STUDIA

UNIVERSITATIS BABES-BOLYAI

MATHEMATICA

4
1986

~ CLUJ-NAPOCA

: -Iu" < \,f'



REDACTOR-SEF: Prof. A, NEGUCIOIU

REDACTORI-SEFI: ADJUNCTI: Prof. A, PAL, conf. N. EDROIU, conf. L. GHERGARI

COMITETUL DE REDACTIE MATEMATICA: Prof: 1. MARUSCIAG, prof. P.
MOCANU, prof. I. MUNTEAN, prof. I. A, RUS (redactor responsabil),
prof. D. D. STANCU, conf. RADULESCU (secretar de redactie), conf GH.
COMAN

TEHNOREDACTOR: C. Tomoaia-COTISEL






2

Cronicd — Chronicle — Chronique

Publicafii ale seminariilor de cercetare ale catedrelor de Matematica (serie de preprinturi) .

Participiri la manifestiri stiintifice
Manifestiiri stiintitice organizate de cadrele de matematiei

Recenzii —Dook Reviews—Comptes rendus

R. Mneimné, ¥. Testard, Introduction a la théorie des Groupes de Lie classiques

(M. TARINA)
L. Lovasz, M. D. Plummer, Matching Theory (Z. KASA) . . . . .. ... ..
F. Gécseg, M. Steinby, Tree Automata (M. FRENTIU)



STUDIA UNIV., BABES - ROLYAL MATHUMATICA, XXXI, 4, 1086

CLASSES OF n-2-CLOSE-TO-CONVEX FUNCTIIONS

TEODOR BULBOACA*

Received @ June 15, 1986

REZUMAT. — UClase de funetii n-«-aproape eonvexe, Se introdue clase
noi de functii univalente, care generalizeazd uncle clase definite  de
H. 8. Al-Amiri {1' si 8. Ruscheweg 6! si se stabilese uncle proprie-
titi de incluziune intre aceste clase.

1. Introduction Let 4 be the class of functions f(z), analytic in the unit
disc U with f(0) = f(0) — 1 == 0. As in [2] we denote by K, , (3) the class of
functions f e A4 which satisly

’ D) “””f(f)] .
Re |(1 — =« o > ), e U,
I( 7) D f(3) ™ DML f(z)

where o > 0, § <1 and D* f(z) == = - * f(z) = ﬁn—:['(“—))-(ﬂ where (%)
(1 — 2)* n!
stands for the Hadamard product. Some results concerning the classes J,, ,(3)

and Z,(8) = K, o(8) are presented in [2]; note that the classes K, o ‘%’ and

!

Z,,(Tl;) were introduced by H. S. 41-Amiri {1]Jand S. Ruscheweyh
6] respectively.
Tet AC, (8) be the class of functions f € 4 which satisfy

Re wi)_ ~ 8,

D g(z) z = U, where g € 7,,,(3),

and we call this class the class of #-closc-to-convex functions of order 3.
Let C, 4(3) be the class of functions f € A which satisfy

‘ D f(z) D™3f(2)
Re} (1 —
€ [( “) DPg(z) +e Dr¥ig(z)

] > 3, z « U, where

¢ € Zyr2 (8), and we call this class the class of n-a-close-lo-convex functions of
order 3.

Note that C,(8) = AC,11(3), C,o(8) = AC,(3), Z.1(3) C AC,(3)
and Zn12(3) U Cpa(3); the classes c(%J = Co(a), .AC“(-f;" - C, were intro-
fuced by H. S. Al-Amri [1], who proved that C,(a) C C,, « > 0 and C,(a)C
CCa(B), a> B > 0. In this paper we shall study some properties of these clas-
ses and several particular results will also be given.
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4 T. BULBOACA

2. Preliminaries. Let f and g be regular in U. We say that f is subordinate
to g, written f(2) < g(2), if g is univalent, f(0) = g(0) and f(U) < g(U).
We will need the following theorems to prove our main results.

THEOREM A. Letl <3<l and nw <N then Zy, (3 C7,(5) when
=1 /F( o + 21 —3), n + 2; l) and this resull is sharp.

This theorem is a particular case of Theorem 3[2], when o = 1.
THEOREM B. [5]. Let >0, B+ vy>0 and — ; < 8 < 1. Then the

differential cquation

=g’ (¢ 1 - (1 — 29)
26) + rsq(Z)(»LY ” i 4z = = hy(2), g(0) == 1

has a univalent solution is U, given by

1
2} =
70) BO(2)

X
p

1
where Q(z) = \ (‘“ ’—)2'3“"8’ # G 2 < U, and gz) < L0220
1 -7 1+2
0

If p(2) = Y + pyz + ... is regular in U and satisfies the differential subor-
dination

zp’(2) 1 — (1 —28)2
z) +

#@) Bp(s) + v 14z

then p(2) < q(z) and this subordination is sharp.

THEOREM C. [3]. Let duft) be a positive measure on [0, 1] and let Qfz, |
be a complex-valued function defined on U X [0, 1], such that Q(z, -) is integrable
on [0, 1] for each z = U. Suppo'se\that-Re Qz, ) > 0 in U, Q(—r,'t) is real a

Re -
Q(z,7) Qﬁ( 7, 1)

for |z| < 1<l

and ¢ < [0, 1].
1
If Q) = OS Qz, #) du(t). then Re 6<_> >

' THEOREM D. [4). Let h, ¢ = H(U) be univalent in U and suppose qe
EH(U) If $:C—=C sansﬂes ' . ».

a) § is analytic in a domain D C (3, -

b) (¢(0), 0, 0) = D and ¢(9(0), 0, 0) = A(U),

c) ¢(, s, t) & D when (v, s, t) € D, v = q(%), s-= m{g'(¥),

Sor Jz| < 7.
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Re(l 4 ¢/s) = m Re (1 4 Gg"'(¥)/q'(T)), where (L] =1, m 21, then  for
dlp € H(U) so that (p(z). zp'(2), 22p"(2)) € D, = <" U we have :

Y(ple), 2p'(2), 22p"(2)) < (z) = p(2) < 9(2).

3. Main results. THEOREM 1. Let o = 0 and -l)— <SS < 15 if fel,qd)
related 10 g € Zni2(3) then f € AC,(81 1) related o g = Z, (55 1). where 3541 =
.
=1/F(1, 2(n 4+ 3)(1 — 3), » + 3, ~2_),

Proof. Using Theorem A we obtain g € Zyi( 5u1) Te.

D" g(s)

L* 1 g(s)

< /'zsn H(z).

Let p(z) = DrHt f(z)/Dnlg(z) 5 then p(0) =1 and using

ADf(2)) = (n + VD2 f(z) — nDrf(z), n € X we cbtain that / e Coa(9)
. ) «  DPHg
is equivalent to p(z) + afz) z2p'(2) < hg(z), where x(z) = D—»Tg(()) .
n 2 g
Without loss of generality we can assume that p and J; satisfy the conditions of
the theorem on the closed disc U ; if not we can replace p(z) by p,(z) = p(rz)
and 4,(z) by ks ,(z) = hs(rz), 0 <7 << 1, and these new functions satisfy the
conditions of the theorem on U. We would then prove p,(z) < ks,(7) for all
0 <7 <1 and by letting -+ 17, we have p(z) < hg(2).

Because g € 7, (1(87341), for a > O we have Rea(:) > 0,2 U. Let ¢(r, s) =
=7 + afz)s which is analytic in C2 and ${%(0), 0) = hs(0) = hs(U). A simple
caleulus shows that

o halty)

Re ;
Cth( Co)

my Re a(z) > 0, where
Yo = Ma(To) + ale)molo3(Lo), g 2 1 ZLef o L.

Using this fact together with the fact that Jp4s(%,) is an outward normal
to the boundary of thr: convex domain /#5(U) we conclude that ¢, ¢ hs(U) and
using Theorem D we have p(z) < Ag(z). A simple calculus shows that 35, < 3
hence p(z) < ha: , 1(z) and the proof of the theorem is complete.

o A 1 ©as 1
Remarks. 1°. For 8§ = s we obtain 8% | == = and the above result becomes
Theoremm 1 [1].

2° Theorem 1 shows that if% <8 < land o = 0, the €, () C AC,(8541).

Taking a = 1 we obtain AC, ,(8) C AC,(35.1).
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COROLLARY 1. Let —l, <3<l and «>f 20. Then C,,(8) CCyaldr)
where 8%, — 1/F(1, 2n + 3)(1 — 3), n + 3;%}.
Proof. If 8 = 0; using Theorem 1 we have
Coal8) C ACL(3511) == Cao(3511).
If 8 #0, using Theorem 1 and 8,7 € 8 we obtain that if

f e C,(3) then Rc[(l g, g”"'“’“] -

. DRtz ()

=4 {R‘i (1 o) WHE 2@ ] i {}' - 1) Re I’TM} >

% ; Prten | Dt D)’

Let y & C with Revy > —1 and b,(z) == 3, AN

)
~- . . -~ 1 o (1
In [6], S. Ruscheweyh showed that if Resr 2 t,T and f = /,,‘;!

then f x b, & 7, 1

1S~

; Our next theorem presents a result concerning this

function.

THEOREM 2. Let v> — 1 and 3, = max {i“—-ﬁ;’, ZZ " 1)} <8 <L
~ "o 2(n 4-
Iff =7, (3) them f*b, € Z, (8(n, v, 8)), where

S, v, 8) = — | xE ——1+n
T (1,2(n G =), v -f’—)

and this resull 1s  sharp.
Proof. Let F(2) = f(z) % b, (z); using the well-known formulas [6]:
2(DFf(2)) = (k- 1)DF+Y flz) — RD* (2), B &N
ADFE) = (v + DD*f(z) — yDHf(2), Rey > — 1, k € N

we obtain that f e Z, (3) is equivalent to

) zp’(2) e (2 here Hlz) - l)’”“_I_’_(i)_‘
]‘)(Z) A (n - DpE) by ~-n <% (..), where /)( ) Dri7(2)
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Considering the differential equation

9(2) +ﬁq;‘z]+i)~y—’ == g (2) wheref =n -1, v =2y —n

and using Theorem B we deduce that this equation has the univalent solution

1
g(z) = —— — X, where Q(z) = S f: — z)zﬁ“"vml”"’*"‘dt.

T80 B

0

We also have p(z) < ¢(z) and ¢(z) is the best dominant.

Using a method similar to that of P. T. Mocanu, D. Ripcanu and L.
Serb [5] we show thainf{Regq(z):z € U} = ¢g(— 1).

We use the following well-known formulas :

1

S P11 — f) b (1 f2)edy = DO Z M) gy

a, b, ¢; 2), with ¢ > b>0
I{c)

0

Fla,b,¢;2) =F(b,a,c;2)

F(a,b,¢;2) = (1 — 2)=aF (a, ¢ — b, ¢;——| which hold for all

r —

ze O\ (1, 4 ).

If 3, <8 <1, we denote a =28(1 — 3), b =8+ <", ¢c — b =1 and using
the above relations we deduce

“Since ¢ > a > 0 we obtain that Q(z) = S ﬁl—f—;)— du(t), » = U where
) E

du(t) = _1e t-1(1 — f)e—a-1 dt is a positive measure,
1'a)T(c — a)
If we let Q(z, 1) = 1—% then Re Q{z, ) > 0,

0 0 r1

Q(—rt) sRfor0<r<1,te<i01] and Re —— » _!



8 T. BULBOACA

for |z] < r< 1,1 e [0, 1] By using Theoremm C we deduce

Re1> ! , |zl € r <
Q(z) Q(-1)

and by letting » — 1~ we have Re—]— > ! N
0¢) T Q=1

Then, by letting 8 — 37 we obtain our result.

. +1 L7,
Now we will prove that our result is sharp. If we let I?T](()) = g(z) we
A 3 ¥4

HDMECN w4+ 1)g(z) — n = g(z), and letting D*F(z) = ¢ (2), ol0) =

nF(z)

=¢'(0) — 1 =0 we deduce “9(—()) = ¢(2), ¢(0) = 1. This last differential equa-
16

obtain

tion has the regular soluticn ¢(z) =z exp SM dt, hence DrF(z) =
t

0
3

—zexp(n+1) S"“)t_“ dt =G, (z). Because z(D*'F(z))’--(n—1)Dn-1F(z)=nD"F()
0

we deduce D"-1F(z) + —

2(D"=1F(2)) = —2— G,(3), Go(0)=0, n> 1 hence

n—1 n—1

z

D*=1F(z) = —\ G, (t)*=2 dt = G,_,(2). A simple calculus shows that
P

n-1

o

0

Dr-2F(z) = 2] gc,,_,‘(t) =33t = G,_q(2)
0

Pid

Z

D'F(z) =2 S G,(H)dt = G,(2),

and F(z) = S E.li’l dt; since zF'(z) = (1 + y)f(z) — vF(z) we conclude that
0

flz) = 1# (YF(2) + 2F'(2)) is the extremal function and this completes the
+¥

proof of our theorem.
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COROLLARY 2. If y > max{—Tl., " — 1}, then [ < 7, (l)) implies that

f¢b, Z( (n Y,—)) where 8(n Y, —-) R .2 --~')'+~n‘ >

n4 1] 1
FI1l, o -1,y -2, —
o

-

>%, and this result is sharp.

