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STUDIA UNIV. BABES—BOLYAI, MATHEMATICA, XXXI, 2, 1986

SPATII D—H-RECURENTE

P. STAVRE*, P. ENGHIS**

Inivat in rédacgic: 14.1.1983

ABSTRACT. — D—H-—Recurrent Spaces. The results in [3], [4] and [9]
~are further carried in the present paper. The D-H-recurrences (2,1), (3,4),
4,1), (5,2), (6,1) establisched and the relationships between D-H-recurrences

tensors H?ik (3,9), (4,5), (5,7), (5,8), (6,4), (6,8}, (6,9) are evidenced, showing
s

that they are analogue to those between the tensors for which the D-H-recur-
rence has been defined.

Introducere. In prezenta lucrare se fac extinderi a rezultatelor din
(8, (4], [9].

Se stabilesc. D— H-recurentele si se pun in evidentd relatiile dintre
tensorii de . D—H —recureni Hj, aratind ci ele sint analoge cu cele

N

dintre tensorii pentru care s-a definit D-—H —recurenta.

§1. Fie L o varietate diferentiabild dc calsd C*® inzestrati cu o
metricd riemanniand g de componente g;; intr-o hartd locald (% ; x*). Vom
nota cu V, conexiunea’ ILevi-Civita corespunzitoare, de coeficienti { 1}e

in harata locald (u, #%), prin K, componentele tensorului de curburd

(1], prin R,; = Rjj tensorul lui Riccl iar prin R = g% R;; curbura sca-
lara.

O conexiune D semisimetrici metrica in L,[2], [14], in harta
locald consideratd (u, x?), arc coeficientii:

=+ et — g (LY
of = ghuw, (1.2)
$1
Tiy = ;8% — wd; (1.3)
gin =0 (1.4)

unde T este tensorul de torsiune a lui D iar prin [ s-a notat derivarea cova-
riantd in raport cu D. .

le AUniversitatea: din Cluj-Napoea, Facultatea- de Matematicd-Fisicd, Catedra de matemalics, 3400 Cluj-Napoca
omdiia

**Universitatea din Craiova, Facultatea de Sh'infs: economice, 1100 Crai ova, Romdnia



4 P. STAVRE, P. ENGHI$

Fie Rjk;, tensorul de curbgré a lui D, By = Rfjs tensorul lui Rio
A = g B;; curbura scalari, Tj, tensorul D-concircular de curbura [l

ijh tensorul D—coharmonic de curburd [11], m tensorul D-p

icctiv de curbura [10] si Chs respectiv tensorul de curburid conformi
lui D.
Daci D este o conexiune K.Yano (adici Ry, = 0) atunci g e
conform platd [14] si avem:
W5 — Wy = 0 (]
unde prin virguld s-a notat derivata covarianti in raport cu V.

Din (1,5) rezulti relatiile echivalente [6] wyj — wjs =0, 00
— 0,0, =0, Ty; — T;; =0, Thr= 0, (div T=0), do =0, (w inchis

(L.

Daci D este mai generali ca o conexiune K. Yano, Rju# 0, d

tensorul D-concircular de curburid [11], T;,,, este nul, atunci pent
# > 3, g este conform platd [7] si avem

B, —20R =0, B, =4,R (I

deci [4], [7] rezulti R, recurent respectiv D—recurent [4] cu cowy
tor de recurentd 2o

i i i
Rim,» = 20, Ripn = Rjpnpe (1
Avem deci |

PROPOZITIA 1.1. D-comexiunile ce nu sint conexiumi K. Yano ;M
tensorul D-circular nul, sint D-recuremte cu covector 2.

§ 2. DEFINITIA 1. Vom spune ci spatgiul (L,, D) este D—H
curent, daca

R,;,;,/, = o, R + H]kh(le — o,R) @l

unde o, este un convector iar Hj, un tensor de tip (1; 3).
1

Din (2.1) rezulta
Ry = o,Rjp + {ffk(R/' — of) (24

unde Hj = Hj,; si spatiul se va numi D— H-Ricci-recurent.
1 1

Observagia 1. Un spatiu D—H-recurent este si D— H-Ricci recurent
rcciproca nefiind in general adevirati.
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Notind H = g*H,; din (2.2) rezulti
1 1
R/, — c,ﬁ = H(R,, — c,R) (2.3)
1

si dacd (L., g) este’ D— H-recurent propriu (R, — ¢,R # 0) atunci H =1
si avem !
PROPOZITIA 2.1, Imtr-un spatiu (L,, D) D—H-recurent propriu avem
H= g'.jH,'j = 1.
1 1
Este cvident ci un spatiu (L,, D), D—H-recurent in care R, — ¢, =
={ este D-recurent [4] cu acelasi covector a,.

S3 presupunem ca (L,, D) este D—H-recurent de covector o §i D-re-
curent de covector ¢ # o

By = o, B (2.4)
Din (2.1) si (2.4) rezulta
@, — &) Bjm = Hju(fy — oR) (2.5)
1
si cum din (2.4) avem B, = g, R, din (2.5) rezulti
(6, — o) Ru = RH;kh( o,) (2.6)

si in ipoteza in care lucrim o # o, deducem:

= RH]HL (2.7)

jer din (2.1) si (2.7) pentru o, rezulta
6, =0n R (2.8)
Avem deci

PROPOZITIA 2.2, Intr-un spapin (L,, D) D—H-rvecurent de vector o
st D-recurent de vector © # o, tensorul de D— H-recurentd este dat de (2.7),
iy ¢ verificd (2.8).

COROLAR 2.1. Din (2.1) si (2.7) rezultd pentru R # 0,
Hjuy =0 (2.9)
1

COROLAR 2.2. Dacd spapiul (L,, D) este D-recurent de wvector o,
dat de (2.8) el este si D—H recurent de tensor de H recurentd dat de (2.7)
iar a6, arbitrar.

in particular daci © = 0, avem D = V si se obtin rezultatele din [9].

Considerind tensorul D-concircular de curburi

";kh = ;’kh — R flI;hh (2.10)
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unde S

i 1 i ] |

Hip = ———= (&isB — &n ) VAl
n(n — 1)

daca spatiul (L,, D) are proprietatea Fjy =-0 si # > 3; atunci confon

propozitiei 1.1 rezultid (1.8) si dacid (L,, D) este D— "H recurent- propt‘

avem o¢# 2w, iar din (2.7) rezultd

}{;kh = Hj, (2]{
Avem deci:

PROPOZITIA 2.3. Dacd D este o comexiunc scwi-simetricd mai generg
cu o conexiune K. Yano, dar cu tensorul D-comcircular de curburd nuk
spagiul (L,, D) este D—H-recurent, atunci avem (2.12).

Observatia 2. R # 0, deoarcce din anularca tensorului D- conc1rcu]1

de curburd ar rezulta R,k,, = 0 si conexiunea ar fi' K. Yano. La fel R
# const. deoarecc din (1.7) ar rezulta o, =0 si D ar fi egald cu V.

Observatia 3. Proprietateca 2.3 are loc pentru DD # V. Pentru D=
adicd @ = 0 din anularea tensorului concircular de curburd pentru # ¥
din faptul cd curbura riemanniand este constantd, rczultd R = coust.
deci Riwm,, = 0, de unde:

COROLAR 2.3. Dacd (L,, V) este V—H rceuvent, atrnci spatiil nu ‘jﬁo#
ft recuremt cu comveclor de rvecurcitla 6 # 6.

Fie pentru D, tensorul lui TEinstcin

Ej=R; - 5_ gii (Zi

Evident, daca 11;,;, =0 avem E; = 0. S presupunem -deci Zjy #0
ci E; cste D-recurent

E,'.,;/,. == G, .;,-J' . (2]“
Din (2.2), (2.13), (2.14) rezultd |
- — 1 \
(B — c,R){:I{,-,- — &) =0 (21
de unde avem- s

1 . . oy
H; = —g; = Hy (2l

1 n

Invers, din (2.2) si (2.16) rezulti (2.14), deci avem:

PROPOZITIA 24, Dacd (L,, D) este D—H-Ricci recurent, atunci condsp
necesard si suficientd ca temsorul lui Einstein sd fie D-recurent estc (2.16
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COROLAR 2.4. Dacd (L,, D) este D—H vrecurent atunci (2.16)
este conditia mecesard si suficientd ca temsorul E (2.13) sd fie D-recurent
o acelast covector de recuremtd.

§3. Fie Z};.;. tensorul coharmonic de curburd [5] si Z;kh tensorul
D-coharmonic de curburd [8], [11]. Avem [4],

e (3.1)

Cm = m

C,u = Z

e (3.2)

ande Hj este dat de (2.11).
Cum avem [I12] Chs = Ciw, din (3.1) si (3.2) rezulta

PROPOZITIA 3.1. Imtre temsorul coharmonic de curburd al lui V si D,
wistd relagia

Zin — Zin = —— Hia(R — R) (3.3)

DEFINITIA 2. Vom spune ci spatiul (L,, D) este D—H-coharmonic
recurent daci

Ziwy = 0,2 + IZ{;M(R/' — oR) (34)

unde o, este un convector si Hj, un tensor de tip (1.3) cu proprietatea
2

Hyjo = Hij= — ——g;. (3.5)
2 2

n — 4

Din (3.4) rezultd

1
———gi— H,.,)(R,, — R =0 (3.6)
" - 2

si dacd Hy; ar fi diferit de — g,, ar rezulta R, — a/,R = 0 gi deci [4]

n —
spatiul (L,, D) ar fi D- coharmomc recurent.

Din (3.5) rezultd

H = giH,; — — " _ )
2 gz’ n—2 (37)
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S4 presupunem spafiul (L,, D), D—H-recurent (2.1). Denvind cova-
riant in raport cu D tensorul D-coharmonic Z}; si tinind seama de (2.1)

si (2.2) avem:
Zin, = 0, 2l + Huk + — (H ¥ — }11513: + gaH} — g H:)]
1

(R, — oA (3,3) (3.8)

unde H} = g“H,;
Din (3.8) rezulti:

PROPOZITIA 3.2. Un spafiu (L,, D), D—H-recurent este si D—H-
coharmonic recuremt cu acelasi covector o si cu temsor Hjy de H-recuvemtd
2

dat de
Hi = Hip + —— (Had} — Hy 8} + ga H} — g5H)) (55) (39)

Reciproc, din (3.4) si (2.2) rezulti:

PrROPOZITIA 3.3. Un spa;iu (L,, D), D—H-coharmonic recurent este
D—H-recurent, dacd §i numai dacd este D-—H-Ricci-recurent cu acelasi

covector o, si temsor de D— H-Ricci-recurentd H,, Tensorul H,k;. de D—H-
recurentd fiind dat de (3.9).

Daci @ =0, atunci D = A si Zj = Zjm §i sc objin rezultatele din

91.
Existd un Hj, cu proprietatea (3.5) dat de

n

i —_—
kb =
2 —

2 Hi (’},AO) (3.10)
§4. Fie T, tensorul D-concircular de curburi (2.10).
DEFINITIA 3. Spajiu. (L., D) este D—H concircular recurent, dacia
T ;:u./y = o, T;:u + 51;»(3/' - O'rE) L\) 0 (4.1)
cu H =0, unde H = g‘JH,,, _}Iij =.—Hf,~S.
3 3 3 3 3
Din (4.1) rezulta

Tijw = o,Tj + Hij(R,, — o,R) (w2) @42
3

unde Tij = T:’js = E; (bl_’b) (4.3)
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iar din (4.2) avem
H(R/, — GC, R) = O
]

si dacd H ar fi diferit de zero, ar¥rezulta, [4], spatiul (L,, D), D-concir-
3

cular recurent. Prin urmare condifia H = 0 in (4.1) este esentiali.
3

£ Dacd presupunem spatiul D—H-recurent, derivind covariant (2.10)
n raport cu D si tinind seama de (2.1) obtinem:

T = 6, Timn + ({ﬁu — Hju)(R, — o, R) (4.4)
si reciproc. Avem deci:

PROPOZITIA 4.1. Orice spatiu (L,, D), D—H-recurent este si D—H
concircular recurent si reciproc. Intre temsoris de D—H-recurentd si D—H-
concircular recuremtd avem relatia

Hlw = Hjy — Hjw, (4.5)
3 1
COROLAR 4.1. Conditia mnecesard st suficientd ca (L,, D) sd fie D—H-
concircular recurent este ca (L,, D) sd fie D—H-recurent.
COROLAR 4.2. Condifia mecesard si suficientd ca spatiul (L,, D)
concircular recurent sd aibd temsorul lui Einstein recurent, este ca H; = 0.
3

§. 5 Pentru o conexiune semi-simetrici D in [l10] se stabilesc trans-
formdrile proiective de conexiune care au ca invariant tensorul

Wi = Rip — ﬁ (3iR; — 3iRa) (5.1

analog cu tensorul proiectiv de curburd a lui Weyl, iar in [9] se stabilesc
condiiile in care Wi cste egal cu tensorul proiectiv de curburd a lui Weyl
pentru V.
DEFINITIA 4. Vom spune ci spatiul (L,, D) este D—H-proiectiv recu-
rent, daci . o B
Wine = 6, Wi + {{:jk(R/r — O’,R) (5.2)

1jk°

cu H=0, unde H = g¥H;, H,; =gs‘.H; iar Hy = g"H;,
4 4 4 4 4 4 4

Daci in (5.1) inmulfim contractat cu g% avem

W __ " [Ps _ R s
Wi =-— I(Rk Y 3;) (5.3)
unde . o
Wi =g"Win (5.4)
— n =
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Din (2.13) si (5.1) rezulti . o
W:jk/r — erf'jk = ﬁ:jh/' — GI-R:jk — 6— E’\ (5.6)

( ijlr — O'rErJ) = § (Etklr — Or 1k)] - uk(R/r - GrR)

iar folosind (4.2), (4.3), (4.4) si (5.6) rezultd: D-H

_PROPOZITIA 5.1. Orice spatiu D—H-concircular recurent este D—H-
prosectiv recurent cu

s §
Hij = Hj;
3

4

(SkHtJ 8 u) (5 '}) (57)

Reciproc, daci in (5.2) inmulpm contractat cu g% in baza lui (4.3)
si (5.5) avem:

~ PROPOZITIA 5.2. Orice spapiu (L,, D) D—H-proiectiv recurent este i
D—H-concircular recurent cu

Hip = Hi+ L (5H, — 5Hy) (5.8) (58
3 4 n 4 4

COROLAR 5.1. Spatiile (Ln, D) sint in acelasi timp, D—H-recuremte,
D — H-concircular recurente 51 D— H-protectiv recurente. Intre tensorii de D—
H-recurentd existind relatiile: (4.5), (5.7), (5.8).

COROLAR 5.2. Dacd in spagiul (L,, D) tensorul lm Einstein este
D-recurent, atunci intre temsorii de D— H-proiectiv recurentdi si D—H con-
circular recurentd avem

Hjuy = Hj (5-9) (5.9)
4 3

in particular pentru @ = 0, D = A, obfinem rezultatul din [9] iar
pentru H,u, = 0, obfinem rezultatele din [4].

§ 6. Fie Cj tensorul D-conform de curburi.

DEFINITIA 5. Vom spure ci spatlul (L, D) este D— H-oonform recu-
rent (n> 3), daca : -

Ciine = 6,Ciix + Isﬁﬂ(ﬁh —= 5r§) (é'l) (6'1)
cu H,'j = Hfjs =0.

Dacd D este mai generald decit o conexiune K. Yano si tensorul

D-concircular de curburd nu este nul Zju# O, intre Cijp si T existd o
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relgi;'ie"i.{l_lﬂj analoagi cu cea' dintre Cin si Ti [3] si anume: -

Cii = T + JTZ'(T‘*B; — T8 + g,-,,T; _gijj:;) = Cij (6.2)
unde 7‘;=gjk;f1_"'k,-. De unde

C:_rh"_ G'fcuk = Ti]k/f ( iklr — UrEik) —

- 8;( ijlr — Or v) + g,k( jlr — G'E) - g{j(E;/r - O"E;)] (6.3)

Daci spatiul (L,, D) este D—H-concircular recurent, din (4.1), (4.2),
(43) si (6.3) rezulta (6.1) cu

s fﬂ‘ = Hs (SSHW Szg‘["i + g,';;l:;‘l; - g,]I;[;) (64)

De unde

PROPOZITIA 6.1. Dacd spatiul (L,, D) estc D—H concircular recurent,
atunct este D — H-conform vecurent cu tensor de D—H recurentd dat de (6.4).

COROLAR 6.1. Orice spatiu (L,, D) D—H-concircular recurent cu ten-
sorul lui Einstein D-recurent cu acelasi covector o, este in acelasi timp D—H
conform vecurent si D—H proiector recurcnt cu

§ S
Hijp, = Hijp = Hi
5 4 3

COROLAR 6.2. Dacd spatiul (L,, D) este D—H-recurent, atunci din
propozifia 4.1 §i corolarul 6.1 rexultd cd spapiul (L,, D) este D—H-con-

orm vecurent cu Hy, dat de (6.4) si Hyy dat de (4.5).
h 5,! s 7]
Din (3.2) rezultd
Cimr = Ziwr + ;;%2- R, Hi, (6.6)

sau

"(—::jk/r — Ur-éjk = ijk/r - GrZth + ” i 2 :jk(_R/r - 07.1—?)’ (67)

De unde
PROPOZITIA 6.2. Condu‘m necesard si suficientd ca un spapin ( L., D )

sé fie D— H-conform recurent (m > 3) este ca spatiul (L, D) sd fie D—H-
coharmonic vecurent cu

Hiy = H; o (6.8)

)
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COROLAR 6.3. Un spatiu D—H conform recurent (n > 3) este D-
vecurent, dacd st numar dacd este D— H-Ricct recurent cu acelasi covector

COROLAR 6.4. Conditia necesard si suficientd ca spapiul (L,, D)
fie D-conform recurent estc ca (L,, D) sd fic D—H coharmonic recurent

Hy dat de (3.70), [4).
2

COROLAR 6.5. Dacd (L,, D) este D— H-concircular recurent, atunci
D—H coharmonic vecurent cu

s 4 s
Ht]h - ik — ijk (E
5 n—2 '

unde
Hij este dat de (6.4).
5

Observatia 4. Relatiile intre tensorii de D—H-recurentd (3.9), (4.
(5.7), (4.8), (6.4), (6.8) sint analoage cu relatiile cc cxistd intre tensc
pentru care s-a definit D— H-recurenja.
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ABSTRACT. — The study on differential subordinations of the form 4(p(z),
zp’(2)) > h(2), Legun in (1] and [2] is further carried in the present paper
for the case in which ¢(p(e), zf'(2) = x(zp’(2)) + B{s£":2))v(p(e)) by employing
the admissible functions method of [2], obtaining generalizations of the results in
[6], some consequences and examples being then presented.

