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Comparison of Riemann solvers in fluid dynamics
by weighted error number

Csaba Müller and Lajos Gergó

Abstract. After using a numerical method our eyes are good witnesses whether
that method is good or not. We aim to provide, for first order hyperbolic systems,
a number that measures, determines the quality of a method instead of decid-
ing by figures. This number is based on the ℓ1 vector norm of the error vector,
combined with weighting. This weight vector has bigger values near discontinu-
ities and kinks because most of the Riemann-solvers have difficulties (including
numerical diffusion and oscillations) in solving the equations near these states.

Mathematics Subject Classification (2010): 65M06.

Keywords: Riemann-solver, hyperbolic equation.

1. Introduction

Our primary research field is numerical methods for first order hyperbolic equa-
tions. This type of equations, systems are used in several places, for example in fluid
dynamics, shallow water calculations, and many other places. For example if we want
to model blood flow in human vascular system then the obtained equation will be
hyperbolic too but a much more complicated one. For a detailed biomechanical view
for this subject see [10].

In this case wall of veins can’t be considered as a rigid tube, it is flexible, it
can narrow and broaden. Thereby a new source term appears in the system which
will depend on the solution itself. There is another big difficulty because in this case
junctions have to be studied. In this paper we work with a simpler system of equations,
namely the Euler system in fluid dynamics. For more detailed theory of hyperbolic
equations see the Godlewski-Raviart book [3].

Our objective is to assign a number to a given numerical solution. This number
should show us how that method can perform near critical regions. How close the
numerical solution to the exact solution is; if the given method produces a solution at
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all. As we will see there are test cases where certain methods are unable to produce
numerical results because of their properties. This is because most of the arising
physical properties in modeling gas flows (pressure, density and energy) can’t be
negative. However in certain cases oscillations could occur with a portion of numerical
methods. If these oscillations are big “enough” then they can reach negative region
and a negative value in density for example ruins all the calculations.

These problems could be avoided by minor modifications of the methods but our
goal is to use and study them in their “original” forms. We would do a note here. These
methods usually lose slightly from their good properties due to the modifications and
the running time could also increase by these extra checks.

1.1. Computer configuration used for tests

Hardware configuration.

• CPU: AMD FX-8350, 4.0-4.2 GHz
• RAM: 12 GB, DDR3-1600 MHz

Software configuration.

• Operating system: Microsoft Windows 7 (64-bit, Professional version)
• MATLAB version 2010b

2. Euler system

Our test equation is the Euler system in fluid dynamics. It is given as

∂~u

∂t
+

∂ ~f (~u)

∂x
= 0,

that is in the so-called conservative form. The solution vector ~u has three components,
namely ~u = [ρ,m, e] where ρ is the density, m = ρu is the mass flow component and
e is the total energy.

The function ~f is known as flux. It contains three components as

~f (~u) =

[

m,
m2

ρ
+ p,

m

ρ
(e+ p)

]

,

where p is the pressure. It can be calculated by the equation

e =
p

γ − 1
+

m2

2ρ
,

where γ is ratio of specific heats, a constant depending on the gas. In our tests we
used γ = 1.4 which is the case of air.

Physically this system describes gas flow and state changes over time in a rigid
one-dimensional tube with given initial values. It is easy to see that Euler system is
nonlinear. Nonlinearity always brings additional complexity compared to the simpler
linear cases. This is even more true in solving nonlinear partial differential equations
numerically. In our case, complexity of the problem is caused by the nonlinearity of
the flux and the discontinuity of initial values.
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Characteristics are important in the case of hyperbolic equations (see [1], [12],
[18]). In linear systems these characteristics are parallel lines. The components of the
solution are constant along these lines, only depending on initial values and the source
terms if the system is not homogeneous. Some methods were discussed by Roe [13]
and LeVeque, Yee [9] for systems with source terms.

The aforementioned property also provides a simple method for calculating the
solution, this is called the method of characteristics (see in [14]). The initial values
should be moved along characteristic lines. Additionally if the system is inhomoge-
neous the source term should be integrated above a specific section of the characteristic
line. In numerical mathematics there are many known methods to integrate a function
above a finite line segment.

Characteristics are not parallel in the case of nonlinear equations. In addition
they could intersect each other so we can not use this simple method.