Proof. Taking § = %in Theorem 2 we obtain the first part of this corollary

260 D)

2v - m o}

the relation ‘n Y —;—> L’) is equivalent to F(l, nt+1, v+ 2; %) <

and a simple calculus shows that the last inequality holds.
Taking #» = 0 and # = 1 in Theorem 2 we obtain respectively :

COROLLARY 3. If v> — 1, max {—- v, - l} <5 <1 and f A, then

ke hff( >8, z s U umplics Re ‘:-((;) > 30, v, 3), z € U, where F(z) =

f(2) # by(z) and 3(0,%, ) = LA — — .
F (1,2(1 —8), v 2 ;)

COROLLARY 4. If v> — 1, max {‘;ZY 2 M <5<t and f e A, then

7 95 8) — 1
oy L (I, v, 9) ,

(1 + 4;()) > 28— 1, z e U implies Re(

2 € U where F(2) = f(z) * by(z) and

~

(1, v, 8) = !

[
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{

} 2, In aceastd lucrare construim o clasd de operatori liniari pozitivi pe mul-
ﬁmca functiilor

JiD=R, unde D = {(x,v):x 20, v = 0}

ifacem o analizii a restului intr-o formuld de aproximare a functiilor prin acesti
peratori.
e «, B doi parametri reali, m, ¥ numere naturale.

Jefinim operatorul L},f,‘f” prin

F 3 1
L2 N =30 3 iR f| L L), @
o = m
de
_x kg keal
(v (1 - am) a( “ ) . , (3)
1 - o k!
¥ NTANY ar
Wil () = (180 F () (3)
) 14 Bn 5!

. o I .. o, .
Bte evident ¢ operatorul Li%® este un operator liniar pozitiv pentru a> 0,
i~ 0.

Yotind (RSEZF)(x, v) = flx, v) — (LSEPF)(x, v),
wem e ) = (LA ) + (REDS)(x, ) )

i seopul este de a obtine forme lucrative ale restului (Rf,f‘,f3> ) (x, ¥) in

iceastd formuld de aproximare.

3. Inainte de toate, fie functiile Z;(n, v) = #%y/, 1 =0,1,2; =0, 1,2
fvem

o w0
(L L) (3, 0) =32 30 el (0)ws () =

ko -

<

e [i (1 _.}_ d7’l)-- ::‘( ™wm ]k ) ,1’(2' B BT 2= N 1)1)] %
1 1 - an k! A
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Un calcul similar, arata

(Lfna,l;-a)llo)(x: ) = x, (L;?f’»mlm(’": M) e

(i I (2, 3) == 2y,

%A . . N ,?4
(L >/oz)(x' Y=yt — 2,

(L lyo) (v, %) = a2 4 L2,

(L)%, 9) = w2 + =F ey (LAl (2 5) = ety 4 2y,

n m

(L o) (5, 3) = ae o (R0 DEB (i) o Bt

nt n

Prin urmare

(RE15)(x, 3) = 0, pentru (i, 7) = {(0,0), (0, 1), (1,0}, (1, 1)},

14 5n
(RasP L) (%, ) = — B xy,
n
(RSP La)(%, 3) = — 22220y,
m
(RSP La) (v, ) = — (52 22 iy ) — D202
1]

Din aceasta, rezulti ci
lim (L$&®1, (%, v) = L;(x, v), pentru
m,n-— o
i, 7 ={0,1,2.

4. Fie Y fixat. Folosind notatiile si formele (19) din 17, obtinem

Jlx 2) = (L32f(-, ) () + (R f(-, 3) (),
cu (L f(-, i 2358 (x) ( , v) si

k-0 m

(RS, () = = 35 2 i [ v L by e ) -

o0
1 : k kbt
=— T 3 i (x + v)[r =, e f(-,,\’)] :
7

m k=0 i M
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- 5 k . " . =
Dezvoltind pe f (-~~, yJ dupd aceeasi formuld, avem
m

L) Zw“”(v (L L)+ (ROF(L ).

U

unde

R T SV R

0 ” n J
J
Rezulta
2 0'9'\ s {k 7
' - > <8
f(x; .y) = L z./ v(d x : wn; ("_ > _) -
k=0 j=0 \ m ”
o~ b ke (B Bk 1
- ===k () % =, 2500 A, ] =
k=0 m L m m
- ¥y +J8 <a> J+1
|/ - |- .
R TR0 o L S )] -
e
¥ k
0 o0 ( +, ( 4 B) ’ m ! "
co)(y -7 ad B> .
— 3 EEE I Red 0| .
k=0 j=0 mu 7 i+1
y: A ”
si deci
S EOR4+1
(R, 3) = — 3 =522 v;“z(x)[x, L, S y)] -
k=0 m wm m
>\ v+ 78 w® j+41
-2 Way (y)[y, . ; flx, )] —
7=0 1 ” .
o R+l
=] 0 . ' m ’ m
< 1 8
AR R | f (5)
k-0 j=0 iR ‘ L A i1
' y: »
. . ?'l n
. X k41
! m ' m . R .
unde L f| reprezinti diferenja divizati bidimensionald a lui
i j+ : '
Y, =, - .
- ” n

[ pe sistemul de puncte indicate.
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Presupunind c¢i diferentele divizate de ordinul al doilea ale lui fin raport
cu x, pentru fiecare v fixat, si in raport cu v, pentru fiecare x fixat, st difercnfeic
bidimensionale sint egal mérginite de o acceast constanti M, rezultd

s 1 - am 1 -5 1 -k .-
L L e e |

m n i

5. Si presupunem cd functia f are derivate partiale continue pind la ordin
al patrulea pe (0, 0) X {0, o).

Atunci, conform [3 formula (11)7, avem

(R f(o, () = = 2 (),

2m

Reluind calculul prin care am dedus formula (5), obtinem :

L e . . af
( \)’<na”9> f)(l V) _ i_ am X & (C,, ;\,) . }_Jﬂ-\’ 1 (t‘ T) .
Zm oal 2n Ve

—_ Ml__ﬂ Xy —.{‘f— E_, I}) (ﬁ)

dmn T dx%vt

6. In |11, D.D. Stancu arati c¢i dacd functia f: 10, @0

)
vate pind la ordinul al doilea pe [0, 20), atunci restul (Rg®> f)(x

— R are der-
" )

din formula

J(x) = (L5 N)(x) + (RG> f)(x) (G
poate fi pus sub forma
(R lx) = G x) £ @), ®

unde
G2 x) = (RGPH), dalt) = (x — ).

R§>¢, fiind restul relativ la variabila x, ¢ fiind fixat.
Vom nota insd, prin analogic.

H{B (7, m) = (R $)(x).

Vom presupune cd functia f are derivate partiale pini la ordinul 1V inclusiv.
Aplicind formulele (7), (8), pentru Y fixat, avem

u}~2w” ( )r?wvx“uw -
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15

. 9 « k . - .
Exprimind cu aceastd formuld f (—— R y}, schimbind rolul variabilelor, obtinem
m

P2 o) = Se e[t 1)+ (Boe 0 25 Ja o

. dr3
0

Formula (9), aplicata functiei %’2 , ne conduce la

) " (1V)
S o (L, T) =X (x 1) — SG<¢>(t %) ‘fmf (¢, )dr (11)
1]

Inlocuind (10) si (11) in (9), obtinem

f ) =3 5 R - w0) /(% L)+ (6w 0 Lo i+

ar
Il

S

.

‘I

o'_’ﬁB

[ OB o]

+§H<ﬁ>( ) &, s — [ (6@ DES G, 3 - L s,
0

o=t

00

ceea ce conduce la expresia integrald a restului din formula (4) :

(REP1) (2, ) = (Gt %) - ‘d_lfz (1, v)dt + S H® (z, v) - :);:E (x, 7)dt —
N )
o o y . 1Y) '
S R R e O L
R ;

Sintem recunoscitori prof. D.D. Stancu, care ne-a indemnat sii intreprin-
dem acest studiu si ale cirui indicatii ne-am inlesnit realizarea lui.
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ON STRONGLY-STARLIKE AND STRONGLY-CONVEX FUNCTIONS

PETRU T. MOCANU*

Received : October, 8, 1986

REZUMAT. — Asupra funefiilor tare stelate gi tare eonvexe. Rezultatul princi-
pal al lucrdrii este continut in urmitoarea teoremi.

TEOREMA 1. Dacid 0 < a < 25i f este o functie olomorfa in discul uzitate
, f(0) = f1(0) — 1 = 0, care satisface conditia (2), atunci
#'(2)
f(2)

arg

g La— z€U.

2

1. Introduction. Let A be the class of analytic functions f in the unit disc
U= {z; |z{ <1}, which are normalized by f(0) = f'(0) — 1 = 0. A function
f € A4 is called stronglystarlike (strongly-convex) of order a, 0 < a <1, if
jarg [If@)]I1<am/2 (larg(l + 2/ "(DIf (0)]1< anf2), for z = U If a=1
these concepts reduce to the well-known concepts of starlikeness and convexity,
respectively.

For 0 << « < 1 it is easy to show that each stronglyconvex function of order
« is strongly — starlike of order «, i.c. the following implication

2f'(2)
fz)

fe 4 and =larg——

alg(l 4+ == zf m ,

E

holds. In terms of subordination this implication can be written as follows

fedand 1+ 28 <{ ! "'f‘“')“=> = (2) <( I+ = ) ()
12 12 f(z) 1—«
where 0 < « < 1. This result fails if « > 1.
In the case « = 1, we improved (1) by the following ,,open door’ theo
rem [3].

THEOREM A. If f € A satisfies

1+ zf:’(z) < 142 + 2z )
f(z

(2) 1— =z 1 -z

then

_lz'f"(;z__,"< 1 ,;l;/z '
f(z) Sy

® yniversity % Ciuj-Napoca, Facully of Mathematics ang Physics, 3400 Cluj-Nafioca, Romawia
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Geometrically, Theorem:. A shows that if 1 + zf"(z)/f'(z) liesin
the complex plane slit along the half-lines # = 0, v >4/3 and ¥ =0, v < — JS,
then zf'(z)/f(z) lies in the right half-plane, i.e. the function f is starlike.

]ég tzlﬁis paper we improve (1) by the following result, which holds for all
x < (0,2].

THEOREM 1. If 0 < « <2 and f € A salisfies

14 2f"(2) <(1.+-: x 2az 2
1) s B A (2)

then
EAC) (i+:a,

1) 1 s

2. Preliminaries. If F and G are analytic functions in U, then F is subor-
dinate to G, written F < G, or F(z) < G(z), if G is univalent, F(0) = G(0) and
F(U) Cc G(U).

We will need the following two lemmas to prove Theorem 1.

LEMMA 1{1, p. 128}, Let ¢ be analytic and injective on U ~_E(q), where
L(q) C oU conswts of -a fimite number of isolated singularities. Let p be anabybsc
in. U, with p(0) =" q(0). If there exist ponts z, = U and ¢, = oU \_E(q), such
that ¢(T,) # 0, i’(zo) = .q(%o) and p(1z| < |z01) C q(U), then

2o (20) = %Ceql( Co)s -
wherem > 1.

LEMMA 2 Let P be an analytic function in U such that

P() < ‘“) + o= k() 0<a < (3)

1 — =z
If p is analytic in U, p(0) = 1.and satisff;‘eéfﬂw differential equation”
SR ) b P(A() = 1, AN

then
$(2) <(; J: r‘
Proof. If we let g(2) = [(1 — 2)/(1 + 2)]*, then

The domain k(U) is symmetric with respect to the real axis. Therefore, if
: = e, then in order to obtain the boundary of A(U) it is sufficient to suppose
0 <0< -"‘ ‘

9 — Mathemalica 4/1986
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Letting ctg (0/2) = ¢ and /(e®) = « - iv, we find

u = u(t) = AI*

a(l + t?)
2t

5
v == o(t) = B2+ .t 2 0. (

where A = cons (ar/2) and B = sin (aw/2).

If o = 1, then # = 0 and v > /3 and we find that A(U) is the comple
plane slit along the half-lines » = 0, v > M3and w0, v < — V3.
We note that 4 > 0 (ie. > 0), for 0 < a << 1 and A <0 (i.e. u <0),

for 1 << & < 2. In the last two cases it is possible to eliminate the parameter
in (5) and to express v as a function of #. Actually we find

B affule  [(u)—la u>0, for 0 < a1
e ) SSHE
A 2 4 A #w<<0, for 1 < a<?2

We also have v(0) = v(0) == c0.
In all cases we deduce that % is univalent in U.