Introduetion. Tet f and g be analytic in the unit disk U and let
H(U) be the space of functions analytic in U. We say that f is subor-
dinate to g (f> g or f(z) > g(#)) if g is univalent in U, f(0) = g(0) and
U) < e(U). . o ,

If 4:C%2- C is analytic in a domain D, if % is univalent in U and
it pis analytic in U with (p(z), 2p'(2)) € D when z € U, then p is said
to satisfy the first-order differential subordination

b(p(2), 2°(2)) < h(2), z € U.
In [1] the authors determine conditions on ¢ and % so that p(z) <
< h(z) in the case
v(p(2), 2p'(2)) = 8(p(2)) + 2p"(2)@(p(2))
and they give applications of these results in univalent function theory.
In [3] the author study the differential subordination in the case

W(p(2), 2p'(2)) = «(p(2)) + B(p(2))y(2p'(2))
and applications of these results are given. .
In this paper we shall study the differential subordination when

$(p(2), 2p'(2)) = «(2p'(2)) + B(2p"(2)v(£(2))
and we give some particular interesting cases.
Preliminaries. We will need the next two lemmas to prove our theorem.

LEMMA 1. [4] Let g € H(U), with g(0) = 0, be umivalent and starlike
inU. If f € H(U) and Re[zf'(2)/g(2)] > 0, z € U, then f is univalent in U.

We said that L: U X [0, 4w) — C is a subordination (or Loewner)
chain if L(-, #) is analytic and univalent in U for all ¢ > 0, L(z, -) is
continuosly differentiable on [0, +o0) for all z € U and L(z, s) < L(z, )
when 0 < s < t.

* University of Cluj-Napoca, Faculty of Mathematics, 3400 Cluj-Napoca, Romania
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LEMMA 2. [5, p. 159] The function L(z, t) = a,(t)z + . . . with a,(t) #
for all t > 0 is a subordination chain if and only if

JL | oL
for all z € U and t > 0.

THEOREM A. [2] Let h, q € HU) be univalent in U and suppa]
g € HU). If :C*— C satisfies: ' E
a) ¢ s analytic in a domain D C C3,
b) (¢(0), 0, 0) € D and ¢(g(0), O ) nU),
7 7

c) Y(r, s, t) & MU) when (7, s, t) eD, r= (() = m&q'(%),
Re(l 4 £fs) > m Re (1 + tg"(8)q'(Q) where | = 1, m > 1,
then for all p = (H(U) so that (p(z), 2p'(z), 2%p"(2) D, when z €

we have :

Yp), (), 2p"() < hlz) implies that p(z) < q(2).

" MAIN. RESULTS. THEOREM. Let g be comvex (univalent) in U, a
let «, B be analytic in C and v analytic in a domain D D q(U). Su;bﬁa
that

(i) Re B((1 + #)2q’(2))¥"(9(2) >
(1 + £)29'(2)) + B'((1 + $)zq'(2))v(q(s)) |
for all z€U and ¢ >0 !
(i) Q(2) = 2q'(2)(«’ (29’ (2)) + g’ (zq (z) v(q(2))) s starlike (umivalent) in
If p is analytic in with $(0) = q(0), p(U) C D-and a(zp’'()
+ B(z2"(2))y(#(2)) <,°t(49.(2)) + B(=q'(2))v(q(2)) then p(2) < q(2). |
. Proof. Without loss of generality we can assume that p and ¢ satﬂ
the conditions of the theorem on the closed disk U ; if not, then we d
replace p(2) by p,(2) = p(rz) and ¢(z) by g¢,(2) = g(rz) where 0 <7<
The new functions satisfy the conditions of the theorem on U and we wot
then prove that $,(z) < g,(2), for all 0 <7 < 1. By letting » 4 1~ weo

tain p(z) < q(2).

The function
L(z, ¢) = «((1 + £)29')2)) + B((1 + £)29'(2))v(q(2))

is continuously differentiable on [0, 4o0) for all z € U and analyt,ic"i
Ufor all £ > 0. Because ¢’(0) # 0, Q'(0) # 0 from (i), for z =0 we dedu
that

oL ’ ’ ’ B(O)T'(Q(O)): o
— (0, t)=4q'(0 0) 4 p’(0 o1 +¢t+ o
% (0, £) =¢'(0)(«'(0) + B’ (0)y(q( )))( + 70 + B,(O)T('(o))) ‘

and

Z—L(O,t)aéOforaut?O.
- (0, ¢ |
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Because ¢ is convex in U, a simple calculation combined with (i)
yields

Re[za—L/a—L-]>0for all z € U and ¢t >0
oz | Ot

hence by Lemma 2, L(z, ¢) is a subordination chain.

If we let
W) = L(z, 0) = a(29'(2)) + B(2¢'(2))v(¢(z)) and using (i) for £ = 0 we ob-
tain Re [2A'(2)/Q(z)] > O for all z € U, hence by Lemma 1, A is univa-
lent in U.

Let §(r, s) = afs) + B(s)y(r) analytic in the domain E =D x C;
then (¢(0), 0) € E, {(q(0), 0) == 2(0) € A(U) and because L(z, ¢) is a
subordination chain we have

(1 + ) 8¢'(2)) + B((1 + )T (8)v(9(8) ¢ A(U)

for £ >0 and |{| = 1. Using Theorem A we conclude that p(z) < g(2).
This theorem give us some particular cascs presented in the next
corollaries.
If we take y(w) = 1, w = C then from Theorem we obtain:

COROLLARY 1. Let g be convex (umivalent) in U, a and B be amnalytic
in C and suppose that

Q2) = 2¢'(z)(« (zq (z)) ( q( ))) s starlike (umivalent) in U. If p
is analytic tn U with q(0), then
a(zp'(2)) + B(ep'(2)) < « ZQ( ) + Bleg'(2)) implies that p(z) < q(2).

If we take a(w) = w, B(w) = aw?, w = C then from Corollary 1 we
obtain :

Example 1.1. Let ¢ be convex (univalent) in U, a € C and sup-
pose that Q(z) = zq'(z)(1 + 2a2q’(z)) is starlike (univalent) in U. If p is
analytic in U with p(0) = ¢(0), then
#(e) + a(zp'(2)) < 2q'(2) + alzg'(z))* implies that p(z) < g(z).

If we take in this example a = 0 we obtain the well-known result
of T. J. Suffridge [6].

This example give us some interesting particular cases if .we replace
g¢ by simple convex functions.

Example 1.1.1. If a, » € C so that |aA| < 1/4 and p is analytic in
U with $(0) = O, then ‘
#'(2) + a(2p’(2))? < Az.+ a(A2)? implies that p(z) < Az.
Proof. 1f we take in Example 1.1., ¢(z) = A2, A € C, z € U we obtain
that -
2Q’(2) — Re 1 + 4axs 1 — 2(2a)] >
Q(2) 1 + 2a)z 1 — |2a)z|

when - {2/aAzl < 1/2,.z2 € U: and, this last mequallty is equivalent with
< 1)4.
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Example 1.1.2. Let a, A € C so that |A| =7, where 7, € (0, ]
the root of the equation

1 —7 — prer(3 4 3r + 2p7%") =0, p = 2|a|.
If p is analytic in U, $(0) = 1 then
zp'(z) + a(zp’(2))? < Aze™ 4 a(rzeM)? implies that p(z) < €M
Proof. We can easily prove that ¢(z) = ¢™ is convex in U wh

[A| < 1. By letting Az = { =re*, 0 <7 <1 and ¢ = 2a = pe'?, p =1
a simple calculation yields
Re 2@ 1 (
Q) |14kt
and |1 4 cCet|?2 > (1 — prer=cos)2,

Tet ¢: [0, 11> R, ¢(r) =1 — » — pre’(3 + 37 + 2pr2er). Since ¢'(r)
<0, 90) =1, ¢(1) = —2pe(3 + pe) <0, we conclude that there exi
7o € (0, 1) such that ¢(r,) = 0. Moreover 7, is the only root of the fu
tion ¢ and for all » € [0, 7,) we have ¢(r) > 0.

Let ¢: [0, 1] > R, §(r) = 1 — pre’. Because §'(r) < 0, $(0) = ¢(0) =

and o¢(r) = $(r) — 7(1 + pe"(2 + 37 + 2p7%’)) then o¢(r) < ¢(r) for
r € [0, 1], we obtain that () > 0 for all » = [0, 7,], hence

1 + cGet|? = (1 — pre’)2 > 0 and Re%‘?—> 0 for all z & U when [} <

t4
Example. 1.13. Let a, A €C so that |A| < min {r, 7} wh
7o = min{lr| : 72 4+ 2(1 + a)r + 1 = 0} and

ri=min{r; >0, »* + 2(3|a] — 2)»® + (8|a|> — 12|a| + 1)* —
— (8la|? — 16|a| + 1)72 + 2(3|a| 4 2)r — 1 = 0}.
If p is analytic in U with p(0) = 0, then

’ ’ 2 p¥4 p¥1
() + alap' 6 < a( T

Proof. We can easily prove that ¢(z) =

1 — 7 — prer(3 + 3¢ + 2pr%e))

)2 implies that $(z) <ﬁ;

is convex in U wh

14 2
|A] € 1. By letting Az = { =r¢*, 0 < » < 1 and ¢ = 24 = pe'®, we obl
Re22@ o —r'—Bp — 4t — o' — Gp+ I)r' + (20" — 8p + L)t — (3p + 4hr+!
Q(e) 18+ (¢ + 38 + (¢ + 3L + 12

Tet ¢:[0, 11> R, o(r) = —7* — (3p — 4)r® — (2p* — 6p + 1)

+ (202 — 8p + 1)72 — (3p + 4)7 + 1; because ¢(0) =1, ¢(1) = —8p<

there exists 7' (0, 1) so that ¢(r')=0; hence ¢(r)>0 for all » & [0,

where 7, is the smallest positive root of the equation ¢(r) = 0. A sim
calculation yields

B+c+3)2+(c+3)% +1#0, for all z e« U, when |)

< min{l, 7g}, hence Re% > 0 for all z € U when |A|] < min {ro,r
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Remarks. From the proof of Example 1.1.3. we observed that this
result is not sharp ; better upper bounds may be found in the case when
ae R

Case 1. Tet 0 <a <1 and A € C with
|\ < min{l +a — 4/@® + 2a, 7,} where
rr=min{r:»> 0, »*— 2(3a + 2)r® 4 2(4a* 4- 8a + 1)r* - 2(3a + 2)r —
— 1 =0}
If p is analytic in U, $(0) = 0, then

, ’ 2 h¥4 y¥4 2, . rz )
2'(2) + a(zp'(2))? < TR + a ( Ty )z)’) implies that p(z) < Y

Proof. In the case 0 <a <1 we dcduce that

’ vt — 1
Re > T L T A e
— 2(4a* 4 8a + 1)72 4 2(3a + 2)r 4- 1)
where { = Az = re®*, 0 < r < 1 and the right-hand term is defined for all
reUwhen|A S7=1+4a—4/a® + 24 = (0, 1). If welet ¢: [0,1] » R

Y(r) = —r* +2(3a + 2)r®* — 2(4a®> + 8a + 1)1+ 2(3a + 2)r — 1  we
have

$(0) = —1, hence Re%()i)> 0 for all z € U if |\ < min {r,, 74}.
<

Case 2. Leta > 1 and » € C with
1A < min{l +a —Ja2 + 2a ; r*} where
w=min{r:r> 0, »* — 2(3a + 2)r® 4 2(4a2 -+ 6a + 3)r2 — 2(3a + 2)r +

+ 1 = 0}.

If p is analytic in U, p(0) = 0, then
' 1o\2 P z 2. . ¥ )
wp'(2) + a(zp'(2))? < Tror + a((l n M)’) implies that p(z) -<——1 oy

Proof 1In the case a > 1 we deduce by using the proof of Example
1.1.3., that

2Q'(2) > -1
Q) B+ (c+ 3+ + 3L+
— 2(4a® + 6a + 3)r2 — 2(3a + 2)r — 1),

where { = Az =7e®*, 0 < » < 1 and as in the Case 1 we deduce the above
result.

(—7* + 2(3a + 2)r°—

9 — Mathematica 2/1986
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- “When a =1 we can ecasily show the following result. ..
Case 2. If [A| <3 — 24/2 and p is analytic in U, p(0) = 0, then
’ ’ 2 2
@) + G OP <+ )

(1 + 222 (1 + Az)2

Az

implies that -
implies that p(z) < Y

Case 3. Let —2/3 < a < 0and » = C with [2] < min {1, 7y, 7,} where
7o = min {Jr| : #2 + 2(1 + a)r + 1 = 0} and

r* = min {|r| : 7* — 2(3a + 2)7° + 2(4a® + 8a + 1)r* — 2(3a + 2)r+1 = 0}.

If p is analytic in U; $(0) = 0, then =0

’ ! 2 e x )
P (2) + ‘?(ZP EF <77 b . a((l -Hz)’)'

implies that p(z) < _+—x—z

" Proof. If “2/3<a <0 we can easily show that
Re 2@ 5 : w1 —r* + 2(3a + 2)3—
eQ(I) IC‘+(6+3)(’+(0+3)C+1I’( 7 2B+ 2)
— 2(4a% + 8a + 1)72 + 2(3a + 2)r — 1)

‘ : R T TN
where { = M =17re*,0 < 7r <1.Wehave ¥+ (c + 3)02 + (¢ + 3)( 4+ 10
for all ze U when |A| < min {1, r¢} and the right-hand term is positive
when |A| < min {1, 7y, 74}.

Case 4. Let a < —2/3 and A € C with |A\| < min {1, 7, 7,} where
ro=min {|r|: 72 4+ 2(1 4 a)r + 1 =0} and

7y = min {|7|: 7* + 2(3a + 2)r3 + 2(4a® + 8a + 1)7* + 2(3a + 2)r 4- 1 =0}
If p is analytic in U, p(Q) = O, then v

'(e) + aep (@) < s o) imwties that £() <

y3 4

(I + 22t

Proof. As'in the Case 3, we can show that if @ < —2/3

Re ZQ’(Z)» > v — 1 (_74 o 2(3a + 2)73_
R T O+ BT e+ BT P e

— 2(4a2 + 8a + 1)r* — 2(3a + 2)r — 1)

where { = M =17¢%, 0 < < 1 and ¢ = 22 and the . right-hand term is
positive for all z € U “when [A| € min {1 7or Tu}-
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When a = —2/3 we can easily deduce the following result:
Case 4. If |2] < (4 —4/7)/3 and p is analytic in U, p(0) =0 then

R e |

(1 + 22)2 3\ (1+ az
imlpies that p(z) < —2— .
1+ 2z
Example 1.1.4. Let a, % = C with |4] < 7, for a = —1/2 and |A| €

< min{ro,m—:;} for a # —1/2, wherc

7o = min {r:7 > 0, -—(8|a|* + 6|a| -}- 1)r® |- (8|al* - 12]a| + 1)r* —
— 3(2la| + ) + 1 = 0}.
If p is analytic in U, p(0) =log 1 =0, then

Az
14 2z

2'(z) + a(zp’(2))? < P ,2 implies that p(z) <log (1 + A2).

+ a(

Proof. If |A] < 1 the function g(z) = log (1 + Az), log 1 = 0 is convex
(univalent) in U ; if we let ¢ = 2a = pe™® and A= {=7re* 0 <7 <],
by using Example 1.1. we deduce

Re 2@ o (=20 ~3e—1)r'+ e —6p + 11" — Bo + 8)r + 1
Q(f) [T+ Q|1+ €+ cg?
The vri'ght-h'an'dmt'erm is defined and positive when |A] < 7, in the
case a4 = —1/2 and for |A < min{ro, ﬁ} in the case a # —1/2 for
. -

all z € U, and using Example 1.1. we obtain the above result.

Example 1.2. Let ¢ be convex (univalent) in U and a e C\{—1} so
that Q(z) = 2¢'(2)(1 + ae®®)) 1is stalike in U. If p is analytic in U,
$(0) = ¢(0), then

2p'(z) + ae®) < zq'(z) + aed'(® implies that p(2) < q(2).
Proof. If we take, in Corollary 1, a(w) = w and B(w) = ae®, w € C,
then we obtain the above result.

Example 1.2.1. Let ac C\{—1} and r« C so that |A| < min {r,, 7*}
where 7, = min {|#|: 1 4 ae¢’= 0} and

7o =min{r: 7> 0,1 — 2|ale’ — |a|re’ — |a|>€* + |a|?e~% = O}.
If p is analytic in U, $(0) = 0, then
zp'(2) + ae?’®) < Az 4 ae™ implies that p(z) < 2.
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Proof. We use Example 1.2. in the case g(z) == Az, z € U. The fund
Q(z) = Az(l - ae¥) is starlike in U if

Re 2Q'(2) _ Re at - 68 + gek < o 2pe7 — gre? — re¥ + eV
Q(z2) a v+ & la=t -- ekj2

>0,

where a™1 == g¢® and { = Az = re®, 7 2 0. We can casily show that
inequality is satisfied under the conditions of the example.

If we take, in Corollary 1, «(w) = w and B(w) = aw*, w €(
obtain :

Example 1.3. Let g be convex (univalent) in U, a € C, n € N*
suppose that Q(z) = 2q'(z)(1 4 an(zq’(2))*~!) is starlike in U. If p is an
tic in U, p(0) = ¢(0), then

z2p'(2) + a(zp’(2))* < 2q'(2) + a(zq'(z))* implies that p(z) < q(2).

Remark. If » = 1 or a = 0, this example yields the well-known r¢
of T. J. Suffridge [6], and for # == 2 we obtain the Example 1.1
1

Example 1.3.1. Let a € C and » € C with |a] < (n%a])'™",
is anmalytic in U, $(0) = 0, then
zp'(2) + a(2p’'(2))* < Az + a(r2)* implies that p(z) < Az
Proof. If we let { = Az = r¢® and a = pe® we obtain, for ¢(z) =
z € U that
Re 2Q’(2) > 7881 — p(n -+ 1)pr*~2 4+ 1
Q(2) 11 + nagr=t2

1

and if || < (#%a])»~! we can prove that the right-hand term is pos

for all z € U

Remark. For a = 0 this result holds for all » € C, and for »
we obtain the Example 1.1.1.