But characteristics are still important in solving this system numerically. They
describe the propagation speed of waves, S. If we want to guarantee stability for a
numerical method then we should use a time step τ such that the following inequality
holds in all grid points and for all coordinates

CFL :=
τ |S|

h
≤ c,

where h is the spatial step. The value of c is 1 for Lax-Friedrichs and Lax-Wendroff
methods; it is 1

2 for Godunov-type methods, so that the waves do not cross the cell
borders (see [18]). CFL (Courant-Friedrichs-Levy) is called Courant number.

So the stability of a method depends on the Courant number, therefore we need
to determine this number during calculations. Because τ and h depends only on
discretization, we need to calculate S in all grid points.

This value S depends on none other than the eigenvalues of Jacobian matrix of
the flux which is nothing other than the slope of characteristics. In linear case, these
eigenvalues are constant, but in our case they depend on the solution as well.

Analytically the eigenvalues of the Euler system are as follows

λ1 = u− c, λ2 = u, λ3 = u+ c,

where u is the velocity of the gas and c is the speed of sound which can be calculated
by

c =

√

γ
p

ρ
.

We determine approximation to this number in all grid points during the entire
calculation and examine whether the maximal absolute value from these numbers
meets the Courant condition or not. In practice this is the easiest way to guarantee
the stability.
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3. Test cases

In our tests we solved the Euler equation with different initial values (see Table
1). These initial values are from the book of Toro [18]. We assume that the initial
values consist of two different constant states with a discontinuity in x0 as follows

~u0 (x) := ~u (x, t) |t=0 =

{

[ ρL,mL, eL]
T
(=: ~uL) if x < x0

[ ρR,mR, eR]
T
(=: ~uR) if x0 < x

where the indices L and R refer to the left and right constant states.
For this special type of initial conditions the initial value problem is called Rie-

mann problem. The spatial domain is taken as interval [−3, 3] and our time domain is
[0, T ] where T is a parameter of the test case. The calculations were done on a finite
interval so we need boundary conditions. In our cases we used transmissive boundary
conditions (see [2]). The spatial domain was divided to 600 subintervals, so h is fixed
at 0.01 in all cases. Time steps number M could be changed in order to guarantee
stability. Then

τ =
T

M

can be applied to determine time step size.
The spatial-time graph can be divided into 4 parts in the case of Riemann

problem by 3 lines. In all subparts of the graph, gas states (velocity, pressure, density
and energy) are constant.

- x

6
t

r

x0

~uL ~uR

~u∗L ~u∗R

Figure 1. Characteristic types
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These three lines are characteristic lines starting from the discontinuity of initial
values (see Figure 1). There are three different types of characteristics. There is a
conventional way of marking these waves by type. Thick lines mark the so-called
shock waves, thinner lines mark the contact discontinuity in the middle and the fan-
like marking is for rarefaction waves. For more detailed descriptions of waves, see the
book of Whitham [20].

In our case the middle wave will be a contact wave. Only density and total
energy change along a contact wave, velocity and pressure are equal on both sides of
this wave. The region between the two outer waves is called star region.

It is important to note that while contact and shock waves produce a disconti-
nuity in solution, rarefaction waves do not. They blur and link the values from the
adjacent regions continuously. This is the reason of the fan-like marking in figures.

-

6

p -

6

p

-

6

p -

6

p

Figure 2. Possible characteristic layouts

On our example graph there is a rarefaction wave on the left side and a shock
wave on the right. There are 4 possible layout as you can see in figure 2. On a given
side the wave type depends on how the pressure on that particular side compares to
the pressure in star region. If pressure is higher in the star region then there will be a
shock wave at a given side , if lower (or equal) then there will be a rarefaction wave.

After presenting the wave types and possible layouts we describe each test cases
in a few words.
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Test x0 T ρL uL pL ρR uR pR
1 0 1 1 0 1 0.125 0 0.1

2 −1.2 1.2 1 0.75 1 0.125 0 0.1

3 0 0.9 1 −2 0.4 1 2 0.4

4 0 0.072 1 0 1000 1 0 0.01

5 −0.6 0.21 5.99924 19.5975 460.894 5.99242 −6.19633 46.095

6 1.8 0.072 1 −19.59745 1000 1 −19.59745 0.01

7 0 12 1.4 0 1 1 0 1

8 0 12 1.4 0.1 1 1 0.1 1

Table 1. Initial values and parameters

Test case 1 is a very popular test case for this equation, called SOD test case.
Its characteristics layout is the same as in figure 1, so there is a rarefaction wave on
the left, middle wave is contact discontinuity. This is moving to the right slowly by
the time. The right wave is a shock wave in this case.

