tan
-~ From defmmon 7 1_t resu]ts that a ma\umal set Q relative to C has 3y
last two clements.” 77 at.
THEOREM 4. If € has CR-jJro;berty relativé to a mammal set Q = {q
<o Gnbs “then two meighbour aloms. are consecuiive. boee
~ Proof. Let T; and (,)bc two nelghbour atoms and 10 the value givey g,
(¢ ‘ X ,

definition 5. If: M; = g¢; =1, ,n, then: |
Ty = (ﬂM)n‘ﬂM nM._. T,-.-[ﬂM)n‘

ieJ i€l

J N M, . @

ie] EE N ol

it results that: N
. T, M, T, = }VI,, vie J.
AL .7

roey LN oy A
Let: af, as, af, al: al, &b, i =.1, ..., n be the adresscs (pomhons) on §
situated on the extremc left, rcspcctl\ ely right positions, where the 7, T,
and M; (: =1, , 12) sets arc stored.
Since @ has CR-property relative to @, from theorem 2 it r(su]ts that
a1<01<a2< as, Vl"—’]U{%} - ©)
t @ <aora;<a, Viel; 9)
Gy<al<al<ay Vie J; . l (10)
al <ay or ay <af, Vie I {iy). (11)

We assume that on the medium &, T; is stored before I, then ah < af.

If we assume that the theorem is falsc, T, as well as TJ are not consccu-
tive, therefore 3de €, d g T, J T; and d is' stored on & (at the address
a) between I, and TJ It results that:

& o <at<a<al <al. (12)
. Since d & T; U T; and (7) is true, we obtai’n 4 C
3] dqéM or, afez de M, a3

Thls condltlon is (quwa]ent to the fu]ﬁ]mcnt .of one from the followmg
p051b1]1t1es i - i .

B ! . - ' PR !
33‘51"“ig [af, a]; FUNE (143')
sosen L (14b)

Y b b ate I (le [al; (l)] o \
In this case (8), (9), (]O) (ll (12), (14 (14b t P:rom 8
(10) and (12) ]t follows that ) b a) or ) are e - .

't s [T

M<a<a<asg a{‘ <.al < <.z, V16j— < TR

Hence it results that. (14a) isn’t true,

WL e L



THE STORING OF DATA COLLECTIONS

57

s From (9)-and" (11)it results that for it . F

tions must be true: one of the-following. four: condi-

2]

© -V Cloa < a, and al <a; =

e

C2. a;<a1 and a2<a,,
i “C3. (l2<a|anda‘<a|,“
C4.a§<a{anda-,<a,,,i R

B l \ ' \
‘n .
! ‘ll ‘

From Cl and (14b) it rLsults that al < a and al 3 ;
to (12). From C2, (12):.and (14b) it. resuits that. , ’ < o is m contradxcuou

[N

N
-

AY
“l\av<an<a<a2<a.\

Since.: Tr.e M, Ty < M, V1 € J, it results that M,, which, is stored bet-
ween the addressese ar and a, is included in M, Yie J,. wh1ch is contrary'
to the assumption of the thcorem . S

(1);0111 C3 1t results tha.t az <a < ab < a., \\’thh is in contradlctlon.
to (1- 1 .

Fron C4 and (14b) it results thatm a,v> a and a, > a, whlch 15 in con-
tradiction to (12). . S

These four contradictions show that (l4b) isn't true. 'l‘he condmons (l4a):
and (14 b) have resulted from assumption that:the theorem isn’t true. Since
these two conditions arce false, it resuults that the theorem is true.

THEOREM 5. If € has CR-properly rclanvc ‘to a ‘maximal sct Q, then an-

atom has at most lwo 7ze1ghbour aloms. - ,\ RIREE
Proof. If the :medium is dinecar;  each: atomn can be bordered by another

atom- on its right and left ‘side. From this remark.as well as from theorem 4
it results that this theorem is true. i o ISR .
DEFINIITION 8. Tle set! Q- is- connutcd rclatwe ‘to '€ 1f for every pa t1—
tion {Q,, Q,} of Q, we havc LT vt i
. LI ;éd) al A SNE
' l ) (qu(h ) Syt il
450- 0o *

erty rclatwe a connected set Q” we meam
connected sct. relative to €.
ted set Q has at least twor

~ REMARK. By ,,e has CR-prop

that € has CR-property relative to @ and @ is a
From the definition § it results that ,a counec

elements (questions). ., 4. - .

' ’THEOREVI 6. If € has CR-propert rclatwe IQf a max;mal’ ' rmd conm cted'
set Q = {91. Ry q,,} c'vz’ry atom. w1ll; the form .
. ; (15))

it - '

' i .: R R “_ ’1/1 n (m 1\[,) y 1‘[ = (].(e) IL = l’ i ak2) "»
. s ri i#de : o 4)13_,

SRS ,J,J, SR ,f'z-.? [ i) b T

kﬂs at least onc nuglzbour atom
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i, Proof Let us -suppose that atom (15) has .né;'neighb’o'urfaatoms. In thyy
vcase: ] P e -
T =M, Mi,N [,ﬂ ,u,) =M, Vi, # i,
idie i
or: : AERET ERY R -
M, O\ Mi, € \J Mi, Viy #:g. (g
: T Y P o
Let T ={j|7# %o M; ;N\ M; # &} be. . ’ o .
I J -_E (ﬁ,l theg |Qj\yot1?d not be a i:onnectcd set, whtch 1s in contradiction to tpe
theorem. Hence: J-# ®.. . v - et I

Let af, af; al, ay, i =1, Jiiby be’the:ad.’dréssés situated on ‘the extreme
left and right positions where the T and M; (i = 1, ..., n) scts are stored o
the medium 8. ’ C

»Since T, Arom (15), is ‘ati’ atom, ‘cvery M; (i #'ly) sct is.stored on the
left (e < ) or right (afv< a}) side of the set T It results that at.least one

of t'he' sets : o N
M e e T T sy, o=l T el <al)
is hdneinjityi “hecause : ] =?"_]1 UJ.#9. R e ’ I
ﬂi'l\v-er fil’SSuln'x'?:(ha‘t Jl’?‘é O. ,L’et q'be equal to o | S H’n’
P _1,:"a ='l.ma'x {aélje;]]l‘},___a;',v . R

C tooaie ol , i st il

and d — the datum stored iqn address a. o I y .

From (16) it results that 3k J,, k #'s, so that d € M. Hence it results
that:d e M, (\ M, and d is the datum stored on the extreme right of the M,
and "My data sets.. Then either: My C M, or M, C M, contradict to the assum-
ptions of the theorem (Q is maximal set). ==~ - e

If J.=®; then [, # ® and we reach the same contradiction. . ! ;

These contradictions show that theorem 6 is true.: e

~ DEFINITION 9. An atom is extreme if is of the form (13) and it has 2
single neighbour atom. o I )

' THEOREM 7';-)_,If € has C R_—/_‘)_ropcrly relative to a maximal and connecled
set Q =,{‘11» L jq,.},;i’éli'en"icxtrcm.p"atom’s"‘must be ‘stored on the extremities O
the medium '8 and there canmot be other' extreme ‘atoms. - v v

'Proof. We assume that the' first ‘(or the iast)’atoif on the medium'$ is 20
extreme atom, then it must be enlisted under (1) with |I | > 1. Since every
M 1 ¢ 1, is stored consecutively on the medium, -starting from the- mpst Jowel
position, it results that: I,e I, M, c M;, Yie I, which \;Voula‘cdntradlct
the assumption of the theorem. The same holds for the right extremity.

“'Let us assume that on the mcdium'there is Vet iang xt Ty

b . . : e is'yetianother extreme atoim, *!
vx.’huih is nl?é 51tua}tted <()1nte1ther of the two extremities. Since it would hav® 3
single neighbour atom (let us say on the left), w o situé
ted on its right. ft), we mark with T, the ato?