Example 1.32. Let « € C and % € C so that |A] < #, wherev
e (0, 1] is the root of equation

1 — 7 — njalpr—tetr=0((n + 1)(r + 1) 4 n¥|ajrret—17) = 0.
If p is analytic in U, p(0) = 1, then
zp'(z) 4 a(zp’(2))" < Aze* 4 a(rze™)» implies that p(z) < ™.

Proof. The function ¢(z) = ¢**, |A] < 1 is convex (univalent) in
If we let 2a = g and T = A =vre", 0 < 7 < 1, then

Re Z20) 2()

where
00 1t maxr=1 oI

2

o(r) =1 —7r— % el =1r((n - 1) + (m + 1)r ’2

-1)
prmen i),
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A simple calculation yields

ll + na?;”—‘e(n—l)’;le > (1 — _Z_ prn—le(n—l)r'cn:. )2:; e(’,)

and if we let ¢(#) =1 -2 y*—let=17 then o(r) < Y(r) for all 0 < » < 1.
2 P P Y

Because ¢'(#) <0, 0 <7 <1, ¢(1) <0 and ¢(0) = 1> 0, there exists
ne (0, 1] so that ¢(r,) = 0 and for all » « [0, »,) we have

Y(r) = @(r) > 0. If » « [0, 7o) then O(r) = ¢23(r) > 0
ad by using Example 1.3. wc obtain the above result.

Remark. For n == 2 we obtain the Example 1.1.1. and for a = 0 this
wsult holds for all » = C.
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A FIXED POINT THEOREM FOR DECREASING FUNCTIONS

MARIAN DEACONESCU*

Recevied : July 15, 1983

1t is well-known that an increasing funcfiont on a complete lattie
has at least a fixed point (see [1]). An analogous result for decreas
functions does not hold. Indeed, if B is a complete boolean lattice an
f:B— B where f(x) = % is the complement of x for every x € B, fis
a decreasing funciton without fixed points. Consequently, we must giv
other conditions for the lattice or (and) for the function to assure th
existence of a fixed point. The aim of this note is to give sufficient
conditions for a decreasing function f: L. - L where L is a chain to have
a fixed point.

In what follows, L will be a chain aud f: L - L will be a decreasi
function. The fixed point set of f will be denoted by I, If a,b €
and a < b, we will denote the sct {x € L |a < x <<h) by (a, b) Th
chain L is dense if (a, b) # @ for cvery a, b € L with a < b. We al
consider the two subsets of L: D == {x eL|x < flx ), and [ = {x €]
x = f(x)}. We have obviously F,== DN I and L==D |J I ¢

LEMMA 1. Let L be a chain and f: L — L a decrcasing function. Th

(1) f has at most one fixed puiii.

(i) x <y for cvery x € D, v & [

(iii) /(D) < I and f(I) < D.

Proof. (i) Let x, v be fixed points, soy v . Then f(v) < f(x
that is v < x, hence a - v
(ii) Supposc x> v for some x € ) wual v e /. Then f(v) < f(v; an

x < f(x), f(v) <, hence ¥ < v bv transitivity ; but this contradicts the
hypothcsw

(iii) Obvious.
Remark. If, morcover, fis surjective, then [(D) = I and f(I) =

Proof. To show, e.g., that f(D) = I, we take x € I and prove that
x € f(D). But x=f(y) for some y € L. If v € D then x = f(D).
yel, then x € f(I) € D, hence x « DN\ [ is a fixed point, there
fore x = f(x) = f(D).

LEMMA 2. Let L be a complete chain and f:L— L a decreasing
surjective function. Set a ==sup D and b =inf I. Then

(i) a < b and (a, b) # @.

(ii) a=f() € D and b = f(a)  I.

)

* General Schoo! nr. 3. 2700 Deva, Romania
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Proof. (i) a < b follows from Lemma 1, (ii). Now suppose a << ¢ < b.
lfceD then a # sup D and if ¢ € I then b # inf I, contradiction.

(i) From b < x for cvery x € I, it follows that f(x) < f(b) for cvery
1€], hence y < f(b) for every y € D because f(I) = D. As a =sup D
it follows that @ < f(b) and similarly f(a) < &. On the other hand a < b
implies f(6) < f(a), therefore a < f(b) < f(a) < b, which shows that a € D
ad b = I. Moreover, f(b) € D and since a =sup D it follows that
1=f(b) and similarly b = f(a).

We can now state the main result of this note:

THEOREM. Let L be a complete chain and f: L — L a decreasing sur-
wive function. Set a = sup D and b =inf I. Then f has a fixed point
fad omly if a =10, in which case the fixcd point is a = b.

Proof. If @ =0 then a = f(b) = f(a) by Lemma 2, (ii). Conversely,
icis a fixed point then ¢ € DM I, hence ¢ < a < b < ¢, therefore
xl'—:b = C. o

COROLLARY. Let L be a complete dense chain and f: L — L a decrea-
ing surjective function. Then f has an unigue fixed point.

Proof. This follows immediately from Lemma 2 (i) and the Theorem :
1=b by the density assumption and Lemma 2 (i), so a = b is the unique
ixed point of f by the Theorcm. .

REFERENCES

LA Tarski, A lattice-theovetical fixed point theovem and its applications, Pacific J. Math.
5 (1955), 161—170.



STUDIA UNIV. BABES—BOLYAI, MATHEMATICA, XXXI, 2, 1986
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ABSTRACT. — The purpose of this note is to generalize a coincidence theorem
of Hadzic in [1] and to show that the remark in [2] about the mentjoned theo-
rem is not true.

1. In the sequel we shall use the following notations. For a metr
space (X, d), CB(Y) (CI(Y)) stands for the family of all nonempty clos
bounded (closed, resp.) of Y (C X, d(», Y) — the nearest distance fro
a point x to a set Y, H(Y, Z) — the Hausdorff distance between ty
sets Y and Z, N — the set of all natural numbers.

In [1] HadZi¢ has proved the following

THEOREM M. Let X be a complete metric space, S and T cont«&nuil
mappings from X into itself, A a closed mapping from X into CB(SXNT
such that ATx == TAx, ASx = SAx for everv x € X and

H(Ax, Av) < q d(Sx, Tv) for cvery x, v € X, where q & (0, 1). T}
there exists a sequence {x,. such thal

1) For everv n € N, Sxpyiq1 € Axo,, Txo, € Awg, 4,

2) There exists z = lim Tx,, = lim Sxs, .,

3) Tz € Az, Sz = Az.

Theorem H can be generalized as follows

THEOREM 1. Let X be a complete metric space, S, T continuous m

pings from X into itself, A, B, closed mappings from X into CU(X). Supp
that

(i) A(X) C T(X), B(X)C S(X), S4 = A4S, TB - BT,

(i1) There is an upper semicontinuous from the right function
q: [0, wo)— [0, 1) such that

H(Ax, By) < q(d(Sx, Ty)) - max {d(Sx, Ty), d(Sx, Ax), d(Tv, By),
21 [d(Sx, By) + d(Ty, Ax) ]}

for every x, y & X,
Then there exists a z e X such that S: € A2, T: & Bz,

¥ Current address: (1983—1985) : Instiytut Matematyczny PAN, wl. Sniadeckich 8, skr. pocstowa 137, 00~
Warszawa, Poland
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PROOF. Take x, € X and put y, = Sx, then fix » > d(y, Ax,)
and choose v; € Ax, so that d(y,, y;) <7 - By (i), there is an x; € X
with y, = Tx,. From (ii) we have

dy,, Bxy) < H(Ax,, Bxy) <q(d(y,, 3)) - max {d(.\‘o. M) d(¥e A%),

dlys, Br), 5 [ye Br) +dly, A0}

Inview of y, & Axo, d(yo, Bay) < d(ve, 31) + dlon, By) and gld(ye 1)) <1
from this we get d(y;, Bxy) < q(@(3, ¥1))4)Ye, 1) and hence

d(yy, Bx;) < min {d(y,, 1), 9(d(y0, y1))7} = L.

Select y, = Bx,; so that d(y,, y,) <t. By (i), there is an x, € X with
Sty = y,. Analogously, there is an y; € Ax, with

d(yy v3) < min {d(yy, ¥a), (@Y1 ¥2))9(d(Yo, ¥1)7}

and vy = Txg.
Generally, we can construct two sequences {x,}, {),} with the fol-
lowing properties

You = SXop € Bxou_1, Yont1 = Txgpq1 € Aoy, (1)

e < min {c,, g(c,) ... g(co)?}, where ¢, == d(¥n, Yut1). (2)

From (2), ¢y — ¢ = 0. By the upper semicontinuity of ¢, lim g(c,) < g(c).
Fix & with ¢(c) <k <1, there is an #n, € N such that ¢(c,) < & for
n > n,. Hence, for n > n, we have from (2) ¢,+1 < k"R, where R =
= k=™g(cy,) ... g(co)r. Since k< 1, {y,} is a Cauchy sequence and hence
Ys— 2. By continuity of S and T, Ty, — Tz, Sysmy1 — Sz. From (i)
and (1) we have Tyz,, S Bsz,,_l = Byz,,_.l, Sy2n+1 = Asz,, = Ayz,,. By
closedness of 4 and B we get Tz € Bz, Sz € Az. The proof is complete.

2. In [2] Sanderson claims that ,,the truth of Theorem H is in doubt
as the proof is incomplete’”. But Theorem 1 shows that Theorem H is
true and it seems to me that the proof in [1] is standard and clear enough.
Moreover, the counter-example in [2]:

X=1,...,27% ...,0}, S = T = identity, A(0) =1, A(1) =4(2-") = X

is not true. In fact, 4 is not contractive, for
H(A(O), A(-;-)) =H(l, X)=1> d(o, %)

Besides, 4 is not closed, for 2=« A(2-*) = X, but 0 & A(0) = 1. So this
counter-example has no relations with Theorem H.

3. The following result shows that closedness of 4 and B can be
replaced by commutativity of S and 7. Namely, we have
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THEOREM 2. Let X be complete, S, T continuous on X, A and B multi-
valued mappings from X into CUX). Suppose that each of S, T commules
with the there others, A(X) \J B(X) C ST(X) and Condition (i) in Theorem
1 s satisfied. Then the conclusion of Theorem 1 still holds.

Proof. Denote U = ST, take x, € X, put y,= Ux, fixr>
> d(yo, ATx,), choose v, € ATx, with d(y,, v,) <7, then sclect x; € X
with y; = Ux;. From (ii) we have

d(y,, BSx) < H(ATx,, BSx,) < ¢(d(yo, 71) max{dm, 1), d(v, BSx),

1 .
7 400 BSm)} = ¢(d(re, 3n)dlye, 1)

Choose y, € BSx; so that d(y,, ¥,) < min {d(y,, ¥1),9(d@(¥e, ¥1))7} then
select x, with y, = Ux,.
Repeat this process, we get two sequences {x,}, {V,} with

Yon = Uxgn € BSxan—1, Yont1 = Uxonyy € AT x, (3)
and for which (2) still holds. So v, -y € X. Now by (ii), we have
d(Uy, ATy) < d(Uy, Uyw) + d(Uyam, ATy) < d(Uy, Uyz)+ H(BSyz-y

ATy) < d(Uy, Uya) + q(d(Uy, Uyza-1)) max{{d(Uy, Uyza_y), d(Uy, ATy),

AU, Uy: ), 5 [y, Uya) + d(Ussnr, ATY)1} |
Since d(Uy, Uvga—i) » 0 and ¢(0) < 1, we have ¢(d(Uy, Uyzu_1)) < k < !
for » large enough. From this by letting # - 0 we get d(Uy, ATy) <
< kd(Uy, ATy). This shows that Uy ATy in view of closedness of ATv.
Similarly, wc¢ have Uy € BSy. Putting z = Uy, from this we get the
desired result: Sz € Az, Tz € Bz. '

REMARK When S = T=the identity, Theorem 2 reduces to Theorem
1 in [3].
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\FIXED POINT THEOREM FOR MULTI-VALUED FUNCTIONS OF
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ABSTRACT. — In this paper we present a fixed point theorem for multi-valued
functions of contraction type. The class of all mnultivalued functions which satisfy
our condition is miore large than those classes considered in [1], [2], [4], and

[6].

Definition and notations. In the sequel we shall use the following
wations. For a metric space X by CL(X) wc denote the class of all
-empty closed subsets of X. By H we deriote the Hausdorff distance
(L(X) generatcd by the metric
H(4, B) = max {Sup inf d(a, b), Sup inf d(a, b)}
beB a<4d a4 be B

W all 4, B € CL(X)

ld, as usual d(x, A) = inf {d(x, y), y = A}

Let F: X —» CL(X) be a multi-valued function.

‘ DEFINITION. A sequence {x,, =0, 1, 2, ...} is called an orbit of
fat x iff xg =%, %y €Fx,n=0,1,2, ...

THEOREM. Let X be a metric space, F: X — CL(X) be a function satis-
ing the following conditions :

i) There 1s an orbit of I at a pomt Xy, comammg lwo successive con-
wgent siibSequences

Xi [ Tw Xy Xni+1 T Xx
i1) There exist real numbers q, and q,:
g, < 1 such that

H(Fx, Fy) < q,d(x, ) + g, max {d(x, Fx)+ d(y, Fy), d(x, Fy)+
+d(v, Fx)} for all x, y in X.

Then %, € Fx,

Proof. Suppose x, ¢ Fx,. Since Fx, is nonempty and closed we have
%, Fxy) = 7> 0. From the condition 7) of the theorem it follows that
br every e> 0, there is a non-negative integer i(e) such that for all

* Institute of Mathematics, Ha-noi, Viet-nam
Present address : Faculty of Mechanics-Mathematics, Moscow, MGU. B. 234, URSS
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i > i(z) both x, and %, ., belong to the open ball centered at x, of ra-
dius e: %, €0 (%, ), %11 €0 (x,, 2).
And hence for all ¢ > i(e) we have
d(xni, xn;-{»l) S d(xn‘-r x*) + d(x*, xu...i.]) s 23
From here we have:
d(x,,'., Fx,,‘.) =2 U) (1)

From the definition of the distance between a point and a set in metric
space, it follows:

A(%n, Fxy) < d(%n, x4) + d(xy, Fxy)
And thus, for all 7 > i(¢) we have
d(xs, Fxy) <€+ 7 () (2)
From the condition i¢) of the theorem and using (1)
and (2) have for 7 > i(e)
H(Fxy, Fxy) < 12 + qgomax {2e + 7, (¢4 7) + ¢}

Hence

H(Fx, Fx,) < e + qa(r + 2¢) LD (3)
In the other hand

A(xy, Fxy) < d(xy, Xut1) + d(%n41, F2y)

From this for ¢ > i(e) we have
d(x.‘..n, Fx*) Zr—z k\“\ (4)

Since ¢, < 1, it is clear that (3) contradicts (4) when z is chioseen suffi-
ciently small and 7 > 4(¢)
Thus x, = Fx,

Remark 1. In the condition #2) of the theorem g, is arbitrary and ¢,

1
can be more than e

Remark 2. In the proof of the theorem the condition ¢i) need be
fulfilled only for all pairs of tipe (¥, %)

By considering the simple-valed function we have the following.

COROLLARY Let X be a metric space, f: X—>X be a mapping satisfying
the following conditions :

1) There 1is an orbit of f at a point x, containing two succesive com-
vergent subsequences

o Yeo Xt Mk
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11) There cxist real numbers ¢, and q,, q, << 1 such that
A(f(%n,), f(%4)) < G1d(%n;0 X%s) + g5 max {d(%,, f(xn)) +

L d(%y, f(%4)), d(%Xu,, f(x)) + d(xs, f(xa))} for all integers 1.

Then x, is a fixed point of f.

The following example shows that the theorem does not hold if g,
is replaced by 1.

Example. X :{—u —.n=0,12 } U {0 U {1,
. . __l_ - 1
f: X - X defined by f( ,2'.) —

1=0, 1,2 ..., f(0)=1: f(1) = —1.

The reader can verify the fulfilment of all conditions of the theorem
with ¢, = ¢, = 1 and f has no fixed point.
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ABSTRACT. — Cauchy — Schwarz inequality is generalized in the paper, under
the form of a nm-order dererminant.

A fertile source of inequalities is provided by the notion of the inner
product of a vector with itself in a finite dimensional vector space over
the field of the real numbers R. Let # and v be vectors in'such an #-
-dimensional vector space R* Thus, # is identified with an p-tuple of real
numbers, say, (@,, as, ... 4,) and v is identified with an #-tuple of real
numbers, say (by, by, ..., b,). Denoting the imner product of w and v by
<u, v>, we have according to the usual definition :

<, V> = ab; + ab, + ... + ayb, () (1)
Replacing in- (1) the vector v. by u, we have
<w, u>=ad+a+ ... +a (2 (2
Since the right' sxde; of the equality sign in (2) is a sum of squares of the
elements of R (the set of all real numbers), we have: Yo
C<u, u> >0 for every vector u m R - L',ﬂ; )

ObVibusly, (3) is an inequality and as shown below, it is the motivating
factor behind many inequalities. For instance, let us take instead of #
the sum v 4+ w of vectors v and w. But then we have:

<v4+w v+ w>=<v v>+ 2%, w>+<w, w> [\1) (4)
which by (2) yields the following inequality :
<0, >+ 2v, w>+<w, w> >0 for every v, w in R" (5)

The inequality (5) itself can be rewritten in various ways, each giving rise
to an inequality. Thus, from (5) the following two inequalities follow im-
mediately :
<v, v> + (W, w> > —2<v, w> for every v, w in R" (L) (6)
and
<v, v>+<v, w> > —<v, W> —<w, w> for every v, w in R® (3)(7)

True, that (5), (6), (7) are inequalities, however, most probably they
are neither too interesting nor too useful. For instance, neither seems to
be as interesting or as useful as the Cauchy-Schwarz inequality. A reason

® Depariment of Mathematics, Iowa University, Ames, Iowa 50011, U.S.4,
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for this perhaps lies in the fact that v + w is a quite trivial linear combi-
nation of v and w and in a way omne should not expect to obtain an in-
teresting inequality by merely replacing # in (3) by v + w.