Test case 2 is very similar to test 1, but the initial velocity isn’t 0 on the entire
interval, only on the right side, it is 0.75 on the left. Wave structure is the same as
in test 1 but wave slopes, speeds differ from those. Numerical results are also very
similar.

In test case 3 there are two rarefaction waves symmetrically to 0. These rarefac-
tions cover two long intervals. Generally, numerical methods do not handle these long
rarefaction waves well. Furthermore close to vacuum state appears in this test, which
causes the Lax-Wendroff method to fail.

The wave layout in test 4 is the same as in test 1 and 2 but in this case contact
and shock waves are extremely close to each other. Robustness of the method can be
measured by this test case. Initial values differ several orders of magnitude on two
sides which causes another difficulty to numerical methods.

Test 5 is very similar to test 4 but in this case left wave will also be a shock
wave and there will be bigger distance between contact discontinuity and right shock
wave. Numerical results are also similar to those seen in the latest test.

Test 6 is almost exactly the same as test 4 except the initial velocity is not 0.
Perhaps the biggest differences are visible among methods in this test case. Because
of this we make a comparative figure (see Figure 3) for the obtained numerical ap-
proximations by different methods. We only represent the density plots since density
graph is always the most interesting one.

Test 7 is a trivial test case, because the gas is in steady state. There is one trivial
rarefaction wave on both sides. The contact wave stays at x0 = 0 and does not move,
however bunch of numerical methods blur this discontinuity along left and right states
because of numerical diffusion. Some methods can produce exact solution in this case
because of the simplicity of initial values and trivial wave structure.

Test 8 is almost the same as case 7, except the contact wave will move to the
right slowly by the time. The results are also very similar to those produced in the
latest test case, but there is no method producing exact solution.
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Figure 3. Test 6: obtained density plots by different methods

4. Approximate Riemann-solvers

We study conservative numerical methods in the following form

~u
j+1
i = ~u

j
i −

τ

h

(

~f
j+ 1

2

i+ 1

2

− ~f
j+ 1

2

i− 1

2

)

,

where ~u
j
i means the numerical approximation at time level j in the ith spatial point

and ~f
j+ 1

2

i± 1

2

is the left and right intercell numerical flux. The studied methods differ

only in the calculation, definition of this numerical flux.
The basic idea comes from Godunov [4]. The initial value problem could be

solved by calculating exact or approximate solution of a Riemann problem in each
cell of the grid. We get the intercell numerical fluxes from these solutions. Then we
can do a time-step.

Five different Riemann-solvers were tested, the Lax-Friedrichs, Lax-Wendroff,
HLL solver, HLLC solver, and the exact one. Intercell flux can be expressed without
solving a Riemann problem in the case of Lax-Friedrichs and Lax-Wendroff solvers.

The Lax-Friedrichs [7] solver has an important advantage over the other (except
the exact) solvers, namely this is a monotone solver. Therefore it will not produce
oscillations near the regions with difficulties, according to Godunov’s theorem (see
[4]). On the other hand it has a disadvantage, it generates a high numerical diffusion
near the contact discontinuity.

The Lax-Wendroff [8] solver is second order for linear problems, and therefore it
can not be monotone method, so it will produce oscillations near the discontinuities.
It is a disadvantage, but on the other hand it limits the discontinuities to a smaller in-
terval. It means that the numerical diffusion will be much smaller using Lax-Wendroff
scheme than in the case of using a first order methods.
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The other three tested methods are really based on Riemann problem. The HLL
solver [6] uses approximations to the two outer waves’ speed only. It has problems with
middle wave, in the form of high numerical diffusion. The HLLC solver is an improved
version of the HLL solver introduced by Toro [17]. It tries to reduce numerical diffusion
in the way of using estimates for all three wave speeds, C refers to the contact.

Finally the exact Riemann solver. It computes the exact solution of the Riemann
subproblems. There are many works related to the exact solver, for example [4], [5],
[11], [15], [16] and [19]. We used the version from [18, Chap. 4].

5. Numerical results

All test cases (see Table 1) were computed by all the mentioned numerical meth-
ods and all of the obtained approximations were studied.