LAY, ey A W
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Thus ) Tl—M..n(r)'M,], R
N

N
{ﬂ IIJ n M,l, I;e {1,}
\ i€l IEI

1f i, I then [I|> 2 (T, and Tz aie ot nughbour atoms). In that case, all
M,(ie I —{i}) sets are stored on the right side, starting from the same position.
Since |I — {#,}| > 2, it results that: 3 ] — ), Mic M, Vie I — {z}
which would contradlc the assumption of ‘the theorem. - '

If 4, ¢ I and |I| > 1; then a similar procedure would lead to the same

contradiction. So [I | -—"I' and Tglhas the form-. PN ot
e ‘ SRR S i
T M.,ﬂ(ﬂ 1‘[,), 11-,---,1‘2 RN L e ube
1#iy
\ * T Ry N \\." Y .'.\ K E{”Z/' 7"‘{7‘

Let @, € Q be for which M; = ¢;(€) (¢; € Q,) is stored to the left -of Ty, inclu-
ding [1, and Q, =Q —Ql Since $1: T, J T, = M, thchlﬂQz—(D from
which it results that Q isn’t conex. This contram;tﬁon sho\\s that the theorem is
true. WA e ) v Sy o Sheoov oUW

DEFINITION 10* Two ‘atomis T, and T, of fOrxri (1) are 51m11ar 1f the
foilowing condition$ are fulfiled : * ° '

a) T; and T'; have no common’ uughbour ‘atoin ¥ . el ‘.-'.': v
b) I'=K Ui} J=KU{jo}; K#PQ;.15# Jo: %0 ]oeK A
(J s obtained by rcplacmg an element from / with an element from .’

THEOREM 8. If € has CR-property relativg to'a maximal set Q = {ql’ .[,"'
4n}, two stmilar aloms must be conseculive atoms,: -

Proof. If we assume thaty T, and T, are smular atoms and that the:
theorem isn’t true, it’ results that JReC R¢ T, R & T, and R 15 stored
betwxeen T; and 7. Let 1, ], K, 1, ]o ‘be the elements w hich’ are spemfled to
definition: 10 and M, = ¢;(€), ¢ =1, ..., %0 .

Since M; is Lonsecutue]v stored on the me dlum §, e Ix and

T, T, c M.,.Vz € K, it'results that: . ,,M_ S TR T
“ N \‘ i R é IVI” v‘ E K 'f‘ ‘,,,.-”Z..' I ' (17)
! v il RS BTN B
If 3M w851 ] so that R e \[ M must be- stored betwecn T, and
T), because T 1O M, =T, M, = and € has ‘CR-property. Hence it re-
SU]»S that M, € M, Vi e K,: which: is in- contradlcuon to!the ‘assumption of
¢ theorem. -4t TRt A (S RUPRPRE TR VIEPC O BT S B P (BT N SRR
Therefore : e e I B ool
TR T P
o VR ¢ M, ¥, & lﬂf '—]\ L‘o»fo} At - (18)
Smc:. R ¢ T, and R ¢ T, from (17) ) and (18) it results’ that : o
T . . . Re M, and R ¢ M; ; (19)
or: . .- yorley ety av ! I I oo ! [
o : (20)

Re ’l[ aud Re M,,



L. TAMIULLA

60
From (17), (18) and (19) it results that:., oy
— : ) — ~ —
Re {ﬂ M,-) N ( N M.-) N M, N M;, =
R iekK i i€Kvinig ”\.
=(ﬂM,-' N (OM.-] =T;
. ek )| lex L

andf;om ":(;ix'/'.).-"'(IS) and (20), it results that: - - -
Lottt K R e ( m ' .‘_’1:’) A [ ] n “—[') = TH" SN
_ , A\ % i

i KU {ianjo} i€ KU lingo}

‘Hence T’ (or T"') is a nonumpty atom and it is neighbour with T, and T
which would be in contradiction to the theorcm (T; and Tj are similar mélns)'
This contradiction shows that the thcorem 1s true. '

THEOREM 9. If € has CR-property relative to a max mal sct Q, an atom
has at most lwo similar atoms.
... Proof. Near an atom can be stored at most -two, atoms. This remark and
theorem 8 prove this thcoram.: '

THEOREM 10. If € has CR-progcrly rclalive lo a mazximal and connected
set Q = {gi, - .,..,’q_,,}, then two - consecutive -aloms arce neighbowur or similar atoms,

Proof. Let 17 and T be two consccutive atoms, 717 stored before of
T;, of form (1). Let also assume that T;and 77 aren’t ncighbour or similar
atoms and M; = ¢(€), i =1, ..., n ‘ ' ‘

If INJ =9, the storing of all M,(i € I) scts would end at the same
address. If |I]> .’1, 3,1 so that: Viel, i#4, M; s M, it results
that the Q set isn’t maximal. Therefore |I| = 1. In a similar way it can be
proved that | J| = 1. But in this case (111 =1J|=1) the collection Q is no a
:gnnectcg sc}: ({ ; and T are extreme atoms. From theorem 7 it results that

erc arc only two extreme atoms, which on stored tl xtreme sides).

It results that I N J # . ou the extreme sides

Letustake K=INJ, I=KUIl;, J=KU wh

nJg i=ui v J = , Where I, # [,.
We have the following possibilities : lll =0, |1',]|1 =1 and lII 1 l] ; L.
L =0(,=®) and |]J,|> 1, all M,:<€ J,) ‘scts on stored . star

ting from the same address, so that 3j, e J,, and M; € M, Vje J, — i)
which is 1 contradiction to the .assumption of the thcorem.’ ' It results that
[Jil =1, but T; and T; are ncighbour atoms, which is in contradiction t0
the previous assumption.-In that case |I,| = 0 is falsc

I |11}> 1, :all M(i € 1,), sets are stored so that their last address B
common. It results that the assumption of the theorem is false

Hence it Tesults that the last case: | I =11is truc '

~ Similary, one can prove that | J,| = 1 )

‘- But in this case (|I1,] = [ ], _T .
SR =|J,i = 1), the atoms T, and T, are simi®
(atoms), which would centradit the previous assumptim;, and P{'ove that the

thcorem is true.

sct QRE?ICJ:}I} Et'orle %h‘i;if}f?;{;f?utz rddative 10 a maximal and conllCCFCd
are neighbour or similar to T .e‘k Teme h.qs two consecutive atoms, Wi

voanll g
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We use the previous theorems for an algorithm which determine ;
in which the data collection endowed ‘Vith;'ighe C R-property r:Iaxgvr::cst;T r?mlz-\(:f;l..
mal and connected set Q must be stored. '

Algorithm: - & v N e e 0 .
1. If Q has only one clement, then € can be stored in any ‘succession. .
2. An extreme atom Ty is determined and-stofed on the medium -8 (from

theorem 7 it results that there.are two extreme atoms).