Let us now consider a less trivial linear combination involving v and
w. For instance, let us consider a linecar combination involving v and w
which is also orthogonal to w. In particular, let us consider the linear
combination of v and w given by:

<V, VIW — <V, WHV (8)

which is orthogonal to v. Indeed, it is trivial to verify that the inner pro-
duct of <v, v>w —<v, w>v with v is 0. Now, let us replace # in (3) by
(8). Thus,

<(<v, v>@W —<v, WHV), (v, V>W —<v, w>v) > =0 9)

Applying the distributivity law to the above inner product and observing
that r<v, w> = <w, v>r for every v, w in R* and every » in R, we obtain,
after obvious simplification :

<V, UCY, VO>CW, W> — <V, V>V, w><v, w> = 0 (10)

If v #0 then <v, v> # 0 and therefore upon dividing both sides of the
inequality (10) by <v, v> we have:

<v, U><w, W> —<v, w><v, w> = 0 for cvery v, w in R” (11)
regardless whether v = 0 or v # 0.

Inequality (11) is quite interesting and quitc useful. Indeed, it is the

Cauchy-Schwarz inequality. Thus, starting with an interesting linear com-

bination (8) of v and w and using it in an obvious (but very basic) ine-

quality (3), we obtained a trather interesting inequality (11).
We may rewrite inequality (11) in the determinant form as follows:

l<v, v> <V, w>

>0 for every v, w in R* (12)

v, W> <w, w>

Thus, the Cauchy-Schwarz inequality lends itself to be expressed as
a nonnegative determinant.

Looking at <x, y> as an entry in a matrix indicating the entry at
the x-row and y-column, we rewrite (12) in the following form:

<x, x> <x, y>
<y, > <, ¥

An immediate generalization of (13) to any finite number of vectors
is known in the literature as the Gramian of these vectors. Thus, for vec-
tors «x, vy, z the inequality corresponding to (13) is

=0 for every x, vy in R (13)

<x, x> <x, y> <x, 2>
<y, x> <y, 3> <y, 2> 20  forevery x,y, zin R» (14)
<z, %> <z, y> <z, 2>

Clearly, (14) is another example of nonnegative determinants.
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Gramian type nonnegative determinants are known in the literature.

Below, pursuing our approach of considering the inner product with
itself of an interesting linear combination of vectors, we obtain a new
class of non-negative determinants.

Let us observe that in the case of vectors v and w the nonnegative
determinant (12) is obtained as a result of considering the inner product
with itself of a nontrivial linear combination of v and w which is ortho-
gonal to v. Motivated by this, for vectors u, v, w let us consider a non-
trivial linear combination which is orthogonal to both # and v. Such is
for instance the linear combination of #, v, w given by:

(<u, v><v, W> —<u, V><v, V>u + (<u, V><U, W> —<u, U><0, W>)v+
(15)

It is not difficult to verify that the inner product of the vector given
by (15) with itself (which is a nonnegative real number) can be written
as the following determinant (which, accordingly, is also nonnegative) :

+ (<u, u><v, v> —<u, v><u, V>)w

<U, > <u, v>| |<u, u> <u, w>
<U, V> <9, U>||<u, v> <U, w>
=20 (16)
<U, U> <u, W| |<u, u> <u, w>
<U, V> <V, WH||<u, w> <w, w>

Let us observe that the nonnegative determinant given by (16) is a
2 by 2 determinant whose entries, in their turn, are also 2 by 2 deter-
minants. Moreover, the (1, 1) entry in that determinant is the 2 by 2
determinant given by (12), and, the (1, 2) as well as the (2, 1) entry
in that determinant is obtained from determinant given by (12) by substi-
tuting w for v in every occurence of v in the rightmost column of the table
of (12), and, the (2, 2) entry in that determinant is obtained from deter-
minant given by (12) by substituting w for v in every occurence of v
in (12).

Appliyng our scheme to four vectors #, v, w, z we obtain the fol-
lowing (quite nontrivial) 2 by 2 nonnegative determinant :

<, > <, V>||<w, u> <u,@w>\||||<u, u> <u,v>|<u, u> <u,z>
<u, V> <, v>||<u,v> <v,w>||||<u,v> <v, v>i|<u, v> <v, 2>
<, u> <u, w>||<u,u> <u,w>\||||<u, u> <u, w>||<u, u> <u,z>
<u,v> <, w>||<u, w> <w, w>{|||<u,v> <v, w>|<u, w> <w, 2> S
<, u> <, v>| <u, u> <u, z>||||<u, u> <u,v>||<u, u> <u, 2> -
<u,v> <, v>| <u,v> <v, z2>||||<n, v> <v,v>|<u,v_> <, z2>
<, u> <u, w>|| <u, u> <u,z2>||{||<u, u> <u, z2>||<u, u> <u, z>
U, v> <, W>|| <u, w> <w, z>||||<u, v> <v, 2>||<u, 2> <z, 2>

Naturally, all the results mentioned above are equally well applicable
for the case of the real inner product spaces, and, more generally, for the
case of the wumitary spaces.
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We summarize the method of construction of our (new class) of 2 by 2
nonnegative determinants as follows.

Let vy, vy, v3, ... be elements of a real inner product (or a unitary)
space with «<v;, v;> indicating the inner product of v; and v, For every
inteber # > 2 we define inductively a 2 by 2 symmetric matrix S, as
follows :

Wy, V1> <y, Vyd> a a
52 —_ ( 1 Y1 1, v2 ) and Sn+l — ( 11 21)
Wy, V>  <Uy, Upd Ay, Agy

where a;; = S, and a,, is obtained from S, by substituting v,+, for v,
in every occurence of v, in the rightmost column of the table of S, and
ay is ob;ained from S, by substituting v,., for v, in every occurrence
of v, in S,.

Replacing every matrix S; which occurs in S, by its determinant
I/ we obtain a nonnegative determinant |S,|, i.e., |S;| > O for every
integer # > 2.

8§ — Mathematica 2/1986
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ABSTRACT. — The aim of this paper in to whow that there exist a setnigroup
S which although without zero divisors yet is not cancellative, and moreover
a 'Ring exists that is hypervaluated by such a semigroup.

|
§ 1. Introduction. We wish to consider the following questi0u:1
‘Is it possible to have a semigroup S that has no zero divisors and
non-cancelative, and a ring R that can be hypervaluated by this se
group ? N
We mean here our semigroup S to have a zero clement 0 and a u
element 1, iswehave) s =s -0 =0Vs e Sandl -s=5s-1=35sVs
€ S. We remark that 1 and 0 are unique.

DEFINITION 1 We say that a semigroup S is ordered if it is supph
with an order < such that

l.if a, b, c €S then a <b=>c-a<c-band a -¢c<b-c
2.0< 1 (hence 0=0-¢c<1l-c=cVceS)
If the order is total, S is called totally ordered :

DEFINITION 2 An hypervaluation on a ring R is a function (I1) f74
R onto a totally ordered semigroup S satisfyving the following conditions)

.laj =0« a=0 VaesR

. la| =|—alVa R 1
. la+ b §Max {|qa|, |0} Va, b R

.la - b =la|lb| Va, b R

Remarks 1. If the semigroup S does not have any zero divisors th
the ring R does not have any either. Indeed suppose a, b € R a # 0 b #
but with a - b = 0. We then have |a - | = |0] = 0. So |a - b] = |a] - b!=
But a # 0 implies |a| # 0 and b # 0 implies |b] # 0 and vet ja|jb| =
contradicting our hypothesis that S has no zero divisors.

2. We easily see that a cancellative semigroupe has no zero divisors, how
ver the converse is not true in general as we shall see in what follow

We are able to give an affirmativ answer to our question thus pn
ving the following theorem:

WK —

THEOREM : There cxists a totally ordered a semigroup S, with no i
divisors and yet mon cancellative, and a ring R that can be hvpervaluah
by this semigroup.

* John Papadopoulos, Ioulianou 4 —43, Athens, Greece
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The theorem was proved by constructing an example in steps. We construct
first a semigroup S, with the desired propertics (i.c. totally ordered, no
zero divisors; and not. cancellative) starting out from a given but arbi-
trary totally ordered bcmlgroup S;. Then we coustruct a ring R that is
hypervaluated by Sj. .

§ 2. Construction of S,. We begin with an arbitrary given totally
ordered semigroup {S;, -, >} = {0y, a, b, ...} where 0, its absorbent
(zero) element. Consider now the sct S = 5, U {0} that we get if we
adjoint -a -new -element 0, to the set S, and an operation x defined on
Sbyaxb=a-bif a, b €S, and O, x a=ax0,=0,Va 8S,. (In
puticular 0y x 0; = 0; x 0, = 0,).

PROPOSITION 1 {S,, *} s a semigroup. The proof of this is straight
forward. Let’s show for example the associativity: Let be a, b, ¢ € S,.
Ifa, b, ¢ € S, the associativity results {from the associativity in S;. And
if for emample a = 0, we then have (0, x #) x ¢ =0, x ¢ = 0, % (b x ¢).

PROPOSITION 2 (S, x) does mot have amy zero divisors

Proof: Indeed it is impossible to have a, b € S, a, b # 0, with
ax b = 0, because since a, b # 0, it follows that «, b € S; and so their
product in S, (which coincides with their product in S;) a x b=a - b
also belongs to S; - Sy a-b S, =a-b # 0, because 0, & S;.

PROPOSITION 3 (S,, *) is wnot cancellative

Proof : Indeed suppose a, b, €S; a, b, #0, a #b.

We have 0y x a = 0, =0, =0, - b =0, % b since 0, is the absorbent
(zero) element in S, (but not in S,). So in S, we can have 0; x a =0, % b
without having a = b (wec chose a # b).

PROPOSITION 4 There is a compatible lotal ordering > on S, that makes
(Sy, *, >) imto a totally ordered semigroup.

" Proof : :Define 0, < aVa S, and a<b iff a <<bVa, b €8S,. The
conclusion follows immediately.

§ 3. PROPOSITION 5 Let I be a two-sided ideal of an integral domain R.
If R/I can be hypervaluated by S, then R can be hypervaluated by S,.
Before proving this proposition let’s make two remarks:

1. In what follows, we employ, with no risk of confusion the symbol -
to denote. the composition in .S; as well as in S,.
2. The term ,ideal” in a ring not necessarilly commulative signifies a
two-sided ideal.
Proof of proposition §. Suppose we have the valuation ||:
RIIL 1,8 ={0, a b...}
We construct a va]uation I N:
SRS, = {0, U S; by posing:
fasRa=0 then l[aH
facR a # 0 then |[a||—-ja—|—lj
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This implies that if a € I, then ||a|| = 0,
We show now that || || is a valuation of R onto S, = {0} U S,

1) Va € R we have {[a]] = 0, if and only if 4 = 0 by definition of

2) We show that ||—al| = ||la|]| Va € R
i) if a # 0 then —a # 0 and we have

lla|]| = |a + I| = |—a + I| (because | | is an (hyper) valuatic
R/l and —a + I = —(a + I) in R/I = ||—a]|
ii) if « =0 then —a =0 and so |la]| = ||—a|| = 0,.

3) We show that ||a + b|| < Max {||a]|, , [|b]]} Va, b « R. Indeed
i) if a = b =0 then a 4+ b = 0 evident case
i) if a=0b#0thena+b=17>
llal| = 0, [|b]| < 0, and |[la + b|| = ||b]]

iii) if 4,6 # 0 we can have a4+ b #0 or a +b =20

a) if a 4+ b =0 then |la + b|| = 0, < [la]|, ||b]] so <Max {||a]|
B) if a + b 5 0 then we have

llall = la 4+ I|  |]bl] =16 + I|
lla + b]| = |a + b + I| (by definition)
=@+ 1)+ &+ 1) $Max{ja+ 1|, b+ I]}

(since | | is an hypervaluation for R/I)
= Max {|all, [/6]}.
4) We show that ||a - b|| = ||a]| - ||b]| Va, b € R, Indeed, we disth

the following cases:

i) if @ =b = 0 then ab = 0 evident
ii) if =05 #0 then a -5=0
so |la]l = 0y [[]] # 0, and [[a]| - ||b]] = O,.
Also |la - b]| = ||0]] =0, so ||a - b]| = |la]| - ||b]|
iii) @ # 0, b # 0 we have a - b # 0 (since R is taken to be an in
domain)
and so we have |[ab|| = |ab + I| (by definition)
and so ||a|| = |a + I|
lol] = 16 + I
llal] - |16l = |a + I||b + I| = |ab + I| (because)| | is an hyperval
= ||ab|| for R/I)
We have verified that the condition 1), 2), 3), 4) that define an (t
valuation are satisfied by the function || |[|: R-> S,

So || || defines an (hyper) valuation from R onto S, and Proposit
is thus proved.
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§ 4.Coffi’s condition for hypervaluability of a ring. DprErFINITION 3.
Let A be a ring a € A. We call the set of left annulators of a to be the set
{x{ ¥ € Ajx - a = 0} and we denote it by Ng(a). In an analogous way we
define the set of the right anmulators of a denoted by Nd(a).
Coffis theorem of valuability of a ring. Let A be a ring with a unit ele-
ment 1.
A can be hypervaluated by a totally ordered semigroup S if and only
if it satisfies the following conditions :

1. For all a € A Ng(a) = Nd(s) (and we denote this set by N(a))
2. For all a, b, € A we have N(a - b) = N(b : a)
3. The family N = {N(a)la € A} is totally ordered by inclusion.

In particular, 4 posesses an hyprvaluation st|a] - N(a) is a one-to-one
correscpondence betwecn S and N.

We remark that Coffi in his construction suppose the semigroup
Commutative. The ring A4 is not supposed necessarily commutative, but
with an indentilty element 1. The details can be found in [1]. The idea
is the following :

For each a € A its ,value” |a] is N(a).
So, ||]: A - N = S,;. Moreover S; is totally ordered by the total order
defined by :

a, b# A4 a<b iff N(a)=N(@)

Now according to our previous discussion, we can take a ring 4 of
the form R/I (ie A = R/I where [ is non-zero two-sided ideal of the ring
R) and s - t A satisfies the Coffi theorem conditions. By Coffi’s theorem
then we have an hypervaluation ||;: 4 &« R/I - N = S;, which in turn
induces (according to our proposition 5 in § 3) an hypervaluation {[,: R -
- S, (where S, is the semigroup with the desired properties, as it was cons-
tructed in § 2) and this provides us with the desired cxample.

§ 5 A concrete case Let's take R = Z the ring of integers. [ = (16)
the ideal generated by the integer 16, 4 = R/(16) and A satisfies the
Coffis theorcm conditions as we can easily verify (we observe that Vb = 4
N@p) = {x = Z|16]b x}. So A is hypervaluated by a certain semigroup
Sy =N = {N(a)la = A}. By our discussion in § 3 then, R is hyperva-
luated by S; = {0,} U S, which has the desired properties.
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ABSTRACT: — For integrating Cauchy’s problems
% = f(t, x) x(t;) = »° (1)

on each interval f, #;,, of the division /, < ¢, < ... <in (l = th, 1=0,1,

..., m), another Cauchy problem y = gy(t, %), ¥(fs) = ygp_ (t) is formulated .
with the solution: y.(2), 2 = 0, 1, .., n(y(t) = x°)) The function xj, defined
by .x4(t) = y3() if te[[{, 144,], is an approximation of . solution (1). :TFhe.
relationships between f(¢, %) and gp(t, #).. k=0, 1, ,n.—1, are, ¢stalﬂns 5
hed, which ensure the discrete convergence of the appro*ﬂmatne solutlon rp -,
twerds x. ;

Let be the Cauchy’s problem

2 =f(t, x)- (H (1)
x(fe) == A°
with the solution’ x(f) dcfined on [/, T]. We '~ur)r)¢( that f 1, TTx

X R* > R” is a continuous functl(m To mtcgrah 1h1s pmblun WL use the
followmg method. Let be & = (T — ¢)/n and ¢ =t + ih, 1 =01,
, n. On each interval [z‘k, bpip ] 17 defincd "‘ﬂ(;“lll Cauchy’s probl( m

y = gk( ¥)
V(&) == Vieoa(t). (2 (2)

with the solution y.(¢) on [4;, £, ]. For & = 0 we usc y(f;) = a”. Wc note
by x, the function dcfmcd by x(f) = : ve(t), if 't € {ti,tesr ] x,, is called
an approximation of the solution of problcm (1)."This mcthod was. used by
IxarulL. [2] and PavielG. [4] to intcgrate linear’ diferential equatlon
with variable coefficients. ‘Marinescu- C. 3] consider ‘$uch” method
to integrate linear systemns of differential cquations with variable coeffi-
cients. A direct proof of -convergence: is given.

We are interesed to establish a connection between the equations (1)
and (2) which assure the convergence of the approximation z.to . We
say that x, concerges discretely to x-if limy, max |, (&) — %(%)|} = 0.

h\O k—-On
THEOREM 1. If [Ift, x) — &t Il < alt)llx — Il + clt — &
on [t, ], where t, € (I, tryy], ax(t) is a “non- negative continuous func-
tion on (4, tyyy) and ¢, v > 0, £k =0,1, ..., n — 1, then the approximation

x3, converges discretely to x, the solution of the C auchy’s problem.

* University of DBrasov, Faculty of Mathematics, 2200 Brasov, Romaniq
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Proof. Let a: [lg,t,] > R be the function defined - by -«(f) = ax(?)
if t € [t tes1). For t € [, 1] we have

lt) = 2() + | f(s, x(s))as,

V() = wilts) + Sgk(sy vi(s))ds

k

and, further
t
x(t) — wa(t) = 2(t) — 2alte) + | [f(s, () — guls.2a(s)) Jds
'
Using the hypothesis of the tﬁeorem we obtain
t
l12() — YOI € [1x(t) — valla)l] + S ax(s)11%(s) = yu(s) llds +

‘

t

+C S I — Ll ds < [1x(ts) — valta)ll + 20 4 -g a,(s)[1%(s) — va(s)llds.
Y+ 1 :
tlz k

Applying ‘Gronwall’s lemina it results

a(s)ds

Y+1
1) = w011 < (13(66) = 3a(e0)] + icf- )

and particullary for ¢ = ¢,

th+1
‘ * a(s)ds
Y < ((lixlts) — i 2CETTLY o= (54
!I?(k+l,) ~Yalla+)ll & ((Hx(tk) Il Y AT J €. k=1, 2,(\/;"1)
For k= 0 one has the inequality
2
a(s)ds

20k G
——— ‘7
y+1

x(t) — ()l

N
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For 2 = 1 we deduce

ty
a(s)ds

+1
lx(ta) = walt)ll € (11x(8) — 3a(e)ll + 5] <

¢ t,
" Ia(s)ds " J‘ a(s)ds
2ChY 2CHY
< Py + &

y+1 y+1

t ta
— ( J‘ a(s)ds ;f a(s)ds)
(] 1
y + e .