All of our test cases are Riemann problems. There exists exact solver for these
type of problems, as mentioned above. This can be used to compare the obtained
numerical approximations to the exact solution.

Our primary goal is to specify the error at time T as follows

‖~u(·, T )− ~unum(·, T )‖L1
=

3
∫

−3

|~u (x, T )− ~unum (x, T )| dx, (5.1)

this is the L1 norm of the difference between the exact and the approximate solution,
where ~unum is the numerical solution. But numerical solution gives values only in grid
points, therefore we can not integrate this difference along the specified interval. We
could interpolate the numerical values and then integrate using this interpolation, but
there is a more simple way.

We evaluate the exact solution only in grid points at time level T , denote this

vector of values by ~U
(i)
exact, (i = 0, 1, . . .600). Then we can get the discretization of L1

norm by calculating the

∥

∥

∥

~Uexact − ~Unum

∥

∥

∥

ℓ1

=

600
∑

i=0

∣

∣

∣

~U
(i)
exact −

~U (i)
num

∣

∣

∣

ℓ1 vector norm, where ~U
(i)
num is the numerical solution at time level T in the ith spatial

grid point. The ~U
(i)
exact and ~U

(i)
num contains multiple values, so these calculations could

be made coordinate-by-coordinate.

We remark here that if we use interpolation to calculate the error formula (5.1)
then the results would be almost the same. For example if we use the trapezoidal rule
then the result differs only by a multiplication factor of h, because at the boundaries
the error is 0, at the inner points the trapezoidal rule multiplies by h.

It is not our goal. We want to calculate the error with higher weights near critical
regions. For this reason our exact solver returns the types and places of waves at time
t = T . The mentioned critical regions are the locations of contact, shock waves and
head and tail of rarefaction waves at time t = T .
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Figure 4. Weight vector on the density plot

Weights are developed as follows. We use

w(x) = min
{

c1e
−c3 (x−c2)

2

; c4

}

, x ∈ [−3, 3]

functions. 3 to 5 functions of this type and the constant 1 function were taken. Then
the weight in the ith point of the grid (wi) is the maximal value of the previous
functions’ value in that given point.

It should be noted that we have actually two different weight vectors because
contact discontinuity only appears in the density and total energy graphs. One of
the weight vectors is used to these coordinates. The other weight vector ignores the
contact wave. We use this to calculate error of the pressure and velocity components.

We tuned the constants (c1, . . . , c4) to focus weights to critical regions. Based
on our experience we use 3 truncated exponential functions. The function

min
{

200 e−64 (x−c)2 , 100
}

is used in case of shock waves where c is the place of shock at time t = T ;

min
{

200 e−16 (x−c)2 , 100
}

is used to the head and tail of a rarefaction wave, c is the place of the head/tail of
the given rarefaction;

min
{

400 e−64 (x−c)2 , 200
}

is used to contact discontinuities, c denotes the place of the contact wave. In all
function x takes value from the [−3, 3] interval.
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Test Lax-Friedrichs Lax-Wendroff HLL HLLC Exact

1 0.0294 0.0075 0.0156 0.0151 0.0144
0.0163 s 0.0401 s 2.8603 s 3.0637 s 91.5954 s

2 0.0413 0.0096 0.0160 0.0162 0.0163
0.0373 s 0.0598 s 4.2828 s 4.5213 s 126.875 s

3 0.0193 − 0.0237 0.0237 0.0214
0.0303 s − 3.0494 s 3.1376 s 98.2901 s

4 47.2754 − 28.2834 27.9647 27.8372
0.0409 s − 5.0140 s 5.3397 s 129.833 s

5 86.1165 − 30.2774 31.0984 30.307
0.0627 s − 7.7901 s 8.0085 s 276.242 s

6 14.0664 − 11.1666 10.2964 9.5426
14.0664 s − 5.3077 s 5.5960 s 130.901 s

7 0.0323 ≈ 10−16 0.0316 0 0
0.0934 s 0.1540 s 18.4428 s 19.5587 s 819.263 s

8 0.0329 0.0088 0.0318 0.0131 0.0131
0.1132 s 0.1779 s 20.091 s 21.174 s 657.2296 s

Table 2. Summary of results

Figure 4 illustrates the resulting weight vector with the exact solution and a
numerical approximation by Lax-Friedrichs solver of the density plot for SOD test
case. In the figure thinner line marks the exact solution, the thicker one marks the
numerical approximation while the lighter line marks the weight vector scaled down
by 500.