3. For the atom T, its neighbour atom T, is detemined and stored on the
mcdit)tm $ (from :definition 9. it results that there is only one neighbour
atom). ' Cad ' Lo , = 0

4. For atom T, the T; atom must be determined. These atoms must be ncigh-
bour or similar ones. T3 must be stored on the medium 8 (from the last
remark it results that there are two atoms of the same kind out of which
T, is alrcady stored). rT ", ‘

5 If T, i: an cxtreme atom, then Stop; otherwise: T, : = T,, T,: = T, and
o to 4. . { .

‘g’l‘his algorithini holds good only for maximal and connetted Q sets relative
to data collection €. These restrictions are very strong, therefore we shall
change this algorithin so that it may hold good for any data collection € which
has C R-property * relative to a set Q. - S t L e

DEFINITION 11. For the data collection € = {d,, ..,d,} and the ques-
tion set Q = {q,, - -+, ¢»} we consider the digraph G,'= (X,-U) in which:

a) For every ¢; € Q we consider a vertex x; € X (we assume that any elements

from Q arc different);

b) (%, ;) = U it ¢;(€) C .(€)-

For the digraph G, we determine the following sets s .-~ o =1 i
L=4§ie{1,2,:..,n), pje{l,2...., 4} ]#£3: (2,%)< U}~
O ={2lq<=0Q is1}; " G (21)
e, = Uq(©). o
: <0 . i AP PPN (S A I T
THEOREM 11. a) The digraph G, is acyclic (it has no cyelés); . * |

b) @, is a maximal set relative to €, " e .
C) €)=€~ B . B .
Proof. a) If @, has at least. one cycle @ = [%i, %i, «.., %y %], with
P > 2, then the following conditions are true:
@ 24¢02...2¢,E 260" TF
FENEE T ) FEE U B B \
From these conditions it fesults that:

'qi‘(e) = o ('G})\ R N q‘ﬁ(e).

P a4

which is in contradiction to the theorem (Q has different elements). 7
b). Since a from this theorem is true, it results that:. I, #®. If Qiisno maximal
set relative tOe, then: @ - . Vv x VR

: = g, g5 Qo di® < 4O,

RN
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31 '7 [ (xJ, ) t,m.'.' \\ N ‘ Crate ,4, ‘

SO TR

which is in contradiction to the ddlmtlon of Il from (21). ires ,'. Bl

¢) From the definition of!€, it results that:@y;c €. Ifde< € then Jid e q.( ,
Let g;,(@):be a: mammal elcmeﬁt of ithe set: {q, ©|deg; c)} Hence )|
Vi f=‘ {1 2, .. n}. 7 # 10 q,,( ) & q,(t,) s Lo " :

: ! . |

L ) Jit R NI
and: ty€ Ij; ¢i, € Q,, or: d =3 q( ) = Cl Fram this remark . 1t results that ;
€ c &, and ¢ from the theorem is truc. o, i

Next weshall take into acgount the subgraphs G, .of G, in such a Wav that
thelr ‘vertex sets are S T N e :

L5 'Al‘ PUV TV I BV A i : ' [

—‘x[tEUII .

. For_ these dlgraphs Gy, we consider the following scts @ Iy, @, €y k.2 2, 5o f
that . L . . B
o "‘V" toids et g {1 IR ST

‘

BRE '. .'~""", e e el : .
T z]zeV—{IQ h}LU -,';é]EI(‘,']#’t:(xj,x,»)E‘U_,';’,_“ -

iel

¢

N R I

Qn {mq.?Q 161»}”;,.
. Uq(e). PR ia0 ) AN JEETH

q9<Qy
Let us consider that the set of vertices in G,y is (.mpty

THEORE\I 12. a)UI;-{lZ Luyiand I Iy = @ for ];ék
-'\'

’
to

b)Q UQ, and Q; UQr = for j+#k;

Anv_b is @ maximal set relatite Io €j= ’l' by _
¢) €€, j=2,.u,p. . , T ot it
Proof. @ and b’ results from the theorem 1L and (22) T
d) Let d = €; be, § > 2. Hence: -
A " ¥ Hk e, I de Qk(c) o EUE
N R R T T T TR ST e
Since %k € I; it results that; . .

Hse I, 1 (xs, x,,) e U or q,,(C Ug, )
Since s € I;_, it results that

”y

L “\) (. - . :
R dEQk(L{)Cqs(C)Cle’ o
AR R S : B ;“ 4 ” ;‘, , ; g g '
THEOREM 13. Let C -be ‘a data collectwn which” has' the: CR propgrty -recla-
tive o a connmected set Q ={q,, ..., q,}, and T, ie I = {1 2,5..,s} the ,,10;;; 5

which delcrmine the order in wgclz lhe, aata collcction € must be stored If we @
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a hew qucslwn q fo 0, Wil the’ answcr g(C M < U%(@) lhc CR-prapcrty

BN
ati=1 .

yelative lo Q U {q} remains the same 1f and onl), 1f we have -

Ji,jel:Mc UT,,, :
e zfz+l<*]-—-lﬂzen TkCM k—*1,+1 ;..-j;‘—l

'l ! . ‘.: i )’J l 5 'i i : ‘ k
o 1|( ooy R l
it ”'Proof Nece551t‘y Smcc Q is a conﬁected”set re]attve to G, it results’that

‘the * order 'of atoms T, e 1, s inique: Let af’and” @l be the addresses
situated on the extreme left and right” {posmon where "~ the "M set:is- stored
on the medium & (M is consecutlvely stored).='Let T} be’ the atom’ which

contains the datum from the " address, and T; the atom which contains the
datum {rom the a3’ address. From th:s remark it results that the condxtlon

in the theorem is true. N iy
Sufficiency. If the condition from ‘the theorem .s .true, then the followmg
jmoncmpty scts are the atoms for € relative to Q U {q} and on the medmm .
these atoms on stored in the following order:
ey

Ty ..o Ticy TiAM, Tigs, 20 TG TN M, Ty, oo T
Let € be a data collection having CR property relative to Q and -

\ (23),

2.

\
. .
.

. Uen Q?UQU N ' \

a partmon for € and Q, so t]lat € is d donnected set re]atlve' to Qi —1’11 o

From 'theorent '13 it results that if-a’ hew qucstion ¢'is -added .to Q; thh the
answer M’ €, then:the CR-propesty:: ior @ relative:to Q |J.{¢g} remains the
same if and only if, 3s, M < C..If T, ... Tﬂ are, th(. atoms for- the, | data collcc-.
tion €, then the condition (23) is truc.

" THEOREM 14. Let €, be a data collection with CR-property relatwa to Q‘
and T, T, the atoms that determine the order in wich €, must be''stored om

the ‘mediumi’$. Tet us . suppose that’ ihe"data collectionCy-< €, has CR-property
-T! the-atoms that determine the: order

relative to a connected set Q, and Ty, .
in which € €, miust be istored - on 8. The’ dd{a collection @, has” Cquroperty Jela~
h”" to Q, U Qs zf (md ‘only-ifithe followmg two condmans' are bme-. IR o
: . =: PR
..'"5"-‘:"-/' 3 (.%’.-7")’-.!'2 ol 1"‘ . ‘!”J‘r'.- llA_ AP .'7.1-:/ B t‘n"/l 1' ’ : " i
"'7 . ) ,'* Birais ,: 5 Of,f'.,'vl_'ﬁ'b‘ S ']uén"-ri-x £ 11 Sl €S8 e
j IRENTONTRSTE § I A S SN 1 \;'-r(‘ h'.-‘:.::r:".;.-‘»,..’w ,42 e
J.!!.-.'..‘:r-,;;;::-hxo'.r);: R SN .nuiui) :\.‘ Bt




then, for. cvery j = {iy, i,, .

2. 1f.iqy—min {i, 7} and o = max {7}, i

Jar e nnsdo} and 29 <7 X Jor l{z_e cgndﬂzon 3 _
BT PRI Y AU PR "\ S S R T N

»T,L:UT,’,

k=1

AN

is true. ‘

Proof. This theorem results . from using theorem 13 for every atom T
k=1, ..., and from the fact that between two atoms T and T, ther, :s
no :datum from @,.. Hence it results; that, q(C2), 4. Q2 is consecutively stored.