‘Now we suppose that 0 << « << 2 and the solution p of (3) is not subor
dinate to ¢. Then there exist points z, € U and {, € aU such that p(z,) = q({)
and p([z21<<|%0)) & q(U). Since g(—1) = o0, it is clear that {, # — 1. Suppose
Co = 1. Then p(z,) = 0 is the corner of the sector g(U). If p'(z,) = 0, by letting
2 = 7y in (4), we obtain a contradiction. If p'(zy) # 0 and 0 < « << 1, then the
image by p of the circle |z| = jz¢| cannot pass through the corner w = 0 without
itself having a corner, which contradicts p’(z,) # 0. If p'(z,) # 0 and 1 € a <2,
then is it easy to show that

(8 — ) - <arglzgp'(z)] < (1+a)7,

which shows that Re [2,p(29)] < 0. Hence, if we let z = z, in (4), we again obtain
a contradiction. All the above contradictions show that T, # 1. Therefore w
can apply Lemma 1 to obtain z.p'(z,) = m {oq'(%,) and from (4) we dedue

1 mTeq (L)
Plz,) = — Do (he) o M), 7
(%0) 7 e Q(Zo, m) Ui

If we let §,=¢", we can suppose 0 < 0 < = Ietting ctg(6/2) =/,
we obtain

QCo, m) = u(t) + 1V (),

where

Vw=w0+@;%§uﬁhtza

and u(¢), v(¢) are given by (5).
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Since m > 1, we deduce V{{) > »(f), which shows that P(zy) == Q(%,, m)¥
¢h(U). This contradicts the condition (3).
Therefore we must have p < g.

In the case a == 2, the result can be obtained by a himiting procedure.

3. Proof of Theorem 1. Tet f e 4 sutisty (2) and let g(z)  of'(z). From
@) we deduce g(z)/z # 0, for z € U. Therefore the functions p(z) - = f(2)/g(2)
and P(z) = zg’(z)/g(z) are analytic in U. Moreover p satisfics the differential
equation (4). Since the condition (2) is equivalent to (3) b‘ L(l]]l]ld 2 we deduce
#z) < [(1 — 2)/(1 + z) 1, which is equivalent to |zf'(z),f() V4 2)/ (1 --2) e
This completes the pmof of Theorem 1.

The above prool shows that Theorem 1 can be stated in the following
equivalent form.

THEOREM 2. Lot O <X €2 and let g € 4 salisfy

_{lgﬂ < ( | SR Ja ¥ Zas )
8(z) 1- =z -2

If

0
hen f = A, f(z)]z # 0 and
LA
f(z) I

If we integrate the differential equation

()
776

1+ = p,

ve easily obtain another equivalent form of Theorem 1.

THEOREM 3. If the analytic function P satisfics in U the condition (3),
hen

1 i3
argS(exPS'Pﬂgdw’d,{{ 1),1'0r;:|<1.

®

s

4. Particular cases.

a) For a = 1/2 the equation (6) becomes

v—=u4 241 w0
= - T — [ :> .
2 8y2
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It is easy to show that v > 1. Hence from Theorem 1 we deduce the following
result.

COROLLARY 1.1. If f € A and
‘Im 76 | <1, z2eU,
e
then
?argi&!<f—, z e U,
i fley 4

For example, if we take f(z) = ¢* — 1, we obtain

i ~ 1 =
larg —— ! << =, for |z| < 1.
i A 4

Using Theorem 3, we obtain the following equivalent form of Corollary 1.1

COROLIARY 3.1. If Q is analytic in U, Q(0) == 0 and | Im Q(z)| < 1 m{,
then
1 1z
{ 20 7) T .
arg S(exp = Sg(ﬂ dw dt| < '—4—, for |z| <1

W

0 2

For example, if we take

0) = Z10g 112
we obtain
1 44
[arg [cxp-;“): ‘ t—i—log %dw)dt} <: for |z| < 1.

b) For = = 1 Theorem'1 reduces to Theorem A, In this case the equ
tions (5) become
1 t

[t + j 1> 0.

=0 and v =1+
2 .t

¢) For « =2 the equation (6) becomes

u < 0.

f—
V== +

1
VR

Since v > 2, from Theorem 1 we deduce the following result,
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REZUMAT. Metoda simplex pentru solutii minime Pareto ale unui sistem
inconsistent. Tu 1977 s-a definit o clasi de functii convexe in medic de ordinut
% (em-convexe) [2] si s-a ariditat c¢d orice functie am-convexii este pscudo con-
vexd. Tn aceastii notii se aratd ci tn anumite conditii orice functic pseudo con-
vexil este axm-convexit cu un numir « determinat.

1. Introduction. Recently [6] we have delined Pareto minimuni solutions
of an inconsistent system and we have shown that there is a strong connec-
tion between these extremal approximate solutions of a system and a multi-
criterion optimization problem. In [6] we gave some properties of the Pareto
minimum solutions of an inconsistent semi-infinite linear system.

In this paper we are going to present a simplex-like technique to generate
extreme Pareto minimum solutions of an inconsistent linear system.

2. Pareto minimum solutions of a system. Let I be an index set and
fo:R*—=R, ¢ € I. Consider the system

filx) =0, ¢ L. ()
It I = {1.2, ..., m} and

filx) =) aux; - b, el @
71

then system (1) becomnes a finite linear system:

éa,-jxj =b, 1] @
=t
or
Ax = b, )
where 4 = (a;;) is a m X n real matrix and b == () — a column matrix of

the type m X 1

If I-=N and f, are given in (2), the system (3) is a scmiinfinit linear sys
tem.

® University of Ciuj-Napoca, Uaculty of Mathematics and Physics, 3400 Cluj-Napoca, Koman'a
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DEFINITION 1. Vector x = R* 1s callsd Parcto minimum solution (or
Pareto minimum point) of the system (1) if there is no y € R* such that

0 Vi el = |fi{y)| < [filx)]

(ii Ho =L (AW < [fil#)]

DEFINITION 2. Vector x € R* ts called weak Pareto minimum solution
of the system (1) if there is mo vy € R* such that

Viel=|fi(y)l <I|fi®]

If we denote by P(f, I), P,(f, I) the set of all Pareto minimum and weak
Pareto minimum solutions of the system (1) respectively, then obviously

P(f, 1) C Pu{f. I)

The converse inclusion generally does not hold (see [6]).

3. Equivalent multieriterion optimizatuin problem. Consider X < R»,
f: X—+Rm" g: X —+R. Assume that

S={xesX:gx) <0} #0.

We remind that x® = S is called Pareto minimum solution (efficient solu-
tion) or Pareto minim point on S of the vectorminimization problem:

f(x) —min
subject to
gx) €0, x e X
if there is no ¥ = S such that

f(x) < f(x%), f(x) # f(x).

Assume that I = {1,2, ..., m} and consider the following vector-minimi-
zation problem (V.P):

(ul, uzl, e, u,,,) —min (4)
subject to
Ifix)| Swu;, i€, x =R, u R}

THEOREM 1. ([6, Theorem 1]). x, € P(f, I) if and only if (2°, u°) is a
Pareto minimum solution lo thc problem (V.P), where

o = (1fi(%o) |, - .- |fm(2°) 1)

In what follows we shall deal with the case when

filx)y =2a5% —b,iel={1,2 ..., m
=0
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i.e. we shall consider the Pareto minimum solutions of the system
Ax =10, (6)

where A € om,,,, (R) and & = am,, (R).

We denote by P(A4,b) the set of all Pareto minimum solutions of the
system (6).

In the present case the problem (V.P) becomes a Parcto linear program
(PLP) : minimize » € R™ subject to

|Ax — bl <u, x <R, u € R}

From Theorem 1 it follows

Corollary 1 shows that to find x® € P(4, b) is equivalent to find a Pareto
minimum solution to the vector minimization problem (PLP).

DEFINITION 3. An approximate solution x* < R* of the system (1) is
called the least squares solution of (1) if

S i) = it 3 £

SERN s==]

THEOREM 2. Problem (PLP) is always consistent and P(A, b) # @ for
each matricsis A and b.

Proof. Consider x* = R* the least squares solution to (6), i.e. a solution
of the system

z;{f,(x)a,j =0,j=12...,n

which always exists. Then

(x*, u3, u3, ..., uy) & Rotm,
where

ul = |fi(x®)], 1 =12, ...,m

is a feasible solution to the problem (PLP), since #f >0, i =1,2,...,m.
But if x* is the least squares solution to (6), then x* = P(A4,b). Indeed,
if x* ¢ P(A4,b), then there is x € R* such that (i)—(ii) are satisfied. Then

S8 < i)

which contradicts the fact that x* is the least squares solution to the system (6).
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4. Optimality ecriteria. To solve the problem (PLP) it is convenient to

express our multiobjective programming problem in th following simplex-like
tableau

—x —u 1
y=1 A4 —E.|
g=|—A4 —E, | —b (7)
f=1 0 —E,| o0

where E,, € pym (R) is the unit matrix and 7 = (Ymi1 - - - Vom)”.
Without loss of generality, we assume that

rank 4 = »,

otherwise system (6) is generally consistent and every its solution is always
a Pareto minimum solution (see [6, Theorem 4])

Then, after » Jordan elimination steps (J.e.s.) we can ecliminate variables

x. Assume that x,, x,, ..., x, were eliminated from the first # lincs. Then we
get the tableau

=Yy e =Va Uy ... Uy | 1
_Yn»il =
M 7= A, b,
_’).’m'[-l' forpiiiod
Nom R
f s () i [L‘m E () i

in which we have omitted the first # lines corresponding to the variables x,
writing separately

x = BT — B™W, (8)
where
B == (a)lim, b =(by ... 0), ¥ == (v ...

Continuing with the first stage of the simple algorithm, to determine a
basic feasible solution (b.f.s.) to the problem (PLP) (that in view of Theorem
2 exists) we get the tableau

o=l D | (9)
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corresponding to the canonical vector-minimization problem (CPLP):
f(z) = —Cz + ¢c—min
Dz <d, 220
where D € Mom—mxmim: C € Mpxmwim and d € R ¢ € R™,

To simplify the notaticn, we have denoted by z € R%™™ and » < RY™
the nonbasic and basic variables of the problem (CPLP) respectively.

THEOREM 3. (4, Theorem 1]. Let (0,d) (d > 0) be a b.f.s. given in (9
and let Q = {i:d;, = 0}. Then (0,d) is Pareto minimum solution lo (CPLP) if
and only if

Cu >0, Cu 0
(10)
Dou <0, 220

is inconsistent, where
Dy=(d,),+€Q, 57=12 ....n4+m

Remark 1. If (0, d) is a non-degeperate b.f.s., then ¢ = @, and (10) beco-
mes

Cu =20, Cu 0, uz20 (10)
We denote by

a- = (an. iz, -y Biy), AT = (anj. Asjy -, amj)T

the row-vector and column-vector of the matrix 4 = (a;) € Usmxm respectively.
Now, let 7,7, ..., % (1 € & < m) be distinct numbers of I such that

Cil]\O]ejon—{lZ n+m} ]1:{j6]0:0i1j=0}
¢y O, 7€ J, Jo=1{j e]l ¢i,; =0}
;k,\O]e]k L Je= {] ]kl ;k;';o}

Obviously

Jo21i2J.2 ... 2 |

THEOREM 4. If Jo Ji ..., Ja—1 are nonempty and J, =&, then (0, d)
is a Pareto minimum solution to (CPLP).

Proof. If (0,d) is not a Pareto minimum solution to (CPLP) then there
is (z, #) such that

Cz:z0, Cz#0. (11)
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~ Let H={j = J,:% > 0}. From (11) it is clear that (§ # H < J,. Indced,
if there is 2 € H \_J,, then from ¢;; < 0 it follows

E Ci\j Zj < 0
je i

contradicting (11). Therefore H < J,.
Denote by

s=max {# < {1,2, ..., k}: H = J,}

Then we have 1 <s <k, [ # s
Since
c

i <07 = o\ Jsan

I
341

it follows

which again contradicts (11).
From the proof of Theorem 4 it follows

COROLLARY 1. If Jo. Ji ..., Jm—1 are non empty, then (0, d) 1s a Parcto
minimum solution to (CPLP).

COROLLARY 2. Let ¢ <0 and J, = {j < Jo: ¢ =0}
If there is s € I \_{i} such that
VieJi =06 <0
then (0, d) 1s a Parcto minimum solution to (CPLP).

5. Deseription of the algorithm. The general outline of the algorithm follo-
wing from Theorems 3 and 4 is as follows.

Step 0. Starting {from (7) eliminate variables x and construct Tableau (9).
Step 1. Starting from Tableau (9) proceed to a b.fs.
Step 2. Set i:=1,4,:=14, J;:=J,={,2, ...,n+ m}
Step 3. Minimize
fiz) = — Z; c;zion S={z:Dz<d, 220}
JjeJ;
Sl‘e]b 4. Set 1: =14+ 1, 1;: = 1,44, ]i3 = Jiyr = {] E]iICij ::O}.

Step 5. If J; =@ ori+ 1 > m+ 1, then go to Step 6, else go to Step 3.
Step 6. Calculate x* from (8) for (v, z) = (0, d) and terminate.
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Remark 2. To minimize f,(z) at the Step 3 we can use the simplex algo-
rithm corresponding to the first 2m — n rows, objective function f; in the Tab-
leau (9) and column j « J,.

Remark 3. To compute another Pareto minimum solution to the system
(6) we have to itrate the algorithm by changing the initial index ¢ in the
Step 2.