Then the weighted error is defined in the following steps. First we calculate the

errorw =
1

W

600
∑

i=0

wi |numericali − exacti|

numbers for all coordinates where W =
600
∑

i=0

wi with the corresponding weight vector’s

values. To be totally clear numericali marks the given coordinate of the numerical
approximation in ith grid point, exacti stays for the exact solution in that point.
After calculating this number for all four coordinates we average these to get the final
weighted error of the approximation.

We summarize these results in Table 2. There are two numbers in each cell of
this table. Weighted error numbers are at top and the runtimes are at bottom of each
cell.

Each test was calculated with the highest possible Courant number that holds
stability. We get the slightest numerical diffusion this way.

We examined how methods work if using not 1 but 0.75, 0.5 and 0.25 as Courant
numbers. You can find these results in Table 3 using Lax-Friedrichs method.

Results get worse in all test cases, because more time-steps should be done to
reach the desired t = T level as we have smaller time step size.

We make another figure (Figure 5) to illustrate this behavior. On all of these
figures thinner line marks the exact solution, thicker one marks the numerical solution
using the Lax-Friedrichs method with the corresponding CFL number can be found
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Test CFL ≤ 1 CFL ≤ 0.75 CFL ≤ 0.5 CFL ≤ 0.25

1 0.0294 0.0394 0.0546 0.0836

2 0.0413 0.0523 0.0702 0.1049

3 0.0193 0.0364 0.0566 0.0897

4 47.2754 58.7429 74.6345 99.69

5 86.1165 112.4286 157.1259 239.5929

6 14.0664 23.4655 34.5278 54.0884

7 0.0323 0.0342 0.0366 0.0399

8 0.0329 0.0348 0.0372 0.0404

Table 3. Lax-Friedrichs method with different Courant numbers
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Figure 5. Test 1 with different Courant numbers using Lax-
Friedrichs method

in the title of the subfigure. We mentioned that doing more time steps increases
numerical diffusion. For example when CFL is near 0.25 then the obtained solution is
almost a straight line between side states. It is impossible to recognize discontinuities
based on this approximation.

These modified CFL tests were done with Lax-Wendroff method. In this case
numerical diffusion grow only slightly but oscillations increasing and widening (see
Figure 6). In this figure thinner line marks the exact solution, thicker line marks the
numerical approximation using the Lax-Wendroff method with CFL number as in the
title of the subfigure.

The other three methods do not produce worse solutions (maybe a little bit
worse, barely visible differences) calculating with lower Courant number. The reason
of this could be that they divide the whole problem to many Riemann problems and
they use some approximation of wave speeds. They can keep numerical diffusion under
control this way.
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Figure 6. Test 1 with different Courant numbers using Lax-
Wendroff method

6. Remarks and conclusion

The space step size, h was fixed at 0.01 in all of our tests. We remark that in the
case we use a smaller space step our results will keep the same pattern. Of course the
approximations would be more accurate, numerical diffusion and oscillations would
take a narrower interval. But we should take more time steps in order to keep the
CFL number below 1 and therefore computational time would increase significantly.
For example if we use half of the original spatial step size (h = 0.005), it means twice
as much intervals as in the original case, but we should take about twice as much
time steps because of the CFL condition. So the calculation time increases with a
multiplier of 4, but the accuracy of the approximation would not be 4 times better.
All in all taking a fixed h was just a simplification to our test procedure.

The runtime of the exact solver is incredibly high in comparison with other
solvers. That is because it has to calculate the exact solution of a Riemann problem
in each cell. Which is a very time-consuming task. In addition we can see that its
weighted error values are not much better compared for example to theHLLC solver’s
values. So using the exact solver is only recommended for very sharpened cases.

Lax methods are much quicker than their counterparts in all cases. The expla-
nation is simple, these two solvers could be written in a closed formula, as mentioned
above, so they actually do not need to divide the problem into subproblems thus
considerably simplifying the process of calculation.

Furthermore, we remark that in general cases we do not have an exact solver,
so we can not produce exact solution. We could not compare our results to the exact
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solution. In this case we should make a quasi-exact solution using some monotone
(eg. Lax-Friedrichs) method with very fine spatial discretization. Numerical diffusion
should be corrected after the calculation in order to use this as a quasi-exact solution
and compare other methods to this result.
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