Since .this theorem.is true, the atoms that'dctermiue the order in whicy
€, must be stored on 8 (€, has CR-property. relative to @1 U Q1) are the none.

pty .sets.out of: the following sets;, R i " L
R Bt e i )i o S i R \
.Z\)i, Tl' T T’.l_‘.‘lj, T"ll v ’C2"' l " )ty R it ‘

. : > o TR
Ti-n n T)’.' "1"'1'}‘“ e 2j1+" Th n T ’
T3, T3, Tijgryooies Timn, TiNTe o
a :“:.:g:l. l)i".:.“.) .-} - . "‘.l “." .‘) ' ,-,.{"r."ﬂ.’ Tt o ’“_ (24)
T':h Q T;“ Ti,.+h v Tjhrl' T7h m T”l ] v

= s 9 Son Lot LR ot

WP ST TEY N ERVANA R | AN
. ’
Ti'm T:; i'+ll ey Tj’—ll ]]'m Trn
. . N e
L Tj' —_ @._,, 'I‘,-’.H, .« oy T,. -

~ . REMARK. If Q, is no connected sct relative to €;, but there isa €] €&,
€,, < €; and @, is a connected sct-relative to €;, then theorem 14 is true. |

T We hse j:héofem 14 for an algorithm that ‘determines the order in wich
the' data collection € must be stored, so thaticvery ¢(€) may be consecutively
stored. I oo R . :

Py

o LR U T I | AR v

. Algortihm: Loy g
1. The I, k ='T~il . p.sets (i.e. C and Q, r =1, .. ., p) must be determi-
’ ncd‘ RS T LR PR S '..\->‘- N . . \,.".) Y e \ .t . 'I
2. For the €,"data collection the atoms. T, ..., T, that specify the order in:
‘which €, is stored must be.dctermined.. The algorithm preyiously described .

is to be used. = | _ ' S
3. We consider the collections: @, Cj, .. ., @,, 'in 'the given order.. For evet) .
connected sibsets € < €, relative to Q' < Q,, £ > 1, atoms: T}, Ts, -1
must be determined. If theorem 14 is true then the atoms for the new collet,
tions must be determined in accordance with (24). - - ’ . §
For determining the sets: I, k=1, ..., p, the following algorithm m3/

be usgd'. .Thls algonthrp is similar to an algorithm from (4] which is used 10f;
the division of a matrix M in the submatrices M;;, with~ M other that zef0 |
for |¢ —j| < 1. In this algorithm one uses the following variables: :
V = (v, .-, %), m =]Q|, is a vector which qualifics the - B |

Vo
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-
I.(k =1, ...,p) sets. We ha.ve
0—if 3j,7#¢:¢; (@ = q,(@) (the vertlces correSpondmg
R . terequal gyestions, must be: elumnated) :
C e e FPaR R E A S

AN G b= if. 1-.5 I (ql £ . . -. s \r . ~.§: ' -

= (Cpe -+ c,,,) us a .chax:actenstm vector. for. tlm. vertlces £rom ~the graph G;,
Ca e e il in graph "Gy there isa Vertex for : 'ZLE"“‘--”"" L R
e c} _} the: questton‘tq, =3 Q; C e : \.f},%>‘. : Al ”."z.‘s'.:,; ‘-:.‘.‘:‘ .‘ o 17-'.

[ | o' — obhdrwise. -

A = (aj), 1<i<m 1<4< n, is the adjacency matrix for data collection €
relative to set Q. In this algorithm we mark with 4.; the columus ¢ and
A.; the column j from matrix A.

B = (b,,) < 4, j € », is the adjacency matrix for digraph G, ; where b;; = 1 if
(x,, xj) e U (or ¢i(€) < gj(€))and b; =0 otherwise. We mark with B
line + from matrix B.

E=(E, ...,E)and D= (D, ..., D,) are two vectors.

If a =(a,,.. a,,) b= (by,...,b,) and ¢ = (¢, ..., cs), where a, b, ¢;
{0,1}, ¢ =1, ...,n then the following logical operatlons must be used in

this algorithm :

c=apNb ifc,=a Ab,i=],..., n (conjunction);
c=aVb ifci=a Vb, i=1,... n (disjunction);
c=a if ;=1 —a;, t=1,..., n (negation).

Algorithm :
1. For i: =1to n do ¢,: =1;
2. For i:=11to n—1 do
Begin b; : = 0;
For j: =14 17to »n do
Begin D: = A.. A A.j; by =0; bt =0;
i D=A.; and D A.; then
Begin v;: =0; ¢, —-O end
else If D=A.; then bi: =1 [g:(€) C g,(©)]
else If D= A4.; then bc =1 [g;{(€) C g€ )]
end
end
3. byy: =0; s: =1; OK: = true;
4. While 0K do
Begin E: = VB,, E:=EANC;

For j: = 1 to n do
If E; =1 then Begin v;:
If C;éO then s: =s + 1 else OK
end ;
StOp

=0 end;
= false

§ — Mathematica 3/1987
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By, R =.1,n, of a data base, namely., .., ... o & o0
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ON SOME GENERALIZATIONS OF AN OPTIMIZATION PROBLEM
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REZUMAT. — Asupra unor generaliziiri ale unel probleme de optimizare pen- - By

‘i tru baze de date distribuite.’ In 'aceasti lucrare se considerd o problémi de ;' it 1

_optimizare pentru baze de date distribuite. Se pomeste de la o:refea de calcu- .. it
latoare in nodurile cireia sint distribuite subbaze de date. Se rezolvi problema .
redistribuirii subbazelor de 'date’ in refea, ‘considerindu-se dou# lanfuri §i mo-* .~ '
.mentele’ de ‘lansare ale deplasirilor ca ficind parte dintr-un interval de timp

.-, dat. Se formuleazi si se rezolvi o ;problemi.de max-min. .. 1¢,.-.7 - i

oLt o
LI

. : ' .
P . 2! BRI . [ [T e LR
1 I R | R A R PR A A A Jtec P

R P S ..

1. Introduection. Let us consider a computer net determined by a connected
graph G = (C, U), where C = {C;,.Cy, .:.i, C3} is‘the set of the computers
in the nodes of the net, while U is the set of the edges linking the nodes of the
pet. We suppose that in the nodes of this net there are: distributed, the subbases

' . .. .
P AR PR "5
' - M . T
: L. Te, * N DR
-1 SR S S S AR S B¢ .

a
A
v

This distribution of the subbases in the net’is détermined by the permutation

cey ';lv-{:‘i 2. ... 0w e it i 2
c=|. N I T N

At e e

[ A D A
C i

with the significance that in the node C, (Whic'hﬂ'w:e'denote by“"lé) ‘we have the
subbase B;w for 2 =1, n. We consider the subbases B;, 4 = 1, n, as indepen-
dent.

We suppose that a certain application requires that the data base B have
another distribution in the nodes of the net. For this purpose, a redistribution of

‘the subbases in the net is needed: The travel of the data subbases from the initial

positions towards their new:positions in the net is performed by passing through

‘adjacent nodes, during known time intervals and with a.certain passing cost.

The launching moment for thesé¢ travels is important because there may appear

.crowds in some nodes of the net. Some considerations about this problem can

be found in [1], [2], [3]. There also are many results, obtained in peculiar,
cases, concerning the optimization of the informational flow in a computer net,

3 _omne can see in [5].