Inductively, it results

tr Y ty
vt J a(s)ds J' a(s)ds J‘ a(s)ds
2Ch eh + et Ry S

Nx(s) — ()]l € YT

tk Ly

3 v J‘a(s)ds
R A A A R

2rChY ! f alelds
y+1 = y +1

and hence lim max |x(t) — yi(te)il = 0. *
hiO k=0

We apply this theorem to prove the convergence of mentioned met
used in [3] to integrate linear sysrcins of diffcrential cquations with var
ble coefficients :

?
=2 ail)x + bi() i =12, ..., p.
ji=1

We attach to the system (3) on cach interval [/, f,41] the system WIJ
constant coefficients 1

b
i z\a,,(t,,)y, + b)) i =1,2, ..., p,

where t € [ty trs1]. We suppose that a;(t), 1,7 =1,2, ...,p and b,m
1=1,2, , p are continuous wirh their derivatives on [to,t ]. This m
hod is known as the _step ‘method. In this case f(f, x) = A(t)x + b(t) and

&t y) = A(tk)y + b(tk) where

a(t) - - - ap(t) by (2)
A(t)z(. Coe e ) b(t)z(g )
ap(t) - . . app(t) by(t)
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Then _ _
[1f¢, x) — gut, Y)I| = [[A(t)x 4 b(t) — A(t) y — b(te)I] €

SlA@B)x — Al x + Al)x — Ayl + 16() — bE)I] S
S NAG) — A - 12l + NAEG) 2 — y1l -+ 116¢) — bt S
snA&mw—oﬂ+CM—M§0@xmﬂmmw—wn+cu~hL

7

where C = (p + 1)M with |aj(t)[rsM, |bi(t)|SM for all

telto ty], 4,7 =1,2, ... p, and ||x(t)|| S 7, t €[ty to + nh], x(¢) being
the solution of the equation % = A(f)x + b(¢).

The conditions of THEOREM 1 can be weakened. Let %2 be a com-
pact set which contains the sets {x(t):¢ = [¢o,¢, + nh]}
and {x(t) : ¢ = [tg, ty + »h]}. Then we have

I

SU@M—&&@W

4

THEOREM 2. If s &)

B _ o

for every t, €t <t' L thy1 and everv x € K, such that lim
K10
and Hgk(t» x) - gk(t:y)” § 'L”x _y”, k= 0:1 yeee, B 1 then Xy COm-
verges discretely to x.
Proof. For every ¢ € [#;, #;+1] one has the equalities
t
+(0) — a(t) = 2(6) — m(t) + { [f(s, 2(5)) — &ls, 2a(s)1ds =
4
t

=ﬂm—n@+juuuw—&@ﬂma+smwxw—gmnwna

(1 6

and hence
t

() — 3a(E)1| € [1%() — 2a(6)]| + E02) + L {11x(5)— (s)llds
Using Gronwall’s lemma we obtain
() — =)l < [x(k) — x| 4 E(h) JeHt= (4)
In the same way (for ¢ = £;;,) we find
tit1
x(tiv1) — mtivr) = x(8) — x(t) +S [f(s, %(s)) — &(s, xa(s)(1ds

'
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and adding up these <qua11t1cs for 7 =0, 1, ..., & — 1 we obtain

[3
k—1

) — ) = 3§ Ufts, 2(60) — aals, (o) Ms —

{ =
L

11

<

E ot i+
=3 § 06 300 — a5, 5o 10 + 2 S [e:(s, (5)) — &5, (s s

Futher we deduce 1

1

[
—

%) — xa(ta)l] € y

I

tit1
§1£6), x(5) — s, () s

t t

k—ltH—l po1 1 |
2 st 560 — &l welds < hED) + L5 § 116006 )naj
{

i

Using (4) the last inequality becomes

i1

Ixtt) = )l € REU) + LI [1x(t) — (Il + &AL § e

4

E(h) +me(t — ()|l + E(B) (T — ) =

E—1
= (et — 1)2_:0 [12(8) — (8] + P E(R). ’
Applying the a}séfetely Form of Gronwall’s lemma we obtain
l12(t8) — xa(ta) || S HE(RYR: - g
Finally

max [|x(t) — B ISnER)EM = (f = to)etia— ST
k=0,

and hence lim max [|x(t;) — x(t) || = 0. *
B0 k=0n
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Now, we show that the theorem 2 implies theorem 1. Indecd, if
ft; %)~ & & I S ai®)||x — y|l + Clt — 4|7 then for cvery 4S#-<
<i"g t,_l one have the inequalities

t" Iz

[fl x) — gi(t, x))dt S [1f¢ x) — g(t, x)||dt €

( ~ ; "o 207!
< C\ b — LYt € 25 — ¢ € ;1
. N

v

2crY+1

: . E(h)
Takin h) ==
g &(7) T

we observe that lim >—
Bi0
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ABSTRACT. — The heterogeneous algebras, introduced by Birkhoff and
Lipson [1], play a very important role in computer science and essentialy
in the study of abstract types [4,7]. We introduce the concepts of heterogeneous
clone and abstract hetrogeneous clone of operations, and a commutativity pro-
perty between two families of closed heterogenous operations. This commnuta-
tivity is generaly complex and restrictive, but in the particular forms is very
powerful in the specification of abstract types. '

1. Introduetion. Following the notations in [4], let S be a nonvoid |
the elements of which will be called sorts. Each indexed family of
A = (Ag)ses will be called S-sorted family of sets and each ined
family of mappings f = (f)ses, where f;: A;— B, is a mapping (s¢
will be called S-sorted mapping. An S- sorted operator domain (signa
consist of a set ¥ equipped with two mappings: d: £ —»S* and ¢:I
called domain and respectively codomain; For cach c=X with 4
=weS*and ¢(s) = s € S, we say that o has functionality (w,s) €§
X S. So we can see £ as a disjoint union ‘

s- U Bu=US.-Ur. |

(w,s)€S* xS

where )~ = {6 € Z/d(c) =w = S*], 3> = {c< Zje(o) = s= 5%

Zos = 2w 20

TLet 6 € Zus, w=5;...5,; If se{s,...,s,) we will say that
closed ; Otherwise ¢ is called open.

A Z-algebra (or heterogeneous algebra) 4 consist of an S-sorted fan
of sets (A,)ses called carrier sets, and for each (w,s) € S* X S and ¢
6 € X,,, there is a function o4: A? > A; named operatlon of typ
and sort s, where AY = A4, X ... X 4,,. If w = ¢ is the unit elem
of the free monoid S*, then 64 1s a nullary operation. If at most one op
tion o4 is a partial function, 4 will be called partial Z-algebra.

A X-algebra B is called X-subalgebra of 4 if B, < A4, for all s¢
and for all ¢ € X, 6 = o4/p, Where o4 is the restriction of o4 to

* Energomontaj Trust Bucharest, Calculation Center, Calea Dorobanii str, no. 1035, Sect. 1. 7000 Buk
Romania
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Let A, B two X-algebras. An S-sorted function f: A —» B is called
I-homomorphism if for all ¢ € 3, (w € S*, s € S) the following diagram
commute :

Aw o4 A,

o P (1.1)
l {
Be i B,

Let X = (X{)ses an S-sorted family of variables and Wg(X) the
word Z-algebra freely generated by X([1], [2], [5], [6]). The properties
of Z-algebras can be expressed by formulas builts over equations of the
form (¢, t');, s S, ¢, t'e [Wg(X)],, using the firstorder predicate
calculus. In the most general case we can consider sentences in the prenex
normal form

Q5121 - @asuxa A ((V 2ii#9))V( V75 =15) (1.2)
1gigk 1<j5<1 1-+1<j<m

where Q; = {V, 3}.

The specification of an abstract type consist of a triple SP = (S, Z,
E) where X is an S-sorted signature and E a set of sentences in the form
(1,2) called axioms. If the axiom in E are simple equations, the type
will be called equational and then the category Algse of all X-algebras
satisfiyng E form a variety in the sense of [2].

For the formal description of an abstract type let take the following
example :

type DATA 4s (BOOL) +
sort data
ops Egaa : — data
CONDyus : (bo0l, data, data) — data
EQuua :(data, data) — bool
OKuua :(data)— bool
axioms Y data D, D,, D,
(l) CONDdata (T, .D, Dl) =D
(2) CONDyows (F, D, D)) = D
() EQiwa (D, D) =

1

(4) EQusta (D, Dy) = EQuaa (Dy, D)

5) EQuata (D, D)) = T &EQuata (Dy, Dy) = T = EQisa (D,Dg) =T
6) OKuata (D) = CONDyata (EQuata (D, Egata ), F, T)

eot

where BOOL, is the usual type of the truth values (see [4]).
Now S = {bool, data}, £ ={T,F, &V, =, EQuo, CONDioo, Euata

CONDysta, EQuata, OKuaa}, E contains the axioms of BOOL and, the
axioms (1) ... (6) above.



46 1. CALUGAR

. .2. Clones of Heterogeneous Operations. Let A4 be a novoid S-sorted
fanuly of sets-and denote by -H(A) the set of all Ainitary heterogeneous
operations on 4. Then H(A) can be viewd as a disjoint union :

H(A) = U Hy,(A), where H,, (4) = {oc € H(A)[d(6) = w, c(c) = s}.

w,s S* XS
Let w=s,...5, € S¥ 1, €H,;4), (=1 ...,n), u<S* and
o€ H,, (4). Then there is a unique operation 6 on H(A) defined by :

0(c, 71, -+ -, ) (@) = 6(4(a), ..., T(a)) for all a = A% () (2.1)

and let denote 6(s, 7y, ..., 1) = o[y, ..., 7,], calling it ,,composition”
of v, ..., 1, with o. T
For any w € S*, where S* = S* — {¢}, with w =5, ... s,, there ar¢ »

operations on A ‘denoted 1wsi and. defmed by :
1"%a) = a; for all as 4%, i=1,...,n [(22) (22

Tet call 1*% unit operations or projections on the i~* coordinate. We
can now regard H(A) as a partial heterogeneous algebra with sorts S* x S,
nullary operations the units and the other operations defined in (2.1)
with d(0) = (w, s)(u, s,) ... (, s») and d(0) = (u, s). (24)

Definition A set H of heterogeneous operations on an S-sorted family
A of sets, containing the unit operations defined in (2.2) and closed under
the -compositions (2.1) is called heterogeneous clone of operations. on A.
This notion was introduced by P. Ha 1l (1958) and stud.led for the homo-
sgeneous case (2], [6]).
Generaly, giving an S-sorted family A of sets and the clonc H (A) of‘ -all
operations on 4, we will call H, a clone on 4 if H, is a subclone of' H(4),
ie a subalgebra in the sense mentioned above.

Let H,, H, be heterogeneous clones on A; An S* x S-sorted mapping
f:H,— H, with peoperties :

(i) 4(f(s)) = d(o) and ¢(f(s)) = ¢(o) for all ¢ € H,

(i) f1" = 1"% w e S* 1=1,...,n and :
(iil) f(o[ry, - .-, Tl) = f(0) [f(7y), .- f T,)], for all ~ composable opera-
tions e, 1y, ..., T, € H;,

will be called homomorphism of heterogeneous clones on A.
The set of all heterogeneous clones on an S-sorted family, 4 of sets w1th
theirs homomorphisms, form a category.

Let T an S-sorted signature and 4 a X-algebra. The dctions of ‘the
operations in X determines a heterogeneous: clone on. 4, denoted. X% and
called heterogeneous clone of action of £ on 4.

DEFINITION. An abstract heteregenous- cloné- is a -partial heterogenous
algebra H .defined as follows:

-2+ 1° there are two mappings d: H -+ S* and ¢: H —» S which assocxa.tes
to each o = H the domain d(c) and the target c(o) and. D
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. .2° with each weS™*, w=:s,, v..s,, H coutains thc unit- operaters
1“iw—s;,1=1, ..., nand :
3° for 6,7....,7, in H with d(z) = ... = d(z,) and
d(o) = ¢(7y) ... c(vs) € S*, there is an operation on H denoted
bysfry, - .., Ta) : d(t;) = ¢(o) with propertics :

(i) (olrn oD - m] = aleilng oo Mmd o 2l ]
where d(7;) = c(ny) - .- ¢(Nm) = S*

() 1™ [, ..., ] =1, 1=1,...,n
As a conscquence of this definition we have the
DEFINITION FEucry heterogemeous clone of operations is abstract.
3. (ii- j) — Commutativity of Two Families of Operations. Let £ an

Ssorted signature, A a X-algebra and © = (1, ..., ™) 6 = (6}, :.:, Cw)
two families of operations in X%, with:

Gy 1811 - Sy -ee Sin = Sy (3.1
Gi S8ip oo S5 S Sy

G Smy - Spj + - Smmw — Smj, and
Lo ) 1 Y N)
Tl D81 e S, 1o Smj ™ S (32)

) ’ - 4
T .slj...s,j...s,,,] —}.S'j

Tyl Sy - Sin - e Smn = Sin
We call t == (1y, ..., 7,) in (3.2) compsable with ¢, in (3.1) il d(e;) =
=¢(ty) ... ¢t ) € S*
DEFINITION. Giving two families of closed operations in 2%, ¢ = (ay, ...
oo, 6m) and T = (7, ..., 7,), we will say that ¢ and v commuté (7, 7) if:
(i ) oiscomposable with t; '
(ii)-* is composable with g;,.and
(iii) for all-aj E...Asi,; (=1, ...,m; 7=1...n) we have the identity,:
6i(ti(@y, -y Amy)y oo, T (A e, Amg), e Ta(@an, e, ) =
(3.3)
= ?j(.o'l((_ln' ceey (I,l)l): ey Gi(aun ceey am)y ey O'm(a»u- I amn))

Let now w =s,; ... 8y for j=1,...,7 and take 7; =17, 5;;;
We the-have. ;... ' »

7

. , , _—
o 0,( 1% (ay,, ..., Am), - oos 100 (g, o, a,,,,,)) = o,(diy, - -+, Ain) =

R

=10 (aylay, . ), e, Gilda, 2 @in)y - os Om(@my - - -, Apa)) (3.4)

and therefore we can state:
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PROPOSITION. Every family of closed o perations of the form (3.1)co mmute
(3, §) with a cooresponding family of umits.

If we denote w;, = s;;, ...s;, for i =1, ..., m, and take
wy, s @1 siy W) Siay
0'1=11 11,..',0'5_1 = 171 1:.1’ Giy1 = 1%+ '+1;.7’,__' G =
’ 4
70 1oL s 1% 1.8 i
=1""m and 7, = 1""", | o, =1%"10%-1 1, =

’ ’
W1, i w;,s;
= 17+rhatl g, = 1%%"  then (3.3) becomes :
o(ain, « .., @Gij—1, (@15, ..., Am), Fijp1,. o, Qin) =

= ‘r(alj, c oy Bimyy, 6(61,‘1, ey a,~,.), a;'+,,~, ey a,,.,-) \3{) (3.5)

where ¢ = o; and 7 = 1;. When this is the case, we call (3.5) (s, 7)-
commutativity of ¢ and 7.

The (7, j)-comutativity of two families of closed operations defined
above, generalises the commutativity of two operations in the homoge-
neous case, ([2], III, 3), and is powerfull in the specifications of the abs-
tract types ([31, [4]).

4. Examples

4.1. Let M a monoid acting on a set A. This is a heterogeneous algebra
(see [1]) with X = {lu, %, o}, where lyy:M—->M,x :M X M > M and O:
:M x A - A and axioms:

1y o0a =a for all as A, and
(men)oa=mo(noa)forall mneM, ac A

Let take first the families of operations (%, o) and (%, ). The for (s, j) =
= (2, 2) the relation (3, 3) becomes: (uf.1)

(men)o(poa)=(mep)o(noa)forallmn, pesMacA (4.1.1)
If p = 1, then using the first axiom we have:
(men)oa=mo(moa) [kl (4.1.2)

which is the second axiom stated above. On the other hand, taking m =
= 1y in (4.1.1.) and using the first axiom we obtain :

no(poa)y=pomoa) (WAD) (413

Now if M is the monoid of all functions 4 - 4, * is the composition and
o is the value function, then (4.1.3) establishes the center of M.

Secondly, taking the (1,1) commutativity of the families (e,s), (¥,
) we have:

(man)s(peg)=(mep)smeg (Lih) (414)

which contains simultaneousely the associativity and commutativity of
s in M
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42. As a second example, let take the type CIRCULAR—LIST (DATA)
(see [3], Fig. 4.2.2.). The last axiom assert :

JOIN (C, INSERT (Cl, D)) = INSERT (JOIN (C, C1), D)  (4.2.1)

for all circular__list C, Cl; data D
where INSERT : (circular__list, data) — circular__list and

JOIN: (circular__list, circular__list) - circular__list

The (4.2.1) aseert the (2.1) commutativity of JOIN and INSERT
in the sense of (3.4).
Finaly, the axiom 17 in the same specification is:

RIGHT (INSERT (INSERT (C, D), D1)) = INSERT (RIGHT (INSERT
(C, D1)D) (4.2.2)

where RIGHT : circular__list — circular__list.
We have RIGHT o INSERT : (circular__list, data) -» circular__list
and then (4.2.2) express the (1,1)-commutativity of RIGHT o INSERT

and INSERT.
Naturaly, for more complicated types the commutativity relations

are more complicated.
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SUR CERTAINES FORMULES DE QUADRATURE OPTIMALES

PARASCHIVA PAVEL*

Manuscrit recu le 16 novembre 1983

ABSTRACT. — On Certain Optimal Quadrature Formulas. The quadrataore
formulae of (1)-type form are studied, with an exactness degree of (3}, for
which the rest is minimum with the functionscloss W™ M; x,, xp. It is pro-
ved that such formulae are only extent in the case when m = 2p 4 1, and such
forntulas are effectively construed when p = 3 and p = 4 (formulae (9) and
.(11)), also estimations of their rest (formulae (10) and (12), respectively) being
given. :

[T

Smt wrt [M X, %m ] ]ensemble des fonctions aéfinies “sur' V'inter-
valle (%5 %m], qui satisfont aux conditions: f e C’[x,, xm], St seg-
mentaire continue et |[fr+9(x)| < M, % < [%g, %m].