Remark 4. To generate all extreme Pareto minimum sclutions to (6) we
can apply the method given in {31, by taking, for instance, supercriterion

"
F(x, u) = y_
fl
6. A numerical example. Consider the following inconeistent linear systen
xl =
xz, = 0
%+ %, =1

The initial simplex tableau is the following

—%) —Xy —Uy —Uy il 1

v, = 1 0 —1 0 01 0
=1 0 1 0 —1 0| 0
yo=1| 1 1 0 0 —1 1
Yoyy=1—-1 0 —1 0 0] 0
y=| 0 =1 0 —1 o lo
Yo=|—1 —1 0 0 —1 ‘1

|

h=] 0 0 —1 0 0 0
o=} 0 0 0 -—1 0! 0
fsi={ 0 0 0 0 —110
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Step 0. Eliminating x, and «x,, after

29

two Jordan steps (J.S) we get the

tableau

—Vi Yy Ty —Hy —ugl 1]

yy=| —1 —1 1 1 —1 1

Ny = 1 0 —2 0 0 0

V; = 0 1 0 —2 0 0

(7 1 1 -1 -1 —1 |—1

fi= 0 6 —1 0 0 0

Fy = 0 0 0 —1 0 0

, = 0 0 0 0 —1 0

T e
XNy 7= —Y: Tt Uy
Step 1. Adter once J.s. we get the tableau
TV TV T TV U 1
Ny = 0 0 0 1 =21 0
vy 1 0o =2 0 0y 0
Vye= | —2 —1 2 =2 21 2
iy == —1  —1 1 -1 1] 1
S 0 0 —1 0 0| 0
Jro=1—-1 -1 1 -1 11 1
fs = 0 0 0 0 —-110
which gives a bfs. y, =y, =u; =y =u3=0; y,=9,=0, y; =2, u, = 1.

Step 2. Set 1,: =1, J, ={1,2,4,5}.

Step 3. Minimize

Vit Yt Ve — U

After one J.s. we

get the tableau

(f2(2) — min)

—Yy —Ya Uy —Ys U 1
Vg=1 =2 2 2 -1 2 2
vy = 1 0 =2 0 0 0
vy = 0 1 0 0 -2 0
y =1 -1 —1 1 ~1 1 1
fi = 0 0 -1 0 0 0
fo = 0 0 0 0 -1 0
s = | —1 —1 1 —1 1 1
Step Aoy —Z ]2—{1 2, 4}
Step 5. Jg =
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Step 6. A Pareto minimum solution is given by the b.fs.
Y = :\v‘;’) =4l = y“ =ud =0

A= 2ot 0,47 -0, wf ==

1.c.
O a0 0
Xy Yooy
MR

Therefore a® == (0, 0) is the first extreme Pareto minimum solution ol the
given system.

Iterating the algorithm by taking 7,: == 2, after one J.s. we get another
extreme Pareto minimum solution x! := (1, ), which is written from the tableay

=N TNy Uy A Uy 1]
Ng = O 0 -9 1 O 0 :
vom| -1 =22 2 2 2
Vs = 0 1 0 0 -2t ¢
uy =1 —1 --1 1 —1 1 5 1,
fi=]—1 —1 1 —1 1 1|
fo= 0 0 0 0 -1, 0
fs=1 0 0 —1 0 0] 0|

in wich 7,: =3 and J, =1234 , J, =0
The last iteration of the algorithin, starting with ¢, : - 3 and taking
1y =1, 13: == 2, gives the last extreme Pareto minimum solution x*:= (0,1,

beot
e
=
—
ey
—
~
—
<.
4
o]
=
xT
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ABSTRACT, -- In Part I, a multilevel fuzzy classification is introduccd. The
cluster substructure of a fuxzy class is described by a fuzzy partition of this
class. A refinement relation between fuzzy partitions is defined. Some convexity
properties for fuzzy partitions are given. A generalization of the Tuzzy ISODATA
clustering algorithm is developed. A stratified classification may be obtained using
this algorithm.

In Part IT, a fuzzy hierarchy is defined. A divisive clustering algorithm to
obtain a binary fuzzy hierarchy is given. The algorithm represents an ceffective
technique for identifying the cluster structure of a data set.

1. Introduction. This paper presents a fuzzy hierarchical approach of the
pattern recognition problem. The main task in pattern recognition is the class
identification. The most real-world classes are fuzzy in nature. The classical sets
are therefore not appropriate to describe such classes. A class of patterns may
be conceived as a fuzzy set. The cluster structure of a collection X' of pat-
terns will be given by a set of disjoint fuzzy sets which form a fuzzy partition
of X. The cluster substructure of a fuzzy class C may be described by a fuzzy
partition of C. The hierarchical structure of X is given by a chain of fuzzy
partitions ordered by the refinement relation. This chain generates a binary
fuzzy hierarchy. Hierarchies may be obtained agglomeratively or divisively.
In this paper a fuzzy divisive procedure to build a fuzzy hierarchy is developed.
The classes are subdivided as long as is necessary to produce the final objective
classification. )

A decomposition criterion which permits to retain in the hierarchy only
,real” clusters is used. In this way no a priori knowledge concerning the
optimal number of clusters is required. The method gives therefore a solution
of the cluster validity problem.

The method is more powerful than the one-level classification methods
because it permits a more intimate exploration of the cluster substructure. No
evaluation of a validity functional [1, 4, 14, 15] is needed. Our approach is
essentially different irom the hierarchial clustering methods based on fuzzy
relations. In the method of Bezdek and Harris [2], for example, fuzzy
relations are used to obtain classical hierarchies. As the author knows, the
present procedure is the unique which produces a hierarchy of fuzzy classes.

University of Clij-Napoca, Faculty of Mathematics and Physics, 3400 Cluj-Napoca, Romania
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2. Prerequisites. Let X = {x,, ..., x,} be a set of patterns. Every pattenn
x; is specified by the values of d features. x;,, € R represents the value of the
j-th feature with respect to x; - x; may be thus considered as a vector {or
point) in R4,

A fuzzy set on X is a function 4: X — [0, 1]. We denote by L(X) the
class of all fuzzy sets on X. The set operations of fuzzy sets are defined using
the triangular norms (f-norms) and #-conorms (see for instance) {117). In this
paper we consider the f-norm T(x, y) == max(x 4y — 1, 0) and the ¢-conorm
S(x, v) =min (x 4+ y, 1).

Let 4 and B be two fuzzy sets from L(X). The reunion A4 U B is defi-
ned by

(4 U B)(x) = min (A(x) + B(x), 1), Yx € X.
I'he intersection 4 (M| B is defined by
4 N B) (x) =max (4(x) + B(x) — 1, 0), Yx e X

The inclusion on L{X) is defined as usually
A < B if A(x) < B(x), Vx e X

The family A4,, ..., 4,, # > 2, of fuzzy sets is called disjoint [5] iff

J
(UAi)ﬂAjH:Q, j=1...,n—1,
EEES
where @(x) =0, Yr € X.

The family 4,, ..., 4, of fuzzy sets is said to be a fuzzy partition of the
fuzzy set C iff it is disjoint and its reunion is just C. A4; is an atom or member
of the partition. It is not difficult to prove [5] that the family 4, ..., 4,1

a fuzzy partition of C iffz_\,A,'(x) = C(x), Yx € X. For C = X this equality

is just Ruspini’s definition (;f a fuzzy partition. We denote by F(C) (F,(C)) the
class of all fuzzy partitions of C (having # atoms).

Let P, Q be from F(C). Q is said to be a refinement of P, P < Q, iff every
atom of P is a reunion of some atoms of Q.

It is easy to see that if P={4,, ..., 4,}, P €F,(C) and Q; = F(4)),
then {Q,, ..., Q,} =Q = F(C) and P < Q. The refinement relation is an order
relation on F(C) [11].

3. Convexity propeties. Let M,, be the linear space of real (m X p) mat-
rices. Any fuzzy partition P = {4,, ..., 4,}, P €F,(C) may be characterized
by matrices in M,,. Let m; be the ij-th element of the matrix M and define

U,(C) ={M e M, \m; < [0, 1],j}§lnzij == C(x;), Vji*
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|
There is an isomorphism f: F,(C) — U,(C), defined by f(P) = M where m; =
= 4,(»;). Throughout this section we identify a fuzzy partitions with the matrix
associated to it by this isomorphism.

A fuzzy partition is called non-degenerate iff none of its atoms is empty,
i.e.EAi(xj) > 0, for every 7. P is degenerate iff E Afx;) 20, for each 1.

Let 717‘,,0(0) be the set of all degenerate fuzzy parti]tions of C having » atoms.
We denote by by F,,(X) (Fuo(X)) the set of all non-degenerate (degenerate)
classical or hard partitions of X. Using the established isomorphism we may
speak about the convex combination of fuzzy partitions. We are now able to
state the next convexity property.

PROPOSITION 1. The sets F,(C) and F,(C), where C « L(X), C # @,

are convex.
Proof. Let us consider P; = {4], ..., 41}, P; € F,(C), and a,, ..., 4> 0,

aJA () and denote

M»

Ea] = 1. We define the convex combination B,(x) ==
j=1

'u

”

Q={B, ..., B,}. We have thusiB,?(x) =2 7‘a Al (x) = ia,EA{? (x) =

i=1 =1 j=

2 - C(x) = C(x), for every x from X. It follows thus that Q is in F,(C).

It is not difficult to see that the convex hull of F,,(X) is a subset of
F,(X). The inclusion conv F,,(X) C F,(X) is strict [3]. The next proposition
proves this affirmation. It gives a necessary and sufficient condition that a
fuzzy partitions from F,(X) admits a convex decomposition with non-degene-
rate hard partitions.

PROPOSITION 2. Lzt P={A4,, ..., 4,} be from F,(X). P isin conv F,,(X
if and only ifZXA,f(x) z1, i=1 ..., n

Proof. Necessity. If P = convF,(X) then there exist a;, ..., @ >0,
b

Ea_, =1 and @Q; = {Bl, .., B)}, Q; from F,(X), =1, ..., k, such that

i=1
= E,‘aj Bi(x), for every x from X. Q, is non-degenerate and thus
=

YS Bi(x) = 1, for cvery 1, J. We may write

LA ‘>“ Bi(x) = ) a, == 1.
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In order to define a local dissimilarity I); which depends on 4 we consi-
der & distance d on R given by

Fm (A(x), A4,(v) d(x, »), if x,yeX
di{x, v) == A,(x) d(x, ¥) frxeX y#X
td{x, 3) fryye&EX

The local dissimilarity is thus

Di(x, v) = di(x, v), Vx, y.

If L; € X then A4,(L;) = max A4,(x) and therefore we may write
ra X

Di(xj, L)) = di(x;, L) = (Ai(x,))d*(x;, L,).

The inadequaeyll(A,, L)) between the fuzzy class 4, and its prototype
L. may be defined as

? ?
I(4;, L) = ) Dy(x;, L) =) (A4,(x,))dx(x;, L,).
i=1 J=1
The inadequacy J(P, L) between the partition P and its reprcsentation
L={L, ..., L,) is given by

. "2
J(P, L) =2 I(4; L)) = L 2 (A% d(x;, L),

where J is a function J:F,(C) x R* - R.

The detection of the cluster substructure of the fuzzy class C reduces to
search for the partition P € F,(C) and its representaticn L € R which mini-
mize J(P, L). The optimal fuzzy partition is thus obtained as the sclution cf the
minimization problem :

J minimize J(P, L)
\ P e F,(C) (1)
. e ™

The next propesition gives a local selution of this problem:

PROPOSITION 3. i) P « F,(C) is a minimum of the function TTCTLY of
and only if

Vi, 7. 2)
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ity L € R 1is a minimum of the function J(P,-) if and only if

4
T (i)t
= 1= ;
L= Wi (3)
3 (i)

i=1

Proof. Yor necessity the ILagrange multipliers method is used. For suf-
ficiency one shows that the Hessians associated with J(-,L) and J(P,-) are
positive definite.

Remark. The Picard iteration with (2) and (3) is used to obtain a locai
solution of the problem (1). The starating point in the Picard iteration may be
an arbitrary choice for P or an arbitrary choice for L. For C = X this proce-
dure reduces to the well-known Fuzzy ISODATA algoritm [1, 12]. For this
reason we will call it Generalized Fuzzy ISODATA (GFI) algorithm. Using
the GFI algoritm a stratificd classification of the pattern set may be obtained.
In the second part of this paper a hierarchical divisive procedure to detect the
optimal cluster structure in the data set X will be given.
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ON A GENERAL TYPE OF CONVEXITY
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REZUMAT. — Asupra unui tip general de convexitate, in lucrare se dil o
caracterizare operatorilor integrali (2) ce conservit functiile S-convexe definite
in [5].

In their bock 15], A, W. Roberts and D. E. Varberg have
proposed, for an independent study project, the following general notion of
convexity. Let S be a subset of [ X I (where I == [0,1]) and D == {0, b!. The
function f: D — R is said to be S-convex it it verifies the relation:

e |

flsx + ) < s fla) + £ [N (1)

for any (s,4) € S and any x,y € 1. "y

The set of all S-convex functions defined on D is denoted by K(S). Theore-
tically S can be a subset of R? and a S-convex function can be defined on some
subsets of a linear space. But even in the case given before can appear some
complications. For example, from (1) we can see that s +/ < 1 forany (s,¢) =
e S. Otherwise b must be infinite hecause (s - () - x € D for x € D.