. If the chain on which a subbas¢ is "fréve'lling"f“l_'som the node 1 to'the nolde..j;l
' 1=l ky,ky ..., ky 1) and if we denote by #, the launching moment from

1 —_—————

R e R - . [ . M
:.U"itfcrsily of Cluj-Napoca, Faculty of Mathematics and Physics, 3400 Cluj-Napoca, Romania,
Usiversity of Ciuj-Napoca, Computing Dala Center, 34G0 Cluj-Napoca, Romania
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the node 1, then the time moments in the nodes of this chain will he
> . A Ty T . o
O a O, .—— 51, ti"{‘ d{ /’"*‘)‘ I/t_'_ d‘-}"" b I

where d) will represent the mnumum value of the path llnkmg the node 1 ¢,
the node 1 TR AV IR T R L P (AL LA EIAARES

Generallly, for the travel from the node k to the node “x we have th,
moments

Tk={t;,tlc+d;,.. b +dv), k=1 n (1)

The quantmes ;l are flxed whlle the tune mgments Ik are changmg Repre-
sented onto an axis;- a' divistens- Ty ,3- determies some pOm‘cs at knovm dlstances

these last gnes bemg determmed by the quantitxes d
Measorés of the crowdmg d,egree of the subbasec travcllmg trafﬁc m a com-
puter net can be defined.in: various manmers. We shall consider i this paper a
global measure of the crowdmg degree. In this mcaning we shall form onto the
axis a dl\’lSlon of the pomts . r

1 (RS I Y A RTINS

. TRV ,:.: e T [1 U T U‘ ' ” L [ )

[

whu.h have " thie "above ménﬁohed pr0perties i o

. DEFINITION ' ¥. The global - clowding degree of the  subbase  trav clling
traiflc in a computer net is the maximum’ of:the smallest distances hétween the
consecutive points of the representation of the divisions (1) onto the real axis,
in a given time interval, where #;, /,, ..., ¢, are considered variable.

2. Results. for a pecuhar case. In H] there have been given some-results
fol thié above formulated problem, for the peculiar case of two chains, the values
associated to the nodes of a chain being inserted one by one between the values
associated to the nodes of the other chain. B

Considering two chains, !, aiid /,, of the form (1) with # + 1 and #» nodes,
l'fespectiively, ve de‘nlo.te for ,simplicity; .

PR R '

vt

A T ST TN S PR | PR -
Loy =y s g = iy, 1= 1,n

é.nd-

R e T T L SIS v FEENRE
DEFIN TION 5. \Ve call conﬁguralzon th,e aggregatc_ formed by the sets

.gf rea,l numbers I = e, ag ., a,,.H} and. ly:= {p,, ];2, <o +i pu} such that -

'f :llul"n | . (h <j)1 < (12 <P2 < a, <]§" < a”+l ) ;. i '. @)
e ; YRR 1, = 1, n Lo i s iz : . ' (3)
: ﬁ, = v,_,_,,n v :? o = tﬁ ; REEERTI (4)

where v, and vi,,; are (known) constants re )resentm tra\ (.11111 durat10ﬂ5
‘on ‘the édn’espon’dmg ‘thains 4; and 1)) 2 1'¢51>eCt1vlel5 g g !

I THe justification 'of the COuditxon (2) lies in' the hypothems that the faunc
hmg:I moments (see Sectlon l) he m a glven time mterval for mstance ay
a.+1 . ) "o . . i

TRV
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Denoting : - T
,o S = pi — Q;, - 44 =‘\.(lii;|:31-._7‘,.i’ip
s = mln Si, d = min di; o T SRS A AT I I sl
T SRS S T S R ST A OO BN U N

where i=1,n, , therc was formulated

*. PROBLEM 1. Conszdcrmg an initial conftguratwn formed by I, = {a,, a,,
, Gny1} and 1§ = {p}, P2, ..., P1}, determine the configuration formed by I, and

= {1’1» Day - +» Pu}:for which min {s d} s maxmfum where:1, is obtained from
1° bv translatwns

“For the initial configuration we denote t: ;, o ovadh Lo ;
'. v 0 . Lt g0 N . . 0 ,f;‘! '..':»‘ (;‘—.:‘ “'\._
- ! s'l' ='pi - ai; di = -ai+l' - pi’ ' b
- L. 0 g Lt e " \ . Tt o
So = mm Siy s "dd =‘_~m1‘n.d§)’ SR S A S I

where i = T, 7, while @, p? and p; fulfil the ‘conditions (2) — ~ ), d; e " being’
given and p; being variable.

UV IR
In ordcr to prove. Theorem 1 (see below) we have us.ed C e g
LLEMMA If s, dEhR tlu:n SN Wt e g b erh i
S T L T ST R LY ST

max min {s - x d + x} = max min s —l- x, d — x} S LI

ireR ;;25 ' ';.3 S

the first maximumn being rcached _fo; % = ,—Zjl-, ,;md tlye secqnd m;bxmmm for

d— s '
2 R '\ '. ]::-.!1'!;.‘."_: E 1 G e

. We pr(scnt furthcr down, w1thout provmg, the .results obtalr;ed in [4]

for' the considered peculiar case.* ~ -

THEOREM 1. Observmg thc condmo:@s gnd notatwns .oj Pfoblem 1, tha
following sentences hold:: '

KL B Z'-' AT RPN It R ORI il
x =

st BRI TSR e) BTN )
~a) the maximum value for min {s, d} is ij—_i‘f;
=) - . [N B ~\L~: e i
-3
b) the values p; for whzch min {s, d} is maximum are p; = p; + -——-i°

THEOREV[ 2. Whatevar will be the initial conf 1gration which fulles lhe condi-
tions (2) — (4),. the :olution of Problem 1 is jmique, namely:the ualyes i for.
‘which amin {s, d},ds maximmmn: an.mmqw. wirile; the maximum -iﬁ s mvmrmﬁ
with- respect 1o+ the. snitial- -cofifiguration.: Al ' S

THEOREM 3. Given the sets. of {om.ls A _,r{a,]z ; 1} N’d B

=i =T, # n} on the rral axzs,,mlh the comimons

&S B=Tm i--"' (5)
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b < ba+l: 1 =‘1’ n — 1' g (6)
the following sentences hold: T c
’ j:) Thegmcessary and suffzcwnt comimon f07 3’“5””3 t <R such that
:4 y .’, P S A Y '
ai<bi+t<a,+l,.z— L,

T T e e S i 1.

'i.s s e R T A o ';‘ ., "‘ 3 ) ] R Lo
U j\\'f f;'\:”“, mi.=_ ma);\.{a.j.ri'~bo’} < myn ~{a€.+.l. - b"}'-:=’- My )
RACELUR SR R IR S S LR K : ] /
where 1= 1 n, and then L e (my, m,). R AR P "~"='-"i'-’;’+m .

b) If (7)_ holds, then min {s, d} is maxmmm for by. = —‘2——' and the mag;-

‘”l -_—
L where

mum value which can be reached by mm {s, d} s

s = mm {b + t — a,} d -.rmn {a,.,_l - b, — t} and t < (ml, Ma), with © =1, 5. "

In order to prove Theorems 2 and 3, l‘heorem 1 was used.

Applying Theoremt’ 3‘for two systems of points @, b; and a;, b; wich ful-
fil the conditions (5) and (6), and for which m, < m, and ml < m,, we have:

COROLLARY. The maximunt value for min {s, d} and min {s', d'} is the same
if and only if my, —m; = my — my..

Concluding, 1f the c0nd1t1ons (5 —=.(7) are fulfrlled, Theorem:S allows,
starting from more general conﬁguratlons than thos: fulfilling the condition
(2) and performing a translation .with ¢ € (m,, m,), to have the points p; = .
= by +t, which, togéther with the points a;, fulfil Deafinition 2; so we obtain
— ™ }- m,

the optlmum requlred by Problem 1, for L=t . Also, according to

-----

Theorem 3'and to the. Corollary, the optunum we, >earched for dependa only

<on m1 and M, and its existence is equwalent to. m, < Mm,..

