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Distributed computing of simultaneous
Diophantine approximation problems

Norbert Tihanyi, Attila Kovács and Ádám Szűcs

Abstract. In this paper we present the Multithreaded Advanced Fast Rational
Approximation algorithm – MAFRA – for solving n-dimensional simultaneous Dio-
phantine approximation problems. We show that in some particular applications
the Lenstra-Lenstra-Lovász (L3) algorithm can be substituted by the presented
one in order to reduce their practical running time. MAFRA was implemented in
the following architectures: an Intel Core i5-2450M CPU, an AMD Radeon 7970
GPU card and an Intel cluster with 88 computing nodes.
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1. Introduction

1.1. Diophantine approximations

Approximating an irrational α with rationals is called Diophantine approxima-
tion or rational approximation. The theory of continued fractions provides one of
the most effective methods of rational approximation of a real number [1]. Simple
continued fractions are expressions of the form

a0 +
1

a1 +
1

a2 + · · ·

where ai-s are integers with a1, a2 . . . > 0. The sequence C0 = a0, C1 = a0 +
1

a1
, . . .

are called convergents. Every convergent Cm = pm/qm represents a rational number.
An infinite continued fraction [a0; a1, . . . , am] is called convergent if the limit

α = lim
m→∞

Cm

This paper was presented at the 10th Joint Conference on Mathematics and Computer Science

(MaCS 2014), May 21-25, 2014, Cluj-Napoca, Romania.



558 Norbert Tihanyi, Attila Kovács and Ádám Szűcs

exists. It is known that no better rational approximation exists to the irrational
number α with smaller denominator than the convergents (see e.g: [2]). Fractions
of the form

pm−1 + jpm
qm−1 + jqm

(1 ≤ j ≤ am+2 − 1)

are called intermediate (or semi-) convergents. Calculating intermediate convergents
can be used to get every rational approximation between two consecutive conver-
gents pm/qm and pm+1/qm+1. Adolf Hurwitz (1859-1919) proved in 1891 that for each
irrational α there are infinitely many pairs (p, q) of integers which satisfy∣∣α− p

q

∣∣ < 1

q2
√

5
.

Approximating more than one irrationals at the same time is called simultaneous
Diophantine approximation. The challenge in this case is that for given real numbers
α1, α2, . . . , αn and ε > 0 find p1, p2, . . . , pn, q ∈ Z such that∣∣αi − pi

q

∣∣ < ε (1.1)

for all 1 ≤ i ≤ n. The continued fraction approximation method can be used efficiently
for constructing solutions in one or two dimensions. In higher dimensions the situa-
tion is more challenging. In 1982 Arjen Lenstra, Hendrik Lenstra and László Lovász
invented a polynomial time lattice basis reduction algorithm (L3) that can be used
for solving simultaneous Diophantine approximations [3]. If α1, α2, . . . , αn are irra-
tionals and 0 < ε < 1 then there is a polynomial time algorithm to compute integers
p1, p2, . . . , pn, q ∈ Z such that

1 ≤ q ≤ 2n(n+1)/4ε−n and |q · αi − pi| < ε

for all 1 ≤ i ≤ n. The algorithm L3 can be used effectively for solving Diophantine
approximations in higher dimensions, however, it can not be used to generate thou-
sands or millions of q ∈ Z that satisfy (1.1) even with varying reduction parameters.
Consider the set of irrationals Υ = {α1, α2, . . . , αn}. Let ε > 0 and let us define the
set

Λ(Υ, ε) = {k ∈ N : ‖kαi‖ < ε for all αi ∈ Υ} (1.2)

where ‖ · ‖ denotes the nearest integer distance function, i.e.