Apart from the well known examples of S-convexity given in {57, let us
to mention here another one, given by us in [71. For a given m € I, we say
that the function f: D — R is m-convex if:

flsx +m(l — s)y) < s fa) +m(l — ) - f(v)

for any %, v € D and any s € I. A function is m-convex if and only if it is
S, convex, where:

Sw=A(s,t)rs 1, t=m(l —s)}

As follows from Lemmma 2, m-convexity is a notion intermediate to convexity
(m = 1) and starshapendness (m = 0). So.it may be considered similar to a
notion given for complex functions by P. T. Mocanu in 4]

For s =t =20, from (1) we have f(0) < 0, that we suppose to be valid
for any function which appears in what follows.

To answer to some questions from {5, we consider the following relation
between sets: S < S’ if for any (s, /) € S there is an (s, 1) € S’ such that
t <t'. We put 0 < S for I x {0} < S.

LEMMA 1. If 0 < S, any S-cenvex function [ is starshaped.

* Polytechnical Institule, Department of Mathematics, 3400 Cluj-Napeca, Komaria
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Proof. For any s € ], ther is a ¢ 2 0 such that (s,7) € S. So, for any
x € D, we have:

fls0) = flsx 4+ 0) <5 flx) +- ¢ f0) < s - f().

LEMMA 2. If 0 < § < S', then K(S) D K(5).

Proof. LLt fbk in K(S’) and x, v in D. For any (s, ) & Sthereis a (s, 1)e€S$
such that £ > {. Hence:

flsx A 4y) == flsx + U(8)y) < sf(x) + £/((1F)) < sf(x) + Y1)

Remark 1. As s 4+t € 1 for (s, 4) € S, we deduce that the usual conve-
xity is the most restrictive.

COROLLARY 1. If 0 < S and G C S, where :
G {(s,4):s eI, t,=inf{: (s, £) = S}},

then K(S) == K(G).

Remark 2. This property gives an answer, at least partial, to the question
on the minimality of the set S which determines a class K(S).

But our central objective in this note is related to another problem. In
27 A, M. Bruckner and E. Ostrow have proved that the integral
mean :

F(f)(x) = =\ flv) dv

0

R |-

preserves the convexity, the starshapendness and the superadditivity of the
function f. In [3] it is considered a more general mean:

Ef)(x) = \ g'(v) f(v) dv. v

In [6] we have obtained a characterization of the weight-functious g which
give integral means F, that preserve the above propertics. We want to extend
now this characterization to the casce of S-convexity.

THEOREM. The function F(f) ts S-comvex for any S-comvex function f
if and only if the function g is of the form :

gx) =k -x k<R, a> 0. 3)

Proof. The function fy(x) = cx is S-convex for any real c. Hence so must
be also the function:

Fo(x) = Fe(fol(x) =

e
0
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But, ¢ being of arbitrary sign. this happens if and only if, for ¢ = 1:

Fo(sx + ¢ - y) = s+ Fo(x) -+ 1 - Fo(w)
for (s,8) € S; x,v € D. Thus (see [11) Fy(x) == bx and so g must be of the
form (3). If a > 0, (2) is not defined for f(x) = ¢.

Conversely, if g is given by (3), then (2) becomes:

F)®) =25 (ot flw) do. (4)

aking the substitution (given in [3]): ¢ a - w's, from (4) we get:

1

Ff)) = { flx - e,

0

It fis in K(S), for any (s,¢f) € S and any x, v € D, we have:

1
SS flrw®)dw +

0

F(f)(sx + tv) = § Fllsx + tw')de <

+t { flywiydw = s- Fo(f )(2) + - Fu(f) ()

0

that is F,{f) is also in K(S).

If we denote:

MeK(S) = {/: Fo(f) = K(S)}

we have thus the following:
COROLLARY 2. If 0 < S < S and a > 0, then:

K(S)  K(S)
N N
M*K(S") C M*K(S).



-t
.

LS I T B S CR

GH. TOADER

REFERENCES

Aczél, J., Lecturcs on functional equations and their applications, Academic press, New York -
London, 1966.

. Bruckner, A. M. and Ostrow KE. Some function classes velaled to the class of contex

Sfunctions, Pacific J. Math. 12 (1962), 1203—1215.

. Mocanu, C., Monotony of weight-mears of higher order, Analyse Numcr. Théor. Approx. 1l

(1982), 115—127.
Mocanu, P. T. Une propriété dec convexitlé généralisée dans la théorie de la représentation conforme,
Mathematica 11 (34) (1969), 127—133.

.Roberts, A. W. and Varberg, D. E. Convex funciions, Academic Press, New York,

1973.

. Toader, Gh. An integral mean that prescrves some function classes, Bulet. Inst, TPolihehn.

Cluj-Napoca, Ser. Mat.—DMeec. 27 (1984), 17—20.

.Toader, Gh., Some generalizations of the convexity, Proc. Collog. Approx. Optim., Cluj-Napoca,

1984, 329—338.



STUDIA UNIV. BABES—BOLYAI, MATHEMATICA, XXXI, 4, 1986

FURTHER REMARKS ON THE FIXED POINT STRUCTURES

TOAN A. RUS*

Intrat in redactie: 18 ociober 1980

REZUMAT. — Alte observatii asupra structurilor de punet fix. In 5 am reali-
zat o teorie a structurilor de punct fix in spatii metrice. In prezenta lucrare sc
extind aceste rezultate in cazul unei mulfimi oarecare.

1. Introduetion. The purpose of this paper is to improve the results given
in [5].

We follow terminologies and notations in 4! and [5.

2. Fixed point struetures. Let X be a nonempty set and ¥ « P(X}. We
denote by M(Y) the set of all mapping f: Y —Y.

DEFINITION 2.1. A triple (X, S, M) is a fixed point structure i

(i) S P(X) is a nonempty subset of P(X),

(i) M:PX)— U M®Y), Y - MY)C M), is a mapping such that,

ve Py
if ZCY, then
M@Z)D{fiz:f = MY) and f(2) C 7},

(ii1) Every Y = S has the fixed point property with respect to JM(Y).

Now, let us consider some simple examples.

Example 2.7. X is a nonempty set, S = {{x} 'v & X}. and M(Y) - M(Y)

Example 2.2. (Bourbaki-Birkhoff). (X, <) is an ordered set, S ={} &
e P(X) (Y, <) has a2 maximal element} and M(Y) = {f: Y=Y ix < f(x). o
all x € Y}.

Example 2.3. (Knaster, Tarski, Birkhoff). (X, <) is a complete lattice,
S =={Ye P(X)|(Y, <) is a complete sublattice of X} and M(Y) == {f: Y —Y |/
is order-preserving mapping}.

Example 2.4. (Banach, Caccioppoli). (X, d) is a complete metric space,
S==P, and M(Y) ={f:Y—=Y|fis a contraction}.

Example 2.5. (Niemytzki, Edelstein). (X.d) is a complcte metric space,
S == Py(X) and M(Y) == {f:Y—>Y|f is a contractive mapping}.

Example 2.6. (Schauder) X is a Banach space, S -+ P,..(X) and M(Y) =
= C(Y,Y). .

Example 2.7. (Dotson). X is a Banach space, S -= P, q(X) and M({Y) =
={f:Y—=Y|fis a nonexpansive mapping}.

* University of Cluj-Napoca, Faculty of Mathematics and Phvsics, 3400 Cluj-Napoca, Romania
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Exampic 2.8. (Browder). X is a Hilbert space, S = P, (X) and M(Y) =
= {f:Y—Y|fis a nonexpansive mapping}.

Examplc 2.9. (Schauder). X is a Banach space, S = P,4.,(X) and
M(Y) ={f:Y—=Y]|f is completely continuous}.

Example 2.70. (Tychonov). X is a locally convex space, S = P,,(X)
and M({Y) = C(Y, 7).

3. Mappings with the interseetion property. Now, let us introduce

DEFINITION 3.1. Let X be a nonempty set, Z(C P(X) and Z #0. A
mapping 0:Z— R, has the 1ntersect10n propertyif Y, €Z, Y, . CY,, neN
and lim 6(Y,) = O implies Ypo: = Y, # @ and 0(Ye) ==

7”00 neN

For some examples of mappings with the intersection property see [5].
Consider, however

Example 3.7. Let (X, d) be a complete metric space. If x, x,, 2, € X,
then we denote by 8,(x;, %, x;) the area of the triangle A(x,, %, %;). For
Y € Py(X) let

35(Y) 1 == sup {3,(%1, %a, %3) | %1, %a, 75 € Y},

If Z is the set of all connected and bounded subset of X, then 3,: Z—+R,,
Y +— 3,(Y), has the intersection property.

For some properties of the mappings with the intersection property see [5].

4. Compatibility with the fixed point struetures. Let us give )

DEFINITION 4.1. Let (X, S, M) be a fixed point structure, 6: Z—R_(5C
CZC P(X)), n:Z—Z. The pair (6, v) is compatible with (X, S, M) if
(1) there exists Z,, S Z, (C Z, such that 6|z, has the intersection pro-

perty,

(ii) % is a closure operator,

(iil) 6(n(Y)) = 6(Y), for all ¥ = Z,

(v) FaN 2, C S.

Now we illustrate this definition by some examples.

Example 4.7. Tet X be a Banach space, S = P, c,,(X), M({Y) = C{Y,Y),
Z = Py(X), Z, = Ppa(X), 0 = o, and yn(4d) =c0d, 4 €Z

Example 4.2. Let (X, S, M) be as in Example 4.1. 6 =y (measure of
non compact-convexity), 9(4d) = 4, A € Py(X).

5. (0, ¢)-contractions

DEFINITION 5.1. Let X be a set, ZCP( X), Z#9, 0:Z—+R, and
¢: R, —R, a comparison function. A mapping f:Y — X is a (0, ¢) L con
tractlon Y cCX)if

) A = P(Y)( Z implies f(4) < Z,
(i) O(f(4)) < ¢(6(4)) for all A = Z I(f).

Now we have.
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THEOREM 5.1. Let (9, w) be a compatible pair with the fixed point struc-
jure (X, S, M). Let Y € I‘n/ cand fe M(Y). If f is a (0, 9) — contraction,
then Iy # & and B(Ff) =

PlOOf Let ) == q(f Y) Since Y € F,z, we have Y, CY. Let Y,=
w {f(Y) 2(f(Ya)), .... We denote d,:= N Y,. From the Defi-

ne IN
aition 4‘1. we have Y, # Q, 0Ys,) =0 and Y, € F,. On the other hand
Y,=I(f) and Yo € I(f). These imply Y, € S. Since f € M(Y) and (X, S, M)
15 a fixed point structure we have F; # oo.
From f(F;) = F;and the condition (ii) in Definition 35.1. we have 6(F,) = 0.
For some consequences of this general result see [3].

6. O-condensing mappings

DEFINITION 6.1. Tet X be a set, ZC P(X), Z#, and 0: Z—+R,.
A mapping f: Y — X is a 0-condensing mapping if

iy 4 « PY)N Z implies f(d) € Z,

(i) 4 = I(f), 0(4) # 0 implies O(f(A)) << 6(A).
We have

THEOREM 6.1. Lot (08, %) be a compatible paiv with the fixed point struc-
ture (X, S, M). Lt Y € F,; and f e M(Y). If

) deZ xeY implv AU {x} €2,

(i) 6(d U{x)=0(4) forall A €Z, x €Y,

(i) f 1s B-condcnsing.

Then Fp# O and O(F,) = 0.

Proof. The proof is the same as the proof of the Theorem 3.1. in [5]

For some consequences of this theoreme see [5].
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ABSTRACT. — Let py be the n-th natural prime number and let ey «//7,, e
- \/p,,, n 2 1. One presents some asymptotic cstimates for (a,), . Relations
among the diverses conjectures in the prime number theory are also considered.

In what follows we shall denote by p, the #™ prime number. Consider
the sequences (d,)ns1, (%,)ns1 defined by d, = .0 — p, and o, :xlﬁ,_,.—

—\/;b,,. It is well-known that lim sup d, == oo (sce {17, [71). From this peirt
#.— 00

of view the sequence («,),»; has a different behaviour than (d,),.,. In this

sense we begin with the following conjecture :

CONJECTURE 1. The following incquality holds
o, <1 1
Sfor cvcry natural numbers n.

The inequality (1) hs verified on a ccmputer Felix C-256 with a programm
in FORTRAN IV for all prime numbers < 10¢ + 3, so for the (irst 78.50
primes. The numerical tests and the programm was accomplished by lin
Grecu from Politehnic Institute of Cluj-Napoca.

Our next theorem contains scme remarks abouth the liminf and limso
of some sequences which contain the difference o, == ajp, .1 =4/ Pu.