3. An,; ‘Sxtension of ‘the results. Leavmg the strict mequalrtxes of the con-
dition (2) and replacing them by

e R R .._~_£f i‘b s_ < @y < Pn < Anp | 2)
and " RO LL L ’ b— l hh;h..\&s J-.a._,. Pt ’..., if‘t
- "“'""’ - ‘b’ "<P'“’ "‘ ﬁ“_f R Rty 4 (2"

Problem 1 is’ slmrlarly formulated the only d1fference C0n51sts of the fact that
the points a;, ;b° and b fulfil the condrtrons ), (2”) instead of the-condition @)

So,” lheorem 1 remains ‘valid, the roof b 4], aug-
mented with the following pecuhar casen P ‘emg the same as in [ ]

[P \a) ‘There exists'li « {1,2, . n} such tlrat
€ {1, 2, ., n}fsuch_that p“" ='a; .. .. :
2 Takmg into account (2 ’) and (21 ) 1t results % # ]

i." a and there e*(leS 7“

R RN
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Using the notations of the prevxous sectton ““we ‘hdve -+ " - R 4
l

- o ) s,—O d—O

IS I e B L S R I L A LT O P VS SN ST N

Soo=minsy =0, .dyg=mindy =0,.
] ]
Sfothas S TP IPINS PR R T

W‘here k——l N I A T O N R TG P I

-

- In' this case, the translation ‘of: the points p° is performed with d.; fo z (.
]
the ma.\'imul_n value for min {s, d} being '

<l T b

s,.+d,.=0.
— .

' Hence the optimal configuration is that given, but a non- -vanishing mini-
mum distance does not exist in the given conditions, for every. translatlon of
the, points 9 the condition (2) bemg not fulfilled.

b) There exists 7 {1,2, n} such that $? = a; and there exists not
je {12, ., n} such that’ ;&0 =a;,. "
’ Then we have s; = O and s, = mm s;, = 0 wlnle d, = min dy > 0, where
k—l n. R P :
*" In this case, -;the maximum value for min {s d} is SHZ" »—% and this
holds for a translation of the points p? with Ts" = ézﬂ !
c) There exists 1 € {1,2, ..., n} such that P =a; it and there exists not

je {12, ..., n} such that ;bo = a;.

Theu we have d;i=0 and dy = mm d;, = O whlle so.—- mm Sk > 0 where

k=1, n. L L.

... In thns case, the manmum value for mm fs d} 1s e
holds for =% = L %
2 2
ints P° with 5°- S L LR "”'_" \

FR SRTN AR A% S T R L N A

Analogously to the extension of Theorem 1, Theorems 2 and 3 can be
naturally extended ; for Theorem 2, (2) is replaced by (2') and (2”), while for
Theorem 3 the strict inequalities of a) are -replaced by non-strict inequalities.

. So, Theorems 1,2,3 and the Corollary also h01d in the above supposed
less’ restrictive cond1t1ons :

Sotdo _ So and this
20 2. .

) correspondmg to a transla’clon to the left of the, po-

. 4. General ease and solving algouthm. ,Let be mneN, m21 n2z2

We consider two ch'uns l and /,, thh n + 1, respectxvely m nodes, and
the conditions:

Shn<pp< <PU. Ay S Pof < P <:vv < Poj, S 43S
S P;!l . -'!<‘;Ph'—'i'.j,’,_l X a;l"'s pnl <7‘Pn2’< e <‘Pn)" < An+1s '(8)
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m e ¥, €

where §; + Ja + oo~k g mMnit s eiiuig T .

' bij; < Pitry 1= 1 " — 1 o)
The condition (8) determines a division of the real values p,; into » Classes

denoted as follows: - o

M = tﬁﬂ.,..p,z yoe.0ie ,ﬁ;}‘.} & = "l, ..
some of these classes can be empty.
Taking into account (9), it results that there are not ¢ and- Ji such :that
P4, = @ity = Pixa,, hence, w1thout sestricting -the generality, we .can Teplace
8 by -
0y < Py < P12 < oo <Prj <y S K PraE o< P, <ily <
<.7>"‘114n-—1 < Oy S P < B2 <o Py S Bpgre (10)

-5 ..:.1 < Pal
) ’Wr. ‘associate to each class M -a fictitious point p, such that
‘ G g ';‘. S ﬂ] Pz N e < Ay < ]5» < {.‘;nf-l , - s (”)
, Pi, — 4 ifM, L LY v
: P A St ={ i M; = 12
a-+1 Pij;» if M;#® |
-'d‘l'vf‘_,__‘ai&l b= = M =D (13)
s=ming,- ‘¢ =-'~.1,--n; v 14
d= mm.d, i="T;m. (la)

The case in which a, = P, and Wz = j),,, mmultancously is not of inte-

rest therefore we shall c01151der
f @y > P, — Pu- (16)

Also for two . chams l,and I, whose valucs in the nodes fulfil (16) but
do not fulfil (10), one performs a trans]atlon such that (10) holds.

In the general case, for two chains, we give :

DEFINITION 3. We call extended configuration the sct formed b) the

sets of real numbers

Cr e Ay -5 @uis}y and 1 =4p,, by, e P
such that 1' N o A . |
* \al; < <...< a,,+'l . i . ,(17)
P1<P2 <Pm; .‘C':, (18)
s Pv P < a,,+1 and - By ) > P — P o {19)
. A sy —a'_v'+l . t.- 1_'_";' B ..
e et T Pivr = Py = vla,y, ch=.1,m—1,

where ;4,5 «and Wyis are strictly pesitive real constants.
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1

_In . the .canditions ' (17) —(il9),- equivalent . to -(10)..3nd: (16), — taking jinto. -
account ‘the:above:. consxdctartlons, -iane.determines:the .classes M, : =1;m m.on

the sct of points p;, i =1,m. .: o o
!

~We formulate: =~ 1. i
.PROBLEM 2. :C(mszdemng an ; cxtmdod confzgmatwn gwen by l = '{;z,,

ag - - L auer) and 1= {p% P8, ..., P8}, which detcrmines the set ‘of .classes
S, = {M,, MS, - .. M,,} datcmnmc Ahe extanded configuration, formed by.l,.and
I, = {ps Por - - p,,,} or ithe .set.of -gclasses: M = M, My, . ., M} for rohick
min {S;.d} s mﬂxzmum -when ly.ds qbtained. from 13, by tmaslatwns .

+ So,.a;-and pY.are.fixcd, :while, p; are; vamable ‘heing -obtained. from p° by
translations, observing, dextlon 3; s and d arc.given by (1-4) a,nd :(15), . 1es~
pectively. , e

iAssociatiug the pomts ;b, tol. the.classcs M, ,;accmﬂmgt to: the above expesed. .
method (conditions (11)—(13)), : the scts..l, iand .= {p,Ps, - . .in}Will be
according 'to. the .extensions of.-Bectign 13,.0n the basis. qf -which, .we.. .givesfur-
ther down an algorithm which-will. provide the optimum. reqpmzd by Problem 2.
The algorithm involves the following -basic.steps : , L '

Step 1. Initialize the configuration:counter, the: va.na;ble ‘for the optimum

of the problem .and:the -vasjables. for: the optxmum .of .each confi-
guration. ;

Step 2.1 .ay < p,, -perform .a translatlon to the Jeft. ,of the pmnts P; with

pr—ay: p: = pi — p, + a,, i =vl,:m s(one - obtains -the. initial

A

AT

configuration with s, = 0).