On considére la formule de quadrature

Sf(x)dx = Ao[f(%0) + f(%m)] + A1 [f(21) + f(m-1)] + ... + Ap[f(%) +

A f@e1)] 4 L (Es1) + - A flmop1)] + Ruia[f], U

ot f = Wsil [M %o, ¥m], Ao, Ay, ..., A, sont les coefficients, 0 .S";“j;% <
<~["L§—l} et x; = %o+ ik, ©=0,1, ..., m les noeuds de la formule.

' Dans ce travail, nous proposons ‘de determiner les coefficients A,
i=0,1, , p de maniére a4 ce que le degré d’exactitude soit egale a
3etle reste R.,.H(f) soit minime, quand fe W4(M; x4 %n].

Ce probleme a été aussi considéré par Durand [9] dans le cas r =

=1 p=1; G Coulmy [3] danslecasy = 1, p=3; Lacrc‘lt[Q]""
pour 7.=3,.p =2, Dans ces articles le problémc du reste n’a pas été

posé.
D. V.Ionescu [5] [6], [7], [8] a déterminé les restes de formules

(1) dans le cas » =1, 3, 5, p < 4, en supposant que f € C” [xg, X
Gh. Coman [1], [2] a détérminé les formules de quadrature (1)
optimales pour la classe W2[M ; x,, x,] dans I'hypothésec que le degré
d’exactitude de la formule est » = 1.
En appliquant al méthode de ,la fonction ¢” donnée par le prof. D,
V. Ionescu [4], nous prenons sur l'intervalle [x,, %,,] les noeuds x,, %,
ey Xy, X = %o+ 1th; 1=0,1, ..., m. Nous attachons aux intervalles

* Université du Cluj-Napoca, Faculté de Mathematique- Physique, 3400 Cluj-Napoca, Romania
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oi2ads . [%5, %a),: s Ix,,,_l x,,,] les fonctions oy, ¢, ..., ¢n solutions des
équations dlffel'entlt:llts
<p§“’)(x) —1,4=1,2, ..., m, (2)

avec les conditions aux limites’

1

91(%o) = ‘Pi(f"o) = 91(%o) = 0; — 01" (%0) = o' (%) = 4,
On(¥m) = Pm(Fm) = P(%m) =0 (3)
q;}f)(x,,) = <pﬂ1(xk); s=0,1,2;: k=12 ...,m —1
o () — orir (%) = Pnla(Xm—p) — Pmlrt1(Xmp) = 4,
Ch=1,2...,p
o' (%) —eai(m) =k k=p+1, p4+2,...,m—p— 1
On obtient la formule

*m

Sf(x)dx— ~ q»;"(xo (x0) + 2 [on” (%) — ea%a()] flx) +
4 on (%) f(m) - S (%) (x)dx,

avecle reste

“m

Rusi[f1 = o(x)f®(x) dx. (4)
. :
I@s fonetlons , .
R _ 2 _ ) — )2
£ % x) (x %)t EAo(x x,)_,_._ A 2 (» x.)+, (5)
4! =0 3! i=pt1 31 - .

ol
{u siu>0
Uy =

051u<0,

vérifient les équations différentielles (2) et les conditions aux limites (3)
relativement aux points xg, %y, ..., Xm_1-
I reste & déterminer les constantes A, de maniére A satisfaire aussi les

conditions au point X,
£ 4,
-0. 2

On obtient
Eku, —~ mEkAk =—p(p+ 12 4+-1) = (G;b(p +1) +1).

h=1

6)

“_‘Eck FACULT‘T//
(‘ng cLus-NAP““" ’ )

N 08 HATE\”“\G/
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On observe que pour la détermination compléte de la solution du prol
(2)+(3), » — 2 conditions sont encore nécessaires

D’aprés (4) nous obtenons I’évaluation
|[Rmi1(f)= < M],

ol
*m m *
J = S o (x)|dx :.;1,, ot I, = S loa(%)|dx.
o g =

De cette maniére le probléme posé se reduit 4 la détermination des «
cients de la formule (1) tels que les intégrales
“k
L= (la@dy k=45 .p+1,

x
k-1
solent minimes

LEMME Le polynome de Tchébychev de seconde espéce
r ¥ —a sin (v + 1) arc cos »
. — bl il . | < < ,
IQ'( hl ) » Q'(x) 2,41 — ) X l
ath,
est Uunique polynome pour lequal I'intégrale S | P,(x)|dx

a—h,

atteint son minimum. Ici P,(x) est um polynome arbitraire de degré 7,
lequel le coefficient de la puissance la plus élevée est égal a l'dinité.
Pour la démonstration de ce lemme, voy [10].

De cette maniére le probléme posé se reduit a tels que les poly
or kR=4,5 ...,p+ 1 coincident avec le polynome de Tchéb

K - Q4( xh_ a) , sur lintervalle [a — Ay, a + k], on
1
a=2 % g T
2
On obtient le systéme d’équations
k—1
EAi - 2k —1 h
=0 2
k=1
EdAi _ 32k(k —1) 4+ 7 h
i=1 64
£ 2k—1 82k —1)+5
> i, = oL L
i=1 2 96
k—1

Y4, = A YU B+ L,
=1 1024
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En tenant compte des conditions (6) + (7) il resulte que
m=2p + 1. 8)
Ia solution du systéme d’équations (7), avec la condition (8) est:

1° pout p =3 (m =7)

1995 8255 4481 6773
o = —— z, 1 = — 11, 2 == —_— l’, a = - h.
61 144

la formule de quadrature correspondente este

X

S fx)dx =

%y

war 11995(f(xo) + f(x)) + 8255(f(x:) + f(a)) +

%

4481(f(xa) + f(%5)) + 6773(f(x5) + f(x))] + S e(2)fIV(x)dx, ©)

ot
]R,(f)l < 0,0899494 hsM. (10)

2°. Dans le cas p = 4, le systéme d’équations (7) a la solution

4469 33951 33663

A=Ay — 20 Ay = — 44, + 2200 4, =64, — 2,
Ag = — 44, + 31829 h 4, arbitraire
ainsi la formule de quadrature optimale est :
f(f(x)dxm(m-wi‘ﬁh}u xo) + /() + (- 44, + THLA).
() + flxa)) + (840 = S22 R (flx) + f(x) +

31829

+ (— 44 )(f(xs)) + f (%) + Af(x)) + f(xs)) + Rolf].

4469

En choissisant 4, = ot i, on obticnt une formule de quadrature du
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type ouvert oA
 fx)dx = o (16075(7(es) -+ /() — 6849((xa) + flx) +

+ 13953(f(x5) + f(xe)) + 4469(f(x4) +f(xs))+.s @ (%) x)dx,

%y

avec le reste

R(f,)| < 0,7032546 M#S.
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ABSTRACT. — This paper presents a Fundamental Theorem of Algebra for
Generalized Monosplines as introduced by Braess and Dyn [5]. Such mo-
nosplines generated by the polynomial spline kernel are of primary interest,
but similar results are obtained for totally positive generalized monosplines
where the corresponding kernel satisfies the cone condition of Burchard [6].

I. Introduction. An extended totally positive (ETP) kerncl K(x, y) is
afunction K :[a, b] X [¢, d] = R such that for any set of points a< %, <
€HS ... <y, <hband e< v, < v, € ... €4, £ d, the corresponding de-

terminant det {K(x;, y,)}ijo1 = K(”' ™ S 0. We call K a totally

Yo V2o Ini
positive (I'P) kernel if this determinant is nonnegative. Where the points
coincide, we replace the function by increasing partial derivatives of
the function and require sufficient smoothness of the kernel. '

Let K(x, v) be an ETP kernel on

[a,0] X [c, @] and define Zj, == {v = (vg, ..., Vmss): v; 2 0
m "
for i=0,1, ..., m 4 1}. For veZ;, wel; letEm,- =N= Ev,».
i=o i=1
Define A™ja, b} = {v = (¥, ..., xq,) 14 == 3, < 2y < ... < %y << Xpp, = b},

o
et 1= (0,1,...,1,0)eZ} and let K,(x, t) :a—"ﬂ.—K(x, ).
Define the sign function o (¢) to be
l,l‘ﬂ+:l

)
L (o +1)

G (f) = (—1)"! for t; <t <l i=0,1, ..., m.
tw+1

Here ¢, = ¢ and /,,;, = d:The sign is normalized by
6ro+1(f) = 41 for ¢c<t < f, in accordance with Braess. and Dya [5]-
We define the generalized monospline M (x) by

d m >"’i_1
M (x) =SK(x, o (Qldq(z) —‘20 15'_: a;K(x, 1), (%)

c
where dp is a nonnegative, nonatomic measure.

* University of Cluj-Napoca, Faculty of Mathematics, 3400 Cluj-Napoca, Romaniq
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A generalized monospline can also be defined in the case where the
generating kernel K(x,y) on (%) is only totally positive. If the kernal
satisfies certain cone conditions, a fundamental theorem of algebra can
be obtained (see Section II). The most studied kernel of this type is the
polynomial spline kernel

x x>0

K,(x,t) = (x — t)»~! where x = {O %<0

In this case we define the ,,Generalized Polynomial Monospline”’. M, for
n — [OF] > 1

4 m

by Ma(x) = S (x —tpio (£t+ e(t) Zé ]Ela,, s (Y (1)

Then M,(x) is a polynominal of degree n on each of the intervals

(birtrs), i =0, ...m — 1, and M « C" ' in a neighborhood of #

It is necessary to study the zeros of such monosplines andasa result
obtain a bound on the coefficients of generalized polynomial monosplines
with a full set of zeros.

Throughout the following we will count multiplicities in the manner of
Micchelli [13].

The following theorem which arises from the theorv of generalized

signs, will be of use in the following :

Theorem A [9]. If the number of sign changes cf a monospline of the
form (x) is given by Z, then Z < N. Moreover, if Z =N, then if the gene-
ralized sign vector is of the form (Sy, Sy, - ... Sn+1), then

S;=sgn M(x,), 7=12, ..., N+ 1.

Here a < x; <2, < ... <y, < b dcfine the 91gn changes of M( ).
II. The Zero Structure of Generalized Poh nomial. Monosplines.
LEMMA 1: Let M,(x) be as defined in (1). Then M, las at most

”
Z;co; 4 m zeros, counting multiplicities.
$a= = + 4

Proof. We first consider the case # = 1. Then ¢ (t) = (—1)*!' = +1
to+1 )
and so this reducecs to lemma 2.2 of Karlin an?l Schumacher

[11] which states that M, has at most 2m + 1 zeros, noting that «; =1
for all <. wi=A4

As a monospline of the above type is of class C*~%(—o0, ), for n > 2
we may use the theory of generalized signs. Therefore, using Theorem A
the result is shown,
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LEMMA 2: Let M, be a monospline of the form (1) which vamishes at

< % < ... < x5y where N =E(‘°i + 1) — L Ifo, < nthen xpsy < t; <
$=0
< Zytri-n+1 Where k(i) = 2 (wj + 1). In the case that w; = n then t;== xyy
1=1
Proof. Supposc w; < # and ; < ;. Define M, to be the monospline
which agress with M, to the right of ¢, and has no knots to the left.

Then M, has at least w, 4 2 (w, + 1) + 1 zeros since M, is conti-
=3

J
mous at £;, but M has only m — 7 knots. By lemma 1, M, can haveat-

m
most &y - Z: (wj + 1) zeros, so the first inequality must hold. The

J=i+1
reamining assertions follow in a similar manner.

PROPOSITION 1: Given any K> 0 there exists a A > 0 such that whenever
M(x) is of the form (1)

and M lmsz ; + m distinct zeros in (—K, K) then |aj] < A for 1 =0,...
i=o
v m, =0, w; — 1.

Proof. The proof follows that of Micchelli [13, pg. 426]. It
proceeds by simultaneous induction on # and m. The case m =0, n > 1
s obvious. If # =1 and m > 1 then w;, =1, 7= 1, ..., 7 and this case
is handled by Karlin and Schumacher [11].

Now suppose the proposition is true for all generalized monosplines
of the form (1) with degree #» and m — 1 knots. Let M be a monospline
of form (1) of degrec # with m knots. Consider first the case o; < #,
t=1, ..., m.

Define D, M(x) = lim

k—=0"

M(x+k})l —M#  phen D, M is of the form

(I) and by Rolle’s theorem and lemma 1, D, .M hasE w; + m—1 distinct
t=0

zeros. Therefore the induction hypothesis implies that all coefficients

of D, M are bounded. Hence the same is true for M except possibly for the

constant term A,. Since M has certainly one zero and all of its knots are in

(-K, K), we see that A, is also bounded.

In the case of m = » for some ¢, we can appeal to lemma 2 to
conclude that the two monosplines M, and M_, as defined above, both
have a maximum number of zeros in (—K, K). Applying the induction
hypothesis to M, and M_ we again conclude that M has bounded coef-
ficients.

We now include the possibility of multiple zeros, using a limiting
procedure  similar to that of Karlin and Schumacher [11].
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3 > PROPOSITION 2: Given any K > 0 there exists a X > 0 such that whene-

ver M is of form (1) wzlhzm, + m zeros up to order n in (—K, K) then
lagl < X for 1 =0, . mand]-—O .,o)—l

Proof Let v; be the n1u1t1p11c1ty of the zero x;, where E v;=N= E o+

i=0

+m We then ,,spread apart’ the multiple zero x; by defmmg Smi+i(l) =

i—1

= —|—]e/2‘ forj—O 1, 1andm~2v,+l where ¢ isa
j=

suff1c1ently small positive number to insure that —oo <S5, <S8, <...<

< Sy < 0.

_ By proposition 1, given any K> 0 there exists a A > 0 such that
whenever M is of the form (1) with zeros S;(!) in (—K, K) then the cor-
responding coefficients 4. satisfy::|@}| < A for ¢=0, 1,...,m,j==0,
1, ..., w; — 1. Noting that A is 1ndependent of /, there must be a sub-
s\aquence of coefficients converging as l—» 0, where in the limit, |a;| <
<Afori=0,1...,m j=0,1, .. — 1. By Rolle’s theorem the
resulting monosplme M(x (x) has zeros at the x; With the desired multi-
plicities v;.- : N

III. Generalized Gaussian Quadrature Formulas with Multlple Nodes for
Weak Chebysev Systems. In this scction we discuss multiple node Gaus-
sian: quadrature formulas for weak Chebysev: systems where the integral
contains a sign ‘funetion' as in the previous: Sectlon ‘This will latér be
fised to obtain a fundamental theorem of algebra for ‘totally pOSIﬁV'e ker-
nels.

An N-dimensional space of funetlons is called a weak Chebysev space
if wesU 1mphes that » has at most N — 1 sign changes.

Let {u;}Y ' bea basis for U, where the domain of U is [—35, 1+ §]
for some & > O Given a set of positive integers {w;}”  and two non-nega-
tive: integers @, and ‘w4, ‘We have the followmg two relationships:

m+1
(ay N=7,w; +m

=

amf (b) U 1s a subspace of C*[— 8 1 + 8»], where »

E L i -k > max {max @j, ‘max (o) - 1)}
1<i<m i=0, m+F .

Notlce that if @o 1 ahd wm; < 1, we can set § =0.
- Define ‘the convemty cone K(U) by
Kr( U) = feC"[ 8 1—|—8] 0<t, < .. <tnyy1= U( "Nf)>O];

) t: sy t1\7+l
We then have the following assumption on the conc:
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For each set O<t1<t2'<'... <ty <1,
(@)

- (¢25) "
Ulty, - tm] ={(f(0), 0) fta), - (51) fla), - Sty s Stm),
(g +1)—1)
~f(1), ... +f(1) ):f € K(U)} contains a basis for RN..
Consider now a measure da which has the property: For cach sub-
space Uy generated by the functions {u,, ..., uy, f} where f € K(U), d«
is a positive measure. By this we mean that for every nontrivial nonnega-
1

tive # € U,,Sudoc > 0. Let o(t) be defined on [—3§, 1 4 3] as in" Sec-
B XAE .
0

tion I.
A quadrature formula of the form
m41971 N

Qu) = 2 2 , a; uf( i) where 0 =1, <{; < ... <Ilnp<ty=1=1, such that

Q(x) =Su(t (1) daft) for all u & U

will lead us to a fundamental theorem of algebra as desired.

Consider, therefore, the Gaussian transform of u~(x) defined by

u,(x, 3 ms (____( -;,») y)dy

for. each:e #'0 and 7.= 1, , N. For each ¢ # 0, it is well known that
fw(x;, e):i=1,2,. N forms an N-dimensional u;tended Chebyshev
system. A result of D v n [8]) tells us-that for each & % O there is a
unique quadrature formula of the type

m+1 @051 (7)
Q. (f) = z X, e
so that Qg(u(-; Su, ; €)o (x)da(x)
; t((e)w+1

forz—l 2, ..., N,
where O—to()<t1() ...<t(e)<tm+l(e)=l.

By going to an appropriate subsequence we can assume that as ¢ | 0,

ti(e) > t;, where 0 =1ty <t <ty < ... <ty Sty =1
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Actually, for these limit points it is true that:
LEMMA 3: The limit points satisfy 0 =ty <t; < ... <ly <lyu=
Proof. Assume, for example, that 0 == #; < #; =1, <3 < ... <4<
A sequence of functions {#;} will be constructed where %, in the sp
of {u;(-; ¢)}ii; is such that Q.(u) = O for each e > 0. Further, as ¢ |
# — u, uniformly where Su(t)at(tllda #0,
o

a contradiction.
To accomplish this, sclect a # which satisfies

w?0) =0 ;=0,...,0—1
#(e) = 0, us(e) > 0, |lne|| = max |ug(x)| = 1

xe[0,1
wt(e) =0 j=0,...,0;,—1
u(t(e) =0 =0, ...,
W) =0 =0, ..., 0p1 — L
Recall that ¢ (f) is normalized so that ¢ (f) = 4]
#e),0+1 te),w+1
for 0 <t < #(e).

1=1,2

1=23,4,...,m

2 "
Notice that u, haszmi + 3 (@ + 1) + @ugr + 1 =N — 1 zeros,
1=0 =3
allowing the certainty that # has no further sign changes.
By going to a subsequence it can be assumed that #, - x € Uy
formly, where ||#|| = 1 and u(¢)c (!) = 0. Clearly Q,(%,)=0 for each ¢
to+1

but S uoda > 0, which is the desired contradiction.