THEOREM 1. If p = [0, 1/2) then

lminf (nlun)?® - a, -~ 0 2
7~ 00
lim sup (nflu n)1? - o, o0 )
" =0

Proof. ‘To prove the relation (2), following the method ol {8, we consider
the function f: 1, 0)— [1, ), f(x) = 2%, « = (0, 1). Denote 2, == 4/p,. Itis
clear that A, << A, << ... and using the inequality 7 f(f) < %, .1 f(hyy1) lor ¢ &
€ (), Aa:1 We obtain

A

o LR o
Y1 A it ’ dt .
D T T 4
71 Agind (Ppea) n 1 i) AN
A, N

* Universily of Cluj-Napoca, Faculty of Mathematics and Physics, 3400 Cluj-Napcia, Kenania
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But, ob the other hand, we have:

S T I V- (1 _x,,_)(_l SN
nt Ao f (A w1 Agprf (At n=1 % A T UO) FOnd! 7
o e}
< [ (%)
[ f()\n) f()‘nn) f()‘
and one obtains
o
Mt = - —+-00 (8)
=l Xpiyf(ha)
‘io'\ "/P_':; _ ‘Jf;:t < + 0 (7)

Vona(Pa)®

In the following, using the divergence of the seriesz 1/p, ([1], [3]p. 135,
n=1
i8]) we get easy

=]

1
n=1 ﬂ/Puf’n-H

From (7) and (8) it follows

=0

lim inf(

#—» 00

- «/E;) / 1
VPuaWpa)* )| Abwtun
This is cquivalent with lim inf ;b?m + a, = 0. Taking into account that p, ~
7 — 00
~ninn ([10] p. 153) we get the relation (2) where § = 1= ¢ [0, /,).
To prove the relation (3) we use the inequality of Rankin ([2] p. 355,
6] p. 99):

- Inlnp,-lnlninin p,
w4-1 — Pn (/1 9
]5 + P > ujJ,, (In In In pg)? ( )

which is true for an infinity of natural numbers ».
We hove sucoessively

A e ~ Purr — s, ¢! in p, Inln p, - Inln n In lnp,
‘/[’n -y 1 \/Pn 2 \//’n+1 ‘/P’H—l (inln In p,)2

for an infinity of natural indices. It follows

N % > C - lnlg py-Inlnlnlnp, (10)
Int, (In In In p,)?
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so that

lim sup Vbwn &, = -0 (1

% =00 P”
Using again the asymptotic relation p, ~ #ln# we get immediately
n In »

lim sup ———- + &, = -0 (12)
B o0 In (n 1n 2)

and after an elementary calculation we o¢btein the relation (3).
Remarks. 1. Fro the relation (2) wegive a proof s'milar to that given fur
the relation (3) using instead of (9) the inequality of Bombicri (4]

Dot — Ps < (0,46 ...)In p, (13

which is true for an infinity of natural numbers 2. We have

«, = Pat1 — Pa </'n+1 ~ Pn < Kln P K =046

N + APn 24k, Nbw
ror an infinity of #.
It follows
pe 0, <K ﬁbpg ()

from where one obtains

lim inf p} - a, =0 15)

"~ C
and, consequently, using the relation p, ~ #nln#z we have (2). This method
has the disadvantage that it uses the strong incquality (13) and this inequa-
lity has a very difficult proof.
2. One sets, in a natural way, the question if the relation (2) remains

true in the limit case B = 1/2. It is very surprising the fact that in this case
we have:

Hminf /p, - «, > 1 (16)

7 4

If lim inf \/P,, - «, <1, then there is a positive nunber such that for en infi-

7?00

nity of natural numbers # one has

Vb o <1 —c (7
The inequality (17) is equivalent with

-

P — Pu
1 —c¢

_l_ '\/j’n+1/Pn
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But p,11 — P, = 2 and it follows
(14 e)/(1 — &) < N Pas1/ba (18)

But this relation is in contradiction with the known fact that lim p,4, /Pn,: 1.

-0

3. From the relation (2) one obtains liminf «, = 0, a result proved by

7~ 00
L. Panaitopol [7].
Let us recall other three conjectures in prime number theory.

CONJECTURE 2 ([11]). One has the cquality
lim &, =0 (19)

n— 0O

CONJECTURE 3 (A. Schinzel [9]). For x > 8 between x and x -+
+ (In x)? there is a prime number.

CONJECTURE 4 ([3] p. 73). For n > 1 the interval [n? (n 4+ 1)2] con-
tains a prime number.

In connection with Conjecture 4 the best known result is due to M. N.
Huxley (see [5]) and states that there is a prime number between #* and
n? 4 10 for every 8> 7/6 and n > ny(0), where ny(0) is a sufficiently great
natural number.

The following theorem establishes the connections of our Conjecture 1 with
the above mentioned conjectures.

THEOREM 2. The following implications hold :
C3 = C2

Y

Cl=C4
C2 = C1 when n is sufficiently greal.
C2 = C4 when n s sufficiently great.

Proof. ,,C3 = C2”. Supposing that C3 is true, it follows p, <P <
< P, + (In p,)? so that

o, << —!" In - 2 3,7 TR s =i
n \/P” ( 1‘7”) N /‘7 \//)n g «//’n '\/Pu
which implies C 2.

,C3 = C4”. By the Conjecture 3, in the interval [n? (n 4 1)?] there is
a prime number. But we have the inequality #* 4 4 (In #)2 < #* 4 2n - 1, for
every mnatural number #, which implies C 4.

L,C1 = C4”. If C4 is not true then there is a natural number # such
that p, < #? < (# 4+ 1)2 < $55.;. Then an elementary calculation shows that

\/;bkﬂ —x/}-';k = o, > 1, which 1s a contradiction.
,C2 = C1 for sufficiently great #” is clear.
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,C2 = C4 for sufficiently great »”’. We obtain easily this implication
taking into account that C1 = C 4.

In conection with Conjecture 1 it presents also interest the proof of the
weaker statement that the sequence («,)s»( is bounded.

The author is greatfully indebted to Serban Buzefeanu, from University
of Bucharest, for the idea of the elementary proof of the relation {2). Also
the author thanks to Citdlin Badea for the interesting remark 2.

REFERIENCES

.D. Andrica, Asupra sirului (ppe, — padn<t G. M. No. 7 (1978), 277 -279.

A, A, Buhé¢tad, Teoria numerelor (Russian), Moscova, 1966.

I. Creanga, Introducere in teoria numerelor, Ed. Didactici ¢l Pelagogicd, Bucuresti, 1965.

H. Davenport, Teoria multiplicativd a numerelor (Russian), Moscova, 1971.

.H. Halberstam, Some unsolved problems in higher arithmetic, in The Encyclopedia of Igno-

rance, edited by R. Duncan and M. Weston-Smith, Pergamon Press, 1982,

D. 8 Mitrinovié, M. 5. Papadié, Inequalities in the number theory, Nis, 1978

L. Panaitopol, Problem 141, G. M. Ser. A 79 (1974), No. 2, p. 72.

. I. Sandor, Despre sivuri, serii 5t aplicatii in teoria numereloy prime, G. M. Ser. A (2), Vol. 6
(1985), No. 1—2, p. 38—48.

. A. Schinzel, Remarks on the paper ., Sur cevtaines hypothéses concernant les nombers premiers”,
Acta Arith. 7 (1961), p. 1-—-8.

10. W, Sierpinski, Elementary theory of numbers, Warszawa, 1964,

Ut U9

mNg

©



STUDIA UNIV. BABES -BOLYAL, MATIIEMATICA, XXXI, 4, 1986

ON GENERALIZED MEASURES OF THE AMOUNT OF INFORMATION
BASED ON THE STRATIFIED RANDOM SAMPLE

TI0AN MIHOC*

Recesved @ Oclovher 22, 1986

ABSTRACY. - In this paper we define a new mecasure of the amount of infor-
mation associated with a generalized random variable as well as the measures
based on the stratifiecd random sample.

1. Generalized measures of the amount of information. Let {Q, &, P} be
a probability space, that is, Q an arbitrary nonempty set, called the set of ele-
mentary events; 8 a ¢ — algebra of subsets of Q, containing Q itself, the ele-
ments of & being called events; and P a probability measure, that is, a nonne-
gative and additive set function, defined on &; for which P(Q) = 1.

T.et

N
AV =12 = (pv Py - Pw)5 P22 0,0 == LN DS p = 1, (1.1)

be the sct of all probability distributions associated with a discrace finite random
variable X.

Shannon '8! introduced a measure of information by the quantity

H(E3) = H(X) = =} pilog, b, (12)

called entropy of the distribution € (or, entropy of the random variable X).
Measure (1.2) satisfies the additivity
H@&x+a)=H(@®) + H@), (1.3)
w here

‘3 * @, == (/)171' e ooy qu.v, c e e '."‘)qu, “ve, /‘)N‘].\') € A.VN (1.4)
is direct product of the distributions € and @, €, @ = A%.

Rényi [7] introduced a generalization of the notion of a random variable.
DEFINITION 1. An incomplete random variable X, is a function £ = £(w)

measurable with respect to the measure on ® and defined on a subset Q, of Q,
where Q, € & and P(Q,) > 0.

* University of Cluj-Napoca, Faculty of Economic Sciences, 3100 Cluj-Napoca, Romania

4 - Mathematica 4/1986



50 1. MIHOC

The only difference between an ordinary random variable (£ is an ordinary
or complete random variable if P(Q,) = 1) and an incomplete random variable
is thus that the latter is not necessarily defined for every o € Q. Therefore, for
a incomplete random variable we have 0 < P(Q,) < 1.

DEFINITION 2. If 0 << P(,) < 1, then random variable &, defined on
the Q,, is a generalized random variable. The distribution of a generalized random
variable X will called a generalized probability distribution.

In this sense, the ordinary distributions can be considered as a particular
case of a latter.

We denote by

w(8) = f@.P" (15)

the weight of the distribution €.
Using the above definitions it follows that :
— if »w(8) = 1, then £ is an ordinary distribution ;
— if 0 < w(8) < 1, then € is an incomplete distribution ;
— if 0 < w(®) < 1, then # is a generalized probability distribution
Also, we denote by

Ay ={8=(py, ps - #v): >0, i=1N, 0 <w(@® <1}, (1
the set of all finite discrete generalized probability distributions.

DEFINITION 3. [5] The measure of the amount of information, associated
to a generalized random variable X, have the form

N
1 a*
Hyo(8) = Hoo(X) = — - logz(; q; - pi ), (1.7)
where
P@+a'~ N
gg=——r——, i=1N, Y, g =1, (1.8)
1=]

N
T pPte
i

a — h

a* =

,a¥*e(—1, 0 U0, ©); a>0, a#n nzl, (1.9)

”
B+4+a, =1, i=1N,8 <Ay (1.10)

This measure can be called the measure of the information of order «/n and
of type {B + 4,}, associated to the generalized propability distribution 2, [4].

Remark 1. The measure (1.7) is a generalized measure of the amount of in-
formation in the Daroczy’s sense [l] that is

Hq (8) = —log, Mo (2) = Hy(2),, (1.11)
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In this paper, we discuss the stratified random sampling for estimation of
the population expectation m if we assume that %, m, ¢ and p, ¢=1N,
are known. Alsom, using these specifications as well as the Definition 3, we shall

define measurcs of the amount of information based on the stratified random
sample.

DEFINITION 4. If the size of sample, #, satisfies the relations

) »
VS R R (2.4)
M P Py

then the sample S is called a represenative sample. Also, if # from Definition 3
has just this semmification, then about the measure (1.7) we shall say that is
representative. ‘

DEFINTITION: 5. If the sizes of sample n,, 7 == I.N, to determine from the
condition that the sample mean

N
X-: piX.. (2.5)
[XE |
where
X, - 'S, i= 1N, (2.5)
ny 51

(x;; are elements from the strata ), to be an efficient estimator for unknown
expectation m, that is,

o . —
n'; =t} \:’ 2 G‘-— , b == l,N, (2.6)
RIS

Pt A

then about the measure (1.7) we shall say that is oplimum.

. . . R .
Therefore, the representative information of sample, Hg(X), may be written
in the form

H3(X) = — logy M s (X), (2.7)
where
N - \l[‘l;\-
Ma;{ (X) == (21 g - poX ) , (1.8)
and
a - f’,‘ . . —_— ”
a;\’ == — 1, Vl, 1 = l,N. (29)

Wy

N . . - 0 .
In the same way, the optimum iuformation of sample, Hg(X), has the form

HY(X) == — log, M ¢ (X), (2.10)
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or, an index r se that
N
6, =G =2,p o (2.28)
=1

And in these cases the Theorem is also true, only that the inequalities (2.16)
and (2.17) will be

M. (X) > M +(X), HS(X) > H5(X), (2.29)
respectively,
M (X) = M +(X), Hs(X) = Hs(X). (2.30)
Remark 4. If the characteristic X follows a uniform distribution relating to
each strata C;, 1 = 1, N, namely P =I%, t=1, N, and 6, = 03=... = oy,
then
HY(X) = H§(X) = log, N, (2.31)

where logsN is hist the Shannon’s information associated with a uniform distri-
bution.
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As we have shown, one can express (L;, f}(x) in terms of the Bernstein
fundamental polynomials (4) in the following form

= & puesti[(1 = 2 7(2) + 2] ©)

In this paper we present a multivariate extension of the operator L, and
investigate how it can be used in the multivariate constructive approximatior
theory.