Step 3. While p,, < a,.y do: o
“Substep 3.1.-Add. 1:to the: conﬁguratlon counter.
Substep 3.2.Initialize ‘the: array -indices. - ' -
Subwfcp 3.3. Determine the set of classes M, = {M; |1 = 1_71} corres--
g _-ponding : to -the ‘current. conflguratlon and .associate to
‘them -the -points p;.
Subs/r/) 3.4. D¢termine the optunum m, for the current conﬁguratlon,

Substep 3.5. Translaté the - -points, ;b,, =1, m, with 2m‘ (one obta.ugs
a new conﬁguratlon with so—-O)

"Step 4. Determine ~the ‘required . -optimum ‘as’-being -max’ foi}, kE=1c,
and the .configuration .or. configuratiens:for - which: it s obtamed-.‘

Starting from-an:initial' configuration which- ftilfils -the -eonditions of - ‘Wefi-
nition 3, one translates eventually the points p; in--orderito .qbtain ;a; = Ay,
hence a configuration for which s, = 0. After ‘detcrmining the .optimnm -for
the current configuration, at the Substep 3.5..one translates the,points p;sso-
that the right-hand terminal point of the class i(the point.of the class to. which.
the maximum value is associated) or classes which determine the gptimum c¢gin-
cfdes with the right-hand terminal point of the interval.or ‘intervals [a;, @ss1]
‘(")thh determine the respective class or classes, obtaining a new configusation.
, I;e determines the optimum for successive configurations until the whole- inter-

al [a,, @s4+1] is run over by translations. For cach configuration:one -obtains.

s
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in this manner so'f;-i' 0, -hence the cé.sevb)-'c_)f*Sectton 3: The ‘optimum rq
by Problem .2 is the maximum of the optima of the successive configy
and it is obtained for at least onc configuration. . . C e,
The algorithm is finite; this is ensured by the fact that one cap:
.at ‘most m. X n.translations for running over the‘mte_rval lay, aiiq),
until p,, = @41 - R T ' Rt
“+'If one starts' with' the condition a,i= p,, the -algorithm is’simia; . th
‘translations are performed to the left. uptll 1= ay, ha\_'mg for each con'fi ue:
sation d, = 0, hence the:cas¢ c¢) of Section 3. One obtains the same con‘ﬁg g
rations, but-in the inverse order; therefore, taking also into account Th‘eoremgg
the. same optimum; will result. Ce s a
According to Definition 1, the optimum determined in this manp
Tepresent the global crowding degree -of the data subbase travelling
in a given time interval, for two:chains of the net.. . - _
" ‘We ‘presént further down a detailed procedure corresponding to the aboye
algorithmn, represented under: the form of pseudocode. v
The significance of the data namesis:- ' -
. N° — the number of fixed points @;, N =n + 1;
HUM = the 'number of variable points p;, M = m;

q[lired
Tatiopg

. pcffonn
' therefore

er wil,
traffic,

. A — array for the values g, i=1,n+1;
' P — artay for the variable valites p;, i = I, m, (being initialized at the
procedure  input. by the valuss p°); '
I, J, K — array indices; |
C — counter for configurations; ,
D — the distance between the right-hand terminal pofnt of a class and

the right-hand terminal point of the interval which determines it (D = a;4; — i,
according to (13)); . S : -

" MC — the optimum, value for trauslating a configuration, MC]Z being
the optimum required by the problem for a configuration. (MC = 2m, = d, accor-
ding -to (13)) ; L o , :

. .MP — provides the optimum value, which is M P/2 for the problem
(MP = max {mg}, according to the Step 4); - - P| Lo e p
K=1,C N . g oo ) SR
i~ bop f«p;'o-\{-l,des the value with-which thc initial points $° are trauslated
in order to-obtain‘an optimum configuration ifor: the. problem. ' .
-ii With these -ones, the .proceduré has the following form :
proc maxmin (N;:M, 4; P) = oo e j
.var“.N’:Af’ C: I’ ]1 K A.;'illte.gei' " .. . 4 . -
var A'rarray [1....N] of'real & i, i R,
'var/ P array ol ... M) of real . _': .. DR
Tvar ILIC y .arra"s' [1"-'0 .'MXI\T]'Of I'éal -"/ ’1": o S e )
~var MP,D,DOP s'real - i - ., SRR

. P
LI IR

‘begin i s e T

B O SR R AT

A LR L T L L ) oea \

ol ce= () T e e et T LA PN ERU .
MP =0 SRR
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for. IT——-I,A/IXN T ciy EEIE

begin s
MC[I] —A[N]—A[1] TR

if P[l]séA [1]
begin

N o [ R Y R
fOI‘ I—ll‘/[ o . A . -1/’.17 'l..
begin el TG )

P[I] :=P[I]1—P[1]+A[1] e

end

end
while P[M] < A[N]
begin ERY R
C:=C+1
I :=l 3 QY

K:=¥Y R L N A AU

while K< M
begin
1f P[K]>A[I+1] .
begm L S B T B LN R I ML (R

Yo d h 1{ K1, :"::!".:':' AR Y FRV SRR IV

U aw . begimhi e di -y Crl e roid D4
D A[I+l] P[K—l] "!“-';.i'_n.l""".; .,
i D<MCIC] e i

! ' R beg‘n .t I; ale, v '.' K S
'f_‘f': e MG v= R
end

end
I:=141
while P[K]>A[I+l] A
. , begm
-‘.~.'x«'. . '~'~,!' ‘.'.I"' I __I+l ) ., N f" A"I 'z): :' v
I S PR e]ld YA | IR R O L P . Lo
voend

[RERREE ' e “ IR PRI
BN IR RE I{ :—I\—*-l '.‘I"X. e 4' : :l‘-._v»l;.‘.’: CAGTL & ERRES

end f . ) .
=4 I+11' PIK—1 EOATERA A
"t Dé MC(C [ L RO
KIRCTIRAY begln B \-.",'.-;'~
s MC[Cli=p U T e
end’ / i,’,,"‘:;'., - e
for]_.lM SR
begin
. PL]]:=PU]+MC[C] ’
end
end
for I=1’C ‘
begin

BRI PRI | eh R ops oyt R

75.
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if MC{I]>MP: T AT

begin o e
MP:=MC[I] P 2 v

end . .

end ; L
D:=MP|2 . - -
print "MAXMIN VALUE='D e

print ‘'OPTIMUM CONFIGURATIONS ' ;
D:=A[1]—P[1] L

for I=1,C i
begin
D :=D+MC[I] T
if MC[I]=MP -
begi '

DOP:=D—MC[I]/2 '
print “TRANSLATION OF P POINTS WITH 'DOP
end Ve
end
end ] o

Finally, we make some remarks about the procedure:

a) One supposes that N, M, A and the initial values-P, are valid and fulfil
the conditions of Problem 2; this fact ensures the output- of the cycle WHILE
into which I is incremented. ooy e .

b) In (13) it is sufficicnt to consider the value A[N]—A[1] instead of w.

c) At the (nd, the variable D was used for qumulating the values of the
translations in order to obtain the translations wcorresponding to the optimum
configurations. '
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idered as axjoms - ;'
| s, i prop"’t‘es gwen in (2) and (3) are consi ;
:fng;l\;ngenéka‘lvéd méays. Doible’ sequencies are defined’ By‘ qu (4) and- (5)
4 and: thelr: °°‘“°fgilig o & -comitibi limit:is' dé’monstrated , S

i - ‘ I ot J
U Y O 0 D )11 J . . 3 L

"’3 ras defiried the following class: Mof means : a-continueus- mappmg
nr [}If* — {l‘l:_ belongs to the ¢lass M, of (Symmetnc) means if 1t satisfies the

following propertics : W T e
£y =% < m(x, y) <y
e enn. e an (% ¥) =m(y, %) Choaes s RO
e (Y)Y =S X =y . o

Anrexample of mean; giveln alse v [, sl it o el
. . [ ity

. .. - . L+ { ’lp‘.‘ T SN SRR D
”””'U“m@w—ﬂﬂﬂm%ﬂﬁiﬁ,%w, 0
.xr 8(2) + gyt Joorriran L -

where g is an arbltrary contmuous mappmg from |ll+..to |ll+ Th@ choise a(x) =1
gives: the Minkowski means. #,, Putting p = 1 and then: choosing g(x) = »7—!
in (1), one obtams the means 1, introduced . by ILehmer. For g =1, 1/2and 0
respectively, 1, gives the arithmetic, the geometric and the harmomc means.
Other e\amples of means’ may be found in [8] and-[9]. "

We must remark that the class M, not contains welghted means which
are non-symmetric. To enlarge this class, we give the following definition :

2 continuous mapping 7 : |RZ —>|Il 4 belongs to the elass M of means if it
satisfies the following propertxes

’
ot

.min {%, y} < m(x, ) < max {x, 3}, @)
T T v m(x ) =x =2 —zy.; S Rt (3)
Ty plcal examples of G symrnétnc ‘means aré: <L T :
LN ) s e — ?fuwé
and g,,(x V) x/’y‘— TR o N
\\ L el y =) (1. =Py .