‖z‖ = min{|z − j|, j ∈ Z} .
In general, the following computational challenges can be stated: (1) generate as
many elements of Λ = Λ(Υ, ε) as possible in a given time frame, and (2) generate a
predefined (huge) number of solutions as fast as possible. In this paper we consider
the following number-theoretic challenge:
Challenge: Determine 1 billion elements of the set

Λ

({
log(p)

log(2)
, p prime , 3 ≤ p ≤ 31

}
, 0.01

)
(1.3)

as fast as possible. This challenge is a 10-dimensional simultaneous Diophantine ap-
proximation problem. Generating such a huge amount of integers with L3 would be
very time-consuming on an average desktop PC. The first two authors of this paper
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recently presented a method for solving n-dimensional Diophantine approximation
problems efficiently [4]. The main idea is the following:

Theorem 1.1. Let Υ = {α1, α2, . . . , αn} be a set of irrationals and ε > 0 real. Then
there is a set Γn with 2n elements with the following property: if k ∈ Λ then (k+γ) ∈ Λ
for some γ ∈ Γn.

It was also presented that the generation of Γn can be done very efficiently for
small dimension (e.g: n < 20). In our particular case using the set Γ10 it is possible
to generate arbitrarily many integers k ∈ Λ.

The main goal of this paper is to improve the implementation of the existing al-
gorithms and develop an even faster method than the one presented in [4]. We refer to
this new algorithm as MAFRA – Multithreaded Advanced Fast Rational Approximation.

1.2. Practical usage of MAFRA

Fast algorithms for solving Diophantine approximations can be used in many
fields of computer science. In some particular applications the L3 algorithm can
be substituted by MAFRA in order to reduce their practical running time. We used
MAFRA for locating large values of the Riemann zeta function on the critical line. The
Riemann-Siegel formula can be calculated by

Z(t) = 2

b
√
t/2πc∑
n=1

1√
n

cos(θ(t)− t · lnn) +O(t−1/4) , (1.4)

where θ(t) = arg(Γ(1/4 + it
2 )) − 1

2 t lnπ. In 1989 Andrew M. Odlyzko presented a
method for predicting large values of Z(t). “We need to find a t for which there exist
integers m1, . . . ,mn such that each of t ln pk − 2πmk is small (1 ≤ k ≤ n)” [5]. This
is a simultaneous Diophantine approximation problem like (1.3). By applying MAFRA

one can solve this kind of approximation problem much faster than with L3 for small
dimensions (n < 20). We implemented MAFRA in order to be able to measure the
practical running time in different architectures.

2. Algorithms for solving Diophantine approximation problems

It is known that Algorithm 2.1 solves our challenge efficiently [4].

Algorithm 2.1. – (FRA) – Fast Rational Approximation

Require: bound . default is one billion
Require: k . starting point, the default is zero

1: Γ← Apply Algorithm Precalc from [4]

2: Υ← log(p)
log(2) , p prime, 3 ≤ p ≤ 31

3: counter← 0, ε← 0.01
4: while counter < bound do
5: for i = 1→ 1024 do
6: find← true
7: for j = 1→ 10 do
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8: a← Frac((k + Γ[i]) ·Υ[j])
9: if (a > ε) and (a < 1− ε) then

10: find← false
11: break . Leave the for loop
12: end if
13: end for
14: if find = true then
15: k ← k + Γ[i]
16: counter← counter + 1
17: break
18: end if
19: end for
20: end while

The test system was an IntelrCore i5-2450M CPU with Sandy Bridge architec-
ture and the development environment was the PARI/GP computer algebra system.
Using this setup it was possible to produce 100 000 appropriate integers within 22.16
seconds. In order to achieve better performance the development environment had
been changed to native C using the GNU MP 5.1.3 multi precision library. In Algo-
rithm 2.1 the Precalc function calculates Γ10 in few minutes. After the calculation
of the 1024 elements of Γ10 one can generate arbitrarily many k ∈ Λ very efficiently.
With the improved C code it was possible to produce 100 000 integers within 2.65
seconds. This is approximately 10 times faster than the PARI/GP implementation.