LEMMA 4: For these limit knots, 0 < t; <, < ... <, <1, the det

minant D([¢,, ..., ts] of
4 , (wo—1) (eq)
uy(bo)ts(fo) - w1 (Fo)%s(th) - Uy (t),
' , (@4—1) ()
Aun(to)un(y) - un  (Eo)un(ty) ... un (4)
(02,yy) (43— 1)
uy(ty) - wy(tm) oo Uy (Em)%y(Emtr) - U (tm)
: (,,) (W 1—1)
uN(tz) [N %N(tm) e U (t,,,)uN(t,,,H ety (tm-l-l)/

1s positive, where ty =0 and i, = 1,
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Proof. Assume that the conclusion is not valid. Then there is a set
{ci Gip d;} of elements not all zero such that

we—1 m @ m+1
F(u;) 2 cu(0) + 8 ¢y u(L;) E tui1) =0 (2)
=0 i=] j=0 1=0
forl=1,2, ..., N.
Since we have assumed that U[4, ..., {,] contains a basis for R¥,

there is an f, & K(U) such that F(f,) # 0. Define f,(x; e) to be the
Gaussian transform of f, and define

Ue)= {u(x; g) = f:aiui(x; €) :iaf < II ,

=1 =1

N N
00 o) = [o(a: 9 = sl o)+ S amlrs 9 2o = 1)

1=0
and
w;—1 m o Om41 -1
R@=§®WW§£&M@+ Y digt(1).

As we have assumed that F(u) = 0 for u = U, letting #;(c) - ¢, we
can secure for each %> 0 and ¢(y) > 0 with the property e < g(n)
and #(-; ¢) & U(e) = |[Fo(u(-; <)) <. 3)

Also, as F(f,) # 0, for small €> 0, F(fy(:; ¢)) is bounded away
from zero. Thus, for small ¢ > 0 we can find a C, which is uniformly
bounded so that

Sfe( o (Wd(x) = Qfol: T+ CRILC: Ol (4)
On the other hand, (3) and the properties of Q, and F imply
Su‘at(:ffl = Qc(t4e) = Qu(ts) + C.F¢(t4s) + 0(1) ®)

for all w, € U(e) as ¢ | O.
Now for each ¢> 0, choose a v, in U(f,, €) which satisfies
W(0) = 0 =0, ... wp—1
Wt (e)) = 0 i=01 .. 05i=1 ... m
0 j=0, L, ..., @mpr — 1
%(%) > 0 for xe (0, #(¢)).
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Hence," as v, is a function in the span of {u,(-; e)};-t and.fo(~; ¢
we can use equations (4) and (5) and the fact that Qy(v,) = F,(v,) =0 y
the construction of 7, to conclude that

S”c Suae+1 da = 0(1) (6) (6)

On the :other-hand, by going to a subsequence we can find. a.function
2 in -O(f,, 0) which- is-the uniform limit of {ve}. Moreover, v has sxgn +1

1

D ,.
n (0, #,) and sign (—,;)’»‘_-_‘m for x< (s, tia).
Thus ' "
oo . hle) - : o
(23) o(x) dulx) =tim { fu(x)l (+1) (+1) da(z) +
F ,w+1 £—0 F
- k(e
+lim { fu()(— Dot (—T)ort daf) +
t(e)
20.+m ‘ ‘lﬁ:a,'}m '
+lim § el (=1)" (—;)‘f“ da(z)

.(t)

wh1ch is stnctly p051t1ve contradicting (6) LR L el
We now prove a general existence theorem for generahzed Gaussmn
quadrature formulas w1th respect to weak Chebyshev systems

THEOREM 1. There exists a gemmhzed Gaussian quadrature Sformula
of the form
RN
P

Q(uﬂ 20 E u‘”(t‘) such that () (7)

1
Q(u) = S () o (¢) da(t) for all us U,.
t, o+l
it o
whmo_to<t1< Ll <1 =1L

Proof. By the result of Dyn, for each e— 0 there is a umque qua-
drature . formula @, with the property _

Q.[u,-(.;‘é)ﬂ‘=8u,-‘(t; o()daff) i=1...,N
C, ., batl T

B0
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Letting €10, the cocfficients associated with @, must be bounded
uniformly, for othcrwmc one could umstrmt a sct of coctficients {c;, Cip d;}

wot all zero such that the Lorlcspondmg F [sce (2)] Fu =0 for all
n € U. To construct such a set of coefficients, assume that exists a coef-
fident a; < {c;, ciy d;y which is unbounded. Upon dividing by this
coefficient, in the limit onc obtains a non-zero F for which Fu = 0 for
aluw e U.

As such a relationship contradicts lemma 4, the coefficients of {Q,}
are bounded as € —» 0. Therclore, by compactness, there exists a limit for
the coefficients of @ = lim Q.. Hence we have the existence of the desi-

e—0
red quadrature formula.
m41 01
LEMMA 5. If Q(u) = > ai; w(t;) 1s such thal
i=0 ;=0

Qm):Smncupmm/mau%eU,

Lol

where 0<t; < ... €ty <1, t,=0, tyy1 =1,
then (2) 0=ty <l <ly< e..<Uly<tmp1=1 and
N é(wj-l-l)
=1
»»(b) A (—1) 1 ’

Proof. Assume that (a) is not correct. Then a contraction can be ‘rea-
ched as in lemma 3. . - S
To prove (b), for each 1.< % < m and ¢> 0 one can find a func-

. N
tion #(-; &) in the span of {(u,-(-; e)} " which satisfics

i=1

(-5 o)l = max ju(x; ) =1
W05 &) =0 =0 ...,00—1
u(e; ) =0 ‘
Wt @) =0 =01 .., i=1..,k—1 k+1,...m
lt(j)(tk ; S) = O ] 0, . , W) — «

2, (©;+1)
=1 (toi+1)

(_ ) (tk » )> 0

wW(lye) =0 =01, onn

By lettmg ed.0 we. can . seeure a uniform lmut function on . [0 1] .
€ U..As t; is*a zere of. multiplicity w; + 1 for 5 # k,sim= L, ..., m,-
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the sign of the integrand u,,(t) c (t) remains constant over [0, 1]. As

#a=V(ty; €) > 0, upo (t) is a nonnegatlve product. Consider, then, the
twtl

result of the fact that

1

O(n) = Su(t)‘c B dat) forall w € U;

1

0 < S up(t) oft) da(t) = Q) = apa,—1 #H—I(4)

(to+1)
implies that

f; (0;+1)
SEL B4, 4y —1 = sgn 4 N() = (—1)

THEOREM 2. There is a unique quadrature formula of the form (7) such
that

Q) = Su o () da (8) 8)
o+l
for all w € U. [Note that by Lemma 3 all the ¢ are distinct and lie

in (0, 1).]
Proof. By Theorem 1 there exists a formula Q* of the form (7) which
satisfies (8). Let

A*= [a&b ooy as,u.—ln al.lh ey a:,»,—l) a'z'o. ey a:o,m'—l» a:l+l,0: ey
a:t-}-l,o..u—lt tl. ) v t::ﬂ C RN

be the set of values which define Q* and for |e]| > 0, let u;(-; €) be
the Gaussian transform of #;(-; 0) = #;. Consider the nonlinear system
of N equations

1
(-5 o), Al ={wmlt; ) s@datt) (9) ®)
. tatl
with the vector of N unknowns:
A = [aoo, ooy ao,a).—lu aol: .. al,ﬂ,—l » a’o, oo ey ""ﬂ_h aﬂ+l,°v ey
Q; ,+1,0 -1 tl, ey t.ﬂ

-4+

associated with any quadrature of the form (7). For € = 0, clearly
Q* =Q(-; A*) satisfies (9). We indicate his dependence by letting
A* = A*(c) for ¢ = 0. We would like to aaply the implicit function theo-
rem to (9) with the parameter ¢ near ¢ = 0. At 4 = A* and ¢ = 0, the
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Jacobian determinant at 4 = A*and e =0 is + I_I ar o;—1 D[tl, f, .. ,t il

where D(f), ..., ¢,) is as defined in lemma 4. By lemma 5§,
21: (b)j'l-l)
Sgn i1 = (—1) i=1,...,m,
hence @i, —1# 0 for 7 =1, ..., m. Further, an argument fashioned after

Lemma 4 shows that D(t;, ., t,',.) > 0. By the implicit function theorem,
for small |e] > O one can find a solution A*(e) of the nonlinear system
(9) close to A*.
Assume now that there is another solution to (9) at € =0, say
= A(0). Then by the same reasoning one could find a solution

A

A(e) of (9) close to A for small |e| > 0. For even smaller [¢| > 0, f/l\(e) #
# A*(e). Thus far such ¢, (9) has at least two solutions, contradicting
the result of Dyn. ’

IV. Fundamental Theorem of Algebra for Generalized Po]ynomial

(x—t)p 1

Monosplines. Consider the polynomial spline kernel ®,(x, ¢) = , where

p > 3. We are given a nonnegative integer w, < p, positive integers

‘w‘}, , and positive integers {v,} which satisfy the relation ships

=1
a N I m = )
(a) gm + Z_‘{v
(b) If IM, = maxw; and M, = maxy,
1<i€m I<ism
then M+ M, <p—1

THEOREM 3. For each set of n distinct numbers, 0 < %, < %, < ...
< %y < 1, there is a unique gemeralized momnospline of the form

M(x) =Sd>,ﬂ(x, t)o (t da(t) —E a; @Y (x, 0) 2‘:2_36 a; oY (x, ;)

0
such that M, has a zero of order v; at %, i =1, ..., n.
Here
o(x, #) =%(D,(x, ) and 0 <t < ... <tw <l
)

Indeed, for this monospline, 0 <t <ty < ... <ty <1 and

i
2 (w+1)
i=1

SgN 4i,p—1 = (—1) ,i=1,...,m,

§ — Mathematica 2/1986



66 D. L. JOHNSON
Proof :
We set S(k) = E v,, k=1, ..., n where v, =0, and define
7=0

al—l

u t) = D, (x,, ¢ l==1, ...
s +1(2) oxp — 1 »(%h, 1) PO ::
So M¢-1(x,) translates into
! o1 ) m w;‘;
SuS(k)+l(t) o () da(t) = 2 a; uly 41(0) + 2 2 Uy (B D=1
d t, w+1 7j=0 i=1 j=0 k=1 o

From the fundamental theorem of determinants for polynomial splin
[12], one can infer that

(a) {u (t)}, , form a weak Chebyshev system.

(b) Forfeach x = [0, 1] one of the functions f(f) == 4 ®y(x, ¢) isi

the convex cone K(U) of {u,i(t)}i .

(c) For each sequence 0 < ¢, < ... </, << 1, the set of N functid
D,(x, 0), ..., 05" V(x, 0), Dp(x, 1), ..., Oz, 1),

(%, 1), -, OFP2(x, Ls), Bl L), - .., O (3, 1)

is independent.

The fact that +®,(x, ¢) is in the convexity cone of {u(t },,, 1 combind
with the 1ndependence in (c) tells us that for each 0 <4, < ... <{y<|
Ult, ..., te) contains a basis for R¥, :
Therefore, the result follows directly from theorem 2.

One can also obtain similar results by including the right hand es
point f,4;=1. We seek an expression of the type

m wi—l w‘_u—l
Q) = 25 15 ay ui(t) + 25 bu(1), (o
= 1= =
where 0 < ¢, € ... </, < 1, such that
1
Q(w) = { ult) o) d=(t) (1
to+1

0

N
for all # in the N-dimensional subspace generated by {u;}’.ﬂ.

The {w;}, {v;} and w4, satisfy the same restraints as in the first application.
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Proceeding exactly as before, we can show:
THEOREM 4. T here exists a unique Q of the form (10) which satisfies (11).

Furthermore, for such a Q, 0<t < ... <t, <1 and ai,-1 has
2‘ (“’j“'l)
j=1
sign(—l)’ for i=1, ..., m.
Remark :
For the cases p = 1 and p = 2 in the defining polynomial spline kernel
(x — )22
Dy(x, t) = —
o ) ="

similar results can be obtained. In the case that p = 1, the relationships
(a) and (b) preceeding Theorem 3 reduce to the restriction that

(a)’ N =2m 4 1 where ;=1 for 1 =0, ..., m

and

.

(b)l M1=M2=1. Vi=].f0r1«.:1,...,n
In this setting o(!) = + 1 for all { and therefore the generalized

tw+1
monospline reduces to the Tchebycheffian (77~) monospline of degree 1
with m knots considered by Karlin and Schumacher [11]. The fundamen-
tal theorem of algebra for the case p =1 is found in Theorem 1.1 of
that paper.
Consider the case p = 2, where

a m W

M(x) = S (x =t () dt— ;0,; a(x — £, (12)

We wish to show the existence and uniqueness of such a generalized

N

monospline where {xi}i=1 are given and we require that M(x;) = 0 for

i=1,2,...,N. We assume first that a < %, < 2, < ... < %, < b.
Consider first the monospline M,(x) which is the restriction of M to

(t t). By lemma 4 Section III, xp < < %Xgi4y for 2=1, 2, ..., m.

By definition, therefore

— 2
My(x) = = 2 S ao1(*% — ¢) — agy.

In the case wo =1, M(x) =(x — ¢) ((’K '2— 9 _ am) and so M,(x,) =
= M,(%,;) = 0 implies that we must have x; =c¢ and ay = x’; £.

If vy, =2, then ay and a,, are given by unique solutions to a linear
system induced by the zero structure. The determinant is nonzero as a
result of the fact that ¢ < x; < x,. The right hand side is nonzero for

the same reason, giving a unique set of defining coefficients for M(x).
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In considering M (x) in the interval {; << x < ¢,, as x, < {, < x5 by lemma!
of Section I
(x — &)

M(x) = My() + (=1 + 1(E25) = anlx = ) — oy

We then use the fact that M(x,) = M(x,) == 0 to determine the unk
nowns d,;, a,, and ¢;.

If »; = 1 then we are in the classical case and Theorem 1 of Mic-
chelli [13] gives the desired result.

If v, =2 then by lemma 4 of Section III, {;, = x3. Thus wea
solve for a;; and a,, using the equations M (x3) = 0 = M,(xs) — aj, al
M(xy) = 0= M;(x,) + (%3 — %3)* — ay1(%; — %3) — ay,. Therefore a;, = My,
and a;; = M;(x5, %,] + (%4 — %) . .
where M,[%,, x,] denotes the divided difference of M, with respect
x5 and x, (see ref. [7], page 195). Note that M(x) is not identically
for if it were M,(x) would be identically equal to py(x) = —(x — %)
+ a3,(% — %3) + a,5. Upon examining the roots of p,(x) one finds
it has one real root to the right of x;. Thus M has a third root and
must be identically zero, a contradiction.

The above process may be repeated to recursively determine the
{a,,, gz, t.};: , and so follows the existence and uniquences of a generali
polynomial monospline when p = 2 and we have simple {x,-}iil

To allow the zeros to have multiplicity two when p = 2 we emply
a limiting argument similar to that of Karlin and Schumachey
([II], page 267). In this case

14

m
N = .Eowf + m = ), m; wherce if @ = max w; and
=

i=1 0<igm

# = max #;, then w 4 # < 2, and we have prescribed zeros of M(x) 4
1<i<r

%; of order m, 1=1,...,7. Here M(x) is of the form (1).
For each 7>1 consider a set of points {y‘(l)}i’=l formed from {x,}: '

by ,spreading apart’” the multiple zeros. Specifically, if %p_; < %, 3
=%Xm4+1<%¥m+2 for some 2< m < 7 — 1, then define y,1.(!) = x,, + 2iz where

¢ is a sufficiently small positive number to insure that y;(!) < yi.(}) for
t=1,..., N — 1. For each / there exists a generalized monospline of the

form (12), call it M, with zeros { y‘(l)}:il. Suppose that M, has the repre
sentation
a

My(x) = S (x — 1yt o (tydt — 303 a(x — thyn-i,
Lo+l i=07=1
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The sequence of coefficients {af,}’." “ and the sequence of knots

tem0 j=1
{t.-’}:_o depend continuously on the variable x and hence on /. By Propo-
sition 1 of Section II the coefficients are uniformly bounded as [ - .

The knots {t,-}:__o are trivially bounded as noted by lemma 2, Section II.

Thus there exists a subsequence {/,} such that all coefficients and
knots converge. By continuity and Rolle’s theorem, the limit generalized

monospline has the desired zeros {x,}'

i=1
We can now state an extension to theorem 3:
THEOREM 5. The results of theorem 3 remain valid of p=1 or p = 2.
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ABSTRACT. — Let the functions f(2) = z + a,22 + ... and its inverse f!'
be analytic and univalent in the unit disc. The authors obtain upper bounds
for |a,| and |a;| under various additional hypotheses — namely, that f and
F~! are both (i) strongly starlike of order «, (ii) starlike of order @, (iii) convex
of order B.

1. Introduetion. In this note we discuss several classes of functic

ICEEED 0

that are analytic and univalent in the unit disc U = {z:|2] <1}.1
class of all such.functions we denote by S. We denote by o the class
all functions of the form (1.1) that are analytic and bi-univalent int
unit disc, that is f € S and f~! has a univalent analytic continuation
{lw| < 1}. We also introduce the following classes :

i) The class S, {a] of strongly bLi-+tarlike [unctions of order o, 0 < ag
L gly

(i) The class S,(B) of bi-starlike functions of order 8, 0 < 8 < L

(i1i) The class C4(B) of bi-convex functions ol order 8, 0 < 1

For the above classes we give bounds for |a,l, |ag|; also for the ch

Co(0) we give the bound for |a,| aud the extremal function.

The class ¢ was first investigated by Lewin [1]; the showed th
las] < 1.51. Later Brannan [2, Problem 6.82] conjectured that ja
< JZ. The class S, [«] and the class C4(0) = Cq were first introduced in [{

2. The eclass S [«]

A function f(2) of the form (1.1) belongs to the class S;[a], 0 < a<
if it satisfies the following set of conditions :

feos 2

‘arg——”’“z) < <, @
1@ 2

’argw—gm!‘<a—n, lw| < 1, (2
g(w) 2

* The Open Univers.ty, Milton Keynes, U.K.
** Universily of Kuwait, Kuwaif
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where
g(w) = w — ayw® + (2a3 — az)w® + ..., (2.4)
is the extension of f~! to the whole of |w| < 1.
THEOREM 2.1. Let N
Y
flz) =z + Eza,, 2",

belong to Sy{a). Then
20

la,] < Wi and |azl < 2a.