.
Polyteckyiic Insmul'e of Cluj “Ndpoca, 3100 Clu] Vupou, Romasia
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with p € (0, 1), that is the weighted ari.thmetic, geometric respectively p,
nic means. For, p =.1/2, we.denote. simple.: .q;2 = .4, &2 =. g and Ryja

Given two means m and m' from M and two real it
one can define a pair of scquences 1n }wo_ ways :
N L X IE SRR

e Xpt1 = 771(2’,,, yn)' Y41 = 171'(1\’,,_“, yu) (4)

Ting.
- =}

mbers %y and v,
-\

or , . -
An41 = m(xm yn)' Yn+1 = m’(x,,, y")' (5)

For m = h and m'.= g, the first way was followed by A{p}l‘limcdgs_fo;r.,gstimatin
x. The second. method,. for m = a and m' =g, yas uSed by Gauss. That j

why, a pair of sequences defined by (4) is called, an Archimedean double sequey,
ce, while one given by (5) is called a Gaussian double scquence.

[

7 . rHEOREM 1. If (%,), (¥a) is an Archimedean double.scquence, then the sequen.
ces (x,) and (y,) are_convergent and have a common-limit ¢t = A(mym’; xy, y).

Proof. If x, < y, we have:
Zpn € Zngt €' Yug1 < Yp for n >0 (6)

hence (x,) has a limit ¢ and (y,) a limit #. By the continuity of m we have
t=m(, ¢) and from (3) it results ¢t =1 = A(m, m'; x4 o). The case
Zo > ¥, is similar. '

We must remark that the special case when m and m' are from M, was
proved in [3].

In what follows we consider the Gaussian case. We must suppose that the
"means m and m’ are comparable or weakly comparable, that is m(x, y) -
— m’'(x, y) respectively (x — y)[m(x, y) — m’(x, y)] do not change the sig.
For example, any pair. from a,, g, and 4, is comparable, but a, and a, (as wel
'as g, and g, ‘or hy'and: },)' are weakly comparable: for’ P #q Indecd, taking
for ‘example a, and g, we'have: - .0 i T o

- . . . (-
%<y = ay(%, ) — &l 3)

ot

>0 —ply—0>0. .

B 7 it

and ° o N ’ '
S L ER Y =4l 9) g%, 9) > plx — 9) > 0.
For a, and a,fwe obtain: . TP i

ap(%, ) — a(x, y) = (p — g)(x =)

"and so the assertions are verified for this two ‘pairs. For other pairs the prcol'i

may be done similarly or may be deduced from these.- C o

THEOREM 2. If (x,), (y,) is a Gaussian double sequerice d f db ! 21?/0 ( “"'“k/:
comparable means, then the scquences (x,) grence agimned 5 , e
limit T = G(m, m"; x, yo)? (%) “" (.'3',.4‘) 778 convergent and have a coP ;

Proof. If m(x, y) < m'(x, y) for an " ~ d thel

AN s VI .any positive d : -t (G) an .
proof may be continued as that of the trl’xeorem-:f, aII} ,,?'(’x,“;)g; "gl()x' 3), a

o

the incqualities {rom (6) must be reversed but the proof follows on. the Same;
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the proof is similar, .iof

I M R o T et y) —m'(%5)] <0, weget:

[m(%, ) — (%, )] > 0, but;if (.~ ) In(z,
Ko < ¥y <Ay <ui. H<y, <x1< yo* ( ' PERDR. -
Ce s : ) ',"' HE "-' _-"...'t , i [ O TS A P R N S 'he Seqllences (xz")l
g < Y the ‘opposite inequalities if x, > y,. Hence t .
lfngo(;{o,)orhave tl}ep same limit’ T, \Ythe (x2i+1).@and. (y2,) converge to T’.
;rom ' (2w You) = Y2ur1 We get T =T. o ! s, So, in [1] we ‘can
Iet us note that the limit is also known in some cases. S0,.11 [ i
d Ala 'g; %4, ¥o) and G(a, g; % ¥o)- The first result was given by Pfa
1::1111:1 Borch'ardt and the second by Gauss: Inl (7]t is deten'nsned.A (h, g %o Yol
but, as it was remarked in [6], we have:- ' ' :
A, g %o ¥o) = 1/A(a, g; 1/x0, 1/y0)
' o o jin i
Gk, g; %0, ¥0) = 1/G(a, g; 12,4, 1[y,).-
‘Also in [4] it is studied (asymptotically) A4 (a, h; xg, yo) while in [1] is givem
Gla, t; %o, ¥o)- We note also that in [2] is studied G(a, g; %, ¥,) for complex

%, and y,. : ) ! I . : . .
As concerns non-symmetric means, in [5] it is given the following conjec—

ture of G. D. Song:

(“«ay— y)

and

’o
=]

: dt
Gl 83 30 30) =7

e

oo TS K A Y H " !

We try now to evaluate also the'limit in sonie simple cases. We begin with.
A(ay, ag; %y, y,). From:. ... : -

Tut1 = Py +.(1 = D)y, Yutr = q¥pta + (1 — q)y,

if we put:

X = tt,(%, — Yo) + Yo Y= vn(xo —yo) + Yo

we' have : ; ;

- C et = P+ (L= P, 04y = paun o+ (1 — gl - -
‘Hence : 4 Coen o R \

we e Unt1 = Upyy = p(1 — q) (%, — v,) T i
or ) t. o . 3‘ " ! i '

, ey P g ‘
and from. . ,l~." . o '-P ( i (-I).r - N :
LR B =tk pgpl gt

We havye finéuy'; '

X, = _ . , "l‘ ey :,v;'}‘,._ ;
P90 ~ 90)/(1 p 1 pg) g (1L I = "to = 30)/(1 — b + pg) +
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O e ds i) = Q0 (B Ayl Bt gy

For p = ¢q = 1/2, the result is . given . in. [4].

\{akmg the same computatlom tor the. logarxthms of Xo . and Yo We have :

(xl"l 1—9)11(1 —2+$3)

s A»(g,,, Eei o, vo) ,

\ B I i
and . analogqusly,_ using. 1/xg.and lfye: . ; = = .= A
A LAk ,pr % xo: J’o)’ =([T-p + ﬁQ)/(Pq/ﬂ’o + (l - )'/yo)- S

"To compute G(ap,I a,, %o, Vo), from:
! Xp+1 =]5xp +‘(l _. Vw Int1 = Xy + (l 1 ) Ve

we have:
Xp+1 — Yna = (P - q)(xn _yn) = (1) - q)”+!('t0 —yo)
Ynwr = q(p — 9)" (20— ¥ ) +y,, = ¢(%, J’o)(l —(p— fl)"“) [(F—p+q) +y,
that'is: - - ‘ ; -' o ' :
4 G(“/» 4g; Yor ) o); (9%o + (1 - /’).Vo)/(l — /P T9. 7

1— P) (1—=p+q)

Hence :

Analogously :
G(gp &5 %o ¥o) = (qu

Glltg, hei %oy Yol = (L — p + @)/(q/xe + (1 — p)/vy).

The case p = ¢ = 1/2 is now trlv:a]lx the sequences being constant.
% Of course, the limit. 4 is non-symmetric but

Gm, m"; x, y) = G(m', m; x, y) =G(m, m'; v, x)

if m and m’ are from M, From (7) we can sce that the property is not
valid on J.

and
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