It is important to note a significant difference between our 10-dimensional Chal-
lenge (1.3) and the 7-dimensional Challenge presented in [4]. In that paper the solution
set was defined in the following way:

Ω(Υ, ε, a, b) = {k ∈ N : a ≤ k ≤ b, ‖kαi‖ < ε for all αi ∈ Υ} .
As it can be seen, the elements of the Ω are bounded. In (1.2) we redefined Ω without
boundaries. This “small” change of the definition allows us to design and develop an
even faster algorithm.

Algorithm 2.2. – (AFRA) – Advanced Fast Rational Approximation

Require: bound . default is one billion
Require: k . starting point, the default is zero

1: Γ← Apply Algorithm Precalc from [4]

2: Υ← log(p)
log(2) , p prime, 3 ≤ p ≤ 31

3: ε← 0.01
4: counter← 0
5: while counter < bound do
6: sum← 0
7: for i = 1→ 10 do
8: a← Frac(k ·Υ[i])
9: if (a < ε) then

10: sum← sum + 2i

11: end if
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12: end for
13: sum← abs(sum− 1024) . binary complementer
14: counter← counter + 1
15: k ← k + Γ[sum]
16: end while

Algorithm 2.2 (AFRA) is substantially different from Algorithm 2.1 (FRA). Let
k ∈ Λ. FRA always finds the smallest γ ∈ Γ10 where (k + γ) ∈ Λ. It is easy to see
that in the worst case this algorithm goes through all the 1024 elements of Γ10 (see
Algorithm 2.1, line 5). In each step the algorithm has to check whether (k+γ) ∈ Λ or
not (see line 9). AFRA finds one element from Γ10 — not necessary the smallest one1

— that satisfies (k + γ) ∈ Λ (Lemma 8 in [4] ensures finding the appropriate γ ∈ Γ10

efficiently). Algorithm 2.2 is therefore faster, however, adding some γ to k produces
larger values in Λ. It can be concluded that FRA is a better choice for solving bounded
challenges like Ω(Υ, ε, a, b). For solving unbounded challenges, like our particular 10-
dimensional case, AFRA is much better. We implemented Algorithm 2.2 in native C.
In our test system we were able to generate 100 000 integers ∈ Λ in 0.434 seconds2.
This is almost ten times faster than the Algorithm 2.1 implementation.

Let us compare the algorithms FRA and AFRA with exact numbers. Consider the
following challenge: generate as many integers as possible in the set

Ω

({
log(p)

log(2)
, p prime , 3 ≤ p ≤ 31

}
, 0.01, 0, 2× 1019

)
(2.1)

This challenge differs from (1.3) since the elements of Ω are bounded. As we mentioned
FRA is a better choice for a bounded challenge. Solving (2.1) by FRA one can produce
13 different integers between 0 and 2× 1019. These integers are presented in Table 1.
It is easy to verify that every integer k in Table 2 satisfies the following:∥∥∥∥k log(p)

log(2)

∥∥∥∥ < 0.01

for all 3 ≤ p ≤ 31.

Table 1. FRA output between 0 and 2× 1019

102331725988392788 479125648045771184 710080108123034500
1711993379226146170 2088787301283524566 3423106890630466630
5441342799508541730 7540063840126351339 8406797017385611672
10118790396611757842 10503998465875331568 11021951848184774212
19036050657750584878

These integers were generated in 0.015 seconds. AFRA is almost 10 times faster
than FRA, however, inappropriate for solving this particular “bounded” challenge.

1The set of integers in Γ10 are ordered in the following way: every integer in Γn is represented by
an n-dimensional binary vector (see Lemma 8 in [4]). Γ10 contains integers ordered by the values of

this binary vector (e.g: 0000000000, 0000000001, 0000000010, 0000000011 etc.)
2During the measurements Input/Output costs are not cummulated. Displaying the 100 000 integers

from the memory would take approximately 5-6 seconds.
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With AFRA we can produce only one integer solution, which is 2298677471355273619.
The next integer would be 183963121486836331196 which is already out of the upper
bound 2× 1019.