In the Euclidian space E, = R* of all s-tuples of real numbers (1, x, .. ., x,)
we consider the s-dimensional unit cube

Q= {(xp, % .., %) RO S x;, 1, @ == 1{(1)s).

To any real-valued function f defined on Q, and arbitrary vector of non-
negative integer components (7y, 7, ..., 7 (ms> 2r,. ¢ == 1(1)s), we define
the s-dimensional linear positive operator

I""""'s
P
Myye e, M

$
by the following formula
(Earts, F) o o) = )
== il co Z /)"1 1 kl( ) /)m —Ts "' (YS) ((L)::A "m 3 Lk fJ(xl' s ey xs))
B -0 kR0 e s
where
(S G s )
/‘, k
=(1—x)... (1~x,)f‘ e
. By bry hy FaR
Aol — ay) .. (1 — xs)/i ‘--—};——--}-,. — ...,;«) -+
B 1 2
k k oy v ¥y ke
ST o § I ) I § I A E A 4 —“— e ,—:-‘~—-2~ , Zea tlsn -~!l -F
1y Jilg. g Mgy mg
t kot ¥e s ks ¢
+oxyx(1 — x) .. (1 — %) f ‘——4——1‘ 7’ R -;5’4 s e -”T) -+ ... -k
Hy g s

Tk Kooy hsy rgy kgl
F (1) o (1= Tn) Yoo XS] ’1 oLy Dem e L_’S) +
ity s
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We shall make use of the modulus of continuity o on €,, defined by
o(f; 8, ..., 8) =max |f(x, ..., x) — fla1, ...m x5},

where 8, > 0, ..., §, > 0, while (x;, ..., x;) and (x], ..., &) are points [rem
Q,, so that

x — x| £ 8, 1= 1(1)s.

We shall now establish
THEOREM 6. If f € C(K,), then we have

|f(x,, cel, X) —(L;-’:-::trsm f)(xp coo )| S
’ 4 s
(11)
< 1.,/ ri(ri - 1) L2l — x,) 251~ xy)
=11 —{-2—\/ 1+ —/———— (ol f; alv—'———', ce, O \/‘—i
=1 o m; my My
where @y, ..., a5 are any positive constants.
Pyroof Because we have on Q;:
L4 7
ke ok, =3 Y
and
s ey r
Livws e o = e
we can write
|
f(x,, , X) ’—(L;" ..... ’ :")(xl, , Xs) ' s
m s R k
< oL n 7 Xy o, Xg) — .’__‘"‘.’_“ .
= k§ “~ wm, ..... :”s'k" A (xl’ cre x‘) f( 1 ‘) f‘ m, mg ’||

We shall use now the following two properties of the modulus of continuity
Sl oL x) — fla, L x) ) Selfs M al e  — x),
O(fi M0, o, A 8) 2 (1 4+ A4 .04+ Nel(f; 8, .., 8).
Since
ky

Flan oom) —f 5 ""L,\é‘“if;";? % — =

", " m,

81 ..,

5

<(1+E—l—

i=1 8

ki
X, — — )m(f; 3, ..., 8),

”m;
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it follows that we can write

[fCon o ) = (L0 f) oo )
sl Dy a2

i=1 k=0

<

v, (% )) o(f; 8y, ..., 8).

In accordance with the Cauchy-Schwarz inequality and with the identities
(7) and (8), we have

m; 1/2
r. ki Y2
< [ Wl ) (%= ] <

ms
;=0 J

ire — l)]x,(l — %)
V[l + My J "y

By using these inequalities and selecting

3, : \/M, P = 1(1)s,

mp

&, ..., % being any positive constants, we finally get the inequality (11).

Now, since for any (x, ..., %) € Q, we have x,(1 — x,) = 1/4, we can
select «; = ... = ; = 2 and we obtain the following result.

THEOREM 7. If f € C(Q,) in the maximum norm over 5 we have
Ty

(1—}—12\/14- )w(fﬁ\/—:z)

In the particular case s =1, r, = 0 or r, == 1, this inequality reduces to
the inequality given in 1935 by T. Popo viciu[2] for the Bernstein polyno-
mials.
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ON A PROBLEM OF AREFOILAR MECHANICS
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ABSTRACT. - Tu this paper a method is given for determining, in polar
coordinates, the linear accelerations on plane curves, considering the functions
v, 0 as zero order accelerations, and the derivatives », 0 as first order acce-
lerations, At the same time the areolar accelerations of the mobile
body are also determined. The differential equation solution is obtained by
introducing some unknown functions, of the t-time variable, called , direct
connexion functions’’.

1. Introduetion. The real development of complex phenomena cannot be
coinprised in simple differential equations. The simplicity disappears when the
progression of the phenomenon, in all its extent, is slow or fast. In this case,
the ¢asy deterthination of these out of commnon equations’ solutions disappears,
and new and pretentious methods must often be resorted to.

~ In this paper a method is given for dctermining lincar accelerations on
plane curves, considering functions #, ® as zero order accelerations, and the
derivatives r, 0 as first order accelerations. At the same time, the areolar accele-
rations of the mobile body in curvilinear motion are also determined.

2. Description of the méthed. Iet be the areolar differential of the motion
of a mobile body on a plane curvilinear trajectory

A + ay,()A + ag(t)4 = f(1), (1)
. . . . . . » (l) (‘) . .
with the given initial conditions A4(0) = A4,, (¢ =0, 1), where A(f) is an area.

By denoting with R = R(®) the polai equdtion of the plane trajectory, the
elementary area dA has the expression

or

dA:%ﬂmWW, 2)

where r{f) := R{0(f) ] and 0(¢) are the polar coordinates of the mobile body instan-
taneous position.

® Poivtechnical Institute, Departmeént of Mathematica, 3408 Cluj-Napoca, Rowmanta
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By integrating (2), it follows

t A
A() = A, + _;.Srz(s)é(s)ds, ()
1)
and the derivatives of A are
A() = %r"(t)i)(t), A = % (2rr6 + 726). )

By introducing the ,,direct connexion functions” [3]

i1, 4(f), @i, (), w2,0(t), (=0, 1),
we have the relations

;' o= (T).o, 17, ; = 0—;2, 17.', (5)
0= 1, 09, 6§ = Wy, 16, b= g, 10, 00. (6)
By integrating the first relation. (§) and the second one (6), one obtains
t
r(t) = rq exp IS(JL o(s)ds] , )
0
i
B(t) = 6, exp[g s, 1'(s)ds]- (®)
1]

By observing (5) and (6), relations (4) become
1

R
A= 57 0, )
A =2 P850 + wn,1). (10)
By substituting (8) in (3), (9), and (10), it follows
t T8
At) = Ay + = 6 5 72(s) exp [S w21 (o)dcr] ds, (11)
- 0 0
- i ,
A(t) = ‘; 8,72(t) exp [sz, l(s)ds], (12)
0

| =

-~

3

Alt) = L 6,231 0 + 2, 1)72(t) exp [Swz, ,(s)ds]- (13)

N
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By observing (11), (12), and (13), equation (1) becomes
t

3 () exp [{on «s)ds]{ag'(t) 126, 0(0) 4 o21(8)] -+ wy(B)} 4

o
+ aglt) {A + 2 ' 9, Sr‘( )c'xplswz, (o)da|ds' = f(1). (14)
L 0 ' "
By integrating expression. (8), one obtains
. . t $ o
0(t) = 6, + 0, S exp Igmz, ,(o)do‘] ds. (15)
} o o
By substituting (7) in the first relation (5), we have
13
() = rqer. olt) exp [S @1 o (s )ds] (16)
e § . ()
By observing (8), the second relation (6) becomes
- ) L
B6) = fows,+(0) exp | { 21 (5)ds] (17)
0
From the third relation (6) and from
6 = (02,09, (18)
it follows B
(\)2"10(t) = (4)2, ](t)i\)l' (),(t)~ (19)
By substituting (15) in the first relati()il“z(ﬁ), and from (18), we have
e t Cis
0(t) = o, olt) {eo + 6, \ exp“ w21 (0)do ds}, (20)
[ s
B(1) = w, o) { e,,Spr ISO, ,(c)dc] } 21)
. 0 0
By equalizing (17): with (21), -one obtains
i . l s N
D0z, 18 exp[ng,1<s>ds]—mz,..(t){e.,+"'6'0‘§«xp o 1(0)da d} 0. (22)
0 S o
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From (8) and (20) it results

o0

B, exp [ § o, ,(s)ds] — o off) {,o.-,+,. bog.exp.l go,g, .(.,)dc] ds} =0. (3

By substituting (16) in the second relation (3), it is obtained
L :

Sa;._ ofs)ds| - (24)

Ft) == ro@a, 1(£)éy, oft) exp

o

By integrating the second relation (5), it follows

HE) = 7y exp [Saz, ,(s)ds]. (25)
0
From (16) and (25), onc obtains

¢

¢
ro0, olf) cxp i \ o, ‘,(s)ds! — 7q CXPp IS(EZ' .(s)ds] =1, {26)
0 ' @

The expressions (7), (11), (12), (13), (14), (135), (16), (19), (20), (21), (22),
(23), (24) and (26) make up a system (S) of 14 equations with 14 unknown quan-
tities

H o o _ ) .
r, 9, A4, ('5 == (), 1, 2). Mg, 6, Mg, i, (i = 0, 1), w2, 0.

For determining the solution, the initial conditions (;2(()) == ( )o, (1==0,1,2),
6(0) =: 0, are also given.

The constant A, results from (1), for ¢ = 0.

The constant 6, has the value

0 = 244"

The value 9, is obtained from the second rclation (4), for ¢ -- 0. From
(5) and (6), for f == 0, we have

G0l Folrel 7L @ 1(0) = Folre) !
w1,0(0) = 0g(85) 71, s, 1(0) = B(8,) 1.
For ¢ = 0, from (19) it _l'()l-l()\{vs
oz o{0) = ez (O)eon, o{0).
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) )
Knowing the functions #(t) and 0(), (¢ == 0, 1, 2), the module of the speed
and acceleration of the mobile body 1s determined
: 1
of == ok (r8)2]%,
1
ja) == [(r - r82)2 4 (200 + »9)21%.
The functions 7 == #(¢) and 0 = 6() are paranretrical equations, in polar
coordinates, ale the mobile body trajectory, which lead to the polar equation
of the plane curve, by eliminating parameter 2.

.
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ABSTRACT. — A theorem giving necessary and sufficient conditions for a
n-formation to be saturated is proved in the paper.

1. Preliminaries. It is the aim of this note to prove a theorem which gives
necessary and sufficient conditions for a n-formation (i.e. a m-closed formation)
to be saturated.

All groups considered are finite. Let = be a set of primes, n’ the comple-
ment to = in the set of all primes and Oy (G) the largest normal n’-subgroup
of a group G.

We first give some useful definitions.

peErINITION 1.1. ([4], [5], [7]) @) A class % of groups is a homomorph
if K is eprmorphically closed, i.e. if G = ¥ and N ts a normal subgroup of G,
then G/N = ¥%.

b) A homomorph & is a formation if GIN, € &F G[N, €& implies
GIN,NN, ¥.

c) A formation & is saturated if & is Frattini closed, i.e. G|®(G) € & implies
G € &, where ®(G) denotes the Frattini subgroup of G.

d) A group G is primitive iof G has a maximal subgroup H with coregH =1,
where corecH = N {H%/g = G).

e) A homomorph & is a Schunck class if & is primitively closed, i.e. if any
group G, all of whose primitive factor groups ave in &, is itself in &,

DEFINITION 1.2, ([4]) Let § be a class of groups, G a group and H a sub-
group of G. H 1s an &F-covering subgroup of G if: (i) H = &; (i) H < K <G,
K,d K, K|[K, =& imply K = HK,,

DEFINITION 1.3. a) ([3]) A group is n — solvable if every chicf factor is
either a solvable © — group or a ' — group. For = the set of all primes, we obtain
the notion of solvable group.

b) A class & of groups is © — closed if

GOy (G) =& =G < &.

A w-closed homomorph, formation, respectively Schunck class is called = — homo-
morph, © — formation, respectively n — Schunck class.
In the proof of the main theorem we need the following results:

LEMMA 1.4. ([4]) If X ¢s a homomorph, G a group, N a normal subgroup
of G, K[N an ¥-covering subgroup of GIN and H an ¥ — covering subgroup
of K, then H is an % — covering subgroup of G.
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LEMMA 1.5, ([1]) A selvable minimal normal subgroup of a group is abelian.

LEMMA 1.6. ([1]) If S is a maximal subgroup of G with coreg S=1 and
N is a minimal normal subgroup of G, then G = SN and SO\ N = 1.

LEMMA 1.7. ([3]) Let & be a class of groups. & is a saturated formation
if and only if & is a Schunck class and a formation.

LEMMA 1.8. ([2]) Let § be a # — homomorph. Then & is a Schunck class
if and only if any = — solvable group has & — covering subgroups.