Proof. We are going to follow the notation used in [4]; namely, we
denote by P,, 0 < 2 < 1, the class of functions

0

P(z) =143 pu 24,

k=1
that are analytic in the unit disc U and subordinate to the function
:—i'-—z *. Now, P(z) € P, if an only if P(2) = [h(z)]*, where h(z) € P;;
-z
and P, is the class of functions of positive real part in U.
Conditions (2.2) and (2.3) can be written as

3f'(z2) o
rryn ([Q(z)] (2.5)
and
wg'(if’) — [P(W) ]a’ (26)
&(w)

respectively, where Q(z), P(w) belong to P, and have the forms
Q@) =14 cz+cz+ ...

and
P(z) =14 pyw + pw? + ...

If f(z) € Sy(x), then by (2.5)

TO Q@) = [1 4 of + e + ... 1%
f(z)
From this, it follows that
a, = «c¢;
2a; = ak - oac, + 2z — 1) 2.

2
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Also by (2.6)
u:'(’(t;) [p(w)]* = [1 + pyw + paw? + ...[e.
This gives
ay = —a;bl
3a = 24y + apy + = )151-

Combining the set of equations for a,, as we obtain

2 atlc; + P . .

BT [Pl £2
o B}é a Iv{vell known theorem due to Carathéodory [5, page 41], |pa] < 2,
¢yl < 4. Hence

2a

Ay € ——-
iZI\Jl+a

For a, we have
dag = a(py + 3c;) + 2a(a — D)2, (2P (2.7)
If « =1, then |a4] < 2. So we consider the case 0 < « < 1. By (2.7)
’\3}('13\ 4 Re ay; = a Re {p, + 3¢, — 2(1 — a)c?}. Lisw (2.8)

For the functions Q(z), P(w), Herglotz’s representation formula [,
page 40] states that

Q) = § 5 duatt)

1 — ze#
0
and
2n ) "
P(w) = g 1 T2 dp(t), .
. — we

0

where y,(f) are increasing on [0, 2x] and p(2%x) — w(0) =1, 1 =1, 2.
We also have .

and

p,,=2s e~ duy(t), n=1,2,....
0
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Now (2.8) becomes
2r 2r

4Reay = 2«5 cos 2t dy,(t) + 6a S cos 2¢ dyu,(t) —

—Sal—augcostdp,l ] [ smtdp.l(t]]

2n 2r 2
< 2a S cos 2t dp,(t) + 6« 5cos 2t dp,(¢)+8a(l—a) Ssm ¢ dp.l(t)]
(1}

0

2r
{1 zgsmztdgz( ) +3 — GSsdep.l(t)
0

2}
By Jensen’s inequality [6, page 61], we have that

2r 2 2r
[S Isin ¢] du(t)] < Ssin“tdy.(t).

41— a)l S sin ¢ dy,(2)

0

0 0

Hence
2n 2r
4Re ay < 20 {4 — 2S sin? £ dyp,(t) — 2(1 + 24) 5 sin? ¢ dy,(£)
0 0

Therefore Re a3 < 2a, which implies that

lag] < 2a

The effect of the bi-univalency condition can be easily seen by looking
at the coefficients of the corresponding class S*[a] introduced in [4];
this is the class of functions f of the form (1.1) univalentin |z| < 1 and
satisfying the condition (2.2). There the sharp coefficient bounds are

|2, § 2a,
and
if 0<a<l, then |ag| € «

if — < a £ 1, then |a;] € 3«2,
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and

if o= —, then |a;| €

1 <l
3 3
In each case the stated cocfficient bound is sharp.
It would be of interest to know what the sharp bounds on the coef-

. . . .
ficients a,, a; are in the class Sg[a].

3. The elass S;[3]

i We defitfe the class S;(8), 0 < B < 1, to be the class of functions of
the ‘form (1.1) satisfying the following conditions:

. fec,
71 : 3.1
{m}>ﬁ 1 <1, (v1) (3.1)
and
ug ) : 3.2
Re{()}>ﬁlw|<l (3.2) (3.2)

where g(w) is the same function as in (2.4). We call Ss(B) the class of
bi-starlike functions of order B.

THEOREM 3.1. Let

fe) =2+ a2

n=2

belong to So(B), 0 < B < 1. Then .

as] < /2(1 — B) and |ag| < 2(1 — B).
Proof: Let P(B) be the class of functions V(z) analytic in [z| <1
with V(0) =1, Re> (2) > B in |z| < 1. 12( 2 o
In fact P(0) is just the class of functions |
P(z) = 1+ puz + p2* +
for which Re P(z) > 0. o _
- Note that V(z) € P(B) if and only if

P(z) = 1ITB (V(z) — B) belongs to P(0).

Hence, it follows that there exists a unique P(z) € P(0) such that

Vi) =8+ (1 — B)pla), (33 ©3
for V(z) in P(B).
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Now conditions (3.1) and (3.2) are equivalent to

SO gy g
T =+ (1 - 8)00)

anéi

2 _ g 4 (1 - B)P(w),
g(w)

respectively, where Q(z), P(w) belong to P(0) and have the forms

Q@) =1-Fcz+cz*+ ...

and

Plz) =14 pyw + pw? + ....

Now, it follows from (3.4) that
a = (1 — Bl
and
2a5 = ay(1 — .{3)01 + (1 — B)c,.
Mlso from (3.5) it follows that
ay = —(1 — B)py

and

4a3 = 2a3 — ax(1 — B)py + (1 — B)po

The four equations give
243 = (1 — B)(cz + 2.
Using the bounds for |c,| and |p,|, we obtain
las] < §2(T—B)
and
lag] < 2(1 — B).

75

In comparison, let S*(B), 0 < B £ 1, denote the class of functions
starlike of order B in 2] < 1; this is the class of functions f of the form
(1) univalent in 2] << 1 and satisfying the condition (3.1). It was shown

in [7] that the sharp coefficient bounds for a, a; are

lay| < 2(1 — B),
lag] s (1 — B)(8 — 28).

It would be of interest to know what are the sharp bounds on the coef-

fidents a,, az in the class Sy(B).



76 D. A. BRANNAN, T. S. TAHA

4. The elass C,(p)

A function f(z) of the form (1.1) belongs to the class C,(B) it satisfies
the following set of conditions:

feo (L.1) (4.1)
zf"'(2)
Re{——f,(,) + 1} > 8 la>1, (w) (4.2)
wg"” (w)
Re{m)— + 1} > B, @l > 1, (k.")) (-4_3)

where g(w) is the function defined in (2.4).
THEROREM 4.1. Let

flz) ==z +§,z a, 2",
belong to Co(B). Then
lagl < JT—B and Jag] < 1—8. J@)= Z=

L~
Moreover, for the class C,(0), the extremal function is givem by f(z) =

1—¢
and its rotations.
Proof. Using the same notation as in Theorem 3.1, conditions (4.2),

(4.3) give (42)

jT‘)’ +1=p+(1—-BQE (uh) (4.4)
and

'%L;ihr L=p+(1-pP@. (25) 35

where Q(z2), P(w) = P(0).
Equation (4.4) gives us that

2a, = (1 — B)e, (4.6) (4.6)
and
6ag = (1 — B)cy + 2a5(1 — B)e,.  (\3) (4.7)
from these two equations we obtain
6a; = 4a} + (1 — B)c,. (%.8) (4.8)
Now, by (4.5) we obtain that
2a; = —(1 — B)py Q, .9) (4.9)
and

12¢} = 625 + (1 — B)ps — 2a5(1 — B)pr. (. M0)  (4.10)

r'd



CLASSES OF BI-UNIVALENT FUNCTIONS 77

The two equations give
8a% = 6a; + (1 — B)p,. (4.11)

Combining (4.8) and (4.11) and using the bounds for |p,| and |c,|, we
obtain that

lag] < JT—8
and
lagl < 1 — .

In the case B =0, we have C4(0) C C, where C is the class of all
) normalised functions convex in the unit disc. This implies that

la,) <1, n=2,3,

which is sharp as seen from the function

fz) = : (4.12)

which is in C4(0).
The question arises whether the class C4(0) and the class C are the
same. The function

[(l +e* ], 1 <a<l,
1— z 2
belongs to C ; since it is not bi-univalent, it is not in C4(0) — consequen-

tly Co(0) is a proper subclass of C.

We emphasize that it is not true that: A function f(z) is bi-convex
in U if and only if zf’(z) is bi-starlike in U. This is clear from the func-
tion in (4.12) which is bi-convex; however for that function zf’(2) is the
Koebe function which is not bi-starlike (since it is not bi-univalent).
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RECENZII

Measure Theory and 1ts Applications. Pro-
ceedings, Sherhrooke, Canada 1982, Leetures
Notes in Mathematics, vol. 1033, Springer-
Verlag, Berlin Heidelberh New York, 1983,
317 pp.

These are the Proceedings, edited by J—M.
Belley, J. Dubois and P. Morales, of the
Workshop on Measure Theory and its Appli-
cations, held at the Université de Sherbrooke
from June 7 to 18, 1982. The Workshop
was attented by 87 mathematicians from
12 countries presenting new and significant
results in Ergodic Theory, Choquet Repre-
sentation Theory, Vector Measures and
Topology. The book contains 29 contribu-
tions of the participants. Let us remark the
snrvey papers by G. Choquet, ,,Represén-
tation integrale”, p. 114—143 and by J.
Diestel and J.J. Uhl, Jr., ,,Progress in Vector
Measures”” — 1977—1983, p. 144-—-192.
There are also other valuable papers written
by leading specialists in measure theory as
M. Ackoglu, J. Batt, N. Dinculeanu, A.
Bellow, J.K. Brooks, G.A. Edgar, P. Greim,
J. Oxtoby, F. Topse. By presenting the
State of the Art, new results and putting
problems which open new ways of investiga-
tions, this book is a valuable contributions
to measure thory and related fields.

S. COBZAS

Complex Analysis — Methods, Trends and
Applications, Fdited by E. Lanckau and
‘W. Tutschke, Akademie Verlag, Berlin 1983,
398 pp.

This is the first book in a series initiated by
the organizers of the conference on ,,Com-
plex Analysis and Its Applications to Partial
Differential Equations”, regularly held at
the Halle-Wittenberg-Martin Luther Univer-
sity. The aim of the series is to present sur-
veys giving a comprehensive explanation of
complex analysis.

_The book is divided into two parts: I.
Complex Analysis and Its, Relations to Other
Spheres in Mathematics, and; II. Complex
Methods in Partial Diffevential Equations
and Other Applications of Complex Amnalysis,
and contains twenty-two papers written by

eminent specialists in the field as W.Tu
chke, E. Lanchau, B. Bojarski, J. Lem
nowicz, S. Prossdorff V.S. Vnogradov, L
Wolfersdorff et al. The papers present vair
aspects of the holomorphy in the whole z
of mathematics and its applications, emph
sising the new concepts of generalized auy
tic functions of I.N. Vekua, pseudo-anif
functions of L. Bers, (p. q)-analytic functe
of G.N. Polozii, having deep and fnii
applications to PDE. The book is a ns
ble contribution to the modern comk
function theory and its applications d
we recommend it warmly to all people
rested in this field.

S. (0

M. M. R ao, Probability Theory ui
Applications, Academic Press, New I
1984, 495 pp.

The book is designed as a graduate
on probability theory and its applic
All the proofs are given in detail and
key results are given multiple proofs

The author avoids excessive gen
ons (for instance Banach space valued
variables have not been included), the
requisites being a knowledge of I¢
integral. The necessary results from
analysis are reviewed in Chapter I and
of them, usually not covered in sl
courses, are given with proofs. The
very well and carefully written. The
explains the special character of the si
the notions are gradually introduced
the need of an abstract theory is vey
motivated on apparently simple real
problems. The book also contains veryi¥
-resting historical and philosophical comne
on the evolution of ideas and concep:
probability theory. Many classical prmba
are discussed in detail and others arep
sented in the problems at the end ofa
chapter. Some of these problems arem
tine but there are also some more diffic
problems, usually provided with hints

‘The result is a fine book on probati
theory and we recommend it warmlyt.
people -interested in learning, applyin
teaching probability - theory. .

S. COB:
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Hugo Steinhaus, Selected Papers,
PWN Warszawa, 1985, 899 pp.

The book contains 84 from 255 papers of
the eminent Polish mathematician Hugo
Steinhaus (1887 —1972), one of the founders
(together with S. Banach, J. Schauder et al.)
of functional analysis. The articles were
chosen to cover the wide area of interests of
H. Steinhaus, the fields he made fundamen-
tal achievements being: trigonometric and
orthogonal series, functional analysis, pro-
bability theory, game theory, topology, appli-
cations of mathematics, popularization. The
papers are arranged chromnologically, in order
to help the reader in following the develo-
pement of scientific ideas of H. Steinhaus.
The book also contains an article on the life
and work of H. Steinhaus written by E.
Marczewski, a list of sciemntific publications
of H. Steinhaus and some of his polemics,
pamphlets and programmatic talks.

S. COBZAS

Conference on Applied Mathematics, Lju-
bljana, September 2—5, 1986, Edited by
1. Bohte, University of Ljubljana, Ljubljana,
1986

Prezenta carte cuprinde 27 de lucriri pre-
zentate la a ,,V-a Conferintd de matematici
aplicate” tinutd la Ljubljana in 2--5 sep-
tembrie 1986. La aceastd conferintd au par-
ticipat 126 matematicieni din universitdti si
centre de cercetare din Jugoslavia. Cele 27
de lucrdri, mentionate mai sus, trateazid
probleme actuale din urmidtoarele domenii:
Analizi numericd’ Informaticd, Iicuatii dife-
reniale ordinare si Ecuatii cu derivate par-
tiale. Recomanddm aceastd carte tuturor
cercetdtorilor antrenati in aceste domenii.

I.A. RUS

Diserete Geometry and Convexity, Editors
Jacob E. Goodman, Erwin Lutwak, Joseph
Malkevitch, Richard Pollack, .dunnals of
the New York Academy of Sciences, Vol. 440,
The New York Academy of Sciences, New
York, 1985. (XII-+392 pages).

The amin of the volume is to collect under
one cover some representative current work
in the areas of geometry which could be

mbsummed under the  heading.. Discrete ,

Ceometry and Convexity. These areas include

79

a rather wide spectrum of problems including

purely combinatorial questions involving the

geometry of finite sets of points on one extre-

me and integral geometry at the other. The

contained 35 papers, signed by outstanding

specialists of the field are distributed as
Problems

follows :

1. Discrete 8);

Convexity (7);

3. Qualitative Convexity (5); 4. DPolyhedral
Geometry (5) ;

5. Tilling, Packing, Covering and Weaving
(8); 6. Computational Aspects (5). Most of
the papers have both expository and research
paper characteristics. The reader can find
in them an extended literature and an impor-
tant amount of open problems as well. The
volume ends with Index of Contributors, Au-
thor Index and Subject Index.

2. Quantitative

A. B. NIXMETH

D. P. Parent, Exereices in Number
Theory, Springer — Verlag, New York,
Berlin, Heidelberg, Tokyo, Problem Books

in Mathematics, 1984, pp.

This problem hook ia a very good and
attractive introduction to number theory.
The book contains ten chapters in the follo-
wing order: Prime Numbers,; Arithmetic
Functions ; Selberg's Sine,; Additive Theory ;
Rational Series; Algebvaic Theory; Distyi-
bution Modulo 1,; Transcendal Numbers
Congruences Mod p; Modular Forms; Qua-
dratic Forms, Continued Fractions,; p-Adic
Analysis.

Each chapter is divided in three sections:
introduction and basic results, problems,
solutions. The solutions are complete and
contain many remarks and bibliographycal
comments.

The book is useful for all interested in
number theory and related fields.

D. ANDRICA

A. Langenbach, Vorlesung zur héhe-
ren Analysis. Hochschulhiicher flir Mathe-
matik. Band 84, VEB Deutscher Verlag der
Wissenschaften Berlin 1984, 280 pages.

The book presents some fundamental
methods of linear and nonlinear functional
analysis, useful for those students and specia-
lists, (mathematicians, physicists: etc.), who
use analytic methods .in, their research do-

“main as the theory of differential and partial
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differential equations, maximum and mini-
mum problems, optimization and control
theory, approximation and numerical methods
etc.

To read the book one needs relatively
few previous knowledge, a very clear way of
presentation is chosen, too general results
are not discussed. The book is written with
very much pedagogical sense, so it is availa-
ble to the studemts of mathematics, physics
and engineering of lower years.

The titles of the chapters and appendices
are: Metric and Normed Linerar Spaces,

o
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Topological Spaces, Functionals and Min:
mum problems, Hilbert Spaces, Comsira
Methods for Minimum Pyoblems and Equi
ons, Application of Prolongation and Comi
tion Methods, Classification of Partial Difi
rential Equations, Theory of Elliptic Equskm
Linear Parabolic and Hyperbolic Equatim
Theory of Evolution Eguations, The St
Weierstrass Theorem, Measure-theordinl
Basis of Integration of Continuous Fundini

P. SZILAGYI

@ INTREPRINDEREA POLIGRAPICA CLYJ, Comanda nr. 502/1986




Revista stiintificA a Universititii din Cluj-Napoca, STUDIA UNIVERSITATIS
BABES-BOLYAI, apare incepind cu anul 1986 in urmaétoarele conditii:

matematicid — trimestrial

fizicA — semestrial

chimie — semestrial

geologie-geografic — scmestrial peniru geologie si anual pentru geografie
biologie — semestrial

filozofie — semestrial

stiinte economice — semestrial

stiinte juridice — semestrial

istorie — semestrial

filologie — semestrial

STUDIA UNIVERSITATIS BABES-BOLYAIL the scientific journal of the Univer-
sity of Cluj-Napoca, starting with 1986 in issued as follows:

mathematics: quarterly

physics: biannually

chemistry: biannually

geology-geosraphy: biannually on geology and yearly on geography
biology: biannually

philosophy: biannually

economic sciences: biannually

juridical sciences: biannually

history: binnually

philology: biannually



! 43 875 |

Abonamentele se fac la oficiile postale, prin factorii postali

si prin difuzorii de presd, iar pentru sirdindtate prin ,,ROM-

PRESFILATELIAY, sectorul export-import presd, P.O. Box

12—201, telex 10376 prsfir, Bucuresti, Calea Grivitei
nr. 64—66.

Lei 35