We conclude that challenge (1.3) is unbounded, so when the size of the integers
is unimportant then Algorithm AFRA is the right solution.

3. Computing methods and results

To make the generation even faster we modified our C code in order to be
able to run in parallel using pthreads (IEEE Std. 1003.1c-1995.). We refer to the
multithreaded version of AFRA as MAFRA– Multithreaded Advanced Fast Rational Ap-
proximation algorithm.

In this section we present the measured running time of MAFRA for different
architectures. The first test environment was a simple Sandy Bridge Intel Core i5-
2450M with 4 GB RAM. The second hardware was a Super Computing Cluster called
ATLAS with 90x Intel Xeon E5520 Nehalem Quad Core 2.26 GHz Processors and
0.6TB RAM. The third hardware was an ATI Radeon 7970 GPU card.

3.1. Test – Core i5-2450M Laptop

Our first test environment was a simple home desktop PC. It was an Intel Core
i5-2450M Sandy Bridge CPU with 4 GB RAM having 2 cores. Generating 100 000
integers ∈ Λ for solving the 10 dimensional challenge with the algorithm MAFRA took
0.234 sec. Our newly implemented, optimized and multithreaded C code is effective,
however, generating 1 billion elements of (1.3) with this architecture would take ap-
proximately 39 minutes.

3.2. Test – ATLAS Computing Cluster

Our second test environment was the ATLAS Supercomputing Cluster that is
operating in the Eötvös Loránd University, Budapest. The most important character-
istics of ATLAS are the following: the architecture consists of one dedicated Headnode
and 44 Computing nodes.

1x Headnode:

1. 2x Intel Xeon E5520 Nehalem Quad Core 2.26 GHz Processor with 8 MB cache
(HyperThreading OFF)

2. 72 Gbyte RAM
3. 10 Gbit eth interface to the 44 computing nodes

44x Computing Nodes:

1. 2x Intel Xeon E5520 Nehalem Quad Core 2.26 GHz Processor with 8 MB cache
(HyperThreading ON)

2. 12 Gbyte RAM

Each Nehalem Quad core CPU has 4 physical cores with SSE extension. Each node
has a 2 × 36.256 GFLOP/sec peak performance (see [6]) calculated by the following
formula:
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FLOPS = 4 cores× 2.266GHz× 2 (SIMD double prec.)× 2 (MUL, ADD)
= 36.256 GFLOP/sec.

There are 44 computing nodes which contain 88 physical CPU. The total number
of physical cores are 352 (4× 88). With hyper-threading the number of cores can be
doubled to 704 virtual core. The peak performance of the ATLAS Computing Cluster
is 72.512×44 = 3190.528 GFLOP/sec. With full performance ATLAS takes 12.6 kW,
34.2 A, and cosFI= 0.95.

Generating 100 000 integers in one computing node took approximately 0.175
sec. Remember that in the previous test the Intel Core i5-2450 had 2 cores with 4
threads. If the number of threads is less than the number of dimensions then the
multithreaded running is obvious; every thread checks whether (k + γ) · Υ[i] < ε for
all i < n where n denotes the dimension. ATLAS has 44 different nodes which are
much more than the number of dimensions in our particular case. If one wanted to
use all of the cores then the best way would be to run 44 copies of AFRA in each
node. In this case each node should start from different starting points. Generating
44 different appropriate starting points for each copies of AFRA can be done very
effectively with the L3 algorithm. Let α1, α2, . . . , αn be irrational numbers and let us
approximate them with rationals admitting an ε > 0 error. Let X = βn(n+1)/4ε−n

and let the matrix A be the following:

A =



1 0 0 . . . 0
α1X X 0 . . . 0
α2X 0 X . . . 0

...
...

αnX 0 0 . . . X


.