2. The main result

THEOREM 2.1. Let & be a = formation. The following conditions are equi-
valent :

(1) & is saturated

(2) if G s a ®™ — solvable group and G & F, but for the minimal normal
subgronp N of G we have G|N € &, then N has a complement in G;

(8) any m — solvable group G has & — covering subgroups.

Proof.

(1) = (2). & being a saturated » — formation, ¥ is, by 1.7., a = — Schunck
class. Hence, applying 1.8., G has an § — covering subgroup H. We shall prove
that H is a complement of N in G. Indeed, HN = G, because of 1.2. (ii) used
for H<G =G, N4 G, G/N &, Further we have H( N =1, as the follo-
wing shows. Since G is m — solvable, N is either a solvable = — group or a
n’ — group. Let us suppose that N is a =’ — group. It follows that N < O (G)
and we have

G[0x(G) = (GIN)/(0x(G)/N).

But G/N = &, hence G/O.(G) = &, which implies, by the = — closure of &,
the contradiction G = &. So N is a solvable = — group. By 1.5, N is abelian.
It follows that HN< G. Since HN\N # N (HNN =N leads to N < H,
hence G = HN == H, in contradiction with G¢ Fand H = §), wehave H N=1.
(2) = (3). By inducticn on |G|. Two cases are possible:
1) G € &. Then G is its own & — covering subgroup.

2) G ¢ &. Let N be a minimal normal subgroup of G. By the induction,
G[N has an § — covering subgroup E/N. We can have two possibilities :

2a) G/N € &. Then E/N = G[N. By (2), N has a complement V in G.
Again two cases are possible:

2a;) coregV s 1. The induction shows that GfcoreV has an & — covering
subgroup H/coregV. Let us suppose that H == G. Then G/coresV « &. Hence
GIN (NcoregV = &, because ¥ is a formation. But V being a complement of
N in G, we have N (" coregV = 1. It follows the contradiction G = &. So H < G.
By the induction, H has an & — covering subgroup H. By 1.4., H is an § —
covering subgroup of G.
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2a,) coregl == 1. We shall prove that V is an & — covering subgroup of
G. Since

V~VIVNN ~VNIN =GN,
we have 7V € &. Let now
V<K<G K9 K, K|I[K, € &.

We shall prove that K == VK, It is easy to see that I/ is a maximal sub-
group in G. Indeed, V << G, for V = & but G & &. Further, if V < V* <G,
supposing V < V*, it follows that there is an element v* & V*\_V; but G =
= VN implies v* = vn, with v € ¥V and n € N. We obtain that n = v~ 1v* €
e« VN N. Since VNN=1, #=1 So v*=9v €V, a contradiction. Hence
V = V* and V is maximal in G. It follows that we have either K =V or
K = G. In the first alternative, K = KK, = VK, If K = G, we notice that
K, # 1, for if K; =1 it follows the contradiction G € &. Iet M be a mini-
mal normal subgroup of G with M < K,. We are in the hypotheses of 1.6.:
V is a maximal subgroup of G with coreg¥V = 1 and M is a minimal normal
subgroup of G. Hence G = VM. It follows that K == G = VM = VK,

2b) G/N ¢ &. Then E/N < G/N, hence E < G. By the induction, E has
an § — covering subgroup E. Applying 1.4, E is an § — covering subgroup
of G.

(3) = (1). By 1.8, ¥is a Schunck class. Since & is a formation, 1.7. implies
that & is saturated.
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ABSTRACT. — The problem of natural convection over a semi-infinite vertical
flat plate with non-uniform wall temperature is studied by using a numerical
method. The wall derivates of the universal functions for the Prandtl numbers
0.733 and 7 are tabulated. Such tabulations serve to calculate the heat transfer
and skin friction from the plate.

Introduction. As is well known, the problem of natural convection boundary
layer flow over a semi-infinite vertical flat plate is one of the most basic pro-
blems in the study of heat transfer over external surfaces and numerous papers
dealing with various physical or mathematical aspects of this problem have
been published. An excellent review article concerning this problem is given
by Jaluria [11

Recently Kundu [4] has considered a special form of the problem of
free convection flow over a vertical semi-infinite flat plate, viz., that of a
wall with 2 temperature distribution of the form

Ty—To ==a%y A, & (1)
i1

where A; are constants, T, is the wall temperature, T is the ambient tempera-
ture and £ measures the distance along the plate from the leading edge. Ho-
wever, the derived differentizl equations have not been analytically or numeri-
cally solved in Kundu's paper. It is, therefore, there aim of his  Research
Note to complete Kundu’s problem by giving a numerical solution shooting
techniques employing the folirth order Runge-Kutta routines as outlined by
Soundalgekar, Takhar and Singh [3]. At the same time, we
shall correct some misprints in his derived equations. The first and second-order
wall derivatives of the universal functions are given in a table. It is worth
mentioning that having a numerical solution is very helpful in cvaluation of
both data and approximate methods in design, and in other further calcula-
tions, such as those related to instability.

Basi¢ ecuations. The present problem is (ormulated on the basis of a
semi-infinite vertical surface with the origin at the leading edge. The x-axis
is vertically upward and y is perpendicular to the plate. Employing the Bou-
ssinesq approximation and neglecting the viscous term in the energy equation,
the governing differential equations for the solution of natural convection

* University of Manchester, Department of Engineering, Manchester M13 9PL, England
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flow past a semiinfinite vertical flat plate with variable wall temperature can
be written, -in terms of dimensionless quantities, as

u o .
ax + ay (2)
ou du '
Rl =04 2b
# ‘X v ay +3y' ( )
ox oy Pr oy*
The boundary conditions of the problem are
% =19 =0, 0 = 0,(x) at y=0
(2d)
u, 60 as  y—o0

Here u, v are the velocity components along #, y-axes; 0 is the temperature and
Pr is the Prandtl number. The dimensionless quantities in equations (2) are rela-

ted to their corresponding dimensional variables through the following defini-
tions :

x=2%[L, y=y[L, u= ulLlv, v="ol]v

(3)
0= (gBL°MNT — T)

where L is there reference length and other physical quantities have their
usual meaning.

Next, to reduce equations (2) to ordinary differential ones, we introduce
the following variables, after Kundu [2]:

b = d(agd) it 3 £ ) (da)
6 =23 a2 0, (n) (4b)

=0

where the stream function ¢ is defined by

S s ®
ly Jox
and
N = (a,[4)U4 -4 5 (6)

is an independent variable.
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Substitution of equations (4) into (2) then yields the following system of
ordinary differential equations:

a9 EO (2n + 24 H)fi froi —a, Eo (n 4+ 3+ 4)fifi_i=a,f"” + a, 8, (7a)

435w+ a, 0, fi i =Y, (n+3+4i)a, _fi8 ;:=a0;/Pr
£ =0 s =0

subject to the boundary couditions
foe=fr=0, 06 =1 at n=0
Sfu, 0 =0 as 7— 0
Iu the above equations primes denote differentintion with respect to 7.

Analysis and results, To shorten the paper, we give in the Table 1 the
wall temperature distributions, the stream function transformations and the
first 24 differential equations of the problem. The universal functions and
their surface derivatives needed for the evaluations of flow and heat transfer
parameters are computed for Prandtl numbers of 0.733 and 7 respectively
when # = 0.

Table 7. Functions and differential equations for different »

No. of equations
to be solved

0 2 0, = a,x*, f,,0,
(2n - 2)f¢F — (v + 3)fof"" = f3"" + 6,
0" + Pr(n 4 3)f,0" — 4nf30,] =0
1 2+2=:+ 0, = x"(a, + a;%), f1 = (a,/al)Fy;, 9, = @y
(4n + 8)foF11 — (n + 3)foFuy — (v + T)feFy =
= Fﬁ’ + o,
4[n0F1; + (n + 1) @y /5] — [(n + 3)fo @11 + (2 +
+ 7)F;,8] = @/ Pr
2. 4+4=38 0, = 3"(a, -+ ayx + ayx?), fo = (a,/a0)*Fy, + (@3/ao)F s
0, = (a1/asap) Pyy + @,
(4n + 12)(foFs, + F13/2) — (n 4 3)foFay — (n + 7)F,F}; —
— (n A 1)f"Fy = I3 - Oy
(dn + 12)f Fy — (n + 3)foFaa — (2 + 11)fg Fpy =
= FQQ' q)zz
4[n0oF;; + (v + 1)@y, Fyy + (1 + 2) @y /o] — [(# + 3)
Sfo @z + (4 7)Fy Oyy + (# + 11)Fp,05] = sy /Pr
4[(n8eF;, + (2 + 2) 0"y fo] — [(# + 3)fo P2z + (n + 11)
Fp®;] = ®y/Pr

Functions and differential equations
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3 8+ 6 == 14 B == 2%(a¢ + a4, + ayx* - a;5°). Jo=agfa P ly -
-+ (aya,/ag)F g, + (agfag)Fy
05 = (a}/agad) Oy + aya,/a500)@5y + Py

(4n 4 16)(foF sy + I Fa) —(n + 3)fol 5y —(n+7)F k3, —
— (n + 1)FyFy, — ( -+ 15)E 5 /g = Foy + (b:u
(4 -+ 16)(foFgy + F1yFa5) —(n + 3)fol a2 — ’H’ TV 1oy
— (n + 1)F Iy - (” A8 Fpfy == Fgy - by,
(4n - 16)fol gy —(n + 3)folas—(n + 15)Fyyfq==Fgy + Oy
4(n0oFg+(n+1) O Fy b (11 2)y I - (14 3)Dy, /!
—([n + 3) D5, fo + (n - 7) Oyl 4+ (m 4 1) D[,
(m 4 15) 007y, - gyl
4[n0oF 5+ (n+ 11) @y Fop-t-(n-+2) OB 4 (n43) @ f |-
— [(n 4= 3) Qgafp + (n + 7) ®pl'y; + (" + 1) Oy Fy, -
+ (n - 15)0;F,;,1 = cb';zm\
000l 10) Do (1 10) DSy (1 4190 =
(Das/ ¥ r|
4 14 4- 10 = 24 0,= x"*(a, + a;x - a,a% - a4 - a1, f4:—s(a1/'a )1“ +
+ (a}ay/ad)F 4 + (a1a5/ad)F gq + (ag/ag)F oy - (abjaf) F o,
B, = (af/aga]) @y + (@ayfagay) @y - Oy - (af/eg1,) Dy
(4n + 20)(foF sy -+ F{ Fyy + F#2) — (0 + 3)foFy, —
— (n + NN EpFy— (n 1) 15y - (0 4 13)’&”1 -
— (n 1)y fg = P 0y
(4n + 20) (foFay + Fi1Fg + FaiFpp) — (n -+ 3fol
— (n + 7) F, Fyp — (n + 11) (FpuIy, + Pyl -
— (n + 15)F5 Fgp — (n + 19)f(F,y = Fiy + @y
(4n + 20)(foFes + Fi1Fas) — (n+3)(foFis—(n + 7)F 1 Fag—
— (n + 15)F'1'1F312 (n -+ 19)foF e =Fih + O
(4n + 20)fsFay — (n + 3)foFiy — (7 + 1‘)f"1'44 = Iy + @y
(4n 4 20)(foFas -+ Fa2[2) —(n 4 B)folise—(n 4 1), Fg—
— (n + l))ng4h = Fjs -+ Oy
4[n8Fg +-(n + )0 Fy - (n + 20, Ty (4 3) gyl
+ (v +4) Oy f5] -~ [(n + 3)f@sy + (1 + T) Iy Py +
+ (n 4 1)F,, @5, -+ (n + 15)F, O+ (n 4 19)F 0,1
e
4[n8Fsy + (n + 1) Dy Fsy -+ (- 2)(Dpplisy -+ ©oln) -
+ (1 + 3) QpFyy + (1 + 4)fg Pap} — [(2 + 3) foPsr +
+ (n+7) F @gp + (2 + 11) (Fyy@sy + Fpp @) +
+ (7 + 15)Fgu @1y -+ (n -+ 19)F,,0,] = Off[P1]
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Tabe 2

Values of the derivatives at the plate for » - 0

Pro 0.733 Pr 7
Jo'( 0.6741 0.4404
0,0 - 0.5079 - 1.0508
(D) 0.3873 -0.2563
@;,(0) --0.9286 —1.8539
F{(0) -~-0.0382 —0.0251
;,(0) ~0.1194 - 0.2432
Fp3(0) 0.3361 0.2221
@,,(0) - 1.1175 - 2.1941
F3{(0) - 0.0021 - 0.0024
m;l(o) 0.0492 0.0740
Fq(0) —0.0670 - --0.0440
DL (0) —0.2563 -0.5193
“55l0) 0.3051 0.2016
D, (0) —1.2625 2.4557
F(0) 0.0033 0.0018
;,(0) 0.0016 - 0.0130
F( 0.0335 0.0218
,,(0) 0.0864 0.1765
F,(0) —0.0613 - 0.0406
®;,(0) —0.2724 - 0.5498
F1(0) 0.2834 0.1874
@,,(0) —1.3824 - 2.6729
F i (0) —~0.0295 —0.0194
D4;(0) —0.1297 ~0.2636
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incidentd cu elemente invecinate.. '
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