Applying the L3 algorithm for A the first column of the resulting matrix contains the
vector [q, p1, p2, p3, . . . , pn]T which satisfies∣∣αi − pi

q

∣∣ < ε

q
and 0 < q ≤ βn(n+1)/4ε−n

for all 1 ≤ i ≤ n, where β is an appropriate reduction parameter. Using MAFRA in
accordance with L3 it is possible to generate 4.4 millions of integers within 0.175 + δ
seconds where δ is the generating time of the 44 starting points not exceeding 5000
ms. With the ATLAS Computing Cluster calculating exactly one billion integers that
satisfy (1.3) took approximately 39.7 seconds.

Generating the 44 integers as starting points with L3 can be done very effectively,
however, we would like to emphasize again that the L3 algorithm is ineffective in
generating many solutions (e.g. one billion).

3.3. Test – ATI Radeon 7970 GPU

The third test environment was a Sapphire Vapor-X ATI Radeon 7970 6GB
GDDR5 GHz Edition GPU card. Modern graphic cards can be other promising so-
lutions for solving high performance computations. Clearly, in order to implement
another fast method for our Diophantine approximation problem one has to take into
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consideration the usage of GPU cards. In our case the multithreaded version of FRA
and AFRA were implemented for the GPU. In the first step, however, we faced with
the following problem: there were not any fast quadruple precision packages on the
GPU. Although some similar packages for the older GPU cards were found written
by Andrew Thall [7] and Eric Bainville [8], these packages found to be inappropriate
to solve our particular challenge. The problem with the package written by Andrew
Thall is that it uses too much branching and function calling in the program which
costs a lot clock cycles. It comes from the behaviour of the graphical processing unit
which evaluates both the if and the else part of the conditional, and after the com-
putation it uses that data where the logical value was True. FRA and AFRA contain
a lot of logical evaluation, so the usage of this package was not convenient for our
purposes. The other package, which was written by Eric Bainville, is faster, but it is
for fixed point numbers which was inappropriate, as well.

In conclusion, we developed our own multiplication, addition, subtraction and
truncation methods. We applied the Karatsuba multiplication algorithm and some
bitwise tricks for the addition and truncation methods. After measuring the running
speeds on this architecture it turned out that using the AFRA algorithm on the GPU
approximately 50 times performance drop-down could be measured without using the
L3 algorithm for the generation of the starting points3.

bound AFRA Running speed in seconds
1 0.0254221
10 0.183748
100 1.35351
1000 12.7255
10000 127.038
100000 1200.7

After examining AFRA we can state that the main problem with this “linear”
algorithm is that it was not possible to distribute enough threads on the GPU. Con-
sider for example our 10-dimensional case. One had to add the 1024 integers to the
partial results and then multiply them with the irrationals. The problem with this
solution is that in the quadruple–adder kernel it was not possible to send in enough
threads lowering or hiding the latency. In our case the global work size was twice as
big as the local work size, which leaded to performance drop-down. In order to avoid
the big performance drop-down we utilized every threads on the GPU just like in the
ATLAS Super Cluster. For example, if we want to use 2048 threads on the GPU,
then we would have to generate 2048 different starting points with the L3 algorithm
to feed all the threads on the GPU. We also modified a bit the number representa-
tion in order to achieve higher speed on this architecture. In that particular case our
measurements show that generating 100 000 different integers on the 7970 GPU it is
4 times faster than on the CPU.

3Measuring speeds on the GPU is only an approximation.
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Combination of the CPU version of L3 and the GPU version of MAFRA turned out
to be a very effective way to solve simultaneous Diophantine approximation problems.
A supercomputer with GPU accelerators would be a nice solution for this problem.

4. Further Researches

As we stated in the introduction we used MAFRA for locating large values of the
Riemann zeta function on the critical line. It was possible to substitute L3 with MAFRA

in order to achieve a much better performance of finding large values. We have imple-
mented MAFRA algorithm to the GRID system of the Hungarian Academy of Sciences
and solving simultaneous Diophantine approximation problems very effectively. We
plan to continue our research in this direction.
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